Dipole transitions and Stark effect in the charge-dyon system
International Nuclear Information System (INIS)
Mardoyan, Levon; Nersessian, Armen; Sarkisyan, Hayk; Yeghikyan, Vahagn
2007-01-01
We consider the dipole transitions and the linear and quadratic Stark effects in the MICZ-Kepler system interpreted as a charge-dyon system. We show that while the linear Stark effect in the ground state is proportional to the azimuth quantum number (and to the sign of the monopole number), the quadratic Stark effect in the ground state is independent of the signs of the azimuth and monopole numbers
Stark effect in Rydberg states of helium and barium
International Nuclear Information System (INIS)
Lahaije, C.T.W.
1989-01-01
This thesis, which deals with the effect of an electric field up to moderate field strengths on atoms with two valence electrons outside closed shells, in casu helium and barium, contains chapter in which the linear Stark effect in the 1 snp 1, 3 p Rydberg states of helium (n around 40) has been studied in a CW laser-atomic beam experiment. The evolution of the angular momentum manifolds into the n-mixing regime was followed and avoided level crossings were observed. Stark manifolds were also calculated by diagonalization of the complete energy matrix in the presence of an electric field. It turned out to be necessary to include up to five n-values in the calculations already at moderate values of the field to reproduce the data within the experimental accuracy (a few MHz), especially in the regime of the avoided crossings. (author). 147 refs.; 30 figs.; 8 tabs
Atomic Models for Motional Stark Effects Diagnostics
Energy Technology Data Exchange (ETDEWEB)
Gu, M F; Holcomb, C; Jayakuma, J; Allen, S; Pablant, N A; Burrell, K
2007-07-26
We present detailed atomic physics models for motional Stark effects (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam traveling in a magnetic field in collisions with electrons, ions, and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer {alpha} line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beam into gas models provide a qualitative explanation for the larger {pi}/{sigma} intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0-2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. Nevertheless, we demonstrate that beam into gas measurements can be used successfully as calibration procedures for measuring the magnetic pitch angle through {pi}/{sigma} intensity ratios. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems.
Properties of Linear Entropy in k-Photon Jaynes-Cummings Model with Stark Shift and Kerr-Like Medium
International Nuclear Information System (INIS)
Liao Qinghong; Wang Yueyuan; Liu Shutian; Ahmad, Muhammad Ashfaq
2010-01-01
The time evolution of the linear entropy of an atom in k-photon Jaynes-Cummings model is investigated taking into consideration Stark shift and Kerr-like medium. The effect of both the Stark shift and Kerr-like medium on the linear entropy is analyzed using a numerical technique for the field initially in coherent state and in even coherent state. The results show that the presence of the Kerr-like medium and Stark shift has an important effect on the properties of the entropy and entanglement. It is also shown that the setting of the initial state plays a significant role in the evolution of the linear entropy and entanglement. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Semiconductor-metal transition induced by giant Stark effect in blue phosphorene nanoribbons
Energy Technology Data Exchange (ETDEWEB)
Xiong, Peng-Yu; Chen, Shi-Zhang; Zhou, Wu-Xing; Chen, Ke-Qiu, E-mail: keqiuchen@hnu.edu.cn
2017-06-28
The electronic structures and transport properties in monolayer blue phosphorene nanoribbons (BPNRs) with transverse electric field have been studied by using density functional theory and nonequilibrium Green's functions method. The results show that the band gaps of BPNRs with both armchair and zigzag edges are linearly decreased with the increasing of the strength of transverse electric field. A semiconductor-metal transition occurs when the electric field strength reaches to 5 V/nm. The Stark coefficient presents a linear dependency on BPNRs widths, and the slopes of both zBPNRs and aBPNRs are 0.41 and 0.54, respectively, which shows a giant Stark effect occurs. Our studies show that the semiconductor-metal transition originates from the giant Stark effect. - Highlights: • The electronic transport in blue phosphorene nanoribbons. • Semiconductor-metal transition can be observed. • The semiconductor-metal transition originates from the giant Stark effect.
The stark effect in intense field. 2
International Nuclear Information System (INIS)
Popov, V.S.; Mur, V.D.; Sergeev, A.V.; Weinberg, V.M.
1987-01-01
The problem of hydrogen atom in homogeneous electric field is considered. The Stark shifts and widths of atomic levels are computed by summation of divergent perturbation series and by 1/n-expansion - up to E values comparable with the field on the electron orbit. The results of the calculations are presented for the following sequences of states: |n 1 ,0,0>, |0,n 2 ,0>, |n 1 ,n 1 ,0>, as well as for all states with n=2 and 3 (n is the principal quantum number). The Stark shifts and widths of Rydberg states (with n=15-30) in electric field which exceeds the classical ionization threshold are computed. The results of our calculations agree with experiment
Variable scaling method and Stark effect in hydrogen atom
International Nuclear Information System (INIS)
Choudhury, R.K.R.; Ghosh, B.
1983-09-01
By relating the Stark effect problem in hydrogen-like atoms to that of the spherical anharmonic oscillator we have found simple formulas for energy eigenvalues for the Stark effect. Matrix elements have been calculated using 0(2,1) algebra technique after Armstrong and then the variable scaling method has been used to find optimal solutions. Our numerical results are compared with those of Hioe and Yoo and also with the results obtained by Lanczos. (author)
Stark--Zeeman effect of metastable hydrogen molecules
International Nuclear Information System (INIS)
Kagann, R.H.
1975-01-01
The Stark effect of the N = 1 rotational level of orthohydrogen and the N = 2 rotational level of parahydrogen in the metastable c 3 PI/sub u/ electronic state has been measured using the molecular beam magnetic resonance method. The Stark effect of the metastable state is 10,000 times larger than that of the ground electronic state. The Stark effect of parahydrogen was found to be weakly dependent on static magnetic field strength, whereas the Stark effect of orthohydrogen was found to be more strongly dependent on the magnetic field strength. The Stark effect of orthohydrogen has been calculated using second-order perturbation theory with a pure Stark effect perturbation. The magnetic field dependence of the Stark effect was calculated using third-order perturbation theory with a mixed Stark--Zeeman effect double perturbation. A comparison of the experimental and theoretical values of α/sub perpendicular/ provides information on the electronic transition moment connecting the c 3 PI/sub u/ state to the a 3 Σ + /sub g/ state. The transition moment is needed to calculate the radiative lifetimes of the various vibrational levels of the c 3 PI/sub u/ state. The transition moment also enters the calculation of the quenching of this metastable state by an external electric field. There is a disagreement between theoretical predictions and the results of an experiment on the electric field quenching of the metastables. A test of the electronic transition moment may help shed light on this question. The experimental determination of the values of the transition moments allows one to test theory by comparing these values to those obtained by calculations employing ab initio wavefunctions
Valley-selective optical Stark effect probed by Kerr rotation
LaMountain, Trevor; Bergeron, Hadallia; Balla, Itamar; Stanev, Teodor K.; Hersam, Mark C.; Stern, Nathaniel P.
2018-01-01
The ability to monitor and control distinct states is at the heart of emerging quantum technologies. The valley pseudospin in transition metal dichalcogenide (TMDC) monolayers is a promising degree of freedom for such control, with the optical Stark effect allowing for valley-selective manipulation of energy levels in WS2 and WSe2 using ultrafast optical pulses. Despite these advances, understanding of valley-sensitive optical Stark shifts in TMDCs has been limited by reflectance-based detection methods where the signal is small and prone to background effects. More sensitive polarization-based spectroscopy is required to better probe ultrafast Stark shifts for all-optical manipulation of valley energy levels. Here, we show time-resolved Kerr rotation to be a more sensitive probe of the valley-selective optical Stark effect in monolayer TMDCs. Compared to the established time-resolved reflectance methods, Kerr rotation is less sensitive to background effects. Kerr rotation provides a fivefold improvement in the signal-to-noise ratio of the Stark effect optical signal and a more precise estimate of the energy shift. This increased sensitivity allows for observation of an optical Stark shift in monolayer MoS2 that exhibits both valley and energy selectivity, demonstrating the promise of this method for investigating this effect in other layered materials and heterostructures.
Energy Technology Data Exchange (ETDEWEB)
Pablant, N. A. [University of California-San Diego, La Jolla, California 92093 (United States); Burrell, K. H.; Groebner, R. J.; Kaplan, D. H. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Holcomb, C. T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2010-10-15
Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D{sub {alpha}} emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B{sub {theta}}/B{sub T} and |B| over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0x10{sup 19} m{sup -3}, and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.
Pablant, N A; Burrell, K H; Groebner, R J; Holcomb, C T; Kaplan, D H
2010-10-01
Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D(α) emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B(θ)/B(T) and ∣B∣ over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0×10(19) m(-3), and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.
Imaging motional Stark effect measurements at ASDEX Upgrade
Energy Technology Data Exchange (ETDEWEB)
Ford, O. P.; Burckhart, A.; McDermott, R.; Pütterich, T.; Wolf, R. C. [Max-Planck Institut für Plasmaphysik, Greifswald/Garching (Germany)
2016-11-15
This paper presents an overview of results from the Imaging Motional Stark Effect (IMSE) diagnostic obtained during its first measurement campaign at ASDEX Upgrade since installation as a permanent diagnostic. A brief overview of the IMSE technique is given, followed by measurements of a standard H-mode discharge, which are compared to equilibrium reconstructions showing good agreement where expected. The development of special discharges for the calibration of pitch angle is reported and safety factor profile changes during sawteeth crashes are shown, which can be resolved to a few percent due to the high sensitivity at good time resolution of the new IMSE system.
Dynamic Stark broadening as the Dicke narrowing effect
International Nuclear Information System (INIS)
Calisti, A.; Mosse, C.; Ferri, S.; Talin, B.; Rosmej, F.; Bureyeva, L. A.; Lisitsa, V. S.
2010-01-01
A very fast method to account for charged particle dynamics effects in calculations of spectral line shape emitted by plasmas is presented. This method is based on a formulation of the frequency fluctuation model (FFM), which provides an expression of the dynamic line shape as a functional of the static distribution of frequencies. Thus, the main numerical work rests on the calculation of the quasistatic Stark profile. This method for taking into account ion dynamics allows a very fast and accurate calculation of Stark broadening of atomic hydrogen high-n series emission lines. It is not limited to hydrogen spectra. Results on helium-β and Lyman-α lines emitted by argon in microballoon implosion experiment conditions compared with experimental data and simulation results are also presented. The present approach reduces the computer time by more than 2 orders of magnitude as compared with the original FFM with an improvement of the calculation precision, and it opens broad possibilities for its application in spectral line-shape codes.
Improved signal analysis for motional Stark effect data
International Nuclear Information System (INIS)
Makowski, M.A.; Allen, S.L.; Ellis, R.; Geer, R.; Jayakumar, R.J.; Moller, J.M.; Rice, B.W.
2005-01-01
Nonideal effects in the optical train of the motional Stark effect diagnostic have been modeled using the Mueller matrix formalism. The effects examined are birefringence in the vacuum windows, an imperfect reflective mirror, and signal pollution due to the presence of a circularly polarized light component. Relations for the measured intensity ratio are developed for each case. These relations suggest fitting functions to more accurately model the calibration data. One particular function, termed the tangent offset model, is found to fit the data for all channels better than the currently used tangent slope function. Careful analysis of the calibration data with the fitting functions reveals that a nonideal effect is present in the edge array and is attributed to nonideal performance of a mirror in that system. The result of applying the fitting function to the analysis of our data has been to improve the equilibrium reconstruction
Oscillator strength and quantum-confined Stark effect of excitons in a thin PbS quantum disk
Oukerroum, A.; El-Yadri, M.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.; Sadoqi, M.; Long, G.
2018-01-01
In this paper, we report a study of the effect of a lateral electric field on a quantum-confined exciton in a thin PbS quantum disk. Our approach was performed in the framework of the effective mass theory and adiabatic approximation. The ground state energy and the stark shift were determined by using a variational method with an adequate trial wavefunction, by investigating a 2D oscillator strength under simultaneous consideration of the geometrical confinement and the electric field strength. Our results showed a strong dependence of the exciton binding and the Stark shift on the disk dimensions in both axial and longitudinal directions. On the other hand, our results also showed that the Stark shift’s dependence on the electric field is not purely quadratic but the linear contribution is also important and cannot be neglected, especially when the confinement gets weaker.
Palacios, M.A.; Caffarri, S.; Bassi, R.; Grondelle, van R.; Amerongen, van H.
2004-01-01
The electric-field induced absorption changes (Stark effect) of reconstituted light-harvesting complex II (LHCII) in different oligomerisation states - monomers and trimers - with different xanthophyll content have been probed at 77 K. The Stark spectra of the reconstituted control samples,
Ab initio modeling of the motional Stark effect on MAST
International Nuclear Information System (INIS)
De Bock, M. F. M.; Conway, N. J.; Walsh, M. J.; Carolan, P. G.; Hawkes, N. C.
2008-01-01
A multichord motional Stark effect (MSE) system has recently been built on the MAST tokamak. In MAST the π and σ lines of the MSE spectrum overlap due to the low magnetic field typical for present day spherical tokamaks. Also, the field curvature results in a large change in the pitch angle over the observation volume. The measured polarization angle does not relate to one local pitch angle but to an integration over all pitch angles in the observation volume. The velocity distribution of the neutral beam further complicates the measurement. To take into account volume effects and velocity distribution, an ab initio code was written that simulates the MSE spectrum on MAST. The code is modular and can easily be adjusted for other tokamaks. The code returns the intensity, polarized fraction, and polarization angle as a function of wavelength. Results of the code are presented, showing the effect on depolarization and wavelength dependence of the polarization angle. The code is used to optimize the design and calibration of the MSE diagnostic.
The motional stark effect with laser-induced fluorescence diagnostic
Foley, E. L.; Levinton, F. M.
2010-05-01
The motional Stark effect (MSE) diagnostic is the worldwide standard technique for internal magnetic field pitch angle measurements in magnetized plasmas. Traditionally, it is based on using polarimetry to measure the polarization direction of light emitted from a hydrogenic species in a neutral beam. As the beam passes through the magnetized plasma at a high velocity, in its rest frame it perceives a Lorentz electric field. This field causes the H-alpha emission to be split and polarized. A new technique under development adds laser-induced fluorescence (LIF) to a diagnostic neutral beam (DNB) for an MSE measurement that will enable radially resolved magnetic field magnitude as well as pitch angle measurements in even low-field (experiments. An MSE-LIF system will be installed on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. It will enable reconstructions of the plasma pressure, q-profile and current as well as, in conjunction with the existing MSE system, measurements of radial electric fields.
Real-time motional Stark effect in jet
International Nuclear Information System (INIS)
Alves, D.; Stephen, A.; Hawkes, N.; Dalley, S.; Goodyear, A.; Felton, R.; Joffrin, E.; Fernandes, H.
2004-01-01
The increasing importance of real-time measurements and control systems in JET experiments, regarding e.g. Internal Transport Barrier (ITB) and q-profile control, has motivated the development of a real-time motional Stark effect (MSE) system. The MSE diagnostic allows the measurement of local magnetic fields in different locations along the neutral beam path providing, therefore, local measurement of the current and q-profiles. Recently in JET, an upgrade of the MSE diagnostic has been implemented, incorporating a totally new system which allows the use of this diagnostic as a real-time control tool as well as an extended data source for off-line analysis. This paper will briefly describe the technical features of the real-time diagnostic with main focus on the system architecture, which consists of a VME crate hosting three PowerPC processor boards and a fast ADC, all connected via Front Panel Data Port (FPDP). The DSP algorithm implements a lockin-amplifier required to demodulate the JET MSE signals. Some applications for the system will be covered such as: feeding the real-time equilibrium reconstruction code (EQUINOX) and allowing the full coverage analysis of the Neutral Beam time window. A brief comparison between the real-time MSE analysis and the off-line analysis will also be presented
Magnetic field pitch angle diagnostic using the motional Stark effect (invited)
International Nuclear Information System (INIS)
Levinton, F.M.; Gammel, G.M.; Kaita, R.; Kugel, H.W.; Roberts, D.W.
1990-01-01
The Stark effect has been employed in a novel technique for obtaining the pitch angle profile and q(r) using polarimetry measurements of the Doppler shifted H α emission from a hydrogen diagnostic neutral beam. As a neutral beam propagates through a plasma, collisions of the beam particles with the background ions and electrons will excite beam atoms, leading to emission of radiation. The motional Stark effect, which arises from the electric field induced in the atom's rest frame due to the beam motion across the magnetic field (E=V beam xB), causes a wavelength splitting of several angstroms and polarization of the emitted radiation. The Δm=±1 transitions, or σ components, from the beam fluorescence are linearly polarized parallel to the direction of the local magnetic field when viewed transverse to the fields. Since the hydrogen beam provides good spatial localization and penetration, the pitch angle can be obtained anywhere in the plasma. A photoelastic modulator (PEM) is used to modulate the linearly polarized light. Depending on the orientation of the PEM, it can measure the sine or cosine of the angle of polarization. Two PEM's are used to measure both components simultaneously. Results of q(r) for both Ohmic and NBI heated discharges have been obtained in the Princeton Beta Experiment (PBX-M) tokamak, with an uncertainty of ∼6% for q(0)
Stark effect and polarizability of graphene quantum dots
DEFF Research Database (Denmark)
Pedersen, Thomas Garm
2017-01-01
The properties of graphene quantum dots can be manipulated via lateral electric fields. Treating electrons in such structures as confined massless Dirac fermions, we derive an analytical expression for the quadratic Stark shift valid for arbitrary angular momentum and quantum dot size. Moreover, we...
Stark effect of optical properties of excitons in a quantum nanorod with parabolic confinement
Energy Technology Data Exchange (ETDEWEB)
Lyo, S.K., E-mail: sklyo@uci.edu
2014-01-15
We study the quantum Stark effect of optical properties of a quasi-one-dimensional quantum rod with parabolic confinement. Interplays between the competing/cooperative forces from confinement, electron–hole (e–h) attraction, and an external field are examined by studying the binding energy, the oscillator strength, and the root-mean-square (RMS) average of the e–h separation in a nonlinear electric field. In a long rod with weak confinement, the e–h interaction dominates over the confinement effect, yielding an abrupt drop of the exciton binding energy, oscillator strength, and a sudden increase of the RMS average e–h separation as the excitons are dissociated at the threshold field as the field increases. The exciton-dissociation transition is gradual in a short rod, where the confinement force dominates over the e–h attraction. We show that a DC field can induce an optically active excited exciton state in a narrow field range, causing a sharp peak in the oscillator strength and a dip in the RMS average of the e–h separation as the field increases. The Stark effects are also investigated as a function of the linear confinement length (i.e., rod length) at fixed fields. -- Highlights: • Study the dependence of optical properties of nanorods on the rod size and field. • Study the interplay between forces of confinement, Coulomb attraction, and field. • A strong field induces an optically active excited state observed in quantum dots.
The giant Stark effect in armchair-edge phosphorene nanoribbons under a transverse electric field
Zhou, Benliang; Zhou, Benhu; Liu, Pu; Zhou, Guanghui
2018-01-01
We study the variation of electronic properties for armchair-edge phosphorene nanoribbons (APNRs) modulated by a transverse electric field. Within the tight-binding model Hamiltonian, and by solving the differential Schrödinger equation, we find that a band gap closure appears at the critical field due to the giant Stark effect for an APNR. The gap closure has no field polarity, and the gap varies quadratically for small fields but becomes linear for larger ones. We attribute the giant Stark effect to the broken edge degeneracy, i.e., the charge redistributions of the conduction band minimum and valence band maximum states localized at opposite edges induced by the field. By combined with the Green's function approach, it is shown that in the presence of the critical field a gap of density of states (DOS) disappears and a high value DOS turns up at the energy position of the band gap closure. Finally, as the field increases, we find the band gap decreases more rapidly and the gap closure occurs at smaller fields for wider ribbons. Both the band gap and DOS variations with the field show an insulator-metal transition induced by a transverse electric field for the APNR. Our results show that wider APNRs are more appreciable to design field-effect transistors.
Stark shift and g-factor tuning in nanowires with Rashba effect
Energy Technology Data Exchange (ETDEWEB)
Alhaddad, Iman; Habanjar, Khulud [Department of Physics, Faculty of Science, Beirut Arab University, P.O. Box 11, 5020 Riad El Solh, 11072809 - Beirut (Lebanon); Sakr, M.R., E-mail: msakr@alexu.edu.eg [Department of Physics, Faculty of Science, Beirut Arab University, P.O. Box 11, 5020 Riad El Solh, 11072809 - Beirut (Lebanon); Department of Physics, Faculty of Science, Alexandria University, Moharram Bek, Alexandria 21511 (Egypt)
2015-10-15
We report on the Stark shift of the energy subbands and the possibility of tuning the g-factor of electrons in nanowires subjected to external magnetic field. The electric field is applied along the direction of quantum confinement. Our analysis is based on numerical and perturbation calculations in the weak Rashba regime. For in-plane magnetic fields, the Stark shift is rigid and depends on the square of the electric field. Such rigid shift results in a field independent g-factor. Perpendicular magnetic fields induce a similar Stark shift accompanied by a lateral displacement of the energy spectra that is linear in the electric field. In this case, the g-factor shows square dependence on weak electric fields that varies with the subband index. However, in strong electric fields, the g-factor becomes subband independent and varies linearly with the field. - Highlights: • Energy spectra of electrons in nanowires are calculated in the weak Rashba regime. • For in-plane magnetic field, the Stark shift is rigid and the g-factor cannot be tuned. • Perpendicular magnetic fields add lateral displacement to the Stark shift. • The g-factor can be tuned by external electric field in this case. • The tuning of the g-factor is linear and unique for all subbands at high fields.
Stark shift and g-factor tuning in nanowires with Rashba effect
International Nuclear Information System (INIS)
Alhaddad, Iman; Habanjar, Khulud; Sakr, M.R.
2015-01-01
We report on the Stark shift of the energy subbands and the possibility of tuning the g-factor of electrons in nanowires subjected to external magnetic field. The electric field is applied along the direction of quantum confinement. Our analysis is based on numerical and perturbation calculations in the weak Rashba regime. For in-plane magnetic fields, the Stark shift is rigid and depends on the square of the electric field. Such rigid shift results in a field independent g-factor. Perpendicular magnetic fields induce a similar Stark shift accompanied by a lateral displacement of the energy spectra that is linear in the electric field. In this case, the g-factor shows square dependence on weak electric fields that varies with the subband index. However, in strong electric fields, the g-factor becomes subband independent and varies linearly with the field. - Highlights: • Energy spectra of electrons in nanowires are calculated in the weak Rashba regime. • For in-plane magnetic field, the Stark shift is rigid and the g-factor cannot be tuned. • Perpendicular magnetic fields add lateral displacement to the Stark shift. • The g-factor can be tuned by external electric field in this case. • The tuning of the g-factor is linear and unique for all subbands at high fields
Stark effect in finite-barrier quantum wells, wires, and dots
International Nuclear Information System (INIS)
Pedersen, Thomas Garm
2017-01-01
The properties of confined carriers in low-dimensional nanostructures can be controlled by external electric fields and an important manifestation is the Stark shift of quantized energy levels. Here, a unifying analytic theory for the Stark effect in arbitrary dimensional nanostructures is presented. The crucial role of finite potential barriers is stressed, in particular, for three-dimensional confinement. Applying the theory to CdSe quantum dots, finite barriers are shown to improve significantly the agreement with experiments. (paper)
Quantum-Confined Stark Effect in Ensemble of Colloidal Semiconductor Quantum Dots
International Nuclear Information System (INIS)
Zhi-Bing, Wang; Hui-Chao, Zhang; Jia-Yu, Zhang; Su, Huaipeng; Wang, Y. Andrew
2010-01-01
The presence of a strong, changing, randomly-oriented, local electric field, which is induced by the photo-ionization that occurs universally in colloidal semiconductor quantum dots (QDs), makes it difficult to observe the quantum-confined Stark effect in ensemble of colloidal QDs. We propose a way to inhibit such a random electric field, and a clear quantum-confined Stark shift is observed directly in close-packed colloidal QDs. Besides the applications in optical switches and modulators, our experimental results indicate how the oscillator strengths of the optical transitions are changed under external electric fields. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study
International Nuclear Information System (INIS)
Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.
2014-01-01
The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented
Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study
Energy Technology Data Exchange (ETDEWEB)
Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac. (Mexico)
2014-05-15
The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.
Measurement of the poloidal magnetic field in the PBX-M tokamak using the motional Stark effect
International Nuclear Information System (INIS)
Levinton, F.M.; Fonck, R.J.; Gammel, G.M.; Kaita, R.; Kugel, H.W.; Powell, E.T.; Roberts, D.W.
1989-05-01
Polarimetry measurements of the Doppler-shifted H/sub α/ emission from a hydrogen neutral beam on the PBX-M tokamak have been employed in a novel technique for obtaining q(0) and poloidal magnetic field profiles. The electric field from the beam particle motion across the magnetic field (E = V/sub beam/ /times/ B) causes a wavelength splitting of several angstroms, and polarization of the emitted radiation (Stark effect). Viewed transverse to the fields, the emission is linearly polarized with the angle of polarization related to the direction of the magnetic field. 14 refs., 5 figs
Spectral-Kinetic Coupling and Effect of Microfield Rotation on Stark Broadening in Plasmas
Directory of Open Access Journals (Sweden)
Alexander V. Demura
2014-07-01
Full Text Available The study deals with two conceptual problems in the theory of Stark broadening by plasmas. One problem is the assumption of the density matrix diagonality in the calculation of spectral line profiles. This assumption is closely related to the definition of zero wave functions basis within which the density matrix is assumed to be diagonal, and obviously violated under the basis change. A consistent use of density matrix in the theoretical scheme inevitably leads to interdependence of atomic kinetics, describing the population of atomic states with the Stark profiles of spectral lines, i.e., to spectral-kinetic coupling. The other problem is connected with the study of the influence of microfield fluctuations on Stark profiles. Here the main results of the perturbative approach to ion dynamics, called the theory of thermal corrections (TTC, are presented, within which the main contribution to effects of ion dynamics is due to microfield fluctuations caused by rotations. In the present study the qualitative behavior of the Stark profiles in the line center within predictions of TTC is confirmed, using non-perturbative computer simulations.
