WorldWideScience

Sample records for linear state estimators

  1. Linear Covariance Analysis and Epoch State Estimators

    Science.gov (United States)

    Markley, F. Landis; Carpenter, J. Russell

    2014-01-01

    This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.

  2. Direct estimation of elements of quantum states algebra and entanglement detection via linear contractions

    International Nuclear Information System (INIS)

    Horodecki, Pawel

    2003-01-01

    Possibility of some nonlinear-like operations in quantum mechanics are studied. Some general formula for real linear maps are derived. With the results we show how to perform physically separability tests based on any linear contraction (on product states) that either is real or Hermitian. We also show how to estimate either product or linear combinations of quantum states without knowledge about the states themselves. This can be viewed as a sort of quantum computing on quantum states algebra

  3. Simultaneous Robust Fault and State Estimation for Linear Discrete-Time Uncertain Systems

    Directory of Open Access Journals (Sweden)

    Feten Gannouni

    2017-01-01

    Full Text Available We consider the problem of robust simultaneous fault and state estimation for linear uncertain discrete-time systems with unknown faults which affect both the state and the observation matrices. Using transformation of the original system, a new robust proportional integral filter (RPIF having an error variance with an optimized guaranteed upper bound for any allowed uncertainty is proposed to improve robust estimation of unknown time-varying faults and to improve robustness against uncertainties. In this study, the minimization problem of the upper bound of the estimation error variance is formulated as a convex optimization problem subject to linear matrix inequalities (LMI for all admissible uncertainties. The proportional and the integral gains are optimally chosen by solving the convex optimization problem. Simulation results are given in order to illustrate the performance of the proposed filter, in particular to solve the problem of joint fault and state estimation.

  4. State Estimation for Linear Systems Driven Simultaneously by Wiener and Poisson Processes.

    Science.gov (United States)

    1978-12-01

    The state estimation problem of linear stochastic systems driven simultaneously by Wiener and Poisson processes is considered, especially the case...where the incident intensities of the Poisson processes are low and the system is observed in an additive white Gaussian noise. The minimum mean squared

  5. Pre-Trained Neural Networks used for Non-Linear State Estimation

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Andersen, Nils Axel; Ravn, Ole

    2011-01-01

    of the paramters in the distribution. This transformation is approximated by a neural network using offline training, which is based on monte carlo sampling. In the paper, there will also be presented a method to construct a flexible distributions well suited for covering the effect of the non-linearities......The paper focuses on nonlinear state estimation assuming non-Gaussian distributions of the states and the disturbances. The posterior distribution and the aposteriori distribution is described by a chosen family of paramtric distributions. The state transformation then results in a transformation...

  6. Estimation of Nonlinear Functions of State Vector for Linear Systems with Time-Delays and Uncertainties

    Directory of Open Access Journals (Sweden)

    Il Young Song

    2015-01-01

    Full Text Available This paper focuses on estimation of a nonlinear function of state vector (NFS in discrete-time linear systems with time-delays and model uncertainties. The NFS represents a multivariate nonlinear function of state variables, which can indicate useful information of a target system for control. The optimal nonlinear estimator of an NFS (in mean square sense represents a function of the receding horizon estimate and its error covariance. The proposed receding horizon filter represents the standard Kalman filter with time-delays and special initial horizon conditions described by the Lyapunov-like equations. In general case to calculate an optimal estimator of an NFS we propose using the unscented transformation. Important class of polynomial NFS is considered in detail. In the case of polynomial NFS an optimal estimator has a closed-form computational procedure. The subsequent application of the proposed receding horizon filter and nonlinear estimator to a linear stochastic system with time-delays and uncertainties demonstrates their effectiveness.

  7. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    Science.gov (United States)

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  8. Linear discrete-time state space realization of a modified quadruple tank system with state estimation using Kalman filter

    DEFF Research Database (Denmark)

    Mohd. Azam, Sazuan Nazrah

    2017-01-01

    In this paper, we used the modified quadruple tank system that represents a multi-input-multi-output (MIMO) system as an example to present the realization of a linear discrete-time state space model and to obtain the state estimation using Kalman filter in a methodical mannered. First, an existing...... part of the Kalman filter is used to estimates the current state, based on the model and the measurements. The static and dynamic Kalman filter is compared and all results is demonstrated through simulations....

  9. Self-Tuning Linear Quadratic Supervisory Regulation of a Diesel Generator using Large-Signal State Estimation

    DEFF Research Database (Denmark)

    Knudsen, Jesper Viese; Bendtsen, Jan Dimon; Andersen, Palle

    2016-01-01

    In this paper, a self-tuning linear quadratic supervisory regulator using a large-signal state estimator for a diesel driven generator set is proposed. The regulator improves operational efficiency, in comparison to current implementations, by (i) automating the initial tuning process and (ii...... throughout the operating range of the diesel generator....

  10. State-space models’ dirty little secrets: even simple linear Gaussian models can have estimation problems

    DEFF Research Database (Denmark)

    Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer Moesgaard

    2016-01-01

    problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter......State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible...

  11. Non-Linear State Estimation Using Pre-Trained Neural Networks

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Andersen, Nils Axel; Ravn, Ole

    2010-01-01

    effecting the transformation. This function is approximated by a neural network using offline training. The training is based on monte carlo sampling. A way to obtain parametric distributions of flexible shape to be used easily with these networks is also presented. The method can also be used to improve...... other parametric methods around regions with strong non-linearities by including them inside the network....

  12. Development of a Probabilistic Technique for On-line Parameter and State Estimation in Non-linear Dynamic Systems

    International Nuclear Information System (INIS)

    Tunc Aldemir; Miller, Don W.; Hajek, Brian K.; Peng Wang

    2002-01-01

    The DSD (Dynamic System Doctor) is a system-independent, interactive software under development for on-line state/parameter estimation in dynamic systems (1), partially supported through a Nuclear Engineering Education (NEER) grant during 1998-2001. This paper summarizes the recent accomplishments in improving the user-friendliness and computational capability of DSD

  13. Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis

    Science.gov (United States)

    Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel

    2013-01-01

    This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007

  14. Estimating linear temporal trends from aggregated environmental monitoring data

    Science.gov (United States)

    Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.

    2017-01-01

    Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.

  15. Surface tensor estimation from linear sections

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel

    From Crofton's formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....

  16. Surface tensor estimation from linear sections

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel

    2015-01-01

    From Crofton’s formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....

  17. Thresholding projection estimators in functional linear models

    OpenAIRE

    Cardot, Hervé; Johannes, Jan

    2010-01-01

    We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squ...

  18. Linearized motion estimation for articulated planes.

    Science.gov (United States)

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  19. Slope Estimation in Noisy Piecewise Linear Functions.

    Science.gov (United States)

    Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy

    2015-03-01

    This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure.

  20. An Entropic Estimator for Linear Inverse Problems

    Directory of Open Access Journals (Sweden)

    Amos Golan

    2012-05-01

    Full Text Available In this paper we examine an Information-Theoretic method for solving noisy linear inverse estimation problems which encompasses under a single framework a whole class of estimation methods. Under this framework, the prior information about the unknown parameters (when such information exists, and constraints on the parameters can be incorporated in the statement of the problem. The method builds on the basics of the maximum entropy principle and consists of transforming the original problem into an estimation of a probability density on an appropriate space naturally associated with the statement of the problem. This estimation method is generic in the sense that it provides a framework for analyzing non-normal models, it is easy to implement and is suitable for all types of inverse problems such as small and or ill-conditioned, noisy data. First order approximation, large sample properties and convergence in distribution are developed as well. Analytical examples, statistics for model comparisons and evaluations, that are inherent to this method, are discussed and complemented with explicit examples.

  1. Generalised linear models for correlated pseudo-observations, with applications to multi-state models

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Klein, John P.; Rosthøj, Susanne

    2003-01-01

    Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model......Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model...

  2. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    KAUST Repository

    Mechhoud, Sarra

    2016-01-01

    In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  3. Linear independence of localized magnon states

    International Nuclear Information System (INIS)

    Schmidt, Heinz-Juergen; Richter, Johannes; Moessner, Roderich

    2006-01-01

    At the magnetic saturation field, certain frustrated lattices have a class of states known as 'localized multi-magnon states' as exact ground states. The number of these states scales exponentially with the number N of spins and hence they have a finite entropy also in the thermodynamic limit N → ∞ provided they are sufficiently linearly independent. In this paper, we present rigorous results concerning the linear dependence or independence of localized magnon states and investigate special examples. For large classes of spin lattices, including what we call the orthogonal type and the isolated type, as well as the kagome, the checkerboard and the star lattice, we have proven linear independence of all localized multi-magnon states. On the other hand, the pyrochlore lattice provides an example of a spin lattice having localized multi-magnon states with considerable linear dependence

  4. Linear minimax estimation for random vectors with parametric uncertainty

    KAUST Repository

    Bitar, E

    2010-06-01

    In this paper, we take a minimax approach to the problem of computing a worst-case linear mean squared error (MSE) estimate of X given Y , where X and Y are jointly distributed random vectors with parametric uncertainty in their distribution. We consider two uncertainty models, PA and PB. Model PA represents X and Y as jointly Gaussian whose covariance matrix Λ belongs to the convex hull of a set of m known covariance matrices. Model PB characterizes X and Y as jointly distributed according to a Gaussian mixture model with m known zero-mean components, but unknown component weights. We show: (a) the linear minimax estimator computed under model PA is identical to that computed under model PB when the vertices of the uncertain covariance set in PA are the same as the component covariances in model PB, and (b) the problem of computing the linear minimax estimator under either model reduces to a semidefinite program (SDP). We also consider the dynamic situation where x(t) and y(t) evolve according to a discrete-time LTI state space model driven by white noise, the statistics of which is modeled by PA and PB as before. We derive a recursive linear minimax filter for x(t) given y(t).

  5. Taming Chaos by Linear Regulation with Bound Estimation

    Directory of Open Access Journals (Sweden)

    Jiqiang Wang

    2015-01-01

    Full Text Available Chaos control has become an important area of research and consequently many approaches have been proposed to control chaos. This paper proposes a linear regulation method. Different from the existing approaches is that it can provide region of attraction while estimating the bounding behaviour of the norm of the states. The proposed method also possesses design flexibility and can be easily used to cater for special requirement such that control signal should be generated via single input, single state, static feedback and so forth. The applications to the Tigan system, the Genesio chaotic system, the novel chaotic system, and the Lorenz chaotic system justify the above claims.

  6. State estimation in networked systems

    NARCIS (Netherlands)

    Sijs, J.

    2012-01-01

    This thesis considers state estimation strategies for networked systems. State estimation refers to a method for computing the unknown state of a dynamic process by combining sensor measurements with predictions from a process model. The most well known method for state estimation is the Kalman

  7. Improved linear least squares estimation using bounded data uncertainty

    KAUST Repository

    Ballal, Tarig

    2015-04-01

    This paper addresses the problemof linear least squares (LS) estimation of a vector x from linearly related observations. In spite of being unbiased, the original LS estimator suffers from high mean squared error, especially at low signal-to-noise ratios. The mean squared error (MSE) of the LS estimator can be improved by introducing some form of regularization based on certain constraints. We propose an improved LS (ILS) estimator that approximately minimizes the MSE, without imposing any constraints. To achieve this, we allow for perturbation in the measurement matrix. Then we utilize a bounded data uncertainty (BDU) framework to derive a simple iterative procedure to estimate the regularization parameter. Numerical results demonstrate that the proposed BDU-ILS estimator is superior to the original LS estimator, and it converges to the best linear estimator, the linear-minimum-mean-squared error estimator (LMMSE), when the elements of x are statistically white.

  8. Improved linear least squares estimation using bounded data uncertainty

    KAUST Repository

    Ballal, Tarig; Al-Naffouri, Tareq Y.

    2015-01-01

    This paper addresses the problemof linear least squares (LS) estimation of a vector x from linearly related observations. In spite of being unbiased, the original LS estimator suffers from high mean squared error, especially at low signal-to-noise ratios. The mean squared error (MSE) of the LS estimator can be improved by introducing some form of regularization based on certain constraints. We propose an improved LS (ILS) estimator that approximately minimizes the MSE, without imposing any constraints. To achieve this, we allow for perturbation in the measurement matrix. Then we utilize a bounded data uncertainty (BDU) framework to derive a simple iterative procedure to estimate the regularization parameter. Numerical results demonstrate that the proposed BDU-ILS estimator is superior to the original LS estimator, and it converges to the best linear estimator, the linear-minimum-mean-squared error estimator (LMMSE), when the elements of x are statistically white.

  9. Algorithms for non-linear M-estimation

    DEFF Research Database (Denmark)

    Madsen, Kaj; Edlund, O; Ekblom, H

    1997-01-01

    In non-linear regression, the least squares method is most often used. Since this estimator is highly sensitive to outliers in the data, alternatives have became increasingly popular during the last decades. We present algorithms for non-linear M-estimation. A trust region approach is used, where...

  10. Stochastic linear hybrid systems: Modeling, estimation, and application

    Science.gov (United States)

    Seah, Chze Eng

    Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS

  11. Estimating monotonic rates from biological data using local linear regression.

    Science.gov (United States)

    Olito, Colin; White, Craig R; Marshall, Dustin J; Barneche, Diego R

    2017-03-01

    Accessing many fundamental questions in biology begins with empirical estimation of simple monotonic rates of underlying biological processes. Across a variety of disciplines, ranging from physiology to biogeochemistry, these rates are routinely estimated from non-linear and noisy time series data using linear regression and ad hoc manual truncation of non-linearities. Here, we introduce the R package LoLinR, a flexible toolkit to implement local linear regression techniques to objectively and reproducibly estimate monotonic biological rates from non-linear time series data, and demonstrate possible applications using metabolic rate data. LoLinR provides methods to easily and reliably estimate monotonic rates from time series data in a way that is statistically robust, facilitates reproducible research and is applicable to a wide variety of research disciplines in the biological sciences. © 2017. Published by The Company of Biologists Ltd.

  12. Leaf area estimation of cassava from linear dimensions

    Directory of Open Access Journals (Sweden)

    SAMARA ZANETTI

    2017-08-01

    Full Text Available ABSTRACT The objective of this study was to determine predictor models of leaf area of cassava from linear leaf measurements. The experiment was carried out in greenhouse in the municipality of Botucatu, São Paulo state, Brazil. The stem cuttings with 5-7 nodes of the cultivar IAC 576-70 were planted in boxes filled with about 320 liters of soil, keeping soil moisture at field capacity, monitored by puncturing tensiometers. At 80 days after planting, 140 leaves were randomly collected from the top, middle third and base of cassava plants. We evaluated the length and width of the central lobe of leaves, number of lobes and leaf area. The measurements of leaf areas were correlated with the length and width of the central lobe and the number of lobes of the leaves, and adjusted to polynomial and multiple regression models. The linear function that used the length of the central lobe LA = -69.91114 + 15.06462L and linear multiple functions LA = -69.9188 + 15.5102L + 0.0197726K - 0.0768998J or LA = -69.9346 + 15.0106L + 0.188931K - 0.0264323H are suitable models to estimate leaf area of cassava cultivar IAC 576-70.

  13. Bounded Perturbation Regularization for Linear Least Squares Estimation

    KAUST Repository

    Ballal, Tarig

    2017-10-18

    This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded norm is allowed into the linear transformation matrix to improve the singular-value structure. Following this, the problem is formulated as a min-max optimization problem. Next, the min-max problem is converted to an equivalent minimization problem to estimate the unknown vector quantity. The solution of the minimization problem is shown to converge to that of the ℓ2 -regularized least squares problem, with the unknown regularizer related to the norm bound of the introduced perturbation through a nonlinear constraint. A procedure is proposed that combines the constraint equation with the mean squared error (MSE) criterion to develop an approximately optimal regularization parameter selection algorithm. Both direct and indirect applications of the proposed method are considered. Comparisons with different Tikhonov regularization parameter selection methods, as well as with other relevant methods, are carried out. Numerical results demonstrate that the proposed method provides significant improvement over state-of-the-art methods.

  14. Performances Of Estimators Of Linear Models With Autocorrelated ...

    African Journals Online (AJOL)

    The performances of five estimators of linear models with Autocorrelated error terms are compared when the independent variable is autoregressive. The results reveal that the properties of the estimators when the sample size is finite is quite similar to the properties of the estimators when the sample size is infinite although ...

  15. Estimation and variable selection for generalized additive partial linear models

    KAUST Repository

    Wang, Li

    2011-08-01

    We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.

  16. Optimal difference-based estimation for partially linear models

    KAUST Repository

    Zhou, Yuejin; Cheng, Yebin; Dai, Wenlin; Tong, Tiejun

    2017-01-01

    Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.

  17. Optimal difference-based estimation for partially linear models

    KAUST Repository

    Zhou, Yuejin

    2017-12-16

    Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.

  18. Bounded Perturbation Regularization for Linear Least Squares Estimation

    KAUST Repository

    Ballal, Tarig; Suliman, Mohamed Abdalla Elhag; Al-Naffouri, Tareq Y.

    2017-01-01

    This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded

  19. Estimating linear effects in ANOVA designs: the easy way.

    Science.gov (United States)

    Pinhas, Michal; Tzelgov, Joseph; Ganor-Stern, Dana

    2012-09-01

    Research in cognitive science has documented numerous phenomena that are approximated by linear relationships. In the domain of numerical cognition, the use of linear regression for estimating linear effects (e.g., distance and SNARC effects) became common following Fias, Brysbaert, Geypens, and d'Ydewalle's (1996) study on the SNARC effect. While their work has become the model for analyzing linear effects in the field, it requires statistical analysis of individual participants and does not provide measures of the proportions of variability accounted for (cf. Lorch & Myers, 1990). In the present methodological note, using both the distance and SNARC effects as examples, we demonstrate how linear effects can be estimated in a simple way within the framework of repeated measures analysis of variance. This method allows for estimating effect sizes in terms of both slope and proportions of variability accounted for. Finally, we show that our method can easily be extended to estimate linear interaction effects, not just linear effects calculated as main effects.

  20. Common Nearly Best Linear Estimates of Location and Scale ...

    African Journals Online (AJOL)

    Common nearly best linear estimates of location and scale parameters of normal and logistic distributions, which are based on complete samples, are considered. Here, the population from which the samples are drawn is either normal or logistic population or a fusion of both distributions and the estimates are computed ...

  1. Performances of estimators of linear auto-correlated error model ...

    African Journals Online (AJOL)

    The performances of five estimators of linear models with autocorrelated disturbance terms are compared when the independent variable is exponential. The results reveal that for both small and large samples, the Ordinary Least Squares (OLS) compares favourably with the Generalized least Squares (GLS) estimators in ...

  2. Unstable volatility functions: the break preserving local linear estimator

    DEFF Research Database (Denmark)

    Casas, Isabel; Gijbels, Irene

    The objective of this paper is to introduce the break preserving local linear (BPLL) estimator for the estimation of unstable volatility functions. Breaks in the structure of the conditional mean and/or the volatility functions are common in Finance. Markov switching models (Hamilton, 1989......) and threshold models (Lin and Terasvirta, 1994) are amongst the most popular models to describe the behaviour of data with structural breaks. The local linear (LL) estimator is not consistent at points where the volatility function has a break and it may even report negative values for finite samples...

  3. Linear regressive model structures for estimation and prediction of compartmental diffusive systems

    NARCIS (Netherlands)

    Vries, D; Keesman, K.J.; Zwart, Heiko J.

    In input-output relations of (compartmental) diffusive systems, physical parameters appear non-linearly, resulting in the use of (constrained) non-linear parameter estimation techniques with its short-comings regarding global optimality and computational effort. Given a LTI system in state space

  4. Linear regressive model structures for estimation and prediction of compartmental diffusive systems

    NARCIS (Netherlands)

    Vries, D.; Keesman, K.J.; Zwart, H.

    2006-01-01

    Abstract In input-output relations of (compartmental) diffusive systems, physical parameters appear non-linearly, resulting in the use of (constrained) non-linear parameter estimation techniques with its short-comings regarding global optimality and computational effort. Given a LTI system in state

  5. A High Power Linear Solid State Pulser

    International Nuclear Information System (INIS)

    Boris Yen; Brent Davis; Rex Booth

    1999-01-01

    Particle Accelerators require high voltage and often high power. Typically the high voltage/power generation utilizes a topology with an extra energy store and a switching means to extract that stored energy. The switches may be active or passive devices. Active switches are hard or soft vacuum tubes, or semiconductors. When required voltages exceed tens of kilovolts, numerous semiconductors are stacked to withstand that potential. Such topologies can use large numbers of critical parts that, when in series, compromise the system reliability and performance. This paper describes a modular, linear, solid state amplifier which uses a parallel array of semiconductors, coupled with transmission line transformers. Such a design can provide output signals with voltages exceeding 10kV (into 50-ohms), and with rise and fall times (10-90 % amplitude) that are less than 1--ns. This compact solid state amplifier is modular, and has both hot-swap and soft fail capabilities

  6. Error Estimation for the Linearized Auto-Localization Algorithm

    Directory of Open Access Journals (Sweden)

    Fernando Seco

    2012-02-01

    Full Text Available The Linearized Auto-Localization (LAL algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs, using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL, the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method.

  7. Explicit estimating equations for semiparametric generalized linear latent variable models

    KAUST Repository

    Ma, Yanyuan

    2010-07-05

    We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.

  8. Estimation of Physical Parameters in Linear and Nonlinear Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten

    variance and confidence ellipsoid is demonstrated. The relation is based on a new theorem on maxima of an ellipsoid. The procedure for input signal design and physical parameter estimation is tested on a number of examples, linear as well as nonlinear and simulated as well as real processes, and it appears...

  9. Estimation of failure probabilities of linear dynamic systems by ...

    Indian Academy of Sciences (India)

    An iterative method for estimating the failure probability for certain time-variant reliability problems has been developed. In the paper, the focus is on the displacement response of a linear oscillator driven by white noise. Failure is then assumed to occur when the displacement response exceeds a critical threshold.

  10. Linear Estimation of Standard Deviation of Logistic Distribution ...

    African Journals Online (AJOL)

    The paper presents a theoretical method based on order statistics and a FORTRAN program for computing the variance and relative efficiencies of the standard deviation of the logistic population with respect to the Cramer-Rao lower variance bound and the best linear unbiased estimators (BLUE\\'s) when the mean is ...

  11. SNR Estimation in Linear Systems with Gaussian Matrices

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag; Alrashdi, Ayed; Ballal, Tarig; Al-Naffouri, Tareq Y.

    2017-01-01

    This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.

  12. SNR Estimation in Linear Systems with Gaussian Matrices

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2017-09-27

    This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.

  13. State Estimation for Tensegrity Robots

    Science.gov (United States)

    Caluwaerts, Ken; Bruce, Jonathan; Friesen, Jeffrey M.; Sunspiral, Vytas

    2016-01-01

    Tensegrity robots are a class of compliant robots that have many desirable traits when designing mass efficient systems that must interact with uncertain environments. Various promising control approaches have been proposed for tensegrity systems in simulation. Unfortunately, state estimation methods for tensegrity robots have not yet been thoroughly studied. In this paper, we present the design and evaluation of a state estimator for tensegrity robots. This state estimator will enable existing and future control algorithms to transfer from simulation to hardware. Our approach is based on the unscented Kalman filter (UKF) and combines inertial measurements, ultra wideband time-of-flight ranging measurements, and actuator state information. We evaluate the effectiveness of our method on the SUPERball, a tensegrity based planetary exploration robotic prototype. In particular, we conduct tests for evaluating both the robot's success in estimating global position in relation to fixed ranging base stations during rolling maneuvers as well as local behavior due to small-amplitude deformations induced by cable actuation.

  14. Bounds and estimates for the linearly perturbed eigenvalue problem

    International Nuclear Information System (INIS)

    Raddatz, W.D.

    1983-01-01

    This thesis considers the problem of bounding and estimating the discrete portion of the spectrum of a linearly perturbed self-adjoint operator, M(x). It is supposed that one knows an incomplete set of data consisting in the first few coefficients of the Taylor series expansions of one or more of the eigenvalues of M(x) about x = 0. The foundations of the variational study of eigen-values are first presented. These are then used to construct the best possible upper bounds and estimates using various sets of given information. Lower bounds are obtained by estimating the error in the upper bounds. The extension of these bounds and estimates to the eigenvalues of the doubly-perturbed operator M(x,y) is discussed. The results presented have numerous practical application in the physical sciences, including problems in atomic physics and the theory of vibrations of acoustical and mechanical systems

  15. Estimation and Inference for Very Large Linear Mixed Effects Models

    OpenAIRE

    Gao, K.; Owen, A. B.

    2016-01-01

    Linear mixed models with large imbalanced crossed random effects structures pose severe computational problems for maximum likelihood estimation and for Bayesian analysis. The costs can grow as fast as $N^{3/2}$ when there are N observations. Such problems arise in any setting where the underlying factors satisfy a many to many relationship (instead of a nested one) and in electronic commerce applications, the N can be quite large. Methods that do not account for the correlation structure can...

  16. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    KAUST Repository

    Mechhoud, Sarra

    2016-01-01

    First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  17. Solutions to estimation problems for scalar hamilton-jacobi equations using linear programming

    KAUST Repository

    Claudel, Christian G.; Chamoin, Timothee; Bayen, Alexandre M.

    2014-01-01

    This brief presents new convex formulations for solving estimation problems in systems modeled by scalar Hamilton-Jacobi (HJ) equations. Using a semi-analytic formula, we show that the constraints resulting from a HJ equation are convex, and can be written as a set of linear inequalities. We use this fact to pose various (and seemingly unrelated) estimation problems related to traffic flow-engineering as a set of linear programs. In particular, we solve data assimilation and data reconciliation problems for estimating the state of a system when the model and measurement constraints are incompatible. We also solve traffic estimation problems, such as travel time estimation or density estimation. For all these problems, a numerical implementation is performed using experimental data from the Mobile Century experiment. In the context of reproducible research, the code and data used to compute the results presented in this brief have been posted online and are accessible to regenerate the results. © 2013 IEEE.

  18. From neurons to circuits: linear estimation of local field potentials

    Science.gov (United States)

    Rasch, Malte; Logthetis, Nikos K.; Kreiman, Gabriel

    2010-01-01

    Extracellular physiological recordings are typically separated into two frequency bands: local field potentials (LFPs, a circuit property) and spiking multi-unit activity (MUA). There has been increased interest in LFPs due to their correlation with fMRI measurements and the possibility of studying local processing and neuronal synchrony. To further understand the biophysical origin of LFPs, we asked whether it is possible to estimate their time course based on the spiking activity from the same or nearby electrodes. We used Signal Estimation Theory to show that a linear filter operation on the activity of one/few neurons can explain a significant fraction of the LFP time course in the macaque primary visual cortex. The linear filter used to estimate the LFPs had a stereotypical shape characterized by a sharp downstroke at negative time lags and a slower positive upstroke for positve time lags. The filter was similar across neocortical regions and behavioral conditions including spontaneous activity and visual stimulation. The estimations had a spatial resolution of ~1 mm and a temporal resolution of ~200 ms. By considering a causal filter, we observed a temporal asymmetry such that the positive time lags in the filter contributed more to the LFP estimation than negative time lags. Additionally, we showed that spikes occurring within ~10 ms of spikes from nearby neurons yielded better estimation accuracies than nonsynchronous spikes. In sum, our results suggest that at least some circuit-level local properties of the field potentials can be predicted from the activity of one or a few neurons. PMID:19889990

  19. A Comparison of Alternative Estimators of Linearly Aggregated Macro Models

    Directory of Open Access Journals (Sweden)

    Fikri Akdeniz

    2012-07-01

    Full Text Available Normal 0 false false false TR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman","serif"; mso-ansi-language:TR; mso-fareast-language:TR;} This paper deals with the linear aggregation problem. For the true underlying micro relations, which explain the micro behavior of the individuals, no restrictive rank conditions are assumed. Thus the analysis is presented in a framework utilizing generalized inverses of singular matrices. We investigate several estimators for certain linear transformations of the systematic part of the corresponding macro relations. Homogeneity of micro parameters is discussed. Best linear unbiased estimation for micro parameters is described.

  20. Robust linear discriminant analysis with distance based estimators

    Science.gov (United States)

    Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina

    2017-11-01

    Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.

  1. Minimum variance linear unbiased estimators of loss and inventory

    International Nuclear Information System (INIS)

    Stewart, K.B.

    1977-01-01

    The article illustrates a number of approaches for estimating the material balance inventory and a constant loss amount from the accountability data from a sequence of accountability periods. The approaches all lead to linear estimates that have minimum variance. Techniques are shown whereby ordinary least squares, weighted least squares and generalized least squares computer programs can be used. Two approaches are recursive in nature and lend themselves to small specialized computer programs. Another approach is developed that is easy to program; could be used with a desk calculator and can be used in a recursive way from accountability period to accountability period. Some previous results are also reviewed that are very similar in approach to the present ones and vary only in the way net throughput measurements are statistically modeled. 5 refs

  2. Approximation to estimation of critical state

    International Nuclear Information System (INIS)

    Orso, Jose A.; Rosario, Universidad Nacional

    2011-01-01

    The position of the control rod for the critical state of the nuclear reactor depends on several factors; including, but not limited to the temperature and configuration of the fuel elements inside the core. Therefore, the position can not be known in advance. In this paper theoretical estimations are developed to obtain an equation that allows calculating the position of the control rod for the critical state (approximation to critical) of the nuclear reactor RA-4; and will be used to create a software performing the estimation by entering the count rate of the reactor pulse channel and the length obtained from the control rod (in cm). For the final estimation of the approximation to critical state, a function obtained experimentally indicating control rods reactivity according to the function of their position is used, work is done mathematically to obtain a linear function, which gets the length of the control rod, which has to be removed to get the reactor in critical position. (author) [es

  3. Practical global oceanic state estimation

    Science.gov (United States)

    Wunsch, Carl; Heimbach, Patrick

    2007-06-01

    The problem of oceanographic state estimation, by means of an ocean general circulation model (GCM) and a multitude of observations, is described and contrasted with the meteorological process of data assimilation. In practice, all such methods reduce, on the computer, to forms of least-squares. The global oceanographic problem is at the present time focussed primarily on smoothing, rather than forecasting, and the data types are unlike meteorological ones. As formulated in the consortium Estimating the Circulation and Climate of the Ocean (ECCO), an automatic differentiation tool is used to calculate the so-called adjoint code of the GCM, and the method of Lagrange multipliers used to render the problem one of unconstrained least-squares minimization. Major problems today lie less with the numerical algorithms (least-squares problems can be solved by many means) than with the issues of data and model error. Results of ongoing calculations covering the period of the World Ocean Circulation Experiment, and including among other data, satellite altimetry from TOPEX/POSEIDON, Jason-1, ERS- 1/2, ENVISAT, and GFO, a global array of profiling floats from the Argo program, and satellite gravity data from the GRACE mission, suggest that the solutions are now useful for scientific purposes. Both methodology and applications are developing in a number of different directions.

  4. Probabilistic quantum cloning of a subset of linearly dependent states

    Science.gov (United States)

    Rui, Pinshu; Zhang, Wen; Liao, Yanlin; Zhang, Ziyun

    2018-02-01

    It is well known that a quantum state, secretly chosen from a certain set, can be probabilistically cloned with positive cloning efficiencies if and only if all the states in the set are linearly independent. In this paper, we focus on probabilistic quantum cloning of a subset of linearly dependent states. We show that a linearly-independent subset of linearly-dependent quantum states {| Ψ 1⟩,| Ψ 2⟩,…,| Ψ n ⟩} can be probabilistically cloned if and only if any state in the subset cannot be expressed as a linear superposition of the other states in the set {| Ψ 1⟩,| Ψ 2⟩,…,| Ψ n ⟩}. The optimal cloning efficiencies are also investigated.

  5. Estimating epidemic arrival times using linear spreading theory

    Science.gov (United States)

    Chen, Lawrence M.; Holzer, Matt; Shapiro, Anne

    2018-01-01

    We study the dynamics of a spatially structured model of worldwide epidemics and formulate predictions for arrival times of the disease at any city in the network. The model is composed of a system of ordinary differential equations describing a meta-population susceptible-infected-recovered compartmental model defined on a network where each node represents a city and the edges represent the flight paths connecting cities. Making use of the linear determinacy of the system, we consider spreading speeds and arrival times in the system linearized about the unstable disease free state and compare these to arrival times in the nonlinear system. Two predictions are presented. The first is based upon expansion of the heat kernel for the linearized system. The second assumes that the dominant transmission pathway between any two cities can be approximated by a one dimensional lattice or a homogeneous tree and gives a uniform prediction for arrival times independent of the specific network features. We test these predictions on a real network describing worldwide airline traffic.

  6. Exponentially convergent state estimation for delayed switched recurrent neural networks.

    Science.gov (United States)

    Ahn, Choon Ki

    2011-11-01

    This paper deals with the delay-dependent exponentially convergent state estimation problem for delayed switched neural networks. A set of delay-dependent criteria is derived under which the resulting estimation error system is exponentially stable. It is shown that the gain matrix of the proposed state estimator is characterised in terms of the solution to a set of linear matrix inequalities (LMIs), which can be checked readily by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed state estimator.

  7. Spatial Signature Estimation with an Uncalibrated Uniform Linear Array

    Directory of Open Access Journals (Sweden)

    Xiang Cao

    2015-06-01

    Full Text Available In this paper, the problem of spatial signature estimation using a uniform linear array (ULA with unknown sensor gain and phase errors is considered. As is well known, the directions-of-arrival (DOAs can only be determined within an unknown rotational angle in this array model. However, the phase ambiguity has no impact on the identification of the spatial signature. Two auto-calibration methods are presented for spatial signature estimation. In our methods, the rotational DOAs and model error parameters are firstly obtained, and the spatial signature is subsequently calculated. The first method extracts two subarrays from the ULA to construct an estimator, and the elements of the array can be used several times in one subarray. The other fully exploits multiple invariances in the interior of the sensor array, and a multidimensional nonlinear problem is formulated. A Gauss–Newton iterative algorithm is applied for solving it. The first method can provide excellent initial inputs for the second one. The effectiveness of the proposed algorithms is demonstrated by several simulation results.

  8. Resting State Network Estimation in Individual Subjects

    Science.gov (United States)

    Hacker, Carl D.; Laumann, Timothy O.; Szrama, Nicholas P.; Baldassarre, Antonello; Snyder, Abraham Z.

    2014-01-01

    Resting-state functional magnetic resonance imaging (fMRI) has been used to study brain networks associated with both normal and pathological cognitive function. The objective of this work is to reliably compute resting state network (RSN) topography in single participants. We trained a supervised classifier (multi-layer perceptron; MLP) to associate blood oxygen level dependent (BOLD) correlation maps corresponding to pre-defined seeds with specific RSN identities. Hard classification of maps obtained from a priori seeds was highly reliable across new participants. Interestingly, continuous estimates of RSN membership retained substantial residual error. This result is consistent with the view that RSNs are hierarchically organized, and therefore not fully separable into spatially independent components. After training on a priori seed-based maps, we propagated voxel-wise correlation maps through the MLP to produce estimates of RSN membership throughout the brain. The MLP generated RSN topography estimates in individuals consistent with previous studies, even in brain regions not represented in the training data. This method could be used in future studies to relate RSN topography to other measures of functional brain organization (e.g., task-evoked responses, stimulation mapping, and deficits associated with lesions) in individuals. The multi-layer perceptron was directly compared to two alternative voxel classification procedures, specifically, dual regression and linear discriminant analysis; the perceptron generated more spatially specific RSN maps than either alternative. PMID:23735260

  9. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    In recent years, the non-linear quantum dynamics of these states have revealed some striking features. It was found that under the action of a Hamil- tonian which is a non-linear function of the photon operator(s) only, an initial coherent state loses its coherent structure quickly due to quantum dephasing induced by the non-.

  10. State estimation for a hexapod robot

    CSIR Research Space (South Africa)

    Lubbe, Estelle

    2015-09-01

    Full Text Available This paper introduces a state estimation methodology for a hexapod robot that makes use of proprioceptive sensors and a kinematic model of the robot. The methodology focuses on providing reliable full pose state estimation for a commercially...

  11. Lifetime estimation of zirconia ceramics by linear ageing kinetics

    International Nuclear Information System (INIS)

    Zhang, Fei; Inokoshi, Masanao; Vanmeensel, Kim; Van Meerbeek, Bart; Naert, Ignace; Vleugels, Jef

    2015-01-01

    Up to now, the ageing kinetics of zirconia ceramics were mainly derived from the sigmoidal evolution of the surface phase transformation as a function of time, as quantified by means of X-ray diffraction (XRD). However, the transformation propagation into the material should be better to monitor the ageing kinetics. In this work, μ-Raman spectroscopy was used to quantitatively measure the transformation profiles in depth as a function of ageing time at 160 °C, 140 °C, 134 °C and 110 °C. A linear relationship between the transformed depth and the ageing time was observed for all investigated yttria stabilized tetragonal zirconia polycrystals (3Y-TZP). Furthermore, the μ-Raman investigation of residual stresses in the subsurface of aged 3Y-TZPs showed that the highest tensile stress was located just ahead of the transformation front, indicating the key responsibility of stress accumulation for transformation front propagating into the material. Moreover, the linear kinetics of the transformation propagation were more accurate to calculate the apparent activation energy of the ageing process and allowed a more straightforward estimation of the lifetime of 3Y-TZP at body temperature, as compared to the conventional ageing kinetic parameters obtained from the surface transformation analysis by XRD

  12. Parameter estimation and hypothesis testing in linear models

    CERN Document Server

    Koch, Karl-Rudolf

    1999-01-01

    The necessity to publish the second edition of this book arose when its third German edition had just been published. This second English edition is there­ fore a translation of the third German edition of Parameter Estimation and Hypothesis Testing in Linear Models, published in 1997. It differs from the first English edition by the addition of a new chapter on robust estimation of parameters and the deletion of the section on discriminant analysis, which has been more completely dealt with by the author in the book Bayesian In­ ference with Geodetic Applications, Springer-Verlag, Berlin Heidelberg New York, 1990. Smaller additions and deletions have been incorporated, to im­ prove the text, to point out new developments or to eliminate errors which became apparent. A few examples have been also added. I thank Springer-Verlag for publishing this second edition and for the assistance in checking the translation, although the responsibility of errors remains with the author. I also want to express my thanks...

  13. State Alcohol-Impaired-Driving Estimates

    Science.gov (United States)

    ... 2012 Data DOT HS 812 017 May 2014 State Alcohol-Impaired-Driving Estimates This fact sheet contains ... alcohol involvement in fatal crashes for the United States and individually for the 50 States, the District ...

  14. Optimal state estimation theory applied to safeguards accounting

    International Nuclear Information System (INIS)

    Pike, D.H.; Morrison, G.W.

    1977-01-01

    This paper presents a unified theory for the application of modern state estimation techniques to nuclear material accountability. First a summary of the current MUF/LEMUF approach is detailed. It is shown that when inventory measurement error is large in comparison to transfer measurement error, improved estimates of the losses can be achieved using the cumulative summation technique. However, the optimal estimator is shown to be the Kalman filter. An enhancement of the retrospective estimation of losses can be achieved using linear smoothing. State space models are developed for a mixed oxide fuel fabrication facility and examples are presented

  15. State energy data report 1994: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  16. State energy data report 1994: Consumption estimates

    International Nuclear Information System (INIS)

    1996-10-01

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA's energy models. Division is made for each energy type and end use sector. Nuclear electric power is included

  17. UAV State Estimation Modeling Techniques in AHRS

    Science.gov (United States)

    Razali, Shikin; Zhahir, Amzari

    2017-11-01

    Autonomous unmanned aerial vehicle (UAV) system is depending on state estimation feedback to control flight operation. Estimation on the correct state improves navigation accuracy and achieves flight mission safely. One of the sensors configuration used in UAV state is Attitude Heading and Reference System (AHRS) with application of Extended Kalman Filter (EKF) or feedback controller. The results of these two different techniques in estimating UAV states in AHRS configuration are displayed through position and attitude graphs.

  18. Admissible Estimators in the General Multivariate Linear Model with Respect to Inequality Restricted Parameter Set

    Directory of Open Access Journals (Sweden)

    Shangli Zhang

    2009-01-01

    Full Text Available By using the methods of linear algebra and matrix inequality theory, we obtain the characterization of admissible estimators in the general multivariate linear model with respect to inequality restricted parameter set. In the classes of homogeneous and general linear estimators, the necessary and suffcient conditions that the estimators of regression coeffcient function are admissible are established.

  19. Using the Ridge Regression Procedures to Estimate the Multiple Linear Regression Coefficients

    Science.gov (United States)

    Gorgees, HazimMansoor; Mahdi, FatimahAssim

    2018-05-01

    This article concerns with comparing the performance of different types of ordinary ridge regression estimators that have been already proposed to estimate the regression parameters when the near exact linear relationships among the explanatory variables is presented. For this situations we employ the data obtained from tagi gas filling company during the period (2008-2010). The main result we reached is that the method based on the condition number performs better than other methods since it has smaller mean square error (MSE) than the other stated methods.

  20. State energy data report 1993: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

  1. Explicit estimating equations for semiparametric generalized linear latent variable models

    KAUST Repository

    Ma, Yanyuan; Genton, Marc G.

    2010-01-01

    which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n

  2. Performances of some estimators of linear model with ...

    African Journals Online (AJOL)

    The estimators are compared by examing the finite properties of estimators namely; sum of biases, sum of absolute biases, sum of variances and sum of the mean squared error of the estimated parameter of the model. Results show that when the autocorrelation level is small (ρ=0.4), the MLGD estimator is best except when ...

  3. State Energy Data Report, 1991: Consumption estimates

    International Nuclear Information System (INIS)

    1993-05-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA's energy models

  4. State energy data report 1995 - consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

  5. Jackknife Variance Estimator for Two Sample Linear Rank Statistics

    Science.gov (United States)

    1988-11-01

    Accesion For - - ,NTIS GPA&I "TIC TAB Unann c, nc .. [d Keywords: strong consistency; linear rank test’ influence function . i , at L By S- )Distribut...reverse if necessary and identify by block number) FIELD IGROUP SUB-GROUP Strong consistency; linear rank test; influence function . 19. ABSTRACT

  6. State Estimation for Humanoid Robots

    Science.gov (United States)

    2015-07-01

    how the noise is modeled. In the original paper [23], the UKF formulation does not assume additive noise, and it augments the state mean and covariance...with state constraints is an open research area, and there have been many studies in the past few decades. A recent survey paper on this topic [52...3.1 USB-based microcontroller board, and an adapter board that connects them. The Teensy board provides 3.3V DC power to the IMUs, and receives data

  7. Triangular and Trapezoidal Fuzzy State Estimation with Uncertainty on Measurements

    Directory of Open Access Journals (Sweden)

    Mohammad Sadeghi Sarcheshmah

    2012-01-01

    Full Text Available In this paper, a new method for uncertainty analysis in fuzzy state estimation is proposed. The uncertainty is expressed in measurements. Uncertainties in measurements are modelled with different fuzzy membership functions (triangular and trapezoidal. To find the fuzzy distribution of any state variable, the problem is formulated as a constrained linear programming (LP optimization. The viability of the proposed method would be verified with the ones obtained from the weighted least squares (WLS and the fuzzy state estimation (FSE in the 6-bus system and in the IEEE-14 and 30 bus system.

  8. Parameter and State Estimator for State Space Models

    Directory of Open Access Journals (Sweden)

    Ruifeng Ding

    2014-01-01

    Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  9. Argument estimates of certain multivalent functions involving a linear operator

    Directory of Open Access Journals (Sweden)

    Nak Eun Cho

    2002-01-01

    Full Text Available The purpose of this paper is to derive some argument properties of certain multivalent functions in the open unit disk involving a linear operator. We also investigate their integral preserving property in a sector.

  10. Self-learning estimation of quantum states

    International Nuclear Information System (INIS)

    Hannemann, Th.; Reiss, D.; Balzer, Ch.; Neuhauser, W.; Toschek, P.E.; Wunderlich, Ch.

    2002-01-01

    We report the experimental estimation of arbitrary qubit states using a succession of N measurements on individual qubits, where the measurement basis is changed during the estimation procedure conditioned on the outcome of previous measurements (self-learning estimation). Two hyperfine states of a single trapped 171 Yb + ion serve as a qubit. It is demonstrated that the difference in fidelity between this adaptive strategy and passive strategies increases in the presence of decoherence

  11. Development of realtime cognitive state estimator

    International Nuclear Information System (INIS)

    Takahashi, Makoto; Kitamura, Masashi; Yoshikaea, Hidekazu

    2004-01-01

    The realtime cognitive state estimator based on the set of physiological measures has been developed in order to provide valuable information on the human behavior during the interaction through the Man-Machine Interface. The artificial neural network has been adopted to categorize the cognitive states by using the qualitative physiological data pattern as the inputs. The laboratory experiments, in which the subjects' cognitive states were intentionally controlled by the task presented, were performed to obtain training data sets for the neural network. The developed system has been shown to be capable of estimating cognitive state with higher accuracy and realtime estimation capability has also been confirmed through the data processing experiments. (author)

  12. Algorithm of the managing systems state estimation

    Directory of Open Access Journals (Sweden)

    Skubilin M. D.