Electroreflectance investigations of quantum confined Stark effect in GaN quantum wells
International Nuclear Information System (INIS)
Drabinska, A; Pakula, K; Baranowski, J M; Wysmolek, A
2010-01-01
In this paper we present room temperature electroreflectance studies of GaN quantum wells (QWs) with different well width. The electroreflectance measurements were performed with external voltage applied to the structure therefore it was possible to tune the electric field inside QW up to its completely screening and furthermore even reversing it. The analysis of QW spectral lines showed the Stark shift dependence on applied voltage and well width reaching about 35 meV for highest voltage and widest well width. It was possible to obtain the condition of zero electric field in QW. Both broadening and amplitude of QW lines are minimal for zero electric field and increases for increasing electric field in QW. The energy transition is maximum for zero electric field and for increasing electric field it decreases due to Stark effect. Neither amplitude and broadening parameter nor energy transition does not depend on the direction of electric field. Only parameter that depends on the direction of electric field in QW is phase of the signal. The analysis of Franz-Keldysh oscillations (FKOs) from AlGaN barriers allowed to calculate the real electric field dependence on applied voltage and therefore to obtain the Stark shift dependence on electric field. The Stark shift reached from -12 meV to -35 meV for 450 kV/cm depending on the well width. This conditions were established for highest forward voltages therefore this is the value of electric field and Stark shift caused only by the intrinsic polarization of nitrides.
Energy Technology Data Exchange (ETDEWEB)
Pal' chikov, V.G. [National Research Institute for Physical-Technical and Radiotechnical Measurements - VNIIFTRI (Russian Federation)], E-mail: vitpal@mail.ru
2000-08-15
A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.
Motional stark effect upgrades on DIII-D
International Nuclear Information System (INIS)
Rice, B.W.; Nilson, D.G.; Wroblewski, D.
1994-04-01
The measurement and control of the plasma current density profile (or q profile) is critical to the advanced tokamak program on DIII-D. A complete understanding of the stability and transport properties of advanced operating regimes requires detail poloidal field measurements over the entire plasma radius from the core to the edge. In support of this effort, the authors have recently completed an upgrade of the existing MSE diagnostic, increasing the number of channels from 8 to 16. A new viewing geometry has been added to the outer edge of the plasma which improves the radial resolution in this region from 10 cm to < 4 cm. This view requires the use of a reflector that has been designed to minimize polarization amplitude and phase effects. Vacuum-compatible polarizers have also been added to the instrument for in-situ calibration. Future use of the MSE diagnostic for feedback control of the q profile will also be discussed
High-frequency Stark effect and two-quantum transitions
International Nuclear Information System (INIS)
Hildebrandt, J
2007-01-01
A problem which motivated a great deal of work about 20 years ago, namely, satellite lines occurring for atomic emitters undergoing a harmonic perturbation, is revisited. On a theoretical point of view, two photon mechanisms or equivalent are involved to explain those satellites due to high-frequency electric fields. Although today the activity on these problems is rather low, interest in observing such effects in the domain of x-ray spectroscopy exists, namely for hot and dense plasmas. More generally, satellites can be also seen as connected to turbulence diagnostics. This mainly motivates the design of plasmas and improvements of x-ray spectroscopy techniques. However, up to now, attempts to extend the methods of nonlinear spectroscopy to this domain have been rather disappointing. As a promotion for a resurgence of the field, an improved theory, founded on formalisms of nonlinear optics, is developed to suggest a new interpretation of the experiments. Previous publications are modified and an old problem is closed. Hopefully, this will help us to stimulate new applications of two-photon techniques in plasmas
Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas
Wolf, R. C.; Bock, A.; Ford, O. P.; Reimer, R.; Burckhart, A.; Dinklage, A.; Hobirk, J.; Howard, J.; Reich, M.; Stober, J.
2015-10-01
The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, EL = v × B, which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics
International Nuclear Information System (INIS)
Hong Sun
1998-11-01
The quantum confined Stark effect (QCSE) of excitons in GaAs/AlAs corrugated lateral surface superlattices (CLSSLs) is calculated. Blue and red shifts in the exciton energies are predicted for the heavy- and light-excitons in the CLSSLs, respectively, comparing with those in the unmodulated quantum well due to the different effective hole masses in the parallel direction. Sensitive dependence of the QCSE on the hole effective mass in the parallel direction is expected because of the ''centre-of-mass'' quantization (CMQ) induced by the periodic corrugated interfaces of the CLSSLs. The effect of the CMQ on the exciton mini-bands and the localization of the excitons in the CLSSLs is discussed. (author)
Influence of the ac Stark effect on stimulated hyper-Raman profiles in sodium vapor
International Nuclear Information System (INIS)
Moore, M.A.; Garrett, W.R.; Payne, M.G.
1988-08-01
When pumping near the two-photon 3d resonance in pure sodium vapor and observing the backward hyper-Raman emission to the 3p substates, an asymmetry in ratios of 3p/sub 1/2/, 3p/sub 3/2/ associated emissions was observed dependent upon the direction of the initial laser detuning from the resonance. It has been determined that this asymmetry can be attributed to the ac Stark effect induced by the hyper-Raman emission itself. 3 refs., 3 figs
The AC Stark Effect, Time-Dependent Born-Oppenheimer Approximation, and Franck-Condon Factors
Hagedorn, G A; Jilcott, S W
2005-01-01
We study the quantum mechanics of a simple molecular system that is subject to a laser pulse. We model the laser pulse by a classical oscillatory electric field, and we employ the Born--Oppenheimer approximation for the molecule. We compute transition amplitudes to leading order in the laser strength. These amplitudes contain Franck--Condon factors that we compute explicitly to leading order in the Born--Oppenheimer parameter. We also correct an erroneous calculation in the mathematical literature on the AC Stark effect for molecular systems.
Cross-sectional nanophotoluminescence studies of Stark effects in self-assembled quantum dots
International Nuclear Information System (INIS)
Htoon, H.; Keto, J. W.; Baklenov, O.; Holmes, A. L. Jr.; Shih, C. K.
2000-01-01
By using a cross-sectional geometry, we show the capability to perform single-dot spectroscopy in self-assembled quantum dots using far-field optics. By using this method, we study the quantum-confined Stark effect in self-assembled quantum dots. For single-stack quantum dots (QDs), we find that the spectra are redshifted with an increase in electric field. For vertically coupled double-stack quantum dots, while most of the QDs are redshifted, some QDs show blueshifted spectra, which can be interpreted as an evidence of coupled QD molecules. (c) 2000 American Institute of Physics
International Nuclear Information System (INIS)
Sakai, Hisashi; Takiyama, Ken; Kimura, Masahiko; Yamasaki, Motokuni; Fujita, Toshiaki; Oda, Toshiatsu; Kawasaki, Ken.
1993-01-01
The electric quadrupole moment transition and the Stark effect are investigated in a He hollow cathode discharge with laser-induced fluorescence method. It is shown that the forbidden transition from 2 1 S to 3 1 D in the negative glow is dominantly due to the quadrupole moment transition. This absorption coefficient is obtained from the laser-induced fluorescence intensity measurement in which the collisional transfers are taken into account. The result agrees with the theoretical coefficient. In the cathode dark space the fluorescence due to the Stark effect is also observed. Spatial distribution of the fluorescence is discussed, compared with the electric field distribution in the dark space. (author)
A New Analysis of Stark and Zeeman Effects on Hydrogen Lines in Magnetized DA White Dwarfs
Directory of Open Access Journals (Sweden)
Ny Kieu
2017-11-01
Full Text Available White dwarfs with magnetic field strengths larger than 10 T are understood to represent more than 10% of the total population of white dwarfs. The presence of such strong magnetic fields is clearly indicated by the Zeeman triplet structure visible on absorption lines. In this work, we discuss the line broadening mechanisms and focus on the sensitivity of hydrogen lines on the magnetic field. We perform new calculations in conditions relevant to magnetized DA stellar atmospheres using models inspired from magnetic fusion plasma spectroscopy. A white dwarf spectrum from the Sloan Digital Sky Survey (SDSS database is analyzed. An effective temperature is provided by an adjustment of the background radiation with a Planck function, and the magnetic field is inferred from absorption lines presenting a Zeeman triplet structure. An order-of-magnitude estimate for the electron density is also performed from Stark broadening analysis.
Stark Broadening and White Dwarfs
Directory of Open Access Journals (Sweden)
Dimitrijević Milan S.
2011-12-01
Full Text Available White dwarf and pre-white dwarfs are the best types of stars for the application of Stark broadening research results in astrophysics, since in the atmospheres of these stars physical conditions are very favorable for this line broadening mechanism - in hot hydrogen-deficient white dwarfs and pre-white dwarfs Teff = 75 000–180 000 K and log g = 5.5–8 [cgs]. Even for much cooler DA and DB white dwarfs with the typical effective temperatures 10 000-20 000 K, Stark broadening is usually the dominant broadening mechanism. In this review, Stark broadening in white dwarf spectra is considered, and the attention is drawn to the STARK-B database (http://stark-b.obspm.fr/, containing the parameters needed for analysis and synthesis of white dwarf spectra, as well as for the collective efforts to develop the Virtual Atomic and Molecular Data Center.
The Stark effect of 1H and 4He+ in the beam foil source
International Nuclear Information System (INIS)
Doobov, M.H.; Hay, H.J.; Sofield, C.J.; Newton, C.S.
1974-01-01
The appearance of Stark patterns obtained with a beam-foil source differed from those characteristically obtained from gas discharge sources. In the former source excitation of the hydrogenic ions occurred in a brief time interval ( 14 s) during the passage of a high velocity unidirectional beam of ions which produces non-statistical population distributions for the Stark perturbed states. The relative intensities of Stark perturbed components of the Hsub(β) hydrogen line and the Fsub(α) ionized helium line have been measured in a beam-foil source. In each case an initial population of states of principal quantum number n = 4 due to radiative decay and Stark mixing, and comparing the resultant patterns with the observed patterns. The inferred population distributions indicate that the states of low orbital angular momentum (L) are preferentially populated, and alignment referred to the beam axis is produced such that states with lower z component of L are preferentially populated. (author)
Strong quantum-confined stark effect in germanium quantum-well structures on silicon
International Nuclear Information System (INIS)
Kuo, Y.; Lee, Y. K.; Gei, Y.; Ren, S; Roth, J. E.; Miller, D. A.; Harris, J. S.
2006-01-01
Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such component with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimeters) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger Quantum-Confined Stark Effect (QCSE) mechanism, which allows modulator structures with only micrometers of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor, such semiconductors often display much weak optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture. (author)
A study of the ac Stark effect in doped photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Haque, I; Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada)
2007-04-16
In this paper we present calculations of level populations and susceptibility for an ensemble of five-level atoms doped in a photonic crystal, using the master equation method. The atoms in the ensemble interact with the crystal which acts as a reservoir and are coupled with two strong pump fields and a weak probe field. It is found that, by manipulating the resonance energy associated with one of the decay channels of the atom, the system can be switched between an inverted and a non-inverted state. We have also observed the ac Stark effect in these atoms and have shown that due to the role played by the band structure of the photonic crystal, it is possible to switch between an absorption state and a non-absorption state of the atomic system. This is a very important finding as techniques of rendering material systems transparent to resonant laser radiation are very desirable in the fabrication of novel optical and photonic devices.
Design of a New Optical System for Alcator C-Mod Motional Stark Effect Diagnostic
International Nuclear Information System (INIS)
Ko, Jinseok; Scott, Steve; Bitter, Manfred; Lerner, Scott
2009-01-01
The motional Stark effect (MSE) diagnostic on Alcator C-Mod uses an in-vessel optical system (five lenses and three mirrors) to relay polarized light to an external polarimeter because port access limitations on Alcator C-Mod preclude a direct view of the diagnostic beam. The system experiences unacceptable, spurious drifts of order several degrees in measured pitch angle over the course of a run day. Recent experiments illuminated the MSE diagnostic with polarized light of fixed orientation as heat was applied to various optical elements. A large change in measured angle was observed as two particular lenses were heated, indicating that thermal-stress-induced birefringence is a likely cause of the spurious variability. Several new optical designs have been evaluated to eliminate the affected in-vessel lenses and to replace the focusing they provide with curved mirrors; however, ray tracing calculations imply that this method is not feasible. A new approach is under consideration that utilizes in situ calibrations with in-vessel reference polarized light sources. 2008 American Institute of Physics.
Simultaneous influence of Stark effect and excessive line broadening on the Hα line
Cvetanović, Nikola; Ivković, Saša S.; Obradović, Bratislav M.; Kuraica, Milorad M.
2017-12-01
The aim of this paper is to study the combined influence of the Stark effect and the excessive Doppler broadening on the Balmer alpha line in hydrogen discharges. Since this line is a good candidate for measuring electric field in various types of discharges with different gas compositions, a simple method for field measurement based on polarization spectroscopy is developed, that includes all the excitation mechanisms. To simultaneously test the flexibility of the fitting procedure and investigate the excessive broadening, we applied the fitting procedure on line profiles obtained at a range of conditions from two different discharges. The range of pressures and voltages was examined in an abnormal glow and in dielectric barrier discharge operating with hydrogen gas. The model fitting function was able to respond and follow the change in the line profile caused by the change of conditions. This procedure can therefore be recommended for electric field measurement. Contribution to the "Topical Issue: Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.
International Nuclear Information System (INIS)
Bjorkholm, J.E.; Liao, P.F.H.
1977-01-01
Improved atomic beam deflection and improved isotope separation, even in vapors, is proposed by substituting the A.C. Stark effect for the baseband chirp of the pushing beam in the prior proposal by I. Nebenzahl et al., Applied Physics Letters, Vol. 25, page 327 (September 1974). The efficiency inherent in re-using the photons as in the Nebenzahl et al proposal is retained; but the external frequency chirpers are avoided. The entire process is performed by two pulses of monochromatic coherent light, thereby avoiding the complication of amplifying frequency-modulated light pulses. The A.C. Stark effect is provided by the second beam of coherent monochromatic light, which is sufficiently intense to chirp the energy levels of the atoms or isotopes of the atomic beam or vapor. Although, in general, the A.C. Stark effect will alter the isotope shift somewhat, it is not eliminated. In fact, the appropriate choice of frequencies of the pushing and chirping beams may even relax the requirements with respect to the isotope absorption line shift for effective separation. That is, it may make the isotope absorption lines more easily resolvable
DEFF Research Database (Denmark)
List, Nanna Holmgaard; Beerepoot, Maarten; Olsen, Jógvan Magnus Haugaard
2015-01-01
for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark...
Qing-Hui, Wang; Xu-Ping, Shao; Xiao-Hua, Yang
2016-01-01
Hyperfine structures of ICl in its vibronic ground state due to the nuclear spin and electric quadruple interactions are determined by diagonalizing the effective Hamiltonian matrix. Furthermore, the Stark sub-levels are precisely determined as well. The results are helpful for electro-static manipulation (trapping or further cooling) of cold ICl molecules. For example, an electric field of 1000 V/cm can trap ICl molecules less than 637 μK in the lowest hyperfine level. Project supported by the National Natural Science Foundation of China (Grant No. 11034002), the National Basic Research Program of China (Grant No. 2011CB921602), and Qing Lan Project, China.
Directory of Open Access Journals (Sweden)
Aynur Batkan
2012-06-01
Full Text Available In this research, the effects of three different holding periods (6, 12 and 24 hours prior to storage on the quality attributes of Starking Delicious apples were investigated during storage of 8 months at 0.5 ± 1.0 ºC. Changes in weight loss, flesh firmness, pH values, soluble dry matter amount, titratable acidity values, ascorbic acid contents, and total and reducing sugar content were determined. According to the results, the holding period showed statistically significant changes in the quality attributes of the apples (p < 0.05.
DC Stark addressing for quantum memory in Tm:YAG
Gerasimov, Konstantin; Minnegaliev, Mansur; Urmancheev, Ravil; Moiseev, Sergey
2017-10-01
We observed a linear DC Stark effect for 3H6 - 3H4 optical transition of Tm3+ ions in Y3Al5O12. We observed that application of electric field pulse suppresses the two-pulse photon echo signal. If we then apply a second electric pulse of opposite polarity the echo signal is restored again, which indicates the linear nature of the observed effect. The effect is present despite the D2 symmetry of the Tm3+ sites that prohibits a linear Stark effect. Experimental data analysis shows that the observed electric field influence can be attributed to defects that break the local crystal field symmetry near Tm3+ ions. Using this effect we demonstrate selective retrieval of light pulses in two-pulse photon echo.
Ko, J.; Chung, J.
2017-06-01
The safety factor profile evolutions have been measured from the plasma discharges with the external current drive mechanism such as the multi-ion-source neutral beam injection for the Korea Superconducting Tokamak Advanced Research (KSTAR) for the first time. This measurement has been possible by the newly installed motional Stark effect (MSE) diagnostic system that utilizes the polarized Balmer-alpha emission from the energetic neutral deuterium atoms induced by the Stark effect under the Lorentz electric field. The 25-channel KSTAR MSE diagnostic is based on the conventional photoelastic modulator approach with the spatial and temporal resolutions less than 2 cm (for the most of the channels except 2 to 3 channels inside the magnetic axis) and about 10 ms, respectively. The strong Faraday rotation imposed on the optical elements in the diagnostic system is calibrated out from a separate and well-designed polarization measurement procedure using an in-vessel reference polarizer during the toroidal-field ramp-up phase before the plasma experiment starts. The combination of the non-inductive current drive during the ramp-up and shape control enables the formation of the internal transport barrier where the pitch angle profiles indicate flat or slightly hollow profiles in the safety factor.
Stark resonances in disordered systems
International Nuclear Information System (INIS)
Grecchi, V.; Maioli, M.; Modena Univ.; Sacchetti, A.
1992-01-01
By slightly restricting the conditions given by Herbst and Howland, we prove the existence of resonances in the Stark effect of disordered systems (and atomic crystals) for large atomic mean distance. In the crystal case the ladders of resonances have the Wannier behavior for small complex field. (orig.)
Theoretical investigation of stark effect on shallow donor binding energy in InGaN spherical QD-QW
Energy Technology Data Exchange (ETDEWEB)
El Ghazi, Haddou, E-mail: hadghazi@gmail.com [Solid State Physics Laboratory, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco); Mathématiques spéciales, CPGE Kénitra, Chakib Arsalane Street (Morocco); Jorio, Anouar; Zorkani, Izeddine [Solid State Physics Laboratory, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco)
2013-08-01
In this paper, a simultaneous study of electric field and impurity's position effects on the ground-state shallow-donor binding energy in GaN|InGaN|GaN spherical quantum dot-quantum well (SQD-QW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated using variational approach within the framework of the effective-mass approximation. The numerical results show that: (i) the binding energy is strongly affected by the external electric field and the SQD-QW dimension, (ii) a critical value of spherical system's radius is obtained constituting the limit of three dimension confinement and spherical thin layer confinement and (iii) the Stark shift increases with increasing electric field and it is more pronounced around the position of the impurity corresponding to the binding energy maxima than in the spherical layer extremities.
Theoretical investigation of stark effect on shallow donor binding energy in InGaN spherical QD-QW
International Nuclear Information System (INIS)
El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine
2013-01-01
In this paper, a simultaneous study of electric field and impurity's position effects on the ground-state shallow-donor binding energy in GaN|InGaN|GaN spherical quantum dot-quantum well (SQD-QW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated using variational approach within the framework of the effective-mass approximation. The numerical results show that: (i) the binding energy is strongly affected by the external electric field and the SQD-QW dimension, (ii) a critical value of spherical system's radius is obtained constituting the limit of three dimension confinement and spherical thin layer confinement and (iii) the Stark shift increases with increasing electric field and it is more pronounced around the position of the impurity corresponding to the binding energy maxima than in the spherical layer extremities
Energy Technology Data Exchange (ETDEWEB)
Foley, E. L.; Levinton, F. M. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)
2013-04-15
The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.
Foley, E. L.; Levinton, F. M.
2013-04-01
The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.
International Nuclear Information System (INIS)
Holcomb, C; Makowski, M; Allen, S; Meyer, W; Van Zeeland, M
2008-01-01
Motional Stark effect (MSE) measurements constrain equilibrium reconstruction of DIII-D tokamak plasmas using the equilibrium code EFIT. In 2007, two new MSE arrays were brought online, bringing the system to three core arrays, two edge arrays, and 64 total channels. We present the first EFIT reconstructions using this expanded system. Safety factor and E R profiles produced by fitting to data from the two new arrays and one of the other three agree well with independent measurements. Comparison of the data from the three arrays that view the core shows that one of the older arrays is inconsistent with the other two unless the measured calibration factors for this array are adjusted. The required adjustments depend on toroidal field and plasma current direction, and on still other uncertain factors that change as the plasma evolves. We discuss possible sources of calibration error for this array
Directory of Open Access Journals (Sweden)
Peter Hildebrandt
2012-06-01
Full Text Available 4-mercaptobenzonitrile (MBN in self-assembled monolayers (SAMs on Au and Ag electrodes was studied by surface enhanced infrared absorption and Raman spectroscopy, to correlate the nitrile stretching frequency with the local electric field exploiting the vibrational Stark effect (VSE. Using MBN SAMs in different metal/SAM interfaces, we sorted out the main factors controlling the nitrile stretching frequency, which comprise, in addition to external electric fields, the metal-MBN bond, the surface potential, and hydrogen bond interactions. On the basis of the linear relationships between the nitrile stretching and the electrode potential, an electrostatic description of the interfacial potential distribution is presented that allows for determining the electric field strengths on the SAM surface, as well as the effective potential of zero-charge of the SAM-coated metal. Comparing this latter quantity with calculated values derived from literature data, we note a very good agreement for Au/MBN but distinct deviations for Ag/MBN which may reflect either the approximations and simplifications of the model or the uncertainty in reported structural parameters for Ag/MBN. The present electrostatic model consistently explains the electric field strengths for MBN SAMs on Ag and Au as well as for thiophenol and mercaptohexanoic acid SAMs with MBN incorporated as a VSE reporter.
Stark effect-dependent of ground-state donor binding energy in InGaN/GaN parabolic QWW
International Nuclear Information System (INIS)
El Ghazi, Haddou; Zorkani, Izeddine; Jorio, Anouar
2013-01-01
Using the finite-difference method within the quasi-one-dimensional effective potential model and effective mass approximation, the ground-state binding energy of hydrogenic shallow-donor impurity in wurtzite (WZ) (In,Ga)N/GaN parabolic transversal-section quantum-well wires (PQWWs) subjected to external electric field is investigated. An effective radius of a cylindrical QWW describing the strength of the lateral confinement is introduced. The results show that (i) the position of the largest electron probability density in x–y plane is located at a point and it is pushed along the negative sense by the electric field directed along the positive sense, (ii) the ground-state binding energy is largest for the impurity located at this point and starts to decrease when the impurity is away from this point, (iii) the ground-state binding energy decreases with increase in the external electric field and effective radius, and (iv) the Stark-shift increases with the increase of the external electric field and the effective radius
Dobbins, T J; Ida, K; Suzuki, C; Yoshinuma, M; Kobayashi, T; Suzuki, Y; Yoshida, M
2017-09-01
A new Motional Stark Effect (MSE) analysis routine has been developed for improved spatial resolution in the core of the Large Helical Device (LHD). The routine was developed to reduce the dependency of the analysis on the Pfirsch-Schlüter (PS) current in the core. The technique used the change in the polarization angle as a function of flux in order to find the value of diota/dflux at each measurement location. By integrating inwards from the edge, the iota profile can be recovered from this method. This reduces the results' dependency on the PS current because the effect of the PS current on the MSE measurement is almost constant as a function of flux in the core; therefore, the uncertainty in the PS current has a minimal effect on the calculation of the iota profile. In addition, the VMEC database was remapped from flux into r/a space by interpolating in mode space in order to improve the database core resolution. These changes resulted in a much smoother iota profile, conforming more to the physics expectations of standard discharge scenarios in the core of the LHD.
Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.
2011-10-01
Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
International Nuclear Information System (INIS)
Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao; Volkan Demir, Hilmi
2014-01-01
InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao, E-mail: exwsun@ntu.edu.sg, E-mail: volkan@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Volkan Demir, Hilmi, E-mail: exwsun@ntu.edu.sg, E-mail: volkan@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey)
2014-06-16
InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.
Algebraic theory of Stark-Zeeman dynamic effect in hydrogen-like atom
International Nuclear Information System (INIS)
Fursa, D.V.; Yudin, G.L.
1990-01-01
The problems of calculating time evolution operator within the given n-shell (here n is main quantum number) for the hydrogen atom located in non-stationary electric and magnetic fields is under investigation. Making use of the Fock SO(4) group reduces this problem to the set of problems with linear realization of the dynamic symmetry group for which the evolution operator is the operator of corresponding groups representation. The types of evolution operator parametrization in the form of exponents product (the Wei-Norman method) any by means of D-functions connected with Euler angles and Cayley-Klein parameters are discussed. It is shown that the problem of evolution operator calculation can be reduced to investigation of a pair of two-level systems. 35 refs
International Nuclear Information System (INIS)
Jones, N J A; Minns, R S; Patel, R; Fielding, H H
2008-01-01
The Stark spectra of Rydberg states of NO below the υ + = 0 ionization limit, with principal quantum numbers n = 25-30, have been investigated in the presence of dc electric fields in the range 0-150 V cm -1 . The Stark states were accessed by two-colour, double-resonance excitation via the υ' = 0, N' = 0 rovibrational state of the A 2 Σ + state. The N( 2 D) atoms produced by predissociation were measured by (2 + 1) resonance-enhanced multiphoton ionization, and compared with pulsed-field ionization spectra of the bound Rydberg state population (Patel et al 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1369)
Energy Technology Data Exchange (ETDEWEB)
Rosa-Mendoza, M. E.; Fernandez-Munoz, J. L.; Arjona-Roman, J. L.