    2010-02-01

    Full Text Available The possibility of an electronic estimation of automatic and automated managing systems state is analyzed. An estimation of a current state (functional readiness of technical equipment and person-operator as integrated system allows to take operatively adequate measures on an exception and-or minimisation of consequences of system’s transition in a supernumerary state. The offered method is universal enough and can be recommended for normalisation of situations on transport, mainly in aircraft.

  13. Two biased estimation techniques in linear regression: Application to aircraft

    Science.gov (United States)

    Klein, Vladislav

    1988-01-01

    Several ways for detection and assessment of collinearity in measured data are discussed. Because data collinearity usually results in poor least squares estimates, two estimation techniques which can limit a damaging effect of collinearity are presented. These two techniques, the principal components regression and mixed estimation, belong to a class of biased estimation techniques. Detection and assessment of data collinearity and the two biased estimation techniques are demonstrated in two examples using flight test data from longitudinal maneuvers of an experimental aircraft. The eigensystem analysis and parameter variance decomposition appeared to be a promising tool for collinearity evaluation. The biased estimators had far better accuracy than the results from the ordinary least squares technique.

  14. Resource-efficient generation of linear cluster states by linear optics with postselection

    International Nuclear Information System (INIS)

    Uskov, D B; Alsing, P M; Fanto, M L; Szep, A; Smith, A M; Kaplan, L; Kim, R

    2015-01-01

    We report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon–photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneous detection of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to (1/2) n−1 ; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of (1/4) m−1 . (paper)

  15. H infinity Integrated Fault Estimation and Fault Tolerant Control of Discrete-time Piecewise Linear Systems

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Bak, Thomas

    2012-01-01

    In this paper we consider the problem of fault estimation and accommodation for discrete time piecewise linear systems. A robust fault estimator is designed to estimate the fault such that the estimation error converges to zero and H∞ performance of the fault estimation is minimized. Then, the es...

  16. State estimation of spatio-temporal phenomena

    Science.gov (United States)

    Yu, Dan

    This dissertation addresses the state estimation problem of spatio-temporal phenomena which can be modeled by partial differential equations (PDEs), such as pollutant dispersion in the atmosphere. After discretizing the PDE, the dynamical system has a large number of degrees of freedom (DOF). State estimation using Kalman Filter (KF) is computationally intractable, and hence, a reduced order model (ROM) needs to be constructed first. Moreover, the nonlinear terms, external disturbances or unknown boundary conditions can be modeled as unknown inputs, which leads to an unknown input filtering problem. Furthermore, the performance of KF could be improved by placing sensors at feasible locations. Therefore, the sensor scheduling problem to place multiple mobile sensors is of interest. The first part of the dissertation focuses on model reduction for large scale systems with a large number of inputs/outputs. A commonly used model reduction algorithm, the balanced proper orthogonal decomposition (BPOD) algorithm, is not computationally tractable for large systems with a large number of inputs/outputs. Inspired by the BPOD and randomized algorithms, we propose a randomized proper orthogonal decomposition (RPOD) algorithm and a computationally optimal RPOD (RPOD*) algorithm, which construct an ROM to capture the input-output behaviour of the full order model, while reducing the computational cost of BPOD by orders of magnitude. It is demonstrated that the proposed RPOD* algorithm could construct the ROM in real-time, and the performance of the proposed algorithms on different advection-diffusion equations. Next, we consider the state estimation problem of linear discrete-time systems with unknown inputs which can be treated as a wide-sense stationary process with rational power spectral density, while no other prior information needs to be known. We propose an autoregressive (AR) model based unknown input realization technique which allows us to recover the input

  17. Penalized Estimation in Large-Scale Generalized Linear Array Models

    DEFF Research Database (Denmark)

    Lund, Adam; Vincent, Martin; Hansen, Niels Richard

    2017-01-01

    Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...

  18. Exponential estimates for solutions of half-linear differential equations

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel

    2015-01-01

    Roč. 147, č. 1 (2015), s. 158-171 ISSN 0236-5294 Institutional support: RVO:67985840 Keywords : half-linear differential equation * decreasing solution * increasing solution * asymptotic behavior Subject RIV: BA - General Mathematics Impact factor: 0.469, year: 2015 http://link.springer.com/article/10.1007%2Fs10474-015-0522-9

  19. Estimation Of Body Weight From Linear Body Measurements In Two ...

    African Journals Online (AJOL)

    The prediction of body weight from body girth, keel length and thigh length was studied using one hundred Ross and one hundred Anak Titan broilers. Data were collected on the birds from day-old to 9 weeks of age. Body measurement was regressed against body weight at 9 weeks of age using simple linear and ...

  20. Fault tolerance in parity-state linear optical quantum computing

    International Nuclear Information System (INIS)

    Hayes, A. J. F.; Ralph, T. C.; Haselgrove, H. L.; Gilchrist, Alexei

    2010-01-01

    We use a combination of analytical and numerical techniques to calculate the noise threshold and resource requirements for a linear optical quantum computing scheme based on parity-state encoding. Parity-state encoding is used at the lowest level of code concatenation in order to efficiently correct errors arising from the inherent nondeterminism of two-qubit linear-optical gates. When combined with teleported error-correction (using either a Steane or Golay code) at higher levels of concatenation, the parity-state scheme is found to achieve a saving of approximately three orders of magnitude in resources when compared to the cluster state scheme, at a cost of a somewhat reduced noise threshold.

  1. State energy data report 1996: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  2. State energy data report 1996: Consumption estimates

    International Nuclear Information System (INIS)

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA's energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs

  3. Probabilistic deletion of copies of linearly independent quantum states

    International Nuclear Information System (INIS)

    Feng Jian; Gao Yunfeng; Wang Jisuo; Zhan Mingsheng

    2002-01-01

    We show that each of two copies of the nonorthogonal states randomly selected from a certain set S can be probabilistically deleted by a general unitary-reduction operation if and only if the states are linearly independent. We derive a tight bound on the best possible deleting efficiencies. These results for 2→1 probabilistic deleting are also generalized into the case of N→M deleting (N,M positive integers and N>M)

  4. Euclidean null controllability of linear systems with delays in state ...

    African Journals Online (AJOL)

    Sufficient conditions are developed for the Euclidean controllability of linear systems with delay in state and in control. Namely, if the uncontrolled system is uniformly asymptotically stable and the control equation proper, then the control system is Euclidean null controllable. Journal of the Nigerian Association of ...

  5. State Space Reduction of Linear Processes using Control Flow Reconstruction

    NARCIS (Netherlands)

    van de Pol, Jan Cornelis; Timmer, Mark

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  6. State Space Reduction of Linear Processes Using Control Flow Reconstruction

    NARCIS (Netherlands)

    van de Pol, Jan Cornelis; Timmer, Mark; Liu, Zhiming; Ravn, Anders P.

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  7. Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.

    Science.gov (United States)

    Didier, Gilles

    2017-10-01

    The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.

  8. Efficient Estimation of Extreme Non-linear Roll Motions using the First-order Reliability Method (FORM)

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2007-01-01

    In on-board decision support systems efficient procedures are needed for real-time estimation of the maximum ship responses to be expected within the next few hours, given on-line information on the sea state and user defined ranges of possible headings and speeds. For linear responses standard...... frequency domain methods can be applied. To non-linear responses like the roll motion, standard methods like direct time domain simulations are not feasible due to the required computational time. However, the statistical distribution of non-linear ship responses can be estimated very accurately using...... the first-order reliability method (FORM), well-known from structural reliability problems. To illustrate the proposed procedure, the roll motion is modelled by a simplified non-linear procedure taking into account non-linear hydrodynamic damping, time-varying restoring and wave excitation moments...

  9. Introduction to quantum-state estimation

    CERN Document Server

    Teo, Yong Siah

    2016-01-01

    Quantum-state estimation is an important field in quantum information theory that deals with the characterization of states of affairs for quantum sources. This book begins with background formalism in estimation theory to establish the necessary prerequisites. This basic understanding allows us to explore popular likelihood- and entropy-related estimation schemes that are suitable for an introductory survey on the subject. Discussions on practical aspects of quantum-state estimation ensue, with emphasis on the evaluation of tomographic performances for estimation schemes, experimental realizations of quantum measurements and detection of single-mode multi-photon sources. Finally, the concepts of phase-space distribution functions, which compatibly describe these multi-photon sources, are introduced to bridge the gap between discrete and continuous quantum degrees of freedom. This book is intended to serve as an instructive and self-contained medium for advanced undergraduate and postgraduate students to gra...

  10. Tracking of nuclear reactor parameters via recursive non linear estimation

    International Nuclear Information System (INIS)

    Pages Fita, J.; Alengrin, G.; Aguilar Martin, J.; Zwingelstein, M.

    1975-01-01

    The usefulness of nonlinear estimation in the supervision of nuclear reactors, as well for reactivity determination as for on-line modelisation in order to detect eventual and unwanted changes in working operation is illustrated. It is dealt with the reactivity estimation using an a priori dynamical model under the hypothesis of one group of delayed neutrons (measurements were done with an ionisation chamber). The determination of the reactivity using such measurements appears as a nonlinear estimation procedure derived from a particular form of nonlinear filter. Observed inputs being demand of power and inside temperature, and output being the reactivity balance, a recursive algorithm is derived for the estimation of the parameters that define the actual behavior of the reactor. Example of treatment of real data is given [fr

  11. Estimating state-contingent production functions

    DEFF Research Database (Denmark)

    Rasmussen, Svend; Karantininis, Kostas

    The paper reviews the empirical problem of estimating state-contingent production functions. The major problem is that states of nature may not be registered and/or that the number of observation per state is low. Monte Carlo simulation is used to generate an artificial, uncertain production...... environment based on Cobb Douglas production functions with state-contingent parameters. The pa-rameters are subsequently estimated based on different sizes of samples using Generalized Least Squares and Generalized Maximum Entropy and the results are compared. It is concluded that Maximum Entropy may...

  12. Estimation and Control for Linear Systems with Additive Cauchy Noise

    Science.gov (United States)

    2013-12-17

    man & Hall, New York, 1994. [11] J. L. Speyer and W. H. Chung, Stochastic Processes, Estimation, and Control, SIAM, 2008. [12] Nassim N. Taleb ...Gaussian control algorithms. 18 4 References [1] N. N. Taleb . The Black Swan: The Impact of the Highly Improbable...the multivariable system. The estimator was then evaluated numerically for a third-order example. REFERENCES [1] N. N. Taleb , The Black Swan: The

  13. Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data

    KAUST Repository

    Cheng, Guang; Zhou, Lan; Huang, Jianhua Z.

    2014-01-01

    We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based

  14. Estimation of Multiple Point Sources for Linear Fractional Order Systems Using Modulating Functions

    KAUST Repository

    Belkhatir, Zehor; Laleg-Kirati, Taous-Meriem

    2017-01-01

    This paper proposes an estimation algorithm for the characterization of multiple point inputs for linear fractional order systems. First, using polynomial modulating functions method and a suitable change of variables the problem of estimating

  15. State estimation for wave energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Bacelli, Giorgio; Coe, Ryan Geoffrey

    2017-04-01

    This report gives a brief discussion and examples on the topic of state estimation for wave energy converters (WECs). These methods are intended for use to enable real-time closed loop control of WECs.

  16. Estimating kinetic mechanisms with prior knowledge I: Linear parameter constraints.

    Science.gov (United States)

    Salari, Autoosa; Navarro, Marco A; Milescu, Mirela; Milescu, Lorin S

    2018-02-05

    To understand how ion channels and other proteins function at the molecular and cellular levels, one must decrypt their kinetic mechanisms. Sophisticated algorithms have been developed that can be used to extract kinetic parameters from a variety of experimental data types. However, formulating models that not only explain new data, but are also consistent with existing knowledge, remains a challenge. Here, we present a two-part study describing a mathematical and computational formalism that can be used to enforce prior knowledge into the model using constraints. In this first part, we focus on constraints that enforce explicit linear relationships involving rate constants or other model parameters. We develop a simple, linear algebra-based transformation that can be applied to enforce many types of model properties and assumptions, such as microscopic reversibility, allosteric gating, and equality and inequality parameter relationships. This transformation converts the set of linearly interdependent model parameters into a reduced set of independent parameters, which can be passed to an automated search engine for model optimization. In the companion article, we introduce a complementary method that can be used to enforce arbitrary parameter relationships and any constraints that quantify the behavior of the model under certain conditions. The procedures described in this study can, in principle, be coupled to any of the existing methods for solving molecular kinetics for ion channels or other proteins. These concepts can be used not only to enforce existing knowledge but also to formulate and test new hypotheses. © 2018 Salari et al.

  17. Dark energy cosmology with generalized linear equation of state

    International Nuclear Information System (INIS)

    Babichev, E; Dokuchaev, V; Eroshenko, Yu

    2005-01-01

    Dark energy with the usually used equation of state p = wρ, where w const 0 ), where the constants α and ρ 0 are free parameters. This non-homogeneous linear equation of state provides the description of both hydrodynamically stable (α > 0) and unstable (α < 0) fluids. In particular, the considered cosmological model describes the hydrodynamically stable dark (and phantom) energy. The possible types of cosmological scenarios in this model are determined and classified in terms of attractors and unstable points by using phase trajectories analysis. For the dark energy case, some distinctive types of cosmological scenarios are possible: (i) the universe with the de Sitter attractor at late times, (ii) the bouncing universe, (iii) the universe with the big rip and with the anti-big rip. In the framework of a linear equation of state the universe filled with a phantom energy, w < -1, may have either the de Sitter attractor or the big rip

  18. Estimating GSP and labor productivity by state

    OpenAIRE

    Paul W. Bauer; Yoonsoo Lee

    2006-01-01

    In gauging the health of state economies, arguably the two most important series to track are employment and output. While employment by state is available about three weeks after the end of a month, data on output, as measured by Gross State Product (GSP), are only available annually and with a significant lag. This Policy Discussion Paper details how more current estimates of GSP can be generated using U.S. Gross Domestic Product and personal income along with individual states’ personal in...

  19. Fuzzy filter for state estimation of a glucoregulatory system.

    Science.gov (United States)

    Trajanoski, Z; Wach, P

    1996-08-01

    A filter based on fuzzy logic for state estimation of a glucoregulatory system is presented. A published non-linear model for the dynamics of glucose and its hormonal control including a single glucose compartment, five insulin compartments and a glucagon compartment was used for simulation. The simulated data were corrupted by an additive white noise with zero mean and a coefficient of variation (CV) of between 2 and 20% and then submitted to the state estimation procedure using a fuzzy filter (FF). The performance of the FF was compared with an extended Kalman filter (EKF) for state estimation. Both the FF and the EKF were evaluated in the following cases: (a) five state variables are measurable; three plasma variables are measurable; only plasma glucose is measurable; (b) for different measurement noise levels (CV of 2-20%); and (c) a mismatch between the glucoregulatory system and the given mathematical model (uncertain or approximate model). In contrast to the FF, in the case of approximate model of the glucose system, the EKF failed to achieve useful state estimation. Moreover, the performance of the FF was independent of the noise level. In conclusion, the FF approach is a viable alternative for state estimation in a noisy environment and with an uncertain mathematical model of the glucoregulatory system.

  20. Reexamination of optimal quantum state estimation of pure states

    International Nuclear Information System (INIS)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    2005-01-01

    A direct derivation is given for the optimal mean fidelity of quantum state estimation of a d-dimensional unknown pure state with its N copies given as input, which was first obtained by Hayashi in terms of an infinite set of covariant positive operator valued measures (POVM's) and by Bruss and Macchiavello establishing a connection to optimal quantum cloning. An explicit condition for POVM measurement operators for optimal estimators is obtained, by which we construct optimal estimators with finite POVMs using exact quadratures on a hypersphere. These finite optimal estimators are not generally universal, where universality means the fidelity is independent of input states. However, any optimal estimator with finite POVM for M(>N) copies is universal if it is used for N copies as input

  1. Disformal invariance of continuous media with linear equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Celoria, Marco [Gran Sasso Science Institute (INFN), Viale Francesco Crispi 7, L' Aquila, I-67100 Italy (Italy); Matarrese, Sabino [Dipartimento di Fisica e Astronomia ' G. Galilei' , Università degli Studi di Padova, via Marzolo 8, Padova, I-35131 Italy (Italy); Pilo, Luigi, E-mail: marco.celoria@gssi.infn.it, E-mail: sabino.matarrese@pd.infn.it, E-mail: luigi.pilo@aquila.infn.it [Dipartimento di Fisica, Università di L' Aquila, L' Aquila, I-67010 Italy (Italy)

    2017-02-01

    We show that the effective theory describing single component continuous media with a linear and constant equation of state of the form p = w ρ is invariant under a 1-parameter family of continuous disformal transformations. In the special case of w =1/3 (ultrarelativistic gas), such a family reduces to conformal transformations. As examples, perfect fluids, irrotational dust (mimetic matter) and homogeneous and isotropic solids are discussed.

  2. Estimation of group means when adjusting for covariates in generalized linear models.

    Science.gov (United States)

    Qu, Yongming; Luo, Junxiang

    2015-01-01

    Generalized linear models are commonly used to analyze categorical data such as binary, count, and ordinal outcomes. Adjusting for important prognostic factors or baseline covariates in generalized linear models may improve the estimation efficiency. The model-based mean for a treatment group produced by most software packages estimates the response at the mean covariate, not the mean response for this treatment group for the studied population. Although this is not an issue for linear models, the model-based group mean estimates in generalized linear models could be seriously biased for the true group means. We propose a new method to estimate the group mean consistently with the corresponding variance estimation. Simulation showed the proposed method produces an unbiased estimator for the group means and provided the correct coverage probability. The proposed method was applied to analyze hypoglycemia data from clinical trials in diabetes. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Remote optimal state estimation over communication channels with random delays

    KAUST Repository

    Mahmoud, Magdi S.

    2014-01-22

    This paper considers the optimal estimation of linear systems over unreliable communication channels with random delays. In this work, it is assumed that the system to be estimated is far away from the filter. The observations of the system are capsulized without time stamp and then transmitted to the network node at which the filter is located. The probabilities of time delays are assumed to be known. The event-driven estimation scheme is applied in this paper and the estimate of the states is updated only at each time instant when any measurement arrives. To capture the feature of communication, the system considered is augmented, and the arrived measurements are regarded as the uncertain observations of the augmented system. The corresponding optimal estimation algorithm is proposed and additionally, a numerical simulation represents the performance of this work. © 2014 The authors. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  4. On state estimation in electric drives

    International Nuclear Information System (INIS)

    Leon, A.E.; Solsona, J.A.

    2010-01-01

    This paper deals with state estimation in electric drives. On one hand a nonlinear observer is designed, whereas on the other hand the speed state is estimated by using the dirty derivative from the position measured. The dirty derivative is an approximate version of the perfect derivative which introduces an estimation error few times analyzed in drive applications. For this reason, our proposal in this work consists in illustrating several aspects on the performance of the dirty derivator in presence of both model uncertainties and noisy measurements. To this end, a case study is introduced. The case study considers rotor speed estimation in a permanent magnet stepper motor, by assuming that rotor position and electrical variables are measured. In addition, this paper presents comments about the connection between dirty derivators and observers, and advantages and disadvantages of both techniques are also remarked.

  5. Unconditional quantum cloning of coherent states with linear optics

    International Nuclear Information System (INIS)

    Leuchs, G.; Andersen, U.L.; Josse, V.

    2005-01-01

    Intense light pulses with non-classical properties are used to implement protocols for quantum communication. Most of the elements in the tool box needed to assemble the experimental set-ups for these protocols are readily described by Bogoliubov transformations corresponding to Gaussian transformations that map Gaussian states onto Gaussian states. One particularly interesting application is quantum cloning of a coherent state. A scheme for optimal Gaussian cloning of optical coherent states is proposed and experimentally demonstrated. Its optical realization is based entirely on simple linear optical elements and homodyne detection. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of about 65%, which almost touches the optimal value of 2/3. (author)

  6. Robust estimation for partially linear models with large-dimensional covariates.

    Science.gov (United States)

    Zhu, LiPing; Li, RunZe; Cui, HengJian

    2013-10-01

    We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon-cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of [Formula: see text], where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.

  7. State energy data report 1992: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  8. Linear estimation of coherent structures in wall-bounded turbulence at Re τ = 2000

    Science.gov (United States)

    Oehler, S.; Garcia–Gutiérrez, A.; Illingworth, S.

    2018-04-01

    The estimation problem for a fully-developed turbulent channel flow at Re τ = 2000 is considered. Specifically, a Kalman filter is designed using a Navier–Stokes-based linear model. The estimator uses time-resolved velocity measurements at a single wall-normal location (provided by DNS) to estimate the time-resolved velocity field at other wall-normal locations. The estimator is able to reproduce the largest scales with reasonable accuracy for a range of wavenumber pairs, measurement locations and estimation locations. Importantly, the linear model is also able to predict with reasonable accuracy the performance that will be achieved by the estimator when applied to the DNS. A more practical estimation scheme using the shear stress at the wall as measurement is also considered. The estimator is still able to estimate the largest scales with reasonable accuracy, although the estimator’s performance is reduced.

  9. Multivariate time series with linear state space structure

    CERN Document Server

    Gómez, Víctor

    2016-01-01

    This book presents a comprehensive study of multivariate time series with linear state space structure. The emphasis is put on both the clarity of the theoretical concepts and on efficient algorithms for implementing the theory. In particular, it investigates the relationship between VARMA and state space models, including canonical forms. It also highlights the relationship between Wiener-Kolmogorov and Kalman filtering both with an infinite and a finite sample. The strength of the book also lies in the numerous algorithms included for state space models that take advantage of the recursive nature of the models. Many of these algorithms can be made robust, fast, reliable and efficient. The book is accompanied by a MATLAB package called SSMMATLAB and a webpage presenting implemented algorithms with many examples and case studies. Though it lays a solid theoretical foundation, the book also focuses on practical application, and includes exercises in each chapter. It is intended for researchers and students wor...

  10. State estimation for integrated vehicle dynamics control

    NARCIS (Netherlands)

    Zuurbier, J.; Bremmer, P.

    2002-01-01

    This paper discusses a vehicle controller and a state estimator that was implemented and tested in a vehicle equipped with a combined braking and chassis control system to improve handling. The vehicle dynamics controller consists of a feed forward body roll compensation and a feedback stability

  11. State estimation for networked control systems using fixed data rates

    Science.gov (United States)

    Liu, Qing-Quan; Jin, Fang

    2017-07-01

    This paper investigates state estimation for linear time-invariant systems where sensors and controllers are geographically separated and connected via a bandwidth-limited and errorless communication channel with the fixed data rate. All plant states are quantised, coded and converted together into a codeword in our quantisation and coding scheme. We present necessary and sufficient conditions on the fixed data rate for observability of such systems, and further develop the data-rate theorem. It is shown in our results that there exists a quantisation and coding scheme to ensure observability of the system if the fixed data rate is larger than the lower bound given, which is less conservative than the one in the literature. Furthermore, we also examine the role that the disturbances have on the state estimation problem in the case with data-rate limitations. Illustrative examples are given to demonstrate the effectiveness of the proposed method.

  12. Estimating traffic volume on Wyoming low volume roads using linear and logistic regression methods

    Directory of Open Access Journals (Sweden)

    Dick Apronti

    2016-12-01

    Full Text Available Traffic volume is an important parameter in most transportation planning applications. Low volume roads make up about 69% of road miles in the United States. Estimating traffic on the low volume roads is a cost-effective alternative to taking traffic counts. This is because traditional traffic counts are expensive and impractical for low priority roads. The purpose of this paper is to present the development of two alternative means of cost-effectively estimating traffic volumes for low volume roads in Wyoming and to make recommendations for their implementation. The study methodology involves reviewing existing studies, identifying data sources, and carrying out the model development. The utility of the models developed were then verified by comparing actual traffic volumes to those predicted by the model. The study resulted in two regression models that are inexpensive and easy to implement. The first regression model was a linear regression model that utilized pavement type, access to highways, predominant land use types, and population to estimate traffic volume. In verifying the model, an R2 value of 0.64 and a root mean square error of 73.4% were obtained. The second model was a logistic regression model that identified the level of traffic on roads using five thresholds or levels. The logistic regression model was verified by estimating traffic volume thresholds and determining the percentage of roads that were accurately classified as belonging to the given thresholds. For the five thresholds, the percentage of roads classified correctly ranged from 79% to 88%. In conclusion, the verification of the models indicated both model types to be useful for accurate and cost-effective estimation of traffic volumes for low volume Wyoming roads. The models developed were recommended for use in traffic volume estimations for low volume roads in pavement management and environmental impact assessment studies.

  13. Vehicle State Information Estimation with the Unscented Kalman Filter

    Directory of Open Access Journals (Sweden)

    Hongbin Ren

    2014-01-01

    Full Text Available The vehicle state information plays an important role in the vehicle active safety systems; this paper proposed a new concept to estimate the instantaneous vehicle speed, yaw rate, tire forces, and tire kinemics information in real time. The estimator is based on the 3DoF vehicle model combined with the piecewise linear tire model. The estimator is realized using the unscented Kalman filter (UKF, since it is based on the unscented transfer technique and considers high order terms during the measurement and update stage. The numerical simulations are carried out to further investigate the performance of the estimator under high friction and low friction road conditions in the MATLAB/Simulink combined with the Carsim environment. The simulation results are compared with the numerical results from Carsim software, which indicate that UKF can estimate the vehicle state information accurately and in real time; the proposed estimation will provide the necessary and reliable state information to the vehicle controller in the future.

  14. The response of a linear monostable system and its application in parameters estimation for PSK signals

    International Nuclear Information System (INIS)

    Duan, Chaowei; Zhan, Yafeng

    2016-01-01

    The output characteristics of a linear monostable system driven with a periodic signal and an additive white Gaussian noise are studied in this paper. Theoretical analysis shows that the output signal-to-noise ratio (SNR) decreases monotonously with the increasing noise intensity but the output SNR-gain is stable. Inspired by this high SNR-gain phenomenon, this paper applies the linear monostable system in the parameters estimation algorithm for phase shift keying (PSK) signals and improves the estimation performance. - Highlights: • The response of a linear monostable system driven with a periodic signal and an additive white Gaussian noise is analyzed. • The optimal parameter of this linear monostable system to maximum the output SNR-gain is obtained. • Application of this linear monostable system in parameters estimation algorithm for PSK signals obtains performance improvement.

  15. truncSP: An R Package for Estimation of Semi-Parametric Truncated Linear Regression Models

    Directory of Open Access Journals (Sweden)

    Maria Karlsson

    2014-05-01

    Full Text Available Problems with truncated data occur in many areas, complicating estimation and inference. Regarding linear regression models, the ordinary least squares estimator is inconsistent and biased for these types of data and is therefore unsuitable for use. Alternative estimators, designed for the estimation of truncated regression models, have been developed. This paper presents the R package truncSP. The package contains functions for the estimation of semi-parametric truncated linear regression models using three different estimators: the symmetrically trimmed least squares, quadratic mode, and left truncated estimators, all of which have been shown to have good asymptotic and ?nite sample properties. The package also provides functions for the analysis of the estimated models. Data from the environmental sciences are used to illustrate the functions in the package.

  16. Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.

    Science.gov (United States)

    Lin, Huiming; Fu, Bo; Qin, Guoyou; Zhu, Zhongyi

    2017-12-01

    We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed method and use simulation studies to compare its finite sample performance with that of Qu's method, the complete-case generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated using data from a longitudinal cohort study. © 2017, The International Biometric Society.

  17. State Estimation for Landing Maneuver on High Performance Aircraft

    Science.gov (United States)

    Suresh, P. S.; Sura, Niranjan K.; Shankar, K.

    2018-01-01

    State estimation methods are popular means for validating aerodynamic database on aircraft flight maneuver performance characteristics. In this work, the state estimation method during landing maneuver is explored for the first of its kind, using upper diagonal adaptive extended Kalman filter (UD-AEKF) with fuzzy based adaptive tunning of process noise matrix. The mathematical model for symmetrical landing maneuver consists of non-linear flight mechanics equation representing Aircraft longitudinal dynamics. The UD-AEKF algorithm is implemented in MATLAB environment and the states with bias is considered to be the initial conditions just prior to the flare. The measurement data is obtained from a non-linear 6 DOF pilot in loop simulation using FORTRAN. These simulated measurement data is additively mixed with process and measurement noises, which are used as an input for UD-AEKF. Then, the governing states that dictate the landing loads at the instant of touch down are compared. The method is verified using flight data wherein, the vertical acceleration at the aircraft center of gravity (CG) is compared. Two possible outcome of purely relying on the aircraft measured data is highlighted. It is observed that, with the implementation of adaptive fuzzy logic based extended Kalman filter tuned to adapt for aircraft landing dynamics, the methodology improves the data quality of the states that are sourced from noisy measurements.

  18. On estimation of the noise variance in high-dimensional linear models

    OpenAIRE

    Golubev, Yuri; Krymova, Ekaterina

    2017-01-01

    We consider the problem of recovering the unknown noise variance in the linear regression model. To estimate the nuisance (a vector of regression coefficients) we use a family of spectral regularisers of the maximum likelihood estimator. The noise estimation is based on the adaptive normalisation of the squared error. We derive the upper bound for the concentration of the proposed method around the ideal estimator (the case of zero nuisance).

  19. The response of a linear monostable system and its application in parameters estimation for PSK signals

    Science.gov (United States)

    Duan, Chaowei; Zhan, Yafeng

    2016-03-01

    The output characteristics of a linear monostable system driven with a periodic signal and an additive white Gaussian noise are studied in this paper. Theoretical analysis shows that the output signal-to-noise ratio (SNR) decreases monotonously with the increasing noise intensity but the output SNR-gain is stable. Inspired by this high SNR-gain phenomenon, this paper applies the linear monostable system in the parameters estimation algorithm for phase shift keying (PSK) signals and improves the estimation performance.

  20. Non-destructive linear model for leaf area estimation in Vernonia ferruginea Less

    Directory of Open Access Journals (Sweden)

    MC. Souza

    Full Text Available Leaf area estimation is an important biometrical trait for evaluating leaf development and plant growth in field and pot experiments. We developed a non-destructive model to estimate the leaf area (LA of Vernonia ferruginea using the length (L and width (W leaf dimensions. Different combinations of linear equations were obtained from L, L2, W, W2, LW and L2W2. The linear regressions using the product of LW dimensions were more efficient to estimate the LA of V. ferruginea than models based on a single dimension (L, W, L2 or W2. Therefore, the linear regression “LA=0.463+0.676WL” provided the most accurate estimate of V. ferruginea leaf area. Validation of the selected model showed that the correlation between real measured leaf area and estimated leaf area was very high.

  1. Learning to Estimate Dynamical State with Probabilistic Population Codes.

    Directory of Open Access Journals (Sweden)

    Joseph G Makin

    2015-11-01

    Full Text Available Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF, the parameters of which can be learned via latent-variable density estimation (the EM algorithm. The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.

  2. An Empirical State Error Covariance Matrix for Batch State Estimation

    Science.gov (United States)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the

  3. Linear-scaling quantum mechanical methods for excited states.

    Science.gov (United States)

    Yam, ChiYung; Zhang, Qing; Wang, Fan; Chen, GuanHua

    2012-05-21

    The poor scaling of many existing quantum mechanical methods with respect to the system size hinders their applications to large systems. In this tutorial review, we focus on latest research on linear-scaling or O(N) quantum mechanical methods for excited states. Based on the locality of quantum mechanical systems, O(N) quantum mechanical methods for excited states are comprised of two categories, the time-domain and frequency-domain methods. The former solves the dynamics of the electronic systems in real time while the latter involves direct evaluation of electronic response in the frequency-domain. The localized density matrix (LDM) method is the first and most mature linear-scaling quantum mechanical method for excited states. It has been implemented in time- and frequency-domains. The O(N) time-domain methods also include the approach that solves the time-dependent Kohn-Sham (TDKS) equation using the non-orthogonal localized molecular orbitals (NOLMOs). Besides the frequency-domain LDM method, other O(N) frequency-domain methods have been proposed and implemented at the first-principles level. Except one-dimensional or quasi-one-dimensional systems, the O(N) frequency-domain methods are often not applicable to resonant responses because of the convergence problem. For linear response, the most efficient O(N) first-principles method is found to be the LDM method with Chebyshev expansion for time integration. For off-resonant response (including nonlinear properties) at a specific frequency, the frequency-domain methods with iterative solvers are quite efficient and thus practical. For nonlinear response, both on-resonance and off-resonance, the time-domain methods can be used, however, as the time-domain first-principles methods are quite expensive, time-domain O(N) semi-empirical methods are often the practical choice. Compared to the O(N) frequency-domain methods, the O(N) time-domain methods for excited states are much more mature and numerically stable, and

  4. Estimated United States Transportation Energy Use 2005

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  5. General linear-optical quantum state generation scheme: Applications to maximally path-entangled states

    International Nuclear Information System (INIS)

    VanMeter, N. M.; Lougovski, P.; Dowling, Jonathan P.; Uskov, D. B.; Kieling, K.; Eisert, J.

    2007-01-01

    We introduce schemes for linear-optical quantum state generation. A quantum state generator is a device that prepares a desired quantum state using product inputs from photon sources, linear-optical networks, and postselection using photon counters. We show that this device can be concisely described in terms of polynomial equations and unitary constraints. We illustrate the power of this language by applying the Groebner-basis technique along with the notion of vacuum extensions to solve the problem of how to construct a quantum state generator analytically for any desired state, and use methods of convex optimization to identify bounds to success probabilities. In particular, we disprove a conjecture concerning the preparation of the maximally path-entangled |n,0>+|0,n> (NOON) state by providing a counterexample using these methods, and we derive a new upper bound on the resources required for NOON-state generation

  6. Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models.

    Science.gov (United States)

    Burgués, Javier; Jiménez-Soto, Juan Manuel; Marco, Santiago

    2018-07-12

    The limit of detection (LOD) is a key figure of merit in chemical sensing. However, the estimation of this figure of merit is hindered by the non-linear calibration curve characteristic of semiconductor gas sensor technologies such as, metal oxide (MOX), gasFETs or thermoelectric sensors. Additionally, chemical sensors suffer from cross-sensitivities and temporal stability problems. The application of the International Union of Pure and Applied Chemistry (IUPAC) recommendations for univariate LOD estimation in non-linear semiconductor gas sensors is not straightforward due to the strong statistical requirements of the IUPAC methodology (linearity, homoscedasticity, normality). Here, we propose a methodological approach to LOD estimation through linearized calibration models. As an example, the methodology is applied to the detection of low concentrations of carbon monoxide using MOX gas sensors in a scenario where the main source of error is the presence of uncontrolled levels of humidity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Tightness of M-estimators for multiple linear regression in time series

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Bent

    We show tightness of a general M-estimator for multiple linear regression in time series. The positive criterion function for the M-estimator is assumed lower semi-continuous and sufficiently large for large argument: Particular cases are the Huber-skip and quantile regression. Tightness requires...

  8. A Hierarchical Linear Model for Estimating Gender-Based Earnings Differentials.

    Science.gov (United States)

    Haberfield, Yitchak; Semyonov, Moshe; Addi, Audrey

    1998-01-01

    Estimates of gender earnings inequality in data from 116,431 Jewish workers were compared using a hierarchical linear model (HLM) and ordinary least squares model. The HLM allows estimation of the extent to which earnings inequality depends on occupational characteristics. (SK)

  9. A speed estimation unit for induction motors based on adaptive linear combiner

    International Nuclear Information System (INIS)

    Marei, Mostafa I.; Shaaban, Mostafa F.; El-Sattar, Ahmed A.

    2009-01-01

    This paper presents a new induction motor speed estimation technique, which can estimate the rotor resistance as well, from the measured voltage and current signals. Moreover, the paper utilizes a novel adaptive linear combiner (ADALINE) structure for speed and rotor resistance estimations. This structure can deal with the multi-output systems and it is called MO-ADALINE. The model of the induction motor is arranged in a linear form, in the stationary reference frame, to cope with the proposed speed estimator. There are many advantages of the proposed unit such as wide speed range capability, immunity against harmonics of measured waveforms, and precise estimation of the speed and the rotor resistance at different dynamic changes. Different types of induction motor drive systems are used to evaluate the dynamic performance and to examine the accuracy of the proposed unit for speed and rotor resistance estimation.

  10. Exactly soluble two-state quantum models with linear couplings

    International Nuclear Information System (INIS)

    Torosov, B T; Vitanov, N V

    2008-01-01

    A class of exact analytic solutions of the time-dependent Schroedinger equation is presented for a two-state quantum system coherently driven by a nonresonant external field. The coupling is a linear function of time with a finite duration and the detuning is constant. Four special models are considered in detail, namely the shark, double-shark, tent and zigzag models. The exact solution is derived by rotation of the Landau-Zener propagator at an angle of π/4 and is expressed in terms of Weber's parabolic cylinder function. Approximations for the transition probabilities are derived for all four models by using the asymptotics of the Weber function; these approximations demonstrate various effects of physical interest for each model

  11. Efficient Estimation of Non-Linear Dynamic Panel Data Models with Application to Smooth Transition Models

    DEFF Research Database (Denmark)

    Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan

    This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set...... of moment restrictions for estimation and apply the results to estimation of panel smooth transition models with fixed effects, where the transition may be determined endogenously. The performance of the GMM estimator, both in terms of estimation precision and forecasting performance, is examined in a Monte...

  12. Estimating integrated variance in the presence of microstructure noise using linear regression

    Science.gov (United States)

    Holý, Vladimír

    2017-07-01

    Using financial high-frequency data for estimation of integrated variance of asset prices is beneficial but with increasing number of observations so-called microstructure noise occurs. This noise can significantly bias the realized variance estimator. We propose a method for estimation of the integrated variance robust to microstructure noise as well as for testing the presence of the noise. Our method utilizes linear regression in which realized variances estimated from different data subsamples act as dependent variable while the number of observations act as explanatory variable. We compare proposed estimator with other methods on simulated data for several microstructure noise structures.

  13. Spin State Estimation of Tumbling Small Bodies

    Science.gov (United States)

    Olson, Corwin; Russell, Ryan P.; Bhaskaran, Shyam

    2016-06-01

    It is expected that a non-trivial percentage of small bodies that future missions may visit are in non-principal axis rotation (i.e. "tumbling"). The primary contribution of this paper is the application of the Extended Kalman Filter (EKF) Simultaneous Localization and Mapping (SLAM) method to estimate the small body spin state, mass, and moments of inertia; the spacecraft position and velocity; and the surface landmark locations. The method uses optical landmark measurements, and an example scenario based on the Rosetta mission is used. The SLAM method proves effective, with order of magnitude decreases in the spacecraft and small body spin state errors after less than a quarter of the comet characterization phase. The SLAM method converges nicely for initial small body angular velocity errors several times larger than the true rates (effectively having no a priori knowledge of the angular velocity). Surface landmark generation and identification are not treated in this work, but significant errors in the initial body-fixed landmark positions are effectively estimated. The algorithm remains effective for a range of different truth spin states, masses, and center of mass offsets that correspond to expected tumbling small bodies throughout the solar system.

  14. Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation

    Directory of Open Access Journals (Sweden)

    Xi Liu

    2016-09-01

    Full Text Available A new algorithm called maximum correntropy unscented Kalman filter (MCUKF is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC, the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm.

  15. Remote optimal state estimation over communication channels with random delays

    KAUST Repository

    Mahmoud, Magdi S.; Al-Sunni, Fouad; Liu, Bo

    2014-01-01

    This paper considers the optimal estimation of linear systems over unreliable communication channels with random delays. In this work, it is assumed that the system to be estimated is far away from the filter. The observations of the system

  16. Probing the Locality of Excited States with Linear Algebra.

    Science.gov (United States)

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  17. A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data

    Directory of Open Access Journals (Sweden)

    Chandra Nagasuma R

    2009-02-01

    Full Text Available Abstract Background A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN from transcript profiling data. Results The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting problem and solved finally by formulating a Linear Program (LP. A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known

  18. Using linear time-invariant system theory to estimate kinetic parameters directly from projection measurements

    International Nuclear Information System (INIS)

    Zeng, G.L.; Gullberg, G.T.

    1995-01-01

    It is common practice to estimate kinetic parameters from dynamically acquired tomographic data by first reconstructing a dynamic sequence of three-dimensional reconstructions and then fitting the parameters to time activity curves generated from the time-varying reconstructed images. However, in SPECT, the pharmaceutical distribution can change during the acquisition of a complete tomographic data set, which can bias the estimated kinetic parameters. It is hypothesized that more accurate estimates of the kinetic parameters can be obtained by fitting to the projection measurements instead of the reconstructed time sequence. Estimation from projections requires the knowledge of their relationship between the tissue regions of interest or voxels with particular kinetic parameters and the project measurements, which results in a complicated nonlinear estimation problem with a series of exponential factors with multiplicative coefficients. A technique is presented in this paper where the exponential decay parameters are estimated separately using linear time-invariant system theory. Once the exponential factors are known, the coefficients of the exponentials can be estimated using linear estimation techniques. Computer simulations demonstrate that estimation of the kinetic parameters directly from the projections is more accurate than the estimation from the reconstructed images

  19. Variance estimation for complex indicators of poverty and inequality using linearization techniques

    Directory of Open Access Journals (Sweden)

    Guillaume Osier

    2009-12-01

    Full Text Available The paper presents the Eurostat experience in calculating measures of precision, including standard errors, confidence intervals and design effect coefficients - the ratio of the variance of a statistic with the actual sample design to the variance of that statistic with a simple random sample of same size - for the "Laeken" indicators, that is, a set of complex indicators of poverty and inequality which had been set out in the framework of the EU-SILC project (European Statistics on Income and Living Conditions. The Taylor linearization method (Tepping, 1968; Woodruff, 1971; Wolter, 1985; Tille, 2000 is actually a well-established method to obtain variance estimators for nonlinear statistics such as ratios, correlation or regression coefficients. It consists of approximating a nonlinear statistic with a linear function of the observations by using first-order Taylor Series expansions. Then, an easily found variance estimator of the linear approximation is used as an estimator of the variance of the nonlinear statistic. Although the Taylor linearization method handles all the nonlinear statistics which can be expressed as a smooth function of estimated totals, the approach fails to encompass the "Laeken" indicators since the latter are having more complex mathematical expressions. Consequently, a generalized linearization method (Deville, 1999, which relies on the concept of influence function (Hampel, Ronchetti, Rousseeuw and Stahel, 1986, has been implemented. After presenting the EU-SILC instrument and the main target indicators for which variance estimates are needed, the paper elaborates on the main features of the linearization approach based on influence functions. Ultimately, estimated standard errors, confidence intervals and design effect coefficients obtained from this approach are presented and discussed.

  20. On H∞ Fault Estimator Design for Linear Discrete Time-Varying Systems under Unreliable Communication Link

    Directory of Open Access Journals (Sweden)

    Yueyang Li

    2014-01-01

    Full Text Available This paper investigates the H∞ fixed-lag fault estimator design for linear discrete time-varying (LDTV systems with intermittent measurements, which is described by a Bernoulli distributed random variable. Through constructing a novel partially equivalent dynamic system, the fault estimator design is converted into a deterministic quadratic minimization problem. By applying the innovation reorganization technique and the projection formula in Krein space, a necessary and sufficient condition is obtained for the existence of the estimator. The parameter matrices of the estimator are derived by recursively solving two standard Riccati equations. An illustrative example is provided to show the effectiveness and applicability of the proposed algorithm.

  1. Compact and accurate linear and nonlinear autoregressive moving average model parameter estimation using laguerre functions

    DEFF Research Database (Denmark)

    Chon, K H; Cohen, R J; Holstein-Rathlou, N H

    1997-01-01

    A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving...... average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre...

  2. State Estimation for Sensor Monitoring System with Uncertainty and Disturbance

    Directory of Open Access Journals (Sweden)

    Jianhong Sun

    2014-10-01

    Full Text Available This paper considers the state estimation problem for the sensor monitoring system which contains system uncertainty and nonlinear disturbance. In the sensor monitoring system, states of each inner sensor node usually contains system uncertainty, and external noise often works as nonlinear item. Besides, information transmission in the system is also time consuming. All mentioned above may arouse in unstable of the monitoring system. In this case, states of sensors could be wrongly sampled. Under this circumstance, a proper mathematical model is proposed and by the use of Lipschitz condition, the nonlinear item is transformed to linear one. In addition, we suppose that all sensor nodes are distributed arranged, no interface occurs with each other. By establishing proper Lyapunov– Krasovskii functional, sufficient conditions are acquired by solving linear matrix inequality to make the error augmented system stable, and the gains of observers are also derived. Finally, an illustrated example is given to show that system observed value tracks system states well, which fully demonstrate the effectiveness of our result.

  3. A Posteriori Error Estimation for Finite Element Methods and Iterative Linear Solvers

    Energy Technology Data Exchange (ETDEWEB)

    Melboe, Hallgeir

    2001-10-01

    This thesis addresses a posteriori error estimation for finite element methods and iterative linear solvers. Adaptive finite element methods have gained a lot of popularity over the last decades due to their ability to produce accurate results with limited computer power. In these methods a posteriori error estimates play an essential role. Not only do they give information about how large the total error is, they also indicate which parts of the computational domain should be given a more sophisticated treatment in order to reduce the error. A posteriori error estimates are traditionally aimed at estimating the global error, but more recently so called goal oriented error estimators have been shown a lot of interest. The name reflects the fact that they estimate the error in user-defined local quantities. In this thesis the main focus is on global error estimators for highly stretched grids and goal oriented error estimators for flow problems on regular grids. Numerical methods for partial differential equations, such as finite element methods and other similar techniques, typically result in a linear system of equations that needs to be solved. Usually such systems are solved using some iterative procedure which due to a finite number of iterations introduces an additional error. Most such algorithms apply the residual in the stopping criterion, whereas the control of the actual error may be rather poor. A secondary focus in this thesis is on estimating the errors that are introduced during this last part of the solution procedure. The thesis contains new theoretical results regarding the behaviour of some well known, and a few new, a posteriori error estimators for finite element methods on anisotropic grids. Further, a goal oriented strategy for the computation of forces in flow problems is devised and investigated. Finally, an approach for estimating the actual errors associated with the iterative solution of linear systems of equations is suggested. (author)

  4. Adaptive optimisation-offline cyber attack on remote state estimator

    Science.gov (United States)

    Huang, Xin; Dong, Jiuxiang

    2017-10-01

    Security issues of cyber-physical systems have received increasing attentions in recent years. In this paper, deception attacks on the remote state estimator equipped with the chi-squared failure detector are considered, and it is assumed that the attacker can monitor and modify all the sensor data. A novel adaptive optimisation-offline cyber attack strategy is proposed, where using the current and previous sensor data, the attack can yield the largest estimation error covariance while ensuring to be undetected by the chi-squared monitor. From the attacker's perspective, the attack is better than the existing linear deception attacks to degrade the system performance. Finally, some numerical examples are provided to demonstrate theoretical results.

  5. A Low-Complexity ESPRIT-Based DOA Estimation Method for Co-Prime Linear Arrays.

    Science.gov (United States)

    Sun, Fenggang; Gao, Bin; Chen, Lizhen; Lan, Peng

    2016-08-25

    The problem of direction-of-arrival (DOA) estimation is investigated for co-prime array, where the co-prime array consists of two uniform sparse linear subarrays with extended inter-element spacing. For each sparse subarray, true DOAs are mapped into several equivalent angles impinging on the traditional uniform linear array with half-wavelength spacing. Then, by applying the estimation of signal parameters via rotational invariance technique (ESPRIT), the equivalent DOAs are estimated, and the candidate DOAs are recovered according to the relationship among equivalent and true DOAs. Finally, the true DOAs are estimated by combining the results of the two subarrays. The proposed method achieves a better complexity-performance tradeoff as compared to other existing methods.

  6. Linear estimates of structure functions from deep inelastic lepton-nucleon scattering data. Part 1

    International Nuclear Information System (INIS)

    Anikeev, V.B.; Zhigunov, V.P.

    1991-01-01

    This paper concerns the linear estimation of structure functions from muon(electron)-nucleon scattering. The expressions obtained for the structure functions estimate provide correct analysis of the random error and the bias The bias arises because of the finite number of experimental data and the finite resolution of experiment. The approach suggested may become useful for data handling from experiments at HERA. 9 refs

  7. Nonparametric adaptive estimation of linear functionals for low frequency observed Lévy processes

    OpenAIRE

    Kappus, Johanna

    2012-01-01

    For a Lévy process X having finite variation on compact sets and finite first moments, µ( dx) = xv( dx) is a finite signed measure which completely describes the jump dynamics. We construct kernel estimators for linear functionals of µ and provide rates of convergence under regularity assumptions. Moreover, we consider adaptive estimation via model selection and propose a new strategy for the data driven choice of the smoothing parameter.

  8. Robust stability and ℋ ∞ -estimation for uncertain discrete systems with state-delay

    Directory of Open Access Journals (Sweden)

    Mahmoud Magdi S.

    2001-01-01

    Full Text Available In this paper, we investigate the problems of robust stability and ℋ ∞ -estimation for a class of linear discrete-time systems with time-varying norm-bounded parameter uncertainty and unknown state-delay. We provide complete results for robust stability with prescribed performance measure and establish a version of the discrete Bounded Real Lemma. Then, we design a linear estimator such that the estimation error dynamics is robustly stable with a guaranteed ℋ ∞ -performance irrespective of the parameteric uncertainties and unknown state delays. A numerical example is worked out to illustrate the developed theory.

  9. Linear estimation discriminates midline sources and motor cortex contribution to the readiness potential

    NARCIS (Netherlands)

    Knosche, Thomas; Knosche, T.R.; Praamstra, Peter; Peters, M.J.; Stegeman, Dick; Stegeman, D.

    1996-01-01

    Spatiotemporal dipole modelling of the generators of the readiness potential (RP) prior to voluntary movements has yielded diverging results concerning the contributions of supplementary motor area (SMA) and primary motor cortex. We applied an alternative approach (i.e. linear estimation theory) to

  10. Avoiding Boundary Estimates in Hierarchical Linear Models through Weakly Informative Priors

    Science.gov (United States)

    Chung, Yeojin; Rabe-Hesketh, Sophia; Gelman, Andrew; Dorie, Vincent; Liu, Jinchen

    2012-01-01

    Hierarchical or multilevel linear models are widely used for longitudinal or cross-sectional data on students nested in classes and schools, and are particularly important for estimating treatment effects in cluster-randomized trials, multi-site trials, and meta-analyses. The models can allow for variation in treatment effects, as well as…

  11. On the Use of Rank Tests and Estimates in the Linear Model.

    Science.gov (United States)

    1982-06-01

    models," Journal of the Royal Statistical Society , Series B, 42, 366-371. Neter, J. and Wasserman, W. (1974), Applied Linear Statistical Models...University Park, PA. Schuster, E. (1974), "On the rate of convergence of an estimate of a functional of a probability density," Scandinavian Acturial

  12. The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.

    Science.gov (United States)

    Pang, Haotian; Liu, Han; Vanderbei, Robert

    2014-02-01

    We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.

  13. Estimation of non-linear effective permeability of magnetic materials with fine structure

    International Nuclear Information System (INIS)

    Waki, H.; Igarashi, H.; Honma, T.

    2006-01-01

    This paper describes a homogenization method for magnetic materials with fine structure. In this method, the structures of the magnetic materials are assumed to be periodic, and the unit cell is defined. The effective permeability is determined on the basis of magnetic energy balance in the unit cell. This method can be applied not only for linear problems but also for non-linear ones. In this paper, estimation of the effective permeability of non-linear magnetic materials by using the homogenization method is described in detail, and then the validity for the non-liner problems is tested for two-dimensional problems. It is shown that this homogenization method gives accurate non-linear effective permeability

  14. Joint state and parameter estimation for a class of cascade systems: Application to a hemodynamic model

    KAUST Repository

    Zayane, Chadia

    2014-06-01

    In this paper, we address a special case of state and parameter estimation, where the system can be put on a cascade form allowing to estimate the state components and the set of unknown parameters separately. Inspired by the nonlinear Balloon hemodynamic model for functional Magnetic Resonance Imaging problem, we propose a hierarchical approach. The system is divided into two subsystems in cascade. The state and input are first estimated from a noisy measured signal using an adaptive observer. The obtained input is then used to estimate the parameters of a linear system using the modulating functions method. Some numerical results are presented to illustrate the efficiency of the proposed method.

  15. A theoretical signal processing framework for linear diffusion MRI: Implications for parameter estimation and experiment design.

    Science.gov (United States)

    Varadarajan, Divya; Haldar, Justin P

    2017-11-01

    The data measured in diffusion MRI can be modeled as the Fourier transform of the Ensemble Average Propagator (EAP), a probability distribution that summarizes the molecular diffusion behavior of the spins within each voxel. This Fourier relationship is potentially advantageous because of the extensive theory that has been developed to characterize the sampling requirements, accuracy, and stability of linear Fourier reconstruction methods. However, existing diffusion MRI data sampling and signal estimation methods have largely been developed and tuned without the benefit of such theory, instead relying on approximations, intuition, and extensive empirical evaluation. This paper aims to address this discrepancy by introducing a novel theoretical signal processing framework for diffusion MRI. The new framework can be used to characterize arbitrary linear diffusion estimation methods with arbitrary q-space sampling, and can be used to theoretically evaluate and compare the accuracy, resolution, and noise-resilience of different data acquisition and parameter estimation techniques. The framework is based on the EAP, and makes very limited modeling assumptions. As a result, the approach can even provide new insight into the behavior of model-based linear diffusion estimation methods in contexts where the modeling assumptions are inaccurate. The practical usefulness of the proposed framework is illustrated using both simulated and real diffusion MRI data in applications such as choosing between different parameter estimation methods and choosing between different q-space sampling schemes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. An Empirical Method to Fuse Partially Overlapping State Vectors for Distributed State Estimation

    NARCIS (Netherlands)

    Sijs, J.; Hanebeck, U.; Noack, B.

    2013-01-01

    State fusion is a method for merging multiple estimates of the same state into a single fused estimate. Dealing with multiple estimates is one of the main concerns in distributed state estimation, where an estimated value of the desired state vector is computed in each node of a networked system.

  17. Inverse estimation of multiple muscle activations based on linear logistic regression.

    Science.gov (United States)

    Sekiya, Masashi; Tsuji, Toshiaki

    2017-07-01

    This study deals with a technology to estimate the muscle activity from the movement data using a statistical model. A linear regression (LR) model and artificial neural networks (ANN) have been known as statistical models for such use. Although ANN has a high estimation capability, it is often in the clinical application that the lack of data amount leads to performance deterioration. On the other hand, the LR model has a limitation in generalization performance. We therefore propose a muscle activity estimation method to improve the generalization performance through the use of linear logistic regression model. The proposed method was compared with the LR model and ANN in the verification experiment with 7 participants. As a result, the proposed method showed better generalization performance than the conventional methods in various tasks.

  18. Estimation of Multiple Point Sources for Linear Fractional Order Systems Using Modulating Functions

    KAUST Repository

    Belkhatir, Zehor

    2017-06-28

    This paper proposes an estimation algorithm for the characterization of multiple point inputs for linear fractional order systems. First, using polynomial modulating functions method and a suitable change of variables the problem of estimating the locations and the amplitudes of a multi-pointwise input is decoupled into two algebraic systems of equations. The first system is nonlinear and solves for the time locations iteratively, whereas the second system is linear and solves for the input’s amplitudes. Second, closed form formulas for both the time location and the amplitude are provided in the particular case of single point input. Finally, numerical examples are given to illustrate the performance of the proposed technique in both noise-free and noisy cases. The joint estimation of pointwise input and fractional differentiation orders is also presented. Furthermore, a discussion on the performance of the proposed algorithm is provided.

  19. Robust-BD Estimation and Inference for General Partially Linear Models

    Directory of Open Access Journals (Sweden)

    Chunming Zhang

    2017-11-01

    Full Text Available The classical quadratic loss for the partially linear model (PLM and the likelihood function for the generalized PLM are not resistant to outliers. This inspires us to propose a class of “robust-Bregman divergence (BD” estimators of both the parametric and nonparametric components in the general partially linear model (GPLM, which allows the distribution of the response variable to be partially specified, without being fully known. Using the local-polynomial function estimation method, we propose a computationally-efficient procedure for obtaining “robust-BD” estimators and establish the consistency and asymptotic normality of the “robust-BD” estimator of the parametric component β o . For inference procedures of β o in the GPLM, we show that the Wald-type test statistic W n constructed from the “robust-BD” estimators is asymptotically distribution free under the null, whereas the likelihood ratio-type test statistic Λ n is not. This provides an insight into the distinction from the asymptotic equivalence (Fan and Huang 2005 between W n and Λ n in the PLM constructed from profile least-squares estimators using the non-robust quadratic loss. Numerical examples illustrate the computational effectiveness of the proposed “robust-BD” estimators and robust Wald-type test in the appearance of outlying observations.

  20. A Bayes linear Bayes method for estimation of correlated event rates.

    Science.gov (United States)

    Quigley, John; Wilson, Kevin J; Walls, Lesley; Bedford, Tim

    2013-12-01

    Typically, full Bayesian estimation of correlated event rates can be computationally challenging since estimators are intractable. When estimation of event rates represents one activity within a larger modeling process, there is an incentive to develop more efficient inference than provided by a full Bayesian model. We develop a new subjective inference method for correlated event rates based on a Bayes linear Bayes model under the assumption that events are generated from a homogeneous Poisson process. To reduce the elicitation burden we introduce homogenization factors to the model and, as an alternative to a subjective prior, an empirical method using the method of moments is developed. Inference under the new method is compared against estimates obtained under a full Bayesian model, which takes a multivariate gamma prior, where the predictive and posterior distributions are derived in terms of well-known functions. The mathematical properties of both models are presented. A simulation study shows that the Bayes linear Bayes inference method and the full Bayesian model provide equally reliable estimates. An illustrative example, motivated by a problem of estimating correlated event rates across different users in a simple supply chain, shows how ignoring the correlation leads to biased estimation of event rates. © 2013 Society for Risk Analysis.

  1. Robust best linear estimation for regression analysis using surrogate and instrumental variables.

    Science.gov (United States)

    Wang, C Y

    2012-04-01

    We investigate methods for regression analysis when covariates are measured with errors. In a subset of the whole cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies the classical measurement error model, but it may not have repeated measurements. In addition to the surrogate variables that are available among the subjects in the calibration sample, we assume that there is an instrumental variable (IV) that is available for all study subjects. An IV is correlated with the unobserved true exposure variable and hence can be useful in the estimation of the regression coefficients. We propose a robust best linear estimator that uses all the available data, which is the most efficient among a class of consistent estimators. The proposed estimator is shown to be consistent and asymptotically normal under very weak distributional assumptions. For Poisson or linear regression, the proposed estimator is consistent even if the measurement error from the surrogate or IV is heteroscedastic. Finite-sample performance of the proposed estimator is examined and compared with other estimators via intensive simulation studies. The proposed method and other methods are applied to a bladder cancer case-control study.

  2. Convergence Rate Analysis of Distributed Gossip (Linear Parameter) Estimation: Fundamental Limits and Tradeoffs

    Science.gov (United States)

    Kar, Soummya; Moura, José M. F.

    2011-08-01

    The paper considers gossip distributed estimation of a (static) distributed random field (a.k.a., large scale unknown parameter vector) observed by sparsely interconnected sensors, each of which only observes a small fraction of the field. We consider linear distributed estimators whose structure combines the information \\emph{flow} among sensors (the \\emph{consensus} term resulting from the local gossiping exchange among sensors when they are able to communicate) and the information \\emph{gathering} measured by the sensors (the \\emph{sensing} or \\emph{innovations} term.) This leads to mixed time scale algorithms--one time scale associated with the consensus and the other with the innovations. The paper establishes a distributed observability condition (global observability plus mean connectedness) under which the distributed estimates are consistent and asymptotically normal. We introduce the distributed notion equivalent to the (centralized) Fisher information rate, which is a bound on the mean square error reduction rate of any distributed estimator; we show that under the appropriate modeling and structural network communication conditions (gossip protocol) the distributed gossip estimator attains this distributed Fisher information rate, asymptotically achieving the performance of the optimal centralized estimator. Finally, we study the behavior of the distributed gossip estimator when the measurements fade (noise variance grows) with time; in particular, we consider the maximum rate at which the noise variance can grow and still the distributed estimator being consistent, by showing that, as long as the centralized estimator is consistent, the distributed estimator remains consistent.

  3. On Kolmogorov asymptotics of estimators of the misclassification error rate in linear discriminant analysis

    KAUST Repository

    Zollanvari, Amin

    2013-05-24

    We provide a fundamental theorem that can be used in conjunction with Kolmogorov asymptotic conditions to derive the first moments of well-known estimators of the actual error rate in linear discriminant analysis of a multivariate Gaussian model under the assumption of a common known covariance matrix. The estimators studied in this paper are plug-in and smoothed resubstitution error estimators, both of which have not been studied before under Kolmogorov asymptotic conditions. As a result of this work, we present an optimal smoothing parameter that makes the smoothed resubstitution an unbiased estimator of the true error. For the sake of completeness, we further show how to utilize the presented fundamental theorem to achieve several previously reported results, namely the first moment of the resubstitution estimator and the actual error rate. We provide numerical examples to show the accuracy of the succeeding finite sample approximations in situations where the number of dimensions is comparable or even larger than the sample size.

  4. Enhanced 2D-DOA Estimation for Large Spacing Three-Parallel Uniform Linear Arrays

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    2018-01-01

    Full Text Available An enhanced two-dimensional direction of arrival (2D-DOA estimation algorithm for large spacing three-parallel uniform linear arrays (ULAs is proposed in this paper. Firstly, we use the propagator method (PM to get the highly accurate but ambiguous estimation of directional cosine. Then, we use the relationship between the directional cosine to eliminate the ambiguity. This algorithm not only can make use of the elements of the three-parallel ULAs but also can utilize the connection between directional cosine to improve the estimation accuracy. Besides, it has satisfied estimation performance when the elevation angle is between 70° and 90° and it can automatically pair the estimated azimuth and elevation angles. Furthermore, it has low complexity without using any eigen value decomposition (EVD or singular value decompostion (SVD to the covariance matrix. Simulation results demonstrate the effectiveness of our proposed algorithm.

  5. On Kolmogorov asymptotics of estimators of the misclassification error rate in linear discriminant analysis

    KAUST Repository

    Zollanvari, Amin; Genton, Marc G.

    2013-01-01

    We provide a fundamental theorem that can be used in conjunction with Kolmogorov asymptotic conditions to derive the first moments of well-known estimators of the actual error rate in linear discriminant analysis of a multivariate Gaussian model under the assumption of a common known covariance matrix. The estimators studied in this paper are plug-in and smoothed resubstitution error estimators, both of which have not been studied before under Kolmogorov asymptotic conditions. As a result of this work, we present an optimal smoothing parameter that makes the smoothed resubstitution an unbiased estimator of the true error. For the sake of completeness, we further show how to utilize the presented fundamental theorem to achieve several previously reported results, namely the first moment of the resubstitution estimator and the actual error rate. We provide numerical examples to show the accuracy of the succeeding finite sample approximations in situations where the number of dimensions is comparable or even larger than the sample size.

  6. INTERVAL STATE ESTIMATION FOR SINGULAR DIFFERENTIAL EQUATION SYSTEMS WITH DELAYS

    Directory of Open Access Journals (Sweden)

    T. A. Kharkovskaia

    2016-07-01

    Full Text Available The paper deals with linear differential equation systems with algebraic restrictions (singular systems and a method of interval observer design for this kind of systems. The systems contain constant time delay, measurement noise and disturbances. Interval observer synthesis is based on monotone and cooperative systems technique, linear matrix inequations, Lyapunov function theory and interval arithmetic. The set of conditions that gives the possibility for interval observer synthesis is proposed. Results of synthesized observer operation are shown on the example of dynamical interindustry balance model. The advantages of proposed method are that it is adapted to observer design for uncertain systems, if the intervals of admissible values for uncertain parameters are given. The designed observer is capable to provide asymptotically definite limits on the estimation accuracy, since the interval of admissible values for the object state is defined at every instant. The obtained result provides an opportunity to develop the interval estimation theory for complex systems that contain parametric uncertainty, varying delay and nonlinear elements. Interval observers increasingly find applications in economics, electrical engineering, mechanical systems with constraints and optimal flow control.

  7. New developments in state estimation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Nørgård, Peter Magnus; Poulsen, Niels Kjølstad; Ravn, Ole

    2000-01-01

    Based on an interpolation formula, accurate state estimators for nonlinear systems can be derived. The estimators do not require derivative information which makes them simple to implement.; State estimators for nonlinear systems are derived based on polynomial approximations obtained with a mult......-known estimators, such as the extended Kalman filter (EKF) and its higher-order relatives, in most practical applications....

  8. Quantum state propagation in linear photonic bandgap structures

    International Nuclear Information System (INIS)

    Severini, S; Tricca, D; Sibilia, C; Bertolotti, M; Perina, Jan

    2004-01-01

    In this paper we investigate the propagation of a generic quantum state in a corrugated waveguide, which reproduces a photonic bandgap structure. We find the conditions that assure the outcoming state to preserve the quantum properties of the incoming state. Then, focusing on a particular quantum state (realized by two counter-propagating coherent states), we study the possibility of preserving the quantum properties of this particular double coherent state even in the presence of absorption phenomena during propagation in the structure

  9. State space and input-output linear systems

    CERN Document Server

    Delchamps, David F

    1988-01-01

    It is difficult for me to forget the mild sense of betrayal I felt some ten years ago when I discovered, with considerable dismay, that my two favorite books on linear system theory - Desoer's Notes for a Second Course on Linear Systems and Brockett's Finite Dimensional Linear Systems - were both out of print. Since that time, of course, linear system theory has undergone a transformation of the sort which always attends the maturation of a theory whose range of applicability is expanding in a fashion governed by technological developments and by the rate at which such advances become a part of engineering practice. The growth of the field has inspired the publication of some excellent books; the encyclopedic treatises by Kailath and Chen, in particular, come immediately to mind. Nonetheless, I was inspired to write this book primarily by my practical needs as a teacher and researcher in the field. For the past five years, I have taught a one semester first year gradu­ ate level linear system theory course i...

  10. Anisotropic compacts stars on paraboloidal spacetime with linear equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, V.O. [The Maharaja Sayajirao University of Baroda, Department of Mathematics, Faculty of Science, Vadodara, Gujarat (India); Pandya, D.M. [Pandit Deendayal Petroleum University, Department of Mathematics and Computer Science, Gandhinagar, Gujarat (India)

    2017-06-15

    New exact solutions of Einstein's field equations (EFEs) by assuming a linear equation of state, p{sub r} = α(ρ-ρ{sub R}), where p{sub r} is the radial pressure and ρ{sub R} is the surface density, are obtained on the background of a paraboloidal spacetime. By assuming estimated mass and radius of strange star candidate 4U 1820-30, various physical and energy conditions are used for estimating the range of parameter α. The suitability of the model for describing pulsars like PSR J1903+327, Vela X-1, Her X-1 and SAX J1808.4-3658 has been explored and respective ranges of α, for which all physical and energy conditions are satisfied throughout the distribution, are obtained. (orig.)

  11. Novel point estimation from a semiparametric ratio estimator (SPRE): long-term health outcomes from short-term linear data, with application to weight loss in obesity.

    Science.gov (United States)

    Weissman-Miller, Deborah

    2013-11-02

    Point estimation is particularly important in predicting weight loss in individuals or small groups. In this analysis, a new health response function is based on a model of human response over time to estimate long-term health outcomes from a change point in short-term linear regression. This important estimation capability is addressed for small groups and single-subject designs in pilot studies for clinical trials, medical and therapeutic clinical practice. These estimations are based on a change point given by parameters derived from short-term participant data in ordinary least squares (OLS) regression. The development of the change point in initial OLS data and the point estimations are given in a new semiparametric ratio estimator (SPRE) model. The new response function is taken as a ratio of two-parameter Weibull distributions times a prior outcome value that steps estimated outcomes forward in time, where the shape and scale parameters are estimated at the change point. The Weibull distributions used in this ratio are derived from a Kelvin model in mechanics taken here to represent human beings. A distinct feature of the SPRE model in this article is that initial treatment response for a small group or a single subject is reflected in long-term response to treatment. This model is applied to weight loss in obesity in a secondary analysis of data from a classic weight loss study, which has been selected due to the dramatic increase in obesity in the United States over the past 20 years. A very small relative error of estimated to test data is shown for obesity treatment with the weight loss medication phentermine or placebo for the test dataset. An application of SPRE in clinical medicine or occupational therapy is to estimate long-term weight loss for a single subject or a small group near the beginning of treatment.

  12. Estimating trajectories of energy intake through childhood and adolescence using linear-spline multilevel models.

    Science.gov (United States)

    Anderson, Emma L; Tilling, Kate; Fraser, Abigail; Macdonald-Wallis, Corrie; Emmett, Pauline; Cribb, Victoria; Northstone, Kate; Lawlor, Debbie A; Howe, Laura D

    2013-07-01

    Methods for the assessment of changes in dietary intake across the life course are underdeveloped. We demonstrate the use of linear-spline multilevel models to summarize energy-intake trajectories through childhood and adolescence and their application as exposures, outcomes, or mediators. The Avon Longitudinal Study of Parents and Children assessed children's dietary intake several times between ages 3 and 13 years, using both food frequency questionnaires (FFQs) and 3-day food diaries. We estimated energy-intake trajectories for 12,032 children using linear-spline multilevel models. We then assessed the associations of these trajectories with maternal body mass index (BMI), and later offspring BMI, and also their role in mediating the relation between maternal and offspring BMIs. Models estimated average and individual energy intake at 3 years, and linear changes in energy intake from age 3 to 7 years and from age 7 to 13 years. By including the exposure (in this example, maternal BMI) in the multilevel model, we were able to estimate the average energy-intake trajectories across levels of the exposure. When energy-intake trajectories are the exposure for a later outcome (in this case offspring BMI) or a mediator (between maternal and offspring BMI), results were similar, whether using a two-step process (exporting individual-level intercepts and slopes from multilevel models and using these in linear regression/path analysis), or a single-step process (multivariate multilevel models). Trajectories were similar when FFQs and food diaries were assessed either separately, or when combined into one model. Linear-spline multilevel models provide useful summaries of trajectories of dietary intake that can be used as an exposure, outcome, or mediator.

  13. Robust estimation of partially linear models for longitudinal data with dropouts and measurement error.

    Science.gov (United States)

    Qin, Guoyou; Zhang, Jiajia; Zhu, Zhongyi; Fung, Wing

    2016-12-20

    Outliers, measurement error, and missing data are commonly seen in longitudinal data because of its data collection process. However, no method can address all three of these issues simultaneously. This paper focuses on the robust estimation of partially linear models for longitudinal data with dropouts and measurement error. A new robust estimating equation, simultaneously tackling outliers, measurement error, and missingness, is proposed. The asymptotic properties of the proposed estimator are established under some regularity conditions. The proposed method is easy to implement in practice by utilizing the existing standard generalized estimating equations algorithms. The comprehensive simulation studies show the strength of the proposed method in dealing with longitudinal data with all three features. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study and confirms the effectiveness of the intervention in producing weight loss at month 9. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Simple estimating method of damages of concrete gravity dam based on linear dynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T.; Kanenawa, K.; Yamaguchi, Y. [Public Works Research Institute, Tsukuba, Ibaraki (Japan). Hydraulic Engineering Research Group

    2004-07-01

    Due to the occurrence of large earthquakes like the Kobe Earthquake in 1995, there is a strong need to verify seismic resistance of dams against much larger earthquake motions than those considered in the present design standard in Japan. Problems exist in using nonlinear analysis to evaluate the safety of dams including: that the influence which the set material properties have on the results of nonlinear analysis is large, and that the results of nonlinear analysis differ greatly according to the damage estimation models or analysis programs. This paper reports the evaluation indices based on a linear dynamic analysis method and the characteristics of the progress of cracks in concrete gravity dams with different shapes using a nonlinear dynamic analysis method. The study concludes that if simple linear dynamic analysis is appropriately conducted to estimate tensile stress at potential locations of initiating cracks, the damage due to cracks would be predicted roughly. 4 refs., 1 tab., 13 figs.

  15. Stability and Linear Quadratic Differential Games of Discrete-Time Markovian Jump Linear Systems with State-Dependent Noise

    Directory of Open Access Journals (Sweden)

    Huiying Sun

    2014-01-01

    Full Text Available We mainly consider the stability of discrete-time Markovian jump linear systems with state-dependent noise as well as its linear quadratic (LQ differential games. A necessary and sufficient condition involved with the connection between stochastic Tn-stability of Markovian jump linear systems with state-dependent noise and Lyapunov equation is proposed. And using the theory of stochastic Tn-stability, we give the optimal strategies and the optimal cost values for infinite horizon LQ stochastic differential games. It is demonstrated that the solutions of infinite horizon LQ stochastic differential games are concerned with four coupled generalized algebraic Riccati equations (GAREs. Finally, an iterative algorithm is presented to solve the four coupled GAREs and a simulation example is given to illustrate the effectiveness of it.

  16. Measurement Error in Income and Schooling and the Bias of Linear Estimators

    DEFF Research Database (Denmark)

    Bingley, Paul; Martinello, Alessandro

    2017-01-01

    and Retirement in Europe data with Danish administrative registers. Contrary to most validation studies, we find that measurement error in income is classical once we account for imperfect validation data. We find nonclassical measurement error in schooling, causing a 38% amplification bias in IV estimators......We propose a general framework for determining the extent of measurement error bias in ordinary least squares and instrumental variable (IV) estimators of linear models while allowing for measurement error in the validation source. We apply this method by validating Survey of Health, Ageing...

  17. Measurement error in income and schooling, and the bias of linear estimators

    DEFF Research Database (Denmark)

    Bingley, Paul; Martinello, Alessandro

    The characteristics of measurement error determine the bias of linear estimators. We propose a method for validating economic survey data allowing for measurement error in the validation source, and we apply this method by validating Survey of Health, Ageing and Retirement in Europe (SHARE) data...... with Danish administrative registers. We find that measurement error in surveys is classical for annual gross income but non-classical for years of schooling, causing a 21% amplification bias in IV estimators of returns to schooling. Using a 1958 Danish schooling reform, we contextualize our result...

  18. Estimates of emittance dilution and stability in high-energy linear accelerators

    Directory of Open Access Journals (Sweden)

    T. O. Raubenheimer

    2000-12-01

    Full Text Available In this paper, we present a series of analytic expressions to predict the beam dynamics in a long linear accelerator. These expressions can be used to model the linac optics, calculate the magnitude of the wakefields, estimate the emittance dilution due to misaligned accelerator components, and estimate the stability and jitter limitations. The analytic expressions are based on the results of simple physics models and are useful to understand the parameter sensitivities. They are also useful when using simple codes or spreadsheets to optimize a linac system.

  19. Bad Data Detection and Identification for State Estimation

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    state estimations. To achieve this object largest normalized residual test (rNmax) is applied to detect and analysis bad data in phasor measurements, power flow and power injections of buses used for the novel PMU-based state estimation. The main advantage of new PMU-based static state estimation......Bad data analysis is an important part of both dynamic and static state estimations. This paper present novel algorithm of phase measurement unit (PMU)-based static state estimation to detect and identify multiple bad data in critical measurements, which is not possible with traditional static...... is that phasor measurements can be added separately into the proposed state estimation. This paper proposes an ideal method to combine the phasor measurements into the conventional state estimator in a systematic way, so that no significant modification is necessary to the existing algorithm. The main advantage...

  20. Linear and nonlinear ARMA model parameter estimation using an artificial neural network

    Science.gov (United States)

    Chon, K. H.; Cohen, R. J.

    1997-01-01

    This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.

  1. Ventricular enlargement in multiple sclerosis: a comparison of three-dimensional and linear MRI estimates

    International Nuclear Information System (INIS)

    Turner, B.; Blumhardt, L.D.; Ramli, N.; Jaspan, T.

    2001-01-01

    Atrophy of central white matter is related to irreversible clinical disability in multiple sclerosis (MS) and ventricular enlargement may be a sensitive marker of this tissue loss. Therapeutic trials in MS have provided MRI data for investigation of cerebral atrophy in MS. These studies use almost exclusively two-dimensional (2-D) images, which may be limited in the assessment of three-dimensional (3-D) structures. We used 3-D MRI data to estimate ventricular volumes in 40 patients with MS and 10 healthy controls, to look at associations with clinical disability and the stage of the disease. We then compared simple linear measures of ventricular size from conventional 2-D images, with 3-D volume estimates to establish the best available linear indices of ventricular volume. Mean ventricular volumes were increased in the patients and significantly larger in the more disabled patients. The estimated volume of the third ventricle obtained from 3-D MRI showed the strongest association with the clinical stage of the disease, duration of symptoms and levels of disability. Finally, we confirmed that in patients with MS accurate data on ventricular size can be obtained from 2-D images by two simple and convenient linear measures, the width of the third ventricle and of the anterior horn of the lateral ventricle. (orig.)

  2. State-dependent linear-optical qubit amplifier

    Czech Academy of Sciences Publication Activity Database

    Bartkiewicz, K.; Černoch, Antonín; Lemr, K.

    2013-01-01

    Roč. 88, č. 6 (2013), "062304-1"-"062304-7" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : linear-optical qubit amplifier * quantum cloning * quantum cryptography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013

  3. A concise account of techniques available for shipboard sea state estimation

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2017-01-01

    This article gives a review of techniques applied to make sea state estimation on the basis of measured responses on a ship. The general concept of the procedures is similar to that of a classical wave buoy, which exploits a linear assumption between waves and the associated motions. In the frequ......This article gives a review of techniques applied to make sea state estimation on the basis of measured responses on a ship. The general concept of the procedures is similar to that of a classical wave buoy, which exploits a linear assumption between waves and the associated motions...

  4. Optimal State Estimation for Discrete-Time Markov Jump Systems with Missing Observations

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2014-01-01

    Full Text Available This paper is concerned with the optimal linear estimation for a class of direct-time Markov jump systems with missing observations. An observer-based approach of fault detection and isolation (FDI is investigated as a detection mechanic of fault case. For systems with known information, a conditional prediction of observations is applied and fault observations are replaced and isolated; then, an FDI linear minimum mean square error estimation (LMMSE can be developed by comprehensive utilizing of the correct information offered by systems. A recursive equation of filtering based on the geometric arguments can be obtained. Meanwhile, a stability of the state estimator will be guaranteed under appropriate assumption.

  5. Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data

    KAUST Repository

    Cheng, Guang

    2014-02-01

    We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based on a spline approximation of the nonparametric part of the model and the generalized estimating equations (GEE). Although the model in consideration is natural and useful in many practical applications, the literature on this model is very limited because of challenges in dealing with dependent data for nonparametric additive models. We show that the proposed estimators are consistent and asymptotically normal even if the covariance structure is misspecified. An explicit consistent estimate of the asymptotic variance is also provided. Moreover, we derive the semiparametric efficiency score and information bound under general moment conditions. By showing that our estimators achieve the semiparametric information bound, we effectively establish their efficiency in a stronger sense than what is typically considered for GEE. The derivation of our asymptotic results relies heavily on the empirical processes tools that we develop for the longitudinal/clustered data. Numerical results are used to illustrate the finite sample performance of the proposed estimators. © 2014 ISI/BS.

  6. Bearing Estimation Using Double Frequency Reassignment for a Linear Passive Array

    Directory of Open Access Journals (Sweden)

    Czarnecki Krzysztof

    2017-09-01

    Full Text Available The paper demonstrates the use of frequency reassignment for bearing estimation. For this task, signals derived from a linear equispaced passive array are used. The presented method makes use of Fourier transformation based spatial spectrum estimation. It is further developed through the application of two-dimensional reassignment, which leads to obtaining highly concentrated energy distributions in the joint frequency-angle domain and sharp graphical imaging. The introduced method can be used for analysing, a priori, unknown signals of broadband, nonstationary, and/or multicomponent type. For such signals, the direction of arrival is obtained based upon the marginal energy distribution in the angle domain, through searching for arguments of its maxima. In the paper, bearing estimation of three popular types of sonar pulses, including linear and hyperbolic frequency modulated pulses, as well as no frequency modulation at all, is considered. The results of numerical experiments performed in the presence of additive white Gaussian noise are presented and compared to conventional digital sum-delay beamforming performed in the time domain. The root-mean-square error and the peak-to-average power ratio, also known as the crest factor, are introduced in order to estimate, respectively, the accuracy of the methods and the sharpness of the obtained energy distributions in the angle domain.

  7. Linear Quantum Systems: Non-Classical States and Robust Stability

    Science.gov (United States)

    2016-06-29

    modulation and entanglement in a compound gradient echo memory, Physical Review A 93(2) 023809 2016. We present a theoretical model for a Kerr...Carvalho, M. Hedges and M R James, Analysis of the operation of gradient echo memories using a quantum input-output model, New Journal of Physics , 15...new structured uncertainty methods that ensure robust stability of quantum systems based on nominal linear models, and (v) physical realizability

  8. A non-linear state space approach to model groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.

    2006-01-01

    A non-linear state space model is developed for describing groundwater fluctuations. Non-linearity is introduced by modeling the (unobserved) degree of water saturation of the root zone. The non-linear relations are based on physical concepts describing the dependence of both the actual

  9. State estimation for Markov-type genetic regulatory networks with delays and uncertain mode transition rates

    International Nuclear Information System (INIS)

    Liang Jinling; Lam, James; Wang Zidong

    2009-01-01

    This Letter is concerned with the robust state estimation problem for uncertain time-delay Markovian jumping genetic regulatory networks (GRNs) with SUM logic, where the uncertainties enter into both the network parameters and the mode transition rate. The nonlinear functions describing the feedback regulation are assumed to satisfy the sector-like conditions. The main purpose of the problem addressed is to design a linear estimator to approximate the true concentrations of the mRNA and protein through available measurement outputs. By resorting to the Lyapunov functional method and some stochastic analysis tools, it is shown that if a set of linear matrix inequalities (LMIs) is feasible, the desired state estimator, that can ensure the estimation error dynamics to be globally robustly asymptotically stable in the mean square, exists. The obtained LMI conditions are dependent on both the lower and the upper bounds of the delays. An illustrative example is presented to demonstrate the feasibility of the proposed estimation schemes.

  10. Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models

    KAUST Repository

    Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim

    2015-01-01

    This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.

  11. Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models

    KAUST Repository

    Ait-El-Fquih, Boujemaa

    2015-08-13

    This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.

  12. Estimation of time-varying reactivity by the H∞ optimal linear filter

    International Nuclear Information System (INIS)

    Suzuki, Katsuo; Shimazaki, Junya; Watanabe, Koiti

    1995-01-01

    The problem of estimating the time-varying net reactivity from flux measurements is solved for a point reactor kinetics model using a linear filtering technique in an H ∞ settings. In order to sue this technique, an appropriate dynamical model of the reactivity is constructed that can be embedded into the reactor model as one of its variables. A filter, which minimizes the H ∞ norm of the estimation error power spectrum, operates on neutron density measurements corrupted by noise and provides an estimate of the dynamic net reactivity. Computer simulations are performed to reveal the basic characteristics of the H ∞ optimal filter. The results of the simulation indicate that the filter can be used to determine the time-varying reactivity from neutron density measurements that have been corrupted by noise

  13. The Dangers of Estimating V˙O2max Using Linear, Nonexercise Prediction Models.

    Science.gov (United States)

    Nevill, Alan M; Cooke, Carlton B

    2017-05-01

    This study aimed to compare the accuracy and goodness of fit of two competing models (linear vs allometric) when estimating V˙O2max (mL·kg·min) using nonexercise prediction models. The two competing models were fitted to the V˙O2max (mL·kg·min) data taken from two previously published studies. Study 1 (the Allied Dunbar National Fitness Survey) recruited 1732 randomly selected healthy participants, 16 yr and older, from 30 English parliamentary constituencies. Estimates of V˙O2max were obtained using a progressive incremental test on a motorized treadmill. In study 2, maximal oxygen uptake was measured directly during a fatigue limited treadmill test in older men (n = 152) and women (n = 146) 55 to 86 yr old. In both studies, the quality of fit associated with estimating V˙O2max (mL·kg·min) was superior using allometric rather than linear (additive) models based on all criteria (R, maximum log-likelihood, and Akaike information criteria). Results suggest that linear models will systematically overestimate V˙O2max for participants in their 20s and underestimate V˙O2max for participants in their 60s and older. The residuals saved from the linear models were neither normally distributed nor independent of the predicted values nor age. This will probably explain the absence of a key quadratic age term in the linear models, crucially identified using allometric models. Not only does the curvilinear age decline within an exponential function follow a more realistic age decline (the right-hand side of a bell-shaped curve), but the allometric models identified either a stature-to-body mass ratio (study 1) or a fat-free mass-to-body mass ratio (study 2), both associated with leanness when estimating V˙O2max. Adopting allometric models will provide more accurate predictions of V˙O2max (mL·kg·min) using plausible, biologically sound, and interpretable models.

  14. Vision Aided State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Bendtsen, Jan Dimon; la Cour-Harbo, Anders

    2007-01-01

    This paper presents the design and verification of a state estimator for a helicopter based slung load system. The estimator is designed to augment the IMU driven estimator found in many helicopter UAV s and uses vision based updates only. The process model used for the estimator is a simple 4...

  15. FUNDAMENTAL MATRIX OF LINEAR CONTINUOUS SYSTEM IN THE PROBLEM OF ESTIMATING ITS TRANSPORT DELAY

    Directory of Open Access Journals (Sweden)

    N. A. Dudarenko

    2014-09-01

    Full Text Available The paper deals with the problem of quantitative estimation for transport delay of linear continuous systems. The main result is received by means of fundamental matrix of linear differential equations solutions specified in the normal Cauchy form for the cases of SISO and MIMO systems. Fundamental matrix has the dual property. It means that the weight function of the system can be formed as a free motion of systems. Last one is generated by the vector of initial system conditions, which coincides with the matrix input of the system being researched. Thus, using the properties of the system- solving for fundamental matrix has given the possibility to solve the problem of estimating transport linear continuous system delay without the use of derivation procedure in hardware environment and without formation of exogenous Dirac delta function. The paper is illustrated by examples. The obtained results make it possible to solve the problem of modeling the pure delay links using consecutive chain of aperiodic links of the first order with the equal time constants. Modeling results have proved the correctness of obtained computations. Knowledge of transport delay can be used when configuring multi- component technological complexes and in the diagnosis of their possible functional degeneration.

  16. Stated Preference Survey Estimating the Willingness to Pay ...

    Science.gov (United States)

    A national stated preference survey designed to elicit household willingness to pay for reductions in impinged and entrained fish at cooling water intake structures. To improve estimation of environmental benefits estimation

  17. A Reduced-Order Successive Linear Estimator for Geostatistical Inversion and its Application in Hydraulic Tomography

    Science.gov (United States)

    Zha, Yuanyuan; Yeh, Tian-Chyi J.; Illman, Walter A.; Zeng, Wenzhi; Zhang, Yonggen; Sun, Fangqiang; Shi, Liangsheng

    2018-03-01

    Hydraulic tomography (HT) is a recently developed technology for characterizing high-resolution, site-specific heterogeneity using hydraulic data (nd) from a series of cross-hole pumping tests. To properly account for the subsurface heterogeneity and to flexibly incorporate additional information, geostatistical inverse models, which permit a large number of spatially correlated unknowns (ny), are frequently used to interpret the collected data. However, the memory storage requirements for the covariance of the unknowns (ny × ny) in these models are prodigious for large-scale 3-D problems. Moreover, the sensitivity evaluation is often computationally intensive using traditional difference method (ny forward runs). Although employment of the adjoint method can reduce the cost to nd forward runs, the adjoint model requires intrusive coding effort. In order to resolve these issues, this paper presents a Reduced-Order Successive Linear Estimator (ROSLE) for analyzing HT data. This new estimator approximates the covariance of the unknowns using Karhunen-Loeve Expansion (KLE) truncated to nkl order, and it calculates the directional sensitivities (in the directions of nkl eigenvectors) to form the covariance and cross-covariance used in the Successive Linear Estimator (SLE). In addition, the covariance of unknowns is updated every iteration by updating the eigenvalues and eigenfunctions. The computational advantages of the proposed algorithm are demonstrated through numerical experiments and a 3-D transient HT analysis of data from a highly heterogeneous field site.

  18. Mathematical model of transmission network static state estimation

    Directory of Open Access Journals (Sweden)

    Ivanov Aleksandar

    2012-01-01

    Full Text Available In this paper the characteristics and capabilities of the power transmission network static state estimator are presented. The solving process of the mathematical model containing the measurement errors and their processing is developed. To evaluate difference between the general model of state estimation and the fast decoupled state estimation model, the both models are applied to an example, and so derived results are compared.