2012-11-01
During the osmotic dehydration (OD) of fruit, the cell membrane displays a high resistance to mass transfer, thereby reducing the dehydration rate. To reduce thermal damage to cell membranes, alternative methods have recently been introduced to reduce the initial moisture content and/or modify the structure of fruit tissue. The aim of this work was to evaluate the effects of an ultrasound (US) pretreatment for OD on the effective diffusion coefficients and to observe the changes in the molecular structure of 'Starking' apple cubes by Fourier-transform infrared spectroscopy (FTIR) during a 3 h process using a 45 dregee Bx sucrose solution at 60 degree centigrade. In the pretreatment step, apple samples were immersed in an ultrasonic bath at 45 kHz for 20 min. The effective diffusion coefficients for water (Dew) and solids (Des) were calculated from the observed osmotic kinetics according to Fick's second law for the transient state. The solids coefficients were higher than the water coefficients in both processes due to the concentration difference (De = 7.7 × 10{sup -}9 and 9.7 × 10{sup -}9 m{sup 2} s{sup -}1 for ODUS). The structural changes were determined by FTIR by measuring the molecular vibration frequency for sucrose. The 1,500-900 cm{sup -}1 region of the infrared spectra was used to monitor the effect of sucrose concentration on fruit structure. We observed that the first bonds formed were C-H and C-O-C stretching (at 920 and 1,129 cm{sup -}1, respectively) in the sucrose skeleton and glycoside bonds among sucrose molecules. The water concentration affected the diffusion coefficient significantly due to its dependence on the physical structure of the food. (Author) 27 refs.
Baranov, A. A.; Ermak, S. V.; Kulachenkov, N. K.; Petrenko, M. V.; Sagitov, E. A.; Semenov, V. V.
2017-11-01
This paper presents the results of investigation Stark shift effect influence on the long-term stability of a dual scheme of quantum magnetometers. Such scheme allows suppressing Stark shift components when a certain pumping light polarization is applied. As a result, long-term stability of a quantum sensor increases. However, when low-frequency (LF) and microwave fields are attached to a single vapor cell a coherence circulation in hyperfine structure of alkali atoms takes place. Physical origin of this effect is associated with the so called “dressed” atom theory, when atom is “dressed” by LF field. It yields in multiphoton absorption and resonance frequency shift. First estimates for this shift based on density matrix evolution formalism are provided in the paper.
Anisotropic spin–orbit stark effect in cubic semiconductors without an inversion center
International Nuclear Information System (INIS)
Alekseev, P. S.
2015-01-01
The effect of external electric and magnetic fields on shallow donor levels in a semiconductor of the T d crystallographic class is analyzed. Application of an electric field eliminates the symmetry of the donor potential with respect to space inversion; as a result, corrections from the momentum-odd spin–orbit Dresselhaus term appear in the donor levels. In a strong electric field, such corrections determine the anisotropy of spin splitting of the donor levels relative to the directions of the external fields in the crystallographic coordinate system. Analytic expressions are derived for the spin splitting anisotropy for various relations between the magnitudes of the magnetic and electric fields. The results of this study can be used to determine the Dresselhaus spin–orbit interaction constant by a new method (in experiments on spin splitting of donor levels)
Anisotropic spin–orbit stark effect in cubic semiconductors without an inversion center
Energy Technology Data Exchange (ETDEWEB)
Alekseev, P. S., E-mail: pavel.alekseev@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)
2015-09-15
The effect of external electric and magnetic fields on shallow donor levels in a semiconductor of the T{sub d} crystallographic class is analyzed. Application of an electric field eliminates the symmetry of the donor potential with respect to space inversion; as a result, corrections from the momentum-odd spin–orbit Dresselhaus term appear in the donor levels. In a strong electric field, such corrections determine the anisotropy of spin splitting of the donor levels relative to the directions of the external fields in the crystallographic coordinate system. Analytic expressions are derived for the spin splitting anisotropy for various relations between the magnitudes of the magnetic and electric fields. The results of this study can be used to determine the Dresselhaus spin–orbit interaction constant by a new method (in experiments on spin splitting of donor levels)
Experimental methods in cryogenic spectroscopy: Stark effect measurements in substituted myoglobin
Moran, Bradley M.
Dawning from well-defined tertiary structure, the active regions of enzymatic proteins exist as specifically tailored electrostatic microenvironments capable of facilitating chemical interaction. The specific influence these charge distributions have on ligand binding dynamics, and their impact on specificity, reactivity, and biological functionality, have yet to be fully understood. A quantitative determination of these intrinsic fields would offer insight towards the mechanistic aspects of protein functionality. This work seeks to investigate the internal molecular electric fields that are present at the oxygen binding site of myoglobin. Experiments are performed at 1 K on samples located within a glassy matrix, using the high-resolution technique spectral hole-burning. The internal electric field distributions can be explored by implementing a unique mathematical treatment for analyzing the effect that externally applied electric fields have on the spectral hole profiles. Precise control of the light field, the temperature, and the externally applied electric field at the site of the sample is crucial. Experimentally, the functionality of custom cryogenic temperature confocal scanning microscope was extended to allow for collection of imaging and spectral data with the ability to modulate the polarization of the light at the sample. Operation of the instrumentation was integrated into a platform allowing for seamless execution of input commands with high temporal inter-instrument resolution for collection of data streams. For the regulated control and cycling of the sample temperature. the thermal characteristics of the research Dewar were theoretically modeled to systematically predict heat flows throughout the system. A high voltage feedthrough for delivering voltages of up to 5000 V to the sample as positioned within the Dewar was developed. The burning of spectral holes with this particular experimental setup is highly repeatable. The quantum mechanical
Slocum, Joshua D; First, Jeremy T; Webb, Lauren J
2017-07-20
Measurement of the magnitude, direction, and functional importance of electric fields in biomolecules has been a long-standing experimental challenge. pK a shifts of titratable residues have been the most widely implemented measurements of the local electrostatic environment around the labile proton, and experimental data sets of pK a shifts in a variety of systems have been used to test and refine computational prediction capabilities of protein electrostatic fields. A more direct and increasingly popular technique to measure electric fields in proteins is Stark effect spectroscopy, where the change in absorption energy of a chromophore relative to a reference state is related to the change in electric field felt by the chromophore. While there are merits to both of these methods and they are both reporters of local electrostatic environment, they are fundamentally different measurements, and to our knowledge there has been no direct comparison of these two approaches in a single protein. We have recently demonstrated that green fluorescent protein (GFP) is an ideal model system for measuring changes in electric fields in a protein interior caused by amino acid mutations using both electronic and vibrational Stark effect chromophores. Here we report the changes in pK a of the GFP fluorophore in response to the same mutations and show that they are in excellent agreement with Stark effect measurements. This agreement in the results of orthogonal experiments reinforces our confidence in the experimental results of both Stark effect and pK a measurements and provides an excellent target data set to benchmark diverse protein electrostatics calculations. We used this experimental data set to test the pK a prediction ability of the adaptive Poisson-Boltzmann solver (APBS) and found that a simple continuum dielectric model of the GFP interior is insufficient to accurately capture the measured pK a and Stark effect shifts. We discuss some of the limitations of this
Linearity and Non-linearity of Photorefractive effect in Materials ...
African Journals Online (AJOL)
In this paper we have studied the Linearity and Non-linearity of Photorefractive effect in materials using the band transport model. For low light beam intensities the change in the refractive index is proportional to the electric field for linear optics while for non- linear optics the change in refractive index is directly proportional ...
Stark resonances: asymptotics and distributional Borel sum
International Nuclear Information System (INIS)
Caliceti, E.; Grecchi, V.; Maioli, M.
1993-01-01
We prove that the Stark effect perturbation theory of a class of bound states uniquely determines the position and the width of the resonances by Distributional Borel Sum. In particular the small field asymptotics of the width is uniquely related to the large order asymptotics of the perturbation coefficients. Similar results apply to all the ''resonances'' of the anharmonic and double well oscillators. (orig.)
Institute of Scientific and Technical Information of China (English)
S.Abdel-Khalek; M.M.A.Ahmed; A-S F.Obada
2011-01-01
We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic field,initially prepared in a coherent state.Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested.The temporal evolution of the negativity,Wehrl entropy,Wehrl phase distribution and field entropy squeezing are investigated.The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy,Wehrl phase distribution and field entropy squeezing.%We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic Reid, initially prepared in a coherent state. Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested. The temporal evolution of the negativity, Wehrl entropy, Wehrl phase distribution and field entropy squeezing are investigated. The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy, Wehrl phase distribution and field entropy squeezing.
International Nuclear Information System (INIS)
Karachevtseva, L.; Goltviansky, Yu.; Sapelnikova, O.; Lytvynenko, O.; Stronska, O.; Bo, Wang; Kartel, M.
2016-01-01
Highlights: • The IR absorption spectra of oxidized macroporous silicon were studied. • The Wannier–Stark electro-optical effect on Si-SiO_2 boundary was confirmed. • An additional electric field of quasi-guided optical modes was evaluated. • The photonic modes and band gaps were measured as peculiarities in absorption spectra. - Abstract: Opportunities to enhance the properties of structured surfaces were demonstrated on 2D macroporous silicon structures with SiO_2 coatings. We investigated the IR light absorption oscillations in macroporous silicon structures with SiO2 coatings 0–800 nm thick. The Wannier–Stark electro-optical effect due to strong electric field on Si-SiO_2boundary and an additional electric field of quasi-guided optical modes were taken into account. The photonic modes and band gaps were also considered as peculiarities in absorbance spectra of macroporous silicon structures with a thick SiO_2 coating. The photonic modes do not coincide with the quasi-guided modes in the silicon matrix and do not appear in absorption spectra of 2D macroporous silicon structures with surface nanocrystals.
International Nuclear Information System (INIS)
Gleizes, A.; Benoit-Cattin, P.; Bordenave-Montesquieu, A.; Merchez, H.
1976-01-01
A detailed study is given of the influence of the Doppler shift and broadening on the spectra of electrons ejected by autoionization in collisions between heavy particles. General formulae have been obtained which permit the validity of results already published by other authors to be discussed. These results have been applied to the spectra of electrons ejected in He + -He collisions at 15 keV. The variation of the width of the autoionization peaks against ejection angle is well explained by Doppler broadening. On the contrary, the shape of these peaks cannot be due to the Doppler effect but rather to the Stark effect which is also studied in various experimental cases; it has been verified that the latter effect disappears in collisions between neutral particles for which symmetric peaks at 15 keV are obtained. (author)
Scattering theory for Stark Hamiltonians
International Nuclear Information System (INIS)
Jensen, Arne
1994-01-01
An introduction to the spectral and scattering theory for Schroedinger operators is given. An abstract short range scattering theory is developed. It is applied to perturbations of the Laplacian. Particular attention is paid to the study of Stark Hamiltonians. The main result is an explanation of the discrepancy between the classical and the quantum scattering theory for one-dimensional Stark Hamiltonians. (author). 47 refs
Quantum-confined Stark effect at 1.3 μm in Ge/Si(0.35)Ge(0.65) quantum-well structure.
Rouifed, Mohamed Said; Chaisakul, Papichaya; Marris-Morini, Delphine; Frigerio, Jacopo; Isella, Giovanni; Chrastina, Daniel; Edmond, Samson; Le Roux, Xavier; Coudevylle, Jean-René; Vivien, Laurent
2012-10-01
Room-temperature quantum-confined Stark effect in a Ge/SiGe quantum-well structure is reported at the wavelength of 1.3 μm. The operating wavelength is tuned by the use of strain engineering. Low-energy plasma-enhanced chemical vapor deposition is used to grow 20 periods of strain-compensated quantum wells (8 nm Ge well and 12 nm Si(0.35)Ge(0.65) barrier) on Si(0.21)Ge(0.79) virtual substrate. The fraction of light absorbed per well allows for a strong modulation around 1.3 μm. The half-width at half-maximum of the excitonic peak of only 12 meV allows for a discussion on physical mechanisms limiting the performances of such devices.
Linearity and Non-linearity of Photorefractive effect in Materials ...
African Journals Online (AJOL)
Linearity and Non-linearity of Photorefractive effect in Materials using the Band transport ... For low light beam intensities the change in the refractive index is ... field is spatially phase shifted by /2 relative to the interference fringe pattern, which ...
El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi
2018-05-01
Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.
International Nuclear Information System (INIS)
Rice, B.W.; Lao, L.L.; Burrell, K.H.; Greenfield, C.M.; Lin-Liu, Y.R.
1997-06-01
The development of enhanced confinement regimes such as negative central magnetic shear (NCS) and VH-mode illustrates the importance of the q profile and ExB velocity shear in improving stability and confinement in tokamak plasmas. Recently, it was realized that the large values of radial electric field observed in these high performance plasmas, up to 200 kV/m in DIII-D, have an effect on the interpretation of motional Stark effect (MSE) measurements of the q profile. It has also been shown that, with additional MSE measurements, one can extract a direct measurement of E r in addition to the usual poloidal field measurement. During a recent vent on DIII-D, 19 additional MSE channels with new viewing angles were added (for a total of 35 channels) in order to descriminate between the neutral beam v b x B electric field and the plasma E r field. In this paper, the system upgrade will be described and initial measurements demonstrating simultaneous measurement of the q and E r profiles will be presented
Interband Stark effects in InxGa1-xAs/InyAl1-yAs coupled step quantum wells
International Nuclear Information System (INIS)
Kim, J.H.; Kim, T.W.; Yoo, K.H.
2005-01-01
The effects of an electric field on the interband transitions in In x Ga 1-x As/In y Al 1-y As coupled step quantum wells have been investigated both experimentally and theoretically. A In x Ga 1-x As/In y Al 1-y As coupled step quantum well sample consisted of the two sets of a 50 Aa In 0.53 Ga 0.47 As shallow quantum well and a 50 Aa In 0.65 Ga 0.35 As deep step quantum well bounded by two thick In 0.52 Al 0.48 As barriers separated by a 30 Aa In 0.52 Al 0.48 As embedded potential barrier. The Stark shift of the interband transition energy in the In x Ga 1-x As/In y Al 1-y As coupled step quantum well is larger than that of the single quantum well, and the oscillator strength in the In x Ga 1-x As/In y Al 1-y As coupled step quantum well is larger than that in a coupled rectangular quantum well. These results indicate that In x Ga 1-x As/In y Al 1-y As coupled step quantum wells hold promise for potential applications in optoelectron devices, such as tunable lasers
International Nuclear Information System (INIS)
Adam, A.G.; Gough, T.E.; Isenor, N.R.; Scoles, G.
1985-01-01
sub-Doppler molecular-beam laser Stark spectroscopy has been employed to produce high-contrast Rabi oscillations in the ν 3 band of CH 3 F. By varying the intensity of the cw CO 2 laser, up to five complete oscillations were observed before the phenomenon was washed out by rapid-passage effects and damping mechanisms. Besides being useful in clarifying key features of coherent ir molecular-beam spectroscopy, the observation of Rabi oscillations provides one of the most accurate means of directly measuring transition dipole moments. Analysis of the present data on three rovibrational transitions, Q(1,1) -1reverse arrow0, P(1,0) 0reverse arrow0, and R(1,1) 0reverse arrow1, has yielded a rotationless transition dipole moment of 0.21 +- 0.01 D for the ν 3 = 1reverse arrow0 vibration. This result is in agreement with values estimated from both band-intensity and absorption-coefficient data in the literature
Enriching an effect calculus with linear types
DEFF Research Database (Denmark)
Egger, Jeff; Møgelberg, Rasmus Ejlers; Simpson, Alex
2009-01-01
We define an ``enriched effect calculus'' by conservatively extending a type theory for computational effects with primitives from linear logic. By doing so, we obtain a generalisation of linear type theory, intended as a formalism for expressing linear aspects of effects. As a worked example, we...... formulate linearly-used continuations in the enriched effect calculus. These are captured by a fundamental translation of the enriched effect calculus into itself, which extends existing call-by-value and call-by-name linearly-used CPS translations. We show that our translation is involutive. Full...... completeness results for the various linearly-used CPS translations follow. Our main results, the conservativity of enriching the effect calculus with linear primitives, and the involution property of the fundamental translation, are proved using a category-theoretic semantics for the enriched effect calculus...
Directory of Open Access Journals (Sweden)
Aynur Batkan
2012-06-01
Full Text Available In this research, the effects of three different holding periods (6, 12 and 24 hours prior to storage on the quality attributes of Starking Delicious apples were investigated during storage of 8 months at 0.5 ± 1.0 ºC. Changes in weight loss, flesh firmness, pH values, soluble dry matter amount, titratable acidity values, ascorbic acid contents, and total and reducing sugar content were determined. According to the results, the holding period showed statistically significant changes in the quality attributes of the apples (p Neste trabalho, os efeitos de três diferentes tempos de espera (6, 12 e 24 horas antes do armazenamento sobre os atributos de qualidade de maçãs tipo Starking Delicious foram investigados durante o armazenamento de 8 meses a 0,5 ± 1,0 ºC. Alterações na perda de peso, firmeza da polpa, valores de pH, quantidade de matéria seca solúvel, valores de acidez titulável, teor de ácido ascórbico e teor de açúcar redutor e total das amostras foram determinadas. De acordo com os resultados da análise, o tempo de espera causou alterações estatisticamente significativas sobre as nos atributos de qualidade das maçãs (p < 0,05.
Zagonel, L. F.; Tizei, L. H. G.; Vitiello, G. Z.; Jacopin, G.; Rigutti, L.; Tchernycheva, M.; Julien, F. H.; Songmuang, R.; Ostasevicius, T.; de la Peña, F.; Ducati, C.; Midgley, P. A.; Kociak, M.
2016-05-01
We report on a detailed study of the intensity dependent optical properties of individual GaN/AlN quantum disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cathodoluminescence (CL) in a scanning transmission electron microscope (STEM). By exciting the QDisks with a nanometric electron beam at currents spanning over three orders of magnitude, strong nonlinearities (energy shifts) in the light emission are observed. In particular, we find that the amount of energy shift depends on the emission rate and on the QDisk morphology (size, position along the NW and shell thickness). For thick QDisks (>4 nm), the QDisk emission energy is observed to blueshift with the increase of the emission intensity. This is interpreted as a consequence of the increase of carriers density excited by the incident electron beam inside the QDisks, which screens the internal electric field and thus reduces the quantum confined Stark effect (QCSE) present in these QDisks. For thinner QDisks (energy shifts, marking the transition from unscreened to partially screened QCSE. From the threshold value we estimate the lifetime in the unscreened regime. These observations suggest that, counterintuitively, electrons of high energy can behave ultimately as single electron-hole pair generators. In addition, when we increase the current from 1 to 10 pA the light emission efficiency drops by more than one order of magnitude. This reduction of the emission efficiency is a manifestation of the "efficiency droop" as observed in nitride-based 2D light emitting diodes, a phenomenon tentatively attributed to the Auger effect.
Petreska, Irina; Ivanovski, Gjorgji; Pejov, Ljupčo
2007-04-01
The effect of external electrostatic fields on the spherical oscillator energy states was studied using stationary perturbation theory. Besides the spherical oscillator with ideal symmetry, also a variety of the deformed systems were considered in which the deformations may be induced by the external fields, but also by the short-range crystal lattice forces. The perturbation theory analysis was carried out using the field-dependent basis functions. Predicted spectral appearances and band splittings due to the deformations and external field influences were shown to be helpful in interpreting the experimental spectra of molecular oscillator possessing subsets of mutually orthogonal triply degenerate normal modes (such as, e.g. tetrahedral species). To verify the results of the perturbation theory treatments, as well as to provide a further illustration of the usefulness of the employed technique, a numerical HF/aug-cc-pVTZ study of the vibrational states of methane molecule in external electrostatic field was performed.
Stark shifting two-electron quantum dot
International Nuclear Information System (INIS)
Dineykhan, M.; Zhaugasheva, S.A.; Duysebaeva, K.S.
2003-01-01
Advances in modern technology make it possible to create semiconducting nano-structures (quantum dot) in which a finite number of electrons are 'captured' in a bounded volume. A quantum dot is associated with a quantum well formed at the interface, between two finite-size semiconductors owing to different positions of the forbidden gaps on the energy scale in these semiconductors. The possibility of monitoring and controlling the properties of quantum dots attracts considerable attention to these objects, as a new elemental basis for future generations of computers. The quantum-mechanical effects and image potential play a significant role in the description of the formation mechanism quantum dot, and determined the confinement potential in a two-electron quantum dot only for the spherical symmetric case. In the present talk, we considered the formation dynamics of two-electron quantum dot with violation of spherical symmetry. So, we have standard Stark potential. The energy spectrum two-electron quantum dot were calculated. Usually Stark interactions determined the tunneling phenomena between quantum dots
Modified dynamic Stark shift and depopulation rate of an atom inside a Kerr nonlinear blackbody
International Nuclear Information System (INIS)
Yin Miao; Cheng Ze
2009-01-01
We investigate the dynamic Stark shift and atomic depopulation rate induced by real photons in a Kerr nonlinear blackbody. We found that the dynamic Stark shift and atomic depopulation rate are equally modified by a nonlinear contribution factor and a linear contribution factor under a transition temperature T c . The nonlinear contribution factor depends on the Kerr nonlinear coefficient as well as the absolute temperature. Below T c , the absolute values of the dynamic Stark shift and depopulation rate of a single atomic state (not the ground state) are correspondingly larger than those in a normal blackbody whose interior is filled with a nonabsorbing linear medium. Above T c , the dynamic Stark shift and atomic depopulation rate are correspondingly equal to those in a normal blackbody with a nonabsorbing linear medium in its interior.
Linear Magnetochiral effect in Weyl Semimetals
Cortijo, Alberto
We describe the presence of a linear magnetochiral effect in time reversal breaking Weyl semimetals. The magnetochiral effect consists in a simultaneous linear dependence of the magnetotransport coefficients with the magnetic field and a momentum vector. This simultaneous dependence is allowed by the Onsager reciprocity relations, being the separation vector between the Weyl nodes the vector that plays such role. This linear magnetochiral effect constitutes a new transport effect associated to the topological structures linked to time reversal breaking Weyl semimetals. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007) and MINECO (Spain) Grant No. FIS2015-73454-JIN.
DEFF Research Database (Denmark)
Schmidt, Johan Albrecht
’s stratosphere is nearly mass dependent, and only a small fraction of the observed anomalous oxygen-17 excess can be attributed to N2O photolysis. In contrast, stratospheric photolysis produces a significant inverse clumped isotope effect.(ii) Stratospheric OCS photolysis significantly enrich the remaining OCS...
Fröman, Nanny
2008-01-01
This book treats the Stark effect of a hydrogenic atom or ion in a homogeneous electric field. It begins with a thorough review of previous work in this field since 1926. After the Schrödinger equation has been separated with respect to time dependence, centre of mass motion and internal motion, followed by a discussion of its eigenfunctions, the exact development in time of the probability amplitude for a decaying state is obtained by means of a formula analogous to the Fock-Krylov theorem. From this formula one obtains by means of the phase-integral approximation generated from a particular
International Nuclear Information System (INIS)
Rinkleff, R.H.
1977-01-01
Using the method of optical double resonance, the 5s5p 3 P 1 level tensor polarizability of Cadmium has been measured. For this state, various authors have published different results, using different experimental methods. The experimental result presented here is in excellent agreement with the value of Happer, based on level crossing investigations, and agrees well with the theoretical result of Robinson based on a modified Sternheimer approximation, and so gives a reliable value for the tensor polarizability. Furthermore the tensor polarizability of the 6s6p 3 P 1 - level of the even Ytterbium isotopes and the odd Ytterbium 171 nucleus have been measured with the optical double resonance method, and the Stark constant has been calculated based on a given theory and oscillator strengths. Using the methods of optical double resonance and level crossing, the tensor polarizability of 5 excited levels of the Thulium configurations 4f 13 6s6p + 4f 12 5d6s 2 have been measured. From the experimental Stark constants and the angular coefficients of the eigenfunctions calculated by Camus, the radial integrals I(5d, 5p) and I(6p, 5d) are calculated for electric dipole transitions between levels of the configurations 4f 12 5d6s 2 + 4f 13 6s6p and levels of the 4f 12 6p6s 2 + 4f 13 6s5d configurations. The tensor polarizability calculated with these radial integrals show very good agreement with the experimental values. (orig./LH) [de
Controlling attribute effect in linear regression
Calders, Toon; Karim, Asim A.; Kamiran, Faisal; Ali, Wasif Mohammad; Zhang, Xiangliang
2013-01-01
In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.
Controlling attribute effect in linear regression
Calders, Toon
2013-12-01
In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.
Linear Magnetoelectric Effect by Orbital Magnetism
Scaramucci, A.; Bousquet, E.; Fechner, M.; Mostovoy, M.; Spaldin, N. A.
2012-01-01
We use symmetry analysis and first-principles calculations to show that the linear magnetoelectric effect can originate from the response of orbital magnetic moments to the polar distortions induced by an applied electric field. Using LiFePO4 as a model compound we show that spin-orbit coupling
Rydberg State Stark Spectroscopy and Applications to Plasma Diagnostics
1990-03-01
Bayfield47 provides an excellent review of the AC Stark effect, in which the primary effect is Rabi splitting. Several authors48 , 49, 50 have...purity of the spectrum indicates that the field present is dominantly anisotropic . 53 n:26NEON LINE n=35 0 n= 40 p.- n=45 IL 0 31975 31950 31925 31900...applied (axial) electric field which is anisotropic , so pure polarization spectra can be recorded. The intensity profile of the Am = 0 polarization is
Dynamic Stark shift and alignment-to-orientation conversion
International Nuclear Information System (INIS)
Kuntz, Matthew C.; Hilborn, Robert C.; Spencer, Alison M.