  19. Perturbation-Based Regularization for Signal Estimation in Linear Discrete Ill-posed Problems

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Al-Naffouri, Tareq Y.

    2016-01-01

    Estimating the values of unknown parameters from corrupted measured data faces a lot of challenges in ill-posed problems. In such problems, many fundamental estimation methods fail to provide a meaningful stabilized solution. In this work, we propose a new regularization approach and a new regularization parameter selection approach for linear least-squares discrete ill-posed problems. The proposed approach is based on enhancing the singular-value structure of the ill-posed model matrix to acquire a better solution. Unlike many other regularization algorithms that seek to minimize the estimated data error, the proposed approach is developed to minimize the mean-squared error of the estimator which is the objective in many typical estimation scenarios. The performance of the proposed approach is demonstrated by applying it to a large set of real-world discrete ill-posed problems. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods in most cases. In addition, the approach also enjoys the lowest runtime and offers the highest level of robustness amongst all the tested benchmark regularization methods.

  20. Markov Jump Linear Systems-Based Position Estimation for Lower Limb Exoskeletons

    Directory of Open Access Journals (Sweden)

    Samuel L. Nogueira

    2014-01-01

    Full Text Available In this paper, we deal with Markov Jump Linear Systems-based filtering applied to robotic rehabilitation. The angular positions of an impedance-controlled exoskeleton, designed to help stroke and spinal cord injured patients during walking rehabilitation, are estimated. Standard position estimate approaches adopt Kalman filters (KF to improve the performance of inertial measurement units (IMUs based on individual link configurations. Consequently, for a multi-body system, like a lower limb exoskeleton, the inertial measurements of one link (e.g., the shank are not taken into account in other link position estimation (e.g., the foot. In this paper, we propose a collective modeling of all inertial sensors attached to the exoskeleton, combining them in a Markovian estimation model in order to get the best information from each sensor. In order to demonstrate the effectiveness of our approach, simulation results regarding a set of human footsteps, with four IMUs and three encoders attached to the lower limb exoskeleton, are presented. A comparative study between the Markovian estimation system and the standard one is performed considering a wide range of parametric uncertainties.

  1. Perturbation-Based Regularization for Signal Estimation in Linear Discrete Ill-posed Problems

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2016-11-29

    Estimating the values of unknown parameters from corrupted measured data faces a lot of challenges in ill-posed problems. In such problems, many fundamental estimation methods fail to provide a meaningful stabilized solution. In this work, we propose a new regularization approach and a new regularization parameter selection approach for linear least-squares discrete ill-posed problems. The proposed approach is based on enhancing the singular-value structure of the ill-posed model matrix to acquire a better solution. Unlike many other regularization algorithms that seek to minimize the estimated data error, the proposed approach is developed to minimize the mean-squared error of the estimator which is the objective in many typical estimation scenarios. The performance of the proposed approach is demonstrated by applying it to a large set of real-world discrete ill-posed problems. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods in most cases. In addition, the approach also enjoys the lowest runtime and offers the highest level of robustness amongst all the tested benchmark regularization methods.

  2. Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models.

    Science.gov (United States)

    Yue, Chen; Chen, Shaojie; Sair, Haris I; Airan, Raag; Caffo, Brian S

    2015-09-01

    Data reproducibility is a critical issue in all scientific experiments. In this manuscript, the problem of quantifying the reproducibility of graphical measurements is considered. The image intra-class correlation coefficient (I2C2) is generalized and the graphical intra-class correlation coefficient (GICC) is proposed for such purpose. The concept for GICC is based on multivariate probit-linear mixed effect models. A Markov Chain Monte Carlo EM (mcm-cEM) algorithm is used for estimating the GICC. Simulation results with varied settings are demonstrated and our method is applied to the KIRBY21 test-retest dataset.

  3. Estimates of Hadronic Backgrounds in a 5 TeV e+e- Linear Collider

    International Nuclear Information System (INIS)

    Murayama, H.; Ohgaki, Tomomi; Xie, M.

    1998-01-01

    We have estimated hadronic backgrounds by γγ collisions in an e + e - linear collider at a center-of-mass energy of 5 TeV. We introduce a simple ansatz, that is, a total γγ cross section of σ γγ = (σγ p ) 2 /σ pp shall be saturated by minijet productions, whose rate is controlled by p t,min (√s). We present that the background yields are small and the energy deposits are tinier than the collision energy of the initial electron and positron beams by a simulation

  4. A linear model for estimation of neurotransmitter response profiles from dynamic PET data

    OpenAIRE

    Normandin, M.D.; Schiffer, W.K.; Morris, E.D.

    2011-01-01

    The parametric ntPET model (p-ntPET) estimates the kinetics of neurotransmitter release from dynamic PET data with receptor-ligand radiotracers. Here we introduce a linearization (lp-ntPET) that is computationally efficient and can be applied to single-scan data. lp-ntPET employs a non-invasive reference region input function and extends the LSRRM of Alpert et al. (2003) using basis functions to characterize the time course of neurotransmitter activation. In simulation studies, the temporal p...

  5. Quadratic Plus Linear Operators which Preserve Pure States of Quantum Systems: Small Dimensions

    International Nuclear Information System (INIS)

    Saburov, Mansoor

    2014-01-01

    A mathematical formalism of quantum mechanics says that a pure state of a quantum system corresponds to a vector of norm 1 and an observable is a self-adjoint operator on the space of states. It is of interest to describe all linear or nonlinear operators which preserve the pure states of the system. In the linear case, it is nothing more than isometries of Hilbert spaces. In the nonlinear case, this problem was open. In this paper, in the small dimensional spaces, we shall describe all quadratic plus linear operators which preserve pure states of the quantum system

  6. Quantum state propagation in linear photonic bandgap structures

    Czech Academy of Sciences Publication Activity Database

    Severini, S.; Tricca, S.; Sibilia, C.; Peřina, Jan

    2004-01-01

    Roč. 6, - (2004), s. 110-114 ISSN 1464-4266 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : photonic crystals * coupled mode theory * decoherence * quantum states propagation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.746, year: 2004

  7. Wheeled vehicle deceleration as estimation parameter of adaptive brake control system state

    Directory of Open Access Journals (Sweden)

    Turenko A.

    2012-06-01

    Full Text Available The method of stability estimation of adaptive control system with signal adjustment based on Lyapunov’s direct method that allows to take into account the nonstationarity of the basic system and non-linearity in the form of limitation on control action restriction as well as error control is stated.

  8. Nonlinear Adaptive Descriptor Observer for the Joint States and Parameters Estimation

    KAUST Repository

    2016-08-29

    In this note, the joint state and parameters estimation problem for nonlinear multi-input multi-output descriptor systems is considered. Asymptotic convergence of the adaptive descriptor observer is established by a sufficient set of linear matrix inequalities for the noise-free systems. The noise corrupted systems are also considered and it is shown that the state and parameters estimation errors are bounded for bounded noises. In addition, if the noises are bounded and have zero mean, then the estimation errors asymptotically converge to zero in the mean. The performance of the proposed adaptive observer is illustrated by a numerical example.

  9. Nonlinear Adaptive Descriptor Observer for the Joint States and Parameters Estimation

    KAUST Repository

    Unknown author

    2016-01-01

    In this note, the joint state and parameters estimation problem for nonlinear multi-input multi-output descriptor systems is considered. Asymptotic convergence of the adaptive descriptor observer is established by a sufficient set of linear matrix inequalities for the noise-free systems. The noise corrupted systems are also considered and it is shown that the state and parameters estimation errors are bounded for bounded noises. In addition, if the noises are bounded and have zero mean, then the estimation errors asymptotically converge to zero in the mean. The performance of the proposed adaptive observer is illustrated by a numerical example.

  10. Linear solvation energy relationships: "rule of thumb" for estimation of variable values

    Science.gov (United States)

    Hickey, James P.; Passino-Reader, Dora R.

    1991-01-01

    For the linear solvation energy relationship (LSER), values are listed for each of the variables (Vi/100, π*, &betam, αm) for fundamental organic structures and functional groups. We give the guidelines to estimate LSER variable values quickly for a vast array of possible organic compounds such as those found in the environment. The difficulty in generating these variables has greatly discouraged the application of this quantitative structure-activity relationship (QSAR) method. This paper present the first compilation of molecular functional group values together with a utilitarian set of the LSER variable estimation rules. The availability of these variable values and rules should facilitate widespread application of LSER for hazard evaluation of environmental contaminants.

  11. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    Science.gov (United States)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  12. Augmented switching linear dynamical system model for gas concentration estimation with MOX sensors in an open sampling system.

    Science.gov (United States)

    Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne

    2014-07-11

    In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector.

  13. STATE ESTIMATION IN ALCOHOLIC CONTINUOUS FERMENTATION OF ZYMOMONAS MOBILIS USING RECURSIVE BAYESIAN FILTERING: A SIMULATION APPROACH

    Directory of Open Access Journals (Sweden)

    Olga Lucia Quintero

    2008-05-01

    Full Text Available This work presents a state estimator for a continuous bioprocess. To this aim, the Non Linear Filtering theory based on the recursive application of Bayes rule and Monte Carlo techniques is used. Recursive Bayesian Filters Sampling Importance Resampling (SIR is employed, including different kinds of resampling. Generally, bio-processes have strong non-linear and non-Gaussian characteristics, and this tool becomes attractive. The estimator behavior and performance are illustrated with the continuous process of alcoholic fermentation of Zymomonas mobilis. Not too many applications with this tool have been reported in the biotechnological area.

  14. H∞ state estimation of generalised neural networks with interval time-varying delays

    Science.gov (United States)

    Saravanakumar, R.; Syed Ali, M.; Cao, Jinde; Huang, He

    2016-12-01

    This paper focuses on studying the H∞ state estimation of generalised neural networks with interval time-varying delays. The integral terms in the time derivative of the Lyapunov-Krasovskii functional are handled by the Jensen's inequality, reciprocally convex combination approach and a new Wirtinger-based double integral inequality. A delay-dependent criterion is derived under which the estimation error system is globally asymptotically stable with H∞ performance. The proposed conditions are represented by linear matrix inequalities. Optimal H∞ norm bounds are obtained easily by solving convex problems in terms of linear matrix inequalities. The advantage of employing the proposed inequalities is illustrated by numerical examples.

  15. State Estimation for the Automotive SCR Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2012-01-01

    Selective catalytic reduction (SCR) of NOx is a widely applied diesel engine exhaust gas aftertreatment technology. For advanced SCR process control, like model predictive control, full state information of the process is required. The ammonia coverage ratio inside the catalyst is difficult to me...

  16. Application of radial basis neural network for state estimation of ...

    African Journals Online (AJOL)

    An original application of radial basis function (RBF) neural network for power system state estimation is proposed in this paper. The property of massive parallelism of neural networks is employed for this. The application of RBF neural network for state estimation is investigated by testing its applicability on a IEEE 14 bus ...

  17. Artificial Neural Network Based State Estimators Integrated into Kalmtool

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Ravn, Ole; Poulsen, Niels Kjølstad

    2012-01-01

    In this paper we present a toolbox enabling easy evaluation and comparison of dierent ltering algorithms. The toolbox is called Kalmtool and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox now contains functions for Articial Neural Network Based State Estimation as...

  18. H∞ state estimation for discrete-time memristive recurrent neural networks with stochastic time-delays

    Science.gov (United States)

    Liu, Hongjian; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.

    2016-07-01

    This paper deals with the robust H∞ state estimation problem for a class of memristive recurrent neural networks with stochastic time-delays. The stochastic time-delays under consideration are governed by a Bernoulli-distributed stochastic sequence. The purpose of the addressed problem is to design the robust state estimator such that the dynamics of the estimation error is exponentially stable in the mean square, and the prescribed ? performance constraint is met. By utilizing the difference inclusion theory and choosing a proper Lyapunov-Krasovskii functional, the existence condition of the desired estimator is derived. Based on it, the explicit expression of the estimator gain is given in terms of the solution to a linear matrix inequality. Finally, a numerical example is employed to demonstrate the effectiveness and applicability of the proposed estimation approach.

  19. Effect of Smart Meter Measurements Data On Distribution State Estimation

    DEFF Research Database (Denmark)

    Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte

    2018-01-01

    Smart distribution grids with renewable energy based generators and demand response resources (DRR) requires accurate state estimators for real time control. Distribution grid state estimators are normally based on accumulated smart meter measurements. However, increase of measurements in the phy......Smart distribution grids with renewable energy based generators and demand response resources (DRR) requires accurate state estimators for real time control. Distribution grid state estimators are normally based on accumulated smart meter measurements. However, increase of measurements...... in the physical grid can enforce significant stress not only on the communication infrastructure but also in the control algorithms. This paper aims to propose a methodology to analyze needed real time smart meter data from low voltage distribution grids and their applicability in distribution state estimation...

  20. A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.

    Directory of Open Access Journals (Sweden)

    Ana Calabrese

    2011-01-01

    Full Text Available In the auditory system, the stimulus-response properties of single neurons are often described in terms of the spectrotemporal receptive field (STRF, a linear kernel relating the spectrogram of the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these algorithms differ in their functional models, cost functions, and regularization methods. Here, we characterize the stimulus-response function of auditory neurons using a generalized linear model (GLM. In this model, each cell's input is described by: 1 a stimulus filter (STRF; and 2 a post-spike filter, which captures dependencies on the neuron's spiking history. The output of the model is given by a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike train responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking activity of zebra finch auditory midbrain neurons in response to conspecific vocalizations (songs and modulation limited (ml noise. We compare this model to normalized reverse correlation (NRC, the traditional method for STRF estimation, in terms of predictive power and the basic tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel responses to both stimulus classes significantly better than NRC. Importantly, we find that STRFs from the two models derived from the same responses can differ substantially and that GLM STRFs are more consistent between stimulus classes than NRC STRFs. These results suggest that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal tuning than does the NRC method when responses to complex sounds are studied in these neurons.

  1. Optimal state estimation over communication channels with random delays

    KAUST Repository

    Mahmoud, Magdi S.; Liu, Bo

    2013-01-01

    This paper is concerned with the optimal estimation of linear systems over unreliable communication channels with random delays. The measurements are delivered without time stamp, and the probabilities of time delays are assumed to be known. Since the estimation is time-driven, the actual time delays are converted into virtual time delays among the formulation. The receiver of estimation node stores the sum of arrived measurements between two adjacent processing time instants and also counts the number of arrived measurements. The original linear system is modeled as an extended system with uncertain observation to capture the feature of communication, then the optimal estimation algorithm of systems with uncertain observations is proposed. Additionally, a numerical simulation is presented to show the performance of this work. © 2013 The Franklin Institute.

  2. Optimal state estimation over communication channels with random delays

    KAUST Repository

    Mahmoud, Magdi S.

    2013-04-01

    This paper is concerned with the optimal estimation of linear systems over unreliable communication channels with random delays. The measurements are delivered without time stamp, and the probabilities of time delays are assumed to be known. Since the estimation is time-driven, the actual time delays are converted into virtual time delays among the formulation. The receiver of estimation node stores the sum of arrived measurements between two adjacent processing time instants and also counts the number of arrived measurements. The original linear system is modeled as an extended system with uncertain observation to capture the feature of communication, then the optimal estimation algorithm of systems with uncertain observations is proposed. Additionally, a numerical simulation is presented to show the performance of this work. © 2013 The Franklin Institute.

  3. Structural robustness with suboptimal responses for linear state space model

    Science.gov (United States)

    Keel, L. H.; Lim, Kyong B.; Juang, Jer-Nan

    1989-01-01

    A relationship between the closed-loop eigenvalues and the amount of perturbations in the open-loop matrix is addressed in the context of performance robustness. If the allowable perturbation ranges of elements of the open-loop matrix A and the desired tolerance of the closed-loop eigenvalues are given such that max(j) of the absolute value of Delta-lambda(j) (A+BF) should be less than some prescribed value, what is a state feedback controller F which satisfies the closed-loop eigenvalue perturbation-tolerance requirement for a class of given perturbation in A? The paper gives an algorithm to design such a controller. Numerical examples are included for illustration.

  4. On Estimating Marginal Tax Rates for U.S. States

    OpenAIRE

    Reed, W. Robert; Rogers, Cynthia L; Skidmore, Mark

    2011-01-01

    This paper presents a procedure for generating state-specific time-varying estimates of marginal tax rates (MTRs). Most estimates of MTRs follow a procedure developed by Koester and Kormendi (1989) (K&K). Unfortunately, the time-invariant nature of the K&K estimates precludes their use as explanatory variables in panel data studies with fixed effects. Furthermore, the associated MTR estimates are not explicitly linked to statutory tax parameters. Our approach addresses both shortcomings. Usin...

  5. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    Science.gov (United States)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-04-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  6. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    Science.gov (United States)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-06-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  7. On algebraic time-derivative estimation and deadbeat state reconstruction

    DEFF Research Database (Denmark)

    Reger, Johann; Jouffroy, Jerome

    2009-01-01

    This paper places into perspective the so-called algebraic time-derivative estimation method recently introduced by Fliess and co-authors with standard results from linear statespace theory for control systems. In particular, it is shown that the algebraic method can essentially be seen...

  8. The SR Approach: a new Estimation Method for Non-Linear and Non-Gaussian Dynamic Term Structure Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Christensen, Bent Jesper

    This paper suggests a new and easy approach to estimate linear and non-linear dynamic term structure models with latent factors. We impose no distributional assumptions on the factors and they may therefore be non-Gaussian. The novelty of our approach is to use many observables (yields or bonds p...

  9. State estimation for large-scale wastewater treatment plants.

    Science.gov (United States)

    Busch, Jan; Elixmann, David; Kühl, Peter; Gerkens, Carine; Schlöder, Johannes P; Bock, Hans G; Marquardt, Wolfgang

    2013-09-01

    Many relevant process states in wastewater treatment are not measurable, or their measurements are subject to considerable uncertainty. This poses a serious problem for process monitoring and control. Model-based state estimation can provide estimates of the unknown states and increase the reliability of measurements. In this paper, an integrated approach is presented for the optimization-based sensor network design and the estimation problem. Using the ASM1 model in the reference scenario BSM1, a cost-optimal sensor network is designed and the prominent estimators EKF and MHE are evaluated. Very good estimation results for the system comprising 78 states are found requiring sensor networks of only moderate complexity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Estimation of time- and state-dependent delays and other parameters in functional differential equations

    Science.gov (United States)

    Murphy, K. A.

    1990-01-01

    A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.

  11. Excited-state lifetime measurements: Linearization of the Foerster equation by the phase-plane method

    International Nuclear Information System (INIS)

    Love, J.C.; Demas, J.N.

    1983-01-01

    The Foerster equation describes excited-state decay curves involving resonance intermolecular energy transfer. A linearized solution based on the phase-plane method has been developed. The new method is quick, insensitive to the fitting region, accurate, and precise

  12. Power system dynamic state estimation using prediction based evolutionary technique

    International Nuclear Information System (INIS)

    Basetti, Vedik; Chandel, Ashwani K.; Chandel, Rajeevan

    2016-01-01

    In this paper, a new robust LWS (least winsorized square) estimator is proposed for dynamic state estimation of a power system. One of the main advantages of this estimator is that it has an inbuilt bad data rejection property and is less sensitive to bad data measurements. In the proposed approach, Brown's double exponential smoothing technique has been utilised for its reliable performance at the prediction step. The state estimation problem is solved as an optimisation problem using a new jDE-self adaptive differential evolution with prediction based population re-initialisation technique at the filtering step. This new stochastic search technique has been embedded with different state scenarios using the predicted state. The effectiveness of the proposed LWS technique is validated under different conditions, namely normal operation, bad data, sudden load change, and loss of transmission line conditions on three different IEEE test bus systems. The performance of the proposed approach is compared with the conventional extended Kalman filter. On the basis of various performance indices, the results thus obtained show that the proposed technique increases the accuracy and robustness of power system dynamic state estimation performance. - Highlights: • To estimate the states of the power system under dynamic environment. • The performance of the EKF method is degraded during anomaly conditions. • The proposed method remains robust towards anomalies. • The proposed method provides precise state estimates even in the presence of anomalies. • The results show that prediction accuracy is enhanced by using the proposed model.

  13. Photoneutrons from medical linear accelerators--radiobiological measurements and risk estimates

    International Nuclear Information System (INIS)

    Hall, Eric J.; Martin, Stewart G.; Amols, Howard; Hei, Tom K.

    1995-01-01

    Purpose: To assess the oncogenic potential of the photoneutrons produced by high energy medical linear accelerators. Methods and Materials: An established line of cells of rodent origin (C 3 H 10T1/2) was used to assess the oncogenic potential of the radiation dose received in the breast of an anthropomorphic 'randoman' phanton, while the cervix received a dose of 70 Gy. Experiments were performed at 6 MV, below the threshold for the production of photoneutrons, and at 20 MV where the dose includes about 0.01 Gy of photoneutrons as well as scattered x-rays. Results: A significantly higher transformation incidence was observed for the 20-MV machine, consistent with the measured neutron dose of about 0.01 Gy and a quality factor of 20. Conclusion: An estimate can be made of the additional deaths from second malignancies that might result from the photoneutrons generated by higher energy linear accelerators (Linacs), which must be offset against the possible improvements in survival that might result from the higher tumor doses made possible by the increased percentage depth doses

  14. Broadband implementation of coprime linear microphone arrays for direction of arrival estimation.

    Science.gov (United States)

    Bush, Dane; Xiang, Ning

    2015-07-01

    Coprime arrays represent a form of sparse sensing which can achieve narrow beams using relatively few elements, exceeding the spatial Nyquist sampling limit. The purpose of this paper is to expand on and experimentally validate coprime array theory in an acoustic implementation. Two nested sparse uniform linear subarrays with coprime number of elements ( M and N) each produce grating lobes that overlap with one another completely in just one direction. When the subarray outputs are combined it is possible to retain the shared beam while mostly canceling the other superfluous grating lobes. In this way a small number of microphones ( N+M-1) creates a narrow beam at higher frequencies, comparable to a densely populated uniform linear array of MN microphones. In this work beampatterns are simulated for a range of single frequencies, as well as bands of frequencies. Narrowband experimental beampatterns are shown to correspond with simulated results even at frequencies other than the arrays design frequency. Narrowband side lobe locations are shown to correspond to the theoretical values. Side lobes in the directional pattern are mitigated by increasing bandwidth of analyzed signals. Direction of arrival estimation is also implemented for two simultaneous noise sources in a free field condition.

  15. Improvement of Bragg peak shift estimation using dimensionality reduction techniques and predictive linear modeling

    Science.gov (United States)

    Xing, Yafei; Macq, Benoit

    2017-11-01

    With the emergence of clinical prototypes and first patient acquisitions for proton therapy, the research on prompt gamma imaging is aiming at making most use of the prompt gamma data for in vivo estimation of any shift from expected Bragg peak (BP). The simple problem of matching the measured prompt gamma profile of each pencil beam with a reference simulation from the treatment plan is actually made complex by uncertainties which can translate into distortions during treatment. We will illustrate this challenge and demonstrate the robustness of a predictive linear model we proposed for BP shift estimation based on principal component analysis (PCA) method. It considered the first clinical knife-edge slit camera design in use with anthropomorphic phantom CT data. Particularly, 4115 error scenarios were simulated for the learning model. PCA was applied to the training input randomly chosen from 500 scenarios for eliminating data collinearities. A total variance of 99.95% was used for representing the testing input from 3615 scenarios. This model improved the BP shift estimation by an average of 63+/-19% in a range between -2.5% and 86%, comparing to our previous profile shift (PS) method. The robustness of our method was demonstrated by a comparative study conducted by applying 1000 times Poisson noise to each profile. 67% cases obtained by the learning model had lower prediction errors than those obtained by PS method. The estimation accuracy ranged between 0.31 +/- 0.22 mm and 1.84 +/- 8.98 mm for the learning model, while for PS method it ranged between 0.3 +/- 0.25 mm and 20.71 +/- 8.38 mm.

  16. Estimating net joint torques from kinesiological data using optimal linear system theory.

    Science.gov (United States)

    Runge, C F; Zajac, F E; Allum, J H; Risher, D W; Bryson, A E; Honegger, F

    1995-12-01

    Net joint torques (NJT) are frequently computed to provide insights into the motor control of dynamic biomechanical systems. An inverse dynamics approach is almost always used, whereby the NJT are computed from 1) kinematic measurements (e.g., position of the segments), 2) kinetic measurements (e.g., ground reaction forces) that are, in effect, constraints defining unmeasured kinematic quantities based on a dynamic segmental model, and 3) numerical differentiation of the measured kinematics to estimate velocities and accelerations that are, in effect, additional constraints. Due to errors in the measurements, the segmental model, and the differentiation process, estimated NJT rarely produce the observed movement in a forward simulation when the dynamics of the segmental system are inherently unstable (e.g., human walking). Forward dynamic simulations are, however, essential to studies of muscle coordination. We have developed an alternative approach, using the linear quadratic follower (LQF) algorithm, which computes the NJT such that a stable simulation of the observed movement is produced and the measurements are replicated as well as possible. The LQF algorithm does not employ constraints depending on explicit differentiation of the kinematic data, but rather employs those depending on specification of a cost function, based on quantitative assumptions about data confidence. We illustrate the usefulness of the LQF approach by using it to estimate NJT exerted by standing humans perturbed by support-surface movements. We show that unless the number of kinematic and force variables recorded is sufficiently high, the confidence that can be placed in the estimates of the NJT, obtained by any method (e.g., LQF, or the inverse dynamics approach), may be unsatisfactorily low.

  17. Pipeline heating method based on optimal control and state estimation

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, F.L.V. [Dept. of Subsea Technology. Petrobras Research and Development Center - CENPES, Rio de Janeiro, RJ (Brazil)], e-mail: fvianna@petrobras.com.br; Orlande, H.R.B. [Dept. of Mechanical Engineering. POLI/COPPE, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ (Brazil)], e-mail: helcio@mecanica.ufrj.br; Dulikravich, G.S. [Dept. of Mechanical and Materials Engineering. Florida International University - FIU, Miami, FL (United States)], e-mail: dulikrav@fiu.edu

    2010-07-01

    In production of oil and gas wells in deep waters the flowing of hydrocarbon through pipeline is a challenging problem. This environment presents high hydrostatic pressures and low sea bed temperatures, which can favor the formation of solid deposits that in critical operating conditions, as unplanned shutdown conditions, may result in a pipeline blockage and consequently incur in large financial losses. There are different methods to protect the system, but nowadays thermal insulation and chemical injection are the standard solutions normally used. An alternative method of flow assurance is to heat the pipeline. This concept, which is known as active heating system, aims at heating the produced fluid temperature above a safe reference level in order to avoid the formation of solid deposits. The objective of this paper is to introduce a Bayesian statistical approach for the state estimation problem, in which the state variables are considered as the transient temperatures within a pipeline cross-section, and to use the optimal control theory as a design tool for a typical heating system during a simulated shutdown condition. An application example is presented to illustrate how Bayesian filters can be used to reconstruct the temperature field from temperature measurements supposedly available on the external surface of the pipeline. The temperatures predicted with the Bayesian filter are then utilized in a control approach for a heating system used to maintain the temperature within the pipeline above the critical temperature of formation of solid deposits. The physical problem consists of a pipeline cross section represented by a circular domain with four points over the pipe wall representing heating cables. The fluid is considered stagnant, homogeneous, isotropic and with constant thermo-physical properties. The mathematical formulation governing the direct problem was solved with the finite volume method and for the solution of the state estimation problem

  18. Multistage optimal PMU placement for hybrid state estimation

    DEFF Research Database (Denmark)

    Hazra, J.; Das, Kaushik; Roy, B. K. S.

    2017-01-01

    placed by the proposed method are used in developing a hybrid state estimator (HSE). The HSE estimates the voltage phasor at all the buses of a power system with a limited numbers of PMUs in steady state as well as in the presence of disturbances even in that part of network which is unobservable through...... PMUs. Performance of the proposed phased installation scheme for HSE is evaluated on the number of standard test system and the simulation results shows an improvement in the accuracy of the estimated states as compared to the existing methods in the literature....

  19. Distributed Dynamic State Estimation with Extended Kalman Filter

    Energy Technology Data Exchange (ETDEWEB)

    Du, Pengwei; Huang, Zhenyu; Sun, Yannan; Diao, Ruisheng; Kalsi, Karanjit; Anderson, Kevin K.; Li, Yulan; Lee, Barry

    2011-08-04

    Increasing complexity associated with large-scale renewable resources and novel smart-grid technologies necessitates real-time monitoring and control. Our previous work applied the extended Kalman filter (EKF) with the use of phasor measurement data (PMU) for dynamic state estimation. However, high computation complexity creates significant challenges for real-time applications. In this paper, the problem of distributed dynamic state estimation is investigated. One domain decomposition method is proposed to utilize decentralized computing resources. The performance of distributed dynamic state estimation is tested on a 16-machine, 68-bus test system.

  20. H∞ state estimation of stochastic memristor-based neural networks with time-varying delays.

    Science.gov (United States)

    Bao, Haibo; Cao, Jinde; Kurths, Jürgen; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    This paper addresses the problem of H ∞ state estimation for a class of stochastic memristor-based neural networks with time-varying delays. Under the framework of Filippov solution, the stochastic memristor-based neural networks are transformed into systems with interval parameters. The present paper is the first to investigate the H ∞ state estimation problem for continuous-time Itô-type stochastic memristor-based neural networks. By means of Lyapunov functionals and some stochastic technique, sufficient conditions are derived to ensure that the estimation error system is asymptotically stable in the mean square with a prescribed H ∞ performance. An explicit expression of the state estimator gain is given in terms of linear matrix inequalities (LMIs). Compared with other results, our results reduce control gain and control cost effectively. Finally, numerical simulations are provided to demonstrate the efficiency of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Robust state estimation for uncertain fuzzy bidirectional associative memory networks with time-varying delays

    Science.gov (United States)

    Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.

    2013-09-01

    This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.

  2. Robust state estimation for uncertain fuzzy bidirectional associative memory networks with time-varying delays

    International Nuclear Information System (INIS)

    Vadivel, P; Sakthivel, R; Mathiyalagan, K; Arunkumar, A

    2013-01-01

    This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov–Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results. (paper)

  3. Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables

    Science.gov (United States)

    Rosenblum, Michael; van der Laan, Mark J.

    2010-01-01

    Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation. PMID:20628636

  4. Simple, efficient estimators of treatment effects in randomized trials using generalized linear models to leverage baseline variables.

    Science.gov (United States)

    Rosenblum, Michael; van der Laan, Mark J

    2010-04-01

    Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation.

  5. Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries

    International Nuclear Information System (INIS)

    Burgos-Mellado, Claudio; Orchard, Marcos E.; Kazerani, Mehrdad; Cárdenas, Roberto; Sáez, Doris

    2016-01-01

    Highlights: • Approach to estimate the state of maximum power available in Lithium-Ion battery. • Optimisation problem is formulated on the basis of a non-linear dynamic model. • Solutions of the optimisation problem are functions of state of charge estimates. • State of charge estimates computed using particle filter algorithms. - Abstract: Battery Energy Storage Systems (BESS) are important for applications related to both microgrids and electric vehicles. If BESS are used as the main energy source, then it is required to include adequate procedures for the estimation of critical variables such as the State of Charge (SoC) and the State of Health (SoH) in the design of Battery Management Systems (BMS). Furthermore, in applications where batteries are exposed to high charge and discharge rates it is also desirable to estimate the State of Maximum Power Available (SoMPA). In this regard, this paper presents a novel approach to the estimation of SoMPA in Lithium-Ion batteries. This method formulates an optimisation problem for the battery power based on a non-linear dynamic model, where the resulting solutions are functions of the SoC. In the battery model, the polarisation resistance is modelled using fuzzy rules that are function of both SoC and the discharge (charge) current. Particle filtering algorithms are used as an online estimation technique, mainly because these algorithms allow approximating the probability density functions of the SoC and SoMPA even in the case of non-Gaussian sources of uncertainty. The proposed method for SoMPA estimation is validated using the experimental data obtained from an experimental setup designed for charging and discharging the Lithium-Ion batteries.

  6. National intelligence estimates and the Failed State Index.

    Science.gov (United States)

    Voracek, Martin

    2013-10-01

    Across 177 countries around the world, the Failed State Index, a measure of state vulnerability, was reliably negatively associated with the estimates of national intelligence. Psychometric analysis of the Failed State Index, compounded of 12 social, economic, and political indicators, suggested factorial unidimensionality of this index. The observed correspondence of higher national intelligence figures to lower state vulnerability might arise through these two macro-level variables possibly being proxies of even more pervasive historical and societal background variables that affect both.

  7. Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator

    Directory of Open Access Journals (Sweden)

    Bahita Mohamed

    2011-01-01

    Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.

  8. Multiparameter estimation with single photons—linearly-optically generated quantum entanglement beats the shotnoise limit

    Science.gov (United States)

    You, Chenglong; Adhikari, Sushovit; Chi, Yuxi; LaBorde, Margarite L.; Matyas, Corey T.; Zhang, Chenyu; Su, Zuen; Byrnes, Tim; Lu, Chaoyang; Dowling, Jonathan P.; Olson, Jonathan P.

    2017-12-01

    It was suggested in (Motes et al 2015 Phys. Rev. Lett. 114 170802) that optical networks with relatively inexpensive overheads—single photon Fock states, passive optical elements, and single photon detection—can show significant improvements over classical strategies for single-parameter estimation, when the number of modes in the network is small (ncompute the quantum Cramér-Rao bound to show these networks can have a constant-factor quantum advantage in multi-parameter estimation for even large number of modes. Additionally, we provide a simplified measurement scheme using only single-photon (on-off) detectors that is capable of approximately obtaining this sensitivity for a small number of modes.

  9. Implementing nonprojective measurements via linear optics: An approach based on optimal quantum-state discrimination

    International Nuclear Information System (INIS)

    Loock, Peter van; Nemoto, Kae; Munro, William J.; Raynal, Philippe; Luetkenhaus, Norbert

    2006-01-01

    We discuss the problem of implementing generalized measurements [positive operator-valued measures (POVMs)] with linear optics, either based upon a static linear array or including conditional dynamics. In our approach, a given POVM shall be identified as a solution to an optimization problem for a chosen cost function. We formulate a general principle: the implementation is only possible if a linear-optics circuit exists for which the quantum mechanical optimum (minimum) is still attainable after dephasing the corresponding quantum states. The general principle enables us, for instance, to derive a set of necessary conditions for the linear-optics implementation of the POVM that realizes the quantum mechanically optimal unambiguous discrimination of two pure nonorthogonal states. This extends our previous results on projection measurements and the exact discrimination of orthogonal states

  10. Information geometry of density matrices and state estimation

    International Nuclear Information System (INIS)

    Brody, Dorje C

    2011-01-01

    Given a pure state vector |x) and a density matrix ρ-hat, the function p(x|ρ-hat)= defines a probability density on the space of pure states parameterised by density matrices. The associated Fisher-Rao information measure is used to define a unitary invariant Riemannian metric on the space of density matrices. An alternative derivation of the metric, based on square-root density matrices and trace norms, is provided. This is applied to the problem of quantum-state estimation. In the simplest case of unitary parameter estimation, new higher-order corrections to the uncertainty relations, applicable to general mixed states, are derived. (fast track communication)

  11. Estimation methods for nonlinear state-space models in ecology

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro

    2011-01-01

    The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... logistic model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare the estimation performance of three alternative methods using simulated data. The first approach is to partition the state-space into a finite number of states and formulate the problem as a hidden...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...

  12. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials.

    Science.gov (United States)

    Hu, L; Zhang, Z G; Mouraux, A; Iannetti, G D

    2015-05-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical

  13. Estimation of error components in a multi-error linear regression model, with an application to track fitting

    International Nuclear Information System (INIS)

    Fruehwirth, R.

    1993-01-01

    We present an estimation procedure of the error components in a linear regression model with multiple independent stochastic error contributions. After solving the general problem we apply the results to the estimation of the actual trajectory in track fitting with multiple scattering. (orig.)

  14. Linearization Method and Linear Complexity

    Science.gov (United States)

    Tanaka, Hidema

    We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.

  15. Traffic State Estimation Using Connected Vehicles and Stationary Detectors

    Directory of Open Access Journals (Sweden)

    Ellen F. Grumert

    2018-01-01

    Full Text Available Real-time traffic state estimation is of importance for efficient traffic management. This is especially the case for traffic management systems that require fast detection of changes in the traffic conditions in order to apply an effective control measure. In this paper, we propose a method for estimating the traffic state and speed and density, by using connected vehicles combined with stationary detectors. The aim is to allow fast and accurate estimation of changes in the traffic conditions. The proposed method does only require information about the speed and the position of connected vehicles and can make use of sparsely located stationary detectors to limit the dependence on the infrastructure equipment. An evaluation of the proposed method is carried out by microscopic traffic simulation. The traffic state estimated using the proposed method is compared to the true simulated traffic state. Further, the density estimates are compared to density estimates from one detector-based method, one combined method, and one connected-vehicle-based method. The results of the study show that the proposed method is a promising alternative for estimating the traffic state in traffic management applications.

  16. Estimating spatially distributed monthly evapotranspiration rates by linear transformations of MODIS daytime land surface temperature data

    Directory of Open Access Journals (Sweden)

    J. Szilagyi

    2009-05-01

    Full Text Available Under simplifying conditions catchment-scale vapor pressure at the drying land surface can be calculated as a function of its watershed-representative temperature (<Ts> by the wet-surface equation (WSE, similar to the wet-bulb equation in meteorology for calculating the dry-bulb thermometer vapor pressure of the Complementary Relationship of evaporation. The corresponding watershed ET rate, , is obtained from the Bowen ratio with the help of air temperature, humidity and percent possible sunshine data. The resulting (<Ts>, pair together with the wet-environment surface temperature (<Tws> and ET rate (ETw, obtained by the Priestley-Taylor equation, define a linear transformation on a monthly basis by which spatially distributed ET rates can be estimated as a sole function of MODIS daytime land surface temperature, Ts, values within the watershed. The linear transformation preserves the mean which is highly desirable. <Tws>, in the lack of significant open water surfaces within the study watershed (Elkhorn, Nebraska, was obtained as the mean of the smallest MODIS Ts values each month. The resulting period-averaged (2000–2007 catchment-scale ET rate of 624 mm/yr is very close to the water-balance derived ET rate of about 617 mm/yr. The latter is a somewhat uncertain value due to the effects of (a observed groundwater depletion of about 1m over the study period caused by extensive irrigation, and; (b the uncertain rate of net regional groundwater supply toward the watershed. The spatially distributed ET rates correspond well with soil/aquifer properties and the resulting land use type (i.e. rangeland versus center-pivot irrigated crops.

  17. A Linear Programming Model to Optimize Various Objective Functions of a Foundation Type State Support Program.

    Science.gov (United States)

    Matzke, Orville R.

    The purpose of this study was to formulate a linear programming model to simulate a foundation type support program and to apply this model to a state support program for the public elementary and secondary school districts in the State of Iowa. The model was successful in producing optimal solutions to five objective functions proposed for…

  18. Arbitrarily complete Bell-state measurement using only linear optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Grice, W. P. [Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Tennessee (United States)

    2011-10-15

    A complete Bell-state measurement is not possible using only linear-optic elements, and most schemes achieve a success rate of no more than 50%, distinguishing, for example, two of the four Bell states but returning degenerate results for the other two. It is shown here that the introduction of a pair of ancillary entangled photons improves the success rate to 75%. More generally, the addition of 2{sup N}-2 ancillary photons yields a linear-optic Bell-state measurement with a success rate of 1-1/2{sup N}.

  19. Asymptotic Stabilization of Continuous-Time Linear Systems with Input and State Quantizations

    Directory of Open Access Journals (Sweden)

    Sung Wook Yun

    2014-01-01

    Full Text Available This paper discusses the asymptotic stabilization problem of linear systems with input and state quantizations. In order to achieve asymptotic stabilization of such systems, we propose a state-feedback controller comprising two control parts: the main part is used to determine the fundamental characteristics of the system associated with the cost, and the additional part is employed to eliminate the effects of input and state quanizations. In particular, in order to implement the additional part, we introduce a quantizer with a region-decision making process (RDMP for a certain linear switching surface. The simulation results show the effectiveness of the proposed controller.

  20. State Estimation-based Transmission line parameter identification

    Directory of Open Access Journals (Sweden)

    Fredy Andrés Olarte Dussán

    2010-01-01

    Full Text Available This article presents two state-estimation-based algorithms for identifying transmission line parameters. The identification technique used simultaneous state-parameter estimation on an artificial power system composed of several copies of the same transmission line, using measurements at different points in time. The first algorithm used active and reactive power measurements at both ends of the line. The second method used synchronised phasor voltage and current measurements at both ends. The algorithms were tested in simulated conditions on the 30-node IEEE test system. All line parameters for this system were estimated with errors below 1%.

  1. Improvement of Storm Forecasts Using Gridded Bayesian Linear Regression for Northeast United States

    Science.gov (United States)

    Yang, J.; Astitha, M.; Schwartz, C. S.

    2017-12-01

    Bayesian linear regression (BLR) is a post-processing technique in which regression coefficients are derived and used to correct raw forecasts based on pairs of observation-model values. This study presents the development and application of a gridded Bayesian linear regression (GBLR) as a new post-processing technique to improve numerical weather prediction (NWP) of rain and wind storm forecasts over northeast United States. Ten controlled variables produced from ten ensemble members of the National Center for Atmospheric Research (NCAR) real-time prediction system are used for a GBLR model. In the GBLR framework, leave-one-storm-out cross-validation is utilized to study the performances of the post-processing technique in a database composed of 92 storms. To estimate the regression coefficients of the GBLR, optimization procedures that minimize the systematic and random error of predicted atmospheric variables (wind speed, precipitation, etc.) are implemented for the modeled-observed pairs of training storms. The regression coefficients calculated for meteorological stations of the National Weather Service are interpolated back to the model domain. An analysis of forecast improvements based on error reductions during the storms will demonstrate the value of GBLR approach. This presentation will also illustrate how the variances are optimized for the training partition in GBLR and discuss the verification strategy for grid points where no observations are available. The new post-processing technique is successful in improving wind speed and precipitation storm forecasts using past event-based data and has the potential to be implemented in real-time.

  2. State and parameter estimation in biotechnical batch reactors

    NARCIS (Netherlands)

    Keesman, K.J.

    2000-01-01

    In this paper the problem of state and parameter estimation in biotechnical batch reactors is considered. Models describing the biotechnical process behaviour are usually nonlinear with time-varying parameters. Hence, the resulting large dimensions of the augmented state vector, roughly > 7, in

  3. Estimating leaf photosynthetic pigments information by stepwise multiple linear regression analysis and a leaf optical model

    Science.gov (United States)

    Liu, Pudong; Shi, Runhe; Wang, Hong; Bai, Kaixu; Gao, Wei

    2014-10-01

    Leaf pigments are key elements for plant photosynthesis and growth. Traditional manual sampling of these pigments is labor-intensive and costly, which also has the difficulty in capturing their temporal and spatial characteristics. The aim of this work is to estimate photosynthetic pigments at large scale by remote sensing. For this purpose, inverse model were proposed with the aid of stepwise multiple linear regression (SMLR) analysis. Furthermore, a leaf radiative transfer model (i.e. PROSPECT model) was employed to simulate the leaf reflectance where wavelength varies from 400 to 780 nm at 1 nm interval, and then these values were treated as the data from remote sensing observations. Meanwhile, simulated chlorophyll concentration (Cab), carotenoid concentration (Car) and their ratio (Cab/Car) were taken as target to build the regression model respectively. In this study, a total of 4000 samples were simulated via PROSPECT with different Cab, Car and leaf mesophyll structures as 70% of these samples were applied for training while the last 30% for model validation. Reflectance (r) and its mathematic transformations (1/r and log (1/r)) were all employed to build regression model respectively. Results showed fair agreements between pigments and simulated reflectance with all adjusted coefficients of determination (R2) larger than 0.8 as 6 wavebands were selected to build the SMLR model. The largest value of R2 for Cab, Car and Cab/Car are 0.8845, 0.876 and 0.8765, respectively. Meanwhile, mathematic transformations of reflectance showed little influence on regression accuracy. We concluded that it was feasible to estimate the chlorophyll and carotenoids and their ratio based on statistical model with leaf reflectance data.

  4. Monopole and dipole estimation for multi-frequency sky maps by linear regression

    Science.gov (United States)

    Wehus, I. K.; Fuskeland, U.; Eriksen, H. K.; Banday, A. J.; Dickinson, C.; Ghosh, T.; Górski, K. M.; Lawrence, C. R.; Leahy, J. P.; Maino, D.; Reich, P.; Reich, W.