2002-01-01
We have observed alignment-to-orientation conversion in the (5d6p) 1 P state of atomic barium due to the combined effects of a static Zeeman shift and a dynamic Stark shift associated with the electric field of a pulsed laser beam. The measurements yield a value for the frequency-dependent tensor polarizability of the state in reasonable agreement with a simple perturbation theory calculation. With a tunable laser producing the dynamic Stark shift, we can both enhance the magnitude of the effect by tuning close to a resonance and reverse the sign of the orientation by tuning above or below the resonance. This method of producing an oriented atomic state is quite general, and with easily available field strengths can produce large orientations
Ker, H. W.
2014-01-01
Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…
Supersonic Molecular Beam Optical Stark Spectroscopy of MnH.
Gengler, Jamie; Ma, Tongmei; Harrison, Jeremy; Steimle, Timothy
2006-03-01
The large moment of inertia, large magnetic moment, and possible large permanent electric dipole moment of manganese monohydride, MnH, makes it a prime candidate for ultra-cold molecule production via Stark deceleration and magnetic trapping. Here we report the first molecular beam production of MnH and the analysis of the Stark effect in the (0,0) A^7 π -- X^ 7σ^+ band. The sample was prepared by laser ablation of solid Mn in an H2 supersonic expansion. The low rotational temperature (MnH and the analysis of T.D. Varberg, J.A. Gray, R.W. Field, and A.J. Merer, J. Mol. Spec. 156, 296-318 (1992). I.E. Gordon, D.R.T. Appadoo, A. Shayesteh, K.A. Walker, and P.F. Bernath, J. Mol. Spec., 229, 145-149 (2005).
International Nuclear Information System (INIS)
Valance, Antoine.
1974-01-01
The production, detection and destruction of the 2S1/2 metastable state of the hydrogen atom were studied. The quasi-resonant charge exchange processes between fast protons and cesium target, in the total cross sections for production of metastable H(2s) atoms and radiative H(2p) atoms showed structures hitherto unobserved. The theoretical study is based on calculation of the adiabatic molecular potential terms of the ionic quasi-molecule (CsH) + , taking a Helmann type pseudopotential to describe the electron with respect to the core of the cesium ion. The probabilities of transition towards the output channels are calculated using a stationary state perturbation method. From the data obtained the interferece phenomena of excited quasi-molecular states can be interpreted coherently in slow collision. The probability of transition along the inelastic output channels displays characteristics of a harmonic oscillatory function inversely proportional to the speed of approach of the particles. The frequency of these oscillations depends very slightly on the impact parameter. The theory proposed involves three Σ states. During detection of the metastable ions the Lyman-α radiation induced in the de-excitation electric field by Stark effect present anisotropic features. The degree of polarization measured as a function of the field strength oscillates around a slow decay toward a limit-1 at strong electric field. A theory not accounting for the hyperfine structure of states mixed by Stark effect showed a double oscillatory structure containing the two frequencies correlated to the 2P1/2 and 2P3/2 states from the 2S1/2 state. Finally the results on the electron detachment reaction between fast metastable atoms and hydroiodic acid target have contributed towards research on polarized proton sources [fr
Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock
Beloy, K.; Zhang, X.; McGrew, W. F.; Hinkley, N.; Yoon, T. H.; Nicolodi, D.; Fasano, R. J.; Schäffer, S. A.; Brown, R. C.; Ludlow, A. D.
2018-05-01
We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10-20 level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.
Electron Cloud Effect in the Linear Colliders
International Nuclear Information System (INIS)
Pivi, M
2004-01-01
Beam induced multipacting, driven by the electric field of successive positively charged bunches, may arise from a resonant motion of electrons, generated by secondary emission, bouncing back and forth between opposite walls of the vacuum chamber. The electron-cloud effect (ECE) has been observed or is expected at many storage rings [1]. In the beam pipe of the Damping Ring (DR) of a linear collider, an electron cloud is produced initially by ionization of the residual gas and photoelectrons from the synchrotron radiation. The cloud is then sustained by secondary electron emission. This electron cloud can reach equilibrium after the passage of only a few bunches. The electron-cloud effect may be responsible for collective effects as fast coupled-bunch and single-bunch instability, emittance blow-up or incoherent tune shift when the bunch current exceeds a certain threshold, accompanied by a large number of electrons in the vacuum chamber. The ECE was identified as one of the most important R and D topics in the International Linear Collider Report [2]. Systematic studies on the possible electron-cloud effect have been initiated at SLAC for the GLC/NLC and TESLA linear colliders, with particular attention to the effect in the positron main damping ring (MDR) and the positron Low Emittance Transport which includes the bunch compressor system (BCS), the main linac, and the beam delivery system (BDS). We present recent computer simulation results for the main features of the electron cloud generation in both machine designs. Thus, single and coupled-bunch instability thresholds are estimated for the GLC/NLC design
Stark broadening of hydrogen (1961); Sur l'effet stark dans les plasmas d'hydrogene (1961)
Energy Technology Data Exchange (ETDEWEB)
Fidone, I [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France)
1961-07-01
The effect of electron impacts on the Stark broadening of hydrogen atoms has been considered using a Debye-Huckel potential instead of a cut-off limit for the integrals giving the shift and the half-width. A slight difference results which in a typical case is of the order of 12 - 15 per cent. The simple adiabatic impact approximation has been used. (author) [French] L'effet des chocs electroniques sur l'elargissement Stark des raies d'hydrogene est calcule avec le potentiel de Debye-Huckel au lieu de l'emploi du cut-off pour les integrales qui donnent le deplacement et l'elargissement de la raie. On obtient une faible difference qui, dans un cas typique, est de l'ordre de grandeur de 12 - 15 pour cent. L'approximation adiabatique a ete employee pour decrire les chocs. (auteur)
Wakefield effects in a linear collider
International Nuclear Information System (INIS)
Bane, K.L.F.
1986-12-01
In this paper the wakefields for the Stanford Linear Accelerator Center (SLAC) accelerating structure are first discussed, and then some considerations dealing with the longitudinal wakefields are described. The main focus is on the effects of the transverse wakefield on the beam, including the case when there is an energy variation along the bunch. The use of an energy spread to inhibit emittance growth in a linac, indeed to damp the oscillations of the core of the bunch to below the unperturbed betatron oscillations, (in a process that is similar to Landau Damping) is qualitatively detailed. The example of the SLC, including errors, is also in detail
Dose Rate Effects in Linear Bipolar Transistors
Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis
2011-01-01
Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.
Chen, Horng-Shyang; Liu, Zhan Hui; Shih, Pei-Ying; Su, Chia-Ying; Chen, Chih-Yen; Lin, Chun-Han; Yao, Yu-Feng; Kiang, Yean-Woei; Yang, C C
2014-04-07
A reverse-biased voltage is applied to either device in the vertical configuration of two light-emitting diodes (LEDs) grown on patterned and flat Si (110) substrates with weak and strong quantum-confined Stark effects (QCSEs), respectively, in the InGaN/GaN quantum wells for independently controlling the applied voltage across and the injection current into the p-i-n junction in the lateral configuration of LED operation. The results show that more carrier supply is needed in the LED of weaker QCSE to produce a carrier screening effect for balancing the potential tilt in increasing the forward-biased voltage, when compared with the LED of stronger QCSE. The small spectral shift range in increasing injection current in the LED of weaker QCSE is attributed not only to the weaker QCSE, but also to its smaller device resistance such that a given increment of applied voltage leads to a larger increment of injection current. From a viewpoint of practical application in LED operation, by applying a reverse-biased voltage in the vertical configuration, the applied voltage and injection current in the lateral configuration can be independently controlled by adjusting the vertical voltage for keeping the emission spectral peak fixed.
Study of Stark Effect in n-doped 1.55 μm InN0.92yP1-1.92yBiy/InP MQWs
Bilel, C.; Chakir, K.; Rebey, A.; Alrowaili, Z. A.
2018-05-01
The effect of an applied electric field on electronic band structure and optical absorption properties of n-doped InN0.92y P1-1.92y Bi y /InP multiple quantum wells (MQWs) was theoretically studied using a self-consistent calculation combined with the 16-band anti-crossing model. The incorporation of N and Bi atoms into an InP host matrix leads to rapid reduction of the band gap energy covering a large infrared range. The optimization of the well parameters, such as the well/barrier widths, N/Bi compositions and doping density, allowed us to obtain InN0.92y P1-1.92y Bi y /InP MQWs operating at the wavelength 1.55 μm. Application of the electric field causes a red-shift of the fundamental transition energy T 1 accompanied by a significant change in the spatial distribution of confined electron density. The Stark effect on the absorption coefficient of n-doped InN0.92y P1-1.92y Bi y /InP MQWs was investigated. The Bi composition of these MQWs was adjusted for each electric field value in order to maintain the wavelength emission at 1.55 μm.
Energy Technology Data Exchange (ETDEWEB)
Palomares, J.M., E-mail: j.m.palomares-linares@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Huebner, S.; Carbone, E.A.D.; Vries, N. de; Veldhuizen, E.M. de [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Sola, A.; Gamero, A. [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Mullen, J.J.A.M. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2012-07-15
In the present work Stark broadening measurements have been carried out on low electron density (n{sub e} < 5{center_dot}10{sup 19} m{sup -3}) and (relatively) low gas temperature (T{sub g} < 1100 K) argon-hydrogen plasma, under low-intermediate pressure conditions (3 mbar-40 mbar). A line fitting procedure is used to separate the effects of the different broadening mechanisms (e.g. Doppler and instrumental broadening) from the Stark broadening. A Stark broadening theory is extrapolated to lower electron density values, below its theoretical validity regime. Thomson scattering measurements are used to calibrate and validate the procedure. The results show an agreement within 20%, what validates the use of this Stark broadening method under such low density conditions. It is also found that Stark broadened profiles cannot be assumed to be purely Lorentzian. Such an assumption would lead to an underestimation of the electron density. This implies that independent information on the gas temperature is needed to find the correct values of n{sub e}. - Highlights: Black-Right-Pointing-Pointer Stark broadening measurements at low density and temperature conditions Black-Right-Pointing-Pointer Calibration with Thomson scattering Black-Right-Pointing-Pointer Indications of the non-Lorentzian shape of the Stark broadening Black-Right-Pointing-Pointer Impossibility of simultaneous diagnostic of gas temperature and electron density.
Runge-Lenz wave packet in multichannel Stark photoionization
International Nuclear Information System (INIS)
Texier, F.
2005-01-01
In a previous slow photoionization experiment, modulations of ionization rings were manifested for Xe in a constant electric field. The present quantum calculation reveals that the modulation is an effect of the multichannel core scattering and of tunneling waves through the Coulomb-Stark potential barrier: the barrier reduces the number of oscillations that is observed relatively to the number of oscillations of the short range wave functions, and the nonhydrogenic core phase shifts modify the position of the ionization rings. We find a hidden difference, in the ionization process, for two close values of the energy depending on the resonance with the barrier. The ionization intensity is interpreted as a Runge-Lenz wave packet; thus, we can relate the quantum modulation to the classical Coulomb-Stark trajectories. The Runge-Lenz wave packet differs from a usual temporal wave packet because its components are eigenstates of the Runge-Lenz vector z projection and its evolution is not temporal but spatial
Stark Broadening of Cr III Spectral Lines: DO White Dwarfs
Directory of Open Access Journals (Sweden)
Milan S. Dimitrijević
2018-04-01
Full Text Available Using the modified semiempirical method of Dimitrijević and Konjević, Stark widths have been calculated for six Cr III transitions, for an electron density of 10 17 cm ‒ 3 and for temperatures from 5000–80,000 K. Results have been used for the investigation of the influence of Stark broadening on spectral lines in cool DO white dwarf atmospheres. Calculated Stark widths will be implemented in the STARK-B database, which is also a part of the Virtual Atomic and Molecular Data Center (VAMDC.
Faraway, Julian J
2005-01-01
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...
Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Prabaswara, Aditya; Zhao, Chao; Priante, Davide; Min, Jung-Wook; Ng, Tien Khee; Ooi, Boon S.
2018-03-01
We study the impact of quantum-confined stark effect (QCSE) on bias dependent micro-photoluminescence emission of the quantum disk (Q-disk) based nanowires light emitting diodes (NWs-LED) exhibiting the amber colored emission. The NWs are found to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field - scanning transmission electron microscopy. The LEDs were fabricated to acquire the bias dependent micro-photoluminescence spectra. We observe a redshift and a blueshift of the μPL peak in the forward and reverse bias conditions, respectively, with reference to zero bias, which is in contrast to the metal-polar InGaN well-based LEDs in the literature. Such opposite shifts of μPL peak emission observed for N-polar NWs-LEDs, in our study, are due to the change in the direction of the internal piezoelectric field. The quenching of PL intensity, under the reverse bias conditions, is ascribed to the reduction of electron-hole overlap. Furthermore, the blueshift of μPL emission with increasing excitation power reveals the suppression of QCSE resulting from the photo-generated carriers. Thereby, our study confirms the presence of QCSE for NWs-LEDs from both bias and power dependent μPL measurements. Thus, this study serves to understand the QCSE in N-polar InGaN Q-disk NWs-LEDs and other related wide-bandgap nitride nanowires, in general.
Tangi, Malleswararao
2018-03-09
We study the impact of quantum-confined stark effect (QCSE) on bias dependent micro-photoluminescence emission of the quantum disk (Q-disk) based nanowires light emitting diodes (NWs-LED) exhibiting the amber colored emission. The NWs are found to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field - scanning transmission electron microscopy. The LEDs were fabricated to acquire the bias dependent micro-photoluminescence spectra. We observe a redshift and a blueshift of the μPL peak in the forward and reverse bias conditions, respectively, with reference to zero bias, which is in contrast to the metal-polar InGaN well-based LEDs in the literature. Such opposite shifts of μPL peak emission observed for N-polar NWs-LEDs, in our study, are due to the change in the direction of the internal piezoelectric field. The quenching of PL intensity, under the reverse bias conditions, is ascribed to the reduction of electron-hole overlap. Furthermore, the blueshift of μPL emission with increasing excitation power reveals the suppression of QCSE resulting from the photo-generated carriers. Thereby, our study confirms the presence of QCSE for NWs-LEDs from both bias and power dependent μPL measurements. Thus, this study serves to understand the QCSE in N-polar InGaN Q-disk NWs-LEDs and other related wide-bandgap nitride nanowires, in general.
Energy Technology Data Exchange (ETDEWEB)
List, Nanna Holmgaard, E-mail: nhl@sdu.dk; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark (Denmark); Beerepoot, Maarten T. P.; Gao, Bin; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Olsen, Jógvan Magnus Haugaard [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark (Denmark); Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)
2015-01-21
We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.
International Nuclear Information System (INIS)
List, Nanna Holmgaard; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob; Beerepoot, Maarten T. P.; Gao, Bin; Ruud, Kenneth; Olsen, Jógvan Magnus Haugaard
2015-01-01
We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters
Non linear effects in piezoelectric materials
Directory of Open Access Journals (Sweden)
Gonnard, P.
2002-02-01
Full Text Available The static and dynamic non-linear behaviours of a soft and a hard zirconate titanate composition are investigated in this paper as a function of electrical and mechanical fields. The calculated Rayleigh coefficients show that they are similar for the permittivity ε ^{T}_{33} and the piezoelectric constant and nul for the voltage constant d_{33} and the compliance at zero D (D = dielectric displacement. A non-linear electromechanical equivalent circuit is built up with components proportional to D. Finally an extended model to non-Rayleigh type behaviours is proposed.
Los comportamientos no lineales estáticos y dinámicos de composiciones blandas y duras de titanato circonato de plomo se investigan en este trabajo en función de campos eléctricos y mecánicos. Los coeficientes de Rayleigh calculados son similares para la permitividad ε^{T}_{33} y la constantes piezoléctrica d_{33} y nulos para la constante g_{33} y la complianza a D cero (D=desplazamiento dieléctrico. Se construye un circuito electromecánico no lineal equivalente con componentes proporcionales a D. Finalmente se propone un modelo extendido a comportamientos de tipo no-Rayleigh.
Science Translator: An Interview with Louisa Stark.
Stark, Louisa A
2015-07-01
The Genetics Society of America's Elizabeth W. Jones Award for Excellence in Education recognizes significant and sustained impact on genetics education. The 2015 awardee, Louisa Stark, has made a major impact on global access to genetics education through her work as director of the University of Utah Genetic Science Learning Center. The Center's Learn.Genetics and Teach.Genetics websites are the most widely used online genetic education resources in the world. In 2014, they were visited by 18 million students, educators, scientists, and members of the public. With over 60 million page views annually, Learn.Genetics is among the most used sites on the Web. Copyright © 2015 by the Genetics Society of America.
Stark-like electron transfer between quantum wells
International Nuclear Information System (INIS)
Dubovis, S.A.; Voronko, A.N.; Basharov, A.M.
2008-01-01
The Stark-like mechanism of electron transfer between two energy subband localized in remote quantum wells is examined theoretically. Estimations of major parameters of the problem in case of delta-function-wells model are adduced. Schematic model allowing experimental study of Stark-like transfer is proposed
Estimating linear effects in ANOVA designs: the easy way.
Pinhas, Michal; Tzelgov, Joseph; Ganor-Stern, Dana
2012-09-01
Research in cognitive science has documented numerous phenomena that are approximated by linear relationships. In the domain of numerical cognition, the use of linear regression for estimating linear effects (e.g., distance and SNARC effects) became common following Fias, Brysbaert, Geypens, and d'Ydewalle's (1996) study on the SNARC effect. While their work has become the model for analyzing linear effects in the field, it requires statistical analysis of individual participants and does not provide measures of the proportions of variability accounted for (cf. Lorch & Myers, 1990). In the present methodological note, using both the distance and SNARC effects as examples, we demonstrate how linear effects can be estimated in a simple way within the framework of repeated measures analysis of variance. This method allows for estimating effect sizes in terms of both slope and proportions of variability accounted for. Finally, we show that our method can easily be extended to estimate linear interaction effects, not just linear effects calculated as main effects.
Stark shift of impurity doped quantum dots: Role of noise
Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas
2018-02-01
Present study makes a punctilious investigation of the profiles of Stark shift (SS) of doped GaAs quantum dot (QD) under the supervision of Gaussian white noise. A few physical parameters have been varied and the consequent variations in the SS profiles have been monitored. The said physical parameters comprise of magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for AlxGa1-x As alloy QD), position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The SS profiles unfurl interesting features that heavily depend upon the particular physical quantity concerned, presence/absence of noise and the manner (additive/multiplicative) noise enters the system. The study highlights feasible means of maximizing SS of doped QD in presence of noise by suitable adjustment of several control parameters. The study deems importance in view of technological applications of QD devices where noise plays some prominent role.
Random effect selection in generalised linear models
DEFF Research Database (Denmark)
Denwood, Matt; Houe, Hans; Forkman, Björn
We analysed abattoir recordings of meat inspection codes with possible relevance to onfarm animal welfare in cattle. Random effects logistic regression models were used to describe individual-level data obtained from 461,406 cattle slaughtered in Denmark. Our results demonstrate that the largest...
Effect of Genetic and Environmental Factors on Linear Udder ...
African Journals Online (AJOL)
The effects of evaluators, sex of calf, breed, sire, parity, month of calving and season of lactation on linear udder conformation traits and milk yield was investigated in the dairy herd of the National Animal Production Research Institute, Shika, Zaria, Nigeria. Seven linear udder conformation traits coupled with milk yield of 25 ...
Can the Stark-Einstein law resolve the measurement problem from an animate perspective?
Thaheld, Fred H
2015-09-01
Analysis of the Stark-Einstein law as it applies to the retinal molecule, which is part of the rhodopsin molecule within the rod cells of the retina, reveals that it may provide the solution to the measurement problem from an animate perspective. That it represents a natural boundary where the Schrödinger equation or wave function automatically goes from linear to nonlinear while remaining in a deterministic state. It will be possible in the near future to subject this theory to empirical tests as has been previously proposed. This analysis provides a contrast to the many decades well studied and debated inanimate measurement problem and would represent an addition to the Stark-Einstein law involving information carried by the photon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Effect of Image Linearization on Normalized Compression Distance
Mortensen, Jonathan; Wu, Jia Jie; Furst, Jacob; Rogers, John; Raicu, Daniela
Normalized Information Distance, based on Kolmogorov complexity, is an emerging metric for image similarity. It is approximated by the Normalized Compression Distance (NCD) which generates the relative distance between two strings by using standard compression algorithms to compare linear strings of information. This relative distance quantifies the degree of similarity between the two objects. NCD has been shown to measure similarity effectively on information which is already a string: genomic string comparisons have created accurate phylogeny trees and NCD has also been used to classify music. Currently, to find a similarity measure using NCD for images, the images must first be linearized into a string, and then compared. To understand how linearization of a 2D image affects the similarity measure, we perform four types of linearization on a subset of the Corel image database and compare each for a variety of image transformations. Our experiment shows that different linearization techniques produce statistically significant differences in NCD for identical spatial transformations.
Modeling of hydrogen Stark line shapes with kinetic theory methods
Rosato, J.; Capes, H.; Stamm, R.
2012-12-01
The unified formalism for Stark line shapes is revisited and extended to non-binary interactions between an emitter and the surrounding perturbers. The accuracy of this theory is examined through comparisons with ab initio numerical simulations.
Multiphoton Rabi oscillations between highly excited Stark states of potassium
International Nuclear Information System (INIS)
He Yonglin
2011-01-01
We have applied a nonperturbative resonant theory to study the Rabi frequency of microwave multiphoton transitions between two Rydberg states of potassium in a static electric field. The Stark electric dipole moments used to calculate the Rabi frequency are determined by the Stark states' wave functions, which are obtained by the diagonalization method. The frequencies of the Rabi oscillations are in good agreement with either experimental ones or ones calculated by the time-dependent close-coupling method and the Floquet theory. Furthermore, we are able to show that the size of avoided crossings between the (n+2)s and (n,3) states can be predicted from the Stark electric dipole moment and the difference of the two Stark states' energy at a given resonance.
Stark laws and fair market value exceptions: an introduction.
Siebrasse, Paul B
2007-01-01
This article will focus on one aspect of complexity in modern healthcare, namely the implications of Stark laws and other fraud and abuse provisions, including anti-kickback statutes and HIPAA. Also, this article explores the prevalence of fair market value as an exception in the Stark laws and discusses the meanings of those exceptions. Finally, the article explores basic approaches to assessing fair market value, including cost, income, and marketing approaches.
Stark broadening measurements of Xe III spectral lines
International Nuclear Information System (INIS)
Pelaez, R J; Cirisan, M; Djurovic, S; Aparicio, J A; Mar, S
2006-01-01
This work reports measured Stark widths of doubly ionized xenon lines. Pulsed arc was used as a plasma source. Measured electron densities and temperatures were in the ranges of (0.2 - 1.6) x 10 23 m -3 and 18 300-25 500 K, respectively. Stark halfwidths of lines from 6s-6p, 6s-4f and 5d-6p transitions have been measured and compared with available experimental and theoretical data
Non-linear effects in the Boltzmann equation
International Nuclear Information System (INIS)
Barrachina, R.O.
1985-01-01
The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es
Stark widths regularities within spectral series of sodium isoelectronic sequence
Trklja, Nora; Tapalaga, Irinel; Dojčinović, Ivan P.; Purić, Jagoš
2018-02-01
Stark widths within spectral series of sodium isoelectronic sequence have been studied. This is a unique approach that includes both neutrals and ions. Two levels of problem are considered: if the required atomic parameters are known, Stark widths can be calculated by some of the known methods (in present paper modified semiempirical formula has been used), but if there is a lack of parameters, regularities enable determination of Stark broadening data. In the framework of regularity research, Stark broadening dependence on environmental conditions and certain atomic parameters has been investigated. The aim of this work is to give a simple model, with minimum of required parameters, which can be used for calculation of Stark broadening data for any chosen transitions within sodium like emitters. Obtained relations were used for predictions of Stark widths for transitions that have not been measured or calculated yet. This system enables fast data processing by using of proposed theoretical model and it provides quality control and verification of obtained results.
Guo, Zhi; Lin, Su; Woodbury, Neal W
2013-09-26
In photosynthetic reaction centers, the electric field generated by light-induced charge separation produces electrochromic shifts in the transitions of reaction center pigments. The extent of this Stark shift indirectly reflects the effective field strength at a particular cofactor in the complex. The dynamics of the effective field strength near the two monomeric bacteriochlorophylls (BA and BB) in purple photosynthetic bacterial reaction centers has been explored near physiological temperature by monitoring the time-dependent Stark shift during charge separation (dynamic Stark shift). This dynamic Stark shift was determined through analysis of femtosecond time-resolved absorbance change spectra recorded in wild type reaction centers and in four mutants at position M210. In both wild type and the mutants, the kinetics of the dynamic Stark shift differ from those of electron transfer, though not in the same way. In wild type, the initial electron transfer and the increase in the effective field strength near the active-side monomer bacteriochlorophyll (BA) occur in synchrony, but the two signals diverge on the time scale of electron transfer to the quinone. In contrast, when tyrosine is replaced by aspartic acid at M210, the kinetics of the BA Stark shift and the initial electron transfer differ, but transfer to the quinone coincides with the decay of the Stark shift. This is interpreted in terms of differences in the dynamics of the local dielectric environment between the mutants and the wild type. In wild type, comparison of the Stark shifts associated with BA and BB on the two quasi-symmetric halves of the reaction center structure confirm that the effective dielectric constants near these cofactors are quite different when the reaction center is in the state P(+)QA(-), as previously determined by Steffen et al. at 1.5 K (Steffen, M. A.; et al. Science 1994, 264, 810-816). However, it is not possible to determine from static, low-temperature measurments if the
ZEST: A Fast Code for Simulating Zeeman-Stark Line-Shape Functions
Directory of Open Access Journals (Sweden)
Franck Gilleron
2018-03-01
Full Text Available We present the ZEST code, dedicated to the calculation of line shapes broadened by Zeeman and Stark effects. As concerns the Stark effect, the model is based on the Standard Lineshape Theory in which ions are treated in the quasi-static approximation, whereas the effects of electrons are represented by weak collisions in the framework of a binary collision relaxation theory. A static magnetic field may be taken into account in the radiator Hamiltonian in the dipole approximation, which leads to additional Zeeman splitting patterns. Ion dynamics effects are implemented using the fast Frequency-Fluctuation Model. For fast calculations, the static ion microfield distribution in the plasma is evaluated using analytic fits of Monte-Carlo simulations, which depend only on the ion-ion coupling parameter and the electron-ion screening factor.