    2017-01-01

    We describe a simple but efficient method for deriving a consistent set of monopole and dipole corrections for multi-frequency sky map data sets, allowing robust parametric component separation with the same data set. The computational core of this method is linear regression between pairs of frequency maps, often called T-T plots. Individual contributions from monopole and dipole terms are determined by performing the regression locally in patches on the sky, while the degeneracy between different frequencies is lifted whenever the dominant foreground component exhibits a significant spatial spectral index variation. Based on this method, we present two different, but each internally consistent, sets of monopole and dipole coefficients for the nine-year WMAP, Planck 2013, SFD 100 μm, Haslam 408 MHz and Reich & Reich 1420 MHz maps. The two sets have been derived with different analysis assumptions and data selection, and provide an estimate of residual systematic uncertainties. In general, our values are in good agreement with previously published results. Among the most notable results are a relative dipole between the WMAP and Planck experiments of 10-15μK (depending on frequency), an estimate of the 408 MHz map monopole of 8.9 ± 1.3 K, and a non-zero dipole in the 1420 MHz map of 0.15 ± 0.03 K pointing towards Galactic coordinates (l,b) = (308°,-36°) ± 14°. These values represent the sum of any instrumental and data processing offsets, as well as any Galactic or extra-Galactic component that is spectrally uniform over the full sky.

  5. Power system static state estimation using Kalman filter algorithm

    Directory of Open Access Journals (Sweden)

    Saikia Anupam

    2016-01-01

    Full Text Available State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state variables. IEEE 14 bus system is employed to check the accuracy of this method. Newton Raphson load flow study is first carried out on our test system and a set of data from the output of load flow program is taken as measurement input. Measurement inputs are simulated by adding Gaussian noise of zero mean. The results of Kalman estimation are compared with traditional Weight Least Square (WLS method and it is observed that Kalman filter algorithm is numerically more efficient than traditional WLS method. Estimation accuracy is also tested for presence of parametric error in the system. In addition, numerical stability of Kalman filter algorithm is tested by considering inclusion of zero mean errors in the initial estimates.

  6. Nonlinear Filtering Techniques Comparison for Battery State Estimation

    Directory of Open Access Journals (Sweden)

    Aspasia Papazoglou

    2014-09-01

    Full Text Available The performance of estimation algorithms is vital for the correct functioning of batteries in electric vehicles, as poor estimates will inevitably jeopardize the operations that rely on un-measurable quantities, such as State of Charge and State of Health. This paper compares the performance of three nonlinear estimation algorithms: the Extended Kalman Filter, the Unscented Kalman Filter and the Particle Filter, where a lithium-ion cell model is considered. The effectiveness of these algorithms is measured by their ability to produce accurate estimates against their computational complexity in terms of number of operations and execution time required. The trade-offs between estimators' performance and their computational complexity are analyzed.

  7. A Performance Comparison Between Extended Kalman Filter and Unscented Kalman Filter in Power System Dynamic State Estimation

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2016-01-01

    Dynamic State Estimation (DSE) is a critical tool for analysis, monitoring and planning of a power system. The concept of DSE involves designing state estimation with Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) methods, which can be used by wide area monitoring to improve......-linear state estimator is developed in MatLab to solve states by applying the unscented Kalman filter (UKF) and Extended Kalman Filter (EKF) algorithm. Finally, a DSE model is built for a 14 bus power system network to evaluate the proposed algorithm for the networks.This article will focus on comparing...

  8. Estimating Loess Plateau Average Annual Precipitation with Multiple Linear Regression Kriging and Geographically Weighted Regression Kriging

    Directory of Open Access Journals (Sweden)

    Qiutong Jin

    2016-06-01

    Full Text Available Estimating the spatial distribution of precipitation is an important and challenging task in hydrology, climatology, ecology, and environmental science. In order to generate a highly accurate distribution map of average annual precipitation for the Loess Plateau in China, multiple linear regression Kriging (MLRK and geographically weighted regression Kriging (GWRK methods were employed using precipitation data from the period 1980–2010 from 435 meteorological stations. The predictors in regression Kriging were selected by stepwise regression analysis from many auxiliary environmental factors, such as elevation (DEM, normalized difference vegetation index (NDVI, solar radiation, slope, and aspect. All predictor distribution maps had a 500 m spatial resolution. Validation precipitation data from 130 hydrometeorological stations were used to assess the prediction accuracies of the MLRK and GWRK approaches. Results showed that both prediction maps with a 500 m spatial resolution interpolated by MLRK and GWRK had a high accuracy and captured detailed spatial distribution data; however, MLRK produced a lower prediction error and a higher variance explanation than GWRK, although the differences were small, in contrast to conclusions from similar studies.

  9. Soil moisture estimation using multi linear regression with terraSAR-X data

    Directory of Open Access Journals (Sweden)

    G. García

    2016-06-01

    Full Text Available The first five centimeters of soil form an interface where the main heat fluxes exchanges between the land surface and the atmosphere occur. Besides ground measurements, remote sensing has proven to be an excellent tool for the monitoring of spatial and temporal distributed data of the most relevant Earth surface parameters including soil’s parameters. Indeed, active microwave sensors (Synthetic Aperture Radar - SAR offer the opportunity to monitor soil moisture (HS at global, regional and local scales by monitoring involved processes. Several inversion algorithms, that derive geophysical information as HS from SAR data, were developed. Many of them use electromagnetic models for simulating the backscattering coefficient and are based on statistical techniques, such as neural networks, inversion methods and regression models. Recent studies have shown that simple multiple regression techniques yield satisfactory results. The involved geophysical variables in these methodologies are descriptive of the soil structure, microwave characteristics and land use. Therefore, in this paper we aim at developing a multiple linear regression model to estimate HS on flat agricultural regions using TerraSAR-X satellite data and data from a ground weather station. The results show that the backscatter, the precipitation and the relative humidity are the explanatory variables of HS. The results obtained presented a RMSE of 5.4 and a R2  of about 0.6

  10. Minimax estimation of qubit states with Bures risk

    Science.gov (United States)

    Acharya, Anirudh; Guţă, Mădălin

    2018-04-01

    The central problem of quantum statistics is to devise measurement schemes for the estimation of an unknown state, given an ensemble of n independent identically prepared systems. For locally quadratic loss functions, the risk of standard procedures has the usual scaling of 1/n. However, it has been noticed that for fidelity based metrics such as the Bures distance, the risk of conventional (non-adaptive) qubit tomography schemes scales as 1/\\sqrt{n} for states close to the boundary of the Bloch sphere. Several proposed estimators appear to improve this scaling, and our goal is to analyse the problem from the perspective of the maximum risk over all states. We propose qubit estimation strategies based on separate adaptive measurements, and collective measurements, that achieve 1/n scalings for the maximum Bures risk. The estimator involving local measurements uses a fixed fraction of the available resource n to estimate the Bloch vector direction; the length of the Bloch vector is then estimated from the remaining copies by measuring in the estimator eigenbasis. The estimator based on collective measurements uses local asymptotic normality techniques which allows us to derive upper and lower bounds to its maximum Bures risk. We also discuss how to construct a minimax optimal estimator in this setup. Finally, we consider quantum relative entropy and show that the risk of the estimator based on collective measurements achieves a rate O(n-1log n) under this loss function. Furthermore, we show that no estimator can achieve faster rates, in particular the ‘standard’ rate n ‑1.

  11. State-Level Estimates of Cancer-Related Absenteeism Costs

    Science.gov (United States)

    Tangka, Florence K.; Trogdon, Justin G.; Nwaise, Isaac; Ekwueme, Donatus U.; Guy, Gery P.; Orenstein, Diane

    2016-01-01

    Background Cancer is one of the top five most costly diseases in the United States and leads to substantial work loss. Nevertheless, limited state-level estimates of cancer absenteeism costs have been published. Methods In analyses of data from the 2004–2008 Medical Expenditure Panel Survey, the 2004 National Nursing Home Survey, the U.S. Census Bureau for 2008, and the 2009 Current Population Survey, we used regression modeling to estimate annual state-level absenteeism costs attributable to cancer from 2004 to 2008. Results We estimated that the state-level median number of days of absenteeism per year among employed cancer patients was 6.1 days and that annual state-level cancer absenteeism costs ranged from $14.9 million to $915.9 million (median = $115.9 million) across states in 2010 dollars. Absenteeism costs are approximately 6.5% of the costs of premature cancer mortality. Conclusions The results from this study suggest that lost productivity attributable to cancer is a substantial cost to employees and employers and contributes to estimates of the overall impact of cancer in a state population. PMID:23969498

  12. Practical feasibility of Kalman filters for the state estimation of lithium-ion batteries

    OpenAIRE

    Campestrini, Christian

    2018-01-01

    This work investigates the feasibility of the Kalman filter for the state estimation of lithium-ion cells and modules under real conditions. Therefore, the dependencies of the cells during ageing are shown and various Kalman filter types are compared. The strongly varying model parameters, as well as the temperature and ageing dependent open circuit voltage, require an empirical adaptation of the inconstant and non-linear filter tuning parameters. The performance of the Kalman filter in a rea...

  13. Dynamic state estimation assisted power system monitoring and protection

    Science.gov (United States)

    Cui, Yinan

    The advent of phasor measurement units (PMUs) has unlocked several novel methods to monitor, control, and protect bulk electric power systems. This thesis introduces the concept of "Dynamic State Estimation" (DSE), aided by PMUs, for wide-area monitoring and protection of power systems. Unlike traditional State Estimation where algebraic variables are estimated from system measurements, DSE refers to a process to estimate the dynamic states associated with synchronous generators. This thesis first establishes the viability of using particle filtering as a technique to perform DSE in power systems. The utility of DSE for protection and wide-area monitoring are then shown as potential novel applications. The work is presented as a collection of several journal and conference papers. In the first paper, we present a particle filtering approach to dynamically estimate the states of a synchronous generator in a multi-machine setting considering the excitation and prime mover control systems. The second paper proposes an improved out-of-step detection method for generators by means of angular difference. The generator's rotor angle is estimated with a particle filter-based dynamic state estimator and the angular separation is then calculated by combining the raw local phasor measurements with this estimate. The third paper introduces a particle filter-based dual estimation method for tracking the dynamic states of a synchronous generator. It considers the situation where the field voltage measurements are not readily available. The particle filter is modified to treat the field voltage as an unknown input which is sequentially estimated along with the other dynamic states. The fourth paper proposes a novel framework for event detection based on energy functions. The key idea is that any event in the system will leave a signature in WAMS data-sets. It is shown that signatures for four broad classes of disturbance events are buried in the components that constitute the

  14. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    Science.gov (United States)

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-03-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.

  15. Estimation of pump operational state with model-based methods

    International Nuclear Information System (INIS)

    Ahonen, Tero; Tamminen, Jussi; Ahola, Jero; Viholainen, Juha; Aranto, Niina; Kestilae, Juha

    2010-01-01

    Pumps are widely used in industry, and they account for 20% of the industrial electricity consumption. Since the speed variation is often the most energy-efficient method to control the head and flow rate of a centrifugal pump, frequency converters are used with induction motor-driven pumps. Although a frequency converter can estimate the operational state of an induction motor without external measurements, the state of a centrifugal pump or other load machine is not typically considered. The pump is, however, usually controlled on the basis of the required flow rate or output pressure. As the pump operational state can be estimated with a general model having adjustable parameters, external flow rate or pressure measurements are not necessary to determine the pump flow rate or output pressure. Hence, external measurements could be replaced with an adjustable model for the pump that uses estimates of the motor operational state. Besides control purposes, modelling the pump operation can provide useful information for energy auditing and optimization purposes. In this paper, two model-based methods for pump operation estimation are presented. Factors affecting the accuracy of the estimation methods are analyzed. The applicability of the methods is verified by laboratory measurements and tests in two pilot installations. Test results indicate that the estimation methods can be applied to the analysis and control of pump operation. The accuracy of the methods is sufficient for auditing purposes, and the methods can inform the user if the pump is driven inefficiently.

  16. Generation of concatenated Greenberger-Horne-Zeilinger-type entangled coherent state based on linear optics

    Science.gov (United States)

    Guo, Rui; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo

    2017-03-01

    The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled state approximatively. Different from previous protocols, each logic qubit is encoded in the coherent state. This protocol is based on the linear optics, which is feasible in experimental technology. This protocol may be useful in quantum information based on the C-GHZ state.

  17. Enhancing interferometer phase estimation, sensing sensitivity, and resolution using robust entangled states

    Science.gov (United States)

    Smith, James F.

    2017-11-01

    With the goal of designing interferometers and interferometer sensors, e.g., LADARs with enhanced sensitivity, resolution, and phase estimation, states using quantum entanglement are discussed. These states include N00N states, plain M and M states (PMMSs), and linear combinations of M and M states (LCMMS). Closed form expressions for the optimal detection operators; visibility, a measure of the state's robustness to loss and noise; a resolution measure; and phase estimate error, are provided in closed form. The optimal resolution for the maximum visibility and minimum phase error are found. For the visibility, comparisons between PMMSs, LCMMS, and N00N states are provided. For the minimum phase error, comparisons between LCMMS, PMMSs, N00N states, separate photon states (SPSs), the shot noise limit (SNL), and the Heisenberg limit (HL) are provided. A representative collection of computational results illustrating the superiority of LCMMS when compared to PMMSs and N00N states is given. It is found that for a resolution 12 times the classical result LCMMS has visibility 11 times that of N00N states and 4 times that of PMMSs. For the same case, the minimum phase error for LCMMS is 10.7 times smaller than that of PMMS and 29.7 times smaller than that of N00N states.

  18. Estimating annualized earthquake losses for the conterminous United States

    Science.gov (United States)

    Jaiswal, Kishor S.; Bausch, Douglas; Chen, Rui; Bouabid, Jawhar; Seligson, Hope

    2015-01-01

    We make use of the most recent National Seismic Hazard Maps (the years 2008 and 2014 cycles), updated census data on population, and economic exposure estimates of general building stock to quantify annualized earthquake loss (AEL) for the conterminous United States. The AEL analyses were performed using the Federal Emergency Management Agency's (FEMA) Hazus software, which facilitated a systematic comparison of the influence of the 2014 National Seismic Hazard Maps in terms of annualized loss estimates in different parts of the country. The losses from an individual earthquake could easily exceed many tens of billions of dollars, and the long-term averaged value of losses from all earthquakes within the conterminous U.S. has been estimated to be a few billion dollars per year. This study estimated nationwide losses to be approximately $4.5 billion per year (in 2012$), roughly 80% of which can be attributed to the States of California, Oregon and Washington. We document the change in estimated AELs arising solely from the change in the assumed hazard map. The change from the 2008 map to the 2014 map results in a 10 to 20% reduction in AELs for the highly seismic States of the Western United States, whereas the reduction is even more significant for Central and Eastern United States.

  19. Stochastic Parameter Estimation of Non-Linear Systems Using Only Higher Order Spectra of the Measured Response

    Science.gov (United States)

    Vasta, M.; Roberts, J. B.

    1998-06-01

    Methods for using fourth order spectral quantities to estimate the unknown parameters in non-linear, randomly excited dynamic systems are developed. Attention is focused on the case where only the response is measurable and the excitation is unmeasurable and known only in terms of a stochastic process model. The approach is illustrated through application to a non-linear oscillator with both non-linear damping and stiffness and with excitation modelled as a stationary Gaussian white noise process. The methods have applications in studies of the response of structures to random environmental loads, such as wind and ocean wave forces.

  20. Event-based state estimation a stochastic perspective

    CERN Document Server

    Shi, Dawei; Chen, Tongwen

    2016-01-01

    This book explores event-based estimation problems. It shows how several stochastic approaches are developed to maintain estimation performance when sensors perform their updates at slower rates only when needed. The self-contained presentation makes this book suitable for readers with no more than a basic knowledge of probability analysis, matrix algebra and linear systems. The introduction and literature review provide information, while the main content deals with estimation problems from four distinct angles in a stochastic setting, using numerous illustrative examples and comparisons. The text elucidates both theoretical developments and their applications, and is rounded out by a review of open problems. This book is a valuable resource for researchers and students who wish to expand their knowledge and work in the area of event-triggered systems. At the same time, engineers and practitioners in industrial process control will benefit from the event-triggering technique that reduces communication costs ...

  1. Introduction to State Estimation of High-Rate System Dynamics.

    Science.gov (United States)

    Hong, Jonathan; Laflamme, Simon; Dodson, Jacob; Joyce, Bryan

    2018-01-13

    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer's convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model.

  2. Series load induction heating inverter state estimator using Kalman filter

    Directory of Open Access Journals (Sweden)

    Szelitzky T.

    2011-12-01

    Full Text Available LQR and H2 controllers require access to the states of the controlled system. The method based on description function with Fourier series results in a model with immeasurable states. For this reason, we proposed a Kalman filter based state estimator, which not only filters the input signals, but also computes the unobservable states of the system. The algorithm of the filter was implemented in LabVIEW v8.6 and tested on recorded data obtained from a 10-40 kHz series load frequency controlled induction heating inverter.

  3. Event-triggered sensor data transmission policy for receding horizon recursive state estimation

    Directory of Open Access Journals (Sweden)

    Yunji Li

    2017-06-01

    Full Text Available We consider a sensor data transmission policy for receding horizon recursive state estimation in a networked linear system. A good tradeoff between estimation error and communication rate could be achieved according to a transmission strategy, which decides the transfer time of the data packet. Here we give this transmission policy through proving the upper bound of system performance. Moreover, the lower bound of system performance is further analyzed in detail. A numerical example is given to verify the potential and effectiveness of the theoretical results.

  4. Lithium-Ion Battery Online Rapid State-of-Power Estimation under Multiple Constraints

    Directory of Open Access Journals (Sweden)

    Shun Xiang

    2018-01-01

    Full Text Available The paper aims to realize a rapid online estimation of the state-of-power (SOP with multiple constraints of a lithium-ion battery. Firstly, based on the improved first-order resistance-capacitance (RC model with one-state hysteresis, a linear state-space battery model is built; then, using the dual extended Kalman filtering (DEKF method, the battery parameters and states, including open-circuit voltage (OCV, are estimated. Secondly, by employing the estimated OCV as the observed value to build the second dual Kalman filters, the battery SOC is estimated. Thirdly, a novel rapid-calculating peak power/SOP method with multiple constraints is proposed in which, according to the bisection judgment method, the battery’s peak state is determined; then, one or two instantaneous peak powers are used to determine the peak power during T seconds. In addition, in the battery operating process, the actual constraint that the battery is under is analyzed specifically. Finally, three simplified versions of the Federal Urban Driving Schedule (SFUDS with inserted pulse experiments are conducted to verify the effectiveness and accuracy of the proposed online SOP estimation method.

  5. Estimating the state of large spatio-temporally chaotic systems

    International Nuclear Information System (INIS)

    Ott, E.; Hunt, B.R.; Szunyogh, I.; Zimin, A.V.; Kostelich, E.J.; Corazza, M.; Kalnay, E.; Patil, D.J.; Yorke, J.A.

    2004-01-01

    We consider the estimation of the state of a large spatio-temporally chaotic system from noisy observations and knowledge of a system model. Standard state estimation techniques using the Kalman filter approach are not computationally feasible for systems with very many effective degrees of freedom. We present and test a new technique (called a Local Ensemble Kalman Filter), generally applicable to large spatio-temporally chaotic systems for which correlations between system variables evaluated at different points become small at large separation between the points

  6. Geometry of perturbed Gaussian states and quantum estimation

    International Nuclear Information System (INIS)

    Genoni, Marco G; Giorda, Paolo; Paris, Matteo G A

    2011-01-01

    We address the non-Gaussianity (nG) of states obtained by weakly perturbing a Gaussian state and investigate the relationships with quantum estimation. For classical perturbations, i.e. perturbations to eigenvalues, we found that the nG of the perturbed state may be written as the quantum Fisher information (QFI) distance minus a term depending on the infinitesimal energy change, i.e. it provides a lower bound to statistical distinguishability. Upon moving on isoenergetic surfaces in a neighbourhood of a Gaussian state, nG thus coincides with a proper distance in the Hilbert space and exactly quantifies the statistical distinguishability of the perturbations. On the other hand, for perturbations leaving the covariance matrix unperturbed, we show that nG provides an upper bound to the QFI. Our results show that the geometry of non-Gaussian states in the neighbourhood of a Gaussian state is definitely not trivial and cannot be subsumed by a differential structure. Nevertheless, the analysis of perturbations to a Gaussian state reveals that nG may be a resource for quantum estimation. The nG of specific families of perturbed Gaussian states is analysed in some detail with the aim of finding the maximally non-Gaussian state obtainable from a given Gaussian one. (fast track communication)

  7. Linear C32H66 hydrocarbon in the mixed state with C10H22 ...

    Indian Academy of Sciences (India)

    Unknown

    S R Research Laboratory for Studies in Crystallization Phenomena, 10-1-96, ... mixed state with certain shorter chain length homologues (SMOLLENCs), estimated ... Methods. Five hydrocarbons of even carbon numbers, C10, C12, C14, C16 ...

  8. Towards Real-Time Maneuver Detection: Automatic State and Dynamics Estimation with the Adaptive Optimal Control Based Estimator

    Science.gov (United States)

    Lubey, D.; Scheeres, D.

    Tracking objects in Earth orbit is fraught with complications. This is due to the large population of orbiting spacecraft and debris that continues to grow, passive (i.e. no direct communication) and data-sparse observations, and the presence of maneuvers and dynamics mismodeling. Accurate orbit determination in this environment requires an algorithm to capture both a system's state and its state dynamics in order to account for mismodelings. Previous studies by the authors yielded an algorithm called the Optimal Control Based Estimator (OCBE) - an algorithm that simultaneously estimates a system's state and optimal control policies that represent dynamic mismodeling in the system for an arbitrary orbit-observer setup. The stochastic properties of these estimated controls are then used to determine the presence of mismodelings (maneuver detection), as well as characterize and reconstruct the mismodelings. The purpose of this paper is to develop the OCBE into an accurate real-time orbit tracking and maneuver detection algorithm by automating the algorithm and removing its linear assumptions. This results in a nonlinear adaptive estimator. In its original form the OCBE had a parameter called the assumed dynamic uncertainty, which is selected by the user with each new measurement to reflect the level of dynamic mismodeling in the system. This human-in-the-loop approach precludes real-time application to orbit tracking problems due to their complexity. This paper focuses on the Adaptive OCBE, a version of the estimator where the assumed dynamic uncertainty is chosen automatically with each new measurement using maneuver detection results to ensure that state uncertainties are properly adjusted to account for all dynamic mismodelings. The paper also focuses on a nonlinear implementation of the estimator. Originally, the OCBE was derived from a nonlinear cost function then linearized about a nominal trajectory, which is assumed to be ballistic (i.e. the nominal optimal

  9. Typical Werner states satisfying all linear Bell inequalities with dichotomic measurements

    Science.gov (United States)

    Luo, Ming-Xing

    2018-04-01

    Quantum entanglement as a special resource inspires various distinct applications in quantum information processing. Unfortunately, it is NP-hard to detect general quantum entanglement using Bell testing. Our goal is to investigate quantum entanglement with white noises that appear frequently in experiment and quantum simulations. Surprisingly, for almost all multipartite generalized Greenberger-Horne-Zeilinger states there are entangled noisy states that satisfy all linear Bell inequalities consisting of full correlations with dichotomic inputs and outputs of each local observer. This result shows generic undetectability of mixed entangled states in contrast to Gisin's theorem of pure bipartite entangled states in terms of Bell nonlocality. We further provide an accessible method to show a nontrivial set of noisy entanglement with small number of parties satisfying all general linear Bell inequalities. These results imply typical incompleteness of special Bell theory in explaining entanglement.

  10. Stochastic linearization of turbulent dynamics of dispersive waves in equilibrium and non-equilibrium state

    International Nuclear Information System (INIS)

    Jiang, Shixiao W; Lu, Haihao; Zhou, Douglas; Cai, David

    2016-01-01

    Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β -Fermi–Pasta–Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems. (paper)

  11. Estimating the Probabilities of Low-Weight Differential and Linear Approximations on PRESENT-like Ciphers

    DEFF Research Database (Denmark)

    Abdelraheem, Mohamed Ahmed

    2012-01-01

    We use large but sparse correlation and transition-difference-probability submatrices to find the best linear and differential approximations respectively on PRESENT-like ciphers. This outperforms the branch and bound algorithm when the number of low-weight differential and linear characteristics...

  12. A characterization of positive linear maps and criteria of entanglement for quantum states

    International Nuclear Information System (INIS)

    Hou Jinchuan

    2010-01-01

    Let H and K be (finite- or infinite-dimensional) complex Hilbert spaces. A characterization of positive completely bounded normal linear maps from B(H) into B(K) is given, which particularly gives a characterization of positive elementary operators including all positive linear maps between matrix algebras. This characterization is then applied to give a representation of quantum channels (operations) between infinite-dimensional systems. A necessary and sufficient criterion of separability is given which shows that a state ρ on HxK is separable if and only if (ΦxI)ρ ≥ 0 for all positive finite-rank elementary operators Φ. Examples of NCP and indecomposable positive linear maps are given and are used to recognize some entangled states that cannot be recognized by the PPT criterion and the realignment criterion.

  13. Transferring Instantly the State of Higher-Order Linear Descriptor (Regular Differential Systems Using Impulsive Inputs

    Directory of Open Access Journals (Sweden)

    Athanasios D. Karageorgos

    2009-01-01

    Full Text Available In many applications, and generally speaking in many dynamical differential systems, the problem of transferring the initial state of the system to a desired state in (almost zero-time time is desirable but difficult to achieve. Theoretically, this can be achieved by using a linear combination of Dirac -function and its derivatives. Obviously, such an input is physically unrealizable. However, we can think of it approximately as a combination of small pulses of very high magnitude and infinitely small duration. In this paper, the approximation process of the distributional behaviour of higher-order linear descriptor (regular differential systems is presented. Thus, new analytical formulae based on linear algebra methods and generalized inverses theory are provided. Our approach is quite general and some significant conditions are derived. Finally, a numerical example is presented and discussed.

  14. A characterization of positive linear maps and criteria of entanglement for quantum states

    Science.gov (United States)

    Hou, Jinchuan

    2010-09-01

    Let H and K be (finite- or infinite-dimensional) complex Hilbert spaces. A characterization of positive completely bounded normal linear maps from {\\mathcal B}(H) into {\\mathcal B}(K) is given, which particularly gives a characterization of positive elementary operators including all positive linear maps between matrix algebras. This characterization is then applied to give a representation of quantum channels (operations) between infinite-dimensional systems. A necessary and sufficient criterion of separability is given which shows that a state ρ on HotimesK is separable if and only if (ΦotimesI)ρ >= 0 for all positive finite-rank elementary operators Φ. Examples of NCP and indecomposable positive linear maps are given and are used to recognize some entangled states that cannot be recognized by the PPT criterion and the realignment criterion.

  15. Chimera states in an ensemble of linearly locally coupled bistable oscillators

    Science.gov (United States)

    Shchapin, D. S.; Dmitrichev, A. S.; Nekorkin, V. I.

    2017-11-01

    Chimera states in a system with linear local connections have been studied. The system is a ring ensemble of analog bistable self-excited oscillators with a resistive coupling. It has been shown that the existence of chimera states is not due to the nonidentity of oscillators and noise, which is always present in real experiments, but is due to the nonlinear dynamics of the system on invariant tori with various dimensions.

  16. State space model extraction of thermohydraulic systems – Part I: A linear graph approach

    International Nuclear Information System (INIS)

    Uren, K.R.; Schoor, G. van

    2013-01-01

    Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state

  17. Generation of Symmetric Dicke States of Remote Qubits with Linear Optics

    International Nuclear Information System (INIS)

    Thiel, C.; Zanthier, J. von; Bastin, T.; Solano, E.; Agarwal, G. S.

    2007-01-01

    We propose a method for generating all symmetric Dicke states, either in the long-lived internal levels of N massive particles or in the polarization degrees of freedom of photonic qubits, using linear optical tools only. By means of a suitable multiphoton detection technique, erasing Welcher-Weg information, our proposed scheme allows the generation and measurement of an important class of entangled multiqubit states

  18. Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements

    International Nuclear Information System (INIS)

    Ho Ngoc Phien; Nguyen Ba An

    2008-01-01

    We propose a linear optics scheme to teleport an arbitrary two-mode coherent state. The devices used are beam-splitters, phase-shifters and ideal photo-detectors capable of distinguishing between even and odd photon numbers. The scheme achieves faithful teleportation with a probability of 1/4. However, with additional use of an appropriate displacement operator, the teleported state can always be made near-faithful

  19. Conditional generation of arbitrary multimode entangled states of light with linear optics

    International Nuclear Information System (INIS)

    Fiurasek, J.; Massar, S.; Cerf, N. J.

    2003-01-01

    We propose a universal scheme for the probabilistic generation of an arbitrary multimode entangled state of light with finite expansion in Fock basis. The suggested setup involves passive linear optics, single-photon sources, strong coherent laser beams, and photodetectors with single-photon resolution. The efficiency of this setup may be greatly enhanced if, in addition, a quantum memory is available

  20. Theory and Applications of Discontinuous State Feedback Generating Chaos for Linear Systems

    International Nuclear Information System (INIS)

    Xiao-Dan, Zhang; Zhen, Wang; Pin-Dong, Zhao

    2008-01-01

    We investigate a kind of chaos generating technique on a type of n-dimensional linear differential systems by adding feedback control items under a discontinuous state. This method is checked with some examples of numeric simulation. A constructive theorem is proposed for generalized synchronization related to the above chaotic system

  1. Maximum profile likelihood estimation of differential equation parameters through model based smoothing state estimates.

    Science.gov (United States)

    Campbell, D A; Chkrebtii, O

    2013-12-01

    Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  2. State estimation of chemical engineering systems tending to multiple solutions

    Directory of Open Access Journals (Sweden)

    N. P. G. Salau

    2014-09-01

    Full Text Available A well-evaluated state covariance matrix avoids error propagation due to divergence issues and, thereby, it is crucial for a successful state estimator design. In this paper we investigate the performance of the state covariance matrices used in three unconstrained Extended Kalman Filter (EKF formulations and one constrained EKF formulation (CEKF. As benchmark case studies we have chosen: a a batch chemical reactor with reversible reactions whose system model and measurement are such that multiple states satisfy the equilibrium condition and b a CSTR with exothermic irreversible reactions and cooling jacket energy balance whose nonlinear behavior includes multiple steady-states and limit cycles. The results have shown that CEKF is in general the best choice of EKF formulations (even if they are constrained with an ad hoc clipping strategy which avoids undesired states for such case studies. Contrary to a clipped EKF formulation, CEKF incorporates constraints into an optimization problem, which minimizes the noise in a least square sense preventing a bad noise distribution. It is also shown that, although the Moving Horizon Estimation (MHE provides greater robustness to a poor guess of the initial state, converging in less steps to the actual states, it is not justified for our examples due to the high additional computational effort.

  3. Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaoxue Feng

    2014-11-01

    Full Text Available Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS, which gets better filtering performance than NILS without constraint.

  4. Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks

    Science.gov (United States)

    Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng

    2014-01-01

    Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint. PMID:25390408

  5. Constrained state estimation for individual localization in wireless body sensor networks.

    Science.gov (United States)

    Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng

    2014-11-10

    Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint.

  6. Estimation of the Dynamic States of Synchronous Machines Using an Extended Particle Filter

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ning; Meng, Da; Lu, Shuai

    2013-11-11

    In this paper, an extended particle filter (PF) is proposed to estimate the dynamic states of a synchronous machine using phasor measurement unit (PMU) data. A PF propagates the mean and covariance of states via Monte Carlo simulation, is easy to implement, and can be directly applied to a non-linear system with non-Gaussian noise. The extended PF modifies a basic PF to improve robustness. Using Monte Carlo simulations with practical noise and model uncertainty considerations, the extended PF’s performance is evaluated and compared with the basic PF and an extended Kalman filter (EKF). The extended PF results showed high accuracy and robustness against measurement and model noise.

  7. Estimation of Branch Topology Errors in Power Networks by WLAN State Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Rae [Soonchunhyang University(Korea); Song, Kyung Bin [Kei Myoung University(Korea)

    2000-06-01

    The purpose of this paper is to detect and identify topological errors in order to maintain a reliable database for the state estimator. In this paper, a two stage estimation procedure is used to identify the topology errors. At the first stage, the WLAV state estimator which has characteristics to remove bad data during the estimation procedure is run for finding out the suspected branches at which topology errors take place. The resulting residuals are normalized and the measurements with significant normalized residuals are selected. A set of suspected branches is formed based on these selected measurements; if the selected measurement if a line flow, the corresponding branch is suspected; if it is an injection, then all the branches connecting the injection bus to its immediate neighbors are suspected. A new WLAV state estimator adding the branch flow errors in the state vector is developed to identify the branch topology errors. Sample cases of single topology error and topology error with a measurement error are applied to IEEE 14 bus test system. (author). 24 refs., 1 fig., 9 tabs.

  8. Model-based state estimator for an intelligent tire

    NARCIS (Netherlands)

    Goos, J.; Teerhuis, A. P.; Schmeitz, A. J.C.; Besselink, I.; Nijmeijer, H.

    2017-01-01

    In this work a Tire State Estimator (TSE) is developed and validated using data from a tri-axial accelerometer, installed at the inner liner of the tire. The Flexible Ring Tire (FRT) model is proposed to calculate the tire deformation. For a rolling tire, this deformation is transformed into

  9. Model-based State Estimator for an Intelligent Tire

    NARCIS (Netherlands)

    Goos, J.; Teerhuis, A.P.; Schmeitz, A.J.C.; Besselink, I.J.M.; Nijmeijer, H.

    2016-01-01

    In this work a Tire State Estimator (TSE) is developed and validated using data from a tri-axial accelerometer, installed at the inner liner of the tire. The Flexible Ring Tire (FRT) model is proposed to calculate the tire deformation. For a rolling tire, this deformation is transformed into

  10. Effect of Smart Meter Measurements Data On Distribution State Estimation

    DEFF Research Database (Denmark)

    Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte

    2018-01-01

    in the physical grid can enforce significant stress not only on the communication infrastructure but also in the control algorithms. This paper aims to propose a methodology to analyze needed real time smart meter data from low voltage distribution grids and their applicability in distribution state estimation...

  11. Comparison of some biased estimation methods (including ordinary subset regression) in the linear model

    Science.gov (United States)

    Sidik, S. M.

    1975-01-01

    Ridge, Marquardt's generalized inverse, shrunken, and principal components estimators are discussed in terms of the objectives of point estimation of parameters, estimation of the predictive regression function, and hypothesis testing. It is found that as the normal equations approach singularity, more consideration must be given to estimable functions of the parameters as opposed to estimation of the full parameter vector; that biased estimators all introduce constraints on the parameter space; that adoption of mean squared error as a criterion of goodness should be independent of the degree of singularity; and that ordinary least-squares subset regression is the best overall method.

  12. Real-time muscle state estimation from EMG signals during isometric contractions using Kalman filters.

    Science.gov (United States)

    Menegaldo, Luciano L

    2017-12-01

    State-space control of myoelectric devices and real-time visualization of muscle forces in virtual rehabilitation require measuring or estimating muscle dynamic states: neuromuscular activation, tendon force and muscle length. This paper investigates whether regular (KF) and extended Kalman filters (eKF), derived directly from Hill-type muscle mechanics equations, can be used as real-time muscle state estimators for isometric contractions using raw electromyography signals (EMG) as the only available measurement. The estimators' amplitude error, computational cost, filtering lags and smoothness are compared with usual EMG-driven analysis, performed offline, by integrating the nonlinear Hill-type muscle model differential equations (offline simulations-OS). EMG activity of the three triceps surae components (soleus, gastrocnemius medialis and gastrocnemius lateralis), in three torque levels, was collected for ten subjects. The actualization interval (AI) between two updates of the KF and eKF was also varied. The results show that computational costs are significantly reduced (70x for KF and 17[Formula: see text] for eKF). The filtering lags presented sharp linear relationships with the AI (0-300 ms), depending on the state and activation level. Under maximum excitation, amplitude errors varied in the range 10-24% for activation, 5-8% for tendon force and 1.4-1.8% for muscle length, reducing linearly with the excitation level. Smoothness, measured by the ratio between the average standard variations of KF/eKF and OS estimations, was greatly reduced for activation but converged exponentially to 1 for the other states by increasing AI. Compared to regular KF, extended KF does not seem to improve estimation accuracy significantly. Depending on the particular application requirements, the most appropriate KF actualization interval can be selected.

  13. Time-course window estimator for ordinary differential equations linear in the parameters

    NARCIS (Netherlands)

    Vujacic, Ivan; Dattner, Itai; Gonzalez, Javier; Wit, Ernst

    In many applications obtaining ordinary differential equation descriptions of dynamic processes is scientifically important. In both, Bayesian and likelihood approaches for estimating parameters of ordinary differential equations, the speed and the convergence of the estimation procedure may

  14. On the evaluation of uncertainties for state estimation with the Kalman filter

    International Nuclear Information System (INIS)

    Eichstädt, S; Makarava, N; Elster, C

    2016-01-01

    The Kalman filter is an established tool for the analysis of dynamic systems with normally distributed noise, and it has been successfully applied in numerous areas. It provides sequentially calculated estimates of the system states along with a corresponding covariance matrix. For nonlinear systems, the extended Kalman filter is often used. This is derived from the Kalman filter by linearization around the current estimate. A key issue in metrology is the evaluation of the uncertainty associated with the Kalman filter state estimates. The ‘Guide to the Expression of Uncertainty in Measurement’ (GUM) and its supplements serve as the de facto standard for uncertainty evaluation in metrology. We explore the relationship between the covariance matrix produced by the Kalman filter and a GUM-compliant uncertainty analysis. In addition, the results of a Bayesian analysis are considered. For the case of linear systems with known system matrices, we show that all three approaches are compatible. When the system matrices are not precisely known, however, or when the system is nonlinear, this equivalence breaks down and different results can then be reached. For precisely known nonlinear systems, though, the result of the extended Kalman filter still corresponds to the linearized uncertainty propagation of the GUM. The extended Kalman filter can suffer from linearization and convergence errors. These disadvantages can be avoided to some extent by applying Monte Carlo procedures, and we propose such a method which is GUM-compliant and can also be applied online during the estimation. We illustrate all procedures in terms of a 2D dynamic system and compare the results with those obtained by particle filtering, which has been proposed for the approximate calculation of a Bayesian solution. Finally, we give some recommendations based on our findings. (paper)

  15. Linear polarization-discriminatory state inverter fabricated by oblique angle deposition.

    Science.gov (United States)

    Park, Yong Jun; Sobahan, K M A; Kim, Jin Joo; Hwangbo, Chang Kwon

    2009-06-22

    In this paper, we report a linear polarization-discriminatory state inverter made of three-layer sculpture thin film fabricated by oblique angle deposition technique. The first and third layers are quarter-wave plates of zigzag structure and the middle of them is a circular Bragg reflector of left-handed helical structure. It is found that the normal incidence of P-polarized light on this polarization-discriminatory state inverter becomes the S-polarized light at output, while the incident S-polarized light of wavelength lying in the Bragg regime is reflected. The microstructure of the linear polarization-discriminatory state inverter is also investigated by using a scanning electron microscope.

  16. Memory State Feedback RMPC for Multiple Time-Delayed Uncertain Linear Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Wei-Wei Qin

    2014-01-01

    Full Text Available This paper focuses on the problem of asymptotic stabilization for a class of discrete-time multiple time-delayed uncertain linear systems with input constraints. Then, based on the predictive control principle of receding horizon optimization, a delayed state dependent quadratic function is considered for incorporating MPC problem formulation. By developing a memory state feedback controller, the information of the delayed plant states can be taken into full consideration. The MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. Then, based on the Lyapunov-Krasovskii function, a delay-dependent sufficient condition in terms of linear matrix inequality (LMI can be derived to design a robust MPC algorithm. Finally, the digital simulation results prove availability of the proposed method.

  17. The classical Pierce diode: Using particle simulations on linear and nonlinear behavior and final states

    International Nuclear Information System (INIS)

    Crystal, T.L.; Kuhn, S.; Birdsall, C.K.

    1984-01-01

    The classical Pierce diode is a simple 1-d system of two shorted metal plates, a cold beam of electrons injected from one side and a neutralizing background of rigid ions. While the plasma medium is technically stable, the finiteness of the Pierce system allows stable and unstable operation. It is usefully studied as an archetypical bounded plasma system, related e.g., to Q-machines, particle accelerators, thermionic converters. New particle simulations of the Pierce diode have successfully recovered many novel linear phenomena including the dominant linear eigenmodes (seen in the internal electrostatic fields), and the dominant and subdominant eigenfrequencies, (seen both in the internal electrostatics and in the external circuit current, J/sub ext/(t)). These simulation results conform very well to detailed predictions of a new linear analysis. The final (nonlinear) state recovered can show critical dependence on initial (linear perturbation) conditions, and can be made steady-state (d.c.) or periodic-oscillatory by simply changing the initial conditions by a factor of 10/sup -4/ or less. A third class of final state is also possible which has oscillations which seem to be nonperiodic

  18. Projective Synchronization of Chaotic Discrete Dynamical Systems via Linear State Error Feedback Control

    Directory of Open Access Journals (Sweden)

    Baogui Xin

    2015-04-01

    Full Text Available A projective synchronization scheme for a kind of n-dimensional discrete dynamical system is proposed by means of a linear feedback control technique. The scheme consists of master and slave discrete dynamical systems coupled by linear state error variables. A kind of novel 3-D chaotic discrete system is constructed, to which the test for chaos is applied. By using the stability principles of an upper or lower triangular matrix, two controllers for achieving projective synchronization are designed and illustrated with the novel systems. Lastly some numerical simulations are employed to validate the effectiveness of the proposed projective synchronization scheme.

  19. Linear combination of auditory steady-state responses evoked by co-modulated tones

    DEFF Research Database (Denmark)

    Guérit, François; Marozeau, Jeremy; Epp, Bastian

    2017-01-01

    Up to medium intensities and in the 80–100-Hz region, the auditory steady-state response (ASSR) to a multi-tone carrier is commonly considered to be a linear sum of the dipoles from each tone specific ASSR generator. Here, this hypothesis was investigated when a unique modulation frequency is used...... for all carrier components. Listeners were presented with a co-modulated dual-frequency carrier (1 and 4 kHz), from which the modulator starting phase Ui of the 1-kHz component was systematically varied. The results support the hypothesis of a linear superposition of the dipoles originating from different...

  20. Bistable states of TM polarized non-linear waves guided by symmetric layered structures

    International Nuclear Information System (INIS)

    Mihalache, D.

    1985-04-01

    Dispersion relations for TM polarized non-linear waves propagating in a symmetric single film optical waveguide are derived. The system consists of a layer of thickness d with dielectric constant epsilon 1 bounded at two sides by a non-linear medium characterized by the diagonal dielectric tensor epsilon 11 =epsilon 22 =epsilon 0 , epsilon 33 =epsilon 0 +α|E 3 | 2 , where E 3 is the normal electric field component. For sufficiently large d/lambda (lambda is the wavelength) we predict bistable states of both symmetric and antisymmetric modes provided that the power flow is the control parameter. (author)

  1. Battery state-of-charge estimation using approximate least squares

    Science.gov (United States)

    Unterrieder, C.; Zhang, C.; Lunglmayr, M.; Priewasser, R.; Marsili, S.; Huemer, M.

    2015-03-01

    In recent years, much effort has been spent to extend the runtime of battery-powered electronic applications. In order to improve the utilization of the available cell capacity, high precision estimation approaches for battery-specific parameters are needed. In this work, an approximate least squares estimation scheme is proposed for the estimation of the battery state-of-charge (SoC). The SoC is determined based on the prediction of the battery's electromotive force. The proposed approach allows for an improved re-initialization of the Coulomb counting (CC) based SoC estimation method. Experimental results for an implementation of the estimation scheme on a fuel gauge system on chip are illustrated. Implementation details and design guidelines are presented. The performance of the presented concept is evaluated for realistic operating conditions (temperature effects, aging, standby current, etc.). For the considered test case of a GSM/UMTS load current pattern of a mobile phone, the proposed method is able to re-initialize the CC-method with a high accuracy, while state-of-the-art methods fail to perform a re-initialization.

  2. Linear system theory

    Science.gov (United States)

    Callier, Frank M.; Desoer, Charles A.

    1991-01-01

    The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.

  3. On state estimation and fusion with elliptical constraints

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Liu, Qiang [ORNL

    2017-11-01

    We consider tracking of a target with elliptical nonlinear constraints on its motion dynamics. The state estimates are generated by sensors and sent over long-haul links to a remote fusion center for fusion. We show that the constraints can be projected onto the known ellipse and hence incorporated into the estimation and fusion process. In particular, two methods based on (i) direct connection to the center, and (ii) shortest distance to the ellipse are discussed. A tracking example is used to illustrate the tracking performance using projection-based methods with various fusers in the lossy long-haul tracking environment.