Effect of Integral Non-Linearity on Energy Calibration of ...
African Journals Online (AJOL)
The integral non-linearity (INL) of four spectroscopy systems, two integrated (A1 and A2) and two classical (B1 and B2) systems was determined using pulses from a random pulse generator. The effect of INL on the system's energy calibration was also determined. The effect is minimal in the classical system at high ...
Direct and Maternal Additive Effects on Rabbit Growth and Linear ...
African Journals Online (AJOL)
Growth and linear body measurements of rabbits which consisted of 17 ew Zealand White (ZW), 19 Chinchilla (CH), 29 ZW x CH and 33 CH x ZW kittens were compared. The aim of the experiment was to evaluate the crossbreeding effects (i.e direct and maternal additive effect) for growth (individual body weight, IBW) and ...
Son, Chanhee; Park, Sanghoon; Kim, Minjeong
2011-01-01
This study compared linear text-based and non-linear hypertext-based instruction in a handheld computer regarding effects on two different levels of knowledge (declarative and structural knowledge) and learner motivation. Forty four participants were randomly assigned to one of three experimental conditions: linear text, hierarchical hypertext,…
International Nuclear Information System (INIS)
Govorov, A.O.
1993-08-01
Interband optical absorption in the Wannier-Stark ladder in the presence of the electron-LO-phonon resonance is investigated theoretically. The electron-LO-phonon resonance occurs when the energy spacing between adjacent Stark-ladder levels coincides with the LO-phonon energy. We propose a model describing the polaron effect in a superlattice. Calculations show that the absorption line shape is strongly modified due to the polaron effect under the electron-LO-phonon resonance condition. We consider optical phenomena in a normal magnetic field that leads to enhancement of polaron effects. (author). 17 refs, 5 figs
A comment on framing effects in linear public good games
Cartwright, Edward
2016-01-01
A number of recent papers have looked at framing effects in linear public good games. In this comment, I argue that, within this literature, the distinction between give-take and positive–negative framing effects has become blurred, and that this is a barrier towards understanding the experimental evidence on framing effects. To make these points, I first illustrate that frames can differ along both an externality and choice dimension. I then argue that the existing evidence is consistent wit...
Effect of CSR shielding in the compact linear collider
Esberg, J; Apsimon, R; Schulte, D
2014-01-01
The Drive Beam complex of the Compact Linear Collider must use short bunches with a large charge making beam transport susceptible to unwanted effects of Coherent Synchrotron Radiation emitted in the dipole magnets. We present the effects of transporting the beam within a limited aperture which decreases the magnitude of the CSR wake. The effect, known as CSR shielding, eases the design of key components of the facility.
Effect of Genotype and Age on Some Morphometric, Body Linear ...
African Journals Online (AJOL)
A population of 231 roosters of the Nigerian indigenous chickens of normal feathered frizzle feathered and naked neck genotypes was evaluated for the effect of genotype and age on some morphometric body linear measurements and semen characteristics of three Nigerian chicken genotypes. 20 roosters from each ...
Stark broadening of the Hα line of hydrogen at low densities: quantal and semiclassical results
International Nuclear Information System (INIS)
Stehle, C.; Feautrier, N.
1984-01-01
Stark profiles of the Hα lines of hydrogen are computed at low densities in the 'impact' theory. By a comparison with quantal results, it is shown that a simple semiclassical perturbational approach with appropriate cutoffs is sufficient to give accurate profiles in the line centre. Neglecting the natural broadening and the fine-structure effects, the authors prove that the electronic broadening is negligible and that the profile has a Lorentzian shape. An analytical expression of the half width is given. (author)
Asymmetry of Hβ Stark profiles in T-tube hydrogen plasma
International Nuclear Information System (INIS)
Djurovic, S.; Nikolic, D.; Savic, I.; Soerge, S.; Demura, A. V.
2005-01-01
The whole Balmer H β line profiles are studied in detail experimentally in the T-tube discharge for the wide range of plasma parameters. Besides the common one, two additional parameters are introduced to characterize the asymmetry behavior of the experimental Stark profiles with the reference point chosen in the center of the line. The experimental data are analyzed and benchmarked versus the simple theoretical model based on the effects of microfield nonuniformity and electron impact shifts
Asymmetry of Stark-broadened Layman lines from laser-produced plasmas
International Nuclear Information System (INIS)
Joyce, R.F.; Woltz, L.A.; Hooper, C.F. Jr.
1986-01-01
This paper discusses three significant causes of spectral line asymmetry: the ion-quadrupole interaction, the quadratic Stark effect and fine structure splitting that are included in the calculation of Lyman line profiles emitted by highly-ionized hydrogenic radiators in a dense, hot plasma. The line asymmetries are shown to be strongly dependent on the plasma density, indicating that the asymmetry may be of use as a density diagnostic
Stark widths of Xe II lines in a pulsed plasma
International Nuclear Information System (INIS)
Djurovic, S; Pelaez, R J; Cirisan, M; Aparicio, J A; Mar, S
2006-01-01
In this paper, we present a review of experimental work on Stark broadening of singly ionized xenon lines. Eighty lines, from close UV to the red region of the spectrum, have been studied. Stark halfwidths were compared with experimental data from the literature and modified semi-empirical calculations. A pulsed arc with 95% of helium and 5% xenon was used as a plasma source for this study. Measured electron densities N e and temperatures T were in the ranges of 0.2-1.6 x 10 23 m -3 and 18 300-25 500 K, respectively
DEFF Research Database (Denmark)
Holst, René; Jørgensen, Bent
2015-01-01
The paper proposes a versatile class of multiplicative generalized linear longitudinal mixed models (GLLMM) with additive dispersion components, based on explicit modelling of the covariance structure. The class incorporates a longitudinal structure into the random effects models and retains...... a marginal as well as a conditional interpretation. The estimation procedure is based on a computationally efficient quasi-score method for the regression parameters combined with a REML-like bias-corrected Pearson estimating function for the dispersion and correlation parameters. This avoids...... the multidimensional integral of the conventional GLMM likelihood and allows an extension of the robust empirical sandwich estimator for use with both association and regression parameters. The method is applied to a set of otholit data, used for age determination of fish....
Stark broadening parameters and transition probabilities of persistent lines of Tl II
de Andrés-García, I.; Colón, C.; Fernández-Martínez, F.
2018-05-01
The presence of singly ionized thallium in the stellar atmosphere of the chemically peculiar star χ Lupi was reported by Leckrone et al. in 1999 by analysis of its stellar spectrum obtained with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope. Atomic data about the spectral line of 1307.50 Å and about the hyperfine components of the spectral lines of 1321.71 Å and 1908.64 Å were taken from different sources and used to analyse the isotopic abundance of thallium II in the star χ Lupi. From their results the authors concluded that the photosphere of the star presents an anomalous isotopic composition of Tl II. A study of the atomic parameters of Tl II and of the broadening by the Stark effect of its spectral lines (and therefore of the possible overlaps of these lines) can help to clarify the conclusions about the spectral abundance of Tl II in different stars. In this paper we present calculated values of the atomic transition probabilities and Stark broadening parameters for 49 spectral lines of Tl II obtained by using the Cowan code including core polarization effects and the Griem semiempirical approach. Theoretical values of radiative lifetimes for 11 levels (eight with experimental values in the bibliography) are calculated and compared with the experimental values in order to test the quality of our results. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed. Trends of our calculated Stark width for the isoelectronic sequence Tl II-Pb III-Bi IV are also displayed.
Effect of Linear and Non-linear Resistance Exercise on Anaerobic Performance among Young Women
Homa Esmaeili; Ali Reza Amani; Taher Afsharnezhad
2015-01-01
The main goals of strength training are improving muscle strength, power and muscle endurance. The objective of the current study is to compare two popular linear and nonlinear resistance exercises interventions on the anaerobic power. Previous research has shown differences intervention by the linear and non-linear resistance exercise in performance and strength in male athletes. By the way there are not enough data regarding female subjects. Eighteen young women subjects participated in th...
Estimation and Inference for Very Large Linear Mixed Effects Models
Gao, K.; Owen, A. B.
2016-01-01
Linear mixed models with large imbalanced crossed random effects structures pose severe computational problems for maximum likelihood estimation and for Bayesian analysis. The costs can grow as fast as $N^{3/2}$ when there are N observations. Such problems arise in any setting where the underlying factors satisfy a many to many relationship (instead of a nested one) and in electronic commerce applications, the N can be quite large. Methods that do not account for the correlation structure can...
An overview of collective effects in circular and linear accelerators
International Nuclear Information System (INIS)
Ruth, R.D.
1989-04-01
The purpose of both linear and circular accelerator is, of course, to accelerate beams of charged particles. In order to do this it is necessary not only to accelerate particles but also to confine them transversely so that they remain in the vacuum environment. Originally, as accelerators were developed, the intensity of the beams was rather low and so the external fields could be applied without regard to the effects of the space-charge forces of the beams. However, as the demand for high intensity increased, collective effects that are due to the space-charge forces became increasingly important. In order to control a beam of particles we apply external fields. These focus the beam transversely and accelerate it and focus it longitudinally. In addition to these externally applied fields a particle within the beam feels a field due to the charge and current of all the other particles in the beam. By collective effects, we mean all those modifications to the beam behavior which are due to these beam-induced forces. The first two major topics discussed are linear and circular accelerators. In the linear accelerator case, we will consider as examples only electron linacs that have relatively high energy and so particles will have ν ≅ c. For circular accelerators we'll consider both protons and electrons or their anti-particles. The next two topics are single bunches and multi-bunches. In both linear accelerators and circular accelerators the particles have a bunched character because they are accelerated by an RF system, and the RF has a natural wavelength. The next two topics arise from the natural separation of longitudinal and transverse effects. 40 refs., 30 figs., 1 tab
Simulation experiment on total ionization dose effects of linear CCD
International Nuclear Information System (INIS)
Tang Benqi; Zhang Yong; Xiao Zhigang; Wang Zujun; Huang Shaoyan
2004-01-01
We carry out the ionization radiation experiment of linear CCDs operated in unbiased, biased, biased and driven mode respectively by Co-60 γ source with our self-designed test system, and offline test the Dark signal and Saturation voltage and SNR varied with total dose for TCD132D, and get some valuable results. On the basis of above work, we set forth a primary experiment approaches to simulate the total dose radiation effects of charge coupled devices. (authors)
Faraday effect on stimulated Raman scattering in the linear region
Liu, Z. J.; Li, B.; Xiang, J.; Cao, L. H.; Zheng, C. Y.; Hao, L.
2018-04-01
The paper presents the effect of Faraday rotation on stimulated Raman scattering (SRS). When light propagates along the magnetic field upon plasma, Faraday rotation occurs. The rotation angle can be expressed as {{d}}θ /{{d}}{s}=2.93× {10}-4B\\tfrac{{n}e/{n}c}{\\sqrt{1-{n}e/{n}c}} {cm}}-1 approximately, where θ is the rotation angle and s is distance, n e is the electron density, n c is the critical density and B is magnetic field in unit of Gauss. Both the incident light and Raman light have Faraday effects. The angle between the polarization directions of incident light and Raman light changes with position. The driven force of electron plasma wave also reduces, and then SRS scattering level is reduced. Faraday rotation effect can increase the laser intensity threshold of Raman scattering, even if the magnetic field strength is small. The circularly polarized light incident case is also compared with that of the linearly polarized light incident. The Raman scattering level of linearly polarized light is much smaller than that of circularly polarized light in the magnetized plasma. The difference between linearly and circularly polarized lights is also discussed.
Existence of the Stark-Wannier quantum resonances
Energy Technology Data Exchange (ETDEWEB)
Sacchetti, Andrea, E-mail: andrea.sacchetti@unimore.it [Department of Physics, Computer Sciences and Mathematics, University of Modena e Reggio Emilia, Modena (Italy)
2014-12-15
In this paper, we prove the existence of the Stark-Wannier quantum resonances for one-dimensional Schrödinger operators with smooth periodic potential and small external homogeneous electric field. Such a result extends the existence result previously obtained in the case of periodic potentials with a finite number of open gaps.
Rydberg-Stark states of Positronium for atom optics
International Nuclear Information System (INIS)
Alonso, A M; Cooper, B S; Deller, A; Hogan, S D; Wall, T E; Cassidy, D B
2015-01-01
Positronium atoms were produced in Rydberg states by means of a two-step optical excitation process (1s→2p→nd/ns). The n = 11 Rydberg-Stark manifold has been studied using different laser polarizations providing greater control over the electric dipole moment. (paper)
Global non-linear effect of temperature on economic production.
Burke, Marshall; Hsiang, Solomon M; Miguel, Edward
2015-11-12
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Global non-linear effect of temperature on economic production
Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward
2015-11-01
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Non-linear effective Lagrangian treatment of 'Penguin' interaction
International Nuclear Information System (INIS)
Pham, T.N.
1984-01-01
Using the non-linear effective lagrangian technique, we show explicitly that only derivative coupling is allowed for the K - π, K -> 2 π and K -> 3 π transitions induced by the ΔS = 1 Penguin operator of SVZ in agreement with chiral symmetry requirements. From a derivative coupling (3, anti 3) mass term and the SU(3) breaking effect for fsub(K)/fsub(π), we estimate the strength of the Penguin interactions and find it too small to account for the ΔI = 1/2 amplitude. (orig.)
Dark matter as a non-linear effect of gravitation
International Nuclear Information System (INIS)
Maia, M.D.; Capistrano, A.J.S.
2006-01-01
The rotation curves of stars in disk galaxies are calculated with the Newtonian law of motion applied to a scalar potential derived from the geodesic equation, only, under the slow motion condition, the so-called Nearly Newtonian Gravity (NNG). A nearly Newtonian gravitational potential, Φ NN = -1/2 c 2 (1+g 44 ), is obtained, characterized by an exact solution of Einsteins equations, with the non-linear effects present in the component g 44 . This gravitational field lies somewhere between General Relativity and Newtonian Gravity. Therefore, Einsteins equations and the equivalence principle are preserved, but the general covariance is broken. The resulting curves are remarkably close to the observed rotation curves in spiral galaxies, suggesting that a substantial component of dark matter may be explained by the non-linearity of Einsteins equations. (author)
On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach
Directory of Open Access Journals (Sweden)
Milan S. Dimitrijević
2014-08-01
Full Text Available The significance of Stark broadening data for problems in astrophysics, physics, as well as for technological plasmas is discussed and applications of Stark broadening parameters calculated using a semiclassical perturbation method are analyzed.
Ion effects in future circular and linear accelerators
International Nuclear Information System (INIS)
Raubenheimer, T.O.
1995-05-01
In this paper, the author discusses ion effects relevant to future storage rings and linear colliders. The author first reviews the conventional ion effects observed in present storage rings and then discusses how these effects will differ in the next generation of rings and linacs. These future accelerators operate in a new regime because of the high current long bunch trains and the very small transverse beam emittances. Usually, storage rings are designed with ion clearing gaps to prevent ion trapping between bunch trains or beam revolutions. Regardless, ions generated within a single bunch train can have significant effects. The same is true in transport lines and linacs, where typical vacuum pressures are relatively high. Amongst other effects, the author addresses the tune spreads due to the ions and the resulting filamentation which can severely limit emittance correction techniques in future linear colliders, the bunch-to-bunch coupling due to the ions which can cause a multi-bunch instability with fast growth rates, and the betatron coupling and beam halo creation which limit the vertical emittance and beam lifetimes
Effect Displays in R for Generalised Linear Models
Directory of Open Access Journals (Sweden)
John Fox
2003-07-01
Full Text Available This paper describes the implementation in R of a method for tabular or graphical display of terms in a complex generalised linear model. By complex, I mean a model that contains terms related by marginality or hierarchy, such as polynomial terms, or main effects and interactions. I call these tables or graphs effect displays. Effect displays are constructed by identifying high-order terms in a generalised linear model. Fitted values under the model are computed for each such term. The lower-order "relatives" of a high-order term (e.g., main effects marginal to an interaction are absorbed into the term, allowing the predictors appearing in the high-order term to range over their values. The values of other predictors are fixed at typical values: for example, a covariate could be fixed at its mean or median, a factor at its proportional distribution in the data, or to equal proportions in its several levels. Variations of effect displays are also described, including representation of terms higher-order to any appearing in the model.
Wang, Xianwei; Zhang, John Z H; He, Xiao
2015-11-14
Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.
Energy Technology Data Exchange (ETDEWEB)
Wang, Xianwei [Center for Optics and Optoelectronics Research, College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023 (China); State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062 (China); Zhang, John Z. H.; He, Xiao, E-mail: xiaohe@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062 (China); NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 (China)
2015-11-14
Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.
The sky pattern of the linearized gravitational memory effect
International Nuclear Information System (INIS)
Mädler, Thomas; Winicour, Jeffrey
2016-01-01
The gravitational memory effect leads to a net displacement in the relative positions of test particles. This memory is related to the change in the strain of the gravitational radiation field between infinite past and infinite future retarded times. There are three known sources of the memory effect: (i) the loss of energy to future null infinity by massless fields or particles, (ii) the ejection of massive particles to infinity from a bound system and (iii) homogeneous, source-free gravitational waves. In the context of linearized theory, we show that asymptotic conditions controlling these known sources of the gravitational memory effect rule out any other possible sources with physically reasonable stress–energy tensors. Except for the source-free gravitational waves, the two other known sources produce gravitational memory with E -mode radiation strain, characterized by a certain curl-free sky pattern of their polarization. Thus our results show that the only known source of B -mode gravitational memory is of primordial origin, corresponding in the linearized theory to a homogeneous wave entering from past null infinity. (paper)
Schmidt, Burkhard; Friedrich, Bretislav
2014-02-14
We show that combined permanent and induced electric dipole interactions of linear polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables - such as alignment and orientation cosines - in the plane spanned by the permanent and induced dipole interaction parameters. We find that the loci of the intersections of the surfaces can be traced analytically and that the eigenstates as well as the number of their intersections can be characterized by a single integer index. The value of the index, distinctive for a particular ratio of the interaction parameters, brings out a close kinship with the eigenproperties obtained previously for a class of Stark states via the apparatus of supersymmetric quantum mechanics.
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Burkhard, E-mail: burkhard.schmidt@fu-berlin.de [Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin (Germany); Friedrich, Bretislav, E-mail: brich@fhi-berlin.mpg.de [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany)
2014-02-14
We show that combined permanent and induced electric dipole interactions of linear polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables – such as alignment and orientation cosines – in the plane spanned by the permanent and induced dipole interaction parameters. We find that the loci of the intersections of the surfaces can be traced analytically and that the eigenstates as well as the number of their intersections can be characterized by a single integer index. The value of the index, distinctive for a particular ratio of the interaction parameters, brings out a close kinship with the eigenproperties obtained previously for a class of Stark states via the apparatus of supersymmetric quantum mechanics.
International Nuclear Information System (INIS)
Bakshi, V.
1988-01-01
The Stark widths of seven Ar I transitions are reported. Axial line shape data from an atmospheric d.c. argon plasma jet were Abel-inverted to obtain radial line shapes. The electron-density was determined by Stark width measurements of the hydrogen H β transition. In the electron-density region of ≤6 x 10 22 m -3 the experimental Ar I Stark widths are fitted to a linear dependence on the electron-density. Values of Stark width extrapolated to other electron densities are compared to measurements reported in the literature on the 4s-4p array. Experimental values are up to 45% smaller than those predicted by Griem's theory of Stark broadening. Conditions for local thermodynamic equilibrium (LTE) to exist in an atmospheric argon plasma jet were studied. The experiment measures the emission coefficient of seven Ar I transitions and the line shape of the hydrogen H beta transition. After transforming the side-on data into radial space the excited neutral argon atom-density and the electron-density are determined. It is found LTE does not exist below an electron-density of 6 x 10 33 m -3 in the experimental conditions
Effects of collisions on linear and non-linear spectroscopic line shapes
International Nuclear Information System (INIS)
Berman, P.R.
1978-01-01
A fundamental physical problem is the determination of atom-atom, atom-molecule and molecule-molecule differential and total scattering cross sections. In this work, a technique for studying atomic and molecular collisions using spectroscopic line shape analysis is discussed. Collisions occurring within an atomic or molecular sample influence the sample's absorptive or emissive properties. Consequently the line shapes associated with the linear or non-linear absorption of external fields by an atomic system reflect the collisional processes occurring in the gas. Explicit line shape expressions are derived characterizing linear or saturated absorption by two-or three-level 'active' atoms which are undergoing collisions with perturber atoms. The line shapes may be broadened, shifted, narrowed, or distorted as a result of collisions which may be 'phase-interrupting' or 'velocity-changing' in nature. Systematic line shape studies can be used to obtain information on both the differential and total active atom-perturber scattering cross sections. (Auth.)
Pablant, N A; Burrell, K H; Groebner, R J; Kaplan, D H; Holcomb, C T
2008-10-01
We describe a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of Stark split D(alpha) emission from the neutral beams. This system, named B-Stark, has been recently installed on the DIII-D tokamak. To find the magnetic pitch angle, we use the ratio of the intensities of the pi(3) and sigma(1) lines. These lines originate from the same upper level and so are not dependent on the level populations. In future devices, such as ITER, this technique may have advantages over diagnostics based on MSE polarimetry. We have done an optimization of the viewing direction for the available ports on DIII-D to choose the installation location. With this placement, we have a near optimal viewing angle of 59.6 degrees from the vertical direction. All hardware has been installed for one chord, and we have been routinely taking data since January 2007. We fit the spectra using a simple Stark model in which the upper level populations of the D(alpha) transition are treated as free variables. The magnitude and direction of the magnetic field obtained using this diagnostic technique compare well with measurements from MSE polarimetry and EFIT.
Stark-shift of impurity fundamental state in a lens shaped quantum dot
Aderras, L.; Bah, A.; Feddi, E.; Dujardin, F.; Duque, C. A.
2017-05-01
We calculate the Stark effect and the polarisability of shallow-donor impurity located in the centre of lens shaped quantum dot by a variational method and in the effective-mass approximation. Our theoretical model assumes an infinite confinement to describe the barriers at the dot boundaries and the electric field is considered to be applied in the z-direction. The systematic theoretical investigation contains results with the quantum dot size and the strength of the external field. Our calculations reveal that the interval wherein the polarisability varies depends strongly on the dot size.
Fermionic effective operators and Higgs production at a linear collider
International Nuclear Information System (INIS)
Kile, Jennifer; Ramsey-Musolf, Michael J.
2007-01-01
We study the possible contributions of dimension six operators containing fermion fields to Higgs production at a 500 GeV or 1 TeV e + e - linear collider. We show that--depending on the production mechanism--the effects of such operators can be kinematically enhanced relative to standard model (SM) contributions. We determine constraints on the operator coefficients implied by existing precision electroweak measurements and the scale of neutrino mass. We find that even in the presence of such constraints, substantial deviations from SM Higgs production cross sections are possible. We compare the effects of fermionic operators with those associated with purely bosonic operators that have been previously discussed in the literature
Stark broadening of Ca IV spectral lines of astrophysical interest
Alonso-Medina, A.; Colón, C.
2014-12-01
Ca IV emission lines are under the preview of Solar Ultraviolet Measurements of Emitted Radiation device aboard the Solar and Heliospheric Observatory. Also, lines of the Ca IV in planetary nebulae NGC 7027 were detected with the Short Wavelength Spectrometer on board the Infrared Space Observatory. These facts justify an attempt to provide new spectroscopic parameters of Ca IV. There are no theoretical or experimental Stark broadening data for Ca IV. Using the Griem semi-empirical approach and the COWAN code, we report in this paper calculated values of the Stark broadening parameters for 467 lines of Ca IV. They were calculated using a set of wavefunctions obtained by using Hartree-Fock relativistic calculations. These lines arising from 3s23p4ns (n = 4, 5), 3s23p44p, 3s23p4nd (n = 3, 4) configurations. Stark widths and shifts are presented for an electron density of 1017 cm-3 and temperatures T = 10 000, 20 000 and 50 200 K. As these data cannot be compared to others in the literature, we present an analysis of the different regularities of the values presented in this work.
Direction of Effects in Multiple Linear Regression Models.
Wiedermann, Wolfgang; von Eye, Alexander
2015-01-01
Previous studies analyzed asymmetric properties of the Pearson correlation coefficient using higher than second order moments. These asymmetric properties can be used to determine the direction of dependence in a linear regression setting (i.e., establish which of two variables is more likely to be on the outcome side) within the framework of cross-sectional observational data. Extant approaches are restricted to the bivariate regression case. The present contribution extends the direction of dependence methodology to a multiple linear regression setting by analyzing distributional properties of residuals of competing multiple regression models. It is shown that, under certain conditions, the third central moments of estimated regression residuals can be used to decide upon direction of effects. In addition, three different approaches for statistical inference are discussed: a combined D'Agostino normality test, a skewness difference test, and a bootstrap difference test. Type I error and power of the procedures are assessed using Monte Carlo simulations, and an empirical example is provided for illustrative purposes. In the discussion, issues concerning the quality of psychological data, possible extensions of the proposed methods to the fourth central moment of regression residuals, and potential applications are addressed.
Dimitrijevic, M. S.; Tankosic, D.
1998-04-01
In order to find out if regularities and systematic trends found to be apparent among experimental Stark line shifts allow the accurate interpolation of new data and critical evaluation of experimental results, the exceptions to the established regularities are analysed on the basis of critical reviews of experimental data, and reasons for such exceptions are discussed. We found that such exceptions are mostly due to the situations when: (i) the energy gap between atomic energy levels within a supermultiplet is equal or comparable to the energy gap to the nearest perturbing levels; (ii) the most important perturbing level is embedded between the energy levels of the supermultiplet; (iii) the forbidden transitions have influence on Stark line shifts.