  4. The estimation and prediction of the inventories for the liquid and gaseous radwaste systems using the linear regression analysis

    International Nuclear Information System (INIS)

    Kim, J. Y.; Shin, C. H.; Kim, J. K.; Lee, J. K.; Park, Y. J.

    2003-01-01

    The variation transitions of the inventories for the liquid radwaste system and the radioactive gas have being released in containment, and their predictive values according to the operation histories of Yonggwang(YGN) 3 and 4 were analyzed by linear regression analysis methodology. The results show that the variation transitions of the inventories for those systems are linearly increasing according to the operation histories but the inventories released to the environment are considerably lower than the recommended values based on the FSAR suggestions. It is considered that some conservation were presented in the estimation methodology in preparing stage of FSAR

  5. PySSM: A Python Module for Bayesian Inference of Linear Gaussian State Space Models

    Directory of Open Access Journals (Sweden)

    Christopher Strickland

    2014-04-01

    Full Text Available PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models. PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries NumPy and SciPy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimized and parallelized Fortran routines. These Fortran routines heavily utilize basic linear algebra and linear algebra Package functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.

  6. Uniqueness of non-linear ground states for fractional Laplacians in R

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Lenzmann, Enno

    2013-01-01

    We prove uniqueness of ground state solutions Q = Q(|x|) ≥ 0 of the non-linear equation (−Δ)sQ+Q−Qα+1=0inR,where 0 fractional Laplacian in one dimension. In particular, we answer affirmatively an open question...... recently raised by Kenig–Martel–Robbiano and we generalize (by completely different techniques) the specific uniqueness result obtained by Amick and Toland for s=12 and α = 1 in [5] for the Benjamin–Ono equation. As a technical key result in this paper, we show that the associated linearized operator L...... + = (−Δ) s +1−(α+1)Q α is non-degenerate; i.e., its kernel satisfies ker L + = span{Q′}. This result about L + proves a spectral assumption, which plays a central role for the stability of solitary waves and blowup analysis for non-linear dispersive PDEs with fractional Laplacians, such as the generalized...

  7. Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Steven J. [Los Alamos National Laboratory; Carlsten, Bruce E. [Los Alamos National Laboratory

    2012-06-26

    We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

  8. An optimally weighted estimator of the linear power spectrum disentangling the growth of density perturbations across galaxy surveys

    International Nuclear Information System (INIS)

    Sorini, D.

    2017-01-01

    Measuring the clustering of galaxies from surveys allows us to estimate the power spectrum of matter density fluctuations, thus constraining cosmological models. This requires careful modelling of observational effects to avoid misinterpretation of data. In particular, signals coming from different distances encode information from different epochs. This is known as ''light-cone effect'' and is going to have a higher impact as upcoming galaxy surveys probe larger redshift ranges. Generalising the method by Feldman, Kaiser and Peacock (1994) [1], I define a minimum-variance estimator of the linear power spectrum at a fixed time, properly taking into account the light-cone effect. An analytic expression for the estimator is provided, and that is consistent with the findings of previous works in the literature. I test the method within the context of the Halofit model, assuming Planck 2014 cosmological parameters [2]. I show that the estimator presented recovers the fiducial linear power spectrum at present time within 5% accuracy up to k ∼ 0.80 h Mpc −1 and within 10% up to k ∼ 0.94 h Mpc −1 , well into the non-linear regime of the growth of density perturbations. As such, the method could be useful in the analysis of the data from future large-scale surveys, like Euclid.

  9. Estimativa da área foliar de Sida cordifolia e Sida rhombifolia usando dimensões lineares do limbo foliar Estimate of Sida cordifolia and Sida rhombifolia leaf area using leaf blade linear dimensions

    Directory of Open Access Journals (Sweden)

    S. Bianco

    2008-01-01

    Full Text Available A estimativa da área foliar pode auxiliar na compreensão de relações de interferência entre plantas daninhas e cultivadas. Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Sida cordifolia e Sida rhombifolia, estudaram-se as correlações entre área foliar real (Af e parâmetros dimensionais do limbo foliar, como o comprimento (C ao longo da nervura principal e a largura máxima (L perpendicular à nervura principal. Foram analisados 200 limbos foliares de cada espécie, coletados em diferentes agroecossistemas na Universidade Estadual Paulista, campus de Jaboticabal. Os modelos estatísticos utilizados foram linear: Y = a + bx; linear simples: Y = bx; geométrico: Y = ax b; e exponencial: Y = ab x. Todos os modelos analisados podem ser empregados para estimação da área foliar de S. cordifolia e S. rhombifolia. Sugere-se optar pela equação linear simples, envolvendo o produto C*L, considerando-se o coeficiente linear igual a zero, em função da praticidade desta. Desse modo, a estimativa da área foliar de S. cordifolia pode ser obtida pela fórmula Af = 0,7878*(C*L, com coeficiente de determinação de 0,9307, enquanto para S. rhombifolia a estimativa da área foliar pode ser obtida pela fórmula Af = 0,6423*(C*L, com coeficiente de determinação de 0,9711.Leaf area estimate may contribute to understand the relationship of interference between weeds and crops. The objective of this research was to obtain a mathematical equation to estimate Sida cordifolia and Sida rhombifolia leaf area based on linear measures of leaf blade. Correlation studies were conducted between real leaf area (Af and dimensional leaf blade parameters such as leaf length (C and maximum leaf width (L. Around 200 leaf blades of each species were analyzed, collected from several agro-ecosystems at São Paulo State University, in Jaboticabal, SP, Brazil. The statistical

  10. Shifted Legendre method with residual error estimation for delay linear Fredholm integro-differential equations

    Directory of Open Access Journals (Sweden)

    Şuayip Yüzbaşı

    2017-03-01

    Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.

  11. Sensitive Constrained Optimal PMU Allocation with Complete Observability for State Estimation Solution

    Directory of Open Access Journals (Sweden)

    R. Manam

    2017-12-01

    Full Text Available In this paper, a sensitive constrained integer linear programming approach is formulated for the optimal allocation of Phasor Measurement Units (PMUs in a power system network to obtain state estimation. In this approach, sensitive buses along with zero injection buses (ZIB are considered for optimal allocation of PMUs in the network to generate state estimation solutions. Sensitive buses are evolved from the mean of bus voltages subjected to increase of load consistently up to 50%. Sensitive buses are ranked in order to place PMUs. Sensitive constrained optimal PMU allocation in case of single line and no line contingency are considered in observability analysis to ensure protection and control of power system from abnormal conditions. Modeling of ZIB constraints is included to minimize the number of PMU network allocations. This paper presents optimal allocation of PMU at sensitive buses with zero injection modeling, considering cost criteria and redundancy to increase the accuracy of state estimation solution without losing observability of the whole system. Simulations are carried out on IEEE 14, 30 and 57 bus systems and results obtained are compared with traditional and other state estimation methods available in the literature, to demonstrate the effectiveness of the proposed method.

  12. Full State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    This paper presents the design of a state estimator system for a generic helicopter based slung load system. The estimator is designed to deliver full rigid body state information for both helicopter and load and is based on the unscented Kalman filter. Two different approaches are investigated......: One based on a parameter free kinematic model and one based on a full aerodynamic helicopter and slung load model. The kinematic model approach uses acceleration and rate information from two Inertial Measurement Units, one on the helicopter and one on the load, to drive a simple kinematic model....... A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...

  13. Full State Estimation for Helicopter Slung Load System

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2007-01-01

    This paper presents the design of a state estimator system for a generic helicopter based slung load system. The estimator is designed to deliver full rigid body state information for both helicopter and load and is based on the unscented Kalman filter. Two different approaches are investigated......: One based on a parameter free kinematic model and one based on a full aerodynamic helicopter and slung load model. The kinematic model approach uses acceleration and rate information from two Inertial Measurement Units, one on the helicopter and one on the load, to drive a simple kinematic model....... A simple and effective virtual sensor method is developed to maintain the constraints imposed by the wires in the system. The full model based approach uses a complex aerodynamical model to describe the helicopter together with a generic rigid body model. This rigid body model is based on a redundant...

  14. Robust control of uncertain dynamic systems a linear state space approach

    CERN Document Server

    Yedavalli, Rama K

    2014-01-01

    This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework Illustrates various systems level methodologies with examples and...

  15. Comparing Regression Coefficients between Nested Linear Models for Clustered Data with Generalized Estimating Equations

    Science.gov (United States)

    Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer

    2013-01-01

    Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…

  16. Support vector machines for nuclear reactor state estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zavaljevski, N.; Gross, K. C.

    2000-02-14

    Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformed into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.

  17. Support vector machines for nuclear reactor state estimation

    International Nuclear Information System (INIS)

    Zavaljevski, N.; Gross, K. C.

    2000-01-01

    Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformed into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm

  18. Hadronic equation of state in the statistical bootstrap model and linear graph theory

    International Nuclear Information System (INIS)

    Fre, P.; Page, R.

    1976-01-01

    Taking a statistical mechanical point og view, the statistical bootstrap model is discussed and, from a critical analysis of the bootstrap volume comcept, it is reached a physical ipothesis, which leads immediately to the hadronic equation of state provided by the bootstrap integral equation. In this context also the connection between the statistical bootstrap and the linear graph theory approach to interacting gases is analyzed

  19. High-fidelity state transfer over an unmodulated linear XY spin chain

    International Nuclear Information System (INIS)

    Bishop, C. Allen; Ou Yongcheng; Byrd, Mark S.; Wang Zhaoming

    2010-01-01

    We provide a class of initial encodings that can be sent with a high fidelity over an unmodulated, linear, XY spin chain. As an example, an average fidelity of 96% can be obtained using an 11-spin encoding to transmit a state over a chain containing 10 000 spins. An analysis of the magnetic-field dependence is given, and conditions for field optimization are provided.

  20. Parameters and Fractional Differentiation Orders Estimation for Linear Continuous-Time Non-Commensurate Fractional Order Systems

    KAUST Repository

    Belkhatir, Zehor; Laleg-Kirati, Taous-Meriem

    2017-01-01

    This paper proposes a two-stage estimation algorithm to solve the problem of joint estimation of the parameters and the fractional differentiation orders of a linear continuous-time fractional system with non-commensurate orders. The proposed algorithm combines the modulating functions and the first-order Newton methods. Sufficient conditions ensuring the convergence of the method are provided. An error analysis in the discrete case is performed. Moreover, the method is extended to the joint estimation of smooth unknown input and fractional differentiation orders. The performance of the proposed approach is illustrated with different numerical examples. Furthermore, a potential application of the algorithm is proposed which consists in the estimation of the differentiation orders of a fractional neurovascular model along with the neural activity considered as input for this model.

  1. Parameters and Fractional Differentiation Orders Estimation for Linear Continuous-Time Non-Commensurate Fractional Order Systems

    KAUST Repository

    Belkhatir, Zehor

    2017-05-31

    This paper proposes a two-stage estimation algorithm to solve the problem of joint estimation of the parameters and the fractional differentiation orders of a linear continuous-time fractional system with non-commensurate orders. The proposed algorithm combines the modulating functions and the first-order Newton methods. Sufficient conditions ensuring the convergence of the method are provided. An error analysis in the discrete case is performed. Moreover, the method is extended to the joint estimation of smooth unknown input and fractional differentiation orders. The performance of the proposed approach is illustrated with different numerical examples. Furthermore, a potential application of the algorithm is proposed which consists in the estimation of the differentiation orders of a fractional neurovascular model along with the neural activity considered as input for this model.

  2. Joint estimation of the fractional differentiation orders and the unknown input for linear fractional non-commensurate system

    KAUST Repository

    Belkhatir, Zehor

    2015-11-05

    This paper deals with the joint estimation of the unknown input and the fractional differentiation orders of a linear fractional order system. A two-stage algorithm combining the modulating functions with a first-order Newton method is applied to solve this estimation problem. First, the modulating functions approach is used to estimate the unknown input for a given fractional differentiation orders. Then, the method is combined with a first-order Newton technique to identify the fractional orders jointly with the input. To show the efficiency of the proposed method, numerical examples illustrating the estimation of the neural activity, considered as input of a fractional model of the neurovascular coupling, along with the fractional differentiation orders are presented in both noise-free and noisy cases.

  3. Global control of reaction wheel pendulum through energy regulation and extended linearization of the state variables

    Directory of Open Access Journals (Sweden)

    Oscar D. Montoya-Giraldo

    2014-01-01

    Full Text Available This paper presents the design and simulation of a global controller for the Reaction Wheel Pendulum system using energy regulation and extended linearization methods for the state feedback. The proposed energy regulation is based on the gradual reduction of the energy of the system to reach the unstable equilibrium point. The signal input for this task is obtained from the Lyapunov stability theory. The extended state feedback controller design is used to get a smooth nonlinear function that extends the region of operation to a bigger range, in contrast with the static linear state feedback obtained through the method of approximate linearization around an operating point. The general designed controller operates with a switching between the two control signals depending upon the region of operation; perturbations are applied in the control signal and the (simulated measured variables to verify the robustness and efficiency of the controller. Finally, simulations and tests using the model of the reaction wheel pendulum system, allow to observe the versatility and functionality of the proposed controller in the entire operation region of the pendulum.

  4. Optimal allocation of sensors for state estimation of distributed parameter systems

    International Nuclear Information System (INIS)

    Sunahara, Yoshifumi; Ohsumi, Akira; Mogami, Yoshio.

    1978-01-01

    The purpose of this paper is to present a method for finding the optimal allocation of sensors for state estimation of linear distributed parameter systems. This method is based on the criterion that the error covariance associated with the state estimate becomes minimal with respect to the allocation of the sensors. A theorem is established, giving the sufficient condition for optimizing the allocation of sensors to make minimal the error covariance approximated by a modal expansion. The remainder of this paper is devoted to illustrate important phases of the general theory of the optimal measurement allocation problem. To do this, several examples are demonstrated, including extensive discussions on the mutual relation between the optimal allocation and the dynamics of sensors. (author)

  5. Integrated State Estimation and Contingency Analysis Software Implementation using High Performance Computing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yousu; Glaesemann, Kurt R.; Rice, Mark J.; Huang, Zhenyu

    2015-12-31

    Power system simulation tools are traditionally developed in sequential mode and codes are optimized for single core computing only. However, the increasing complexity in the power grid models requires more intensive computation. The traditional simulation tools will soon not be able to meet the grid operation requirements. Therefore, power system simulation tools need to evolve accordingly to provide faster and better results for grid operations. This paper presents an integrated state estimation and contingency analysis software implementation using high performance computing techniques. The software is able to solve large size state estimation problems within one second and achieve a near-linear speedup of 9,800 with 10,000 cores for contingency analysis application. The performance evaluation is presented to show its effectiveness.

  6. Precision Interval Estimation of the Response Surface by Means of an Integrated Algorithm of Neural Network and Linear Regression

    Science.gov (United States)

    Lo, Ching F.

    1999-01-01

    The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.

  7. Fragility estimation for seismically isolated nuclear structures by high confidence low probability of failure values and bi-linear regression

    International Nuclear Information System (INIS)

    Carausu, A.

    1996-01-01

    A method for the fragility estimation of seismically isolated nuclear power plant structure is proposed. The relationship between the ground motion intensity parameter (e.g. peak ground velocity or peak ground acceleration) and the response of isolated structures is expressed in terms of a bi-linear regression line, whose coefficients are estimated by the least-square method in terms of available data on seismic input and structural response. The notion of high confidence low probability of failure (HCLPF) value is also used for deriving compound fragility curves for coupled subsystems. (orig.)

  8. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    Science.gov (United States)

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  9. Local linear density estimation for filtered survival data, with bias correction

    DEFF Research Database (Denmark)

    Nielsen, Jens Perch; Tanggaard, Carsten; Jones, M.C.

    2009-01-01

    it comes to exposure robustness, and a simple alternative weighting is to be preferred. Indeed, this weighting has, effectively, to be well chosen in a 'pilot' estimator of the survival function as well as in the main estimator itself. We also investigate multiplicative and additive bias-correction methods...... within our framework. The multiplicative bias-correction method proves to be the best in a simulation study comparing the performance of the considered estimators. An example concerning old-age mortality demonstrates the importance of the improvements provided....

  10. Local Linear Density Estimation for Filtered Survival Data with Bias Correction

    DEFF Research Database (Denmark)

    Tanggaard, Carsten; Nielsen, Jens Perch; Jones, M.C.

    it comes to exposure robustness, and a simple alternative weighting is to be preferred. Indeed, this weighting has, effectively, to be well chosen in a ‘pilot' estimator of the survival function as well as in the main estimator itself. We also investigate multiplicative and additive bias correction methods...... within our framework. The multiplicative bias correction method proves to be best in a simulation study comparing the performance of the considered estimators. An example concerning old age mortality demonstrates the importance of the improvements provided....

  11. Multi-objective optimization of linear multi-state multiple sliding window system

    International Nuclear Information System (INIS)

    Konak, Abdullah; Kulturel-Konak, Sadan; Levitin, Gregory

    2012-01-01

    This paper considers the optimal element sequencing in a linear multi-state multiple sliding window system that consists of n linearly ordered multi-state elements. Each multi-state element can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. The failure of type i in the system occurs if for any i (1≤i≤I) the cumulative performance of any r i consecutive elements is lower than w i . The element sequence strongly affects the probability of any type of system failure. The sequence that minimizes the probability of certain type of failure can provide high probability of other types of failures. Therefore the optimization problem for the multiple sliding window system is essentially multi-objective. The paper formulates and solves the multi-objective optimization problem for the multiple sliding window systems. A multi-objective Genetic Algorithm is used as the optimization engine. Illustrative examples are presented.

  12. Estimated HIV incidence in the United States, 2006-2009.

    Directory of Open Access Journals (Sweden)

    Joseph Prejean

    Full Text Available BACKGROUND: The estimated number of new HIV infections in the United States reflects the leading edge of the epidemic. Previously, CDC estimated HIV incidence in the United States in 2006 as 56,300 (95% CI: 48,200-64,500. We updated the 2006 estimate and calculated incidence for 2007-2009 using improved methodology. METHODOLOGY: We estimated incidence using incidence surveillance data from 16 states and 2 cities and a modification of our previously described stratified extrapolation method based on a sample survey approach with multiple imputation, stratification, and extrapolation to account for missing data and heterogeneity of HIV testing behavior among population groups. PRINCIPAL FINDINGS: Estimated HIV incidence among persons aged 13 years and older was 48,600 (95% CI: 42,400-54,700 in 2006, 56,000 (95% CI: 49,100-62,900 in 2007, 47,800 (95% CI: 41,800-53,800 in 2008 and 48,100 (95% CI: 42,200-54,000 in 2009. From 2006 to 2009 incidence did not change significantly overall or among specific race/ethnicity or risk groups. However, there was a 21% (95% CI:1.9%-39.8%; p = 0.017 increase in incidence for people aged 13-29 years, driven by a 34% (95% CI: 8.4%-60.4% increase in young men who have sex with men (MSM. There was a 48% increase among young black/African American MSM (12.3%-83.0%; p<0.001. Among people aged 13-29, only MSM experienced significant increases in incidence, and among 13-29 year-old MSM, incidence increased significantly among young, black/African American MSM. In 2009, MSM accounted for 61% of new infections, heterosexual contact 27%, injection drug use (IDU 9%, and MSM/IDU 3%. CONCLUSIONS/SIGNIFICANCE: Overall, HIV incidence in the United States was relatively stable 2006-2009; however, among young MSM, particularly black/African American MSM, incidence increased. HIV continues to be a major public health burden, disproportionately affecting several populations in the United States, especially MSM and racial and

  13. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.

    Science.gov (United States)

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2016-04-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Identification of a Class of Non-linear State Space Models using RPE Techniques

    DEFF Research Database (Denmark)

    Zhou, Wei-Wu; Blanke, Mogens

    1989-01-01

    The RPE (recursive prediction error) method in state-space form is developed in the nonlinear systems and extended to include the exact form of a nonlinearity, thus enabling structure preservation for certain classes of nonlinear systems. Both the discrete and the continuous-discrete versions...... of the algorithm in an innovations model are investigated, and a nonlinear simulation example shows a quite convincing performance of the filter as combined parameter and state estimator...

  15. Estimating health state utility values for comorbid health conditions using SF-6D data.

    Science.gov (United States)

    Ara, Roberta; Brazier, John

    2011-01-01

    When health state utility values for comorbid health conditions are not available, data from cohorts with single conditions are used to estimate scores. The methods used can produce very different results and there is currently no consensus on which is the most appropriate approach. The objective of the current study was to compare the accuracy of five different methods within the same dataset. Data collected during five Welsh Health Surveys were subgrouped by health status. Mean short-form 6 dimension (SF-6D) scores for cohorts with a specific health condition were used to estimate mean SF-6D scores for cohorts with comorbid conditions using the additive, multiplicative, and minimum methods, the adjusted decrement estimator (ADE), and a linear regression model. The mean SF-6D for subgroups with comorbid health conditions ranged from 0.4648 to 0.6068. The linear model produced the most accurate scores for the comorbid health conditions with 88% of values accurate to within the minimum important difference for the SF-6D. The additive and minimum methods underestimated or overestimated the actual SF-6D scores respectively. The multiplicative and ADE methods both underestimated the majority of scores. However, both methods performed better when estimating scores smaller than 0.50. Although the range in actual health state utility values (HSUVs) was relatively small, our data covered the lower end of the index and the majority of previous research has involved actual HSUVs at the upper end of possible ranges. Although the linear model gave the most accurate results in our data, additional research is required to validate our findings. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  16. Estimating mass of σ-meson and study on application of the linear σ-model

    International Nuclear Information System (INIS)

    Ding Yibing; Li Xin; Li Xueqian; Liu Xiang; Shen Hong; Shen Pengnian; Wang Guoli; Zeng Xiaoqiang

    2004-01-01

    Whether the σ-meson (f 0 (600)) exists as a real particle is a long-standing problem in both particle physics and nuclear physics. In this work, we analyse the deuteron binding energy in the linear σ-model and by fitting the data, we are able to determine the range of m σ and also investigate applicability of the linear σ-model for the interaction between hadrons in the energy region of MeVs. Our result shows that the best fit to the data of the deuteron binding energy and others advocates a narrow range for the σ-meson mass as 520 ≤ m σ ≤ 580 MeV and the concrete values depend on the input parameters such as the couplings. Inversely by fitting the experimental data, one can set constraints on the couplings and the other relevant phenomenological parameters in the model

  17. Estimate the contribution of incubation parameters influence egg hatchability using multiple linear regression analysis.

    Science.gov (United States)

    Khalil, Mohamed H; Shebl, Mostafa K; Kosba, Mohamed A; El-Sabrout, Karim; Zaki, Nesma

    2016-08-01

    This research was conducted to determine the most affecting parameters on hatchability of indigenous and improved local chickens' eggs. Five parameters were studied (fertility, early and late embryonic mortalities, shape index, egg weight, and egg weight loss) on four strains, namely Fayoumi, Alexandria, Matrouh, and Montazah. Multiple linear regression was performed on the studied parameters to determine the most influencing one on hatchability. The results showed significant differences in commercial and scientific hatchability among strains. Alexandria strain has the highest significant commercial hatchability (80.70%). Regarding the studied strains, highly significant differences in hatching chick weight among strains were observed. Using multiple linear regression analysis, fertility made the greatest percent contribution (71.31%) to hatchability, and the lowest percent contributions were made by shape index and egg weight loss. A prediction of hatchability using multiple regression analysis could be a good tool to improve hatchability percentage in chickens.

  18. A new method to estimate parameters of linear compartmental models using artificial neural networks

    International Nuclear Information System (INIS)

    Gambhir, Sanjiv S.; Keppenne, Christian L.; Phelps, Michael E.; Banerjee, Pranab K.

    1998-01-01

    At present, the preferred tool for parameter estimation in compartmental analysis is an iterative procedure; weighted nonlinear regression. For a large number of applications, observed data can be fitted to sums of exponentials whose parameters are directly related to the rate constants/coefficients of the compartmental models. Since weighted nonlinear regression often has to be repeated for many different data sets, the process of fitting data from compartmental systems can be very time consuming. Furthermore the minimization routine often converges to a local (as opposed to global) minimum. In this paper, we examine the possibility of using artificial neural networks instead of weighted nonlinear regression in order to estimate model parameters. We train simple feed-forward neural networks to produce as outputs the parameter values of a given model when kinetic data are fed to the networks' input layer. The artificial neural networks produce unbiased estimates and are orders of magnitude faster than regression algorithms. At noise levels typical of many real applications, the neural networks are found to produce lower variance estimates than weighted nonlinear regression in the estimation of parameters from mono- and biexponential models. These results are primarily due to the inability of weighted nonlinear regression to converge. These results establish that artificial neural networks are powerful tools for estimating parameters for simple compartmental models. (author)

  19. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.

    Directory of Open Access Journals (Sweden)

    Daniel Durstewitz

    2017-06-01

    Full Text Available The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast maximum-likelihood estimation framework for PLRNNs that may enable to recover

  20. State and actuator fault estimation observer design integrated in a riderless bicycle stabilization system.

    Science.gov (United States)

    Brizuela Mendoza, Jorge Aurelio; Astorga Zaragoza, Carlos Manuel; Zavala Río, Arturo; Pattalochi, Leo; Canales Abarca, Francisco

    2016-03-01

    This paper deals with an observer design for Linear Parameter Varying (LPV) systems with high-order time-varying parameter dependency. The proposed design, considered as the main contribution of this paper, corresponds to an observer for the estimation of the actuator fault and the system state, considering measurement noise at the system outputs. The observer gains are computed by considering the extension of linear systems theory to polynomial LPV systems, in such a way that the observer reaches the characteristics of LPV systems. As a result, the actuator fault estimation is ready to be used in a Fault Tolerant Control scheme, where the estimated state with reduced noise should be used to generate the control law. The effectiveness of the proposed methodology has been tested using a riderless bicycle model with dependency on the translational velocity v, where the control objective corresponds to the system stabilization towards the upright position despite the variation of v along the closed-loop system trajectories. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2017-10-01

    Full Text Available Moving towards the more electric aircraft (MEA, a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA into primary flight control. In the hybrid actuation system (HAS, an electro-hydraulic servo actuator (EHSA and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.

  2. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    Science.gov (United States)

    Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-01-01

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392

  3. Validity of a Commercial Linear Encoder to Estimate Bench Press 1 RM from the Force-Velocity Relationship

    Science.gov (United States)

    Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme

    2010-01-01

    The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg), while 1 RM estimated by the Musclelab’s software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg). Actual and estimated 1 RM were very highly correlated (r = 0.93, p<0.001) but largely different (Bias: 5.4 ± 5.7 kg, p < 0.001, ES = 1.37). The 95% limits of agreement were ±11.2 kg, which represented ±18% of actual 1 RM. It was concluded that 1 RM estimated from the force-velocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level. Key points Some commercial devices allow to estimate 1 RM from the force-velocity relationship. These estimations are valid. However, their accuracy is not high enough to be of practical help for training intensity prescription. Day-to-day reliability of force and velocity measured by the linear encoder has been shown to be very high, but the specific reliability of 1 RM estimated from the force-velocity relationship has to be determined before concluding to the usefulness of this approach in the monitoring of training induced adaptations. PMID:24149641

  4. State Estimation of Induction Motor Drives Using the Unscented Kalman Filter

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, M.Sami

    2012-01-01

    This paper investigates the application, design, and implementation of unscented Kalman filters (KFs) (UKFs) for induction motor (IM) sensorless drives. UKFs use nonlinear unscented transforms (UTs) in the prediction step in order to preserve the stochastic characteristics of a nonlinear system....... The advantage of using UTs is their ability to capture the nonlinear behavior of the system, unlike extended KFs (EKFs) that use linearized models. Four original variants of the UKF for IM state estimation, based on different UTs, are described, analyzed, and compared. The four transforms are basic, general...

  5. A state-space model for estimating detailed movements and home range from acoustic receiver data

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Weng, Kevin

    2013-01-01

    We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function of dista......We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function...... that the location error scales log-linearly with detection range and movement speed. This result can be used as guideline for designing network layout when species movement capacity and acoustic environment are known or can be estimated prior to network deployment. Finally, as an example, the state-space model...... is used to estimate home range and movement of a reef fish in the Pacific Ocean....

  6. Estimating Climate Trends: Application to United States Plant Hardiness Zones

    Directory of Open Access Journals (Sweden)

    Nir Y. Krakauer

    2012-01-01

    Full Text Available The United States Department of Agriculture classifies plant hardiness zones based on mean annual minimum temperatures over some past period (currently 1976–2005. Since temperatures are changing, these values may benefit from updating. I outline a multistep methodology involving imputation of missing station values, geostatistical interpolation, and time series smoothing to update a climate variable’s expected value compared to a climatology period and apply it to estimating annual minimum temperature change over the coterminous United States. I show using hindcast experiments that trend estimation gives more accurate predictions of minimum temperatures 1-2 years in advance compared to the previous 30 years’ mean alone. I find that annual minimum temperature increased roughly 2.5 times faster than mean temperature (~2.0 K versus ~0.8 K since 1970, and is already an average of 1.2  0.5 K (regionally up to ~2 K above the 1976–2005 mean, so that much of the country belongs to warmer hardiness zones compared to the current map. The methods developed may also be applied to estimate changes in other climate variables and geographic regions.

  7. State-Space Estimation of Soil Organic Carbon Stock

    Science.gov (United States)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  8. Steady state and linear stability analysis of a supercritical water natural circulation loop

    International Nuclear Information System (INIS)

    Sharma, Manish; Pilkhwal, D.S.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2010-01-01

    Supercritical water (SCW) has excellent heat transfer characteristics as a coolant for nuclear reactors. Besides it results in high thermal efficiency of the plant. However, the flow can experience instabilities in supercritical water reactors, as the density change is very large for the supercritical fluids. A computer code SUCLIN using supercritical water properties has been developed to carry out the steady state and linear stability analysis of a SCW natural circulation loop. The conservation equations of mass, momentum and energy have been linearized by imposing small perturbation in flow rate, enthalpy, pressure and specific volume. The equations have been solved analytically to generate the characteristic equation. The roots of the equation determine the stability of the system. The code has been qualitatively assessed with published results and has been extensively used for studying the effect of diameter, height, heater inlet temperature, pressure and local loss coefficients on steady state and stability behavior of a Supercritical Water Natural Circulation Loop (SCWNCL). The present paper describes the linear stability analysis model and the results obtained in detail.

  9. State control of discrete-time linear systems to be bound in state variables by equality constraints

    International Nuclear Information System (INIS)

    Filasová, Anna; Krokavec, Dušan; Serbák, Vladimír

    2014-01-01

    The paper is concerned with the problem of designing the discrete-time equivalent PI controller to control the discrete-time linear systems in such a way that the closed-loop state variables satisfy the prescribed equality constraints. Since the problem is generally singular, using standard form of the Lyapunov function and a symmetric positive definite slack matrix, the design conditions are proposed in the form of the enhanced Lyapunov inequality. The results, offering the conditions of the control existence and the optimal performance with respect to the prescribed equality constraints for square discrete-time linear systems, are illustrated with the numerical example to note effectiveness and applicability of the considered approach

  10. Efficient Semiparametric Marginal Estimation for the Partially Linear Additive Model for Longitudinal/Clustered Data

    KAUST Repository

    Carroll, Raymond; Maity, Arnab; Mammen, Enno; Yu, Kyusang

    2009-01-01

    We consider the efficient estimation of a regression parameter in a partially linear additive nonparametric regression model from repeated measures data when the covariates are multivariate. To date, while there is some literature in the scalar covariate case, the problem has not been addressed in the multivariate additive model case. Ours represents a first contribution in this direction. As part of this work, we first describe the behavior of nonparametric estimators for additive models with repeated measures when the underlying model is not additive. These results are critical when one considers variants of the basic additive model. We apply them to the partially linear additive repeated-measures model, deriving an explicit consistent estimator of the parametric component; if the errors are in addition Gaussian, the estimator is semiparametric efficient. We also apply our basic methods to a unique testing problem that arises in genetic epidemiology; in combination with a projection argument we develop an efficient and easily computed testing scheme. Simulations and an empirical example from nutritional epidemiology illustrate our methods.

  11. Efficient Semiparametric Marginal Estimation for the Partially Linear Additive Model for Longitudinal/Clustered Data

    KAUST Repository

    Carroll, Raymond

    2009-04-23

    We consider the efficient estimation of a regression parameter in a partially linear additive nonparametric regression model from repeated measures data when the covariates are multivariate. To date, while there is some literature in the scalar covariate case, the problem has not been addressed in the multivariate additive model case. Ours represents a first contribution in this direction. As part of this work, we first describe the behavior of nonparametric estimators for additive models with repeated measures when the underlying model is not additive. These results are critical when one considers variants of the basic additive model. We apply them to the partially linear additive repeated-measures model, deriving an explicit consistent estimator of the parametric component; if the errors are in addition Gaussian, the estimator is semiparametric efficient. We also apply our basic methods to a unique testing problem that arises in genetic epidemiology; in combination with a projection argument we develop an efficient and easily computed testing scheme. Simulations and an empirical example from nutritional epidemiology illustrate our methods.

  12. Estimated of associated uncertainties of the linearity test of dose calibrators

    International Nuclear Information System (INIS)

    Sousa, Carlos H.S.; Peixoto, Jose G.P.

    2013-01-01

    Activimeters determine the activity of radioactive samples and them are validated by performance tests. This research determined the expanded uncertainties associated to the linearity test. Were used three dose calibrators and three sources of 99 Tc m for testing using recommended protocol by the IAEA, which considered the decay of radioactive samples. The expanded uncertainties evaluated were not correlated with each other and their analysis considered a rectangular probability distribution. The results are also presented in graphical form by the function of normalized activity measured in terms of conventional true value. (author)

  13. Model-based stochastic-deterministic State and Force Estimation using Kalman filtering with Application to Hanko-1 Channel Marker

    OpenAIRE

    Petersen, Øyvind Wiig

    2014-01-01

    Force identification in structural dynamics is an inverse problem concerned with finding loads from measured structural response. The main objective of this thesis is to perform and study state (displacement and velocity) and force estimation by Kalman filtering. Theory on optimal control and state-space models are presented, adapted to linear structural dynamics. Accommodation for measurement noise and model inaccuracies are attained by stochastic-deterministic coupling. Explicit requirem...

  14. Nonlinear bayesian state filtering with missing measurements and bounded noise and its application to vehicle position estimation

    Czech Academy of Sciences Publication Activity Database

    Pavelková, Lenka

    2011-01-01

    Roč. 47, č. 3 (2011), s. 370-384 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : non-linear state space model * bounded uncertainty * missing measurements * state filtering * vehicle position estimation Subject RIV: BC - Control Systems Theory Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/AS/pavelkova-0360239.pdf

  15. Remote unambiguous discrimination of linearly independent symmetric d-level quantum states

    International Nuclear Information System (INIS)

    Chen Libing; Liu Yuhua; Tan Peng; Lu Hong

    2009-01-01

    A set of linearly independent nonorthogonal symmetric d-level quantum states can be discriminated remotely and unambiguously with the aid of two-level Einstein-Podolsky-Rosen (EPR) states. We present a scheme for such a kind of remote unambiguous quantum state discrimination (UD). The probability of discrimination is in agreement with the optimal probability for local unambiguous discrimination among d symmetric states (Chefles and Barnettt 1998 Phys. Lett. A 250 223). This scheme consists of a remote generalized measurement described by a positive operator valued measurement (POVM). This remote POVM can be realized by performing a nonlocal 2d x 2d unitary operation on two spatially separated systems, one is the qudit which is encoded by one of the d symmetric nonorthogonal states to be distinguished and the other is an ancillary qubit, and a conventional local von Neumann orthogonal measurement on the ancilla. By decomposing the evolution process from the initial state to the final state, we construct a quantum network for realizing the remote POVM with a set of two-level nonlocal controlled-rotation gates, and thus provide a feasible physical means to realize the remote UD. A two-level nonlocal controlled-rotation gate can be implemented by using a two-level EPR pair in addition to local operations and classical communications (LOCCs)

  16. Optimization-based particle filter for state and parameter estimation

    Institute of Scientific and Technical Information of China (English)

    Li Fu; Qi Fei; Shi Guangming; Zhang Li

    2009-01-01

    In recent years, the theory of particle filter has been developed and widely used for state and parameter estimation in nonlinear/non-Gaussian systems. Choosing good importance density is a critical issue in particle filter design. In order to improve the approximation of posterior distribution, this paper provides an optimization-based algorithm (the steepest descent method) to generate the proposal distribution and then sample particles from the distribution. This algorithm is applied in 1-D case, and the simulation results show that the proposed particle filter performs better than the extended Kalman filter (EKF), the standard particle filter (PF), the extended Kalman particle filter (PF-EKF) and the unscented particle filter (UPF) both in efficiency and in estimation precision.

  17. Traditional mixed linear modelling versus modern machine learning to estimate cow individual feed intake

    NARCIS (Netherlands)

    Kamphuis, C.; Riel, van J.W.; Veerkamp, R.F.; Mol, de R.M.

    2017-01-01

    Three modelling approaches were used to estimate cow individual feed intake
    (FI) using feeding trial data from a research farm, including weekly recordings
    of milk production and composition, live-weight, parity, and total FI.
    Additionally, weather data (temperature, humidity) were

  18. Design of an optimal preview controller for linear discrete-time descriptor systems with state delay

    Science.gov (United States)

    Cao, Mengjuan; Liao, Fucheng

    2015-04-01

    In this paper, the linear discrete-time descriptor system with state delay is studied, and a design method for an optimal preview controller is proposed. First, by using the discrete lifting technique, the original system is transformed into a general descriptor system without state delay in form. Then, taking advantage of the first-order forward difference operator, we construct a descriptor augmented error system, including the state vectors of the lifted system, error vectors, and desired target signals. Rigorous mathematical proofs are given for the regularity, stabilisability, causal controllability, and causal observability of the descriptor augmented error system. Based on these, the optimal preview controller with preview feedforward compensation for the original system is obtained by using the standard optimal regulator theory of the descriptor system. The effectiveness of the proposed method is shown by numerical simulation.

  19. Validity of a Commercial Linear Encoder to Estimate Bench Press 1 RM from the Force-Velocity Relationship.

    Science.gov (United States)

    Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme

    2010-01-01

    The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg), while 1 RM estimated by the Musclelab's software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg). Actual and estimated 1 RM were very highly correlated (r = 0.93, pvelocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level. Key pointsSome commercial devices allow to estimate 1 RM from the force-velocity relationship.These estimations are valid. However, their accuracy is not high enough to be of practical help for training intensity prescription.Day-to-day reliability of force and velocity measured by the linear encoder has been shown to be very high, but the specific reliability of 1 RM estimated from the force-velocity relationship has to be determined before concluding to the usefulness of this approach in the monitoring of training induced adaptations.

  20. Inline state of health estimation of lithium-ion batteries using state of charge calculation

    Science.gov (United States)

    Sepasi, Saeed; Ghorbani, Reza; Liaw, Bor Yann

    2015-12-01

    The determination of state-of-health (SOH) and state-of-charge (SOC) is challenging and remains as an active research area in academia and industry due to its importance for Li-ion battery applications. The estimation process poses more challenges after substantial battery aging. This paper presents an inline SOH and SOC estimation method for Li-ion battery packs, specifically for those based on LiFePO4 chemistry. This new hybridized SOC and SOH estimator can be used for battery packs. Inline estimated model parameters were used in a compounded SOC + SOH estimator consisting of the SOC calculation based on coulomb counting method as an expedient approach and an SOH observer using an extended Kalman filter (EKF) technique for calibrating the estimates from the coulomb counting method. The algorithm's low SOC and SOH estimation error, fast response time, and less-demanding computational requirement make it practical for on-board estimations. The simulation and experimental results, along with the test bed structure, are presented to validate the proposed methodology on a single cell and a 3S1P LiFePO4 battery pack.

  1. Estimating irrigation water use in the humid eastern United States

    Science.gov (United States)

    Levin, Sara B.; Zarriello, Phillip J.

    2013-01-01

    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to

  2. Estimation of breeding values for mean and dispersion, their variance and correlation using double hierarchical generalized linear models.

    Science.gov (United States)

    Felleki, M; Lee, D; Lee, Y; Gilmour, A R; Rönnegård, L

    2012-12-01

    The possibility of breeding for uniform individuals by selecting animals expressing a small response to environment has been studied extensively in animal breeding. Bayesian methods for fitting models with genetic components in the residual variance have been developed for this purpose, but have limitations due to the computational demands. We use the hierarchical (h)-likelihood from the theory of double hierarchical generalized linear models (DHGLM) to derive an estimation algorithm that is computationally feasible for large datasets. Random effects for both the mean and residual variance parts of the model are estimated together with their variance/covariance components. An important feature of the algorithm is that it can fit a correlation between the random effects for mean and variance. An h-likelihood estimator is implemented in the R software and an iterative reweighted least square (IRWLS) approximation of the h-likelihood is implemented using ASReml. The difference in variance component estimates between the two implementations is investigated, as well as the potential bias of the methods, using simulations. IRWLS gives the same results as h-likelihood in simple cases with no severe indication of bias. For more complex cases, only IRWLS could be used, and bias did appear. The IRWLS is applied on the pig litter size data previously analysed by Sorensen & Waagepetersen (2003) using Bayesian methodology. The estimates we obtained by using IRWLS are similar to theirs, with the estimated correlation between the random genetic effects being -0·52 for IRWLS and -0·62 in Sorensen & Waagepetersen (2003).

  3. State Estimation in the Automotive SCR DeNOx Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jørgensen, John Bagterp; Duwig, Christophe

    2012-01-01

    on exhaust gas emissions. For advanced control, e.g. Model Predictive Control (MPC), of the SCR process, accurate state estimates are needed. We investigate the performance of the ordinary and the extended Kalman filters based on a simple first principle system model. The performance is tested through......Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is a widely applied diesel engine exhaust gas after-treatment technology. For effective NOx removal in a transient operating automotive application, controlled dosing of urea can be used to meet the increasingly restrictive legislations...

  4. A New Entropy Formula and Gradient Estimates for the Linear Heat Equation on Static Manifold

    Directory of Open Access Journals (Sweden)

    Abimbola Abolarinwa

    2014-08-01

    Full Text Available In this paper we prove a new monotonicity formula for the heat equation via a generalized family of entropy functionals. This family of entropy formulas generalizes both Perelman’s entropy for evolving metric and Ni’s entropy on static manifold. We show that this entropy satisfies a pointwise differential inequality for heat kernel. The consequences of which are various gradient and Harnack estimates for all positive solutions to the heat equation on compact manifold.

  5. Population decoding of motor cortical activity using a generalized linear model with hidden states.

    Science.gov (United States)

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas; Paninski, Liam

    2010-06-15

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (reducing the mean square error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Population Decoding of Motor Cortical Activity using a Generalized Linear Model with Hidden States

    Science.gov (United States)

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas G.; Paninski, Liam

    2010-01-01

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (lowering the Mean Square Error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. PMID:20359500

  7. RCS estimation of linear and planar dipole phased arrays approximate model

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    In this book, the RCS of a parallel-fed linear and planar dipole array is derived using an approximate method. The signal propagation within the phased array system determines the radar cross section (RCS) of phased array. The reflection and transmission coefficients for a signal at different levels of the phased-in scattering array system depend on the impedance mismatch and the design parameters. Moreover the mutual coupling effect in between the antenna elements is an important factor. A phased array system comprises of radiating elements followed by phase shifters, couplers, and terminating load impedance. These components lead to respective impedances towards the incoming signal that travels through them before reaching receive port of the array system. In this book, the RCS is approximated in terms of array factor, neglecting the phase terms. The mutual coupling effect is taken into account. The dependence of the RCS pattern on the design parameters is analyzed. The approximate model is established as a...

  8. A Stationary North-Finding Scheme for an Azimuth Rotational IMU Utilizing a Linear State Equality Constraint

    Directory of Open Access Journals (Sweden)

    Huapeng Yu

    2015-02-01

    Full Text Available The Kalman filter (KF has always been used to improve north-finding performance under practical conditions. By analyzing the characteristics of the azimuth rotational inertial measurement unit (ARIMU on a stationary base, a linear state equality constraint for the conventional KF used in the fine north-finding filtering phase is derived. Then, a constrained KF using the state equality constraint is proposed and studied in depth. Estimation behaviors of the concerned navigation errors when implementing the conventional KF scheme and the constrained KF scheme during stationary north-finding are investigated analytically by the stochastic observability approach, which can provide explicit formulations of the navigation errors with influencing variables. Finally, multiple practical experimental tests at a fixed position are done on a postulate system to compare the stationary north-finding performance of the two filtering schemes. In conclusion, this study has successfully extended the utilization of the stochastic observability approach for analytic descriptions of estimation behaviors of the concerned navigation errors, and the constrained KF scheme has demonstrated its superiority over the conventional KF scheme for ARIMU stationary north-finding both theoretically and practically.