Exceptions to the Stark law: practical considerations for surgeons.
Satiani, Bhagwan
2006-03-01
The purpose of this study was to provide an understanding of the applicable legislative exceptions to prohibitions under the Stark law, which governs common legitimate business relationships in surgical practice. Stark I and II prohibits all referrals (and claims) for the provision of designated health services for federal reimbursement if a physician or immediate family member has any financial relationship with the entity. Regardless of intent (unlike the antikickback statute), any financial relationship is illegal unless specifically excepted by statute. These exceptions are relevant to ownership, compensation arrangements, or both. The most important ones relevant to surgeons are as follows: physician service exception (services rendered in an intragroup referral); in-office ancillary services exception (office-based vascular laboratory); the whole hospital exception (ownership interest in a hospital or department); lease exception (conditions that must be met for a lease not to be considered illegal); bona fide employment exception (important to academic medical centers); personal services arrangement exception (vascular laboratory medical directorship); physician incentive plans exception (if volume or value of referrals are an issue); hospital-affiliated group practice exception (physician services billed by a hospital); recruitment arrangement exception (inducements by hospitals to relocate); items/services exception (transcription services purchased from a hospital); fair market value exception (covers services provided to health care entities); indirect compensation arrangements (dealings between a hospital and entity owned by physicians); and academic medical centers exception (new phase II rules broaden the definition of academic medical centers and ease the requirement that practice plans be tax-exempt organizations, among other changes. Although expert legal advice is required for navigation through the maze of Stark laws, it is incumbent on surgeons
New neutral current effects at e+e- linear colliders
International Nuclear Information System (INIS)
Pankov, A.A.
2002-01-01
Four fermion contact interaction effects in the processes e + e - → μ + μ - , b-barb and c-barc at the e + e - linear colliders with √ s = 0.5 TeV and longitudinally polarized initial beams have been studied. Presented analysis has been performed by means of new integrated observables expressed in terms of the forward (σ F ) and backward (σ B ) polarized cross sections such that they give information on individual helicity cross sections. The helicity cross sections allow to perform a general model-independent analysis of four-fermion contact interactions and obtain the corresponding constraints on their parameters. It is also shows that the sensitivity of the new polarized observables to contact interactions is quite larger than that of the conventional observables (σ, A FB , A LR , A LR,FB ) [ru
Effective diffusion in time-periodic linear planar flow
International Nuclear Information System (INIS)
Indeikina, A.; Chang, H.
1993-01-01
It is shown that when a point source of solute is inserted into a time-periodic, unbounded linear planar flow, the large-time, time-average transport of the solute can be described by classical anisotropic diffusion with constant effective diffusion tensors. For a given vorticity and forcing period, elongational flow is shown to be the most dispersive followed by simple shear and rotational flow. Large-time diffusivity along the major axis of the time-average concentration ellipse, whose alignment is predicted from the theory, is shown to increase with vorticity for all flows and decrease with increasing forcing frequency for elongational flow and simple shear. For the interesting case of rotational flow, there exist discrete resonant frequencies where the time-average major diffusivity reaches local maxima equal to the time-average steady flow case with zero forcing frequency
Directory of Open Access Journals (Sweden)
Jovanović Jelena
2016-02-01
Full Text Available A cost-effective method for resolution increase of a two-stage piecewise linear analog-to-digital converter used for sensor linearization is proposed in this paper. In both conversion stages flash analog-to-digital converters are employed. Resolution increase by one bit per conversion stage is performed by introducing one additional comparator in front of each of two flash analog-to-digital converters, while the converters’ resolutions remain the same. As a result, the number of employed comparators, as well as the circuit complexity and the power consumption originating from employed comparators are for almost 50 % lower in comparison to the same parameters referring to the linearization circuit of the conventional design and of the same resolution. Since the number of employed comparators is significantly reduced according to the proposed method, special modifications of the linearization circuit are needed in order to properly adjust reference voltages of employed comparators.
Modelling non-linear effects of dark energy
Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis
2018-04-01
We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.
Linear mixed-effects modeling approach to FMRI group analysis.
Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W
2013-06-01
Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity
Evaluation of beach cleanup effects using linear system analysis.
Kataoka, Tomoya; Hinata, Hirofumi
2015-02-15
We established a method for evaluating beach cleanup effects (BCEs) based on a linear system analysis, and investigated factors determining BCEs. Here we focus on two BCEs: decreasing the total mass of toxic metals that could leach into a beach from marine plastics and preventing the fragmentation of marine plastics on the beach. Both BCEs depend strongly on the average residence time of marine plastics on the beach (τ(r)) and the period of temporal variability of the input flux of marine plastics (T). Cleanups on the beach where τ(r) is longer than T are more effective than those where τ(r) is shorter than T. In addition, both BCEs are the highest near the time when the remnants of plastics reach the local maximum (peak time). Therefore, it is crucial to understand the following three factors for effective cleanups: the average residence time, the plastic input period and the peak time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hamid, Ka; Yusoff, An; Rahman, Mza; Mohamad, M; Hamid, Aia
2012-04-01
This fMRI study is about modelling the effective connectivity between Heschl's gyrus (HG) and the superior temporal gyrus (STG) in human primary auditory cortices. MATERIALS #ENTITYSTARTX00026; Ten healthy male participants were required to listen to white noise stimuli during functional magnetic resonance imaging (fMRI) scans. Statistical parametric mapping (SPM) was used to generate individual and group brain activation maps. For input region determination, two intrinsic connectivity models comprising bilateral HG and STG were constructed using dynamic causal modelling (DCM). The models were estimated and inferred using DCM while Bayesian Model Selection (BMS) for group studies was used for model comparison and selection. Based on the winning model, six linear and six non-linear causal models were derived and were again estimated, inferred, and compared to obtain a model that best represents the effective connectivity between HG and the STG, balancing accuracy and complexity. Group results indicated significant asymmetrical activation (p(uncorr) Model comparison results showed strong evidence of STG as the input centre. The winning model is preferred by 6 out of 10 participants. The results were supported by BMS results for group studies with the expected posterior probability, r = 0.7830 and exceedance probability, ϕ = 0.9823. One-sample t-tests performed on connection values obtained from the winning model indicated that the valid connections for the winning model are the unidirectional parallel connections from STG to bilateral HG (p model comparison between linear and non-linear models using BMS prefers non-linear connection (r = 0.9160, ϕ = 1.000) from which the connectivity between STG and the ipsi- and contralateral HG is gated by the activity in STG itself. We are able to demonstrate that the effective connectivity between HG and STG while listening to white noise for the respective participants can be explained by a non-linear dynamic causal model with
Stark broadening of several Bi IV spectral lines of astrophysical interest
Colón, C.; Moreno-Díaz, C.; de Andrés-García, I.; Alonso-Medina, A.
2017-09-01
The presence of spectral lines of bismuth in stellar atmospheres has been reported in different stars. The anomalous values of the spectral intensities of Bi II and Bi III, compared to the theoretical Local Termodinamic Equilibrium (LTE) standards of Bi I/Bi II/Bi III, have been reported in the spectra obtained with the High Resolution Spectrograph of the Hubble/Goddard Space Telescope in the chemically peculiar stars HgMn stars χ Lupi and HR 7775. Spectral lines of 1436.8, 1902.3, 2630.9 and 2936.7 Å of Bi II and 1423.4 Å of Bi III were reported and their relative intensities were measured in these studies Litzén & Wahlgren 2002. These lines are overlapped with spectral lines of 1437.65, 2630.1 and 2937.1 Å of Bi IV. A study of the Stark broadening parameters of Bi IV spectral lines can help to study these overlaps. In this paper, using the Griem semi-empirical approach, we report calculated values of the Stark parameters for 64 spectral lines of Bi IV. The matrix elements used in these calculations have been determined from 17 configurations of Bi IV. They were calculated using the cowan code including core polarization effects. Data are displayed for an electron density of 1017 cm-3 and temperatures T = 10 000-160 000 K. Also calculated radiative lifetimes for 12 levels with experimental lifetime are presented, in order to test the goodness of our calculations. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed.
Beneficial effect of physical activity on linear growth rate of ...
African Journals Online (AJOL)
It is not known if nutritional and/or other interventions could improve linear growth in adolescents. The purpose of this study was to assess the role of physical activity in promoting linear growth velocity of black adolescents in a low-income shanty town in South Africa. Two schools in a disadvantaged shanty town participated ...
Grey scale, the 'crispening effect', and perceptual linearization
Belaïd, N.; Martens, J.B.
1998-01-01
One way of optimizing a display is to maximize the number of distinguishable grey levels, which in turn is equivalent to perceptually linearizing the display. Perceptual linearization implies that equal steps in grey value evoke equal steps in brightness sensation. The key to perceptual
Stark-shift induced resonances in multiphoton ionization
International Nuclear Information System (INIS)
Potvliege, R M; Vuci, Svetlana
2006-01-01
The resonance enhancements marking the ATI spectrum of argon are discussed in the light of a recently compiled map of the quasienergies of this atom. Many of the dressed excited states of interest shift nonponderomotively in complicated ways, but keep an ionization width narrow enough to produce sharp substructures of both low and high ATI peaks through Stark-shift induced resonances. The most prominent enhancement observed in the high-order ATI peaks originates from ionization from the dressed ground state perturbed by the influence of neighbouring resonant dressed states
Effect of high linear energy transfer radiation on biological membranes
International Nuclear Information System (INIS)
Choudhary, D.; Srivastava, M.; Kale, R.K.; Sarma, A.
1998-01-01
Cellular membranes are vital elements, and their integrity is extremely essential for the viability of the cells. We studied the effects of high linear energy transfer (LET) radiation on the membranes. Rabbit erythrocytes (1 x 10 7 cells/ml) and microsomes (0.6 mg protein/ml) prepared from liver of rats were irradiated with 7 Li ions of energy 6.42 MeV/u and 16 O ions of energy 4.25 MeV/u having maximum LET values of 354 keV/μm and 1130 keV/μm, respectively. 7 Li- and 16 O-induced microsomal lipid peroxidation was found to increase with fluence. The 16 O ions were more effective than 7 Li ions, which could be due to the denser energy distribution in the track and the yield of free radicals. These findings suggested that the biological membranes could be peroxidized on exposure to high-LET radiation. Inhibition of the lipid peroxidation was observed in the presence of a membrane-active drug, chlorpromazine (CPZ), which could be due to scavenging of free radicals (mainly HO. and ROO.), electron donation, and hydrogen transfer reactions. The 7 Li and 16 O ions also induced hemolysis in erythrocytes. The extent of hemolysis was found to be a function of time and fluence, and showed a characteristic sigmoidal pattern. The 16 O ions were more effective in the lower fluence range than 7 Li ions. These results were compared with lipid peroxidation and hemolysis induced by gamma-radiation. (orig.)
Propagation of vector solitons in a quasi-resonant medium with stark deformation of quantum states
Energy Technology Data Exchange (ETDEWEB)
Sazonov, S. V., E-mail: sazonov.sergei@gmail.com [National Research Centre Kurchatov Institute (Russian Federation); Ustinov, N. V., E-mail: n_ustinov@mail.ru [Moscow State Railway University, Kaliningrad Branch (Russian Federation)
2012-11-15
The nonlinear dynamics of a vector two-component optical pulse propagating in quasi-resonance conditions in a medium of nonsymmetric quantum objects is investigated for Stark splitting of quantum energy levels by an external electric field. We consider the case when the ordinary component of the optical pulse induces {sigma} transitions, while the extraordinary component induces the {pi} transition and shifts the frequencies of the allowed transitions due to the dynamic Stark effect. It is found that under Zakharov-Benney resonance conditions, the propagation of the optical pulse is accompanied by generation of an electromagnetic pulse in the terahertz band and is described by the vector generalization of the nonlinear Yajima-Oikawa system. It is shown that this system (as well as its formal generalization with an arbitrary number of optical components) is integrable by the inverse scattering transformation method. The corresponding Darboux transformations are found for obtaining multisoliton solutions. The influence of transverse effects on the propagation of vector solitons is investigated. The conditions under which transverse dynamics leads to self-focusing (defocusing) of solitons are determined.
Ng, Thomas W. H.; Feldman, Daniel C.
2011-01-01
Utilizing a meta-analytical approach for testing moderating effects, the current study investigated organizational tenure as a moderator in the relation between affective organizational commitment and organizational citizenship behavior (OCB). We observed that, across 40 studies (N = 11,416 respondents), the effect size for the relation between…
Shi, L.; Yan, Z. W.
2018-04-01
Within the framework of the effective-mass approximation and by using a variational method, the Stark shift of on-center and off-center donor impurity binding energies and photoionization cross section under a z-direction electric field in a prolate (oblate) core/shell ellipsoidal quantum dot has been studied. We have calculated the Stark shift as a function of the core and shell sizes and shapes, electric field, and impurity position. We also discuss the photoionization cross section as a function of photon energy with different core and shell sizes and shapes, electric field strengths, and impurity positions. The results show that the Stark shift depends strongly on the impurity position, it could be positive or negative. The core and shell sizes and shapes also have a pronounce influence on the Stark shift, and the Stark shift changes with them is non-monotonic, especially when the impurity is located at the -z-axis, the situation will become complicated. In addition, the core and shell sizes and shapes, impurity position, and electric field also have an important influence on the photoionization cross section. In particular, the photoionization cross section will vanish when the impurity is located at center of spherical core with spherical or prolate shell case at zero field.
Hβ Stark broadening in cold plasmas with low electron densities calibrated with Thomson scattering
International Nuclear Information System (INIS)
Palomares, J.M.; Hübner, S.; Carbone, E.A.D.; Vries, N. de; Veldhuizen, E.M. de; Sola, A.; Gamero, A.; Mullen, J.J.A.M. van der
2012-01-01
In the present work Stark broadening measurements have been carried out on low electron density (n e 19 m −3 ) and (relatively) low gas temperature (T g e . - Highlights: ► Stark broadening measurements at low density and temperature conditions ► Calibration with Thomson scattering ► Indications of the non-Lorentzian shape of the Stark broadening ► Impossibility of simultaneous diagnostic of gas temperature and electron density
Stark mapping of H2 Rydberg states in the strong-field regime with dynamical resolution
International Nuclear Information System (INIS)
Glab, W.L.; Qin, K.
1993-01-01
We have acquired spectra of high Rydberg states of molecular hydrogen in a static external field, in the energy region from below the energy at which field ionization becomes classically possible (E c ) to well above this energy. Simultaneous spectra of ionization and dissociation were acquired, thereby allowing direct information on the excited-state decay dynamics to be obtained. We have found that states with energies below E c undergo field-induced predissociation, while states with energies well above E c decay predominantly by field ionization. Field ionization and dissociation compete effectively as decay channels for states with energies in a restricted region just above E c . Comparison of our ionization spectra to the results of a single-channel quantum-defect theory Stark calculation shows quantitative agreement except near curve crossings, indicating that inclusion of different core rotational state channels will be required to properly account for coupling between the Stark states. Several states in the spectra undergo pronounced changes in their dynamical properties over a narrow range of field values, which we interpret as being due to interference cancellation of the ionization rates for these states
The effects of oestrogens on linear bone growth
DEFF Research Database (Denmark)
Juul, A
2001-01-01
Regulation of linear bone growth in children and adolescents comprises a complex interaction of hormones and growth factors. Growth hormone (GH) is considered to be the key hormone regulator of linear growth in childhood. The pubertal increase in growth velocity associated with GH has traditionally...... been attributed to testicular androgen secretion in boys, and to oestrogens or adrenal androgen secretion in girls. Research data indicating that oestrogen may be the principal hormone stimulating the pubertal growth spurt in boys as well as girls is reviewed. Such an action is mediated by oestrogen...... female growth spurt despite lack of androgen action. Oestrogens may also influence linear bone growth indirectly via modulation of the GH-insulin-like growth factor-I (IGF-I) axis. Thus, ER blockade diminishes endogenous GH secretion, androgen receptor (AR) blockade increases GH secretion in peripubertal...
Directory of Open Access Journals (Sweden)
Dufour P.
2011-12-01
Full Text Available White dwarf stars are traditionally found to have surface compositions made primarily of hydrogen or helium. However, a new family has recently been uncovered, the so-called hot DQ white dwarfs, which have surface compositions dominated by carbon and oxygen with little or no trace of hydrogen and helium (Dufour et al. 2007, 2008, 2010. Deriving precise atmospheric parameters for these objects (such as the effective temperature and the surface gravity requires detailed modeling of spectral line profiles. Stark broadening parameters are of crucial importance in that context. We present preliminary results from our new generation of model atmospheres including the latest Stark broadening calculations for C II lines and discuss the implications as well as future work that remains to be done.
Effect of Cisplatin on the Flexibility of Linear DNA
International Nuclear Information System (INIS)
Ji Chao; Zhang Ling-Yun; Hou Xi-Miao; Dou Shuo-Xing; Wang Peng-Ye
2011-01-01
With the aid of an atomic force microscope (AFM), we study the interaction between linear DNA fragment and cisplatin. For different cisplatin concentrations, the AFM used to observe the conformation of DNA has a gradual change. The contour length, the end-to-end distance and the local bend angles of the linear DNA fragment can be accurately measured. The persistence length of DNA interacting with cisplatin is decreased with the increasing cisplatin concentration. Furthermore, it is demonstrated that the local bend angles of DNA chains are increased by the binding interaction of cisplatin. (cross-disciplinary physics and related areas of science and technology)
International Nuclear Information System (INIS)
Yamashita, Osamu
2009-01-01
The new thermal rate equations were built up by taking the linear and non-linear components in the temperature dependences of the Seebeck coefficient α, the electrical resistivity ρ and thermal conductivity κ of a thermoelectric (TE) material into the thermal rate equations on the assumption that their temperature dependences are expressed by a quadratic function of temperature T. The energy conversion efficiency η for a single TE element was formulated using the new thermal rate ones proposed here. By applying it to the high-performance half-Heusler compound, the non-linear component in the temperature dependence of α among those of the TE properties has the greatest effect on η, so that η/η 0 was increased by 11% under the condition of T = 510 K and ΔT = 440 K, where η 0 is a well-known conventional energy conversion efficiency. It was thus found that the temperature dependences of TE properties have a significant influence on η. When one evaluates the accurate achievement rate of η exp obtained experimentally for a TE generator, therefore, η exp should be compared with η the estimated from the theoretical expression proposed here, not with η 0 , particularly when there is a strong non-linearity in the temperature dependence of TE properties.
Effect of annular secondary conductor in a linear electromagnetic ...
Indian Academy of Sciences (India)
This paper presents the variation of average axial force density in the annular secondary conductor of a linear electromagnetic stirrer. Different geometries of secondaries are considered for numerical and experimental validation namely, 1. hollow annular ring, 2. annular ring with a solid cylinder and 3. solid cylinder.
Stark parameters of some asymmetrical Si II lines
International Nuclear Information System (INIS)
Ferhat, B; Azzouz, Y; Redon, R; Ripert, M; Lesage, A
2012-01-01
Six lines of SiII are experimentally studied in pulsed plasma generated by Nd :Yag laser breakdown on pure solid silicon target. A set of experimental Stark parameters of asymmetrical lines are measured in temperature range from 14 000 K to 18 000 K (using Boltzmann plot). Calculated values of the electron density (using Griem's formula) vary from 1.7 to 6.1 × 10 23 m −3 . Processed spectral lines are 333.982 nm (3s 2 4p -3s 2 6s) and 397.746 nm, 399.177 nm, 399.801 nm, 401.622 nm (3d' 2 F 0 -4f' 4 G) and (3d' 2 F 0 - 4f' 2 G) of astrophysical interest. Asymmetrical line shapes are synthesized by a sum of two semi-Lorentzian distributions. The obtained fit is in good agreement with the measured spectra.
Raman-laser spectroscopy of Wannier-Stark states
International Nuclear Information System (INIS)
Tackmann, G.; Pelle, B.; Hilico, A.; Beaufils, Q.; Pereira dos Santos, F.
2011-01-01
Raman lasers are used as a spectroscopic probe of the state of atoms confined in a shallow one-dimensional (1D) vertical lattice. For sufficiently long laser pulses, resolved transitions in the bottom band of the lattice between Wannier Stark states corresponding to neighboring wells are observed. Couplings between such states are measured as a function of the lattice laser intensity and compared to theoretical predictions, from which the lattice depth can be extracted. Limits to the linewidth of these transitions are investigated. Transitions to higher bands can also be induced, as well as between transverse states for tilted Raman beams. All these features allow for a precise characterization of the trapping potential and for an efficient control of the atomic external degrees of freedom.
The effects of oestrogens on linear bone growth
DEFF Research Database (Denmark)
Juul, A
2001-01-01
receptors (ER-alpha and ER-beta) in the human growth plate, and polymorphisms in the ER gene may influence adult height in healthy subjects. Prepubertal oestradiol concentrations are significantly higher in girls than in boys, explaining sex-related differences in pubertal onset. Men with a disruptive......Regulation of linear bone growth in children and adolescents comprises a complex interaction of hormones and growth factors. Growth hormone (GH) is considered to be the key hormone regulator of linear growth in childhood. The pubertal increase in growth velocity associated with GH has traditionally...... been attributed to testicular androgen secretion in boys, and to oestrogens or adrenal androgen secretion in girls. Research data indicating that oestrogen may be the principal hormone stimulating the pubertal growth spurt in boys as well as girls is reviewed. Such an action is mediated by oestrogen...
Mikheyev-Smirnov-Wolfenstein effect for linear electron density
International Nuclear Information System (INIS)
Lehmann, H.; Osland, P.; Wu, T.T.; European Organization for Nuclear Research, Geneva
2001-01-01
When the electron density is a linear function of distance, it is known that the MSW equations for two neutrino species can be solved in terms of known functions. It is shown here that more generally, for any number of neutrino species, these MSW equations can be solved exactly in terms of single integrals. While these integrals cannot be expressed in terms of known functions, some of their simple properties are obtained. Application to the solar neutrino problem is briefly discussed. (orig.)
Mikheyev-Smirnov-Wolfenstein Effect for Linear Electron Density
Lehmann, H; Wu Tai Tsun; Lehmann, Harry; Osland, Per; Wu, Tai Tsun
2001-01-01
When the electron density is a linear function of distance, it is known that the MSW equations for two neutrino species can be solved in terms of known functions. It is shown here that more generally, for any number of neutrino species, these MSW equations can be solved exactly in terms of single integrals. While these integrals cannot be expressed in terms of known functions, some of their simple properties are obtained. Application to the solar neutrino problem is briefly discussed.
Mikheyev-Smirnov-Wolfenstein Effect for Linear Electron Density
Lehmann, H; Osland, P; Wu Tai Tsun
2000-01-01
When the electron density is a linear function of distance, it is known that the MSW equations for two neutrino species can be solved in terms of known functions. It is shown here that more generally, for any number of neutrino species, these MSW equations can be solved exactly in terms of single integrals. While these integrals cannot be expressed in terms of known functions, some of their simple properties are obtained. Application to the solar neutrino problem is briefly discussed.
Implementation of quantum logic gates via Stark-tuned Förster resonance in Rydberg atoms
Huang, Xi-Rong; Hu, Chang-Sheng; Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi
2018-02-01
We present a scheme for implementation of controlled-Z and controlled-NOT gates via rapid adiabatic passage and Stark-tuned Förster resonance. By sweeping the Förster resonance once without passing through it and adiabatically tuning the angle-dependent Rydberg-Rydberg interaction of the dipolar nature, the system can be effectively described by a two-level system with the adiabatic theorem. The single adiabatic passage leads to a gate fidelity as high as 0.999 and a greatly reduced gate operation time. We investigate the scheme by considering an actual atomic level configuration with rubidium atoms, where the fidelity of the controlled-Z gate is still higher than 0.99 under the influence of the Zeeman effect.
DEFF Research Database (Denmark)
Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik
2004-01-01
The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...
Ionization effects and linear stability in a coaxial plasma device
Kurt, Erol; Kurt, Hilal; Bayhan, Ulku
2009-03-01
A 2-D computer simulation of a coaxial plasma device depending on the conservation equations of electrons, ions and excited atoms together with the Poisson equation for a plasma gun is carried out. Some characteristics of the plasma focus device (PF) such as critical wave numbers a c and voltages U c in the cases of various pressures Pare estimated in order to satisfy the necessary conditions of traveling particle densities ( i.e. plasma patterns) via a linear analysis. Oscillatory solutions are characterized by a nonzero imaginary part of the growth rate Im ( σ) for all cases. The model also predicts the minimal voltage ranges of the system for certain pressure intervals.
Stark broadening of the 1640- and 4686-A lines of ionized helium
International Nuclear Information System (INIS)
Greene, R.L.
1976-01-01
The Stark-broadened profiles of the 1640- and 4686-A lines of ionized helium have been calculated using an approximation to the electron broadening operator in the unified classical-path theory of Smith, Vidal, and Cooper. The approximation is such that the results reproduce the time-ordered impact-theory results in the line center, and the ionized-radiator quasistatic results in the far wings. Sample calculations at n/sub e/ = 10/sup 17/ cm/sup -3/ and T = 40 000 degreeK are found to give significantly more narrow profiles than the corresponding modified-impact-theory results because of a different treatment of the lower-state interaction. Indirect comparison with experiment indicates that the calculated lines are too narrow, but it is expected that the inclusion of neglected effects of ion dynamics and inelastic collisions would improve agreement
Quality Of Starking Apples After Exposure To Gamma Radiation As A Quarantine Treatment
International Nuclear Information System (INIS)
Mansour, M.; Mohamad, F.; Al-Bachir, M.
2004-01-01
Starking apples approaching physiological maturity were exposed, immediately after harvest, to gamma radiation doses ranging from 100 to 400 Gy. The irradiated fruit were stored for six months in a cold storage facility at 1±1 deg. C and 90±5 % RH. Effects of gamma radiation on weight loss, fruit firmness, pH of fruit juice, fruit taste, color and visible injuries were evaluated. The results showed that gamma irradiation increased weight loss, particularly in the first 45 days of storage. Doses higher than 200 Gy, on the other hand, reduced apple firmness after 45 days of storage while a 400 Gy dose decreased fruit pH immediately after irradiation. (Authors)
Stark tuning and electrical charge state control of single divacancies in silicon carbide
de las Casas, Charles F.; Christle, David J.; Ul Hassan, Jawad; Ohshima, Takeshi; Son, Nguyen T.; Awschalom, David D.
2017-12-01
Neutrally charged divacancies in silicon carbide (SiC) are paramagnetic color centers whose long coherence times and near-telecom operating wavelengths make them promising for scalable quantum communication technologies compatible with existing fiber optic networks. However, local strain inhomogeneity can randomly perturb their optical transition frequencies, which degrades the indistinguishability of photons emitted from separate defects and hinders their coupling to optical cavities. Here, we show that electric fields can be used to tune the optical transition frequencies of single neutral divacancy defects in 4H-SiC over a range of several GHz via the DC Stark effect. The same technique can also control the charge state of the defect on microsecond timescales, which we use to stabilize unstable or non-neutral divacancies into their neutral charge state. Using fluorescence-based charge state detection, we show that both 975 nm and 1130 nm excitation can prepare their neutral charge state with near unity efficiency.
Design of offline measuring system for radiation damage effects on linear CCD
International Nuclear Information System (INIS)
Zhang Yong; Tang Benqi; Xiao Zhigang; Wang Zujun; Huang Fang; Huang Shaoyan
2004-01-01
The paper discusses the hardware design of offline measuring system for radiation damage effects on linear CCD. Some credible results were achieved by using this system. The test results indicate that the system is available for the study of the radiation damage effects on linear CCD. (authors)
Heavy ion mutagenesis: linear energy transfer effects and genetic linkage
Kronenberg, A.; Gauny, S.; Criddle, K.; Vannais, D.; Ueno, A.; Kraemer, S.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)
1995-01-01
We have characterized a series of 69 independent mutants at the endogenous hprt locus of human TK6 lymphoblasts and over 200 independent S1-deficient mutants of the human x hamster hybrid cell line AL arising spontaneously or following low-fluence exposures to densely ionizing Fe ions (600 MeV/amu, linear energy transfer = 190 keV/microns). We find that large deletions are common. The entire hprt gene (> 44 kb) was missing in 19/39 Fe-induced mutants, while only 2/30 spontaneous mutants lost the entire hprt coding sequence. When the gene of interest (S1 locus = M1C1 gene) is located on a nonessential human chromosome 11, multilocus deletions of several million base pairs are observed frequently. The S1 mutation frequency is more than 50-fold greater than the frequency of hprt mutants in the same cells. Taken together, these results suggest that low-fluence exposures to Fe ions are often cytotoxic due to their ability to create multilocus deletions that may often include the loss of essential genes. In addition, the tumorigenic potential of these HZE heavy ions may be due to the high potential for loss of tumor suppressor genes. The relative insensitivity of the hprt locus to mutation is likely due to tight linkage to a gene that is required for viability.
Karimi, Samaneh; Abdulkhani, Ali; Tahir, Paridah Md; Dufresne, Alain
2016-10-01
Cellulosic nanofibers (NFs) from kenaf bast were used to reinforce glycerol plasticized thermoplastic starch (TPS) matrices with varying contents (0-10wt%). The composites were prepared by casting/evaporation method. Raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The aim of study was to investigate the effects of filler dimension and loading on linear and non-linear mechanical performance of fabricated materials. Obtained results clearly demonstrated that the NF-reinforced composites had significantly greater mechanical performance than the RF-reinforced counterparts. This was attributed to the high aspect ratio and nano dimension of the reinforcing agents, as well as their compatibility with the TPS matrix, resulting in strong fiber/matrix interaction. Tensile strength and Young's modulus increased by 313% and 343%, respectively, with increasing NF content from 0 to 10wt%. Dynamic mechanical analysis (DMA) revealed an elevational trend in the glass transition temperature of amylopectin-rich domains in composites. The most eminent record was +18.5°C shift in temperature position of the film reinforced with 8% NF. This finding implied efficient dispersion of nanofibers in the matrix and their ability to form a network and restrict mobility of the system. Copyright © 2016 Elsevier B.V. All rights reserved.
Non-linear effects and plasma heating by lower-hybrid waves in the Petula tokamak
International Nuclear Information System (INIS)
Briand, P.; Dupas, L.; Golovato, S.N.; Singh, C.M.; Melin, G.; Grelot, P.; Legardeur, R.; Zymanski, S.
1979-01-01
Lower hybrid waves were excited by a two-waveguide 'grill' (nsub(parallel) approximately 1-10, Esub(grill) approximately 3kVcm -1 , Psub(grill) approximately 5kWcm -2 ) at 1.25GHz, 3ms, 600kW. Plasma heating was observed separately as due to non-linear effects alone as well as to a combination of linear and non-linear mechanisms. (author)
The effect of linear guide representation for topology optimization on a five-axis milling machine
Yüksel, Esra; Yuksel, Esra
2017-01-01
Topology optimization is a countermeasure to obtain lightweight and stiff structures for machine tools. Topology optimizations are applied at component level due to computational limitations, therefore linear guides’ rolling elements are underestimated in most of the cases. Stiffness of the entire assembly depends on the least stiff components which are identified as linear guides in the current literature. In this study, effects of linear guide’s representation in virtual environment are inv...
The effects of oestrogens on linear bone growth
DEFF Research Database (Denmark)
Juul, A
2001-01-01
boys, and non-aromatizable androgens [oxandrolone or dihydrotestosterone (DHT)] have no effect on GH secretion. Treatment with aromatase inhibitors reduces circulating IGF-I concentrations in healthy males, and reduces growth in boys with testotoxicosis. Taken together, these findings suggest...
Squeezing effects of an atom laser: Beyond the linear model
International Nuclear Information System (INIS)
Jing Hui; Ge Molin; Chen Jingling
2002-01-01
We investigate the quantum dynamics and statistics of an atom laser by taking into account binary atom-atom collisions. The rotating wave approximation Hamiltonian of the system is solved analytically . We show that the nonlinear atom-atom interactions could yield periodic quadrature squeezing effects in the atom laser output beam, although the input radio frequency field is in a Glauber coherent state
Superradiance Effects in the Linear and Nonlinear Optical Response of Quantum Dot Molecules
Sitek, A.; Machnikowski, P.
2008-11-01
We calculate the linear optical response from a single quantum dot molecule and the nonlinear, four-wave-mixing response from an inhomogeneously broadened ensemble of such molecules. We show that both optical signals are affected by the coupling-dependent superradiance effect and by optical interference between the two polarizations. As a result, the linear and nonlinear responses are not identical.
Stark width regularities within spectral series of the lithium isoelectronic sequence
Tapalaga, Irinel; Trklja, Nora; Dojčinović, Ivan P.; Purić, Jagoš
2018-03-01
Stark width regularities within spectral series of the lithium isoelectronic sequence have been studied in an approach that includes both neutrals and ions. The influence of environmental conditions and certain atomic parameters on the Stark widths of spectral lines has been investigated. This study gives a simple model for the calculation of Stark broadening data for spectral lines within the lithium isoelectronic sequence. The proposed model requires fewer parameters than any other model. The obtained relations were used for predictions of Stark widths for transitions that have not yet been measured or calculated. In the framework of the present research, three algorithms for fast data processing have been made and they enable quality control and provide verification of the theoretically calculated results.
Surface Acoustic Analog of Bloch Oscillations, Wannier-Stark Ladders and Landau-Zener Tunneling
de Lima, M. M.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.
2011-12-01
In this contribution, we discuss the recent experimental demonstration of Wannier-Stark ladders, Bloch Oscillations and Landau Zener tunneling in a solid by means of surface acoustic waves propagating through perturbed grating structures.
MRI Linear accelerators : impact of the electron return effect
International Nuclear Information System (INIS)
Oborn, B.M.; Butson, M.J.; Metcalfe, P.E.; Rosenfeld, A.B.
2010-01-01
Full text: Recently there has been much interest in the development of an MRI-Linac for providing live-time, superior quality, imag guided radiotherapy. In current prototypes the magnetic field is transverse to the beam direction [1,2]. This leads to some undesirable dosimetry changes. One important change is the electron return effect (ERE) acting on the skin: electrons which leave a patient surface are forced to return and deposit dose locally [3, 4, 5]. The objective of this study is to characterize the ERE using Monte Carlo methods so that it can be accounted for in patient dose planning. High-resolution Geant4 Monte Carlo simulations have been performed to study the skin dose changes caused by the ERE. A Yarian 6 MY beam is modeled in transverse B-fields between 0-3 T. The effect of surface orientation is also studied, as well as the use of exit bolus for potentially lowering the effect of the ERE. The ERE causes significant skin dose increases on both the beam entry and exit surfaces. Surface orientation is also significant, leading to many arrangements with excessive skin dose due to the directional nature of the ERE. On the other hand this directional nature of the ERE can be combined with the surface orientation to minimize the skin dose changes. Conclusions The ERE gives rise to considerable skin dose increases in transverse-field MRI-linac designs. The results of this study how ever also show how these effects can be minimized if careful planning is performed as well as the use of exit bolus in some cases.
lmerTest Package: Tests in Linear Mixed Effects Models
DEFF Research Database (Denmark)
Kuznetsova, Alexandra; Brockhoff, Per B.; Christensen, Rune Haubo Bojesen
2017-01-01
One of the frequent questions by users of the mixed model function lmer of the lme4 package has been: How can I get p values for the F and t tests for objects returned by lmer? The lmerTest package extends the 'lmerMod' class of the lme4 package, by overloading the anova and summary functions...... by providing p values for tests for fixed effects. We have implemented the Satterthwaite's method for approximating degrees of freedom for the t and F tests. We have also implemented the construction of Type I - III ANOVA tables. Furthermore, one may also obtain the summary as well as the anova table using...
A Linear Mixed-Effects Model of Wireless Spectrum Occupancy
Directory of Open Access Journals (Sweden)
Pagadarai Srikanth
2010-01-01
Full Text Available We provide regression analysis-based statistical models to explain the usage of wireless spectrum across four mid-size US cities in four frequency bands. Specifically, the variations in spectrum occupancy across space, time, and frequency are investigated and compared between different sites within the city as well as with other cities. By applying the mixed-effects models, several conclusions are drawn that give the occupancy percentage and the ON time duration of the licensed signal transmission as a function of several predictor variables.
Evaluating significance in linear mixed-effects models in R.
Luke, Steven G
2017-08-01
Mixed-effects models are being used ever more frequently in the analysis of experimental data. However, in the lme4 package in R the standards for evaluating significance of fixed effects in these models (i.e., obtaining p-values) are somewhat vague. There are good reasons for this, but as researchers who are using these models are required in many cases to report p-values, some method for evaluating the significance of the model output is needed. This paper reports the results of simulations showing that the two most common methods for evaluating significance, using likelihood ratio tests and applying the z distribution to the Wald t values from the model output (t-as-z), are somewhat anti-conservative, especially for smaller sample sizes. Other methods for evaluating significance, including parametric bootstrapping and the Kenward-Roger and Satterthwaite approximations for degrees of freedom, were also evaluated. The results of these simulations suggest that Type 1 error rates are closest to .05 when models are fitted using REML and p-values are derived using the Kenward-Roger or Satterthwaite approximations, as these approximations both produced acceptable Type 1 error rates even for smaller samples.
Linear electro-optic effect in cubic silicon carbide
Tang, Xiao; Irvine, Kenneth G.; Zhang, Dongping; Spencer, Michael G.
1991-01-01
The first observation is reported of the electrooptic effect of cubic silicon carbide (beta-SiC) grown by a low-pressure chemical vapor deposition reactor using the hydrogen, silane, and propane gas system. At a wavelength of 633 nm, the value of the electrooptic coefficient r41 in beta-SiC is determined to be 2.7 +/- 0.5 x 10 (exp-12) m/V, which is 1.7 times larger than that in gallium arsenide measured at 10.6 microns. Also, a half-wave voltage of 6.4 kV for beta-SiC is obtained. Because of this favorable value of electrooptic coefficient, it is believed that silicon carbide may be a promising candidate in electrooptic applications for high optical intensity in the visible region.
Regularities And Irregularities Of The Stark Parameters For Single Ionized Noble Gases
Peláez, R. J.; Djurovic, S.; Cirišan, M.; Aparicio, J. A.; Mar S.
2010-07-01
Spectroscopy of ionized noble gases has a great importance for the laboratory and astrophysical plasmas. Generally, spectra of inert gases are important for many physics areas, for example laser physics, fusion diagnostics, photoelectron spectroscopy, collision physics, astrophysics etc. Stark halfwidths as well as shifts of spectral lines are usually employed for plasma diagnostic purposes. For example atomic data of argon krypton and xenon will be useful for the spectral diagnostic of ITER. In addition, the software used for stellar atmosphere simulation like TMAP, and SMART require a large amount of atomic and spectroscopic data. Availability of these parameters will be useful for a further development of stellar atmosphere and evolution models. Stark parameters data of spectral lines can also be useful for verification of theoretical calculations and investigation of regularities and systematic trends of these parameters within a multiplet, supermultiplet or transition array. In the last years, different trends and regularities of Stark parameters (halwidths and shifts of spectral lines) have been analyzed. The conditions related with atomic structure of the element as well as plasma conditions are responsible for regular or irregular behaviors of the Stark parameters. The absence of very close perturbing levels makes Ne II as a good candidate for analysis of the regularities. Other two considered elements Kr II and Xe II with complex spectra present strong perturbations and in some cases an irregularities in Stark parameters appear. In this work we analyze the influence of the perturbations to Stark parameters within the multiplets.
Effect of Frequency and Spatial-Harmonics on Rotary and Linear Induction Motor Characteristics
1972-03-01
A computer analysis is made of the effect of current and MMF airgap harmonics on the output characteristics of rotary and linear induction motors. The current harmonics accompanying thyristor-control operation are evaluated by Fourier analyzing the p...
The effect of genotype and birth type on gestation length and linear ...
African Journals Online (AJOL)
The effect of genotype and birth type on gestation length and linear body ... was conducted in Enugu State University of Science and Technology, in the then ... Weekly weights and live body measurements of the kids were recorded from ...
Non-linear effects in the Snoek relaxation of Nb-O
International Nuclear Information System (INIS)
Hermida, E.B.; Povolo, F.
1996-01-01
Internal friction peaks measured as a function of temperature or frequency have been associated to non-linear processes only after studying how the amplitude of the applied stress affects the relaxation process. Here it is demonstrated that the partial derivative of the internal friction with respect to the frequency at constant temperature is a useful tool to determine that non-linear effects are involved. This analysis applied to actual data of the Snoek relaxation in Nb-O, reveals that at high interstitial contents non-linear effects appear. (orig.)
Effect of correlation on covariate selection in linear and nonlinear mixed effect models.
Bonate, Peter L
2017-01-01
The effect of correlation among covariates on covariate selection was examined with linear and nonlinear mixed effect models. Demographic covariates were extracted from the National Health and Nutrition Examination Survey III database. Concentration-time profiles were Monte Carlo simulated where only one covariate affected apparent oral clearance (CL/F). A series of univariate covariate population pharmacokinetic models was fit to the data and compared with the reduced model without covariate. The "best" covariate was identified using either the likelihood ratio test statistic or AIC. Weight and body surface area (calculated using Gehan and George equation, 1970) were highly correlated (r = 0.98). Body surface area was often selected as a better covariate than weight, sometimes as high as 1 in 5 times, when weight was the covariate used in the data generating mechanism. In a second simulation, parent drug concentration and three metabolites were simulated from a thorough QT study and used as covariates in a series of univariate linear mixed effects models of ddQTc interval prolongation. The covariate with the largest significant LRT statistic was deemed the "best" predictor. When the metabolite was formation-rate limited and only parent concentrations affected ddQTc intervals the metabolite was chosen as a better predictor as often as 1 in 5 times depending on the slope of the relationship between parent concentrations and ddQTc intervals. A correlated covariate can be chosen as being a better predictor than another covariate in a linear or nonlinear population analysis by sheer correlation These results explain why for the same drug different covariates may be identified in different analyses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Estimation of non-linear effective permeability of magnetic materials with fine structure
International Nuclear Information System (INIS)
Waki, H.; Igarashi, H.; Honma, T.
2006-01-01
This paper describes a homogenization method for magnetic materials with fine structure. In this method, the structures of the magnetic materials are assumed to be periodic, and the unit cell is defined. The effective permeability is determined on the basis of magnetic energy balance in the unit cell. This method can be applied not only for linear problems but also for non-linear ones. In this paper, estimation of the effective permeability of non-linear magnetic materials by using the homogenization method is described in detail, and then the validity for the non-liner problems is tested for two-dimensional problems. It is shown that this homogenization method gives accurate non-linear effective permeability
International Nuclear Information System (INIS)
Basharov, A. M.
2011-01-01
The effective Hamiltonian describing resonant interaction of an ensemble of identical quantum particles with a photon-free vacuum electromagnetic field has been obtained with allowance for terms of second order in the coupling constant (the Stark interaction) by means of the perturbation theory on the basis of the unitary transformation of the system quantum state. It has been shown that in the Markov approximation the effective Hamiltonian terms of first order in the coupling constant are represented by the quantum Wiener process, whereas terms of second order are expressed by the quantum Poisson process. During the course of the investigation, it was established that the Stark interaction played a significant role in the ensemble dynamics, thus influencing the collective spontaneous decay of the ensemble of an appreciably high number of identical particles. Fundamental effects have been discovered, i.e., the excitation conservation in a sufficiently dense ensemble of identical particles and superradiance suppression in the collective decaying process of an excited ensemble with a determined number of particles.
Effect of strong-focusing field distortions on particle motion in a linear accelerator
International Nuclear Information System (INIS)
Bondarev, B.I.; Durkin, A.P.; Solov'ev, L.Yu.
1979-01-01
The increased sensitivity of quadrupole focusing channel used in the highenergetic part of the linear accelerator makes it necessary to pay serious attention to the effect of various distortions of focusing fields on the transverse motion of the beam. The distortions may cause the inadmissible losses of particles in the accelerator. To achieve this aim the main equation of disturbed motion of particles in the linear accelerator, obtained by analogy with the cyclic accelerator theory is presented. The investigation of the solutions of this equation has permitted to obtain the analytical formulas for the estimation of the beam size increase under the effect of focusing field distortions of various types, such as structural non-linearity, gradient errors, random non-linearity, channel axis deformation. While studying the effect of structural non-linearity considered are the resonance effects and obtained are the relations describing the maximum beam size increase in the channel of the linear accelerator in the presence and in the absence of the resonance
A Multiphase Non-Linear Mixed Effects Model: An Application to Spirometry after Lung Transplantation
Rajeswaran, Jeevanantham; Blackstone, Eugene H.
2014-01-01
In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time varying coefficients. PMID:24919830
A unified frame of predicting side effects of drugs by using linear neighborhood similarity.
Zhang, Wen; Yue, Xiang; Liu, Feng; Chen, Yanlin; Tu, Shikui; Zhang, Xining
2017-12-14
Drug side effects are one of main concerns in the drug discovery, which gains wide attentions. Investigating drug side effects is of great importance, and the computational prediction can help to guide wet experiments. As far as we known, a great number of computational methods have been proposed for the side effect predictions. The assumption that similar drugs may induce same side effects is usually employed for modeling, and how to calculate the drug-drug similarity is critical in the side effect predictions. In this paper, we present a novel measure of drug-drug similarity named "linear neighborhood similarity", which is calculated in a drug feature space by exploring linear neighborhood relationship. Then, we transfer the similarity from the feature space into the side effect space, and predict drug side effects by propagating known side effect information through a similarity-based graph. Under a unified frame based on the linear neighborhood similarity, we propose method "LNSM" and its extension "LNSM-SMI" to predict side effects of new drugs, and propose the method "LNSM-MSE" to predict unobserved side effect of approved drugs. We evaluate the performances of LNSM and LNSM-SMI in predicting side effects of new drugs, and evaluate the performances of LNSM-MSE in predicting missing side effects of approved drugs. The results demonstrate that the linear neighborhood similarity can improve the performances of side effect prediction, and the linear neighborhood similarity-based methods can outperform existing side effect prediction methods. More importantly, the proposed methods can predict side effects of new drugs as well as unobserved side effects of approved drugs under a unified frame.
Non-linear effects in transition edge sensors for X-ray detection
International Nuclear Information System (INIS)
Bandler, S.R.; Figueroa-Feliciano, E.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; Murphy, K.D.; Porter, F.S.; Saab, T.; Sadleir, J.
2006-01-01
In a microcalorimeter that uses a transition-edge sensor to detect energy depositions, the small signal energy resolution improves with decreasing heat capacity. This improvement remains true up to the point where non-linear and saturation effects become significant. This happens when the energy deposition causes a significant change in the sensor resistance. Not only does the signal size become a non-linear function of the energy deposited, but also the noise becomes non-stationary over the duration of the pulse. Algorithms have been developed that can calculate the optimal performance given this non-linear behavior that typically requires significant processing and calibration work-both of which are impractical for space missions. We have investigated the relative importance of the various non-linear effects, with the hope that a computationally simple transformation can overcome the largest of the non-linear and non-stationary effects, producing a highly linear 'gain' for pulse-height versus energy, and close to the best energy resolution at all energies when using a Wiener filter
Beam-beam instability driven by wakefield effects in linear colliders
Brinkmann, R; Schulte, Daniel
2002-01-01
The vertical beam profile distortions induced by wakefield effects in linear colliders (the so-called ``banana effect'') generate a beam-beam instability at the collision point when the vertical disruption parameter is large. We illustrate this effect in the case of the TESLA linear collider project. We specify the tolerance on the associated emittance growth, which translates into tolerances on injection jitter and, for a given tuning procedure, on structure misalignments. We look for possible cures based on fast orbit correction at the interaction point and using a fast luminosity monitor.
The effect of linear imperfection in [001] direction on the thermal properties of silver crystal
Directory of Open Access Journals (Sweden)
J Davoodi
2013-09-01
Full Text Available The aim of this investigation was to calculate the thermal properties of silver crystal in the presence of linear imperfection. The simulations were performed by molecular dynamics simulation technique in NPT as well as NVT ensemble based on quantum Sutton-Chen many body potential. The thermal properties including cohesive energy, melting temperature, isobaric heat capacity and thermal expansion of imperfect silver crystal were calculated and compared to those of the perfect crystal. Moreover, the quantities such as radial distribution function, order parameter and lindemann index were calculated in order to obtain information on crystal structure and disorder in atoms. All calculations were done both with liner imperfection in [001] direction and without imperfection at different temperature. The simulation results show that cohesive energy, linear thermal expansion coefficient increase and melting temperature, latent heat of fusion decrease with increasing linear imperfection. Also, the results show that linear imperfection has no effect on the heat capacity.
Directory of Open Access Journals (Sweden)
Baosheng Cao
2015-12-01
Full Text Available Upconversion luminescence properties from the emissions of Stark sublevels of Er3+ were investigated in Er3+-Yb3+-Mo6+-codoped TiO2 phosphors in this study. According to the energy levels split from Er3+, green and red emissions from the transitions of four coupled energy levels, 2H11/2(I/2H11/2(II, 4S3/2(I/4S3/2(II, 4F9/2(I/4F9/2(II, and 2H11/2(I + 2H11/2(II/4S3/2(I + 4S3/2(II, were observed under 976 nm laser diode excitation. By utilizing the fluorescence intensity ratio (FIR technique, temperature-dependent upconversion emissions from these four coupled energy levels were analyzed at length. The optical temperature-sensing behaviors of sensing sensitivity, measurement error, and operating temperature for the four coupled energy levels are discussed, all of which are closely related to the energy gap of the coupled energy levels, FIR value, and luminescence intensity. Experimental results suggest that Er3+-Yb3+-Mo6+-codoped TiO2 phosphor with four pairs of energy levels coupled by Stark sublevels provides a new and effective route to realize multiple optical temperature-sensing through a wide range of temperatures in an independent system.
Effect of milk proteins on linear growth and IGF variables in overweight adolescents
DEFF Research Database (Denmark)
Larnkjær, Anni; Arnberg, Karina; Michaelsen, Kim F
2014-01-01
Milk may stimulate growth acting via insulin-like growth factor-I (IGF-I) secretion but the effect in adolescents is less examined. This study investigates the effect of milk proteins on linear growth, IGF-I, IGF binding protein-3 (IGFBP-3) and IGF-I/IGFBP-3 ratio in overweight adolescents....
Linearization Method and Linear Complexity
Tanaka, Hidema
We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.
Stark shifts and widths of a hydrogen atom in Debye plasmas
International Nuclear Information System (INIS)
Yu, A.C.H.; Ho, Y.K.