  9. Solid state linear dichroic infrared spectral analysis of benzimidazoles and their N 1-protonated salts

    Science.gov (United States)

    Ivanova, B. B.

    2005-11-01

    A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.

  10. Estimated use of water in the United States in 1970

    Science.gov (United States)

    Murray, Charles Richard; Reeves, E. Bodette

    1972-01-01

    Estimates of water use in the United States in 1970 indicate that an average of about 370 bgd (billion gallons per day)about 1,800 gallons per capita per day--was withdrawn for the four principal off-channel uses which are (1) public-supply (for domestic, commercial, and industrial uses), (2) rural (domestic and livestock), (3) irrigation, and (4) self-supplied industrial (including thermoelectric power). In 1970, withdrawals for these uses exceeded by 19 percent the 310 bgd estimated for 1965. Increases in the various categories of off-channel water use since 1965 were: approximately 25 percent for self-supplied industry (mainly in electric-utility thermoelectric plants), 13 percent for public supplies, 13 percent for rural supplies, and 8 percent for irrigation. Industrial water withdrawals included 54 bgd of saline water, a 20 percent increase in 5 years. The fifth principal withdrawal use, hydroelectric power (an in-channel use), amounted to 2,800 bgd, a 5-year increase of 22 percent. In computing total withdrawals, recycling within a plant (reuse) is not counted, but withdrawal of the same water by a downstream user (cumulative withdrawals) is counted. The quantity of fresh water consumed--that is, water made unavailable for further possible withdrawal because of evaporation, incorporation in crops and manufactured products, and other causes--was estimated to average 87 bgd for 1970, an increase of about 12 percent since 1965.

  11. Improving Distribution Resiliency with Microgrids and State and Parameter Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Tuffner, Francis K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Tess L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schneider, Kevin P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elizondo, Marcelo A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, Yannan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Chen-Ching [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Yin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gourisetti, Sri Nikhil Gup [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-30

    Modern society relies on low-cost reliable electrical power, both to maintain industry, as well as provide basic social services to the populace. When major disturbances occur, such as Hurricane Katrina or Hurricane Sandy, the nation’s electrical infrastructure can experience significant outages. To help prevent the spread of these outages, as well as facilitating faster restoration after an outage, various aspects of improving the resiliency of the power system are needed. Two such approaches are breaking the system into smaller microgrid sections, and to have improved insight into the operations to detect failures or mis-operations before they become critical. Breaking the system into smaller sections of microgrid islands, power can be maintained in smaller areas where distribution generation and energy storage resources are still available, but bulk power generation is no longer connected. Additionally, microgrid systems can maintain service to local pockets of customers when there has been extensive damage to the local distribution system. However, microgrids are grid connected a majority of the time and implementing and operating a microgrid is much different than when islanded. This report discusses work conducted by the Pacific Northwest National Laboratory that developed improvements for simulation tools to capture the characteristics of microgrids and how they can be used to develop new operational strategies. These operational strategies reduce the cost of microgrid operation and increase the reliability and resilience of the nation’s electricity infrastructure. In addition to the ability to break the system into microgrids, improved observability into the state of the distribution grid can make the power system more resilient. State estimation on the transmission system already provides great insight into grid operations and detecting abnormal conditions by leveraging existing measurements. These transmission-level approaches are expanded to using

  12. Efficient Narrowband Direction of Arrival Estimation Based on a Combination of Uniform Linear/Shirvani-Akbari Arrays

    Directory of Open Access Journals (Sweden)

    Shahriar Shirvani Moghaddam

    2012-01-01

    Full Text Available Uniform linear array (ULA geometry does not perform well for direction of arrival (DOA estimation at directions close to the array endfires. Shirvani and Akbari solved this problem by displacing two elements from both ends of the ULA to the top and/or bottom of the array axis. Shirvani-Akbari array (SAA presents a considerable improvement in the DOA estimation of narrowband sources arriving at endfire directions in terms of DOA estimation accuracy and angular resolution. In this paper, all new proposed SAA configurations are modelled and also examined, numerically. In this paper, two well-known DOA estimation algorithms, multiple signal classification (MUSIC and minimum variance distortionless response (MVDR, are used to evaluate the effectiveness of proposed arrays using total root mean square error (RMSE criterion. In addition, two new scenarios are proposed which divide angular search to two parts, directions close to array endfires as well as middle angles. For middle angles, which belong to (−70∘≤≤70∘, ULA is considered, and for endfire angles, the angles which belong to (−90∘≤≤−70∘ and (70∘≤≤90∘, SAA is considered. Simulation results of new proposed scenarios for DOA estimation of narrowband signals show the better performance with lower computational load.

  13. Comparison of Four Different Energy Balance Models for Estimating Evapotranspiration in the Midwestern United States

    Directory of Open Access Journals (Sweden)

    Ramesh K. Singh

    2015-12-01

    Full Text Available The development of different energy balance models has allowed users to choose a model based on its suitability in a region. We compared four commonly used models—Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC model, Surface Energy Balance Algorithm for Land (SEBAL model, Surface Energy Balance System (SEBS model, and the Operational Simplified Surface Energy Balance (SSEBop model—using Landsat images to estimate evapotranspiration (ET in the Midwestern United States. Our models validation using three AmeriFlux cropland sites at Mead, Nebraska, showed that all four models captured the spatial and temporal variation of ET reasonably well with an R2 of more than 0.81. Both the METRIC and SSEBop models showed a low root mean square error (<0.93 mm·day−1 and a high Nash–Sutcliffe coefficient of efficiency (>0.80, whereas the SEBAL and SEBS models resulted in relatively higher bias for estimating daily ET. The empirical equation of daily average net radiation used in the SEBAL and SEBS models for upscaling instantaneous ET to daily ET resulted in underestimation of daily ET, particularly when the daily average net radiation was more than 100 W·m−2. Estimated daily ET for both cropland and grassland had some degree of linearity with METRIC, SEBAL, and SEBS, but linearity was stronger for evaporative fraction. Thus, these ET models have strengths and limitations for applications in water resource management.

  14. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Meliopoulos, Sakis [Georgia Inst. of Technology, Atlanta, GA (United States); Cokkinides, George [Georgia Inst. of Technology, Atlanta, GA (United States); Fardanesh, Bruce [New York Power Authority, NY (United States); Hedrington, Clinton [U.S. Virgin Islands Water and Power Authority (WAPA), St. Croix (U.S. Virgin Islands)

    2013-12-31

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based

  15. A model predictive control approach combined unscented Kalman filter vehicle state estimation in intelligent vehicle trajectory tracking

    Directory of Open Access Journals (Sweden)

    Hongxiao Yu

    2015-05-01

    Full Text Available Trajectory tracking and state estimation are significant in the motion planning and intelligent vehicle control. This article focuses on the model predictive control approach for the trajectory tracking of the intelligent vehicles and state estimation of the nonlinear vehicle system. The constraints of the system states are considered when applying the model predictive control method to the practical problem, while 4-degree-of-freedom vehicle model and unscented Kalman filter are proposed to estimate the vehicle states. The estimated states of the vehicle are used to provide model predictive control with real-time control and judge vehicle stability. Furthermore, in order to decrease the cost of solving the nonlinear optimization, the linear time-varying model predictive control is used at each time step. The effectiveness of the proposed vehicle state estimation and model predictive control method is tested by driving simulator. The results of simulations and experiments show that great and robust performance is achieved for trajectory tracking and state estimation in different scenarios.

  16. Factoring vs linear modeling in rate estimation: a simulation study of relative accuracy.

    Science.gov (United States)

    Maldonado, G; Greenland, S

    1998-07-01

    A common strategy for modeling dose-response in epidemiology is to transform ordered exposures and covariates into sets of dichotomous indicator variables (that is, to factor the variables). Factoring tends to increase estimation variance, but it also tends to decrease bias and thus may increase or decrease total accuracy. We conducted a simulation study to examine the impact of factoring on the accuracy of rate estimation. Factored and unfactored Poisson regression models were fit to follow-up study datasets that were randomly generated from 37,500 population model forms that ranged from subadditive to supramultiplicative. In the situations we examined, factoring sometimes substantially improved accuracy relative to fitting the corresponding unfactored model, sometimes substantially decreased accuracy, and sometimes made little difference. The difference in accuracy between factored and unfactored models depended in a complicated fashion on the difference between the true and fitted model forms, the strength of exposure and covariate effects in the population, and the study size. It may be difficult in practice to predict when factoring is increasing or decreasing accuracy. We recommend, therefore, that the strategy of factoring variables be supplemented with other strategies for modeling dose-response.

  17. Validity of a Commercial Linear Encoder to Estimate Bench Press 1 RM from the Force-Velocity Relationship

    OpenAIRE

    Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme

    2010-01-01

    The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15...

  18. Linear Pursuit Differential Game under Phase Constraint on the State of Evader

    Directory of Open Access Journals (Sweden)

    Askar Rakhmanov

    2016-01-01

    Full Text Available We consider a linear pursuit differential game of one pursuer and one evader. Controls of the pursuer and evader are subjected to integral and geometric constraints, respectively. In addition, phase constraint is imposed on the state of evader, whereas pursuer moves throughout the space. We say that pursuit is completed, if inclusion y(t1-x(t1∈M is satisfied at some t1>0, where x(t and y(t are states of pursuer and evader, respectively, and M is terminal set. Conditions of completion of pursuit in the game from all initial points of players are obtained. Strategy of the pursuer is constructed so that the phase vector of the pursuer first is brought to a given set, and then pursuit is completed.

  19. A Complete Parametric Solutions of Eigenstructure Assignment by State-Derivative Feedback for Linear Control Systems

    Directory of Open Access Journals (Sweden)

    T. H. S. Abdelaziz

    2005-01-01

    Full Text Available In this paper we introduce a complete parametric approach for solving the problem of eigenstructure assignment via state-derivative feedback for linear systems. This problem is always solvable for any controllable systems iff the open-loop system matrix is nonsingular. In this work, two parametric solutions to the feedback gain matrix are introduced that describe the available degrees of freedom offered by the state-derivative feedback in selecting the associated eigenvectors from an admissible class. These freedoms can be utilized to improve robustness of the closed-loop system. Accordingly, the sensitivity of the assigned eigenvalues to perturbations in the system and gain matrix is minimized. Numerical examples are included to show the effectiveness of the proposed approach. 

  20. Sex determination using facial linear dimensions and angles among Hausa population of Kano State, Nigeria

    Directory of Open Access Journals (Sweden)

    Lawan H. Adamu

    2016-12-01

    Full Text Available The aim of the study was to determine sexual dimorphism as well as to predict sex using facial linear dimensions and angles among Hausas of Kano state Nigeria. A total of 283 subjects comprising 147 males and 136 females age range 18–25 years participated. Photographs methods were used to capture the face. Independent sample t-test was used to test for sex differences in the variables. Binary logistic regression was applied to obtain a predicting equation (BLR model for sex. The predicted probabilities of BLR were analyzed using receiver operating characteristic curve. The results showed that all the facial linear dimensions showed significance sexual dimorphism except interocular distance, upper facial width, philtrum length, lower vermilion width, left and right orbital width. With regards to sex prediction, upper facial height was the single best predictor of sex with an accuracy of 76.2% and 24–33% contribution to the prediction. However, the percentage accuracy increased to 91% when six variables were pooled together in the equations. For facial angles, only nasion and aperture modified angle did not show significant gender differences. However, in the variables with significant sexual dimorphism only nasomental angle showed a significant level of sex prediction with an accuracy of 70.3%. In conclusion, sex discrimination using facial linear dimensions and angles was well established in this study. The sex of an individual of Hausa ethnic group can be determined using facial linear dimensions. Dispite sexual dimorphsm shown by facial angles, only nasomental angle was good discriminator of sex.

  1. A Note on the Large Sample Properties of Estimators Based on Generalized Linear Models for Correlated Pseudo-observations

    DEFF Research Database (Denmark)

    Jacobsen, Martin; Martinussen, Torben

    2016-01-01

    Pseudo-values have proven very useful in censored data analysis in complex settings such as multi-state models. It was originally suggested by Andersen et al., Biometrika, 90, 2003, 335 who also suggested to estimate standard errors using classical generalized estimating equation results. These r......Pseudo-values have proven very useful in censored data analysis in complex settings such as multi-state models. It was originally suggested by Andersen et al., Biometrika, 90, 2003, 335 who also suggested to estimate standard errors using classical generalized estimating equation results....... These results were studied more formally in Graw et al., Lifetime Data Anal., 15, 2009, 241 that derived some key results based on a second-order von Mises expansion. However, results concerning large sample properties of estimates based on regression models for pseudo-values still seem unclear. In this paper......, we study these large sample properties in the simple setting of survival probabilities and show that the estimating function can be written as a U-statistic of second order giving rise to an additional term that does not vanish asymptotically. We further show that previously advocated standard error...

  2. Remaining lifetime modeling using State-of-Health estimation

    Science.gov (United States)

    Beganovic, Nejra; Söffker, Dirk

    2017-08-01

    Technical systems and system's components undergo gradual degradation over time. Continuous degradation occurred in system is reflected in decreased system's reliability and unavoidably lead to a system failure. Therefore, continuous evaluation of State-of-Health (SoH) is inevitable to provide at least predefined lifetime of the system defined by manufacturer, or even better, to extend the lifetime given by manufacturer. However, precondition for lifetime extension is accurate estimation of SoH as well as the estimation and prediction of Remaining Useful Lifetime (RUL). For this purpose, lifetime models describing the relation between system/component degradation and consumed lifetime have to be established. In this contribution modeling and selection of suitable lifetime models from database based on current SoH conditions are discussed. Main contribution of this paper is the development of new modeling strategies capable to describe complex relations between measurable system variables, related system degradation, and RUL. Two approaches with accompanying advantages and disadvantages are introduced and compared. Both approaches are capable to model stochastic aging processes of a system by simultaneous adaption of RUL models to current SoH. The first approach requires a priori knowledge about aging processes in the system and accurate estimation of SoH. An estimation of SoH here is conditioned by tracking actual accumulated damage into the system, so that particular model parameters are defined according to a priori known assumptions about system's aging. Prediction accuracy in this case is highly dependent on accurate estimation of SoH but includes high number of degrees of freedom. The second approach in this contribution does not require a priori knowledge about system's aging as particular model parameters are defined in accordance to multi-objective optimization procedure. Prediction accuracy of this model does not highly depend on estimated SoH. This model

  3. Minimum error discrimination for an ensemble of linearly independent pure states

    International Nuclear Information System (INIS)

    Singal, Tanmay; Ghosh, Sibasish

    2016-01-01

    Inspired by the work done by Belavkin (1975 Stochastics 1 315) and independently by Mochon, (2006 Phys. Rev. A 73 032328), we formulate the problem of minimum error discrimination (MED) of any ensemble of n linearly independent pure states by stripping the problem of its rotational covariance and retaining only the rotationally invariant aspect of the problem. This is done by embedding the optimal conditions in a matrix equality as well as matrix inequality. Employing the implicit function theorem in these conditions we get a set of first-order coupled ordinary nonlinear differential equations which can be used to drag the solution from an initial point (where solution is known) to another point (whose solution is sought). This way of obtaining the solution can be done through a simple Taylor series expansion and analytic continuation when required. Thus, we complete the work done by Belavkin and Mochon by ultimately leading their theory to a solution for the MED problem of linearly independent pure state ensembles. We also compare the computational complexity of our technique with the barrier-type interior point method of SDP and show that our technique is computationally as efficient as (actually, a bit more than) the SDP algorithm, with the added advantage of being much simpler to implement. (paper)

  4. Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states

    International Nuclear Information System (INIS)

    Benini, Marco; Dappiaggi, Claudio; Murro, Simone

    2014-01-01

    We discuss the quantization of linearized gravity on globally hyperbolic, asymptotically flat, vacuum spacetimes, and the construction of distinguished states which are both of Hadamard form and invariant under the action of all bulk isometries. The procedure, we follow, consists of looking for a realization of the observables of the theory as a sub-algebra of an auxiliary, non-dynamical algebra constructed on future null infinity ℑ + . The applicability of this scheme is tantamount to proving that a solution of the equations of motion for linearized gravity can be extended smoothly to ℑ + . This has been claimed to be possible provided that a suitable gauge fixing condition, first written by Geroch and Xanthopoulos [“Asymptotic simplicity is stable,” J. Math. Phys. 19, 714 (1978)], is imposed. We review its definition critically, showing that there exists a previously unnoticed obstruction in its implementation leading us to introducing the concept of radiative observables. These constitute an algebra for which a Hadamard state induced from null infinity and invariant under the action of all spacetime isometries exists and it is explicitly constructed

  5. Estimated Use of Water in the United States in 1985

    Science.gov (United States)

    Solley, Wayne B.; Merk, Charles F.; Pierce, Robert R.

    1988-01-01

    Water withdrawals in the United States during 1985 were estimated to average 399,000 million gallons per day (Mgal/d) of freshwater and saline water for offstream uses--10 percent less than the 1980 estimate. Average per-capita use for all offstream uses was 1,650 gallons per day (gal/d) of freshwater and saline water combined and 1,400 gal/d of freshwater alone. Offstream water-use categories are classified in this report as public supply, domestic, commercial, irrigation, livestock, industrial, mining, and thermoelectric power. During 1985, public-supply withdrawals were estimated to be 36,500 Mgal/d, and self-supplied withdrawals were estimated as follows: domestic, 3,320 Mgal/d: commercial, 1,230 Mgal/d; irrigation, 137,000 Mgal/d: livestock, 4,470 Mgal/d; industrial, 25,800 Mgal/d; mining, 3,440 Mgal/d; and thermoelectric power, 187,000 Mgal/d. Water use for hydroelectric power generation, the only instream use compiled in this report, was estimated to be 3,050,000 Mgal/d during 1985, or 7 percent less than during 1980. This is in contrast to an increasing trend that persisted from 1950 to 1980. Estimates of withdrawals by source indicate that, during 1985, total surface-water withdrawals were 325,000 Mgal/d, or 10 percent less than during 1980, and total ground-water withdrawals were 74,000 Mgal/d, or 12 percent less than during 1980. Total saline-water withdrawals during 1985 were 60,300 Mgal/d, or 16 percent less than during 1980; most was saline surface water. Reclaimed sewage averaged about 579 Mgal/d during 1985, or 22 percent more than during 1980. Total freshwater consumptive use was estimated to be 92,300 Mgal/d during 1985, or 9 percent less than during 1980. Consumptive use by irrigation accounted for the largest part of consumptive use during 1985 and was estimated to be 73,800 Mgal/d. A comparison of total withdrawals (fresh and saline) by State indicates that 37 States and Puerto Rico had less water withdrawn for offstream uses during 1985 than

  6. Stochastic Estimation Methods for Induction Motor Transient Thermal Monitoring Under Non Linear Condition

    Directory of Open Access Journals (Sweden)

    Mellah HACEN

    2012-08-01

    Full Text Available The induction machine, because of its robustness and low-cost, is commonly used in the industry. Nevertheless, as every type of electrical machine, this machine suffers of some limitations. The most important one is the working temperature which is the dimensioning parameter for the definition of the nominal working point and the machine lifetime. Due to a strong demand concerning thermal monitoring methods appeared in the industry sector. In this context, the adding of temperature sensors is not acceptable and the studied methods tend to use sensorless approaches such as observators or parameters estimators like the extended Kalman Filter (EKF. Then the important criteria are reliability, computational cost ad real time implementation.

  7. Enhancing Groundwater Cost Estimation with the Interpolation of Water Tables across the United States

    Science.gov (United States)

    Rosli, A. U. M.; Lall, U.; Josset, L.; Rising, J. A.; Russo, T. A.; Eisenhart, T.

    2017-12-01

    Analyzing the trends in water use and supply across the United States is fundamental to efforts in ensuring water sustainability. As part of this, estimating the costs of producing or obtaining water (water extraction) and the correlation with water use is an important aspect in understanding the underlying trends. This study estimates groundwater costs by interpolating the depth to water level across the US in each county. We use Ordinary and Universal Kriging, accounting for the differences between aquifers. Kriging generates a best linear unbiased estimate at each location and has been widely used to map ground-water surfaces (Alley, 1993).The spatial covariates included in the universal Kriging were land-surface elevation as well as aquifer information. The average water table is computed for each county using block kriging to obtain a national map of groundwater cost, which we compare with survey estimates of depth to the water table performed by the USDA. Groundwater extraction costs were then assumed to be proportional to water table depth. Beyond estimating the water cost, the approach can provide an indication of groundwater-stress by exploring the historical evolution of depth to the water table using time series information between 1960 and 2015. Despite data limitations, we hope to enable a more compelling and meaningful national-level analysis through the quantification of cost and stress for more economically efficient water management.

  8. Parameter and state estimation in nonlinear dynamical systems

    Science.gov (United States)

    Creveling, Daniel R.

    This thesis is concerned with the problem of state and parameter estimation in nonlinear systems. The need to evaluate unknown parameters in models of nonlinear physical, biophysical and engineering systems occurs throughout the development of phenomenological or reduced models of dynamics. When verifying and validating these models, it is important to incorporate information from observations in an efficient manner. Using the idea of synchronization of nonlinear dynamical systems, this thesis develops a framework for presenting data to a candidate model of a physical process in a way that makes efficient use of the measured data while allowing for estimation of the unknown parameters in the model. The approach presented here builds on existing work that uses synchronization as a tool for parameter estimation. Some critical issues of stability in that work are addressed and a practical framework is developed for overcoming these difficulties. The central issue is the choice of coupling strength between the model and data. If the coupling is too strong, the model will reproduce the measured data regardless of the adequacy of the model or correctness of the parameters. If the coupling is too weak, nonlinearities in the dynamics could lead to complex dynamics rendering any cost function comparing the model to the data inadequate for the determination of model parameters. Two methods are introduced which seek to balance the need for coupling with the desire to allow the model to evolve in its natural manner without coupling. One method, 'balanced' synchronization, adds to the synchronization cost function a requirement that the conditional Lyapunov exponents of the model system, conditioned on being driven by the data, remain negative but small in magnitude. Another method allows the coupling between the data and the model to vary in time according to a specific form of differential equation. The coupling dynamics is damped to allow for a tendency toward zero coupling

  9. Linear pressure profile estimation along a penstock associated with transients due to severe defects

    Science.gov (United States)

    Kueny, J. L.; Combes, G.; Lourenço, M.; Clary, V.; Ballester, J. L.

    2014-03-01

    The purpose of this article is to show how the pressure load profile along a penstock of an hydroplant and the corresponding flow rate is obtained from the pressure signal using a code called ACHYL CF. In particular the paper will present how it is possible to reconstruct the history of the incident after a strong transient state, in the case of two plants with Pelton turbines and one DSPCF device on a branch of the circuit. For plant1 the DSPCF device observes an overrun of the maximal allowed pressure after the filling of the injector branch and for plant_2, a strong transient leads to the rupture of the penstock.

  10. Linear pressure profile estimation along a penstock associated with transients due to severe defects

    International Nuclear Information System (INIS)

    Kueny, J L; Clary, V; Combes, G; Lourenço, M; Ballester, J L

    2014-01-01

    The purpose of this article is to show how the pressure load profile along a penstock of an hydroplant and the corresponding flow rate is obtained from the pressure signal using a code called ACHYL CF. In particular the paper will present how it is possible to reconstruct the history of the incident after a strong transient state, in the case of two plants with Pelton turbines and one DSPCF device on a branch of the circuit. For plant 1 the DSPCF device observes an overrun of the maximal allowed pressure after the filling of the injector branch and for plant 2 , a strong transient leads to the rupture of the penstock

  11. Anti-symmetrically fused model and non-linear integral equations in the three-state Uimin-Sutherland model

    International Nuclear Information System (INIS)

    Fujii, Akira; Kluemper, Andreas

    1999-01-01

    We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation

  12. Linear stochastic systems a geometric approach to modeling, estimation and identification

    CERN Document Server

    Lindquist, Anders

    2015-01-01

    This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of pas...

  13. Optimal Meter Placement for Distribution Network State Estimation: A Circuit Representation Based MILP Approach

    DEFF Research Database (Denmark)

    Chen, Xiaoshuang; Lin, Jin; Wan, Can

    2016-01-01

    State estimation (SE) in distribution networks is not as accurate as that in transmission networks. Traditionally, distribution networks (DNs) are lack of direct measurements due to the limitations of investments and the difficulties of maintenance. Therefore, it is critical to improve the accuracy...... of SE in distribution networks by placing additional physical meters. For state-of-the-art SE models, it is difficult to clearly quantify measurements' influences on SE errors, so the problems of optimal meter placement for reducing SE errors are mostly solved by heuristic or suboptimal algorithms....... Under this background, this paper proposes a circuit representation model to represent SE errors. Based on the matrix formulation of the circuit representation model, the problem of optimal meter placement can be transformed to a mixed integer linear programming problem (MILP) via the disjunctive model...

  14. State, Parameter, and Unknown Input Estimation Problems in Active Automotive Safety Applications

    Science.gov (United States)

    Phanomchoeng, Gridsada

    A variety of driver assistance systems such as traction control, electronic stability control (ESC), rollover prevention and lane departure avoidance systems are being developed by automotive manufacturers to reduce driver burden, partially automate normal driving operations, and reduce accidents. The effectiveness of these driver assistance systems can be significant enhanced if the real-time values of several vehicle parameters and state variables, namely tire-road friction coefficient, slip angle, roll angle, and rollover index, can be known. Since there are no inexpensive sensors available to measure these variables, it is necessary to estimate them. However, due to the significant nonlinear dynamics in a vehicle, due to unknown and changing plant parameters, and due to the presence of unknown input disturbances, the design of estimation algorithms for this application is challenging. This dissertation develops a new approach to observer design for nonlinear systems in which the nonlinearity has a globally (or locally) bounded Jacobian. The developed approach utilizes a modified version of the mean value theorem to express the nonlinearity in the estimation error dynamics as a convex combination of known matrices with time varying coefficients. The observer gains are then obtained by solving linear matrix inequalities (LMIs). A number of illustrative examples are presented to show that the developed approach is less conservative and more useful than the standard Lipschitz assumption based nonlinear observer. The developed nonlinear observer is utilized for estimation of slip angle, longitudinal vehicle velocity, and vehicle roll angle. In order to predict and prevent vehicle rollovers in tripped situations, it is necessary to estimate the vertical tire forces in the presence of unknown road disturbance inputs. An approach to estimate unknown disturbance inputs in nonlinear systems using dynamic model inversion and a modified version of the mean value theorem is

  15. A Robust WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology

    Directory of Open Access Journals (Sweden)

    Tao Jin

    2015-04-01

    Full Text Available With the development of modern society, the scale of the power system is rapidly increased accordingly, and the framework and mode of running of power systems are trending towards more complexity. It is nowadays much more important for the dispatchers to know exactly the state parameters of the power network through state estimation. This paper proposes a robust power system WLS state estimation method integrating a wide-area measurement system (WAMS and SCADA technology, incorporating phasor measurements and the results of the traditional state estimator in a post-processing estimator, which greatly reduces the scale of the non-linear estimation problem as well as the number of iterations and the processing time per iteration. This paper firstly analyzes the wide-area state estimation model in detail, then according to the issue that least squares does not account for bad data and outliers, the paper proposes a robust weighted least squares (WLS method that combines a robust estimation principle with least squares by equivalent weight. The performance assessment is discussed through setting up mathematical models of the distribution network. The effectiveness of the proposed method was proved to be accurate and reliable by simulations and experiments.

  16. A Novel Coupled State/Input/Parameter Identification Method for Linear Structural Systems

    Directory of Open Access Journals (Sweden)

    Zhimin Wan

    2018-01-01

    Full Text Available In many engineering applications, unknown states, inputs, and parameters exist in the structures. However, most methods require one or two of these variables to be known in order to identify the other(s. Recently, the authors have proposed a method called EGDF for coupled state/input/parameter identification for nonlinear system in state space. However, the EGDF method based solely on acceleration measurements is found to be unstable, which can cause the drift of the identified inputs and displacements. Although some regularization methods can be adopted for solving the problem, they are not suitable for joint input-state identification in real time. In this paper, a strategy of data fusion of displacement and acceleration measurements is used to avoid the low-frequency drift in the identified inputs and structural displacements for linear structural systems. Two numerical examples about a plane truss and a single-stage isolation system are conducted to verify the effectiveness of the proposed modified EGDF algorithm.

  17. Steady-State Linear and Non-linear Optical Spectroscopy of Organic Chromophores and Bio-macromolecules.

    Science.gov (United States)

    Marazzi, Marco; Gattuso, Hugo; Monari, Antonio; Assfeld, Xavier

    2018-01-01

    Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes-often drugs or pollutants-that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.

  18. Steady-State Linear and Non-linear Optical Spectroscopy of Organic Chromophores and Bio-macromolecules

    Directory of Open Access Journals (Sweden)

    Marco Marazzi

    2018-04-01

    Full Text Available Bio-macromolecules as DNA, lipid membranes and (polypeptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes—often drugs or pollutants—that can (photosensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photosensitizers. Namely, absorption, emission and electronic circular dichroism (CD spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i to enhance absorption in the red and infra-red windows and (ii to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.

  19. Steady-State Linear and Non-linear Optical Spectroscopy of Organic Chromophores and Bio-macromolecules

    Science.gov (United States)

    Marazzi, Marco; Gattuso, Hugo; Monari, Antonio; Assfeld, Xavier

    2018-04-01

    Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes – often drugs or pollutants – that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/ molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.

  20. Connections of geometric measure of entanglement of pure symmetric states to quantum state estimation

    International Nuclear Information System (INIS)

    Chen Lin; Zhu Huangjun; Wei, Tzu-Chieh

    2011-01-01

    We study the geometric measure of entanglement (GM) of pure symmetric states related to rank 1 positive-operator-valued measures (POVMs) and establish a general connection with quantum state estimation theory, especially the maximum likelihood principle. Based on this connection, we provide a method for computing the GM of these states and demonstrate its additivity property under certain conditions. In particular, we prove the additivity of the GM of pure symmetric multiqubit states whose Majorana points under Majorana representation are distributed within a half sphere, including all pure symmetric three-qubit states. We then introduce a family of symmetric states that are generated from mutually unbiased bases and derive an analytical formula for their GM. These states include Dicke states as special cases, which have already been realized in experiments. We also derive the GM of symmetric states generated from symmetric informationally complete POVMs (SIC POVMs) and use it to characterize all inequivalent SIC POVMs in three-dimensional Hilbert space that are covariant with respect to the Heisenberg-Weyl group. Finally, we describe an experimental scheme for creating the symmetric multiqubit states studied in this article and a possible scheme for measuring the permanence of the related Gram matrix.

  1. Chapter 16 - Predictive Analytics for Comprehensive Energy Systems State Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Jie [University of Texas at Dallas; Weng, Yang [Arizona State University

    2017-12-01

    Energy sustainability is a subject of concern to many nations in the modern world. It is critical for electric power systems to diversify energy supply to include systems with different physical characteristics, such as wind energy, solar energy, electrochemical energy storage, thermal storage, bio-energy systems, geothermal, and ocean energy. Each system has its own range of control variables and targets. To be able to operate such a complex energy system, big-data analytics become critical to achieve the goal of predicting energy supplies and consumption patterns, assessing system operation conditions, and estimating system states - all providing situational awareness to power system operators. This chapter presents data analytics and machine learning-based approaches to enable predictive situational awareness of the power systems.

  2. An efficient algebraic approach to observability analysis in state estimation

    Energy Technology Data Exchange (ETDEWEB)

    Pruneda, R.E.; Solares, C.; Conejo, A.J. [University of Castilla-La Mancha, 13071 Ciudad Real (Spain); Castillo, E. [University of Cantabria, 39005 Santander (Spain)

    2010-03-15

    An efficient and compact algebraic approach to state estimation observability is proposed. It is based on transferring rows to columns and vice versa in the Jacobian measurement matrix. The proposed methodology provides a unified approach to observability checking, critical measurement identification, determination of observable islands, and selection of pseudo-measurements to restore observability. Additionally, the observability information obtained from a given set of measurements can provide directly the observability obtained from any subset of measurements of the given set. Several examples are used to illustrate the capabilities of the proposed methodology, and results from a large case study are presented to demonstrate the appropriate computational behavior of the proposed algorithms. Finally, some conclusions are drawn. (author)

  3. VALIDITY OF A COMMERCIAL LINEAR ENCODER TO ESTIMATE BENCH PRESS 1 RM FROM THE FORCE-VELOCITY RELATIONSHIP

    Directory of Open Access Journals (Sweden)

    Laurent Bosquet

    2010-09-01

    Full Text Available The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway to estimate Bench press 1 repetition maximum (1RM from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg, while 1 RM estimated by the Musclelab's software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg. Actual and estimated 1 RM were very highly correlated (r = 0.93, p<0.001 but largely different (Bias: 5.4 ± 5.7 kg, p < 0.001, ES = 1.37. The 95% limits of agreement were ±11.2 kg, which represented ±18% of actual 1 RM. It was concluded that 1 RM estimated from the force-velocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level.

  4. Estimating the kinetic parameters of activated sludge storage using weighted non-linear least-squares and accelerating genetic algorithm.

    Science.gov (United States)

    Fang, Fang; Ni, Bing-Jie; Yu, Han-Qing

    2009-06-01

    In this study, weighted non-linear least-squares analysis and accelerating genetic algorithm are integrated to estimate the kinetic parameters of substrate consumption and storage product formation of activated sludge. A storage product formation equation is developed and used to construct the objective function for the determination of its production kinetics. The weighted least-squares analysis is employed to calculate the differences in the storage product concentration between the model predictions and the experimental data as the sum of squared weighted errors. The kinetic parameters for the substrate consumption and the storage product formation are estimated to be the maximum heterotrophic growth rate of 0.121/h, the yield coefficient of 0.44 mg CODX/mg CODS (COD, chemical oxygen demand) and the substrate half saturation constant of 16.9 mg/L, respectively, by minimizing the objective function using a real-coding-based accelerating genetic algorithm. Also, the fraction of substrate electrons diverted to the storage product formation is estimated to be 0.43 mg CODSTO/mg CODS. The validity of our approach is confirmed by the results of independent tests and the kinetic parameter values reported in literature, suggesting that this approach could be useful to evaluate the product formation kinetics of mixed cultures like activated sludge. More importantly, as this integrated approach could estimate the kinetic parameters rapidly and accurately, it could be applied to other biological processes.

  5. Power system state estimation using an iteratively reweighted least squares method for sequential L{sub 1}-regression

    Energy Technology Data Exchange (ETDEWEB)

    Jabr, R.A. [Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box 72, Zouk Mikhael, Zouk Mosbeh (Lebanon)

    2006-02-15

    This paper presents an implementation of the least absolute value (LAV) power system state estimator based on obtaining a sequence of solutions to the L{sub 1}-regression problem using an iteratively reweighted least squares (IRLS{sub L1}) method. The proposed implementation avoids reformulating the regression problem into standard linear programming (LP) form and consequently does not require the use of common methods of LP, such as those based on the simplex method or interior-point methods. It is shown that the IRLS{sub L1} method is equivalent to solving a sequence of linear weighted least squares (LS) problems. Thus, its implementation presents little additional effort since the sparse LS solver is common to existing LS state estimators. Studies on the termination criteria of the IRLS{sub L1} method have been carried out to determine a procedure for which the proposed estimator is more computationally efficient than a previously proposed non-linear iteratively reweighted least squares (IRLS) estimator. Indeed, it is revealed that the proposed method is a generalization of the previously reported IRLS estimator, but is based on more rigorous theory. (author)

  6. Earthquake Cycle Simulations with Rate-and-State Friction and Linear and Nonlinear Viscoelasticity

    Science.gov (United States)

    Allison, K. L.; Dunham, E. M.

    2016-12-01

    We have implemented a parallel code that simultaneously models both rate-and-state friction on a strike-slip fault and off-fault viscoelastic deformation throughout the earthquake cycle in 2D. Because we allow fault slip to evolve with a rate-and-state friction law and do not impose the depth of the brittle-to-ductile transition, we are able to address: the physical processes limiting the depth of large ruptures (with hazard implications); the degree of strain localization with depth; the relative partitioning of fault slip and viscous deformation in the brittle-to-ductile transition zone; and the relative contributions of afterslip and viscous flow to postseismic surface deformation. The method uses a discretization that accommodates variable off-fault material properties, depth-dependent frictional properties, and linear and nonlinear viscoelastic rheologies. All phases of the earthquake cycle are modeled, allowing the model to spontaneously generate earthquakes, and to capture afterslip and postseismic viscous flow. We compare the effects of a linear Maxwell rheology, often used in geodetic models, with those of a nonlinear power law rheology, which laboratory data indicates more accurately represents the lower crust and upper mantle. The viscosity of the Maxwell rheology is set by power law rheological parameters with an assumed a geotherm and strain rate, producing a viscosity that exponentially decays with depth and is constant in time. In contrast, the power law rheology will evolve an effective viscosity that is a function of the temperature profile and the stress state, and therefore varies both spatially and temporally. We will also integrate the energy equation for the thermomechanical problem, capturing frictional heat generation on the fault and off-fault viscous shear heating, and allowing these in turn to alter the effective viscosity.

  7. Using support vector machines in the multivariate state estimation technique

    International Nuclear Information System (INIS)

    Zavaljevski, N.; Gross, K.C.

    1999-01-01

    One approach to validate nuclear power plant (NPP) signals makes use of pattern recognition techniques. This approach often assumes that there is a set of signal prototypes that are continuously compared with the actual sensor signals. These signal prototypes are often computed based on empirical models with little or no knowledge about physical processes. A common problem of all data-based models is their limited ability to make predictions on the basis of available training data. Another problem is related to suboptimal training algorithms. Both of these potential shortcomings with conventional approaches to signal validation and sensor operability validation are successfully resolved by adopting a recently proposed learning paradigm called the support vector machine (SVM). The work presented here is a novel application of SVM for data-based modeling of system state variables in an NPP, integrated with a nonlinear, nonparametric technique called the multivariate state estimation technique (MSET), an algorithm developed at Argonne National Laboratory for a wide range of nuclear plant applications

  8. HIV Trends in the United States: Diagnoses and Estimated Incidence.

    Science.gov (United States)

    Hall, H Irene; Song, Ruiguang; Tang, Tian; An, Qian; Prejean, Joseph; Dietz, Patricia; Hernandez, Angela L; Green, Timothy; Harris, Norma; McCray, Eugene; Mermin, Jonathan

    2017-02-03

    The best indicator of the impact of human immunodeficiency virus (HIV) prevention programs is the incidence of infection; however, HIV is a chronic infection and HIV diagnoses may include infections that occurred years before diagnosis. Alternative methods to estimate incidence use diagnoses, stage of disease, and laboratory assays of infection recency. Using a consistent, accurate method would allow for timely interpretation of HIV trends. The objective of our study was to assess the recent progress toward reducing HIV infections in the United States overall and among selected population segments with available incidence estimation methods. Data on cases of HIV infection reported to national surveillance for 2008-2013 were used to compare trends in HIV diagnoses, unadjusted and adjusted for reporting delay, and model-based incidence for the US population aged ≥13 years. Incidence was estimated using a biomarker for recency of infection (stratified extrapolation approach) and 2 back-calculation models (CD4 and Bayesian hierarchical models). HIV testing trends were determined from behavioral surveys for persons aged ≥18 years. Analyses were stratified by sex, race or ethnicity (black, Hispanic or Latino, and white), and transmission category (men who have sex with men, MSM). On average, HIV diagnoses decreased 4.0% per year from 48,309 in 2008 to 39,270 in 2013 (Pyear (Pyears, overall, the percentage of persons who ever had received an HIV test or had had a test within the past year remained stable; among MSM testing increased. For women, all 3 incidence models corroborated the decreasing trend in HIV diagnoses, and HIV diagnoses and 2 incidence models indicated decreases among blacks and whites. The CD4 and Bayesian hierarchical models, but not the stratified extrapolation approach, indicated decreases in incidence among MSM. HIV diagnoses and CD4 and Bayesian hierarchical model estimates indicated decreases in HIV incidence overall, among both sexes and all

  9. Estimating severity of sideways fall using a generic multi linear regression model based on kinematic input variables.

    Science.gov (United States)

    van der Zijden, A M; Groen, B E; Tanck, E; Nienhuis, B; Verdonschot, N; Weerdesteyn, V

    2017-03-21

    Many research groups have studied fall impact mechanics to understand how fall severity can be reduced to prevent hip fractures. Yet, direct impact force measurements with force plates are restricted to a very limited repertoire of experimental falls. The purpose of this study was to develop a generic model for estimating hip impact forces (i.e. fall severity) in in vivo sideways falls without the use of force plates. Twelve experienced judokas performed sideways Martial Arts (MA) and Block ('natural') falls on a force plate, both with and without a mat on top. Data were analyzed to determine the hip impact force and to derive 11 selected (subject-specific and kinematic) variables. Falls from kneeling height were used to perform a stepwise regression procedure to assess the effects of these input variables and build the model. The final model includes four input variables, involving one subject-specific measure and three kinematic variables: maximum upper body deceleration, body mass, shoulder angle at the instant of 'maximum impact' and maximum hip deceleration. The results showed that estimated and measured hip impact forces were linearly related (explained variances ranging from 46 to 63%). Hip impact forces of MA falls onto the mat from a standing position (3650±916N) estimated by the final model were comparable with measured values (3698±689N), even though these data were not used for training the model. In conclusion, a generic linear regression model was developed that enables the assessment of fall severity through kinematic measures of sideways falls, without using force plates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays

    International Nuclear Information System (INIS)

    Liu Yurong; Wang Zidong; Liu Xiaohui

    2008-01-01

    In this Letter, we investigate the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time neural networks are subject to the switching from one mode to another at different times according to a Markov chain, and the mixed time-delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. New techniques are developed to deal with the mixed time-delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time-delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A numerical example is exploited to show the usefulness of the derived LMI-based conditions

  11. Linear response theory for long-range interacting systems in quasistationary states.

    Science.gov (United States)

    Patelli, Aurelio; Gupta, Shamik; Nardini, Cesare; Ruffo, Stefano

    2012-02-01

    Long-range interacting systems, while relaxing to equilibrium, often get trapped in long-lived quasistationary states which have lifetimes that diverge with the system size. In this work, we address the question of how a long-range system in a quasistationary state (QSS) responds to an external perturbation. We consider a long-range system that evolves under deterministic Hamilton dynamics. The perturbation is taken to couple to the canonical coordinates of the individual constituents. Our study is based on analyzing the Vlasov equation for the single-particle phase-space distribution. The QSS represents a stable stationary solution of the Vlasov equation in the absence of the external perturbation. In the presence of small perturbation, we linearize the perturbed Vlasov equation about the QSS to obtain a formal expression for the response observed in a single-particle dynamical quantity. For a QSS that is homogeneous in the coordinate, we obtain an explicit formula for the response. We apply our analysis to a paradigmatic model, the Hamiltonian mean-field model, which involves particles moving on a circle under Hamiltonian dynamics. Our prediction for the response of three representative QSSs in this model (the water-bag QSS, the Fermi-Dirac QSS, and the Gaussian QSS) is found to be in good agreement with N-particle simulations for large N. We also show the long-time relaxation of the water-bag QSS to the Boltzmann-Gibbs equilibrium state. © 2012 American Physical Society

  12. Towards a Robust Solution of the Non-Linear Kinematics for the General Stewart Platform with Estimation of Distribution Algorithms

    Directory of Open Access Journals (Sweden)

    Eusebio Eduardo Hernández Martinez

    2013-01-01

    Full Text Available In robotics, solving the direct kinematics problem (DKP for parallel robots is very often more difficult and time consuming than for their serial counterparts. The problem is stated as follows: given the joint variables, the Cartesian variables should be computed, namely the pose of the mobile platform. Most of the time, the DKP requires solving a non-linear system of equations. In addition, given that the system could be non-convex, Newton or Quasi-Newton (Dogleg based solvers get trapped on local minima. The capacity of such kinds of solvers to find an adequate solution strongly depends on the starting point. A well-known problem is the selection of such a starting point, which requires a priori information about the neighbouring region of the solution. In order to circumvent this issue, this article proposes an efficient method to select and to generate the starting point based on probabilistic learning. Experiments and discussion are presented to show the method performance. The method successfully avoids getting trapped on local minima without the need for human intervention, which increases its robustness when compared with a single Dogleg approach. This proposal can be extended to other structures, to any non-linear system of equations, and of course, to non-linear optimization problems.

  13. Ground states of linear rotor chains via the density matrix renormalization group

    Science.gov (United States)

    Iouchtchenko, Dmitri; Roy, Pierre-Nicholas

    2018-04-01

    In recent years, experimental techniques have enabled the creation of ultracold optical lattices of molecules and endofullerene peapod nanomolecular assemblies. It was previously suggested that the rotor model resulting from the placement of dipolar linear rotors in one-dimensional lattices at low temperature has a transition between ordered and disordered phases. We use the density matrix renormalization group (DMRG) to compute ground states of chains of up to 100 rotors and provide further evidence of the phase transition in the form of a diverging entanglement entropy. We also propose two methods and present some first steps toward rotational spectra of such molecular assemblies using DMRG. The present work showcases the power of DMRG in this new context of interacting molecular rotors and opens the door to the study of fundamental questions regarding criticality in systems with continuous degrees of freedom.

  14. Investigations and Simulations of All optical Switches in linear state Based on Photonic Crystal Directional Coupler

    Directory of Open Access Journals (Sweden)

    S. Maktoobi

    2014-10-01

    Full Text Available Switching is a principle process in digital computers and signal processing systems. The growth of optical signal processing systems, draws particular attention to design of ultra-fast optical switches. In this paper, All Optical Switches in linear state Based On photonic crystal Directional coupler is analyzed and simulated. Among different methods, the finite difference time domain method (FDTD is a preferable method and is used. We have studied the application of photonic crystal lattices, the physics of optical switching and photonic crystal Directional coupler. In this paper, Electric field intensity and the power output that are two factors to improve the switching performance and the device efficiency are investigated and simulated. All simulations are performed by COMSOL software.

  15. Enhanced Performance Controller Design for Stochastic Systems by Adding Extra State Estimation onto the Existing Closed Loop Control

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuyang; Zhang, Qichun; Wang, Hong

    2016-08-30

    To enhance the performance of the tracking property , this paper presents a novel control algorithm for a class of linear dynamic stochastic systems with unmeasurable states, where the performance enhancement loop is established based on Kalman filter. Without changing the existing closed loop with the PI controller, the compensative controller is designed to minimize the variances of the tracking errors using the estimated states and the propagation of state variances. Moreover, the stability of the closed-loop systems has been analyzed in the mean-square sense. A simulated example is included to show the effectiveness of the presented control algorithm, where encouraging results have been obtained.

  16. Projective Synchronization of N-Dimensional Chaotic Fractional-Order Systems via Linear State Error Feedback Control

    Directory of Open Access Journals (Sweden)

    Baogui Xin

    2012-01-01

    Full Text Available Based on linear feedback control technique, a projective synchronization scheme of N-dimensional chaotic fractional-order systems is proposed, which consists of master and slave fractional-order financial systems coupled by linear state error variables. It is shown that the slave system can be projectively synchronized with the master system constructed by state transformation. Based on the stability theory of linear fractional order systems, a suitable controller for achieving synchronization is designed. The given scheme is applied to achieve projective synchronization of chaotic fractional-order financial systems. Numerical simulations are given to verify the effectiveness of the proposed projective synchronization scheme.

  17. A guide to developing resource selection functions from telemetry data using generalized estimating equations and generalized linear mixed models

    Directory of Open Access Journals (Sweden)

    Nicola Koper

    2012-03-01

    Full Text Available Resource selection functions (RSF are often developed using satellite (ARGOS or Global Positioning System (GPS telemetry datasets, which provide a large amount of highly correlated data. We discuss and compare the use of generalized linear mixed-effects models (GLMM and generalized estimating equations (GEE for using this type of data to develop RSFs. GLMMs directly model differences among caribou, while GEEs depend on an adjustment of the standard error to compensate for correlation of data points within individuals. Empirical standard errors, rather than model-based standard errors, must be used with either GLMMs or GEEs when developing RSFs. There are several important differences between these approaches; in particular, GLMMs are best for producing parameter estimates that predict how management might influence individuals, while GEEs are best for predicting how management might influence populations. As the interpretation, value, and statistical significance of both types of parameter estimates differ, it is important that users select the appropriate analytical method. We also outline the use of k-fold cross validation to assess fit of these models. Both GLMMs and GEEs hold promise for developing RSFs as long as they are used appropriately.

  18. The Wigner-Ville Distribution Based on the Linear Canonical Transform and Its Applications for QFM Signal Parameters Estimation

    Directory of Open Access Journals (Sweden)

    Yu-E Song

    2014-01-01

    Full Text Available The Wigner-Ville distribution (WVD based on the linear canonical transform (LCT (WDL not only has the advantages of the LCT but also has the good properties of WVD. In this paper, some new and important properties of the WDL are derived, and the relationships between WDL and some other time-frequency distributions are discussed, such as the ambiguity function based on LCT (LCTAF, the short-time Fourier transform (STFT, and the wavelet transform (WT. The WDLs of some signals are also deduced. A novel definition of the WVD based on the LCT and generalized instantaneous autocorrelation function (GWDL is proposed and its applications in the estimation of parameters for QFM signals are also discussed. The GWDL of the QFM signal generates an impulse and the third-order phase coefficient of QFM signal can be estimated in accordance with the position information of such impulse. The proposed algorithm is fast because it only requires 1-dimensional maximization. Also the new algorithm only has fourth-order nonlinearity thus it has accurate estimation and low signal-to-noise ratio (SNR threshold. The simulation results are provided to support the theoretical results.

  19. Estimated use of water in the United States, 1960

    Science.gov (United States)

    MacKichan, K.A.; Kammerer, J.C.

    1961-01-01

    The estimated overage withdrawal use of water in the United States during 1960 was almost 270,000 mgd (million gallons per day), exclusive of water used to develop water power. This estimated use amounts to about 1,500 gpd (galIons per day) per capita. An additional 2,000,000 mgd were used to develop waterpower.Withdrawal use of water requires that the water be removed from the ground or diverted from a stream or lake. In this report the use is divided into five types: public supplies, rural, irrigation, self-supplied industrial, and waterpower. Consumptive use of water is the quantity discharged to the atmosphere or incorporated in the products of the process in which it was used. Only 61,000 mgd of the 270,000 mgd withdrawn was consumed.Of the water withdrawn in 1960, 220,000 mgd (including irrigation conveyance losses) was taken from surface sources and 47,000 from underground sources. Withdrawal of water for uses other than waterpower has increased 12 percent since 1955. The amount of water used for generation of waterpower has! increased 33 percent since 1955. The use of saline water was almost twice as great in 1960 as in 1955.The upper limit of our water supply is the average annual runoff, nearly 1,200,000 mgd. The supply in 1960 was depleted by 61,000 mgd, the amount of water consumed. However, a large part of the water withdrawn but not consumed was deteriorated in quality.

  20. Information-geometric measures estimate neural interactions during oscillatory brain states

    Directory of Open Access Journals (Sweden)

    Yimin eNie

    2014-02-01

    Full Text Available The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG, a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits various oscillations depending on cognitive demands or when an animal is asleep. Therefore, the investigation of the IG measures during oscillatory network states is important for testing how the IG method can be applied to real neural data. Using model networks of binary neurons or more realistic spiking neurons, we studied how the single- and pairwise-IG measures were influenced by oscillatory neural activity. Two general oscillatory mechanisms, externally driven oscillations and internally induced oscillations, were considered. In both mechanisms, we found that the single-IG measure was linearly related to the magnitude of the external input, and that the pairwise-IG measure was linearly related to the sum of connection strengths between two neurons. We also observed that the pairwise-IG measure was not dependent on the oscillation frequency. These results are consistent with the previous findings that were obtained under the equilibrium conditions. Therefore, we demonstrate that the IG method provides useful insights into neural interactions under the oscillatory condition that can often be observed in the real brain.

  1. Estimation of hull girder vertical bending moments including non-linear and flexibility effects using closed form expressions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Jensen, Jørgen Juncher

    2009-01-01

    A simple but rational procedure for prediction of extreme wave-induced hull girder bending moment is presented. The procedure takes into account main ship hull characteristics such as: length, breadth, draught, block coefficient, bow flare coefficient, forward speed and hull flexibility. The wave......-linear strip theory calculations and supplemented with new closed form results for the hogging bending moment. Focus is on the extreme hull girder hogging bending moment. Due to the few input parameters this procedure can be used to estimate the wave-induced bending moments at the conceptual design phase....... Another application area is for novel single hull ship types not presently covered by the rules of the classification societies. As one application example the container ship M/S Napoli is considered....

  2. Quasi-closed phase forward-backward linear prediction analysis of speech for accurate formant detection and estimation.

    Science.gov (United States)

    Gowda, Dhananjaya; Airaksinen, Manu; Alku, Paavo

    2017-09-01

    Recently, a quasi-closed phase (QCP) analysis of speech signals for accurate glottal inverse filtering was proposed. However, the QCP analysis which belongs to the family of temporally weighted linear prediction (WLP) methods uses the conventional forward type of sample prediction. This may not be the best choice especially in computing WLP models with a hard-limiting weighting function. A sample selective minimization of the prediction error in WLP reduces the effective number of samples available within a given window frame. To counter this problem, a modified quasi-closed phase forward-backward (QCP-FB) analysis is proposed, wherein each sample is predicted based on its past as well as future samples thereby utilizing the available number of samples more effectively. Formant detection and estimation experiments on synthetic vowels generated using a physical modeling approach as well as natural speech utterances show that the proposed QCP-FB method yields statistically significant improvements over the conventional linear prediction and QCP methods.

  3. Estimation of transition doses for human glioblastoma, neuroblastoma and prostate cell lines using the linear-quadratic formalism

    Directory of Open Access Journals (Sweden)

    John Akudugu

    2015-09-01

    Full Text Available Purpose: The introduction of stereotactic radiotherapy has raised concerns regarding the use of the linear-quadratic (LQ model for predicting radiation response for large fractional doses. To partly address this issue, a transition dose D* below which the LQ model retains its predictive strength has been proposed. Estimates of D* which depends on the a, β, and D0 parameters are much lower than fractional doses typically encountered in stereotactic radiotherapy. D0, often referred to as the final slope of the cell survival curve, is thought to be constant. In vitro cell survival curves generally extend over the first few logs of cell killing, where D0-values derived from the multi-target formalism may be overestimated and can lead to low transition doses. Methods:  D0-values were calculated from first principles for each decade of cell killing, using experimentally-determined a and β parameters for 17 human glioblastoma, neuroblastoma, and prostate cell lines, and corresponding transition doses were derived.Results: D0 was found to decrease exponentially with cell killing. Using D0-values at cell surviving fractions of the order of 10-10 yielded transition doses ~3-fold higher than those obtained from D0-values obtained from conventional approaches. D* was found to increase from 7.84 ± 0.56, 8.91 ± 1.20, and 6.55 ± 0.91 Gy to 26.84 ± 2.83, 23.95 ± 2.03, and 22.49 ± 2.31 Gy for the glioblastoma, neuroblastoma, and prostate cell lines, respectively. Conclusion: These findings suggest that the linear-quadratic formalism might be valid for estimating the effect of stereotactic radiotherapy with fractional doses in excess of 20 Gy.

  4. National scale biomass estimators for United States tree species

    Science.gov (United States)

    Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey

    2003-01-01

    Estimates of national-scale forest carbon (C) stocks and fluxes are typically based on allometric regression equations developed using dimensional analysis techniques. However, the literature is inconsistent and incomplete with respect to large-scale forest C estimation. We compiled all available diameter-based allometric regression equations for estimating total...

  5. Estimated use of water in the United States in 2015

    Science.gov (United States)

    Dieter, Cheryl A.; Maupin, Molly A.; Caldwell, Rodney R.; Harris, Melissa A.; Ivahnenko, Tamara I.; Lovelace, John K.; Barber, Nancy L.; Linsey, Kristin S.

    2018-06-19

    Water use in the United States in 2015 was estimated to be about 322 billion gallons per day (Bgal/d), which was 9 percent less than in 2010. The 2015 estimates put total withdrawals at the lowest level since before 1970, following the same overall trend of decreasing total withdrawals observed from 2005 to 2010. Freshwater withdrawals were 281 Bgal/d, or 87 percent of total withdrawals, and saline-water withdrawals were 41.0 Bgal/d, or 13 percent of total withdrawals. Fresh surface-water withdrawals (198 Bgal/d) were 14 percent less than in 2010, and fresh groundwater withdrawals (82.3 Bgal/day) were about 8 percent greater than in 2010. Saline surface-water withdrawals were 38.6 Bgal/d, or 14 percent less than in 2010. Total saline groundwater withdrawals in 2015 were 2.34 Bgal/d, mostly for mining use.Thermoelectric power and irrigation remained the two largest uses of water in 2015, and total withdrawals decreased for thermoelectric power but increased for irrigation. With­drawals in 2015 for thermoelectric power were 18 percent less and withdrawals for irrigation were 2 percent greater than in 2010. Similarly, other uses showed reductions compared to 2010, specifically public supply (–7 percent), self-supplied domestic (–8 percent), self-supplied industrial (–9 percent), and aquaculture (–16 percent). In addition to irrigation (2 percent), mining (1 percent) reported larger withdrawals in 2015 than in 2010. Livestock withdrawals remained essentially the same in 2015 compared to 2010 (0 percent change). Thermoelectric power, irrigation, and public-supply withdrawals accounted for 90 percent of total withdrawals in 2015.Withdrawals for thermoelectric power were 133 Bgal/d in 2015 and represented the lowest levels since before 1970. Surface-water withdrawals accounted for more than 99 percent of total thermoelectric-power withdrawals, and 72 percent of those surface-water withdrawals were from freshwater sources. Saline surface-water withdrawals for

  6. Joint estimation over multiple individuals improves behavioural state inference from animal movement data.

    Science.gov (United States)

    Jonsen, Ian

    2016-02-08

    State-space models provide a powerful way to scale up inference of movement behaviours from individuals to populations when the inference is made across multiple individuals. Here, I show how a joint estimation approach that assumes individuals share identical movement parameters can lead to improved inference of behavioural states associated with different movement processes. I use simulated movement paths with known behavioural states to compare estimation error between nonhierarchical and joint estimation formulations of an otherwise identical state-space model. Behavioural state estimation error was strongly affected by the degree of similarity between movement patterns characterising the behavioural states, with less error when movements were strongly dissimilar between states. The joint estimation model improved behavioural state estimation relative to the nonhierarchical model for simulated data with heavy-tailed Argos location errors. When applied to Argos telemetry datasets from 10 Weddell seals, the nonhierarchical model estimated highly uncertain behavioural state switching probabilities for most individuals whereas the joint estimation model yielded substantially less uncertainty. The joint estimation model better resolved the behavioural state sequences across all seals. Hierarchical or joint estimation models should be the preferred choice for estimating behavioural states from animal movement data, especially when location data are error-prone.

  7. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-01-01

    the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time

  8. Ensemble Kalman Filtering with Residual Nudging: An Extension to State Estimation Problems with Nonlinear Observation Operators

    KAUST Repository

    Luo, Xiaodong

    2014-10-01

    The ensemble Kalman filter (EnKF) is an efficient algorithm for many data assimilation problems. In certain circumstances, however, divergence of the EnKF might be spotted. In previous studies, the authors proposed an observation-space-based strategy, called residual nudging, to improve the stability of the EnKF when dealing with linear observation operators. The main idea behind residual nudging is to monitor and, if necessary, adjust the distances (misfits) between the real observations and the simulated ones of the state estimates, in the hope that by doing so one may be able to obtain better estimation accuracy. In the present study, residual nudging is extended and modified in order to handle nonlinear observation operators. Such extension and modification result in an iterative filtering framework that, under suitable conditions, is able to achieve the objective of residual nudging for data assimilation problems with nonlinear observation operators. The 40-dimensional Lorenz-96 model is used to illustrate the performance of the iterative filter. Numerical results show that, while a normal EnKF may diverge with nonlinear observation operators, the proposed iterative filter remains stable and leads to reasonable estimation accuracy under various experimental settings.

  9. Estimated incidence of pertussis in people aged <50 years in the United States

    Science.gov (United States)

    Chen, Chi-Chang; Balderston McGuiness, Catherine; Krishnarajah, Girishanthy; Blanchette, Christopher M.; Wang, Yuanyuan; Sun, Kainan; Buck, Philip O.

    2016-01-01

    ABSTRACT The introduction of pertussis vaccination in the United States (US) in the 1940s has greatly reduced its burden. However, the incidence of pertussis is difficult to quantify, as many cases are not laboratory-confirmed or reported, particularly in adults. This study estimated pertussis incidence in a commercially insured US population aged pertussis or cough illness using International Classification of Diseases (ICD-9) codes, a commercial outpatient laboratory database for patients with a pertussis laboratory test, and the Centers for Disease Control influenza surveillance database. US national pertussis incidence was projected using 3 methods: (1) diagnosed pertussis, defined as a claim for pertussis (ICD-9 033.0, 033.9, 484.3) during 2008–2013; (2) based on proxy pertussis predictive logistic regression models; (3) using the fraction of cough illness (ICD-9 033.0, 033.9, 484.3, 786.2, 466.0, 466.1, 487.1) attributed to laboratory-confirmed pertussis, estimated by time series linear regression models. Method 1 gave a projected annual incidence of diagnosed pertussis of 9/100,000, which was highest in those aged pertussis of 649/100,000, approximately 58–93 times higher than method 1 depending on the year. These estimations, which are consistent with considerable underreporting of pertussis in people aged pertussis burden. PMID:27246119

  10. Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation.

    Directory of Open Access Journals (Sweden)

    Luigi Capoferri

    Full Text Available Prediction of human Cytochrome P450 (CYP binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, the accuracy of global quantitative models for CYP substrate binding or inhibition based on traditional molecular descriptors can be limited, because of the lack of information on the structure and flexibility of the catalytic site of CYPs. Here we describe the application of a method that combines protein-ligand docking, Molecular Dynamics (MD simulations and Linear Interaction Energy (LIE theory, to allow for quantitative CYP affinity prediction. Using this combined approach, a LIE model for human CYP 1A2 was developed and evaluated, based on a structurally diverse dataset for which the estimated experimental uncertainty was 3.3 kJ mol-1. For the computed CYP 1A2 binding affinities, the model showed a root mean square error (RMSE of 4.1 kJ mol-1 and a standard error in prediction (SDEP in cross-validation of 4.3 kJ mol-1. A novel approach that includes information on both structural ligand description and protein-ligand interaction was developed for estimating the reliability of predictions, and was able to identify compounds from an external test set with a SDEP for the predicted affinities of 4.6 kJ mol-1 (corresponding to 0.8 pKi units.

  11. A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Zhao, Jiyun; Ji, Dongxu; Tseng, King Jet

    2017-01-01

    Highlights: •SOC and capacity are dually estimated with online adapted battery model. •Model identification and state dual estimate are fully decoupled. •Multiple timescales are used to improve estimation accuracy and stability. •The proposed method is verified with lab-scale experiments. •The proposed method is applicable to different battery chemistries. -- Abstract: Reliable online estimation of state of charge (SOC) and capacity is critically important for the battery management system (BMS). This paper presents a multi-timescale method for dual estimation of SOC and capacity with an online identified battery model. The model parameter estimator and the dual estimator are fully decoupled and executed with different timescales to improve the model accuracy and stability. Specifically, the model parameters are online adapted with the vector-type recursive least squares (VRLS) to address the different variation rates of them. Based on the online adapted battery model, the Kalman filter (KF)-based SOC estimator and RLS-based capacity estimator are formulated and integrated in the form of dual estimation. Experimental results suggest that the proposed method estimates the model parameters, SOC, and capacity in real time with fast convergence and high accuracy. Experiments on both lithium-ion battery and vanadium redox flow battery (VRB) verify the generality of the proposed method on multiple battery chemistries. The proposed method is also compared with other existing methods on the computational cost to reveal its superiority for practical application.

  12. Steady-state evoked potentials possibilities for mental-state estimation

    Science.gov (United States)

    Junker, Andrew M.; Schnurer, John H.; Ingle, David F.; Downey, Craig W.

    1988-01-01

    The use of the human steady-state evoked potential (SSEP) as a possible measure of mental-state estimation is explored. A method for evoking a visual response to a sum-of-ten sine waves is presented. This approach provides simultaneous multiple frequency measurements of the human EEG to the evoking stimulus in terms of describing functions (gain and phase) and remnant spectra. Ways in which these quantities vary with the addition of performance tasks (manual tracking, grammatical reasoning, and decision making) are presented. Models of the describing function measures can be formulated using systems engineering technology. Relationships between model parameters and performance scores during manual tracking are discussed. Problems of unresponsiveness and lack of repeatability of subject responses are addressed in terms of a need for loop closure of the SSEP. A technique to achieve loop closure using a lock-in amplifier approach is presented. Results of a study designed to test the effectiveness of using feedback to consciously connect humans to their evoked response are presented. Findings indicate that conscious control of EEG is possible. Implications of these results in terms of secondary tasks for mental-state estimation and brain actuated control are addressed.

  13. State estimation for neural neutral-type networks with mixed time-varying delays and Markovian jumping parameters

    International Nuclear Information System (INIS)

    Lakshmanan, S.; Park, Ju H.; Jung, H. Y.; Balasubramaniam, P.

    2012-01-01

    This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed time-varying delays and Markovian jumping parameters. The addressed neural networks have a finite number of modes, and the modes may jump from one to another according to a Markov process. By construction of a suitable Lyapunov—Krasovskii functional, a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square. The criterion is formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages

  14. Área foliar de duas trepadeiras infestantes de cana-de-açúcar utilizando dimensões lineares de folhas Foliar area estimate of two sugarcane-infesting weeds using leaf blade linear dimensions

    Directory of Open Access Journals (Sweden)

    N.P. Cardozo

    2009-01-01

    Full Text Available Esta pesquisa teve como objetivo obter uma equação, por meio de medidas lineares dimensionais das folhas, que permitisse a estimativa da área foliar de Momordica charantia e Pyrostegia venusta. Entre maio e dezembro de 2007, foram estudadas as correlações entre a área folia real (Sf e as medidas dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C e a largura máxima (L perpendicular à nervura principal. Todas as equações, exponenciais geométricas ou lineares simples, permitiram boas estimativas da área foliar. Do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de Momordica charantia pode ser feita pela fórmula Sf = 0,4963 x (C x L, e a de Pyrostegia venusta, por Sf = 0,6649 x (C x L.The aim of this study was to obtain a mathematical equation to estimate the leaf area of Momordica charantia and Pyrostegia venusta using linear leaf blade measurements. Correlation studies were conducted involving real leaf area (Sf and leaf length (C, maximum leaf width (L and C x L. The linear and geometric equations involving parameter C provided good leaf area estimates. From a practical viewpoint, the simple linear equation of the regression model is suggested using the C x L parameter, i.e., considering the linear coefficient equal to zero. Thus, leaf area estimate of Momordica charantia can be obtained by using the equation Sf = 0.4963 x (C x L, and that of Pyrostegia venusta by using equation Sf = 0.6649 x (C x L.

  15. Scaling behavior of ground-state energy cluster expansion for linear polyenes

    Science.gov (United States)

    Griffin, L. L.; Wu, Jian; Klein, D. J.; Schmalz, T. G.; Bytautas, L.

    Ground-state energies for linear-chain polyenes are additively expanded in a sequence of terms for chemically relevant conjugated substructures of increasing size. The asymptotic behavior of the large-substructure limit (i.e., high-polymer limit) is investigated as a means of characterizing the rapidity of convergence and consequent utility of this energy cluster expansion. Consideration is directed to computations via: simple Hückel theory, a refined Hückel scheme with geometry optimization, restricted Hartree-Fock self-consistent field (RHF-SCF) solutions of fixed bond-length Parisier-Parr-Pople (PPP)/Hubbard models, and ab initio SCF approaches with and without geometry optimization. The cluster expansion in what might be described as the more "refined" approaches appears to lead to qualitatively more rapid convergence: exponentially fast as opposed to an inverse power at the simple Hückel or SCF-Hubbard levels. The substructural energy cluster expansion then seems to merit special attention. Its possible utility in making accurate extrapolations from finite systems to extended polymers is noted.

  16. Thermal stress state of laminated shells of revolution made of isotropic and linearly orthotropic materials

    International Nuclear Information System (INIS)

    Savchenko, V.G.

    1995-01-01

    In this investigation, we will use a cylindrical coordinate system to study the stress state of laminated shells of revolution made of inelastically deforming isotropic materials and elastic materials with linear orthotropy. One of the principal directions of anisotropy coincides with the axis of revolution of the body. The shells will be subjected to nonaxisymmetric loading by body bar K (K Z , K r , K var-phi ) and surface bar t n (t nz , t nr , t nvar-phi ) forces and heating. The level of loading is such that the rheological properties of the materials of the layers are not a factor, although their thermomechanical characteristics depend on temperature. In addition, the loading and heating of the body occur in such a way that simple (or close to simple) deformation processes take place in its isotropic elements. These processes are accompanied by inelastic strains and the formation of unloading regions in which plastic strains having the sign opposite the initial strains develop. It is assumed that the layers of the body are secured to one another without interference and that conditions corresponding to ideal contact prevail at their interfaces

  17. The Parkinsonian Subthalamic Network: Measures of Power, Linear, and Non-linear Synchronization and their Relationship to L-DOPA Treatment and OFF State Motor Severity.

    Science.gov (United States)

    West, Timothy; Farmer, Simon; Berthouze, Luc; Jha, Ashwani; Beudel, Martijn; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir

    2016-01-01

    In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN) during Parkinson's disease (PD). We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS)- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs) taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5-12 Hz) band power in response to L-DOPA treatment, whilst low beta band power (15-20 Hz) band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was evidence for its modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although, the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics.

  18. Efficient multiple-trait association and estimation of genetic correlation using the matrix-variate linear mixed model.

    Science.gov (United States)

    Furlotte, Nicholas A; Eskin, Eleazar

    2015-05-01

    Multiple-trait association mapping, in which multiple traits are used simultaneously in the identification of genetic variants affecting those traits, has recently attracted interest. One class of approaches for this problem builds on classical variance component methodology, utilizing a multitrait version of a linear mixed model. These approaches both increase power and provide insights into the genetic architecture of multiple traits. In particular, it is possible to estimate the genetic correlation, which is a measure of the portion of the total correlation between traits that is due to additive genetic effects. Unfortunately, the practical utility of these methods is limited since they are computationally intractable for large sample sizes. In this article, we introduce a reformulation of the multiple-trait association mapping approach by defining the matrix-variate linear mixed model. Our approach reduces the computational time necessary to perform maximum-likelihood inference in a multiple-trait model by utilizing a data transformation. By utilizing a well-studied human cohort, we show that our approach provides more than a 10-fold speedup, making multiple-trait association feasible in a large population cohort on the genome-wide scale. We take advantage of the efficiency of our approach to analyze gene expression data. By decomposing gene coexpression into a genetic and environmental component, we show that our method provides fundamental insights into the nature of coexpressed genes. An implementation of this method is available at http://genetics.cs.ucla.edu/mvLMM. Copyright © 2015 by the Genetics Society of America.

  19. State and parameter estimation of state-space model with entry-wise correlated uniform noise

    Czech Academy of Sciences Publication Activity Database

    Pavelková, Lenka; Kárný, Miroslav

    2014-01-01

    Roč. 28, č. 11 (2014), s. 1189-1205 ISSN 0890-6327 R&D Projects: GA TA ČR TA01030123; GA ČR GA13-13502S Institutional research plan: CEZ:AV0Z1075907 Keywords : state-space models * bounded noise * filtering problems * estimation algorithms * uncertain dynamic systems Subject RIV: BC - Control Systems Theory Impact factor: 1.346, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/pavelkova-0422958.pdf

  20. Online State Space Model Parameter Estimation in Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Z. Gallehdari

    2014-06-01

    The suggested approach is evaluated for a sample synchronous machine model. Estimated parameters are tested for different inputs at different operating conditions. The effect of noise is also considered in this study. Simulation results show that the proposed approach provides good accuracy for parameter estimation.

  1. Particle filter based MAP state estimation: A comparison

    NARCIS (Netherlands)

    Saha, S.; Boers, Y.; Driessen, J.N.; Mandal, Pranab K.; Bagchi, Arunabha

    2009-01-01

    MAP estimation is a good alternative to MMSE for certain applications involving nonlinear non Gaussian systems. Recently a new particle filter based MAP estimator has been derived. This new method extracts the MAP directly from the output of a running particle filter. In the recent past, a Viterbi

  2. Estimation of lung motion fields in 4D CT data by variational non-linear intensity-based registration: A comparison and evaluation study

    International Nuclear Information System (INIS)

    Werner, René; Schmidt-Richberg, Alexander; Handels, Heinz; Ehrhardt, Jan

    2014-01-01

    Accurate and robust estimation of motion fields in respiration-correlated CT (4D CT) images, usually performed by non-linear registration of the temporal CT frames, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported diagnostics and treatment planning. In this work, we present a comprehensive comparison and evaluation study of non-linear registration variants applied to the task of lung motion estimation in thoracic 4D CT data. In contrast to existing multi-institutional comparison studies (e.g. MIDRAS and EMPIRE10), we focus on the specific but common class of variational intensity-based non-parametric registration and analyze the impact of the different main building blocks of the underlying optimization problem: the distance measure to be minimized, the regularization approach and the transformation space considered during optimization. In total, 90 different combinations of building block instances are compared. Evaluated on proprietary and publicly accessible 4D CT images, landmark-based registration errors (TRE) between 1.14 and 1.20 mm for the most accurate registration variants demonstrate competitive performance of the applied general registration framework compared to other state-of-the-art approaches for lung CT registration. Although some specific trends can be observed, effects of interchanging individual instances of the building blocks on the TRE are in general rather small (no single outstanding registration variant existing); the same level of accuracy is, however, associated with significantly different degrees of motion field smoothness and computational demands. Consequently, the building block combination of choice will depend on application-specific requirements on motion field characteristics. (paper)

  3. A novel Gaussian model based battery state estimation approach: State-of-Energy

    International Nuclear Information System (INIS)

    He, HongWen; Zhang, YongZhi; Xiong, Rui; Wang, Chun

    2015-01-01

    Highlights: • The Gaussian model is employed to construct a novel battery model. • The genetic algorithm is used to implement model parameter identification. • The AIC is used to decide the best hysteresis order of the battery model. • A novel battery SoE estimator is proposed and verified by two kinds of batteries. - Abstract: State-of-energy (SoE) is a very important index for battery management system (BMS) used in electric vehicles (EVs), it is indispensable for ensuring safety and reliable operation of batteries. For achieving battery SoE accurately, the main work can be summarized in three aspects. (1) In considering that different kinds of batteries show different open circuit voltage behaviors, the Gaussian model is employed to construct the battery model. What is more, the genetic algorithm is employed to locate the optimal parameter for the selecting battery model. (2) To determine an optimal tradeoff between battery model complexity and prediction precision, the Akaike information criterion (AIC) is used to determine the best hysteresis order of the combined battery model. Results from a comparative analysis show that the first-order hysteresis battery model is thought of being the best based on the AIC values. (3) The central difference Kalman filter (CDKF) is used to estimate the real-time SoE and an erroneous initial SoE is considered to evaluate the robustness of the SoE estimator. Lastly, two kinds of lithium-ion batteries are used to verify the proposed SoE estimation approach. The results show that the maximum SoE estimation error is within 1% for both LiFePO 4 and LiMn 2 O 4 battery datasets

  4. Methodology for estimating soil carbon for the forest carbon budget model of the United States, 2001

    Science.gov (United States)

    L. S. Heath; R. A. Birdsey; D. W. Williams

    2002-01-01

    The largest carbon (C) pool in United States forests is the soil C pool. We present methodology and soil C pool estimates used in the FORCARB model, which estimates and projects forest carbon budgets for the United States. The methodology balances knowledge, uncertainties, and ease of use. The estimates are calculated using the USDA Natural Resources Conservation...

  5. A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm

    International Nuclear Information System (INIS)

    Lin, Cheng; Mu, Hao; Xiong, Rui; Shen, Weixiang

    2016-01-01

    Highlights: • A novel multi-model probability battery SOC fusion estimation approach was proposed. • The linear matrix inequality-based H∞ technique is employed to estimate the SOC. • The Bayes theorem has been employed to realize the optimal weight for the fusion. • The robustness of the proposed approach is verified by different batteries. • The results show that the proposed method can promote global estimation accuracy. - Abstract: Due to the strong nonlinearity and complex time-variant property of batteries, the existing state of charge (SOC) estimation approaches based on a single equivalent circuit model (ECM) cannot provide the accurate SOC for the entire discharging period. This paper aims to present a novel SOC estimation approach based on a multiple ECMs fusion method for improving the practical application performance. In the proposed approach, three battery ECMs, namely the Thevenin model, the double polarization model and the 3rd order RC model, are selected to describe the dynamic voltage of lithium-ion batteries and the genetic algorithm is then used to determine the model parameters. The linear matrix inequality-based H-infinity technique is employed to estimate the SOC from the three models and the Bayes theorem-based probability method is employed to determine the optimal weights for synthesizing the SOCs estimated from the three models. Two types of lithium-ion batteries are used to verify the feasibility and robustness of the proposed approach. The results indicate that the proposed approach can improve the accuracy and reliability of the SOC estimation against uncertain battery materials and inaccurate initial states.

  6. Lifetime estimates of a fusion reactor first wall by linear damage summation and strain range partitioning methods

    International Nuclear Information System (INIS)

    Liu, K.C.; Grossbeck, M.L.

    1979-01-01

    A generalized model of a first wall made of 20% cold-worked steel was examined for neutron wall loadings ranging from 2 to 5 MW/m 2 . A spectrum of simplified on-off duty cycles was assumed with a 95% burn time. Independent evaluations of cyclic lifetimes were based on two methods: the method of linear damage summation currently being employed for use in ASME high-temperature design Code Case N-47 and that of strain range partitioning being studied for inclusion in the design code. An important point is that the latter method can incorporate a known decrease in ductility for materials subject to irradiation as a parameter, so low-cycle fatigue behavior can be estimated for irradiated material. Lifetimes predicted by the two methods agree reasonably well despite their diversity in concept. Lack of high-cycle fatigue data for the material tested at temperatures within the range of our interest precludes making conclusions on the accuracy of the predicted results, but such data are forthcoming. The analysis includes stress relaxation due to thermal and irradiation-induced creep. Reduced ductility values from irradiations that simulate the environment of the first wall of a fusion reactor were used to estimate the lifetime of the first wall under irradiation. These results indicate that 20% cold-worked type 316 stainless steel could be used as a first-wall material meeting a 8 to 10 MW-year/m 2 lifetime goal for a neutron wall loading of about 2 MW-year/m 2 and a maximum temperature of about 500 0 C

  7. Dominant root locus in state estimator design for material flow processes: A case study of hot strip rolling.

    Science.gov (United States)

    Fišer, Jaromír; Zítek, Pavel; Skopec, Pavel; Knobloch, Jan; Vyhlídal, Tomáš

    2017-05-01

    The purpose of the paper is to achieve a constrained estimation of process state variables using the anisochronic state observer tuned by the dominant root locus technique. The anisochronic state observer is based on the state-space time delay model of the process. Moreover the process model is identified not only as delayed but also as non-linear. This model is developed to describe a material flow process. The root locus technique combined with the magnitude optimum method is utilized to investigate the estimation process. Resulting dominant roots location serves as a measure of estimation process performance. The higher the dominant (natural) frequency in the leftmost position of the complex plane the more enhanced performance with good robustness is achieved. Also the model based observer control methodology for material flow processes is provided by means of the separation principle. For demonstration purposes, the computer-based anisochronic state observer is applied to the strip temperatures estimation in the hot strip finishing mill composed of seven stands. This application was the original motivation to the presented research. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries

    International Nuclear Information System (INIS)

    Ng, Kong Soon; Moo, Chin-Sien; Chen, Yi-Ping; Hsieh, Yao-Ching

    2009-01-01

    The coulomb counting method is expedient for state-of-charge (SOC) estimation of lithium-ion batteries with high charging and discharging efficiencies. The charging and discharging characteristics are investigated and reveal that the coulomb counting method is convenient and accurate for estimating the SOC of lithium-ion batteries. A smart estimation method based on coulomb counting is proposed to improve the estimation accuracy. The corrections are made by considering the charging and operating efficiencies. Furthermore, the state-of-health (SOH) is evaluated by the maximum releasable capacity. Through the experiments that emulate practical operations, the SOC estimation method is verified to demonstrate the effectiveness and accuracy.

  9. Linear Programming in the economic estimate of livestock-crop integration: application to a Brazilian dairy farm

    Directory of Open Access Journals (Sweden)

    Augusto Hauber Gameiro

    2016-04-01

    Full Text Available ABSTRACT A linear programming mathematical model was applied to a representative dairy farm located in Brazil. The results showed that optimization models are relevant tools to assist in the planning and management of agricultural production, as well as to assist in estimating potential gains from the use of integrated systems. Diversification was a necessary condition for economic viability. A total cost reduction potential of about 30% was revealed when a scenario of lower levels of diversification was contrasted to one of higher levels. Technical complementarities proved to be important sources of economies. The possibility of reusing nitrogen, phosphorus, and potassium present in animal waste could be increased to 167%, while water reuse could be increased up to 150%. In addition to economic gains, integrated systems bring benefits to the environment, especially with reference to the reuse of resources. The cost dilution of fixed production factors can help economies of scope to be achieved. However, this does not seem to have been the main source of these benefits. Still, the percentage of land use could increase up to 30.7% when the lowest and the highest diversification scenarios were compared. The labor coefficient could have a 4.3 percent increase. Diversification also leads to drastic transaction cost reductions.

  10. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process

    Science.gov (United States)

    Galindo, I.; Romero, M. C.; Sánchez, N.; Morales, J. M.

    2016-06-01

    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures.

  11. State and Substate Estimates of Nonmedical Use of Prescription Pain Relievers

    Science.gov (United States)

    ... with other local area data to enhance statistical power and analytic capability. 10 Delete Template National, Regional, and State Estimates In this section, estimates of past year nonmedical use of prescription pain relievers among people aged 12 or older are ...

  12. Estimates of the Resident Nonimmigrant Population in the United States: 2008

    Data.gov (United States)

    Department of Homeland Security — This report presents estimates on the size and characteristics of the resident nonimmigrant population in the United States in 2008.1 The estimates were based on...

  13. Two-component fluid membranes near repulsive walls: Linearized hydrodynamics of equilibrium and nonequilibrium states.

    Science.gov (United States)

    Sankararaman, Sumithra; Menon, Gautam I; Sunil Kumar, P B

    2002-09-01

    We study the linearized hydrodynamics of a two-component fluid membrane near a repulsive wall, using a model that incorporates curvature-concentration coupling as well as hydrodynamic interactions. This model is a simplified version of a recently proposed one [J.-B. Manneville et al., Phys. Rev. E 64, 021908 (2001)] for nonequilibrium force centers embedded in fluid membranes, such as light-activated bacteriorhodopsin pumps incorporated in phospholipid egg phosphatidyl choline (EPC) bilayers. The pump-membrane system is modeled as an impermeable, two-component bilayer fluid membrane in the presence of an ambient solvent, in which one component, representing active pumps, is described in terms of force dipoles displaced with respect to the bilayer midpoint. We first discuss the case in which such pumps are rendered inactive, computing the mode structure in the bulk as well as the modification of hydrodynamic properties by the presence of a nearby wall. These results should apply, more generally, to equilibrium fluid membranes comprised of two components, in which the effects of curvature-concentration coupling are significant, above the threshold for phase separation. We then discuss the fluctuations and mode structure in the steady state of active two-component membranes near a repulsive wall. We find that proximity to the wall smoothens membrane height fluctuations in the stable regime, resulting in a logarithmic scaling of the roughness even for initially tensionless membranes. This explicitly nonequilibrium result is a consequence of the incorporation of curvature-concentration coupling in our hydrodynamic treatment. This result also indicates that earlier scaling arguments which obtained an increase in the roughness of active membranes near repulsive walls upon neglecting the role played by such couplings may need to be reevaluated.

  14. Non-linear neutron star oscillations viewed as deviations from an equilibrium state

    International Nuclear Information System (INIS)

    Sperhake, U

    2002-01-01

    A numerical technique is presented which facilitates the evolution of non-linear neutron star oscillations with a high accuracy essentially independent of the oscillation amplitude. We apply this technique to radial neutron star oscillations in a Lagrangian formulation and demonstrate the superior performance of the new scheme compared with 'conventional' techniques. The key feature of our approach is to describe the evolution in terms of deviations from an equilibrium configuration. In contrast to standard perturbation analysis we keep all higher order terms in the evolution equations and thus obtain a fully non-linear description. The advantage of our scheme lies in the elimination of background terms from the equations and the associated numerical errors. The improvements thus achieved will be particularly significant in the study of mildly non-linear effects where the amplitude of the dynamic signal is small compared with the equilibrium values but large enough to warrant non-linear effects. We apply the new technique to the study of non-linear coupling of Eigenmodes and non-linear effects in the oscillations of marginally stable neutron stars. We find non-linear effects in low amplitude oscillations to be particularly pronounced in the range of modes with vanishing frequency which typically mark the onset of instability. (author)

  15. Implementation of a Simplified State Estimator for Wind Turbine Monitoring on an Embedded System

    DEFF Research Database (Denmark)

    Rasmussen, Theis Bo; Yang, Guangya; Nielsen, Arne Hejde

    2017-01-01

    system, including individual DER, is time consuming and numerically challenging. This paper presents the approach and results of implementing a simplified state estimator onto an embedded system for improving DER monitoring. The implemented state estimator is based on numerically robust orthogonal......The transition towards a cyber-physical energy system (CPES) entails an increased dependency on valid data. Simultaneously, an increasing implementation of renewable generation leads to possible control actions at individual distributed energy resources (DERs). A state estimation covering the whole...

  16. Estimating mental states of a depressed person with bayesian networks

    NARCIS (Netherlands)

    Klein, Michel C.A.; Modena, Gabriele

    2013-01-01

    In this work in progress paper we present an approach based on Bayesian Networks to model the relationship between mental states and empirical observations in a depressed person. We encode relationships and domain expertise as a Hierarchical Bayesian Network. Mental states are represented as latent

  17. Top-down Estimates of Biomass Burning Emissions of Black Carbon in the Western United States

    Science.gov (United States)

    Mao, Y.; Li, Q.; Randerson, J. T.; CHEN, D.; Zhang, L.; Liou, K.

    2012-12-01

    We apply a Bayesian linear inversion to derive top-down estimates of biomass burning emissions of black carbon (BC) in the western United States (WUS) for May-November 2006 by inverting surface BC concentrations from the IMPROVE network using the GEOS-Chem chemical transport model. Model simulations are conducted at both 2°×2.5° (globally) and 0.5°×0.667° (nested over North America) horizontal resolutions. We first improve the spatial distributions and seasonal and interannual variations of the BC emissions from the Global Fire Emissions Database (GFEDv2) using MODIS 8-day active fire counts from 2005-2007. The GFEDv2 emissions in N. America are adjusted for three zones: boreal N. America, temperate N. America, and Mexico plus Central America. The resulting emissions are then used as a priori for the inversion. The a posteriori emissions are 2-5 times higher than the a priori in California and the Rockies. Model surface BC concentrations using the a posteriori estimate provide better agreement with IMPROVE observations (~50% increase in the Taylor skill score), including improved ability to capture the observed variability especially during June-September. However, model surface BC concentrations are still biased low by ~30%. Comparisons with the Fire Locating and Modeling of Burning Emissions (FLAMBE) are included.

  18. Observation of the state of the nuclear reactor core by means of non-linear observation algorithms

    International Nuclear Information System (INIS)

    Maciel Palacio, F.E.; Espana, M.D.

    1990-01-01

    A combined, variable-adaptive structure, non-linear observer was designed in order to observe the state of the nuclear reactor core, based on the Absolute Stability Theory. The observer was proved under noise and modelling error conditions. Successful results were obtained in the observation of the states in both cases, showing clear improvement in the observation due to the application of adaptive and variable structure ideas. (Author) [es

  19. Response-Based Estimation of Sea State Parameters

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2007-01-01

    of measured ship responses. It is therefore interesting to investigate how the filtering aspect, introduced by FRF, affects the final outcome of the estimation procedures. The paper contains a study based on numerical generated time series, and the study shows that filtering has an influence...... calculated by a 3-D time domain code and by closed-form (analytical) expressions, respectively. Based on comparisons with wave radar measurements and satellite measurements it is seen that the wave estimations based on closedform expressions exhibit a reasonable energy content, but the distribution of energy...

  20. Comment on "Synchronization of chaotic systems with delay using intermittent linear state feedback" [Chaos 18, 033122 (2008)].

    Science.gov (United States)

    Zhang, Yinping; Wang, Qing-Guo

    2008-12-01

    In the referenced paper, there is technical carelessness in the third lemma and in the main result. Hence, it is a possible failure when the result is used to design the intermittent linear state feedback controller for exponential synchronization of two chaotic delayed systems.