2005-01-01
A computational scheme has been developed and used to investigate the influence of the plasma environments on modified atomic autoionization for isolated atoms/ions by using the complex coordinate rotation method which is proved to be a very simple and powerful tool to analyze the position and the width of a resonance. The Debye screening potential is employed to describe the effects of the plasma environments. Stark shifts and widths on the ground state of hydrogen are reported for field strength up to F=0.12 a.u. Slater-type basis wave functions are used to describe the system and angular-momentum states up to L=11 are included when the external electric field is turned on. Converged results are obtained by using different maximum angular-momentum states. The modified autoionization for various Debye lengths ranging from infinite to a small value of 0.86 are reported. It has been observed that for a given temperature and under the influence of a given external electric field, the resonance energy and the autoionization width increase for increasing electron density in the plasma. A discussion on the physical implication of our results is made
Theory of coherent Stark nonlinear spectroscopy in a three-level system
International Nuclear Information System (INIS)
Loiko, Yurii; Serrat, Carles
2007-01-01
Coherent Stark nonlinear spectroscopy (CSNS) is a spectroscopic tool based on the cancellation of the phase sensitivity at frequency 5ω in the ultrafast four-wave mixing (FWM) of two-color pulses with frequencies ω and 3ω. We develop a theory for CSNS in three-level V-type systems, and reveal that the mechanism for the phase sensitivity at 5ω is the quantum interference between the two primary paths in the FWM of the ω and 3ω fields. We find that the cancellation phenomenon occurs when the probability amplitude of one of these two primary pathways becomes equal to zero due to the competition effect between the two allowed transitions in the V-type system. The analytical expressions that describe the phase-sensitivity phenomenon and the conditions for its cancellation have been derived on the basis of perturbation theory, and are confirmed by numerical integration of the density matrix and Maxwell equations. We argue that CSNS can be utilized, in particular, for the investigation of optically dense media
International Nuclear Information System (INIS)
Dietrich, H.; Mueller-Dethlefs, K.; Baranov, L.Y.
1996-01-01
For the first time fractional Stark state selective electric field ionization of very high-n (n approx-gt 250) molecular Rydberg states is observed. An open-quote open-quote offset close-quote close-quote electric pulse selectively ionizes the more fragile open-quote open-quote red close-quote close-quote (down shifted in energy) Stark states. The more resilient open-quote open-quote bluer close-quote close-quote, or up-shifted, ones survive and are shifted down in energy upon application of a second (open-quote open-quote probe close-quote close-quote) pulse of opposite direction (diabatic Stark states close-quote inversion). Hence, even for smaller probe than offset fields ionization is observed. The offset/probe ratio allows one to control spectral peak shapes in zero-kinetic-energy photoelectron spectroscopy. copyright 1995 The American Physical Society
A new questionnaire for measuring quality of life - the Stark QoL.
Hardt, Jochen
2015-10-26
The Stark questionnaire measures health-related quality of life (QoL) using pictures almost exclusively. It is supplemented by a minimum of words. It comprises a mental and a physical health component. A German sample of n = 500 subjects, age and gender stratified, filled out the Stark Qol questionnaire along with various other questionnaires via internet. The physical component shows good reliability (Cronbach's alpha = McDonalds Omega = greatest lower bound = .93), the mental component can be improved (Cronbach's alpha = .63, McDonalds Omega = .72, greatest lower bound = .77). Confirmatory factor analysis shows a good fit (Bentlers CFI = .97). Construct validity was proven. The Stark QoL is a promising new development in measuring QoL, it is a short and easy to apply questionnaire. Additionally, it is particularly promising for international research.
International Nuclear Information System (INIS)
Yoon, Tai Hyun
2007-01-01
We study analytically the dynamic cancellation of ac Stark shift in the recently proposed pulsed electromagnetically-induced-transparency (EIT-)Raman optical lattice clock based on the wave-function formalism. An explicit expression for the time evolution operator corresponding to the effective two-level interaction Hamiltonian has been obtained in order to explain the atomic phase shift cancellation due to the ac Stark shift induced by the time-separated laser pulses. We present how to determine an optimum value of the common detuning of the driving fields at which the atomic phase shift cancels completely with the parameters for the practical realization of the EIT-Raman optical lattice clock with alkaline-earth-metal atoms
International Nuclear Information System (INIS)
Padhi, H.C.; Dhal, B.B.; Nandi, T.; Trautmann, D.
1995-01-01
L-subshell ionization of Au and Bi induced by boron impact has been investigated for impact energies ranging from 0.48 to 0.88 MeV/μ. The energy dependence of the measured ionization cross section shows, for the first time, a plateau structure for all three subshells. The plateau structure revealed by previous data for proton and helium impact was for the L 1 subshell only and this had been attributed to the bimodal nature of the 2s electron density. The observed plateau structure for all the three subshells and its occurrence at a somewhat lower energy signifies a considerable amount of Stark mixing of target 2s and 2p atomic wavefunctions. Fresh calculations incorporating the Stark mixing effect in target atomic wavefunctions are necessary to improve agreement with the present data. The existing theories, however, are found to be inadequate. (author)
Tests of the linearity assumption in the dose-effect relationship for radiation-induced cancer
International Nuclear Information System (INIS)
Cohen, A.F.; Cohen, B.L.
1980-01-01
The validity of the BEIR linear extrapolation to low doses of the dose-effect relationship for radiation induced cancer is tested by use of natural radiation making use of selectivity on type of cancer, smoking habits, sex, age group, geographic area and/or time period. For lung cancer, a linear interpolation between zero dose-zero effect and the data from radon-induced cancers in miners implies that the majority of all lung cancers among non-smokers are due to radon; since lung cancers in miners are mostly small-cell undifferentiated (SCU), a rather rare type in general, linearity over predicts the frequency of SCU lung cancers among non smokers by a factor of 10, and among non-smoking females age 25-44 by a factor of 24. Similarly, linearity predicts that the majority of all lung cancers early in this century were due to radon even after due consideration is given to cases missed by poor diagnostic efficiency (this matter is considered in some detail). For the 30-40 age range, linearity over predicts the total lung cancer rate at that time by a factor of 3-6; for SCU lung cancer, the over-prediction is by at least a factor of 10. Other causes of lung cancer are considered which further enhance the degree to which the linearity assumption over-estimates the effects of low level radiation. A similar analysis is applied to leukemia induced by natural radiation. It is concluded that the upper limit for this is not higher than estimates from the linearity hypothesis. (author)
An R2 statistic for fixed effects in the linear mixed model.
Edwards, Lloyd J; Muller, Keith E; Wolfinger, Russell D; Qaqish, Bahjat F; Schabenberger, Oliver
2008-12-20
Statisticians most often use the linear mixed model to analyze Gaussian longitudinal data. The value and familiarity of the R(2) statistic in the linear univariate model naturally creates great interest in extending it to the linear mixed model. We define and describe how to compute a model R(2) statistic for the linear mixed model by using only a single model. The proposed R(2) statistic measures multivariate association between the repeated outcomes and the fixed effects in the linear mixed model. The R(2) statistic arises as a 1-1 function of an appropriate F statistic for testing all fixed effects (except typically the intercept) in a full model. The statistic compares the full model with a null model with all fixed effects deleted (except typically the intercept) while retaining exactly the same covariance structure. Furthermore, the R(2) statistic leads immediately to a natural definition of a partial R(2) statistic. A mixed model in which ethnicity gives a very small p-value as a longitudinal predictor of blood pressure (BP) compellingly illustrates the value of the statistic. In sharp contrast to the extreme p-value, a very small R(2) , a measure of statistical and scientific importance, indicates that ethnicity has an almost negligible association with the repeated BP outcomes for the study.
Non-linear spectral splitting of Rydberg sodium in external fields
International Nuclear Information System (INIS)
Gao Wei; Yang Hai-Feng; Cheng Hong; Zhang Shan-Shan; Liu Hong-Ping; Liu Dan-Feng
2015-01-01
We have studied highly excited sodium in various electric fields, parallel electric and magnetic fields, with one σ and π photon irradiation, and even in a magnetic field with a complex laser polarization configuration. The σ spectra shows a simple linear Stark effect with the applied electric field, while the π spectra exhibits a strong non-linear dependence on the electric field. The π transitions in parallel fields show a similar behavior to that in a pure electric field but the spectra get more smooth due to the magnetic field. The diamagnetic spectrum with laser polarization angles between 0 and π/2 proves that it can be reproduced by simple linear combination of π and σ components, indicating there is no interference between the π and σ channels. A full quantum calculation considering the quantum defects accounts for all the observations. The quantum defects, especially for the channel np, play an important role in the spectral profile. (paper)
Stark shift measurements of Xe II and Xe III spectral lines
International Nuclear Information System (INIS)
Cirisan, M; Pelaez, R J; Djurovic, S; Aparicio, J A; Mar, S
2007-01-01
Stark shift measurements of singly and doubly ionized Xe spectral lines are presented in this paper. Shifts of 110 Xe II lines and 42 Xe III lines are reported, including a significant number of new results. A low-pressure-pulsed arc with 95% of He and 5% of Xe was used as a plasma source. All measurements were performed under the following plasma conditions: electron density (0.2-1.4) x 10 23 m -3 and electron temperature 18 000-23 000 K. The measured Stark shifts are compared with other experimental and theoretical data
A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line
Its, A.; Sukhanov, V.
2016-05-01
The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.
A Stark-tuned, far-infrared laser for high frequency plasma diagnostics
International Nuclear Information System (INIS)
Mansfield, D.K.; Vocaturo, M.; Guttadora, L.; Rockmore, M.; Micai, K.; Krug, P.A.
1992-03-01
A Stark-tuned optically pumped far-infrared methanol laser operating at 119 micrometers has been built. The laser is designed to operate at high power while exhibiting a well-separated Stark doublet. At a pump power of 65 Watts and electric field of 1 kV/cm the laser has delivered over 100 mW c.w. while exhibiting a frequency splitting of 34 MHz. These parameters indicate that this laser would be suitable for use in the present generation of modulated interferometers on large thermonuclear plasma devices. The achieved modulation frequency is more than an order of magnitude higher than could be achieved using standard techniques
Tests of the linearity assumption in the dose-effect relationship for radiation-induced cancer
International Nuclear Information System (INIS)
Cohen, A.F.; Cohen, B.L.
1978-01-01
The validity of the BEIR linear extrapolation to low doses of the dose-effect relationship for radiation induced cancer is tested by use of natural radiation making use of selectivity on type of cancer, sex, age group, geographic area, and time period. For lung cancer, a linear interpolation between zero dose-zero effect and the data from radon-induced cancers in miners over-estimates the total number of observed lung cancers in many countries in the early years of this century; the discrepancy is substantially increased if the 30-44 year age range and/or if only females are considered, and by the fact that many other causes of lung cancer are shown to have been important at that time. The degree to which changes of diagnostic efficiency with time can influence the analysis is considered at some length. It is concluded that the linear relationship substantially over-estimates effects of low radiation doses. A similar analysis is applied to leukemia induced by natural radiation, applying selectivity by age, sex, natural background level, and date, and considering other causes. It is concluded that effects substantially larger than those obtained from linear extrapolation are excluded. The use of the selectivities mentioned above is justified by the fact that the incidence of cancer or leukemia is an upper limit on the rate at which it is caused by radiation effects; in determining upper limits it is justifiable to select situations which minimize it. (author)
Valid statistical approaches for analyzing sholl data: Mixed effects versus simple linear models.
Wilson, Machelle D; Sethi, Sunjay; Lein, Pamela J; Keil, Kimberly P
2017-03-01
The Sholl technique is widely used to quantify dendritic morphology. Data from such studies, which typically sample multiple neurons per animal, are often analyzed using simple linear models. However, simple linear models fail to account for intra-class correlation that occurs with clustered data, which can lead to faulty inferences. Mixed effects models account for intra-class correlation that occurs with clustered data; thus, these models more accurately estimate the standard deviation of the parameter estimate, which produces more accurate p-values. While mixed models are not new, their use in neuroscience has lagged behind their use in other disciplines. A review of the published literature illustrates common mistakes in analyses of Sholl data. Analysis of Sholl data collected from Golgi-stained pyramidal neurons in the hippocampus of male and female mice using both simple linear and mixed effects models demonstrates that the p-values and standard deviations obtained using the simple linear models are biased downwards and lead to erroneous rejection of the null hypothesis in some analyses. The mixed effects approach more accurately models the true variability in the data set, which leads to correct inference. Mixed effects models avoid faulty inference in Sholl analysis of data sampled from multiple neurons per animal by accounting for intra-class correlation. Given the widespread practice in neuroscience of obtaining multiple measurements per subject, there is a critical need to apply mixed effects models more widely. Copyright © 2017 Elsevier B.V. All rights reserved.
Two-dimensional linear and nonlinear Talbot effect from rogue waves.
Zhang, Yiqi; Belić, Milivoj R; Petrović, Milan S; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Lu, Keqing; Zhang, Yanpeng
2015-03-01
We introduce two-dimensional (2D) linear and nonlinear Talbot effects. They are produced by propagating periodic 2D diffraction patterns and can be visualized as 3D stacks of Talbot carpets. The nonlinear Talbot effect originates from 2D rogue waves and forms in a bulk 3D nonlinear medium. The recurrences of an input rogue wave are observed at the Talbot length and at the half-Talbot length, with a π phase shift; no other recurrences are observed. Differing from the nonlinear Talbot effect, the linear effect displays the usual fractional Talbot images as well. We also find that the smaller the period of incident rogue waves, the shorter the Talbot length. Increasing the beam intensity increases the Talbot length, but above a threshold this leads to a catastrophic self-focusing phenomenon which destroys the effect. We also find that the Talbot recurrence can be viewed as a self-Fourier transform of the initial periodic beam that is automatically performed during propagation. In particular, linear Talbot effect can be viewed as a fractional self-Fourier transform, whereas the nonlinear Talbot effect can be viewed as the regular self-Fourier transform. Numerical simulations demonstrate that the rogue-wave initial condition is sufficient but not necessary for the observation of the effect. It may also be observed from other periodic inputs, provided they are set on a finite background. The 2D effect may find utility in the production of 3D photonic crystals.
Beardsell, Alec; Collier, William; Han, Tao
2016-09-01
There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.
Analysis of interactive fixed effects dynamic linear panel regression with measurement error
Nayoung Lee; Hyungsik Roger Moon; Martin Weidner
2011-01-01
This paper studies a simple dynamic panel linear regression model with interactive fixed effects in which the variable of interest is measured with error. To estimate the dynamic coefficient, we consider the least-squares minimum distance (LS-MD) estimation method.
Subedi, Bidya Raj; Reese, Nancy; Powell, Randy
2015-01-01
This study explored significant predictors of student's Grade Point Average (GPA) and truancy (days absent), and also determined teacher effectiveness based on proportion of variance explained at teacher level model. We employed a two-level hierarchical linear model (HLM) with student and teacher data at level-1 and level-2 models, respectively.…
Eric J. Gustafson; L. Jay Roberts; Larry A. Leefers
2006-01-01
Forest management planners require analytical tools to assess the effects of alternative strategies on the sometimes disparate benefits from forests such as timber production and wildlife habitat. We assessed the spatial patterns of alternative management strategies by linking two models that were developed for different purposes. We used a linear programming model (...
A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates
Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.
2012-01-01
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…
The Effects of Radiation on the Linear Stability of a horizontal layer ...
African Journals Online (AJOL)
The effect of radiation on the onset of Rayleigh-Benard convection is studied in the case of a radiating Newtonian fluid in a fluid-saturated horizontal porous layer heated from below. The radiative heat transfer is treated using the differential approximation for optically thin limiting case. The linear stability theory is employed ...
Flow-induced correlation effects within a linear chain in a polymer melt
Stepanyan, R.; Slot, J.J.M.; Molenaar, J.; Tchesnokov, M.A.
2005-01-01
A framework for a consistent description of the flow-induced correlation effects within a linear polymer chain in a melt is proposed. The formalism shows how correlations between chain segments in the flow can be incorporated into a hierarchy of distribution functions for tangent vectors. The
Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants.
Dong, Dan; Du, Enzai; Sun, Zhengzhong; Zeng, Xuetong; de Vries, Wim
2017-12-01
Anthropogenic emissions of acid precursors have enhanced global occurrence of acid rain, especially in East Asia. Acid rain directly suppresses leaf function by eroding surface waxes and cuticle and leaching base cations from mesophyll cells, while the simultaneous foliar uptake of nitrates in rainwater may directly benefit leaf photosynthesis and plant growth, suggesting a non-linear direct effect of acid rain. By synthesizing data from literature on acid rain exposure experiments, we assessed the direct effects of acid rain on leaf photosynthesis across 49 terrestrial plants in China. Our results show a non-linear direct effect of acid rain on leaf photosynthetic rate, including a neutral to positive effect above pH 5.0 and a negative effect below that pH level. The acid rain sensitivity of leaf photosynthesis showed no significant difference between herbs and woody species below pH 5.0, but the impacts above that pH level were strongly different, resulting in a significant increase in leaf photosynthetic rate of woody species and an insignificant effect on herbs. Our analysis also indicates a positive effect of the molar ratio of nitric versus sulfuric acid in the acid solution on leaf photosynthetic rate. These findings imply that rainwater acidity and the composition of acids both affect the response of leaf photosynthesis and therefore result in a non-linear direct effect. Copyright © 2017 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Kandel, Tanka P; Lærke, Poul Erik; Elsgaard, Lars
2016-01-01
One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre-deployment flu......One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre...... was placed on fixed collars, and CO2 concentration in the chamber headspace were recorded at 1-s intervals for 45 min. Fluxes were measured in different soil types (sandy, sandy loam and organic soils), and for various manipulations (tillage, rain and drought) and soil conditions (temperature and moisture......) to obtain a range of fluxes with different shapes of flux curves. The linear method provided more stable flux results during short enclosure times (few min) but underestimated initial fluxes by 15–300% after 45 min deployment time. Non-linear models reduced the underestimation as average underestimation...
Effect of Process Parameters on Friction Model in Computer Simulation of Linear Friction Welding
Directory of Open Access Journals (Sweden)
A. Yamileva
2014-07-01
Full Text Available The friction model is important part of a numerical model of linear friction welding. Its selection determines the accuracy of the results. Existing models employ the classical law of Amonton-Coulomb where the friction coefficient is either constant or linearly dependent on a single parameter. Determination of the coefficient of friction is a time consuming process that requires a lot of experiments. So the feasibility of determinating the complex dependence should be assessing by analysis of effect of approximating law for friction model on simulation results.
Effect of Low-Energy Linear Shockwave Therapy on Erectile Dysfunction
DEFF Research Database (Denmark)
Fojecki, Grzegorz L; Thiessen, Stefan; Osther, Palle Jørn Sloth
2017-01-01
INTRODUCTION: Previous studies have shown that focal low-energy extracorporeal shockwave therapy (Li-ESWT) can have a positive effect in men with erectile dysfunction (ED). Linear Li-ESWT (LLi-ESWT) for ED has not been previously assessed in a randomized trial. AIM: To evaluate the treatment...... MEASURES: The primary outcome measurement was an increase of at least five points on the IIEF-EF score. The secondary outcome measurement was an increased EHS score to at least 3 in men with a score no higher than 2 at baseline. Data were analyzed by linear and logistic regression. RESULTS: Mean IIEF...
Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres
Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.
2013-07-01
New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.
Effect of linear energy on the properties of an AL alloy in DPMIG welding
Liao, Tianfa; Jin, Li; Xue, Jiaxiang
2018-01-01
The effect of different linear energy parameters on the DPMIG welding performance of AA1060 aluminium alloy is studied in this paper. The stability of the welding process is verified with a Labview electrical signal acquisition system, and the microstructure and tensile properties of the welded joint are studied via optical microscopy, scanning electron microscopy and electrical tensile tests. The test results show that the welding process for the DPMIG methods stable and that the weld beads appear as scales. Tensile strength results indicate that, with increasing linear energy, the tensile strength first increases and then decreases. The tensile strength of the joint is maximized when the linear energy is 120.5 J / mm-1.
Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes
Yanqing, HUANG; Tianyang, XIA; Bin, GUI
2018-04-01
The linear analysis of the influence of diamagnetic effect and toroidal rotation at the edge of tokamak plasmas with BOUT++ is discussed in this paper. This analysis is done by solving the dispersion relation, which is calculated through the numerical integration of the terms with different physics. This method is able to reveal the contributions of the different terms to the total growth rate. The diamagnetic effect stabilizes the ideal ballooning modes through inhibiting the contribution of curvature. The toroidal rotation effect is also able to suppress the curvature-driving term, and the stronger shearing rate leads to a stronger stabilization effect. In addition, through linear analysis using the energy form, the curvature-driving term provides the free energy absorbed by the line-bending term, diamagnetic term and convective term.
Focused feasibility study of phytoremediation alternative for the Industrial Excess Landfill site in Stark County, Ohio. More information can be found on the NPL Fact Sheet for this site at www.epa.gov/region5/superfund/npl/ohio/OHD000377971.htm
The influence of static fields on the dynamic Stark spectra of hydrogen Balmer lines
International Nuclear Information System (INIS)
Janssen, G.C.A.M.; Jayakumar, R.; Granneman, E.H.A.
1981-01-01
In plasmas atomic-line radiation is influenced by static and high frequency fields. A simple method of calculating the Stark profiles of the Balmer α and β lines for the case of one-dimensional fields is discussed. Using a Holtsmark field for the static component, the resulting profile of Balmer α shows a splitting of the satellites. (author)
Developmental characters of Pseitina iijimae (Jordan and Starks), bothid flat fishes- pisces
Digital Repository Service at National Institute of Oceanography (India)
Devi, C.B.L.
Post larval stages of Psettina iQimae (Jordan and Starks) ranging from 1.8 mm NL to 44.6 mm SL collected during Naga Expedition and International Indian Ocean Expedition (JIOE) are described The characteristics which help to identify larval stages...
Model for predicting non-linear crack growth considering load sequence effects (LOSEQ)
International Nuclear Information System (INIS)
Fuehring, H.
1982-01-01
A new analytical model for predicting non-linear crack growth is presented which takes into account the retardation as well as the acceleration effects due to irregular loading. It considers not only the maximum peak of a load sequence to effect crack growth but also all other loads of the history according to a generalised memory criterion. Comparisons between crack growth predicted by using the LOSEQ-programme and experimentally observed data are presented. (orig.) [de
Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H
2017-10-25
Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.
Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William
2016-01-01
Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19
Directory of Open Access Journals (Sweden)
Dongxu Ren
2016-04-01
Full Text Available A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.
Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance
Energy Technology Data Exchange (ETDEWEB)
O' Daniel, Jennifer C., E-mail: jennifer.odaniel@duke.edu; Yin, Fang-Fang
2017-05-01
Purpose: To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. Methods and Materials: A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Results: Although the failure severity was greatest for daily imaging QA (imaging vs treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Conclusions: Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number.
Research and evaluation of the effectiveness of e-learning in the case of linear programming
Directory of Open Access Journals (Sweden)
Ljiljana Miletić
2016-04-01
Full Text Available The paper evaluates the effectiveness of the e-learning approach to linear programming. The goal was to investigate how proper use of information and communication technologies (ICT and interactive learning helps to improve high school students’ understanding, learning and retention of advanced non-curriculum material. The hypothesis was that ICT and e-learning is helpful in teaching linear programming methods. In the first phase of the research, a module of lessons for linear programming (LP was created using the software package Loomen Moodle and other interactive software packages such as Geogebra. In the second phase, the LP module was taught as a short course to two groups of high school students. These two groups of students were second-grade students in a Croatian high school. In Class 1, the module was taught using ICT and e-learning, while the module was taught using classical methods in Class 2. The action research methodology was an integral part in delivering the course to both student groups. The sample student groups were carefully selected to ensure that differences in background knowledge and learning potential were statistically negligible. Relevant data was collected while delivering the course. Statistical analysis of the collected data showed that the student group using the e-learning method produced better results than the group using a classical learning method. These findings support previous results on the effectiveness of e-learning, and also establish a specific approach to e-learning in linear programming.
Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance.
O'Daniel, Jennifer C; Yin, Fang-Fang
2017-05-01
To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Although the failure severity was greatest for daily imaging QA (imaging vs treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number. Copyright © 2017 Elsevier Inc. All rights reserved.
Völler, Jan-Stefan; Biava, Hernan; Hildebrandt, Peter; Budisa, Nediljko
2017-11-01
To find experimental validation for electrostatic interactions essential for catalytic reactions represents a challenge due to practical limitations in assessing electric fields within protein structures. This review examines the applications of non-canonical amino acids (ncAAs) as genetically encoded probes for studying the role of electrostatic interactions in enzyme catalysis. ncAAs constitute sensitive spectroscopic probes to detect local electric fields by exploiting the vibrational Stark effect (VSE) and thus have the potential to map the protein electrostatics. Mapping the electrostatics in proteins will improve our understanding of natural catalytic processes and, in beyond, will be helpful for biocatalyst engineering. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
McCaskill, John
There can be large spatial and temporal separation of cause and effect in policy making. Determining the correct linkage between policy inputs and outcomes can be highly impractical in the complex environments faced by policy makers. In attempting to see and plan for the probable outcomes, standard linear models often overlook, ignore, or are unable to predict catastrophic events that only seem improbable due to the issue of multiple feedback loops. There are several issues with the makeup and behaviors of complex systems that explain the difficulty many mathematical models (factor analysis/structural equation modeling) have in dealing with non-linear effects in complex systems. This chapter highlights those problem issues and offers insights to the usefulness of ABM in dealing with non-linear effects in complex policy making environments.
International Nuclear Information System (INIS)
Sahal-Brechot, S
2010-01-01
Stark broadening theories and calculations have been extensively developed for about 50 years. The theory can now be considered as mature for many applications, especially for accurate spectroscopic diagnostics and modelling. In astrophysics, with the increasing sensitivity of observations and spectral resolution, in all domains of wavelengths from far UV to infrared, it has become possible to develop realistic models of interiors and atmospheres of stars and interpret their evolution and the creation of elements through nuclear reactions. For hot stars, especially white dwarfs, Stark broadening is the dominant collisional line broadening process. This requires the knowledge of numerous profiles, especially for trace elements, which are used as useful probes for modern spectroscopic diagnostics. Hence, calculations based on a simple but enough accurate and fast method, are necessary for obtaining numerous results. Ab initio calculations are a growing domain of development. Nowadays, the access to such data via an on line database becomes crucial. This is the object of STARK-B, which is a collaborative project between the Paris Observatory and the Astronomical Observatory of Belgrade. It is a database of calculated widths and shifts of isolated lines of atoms and ions due to electron and ion collisions. It is devoted to modelling and spectroscopic diagnostics of stellar atmospheres and envelopes. In addition, it is relevant to laboratory plasmas, laser equipments and technological plasmas. It is a part of VAMDC (Virtual Atomic and Molecular Data Centre), which is an European Union funded collaboration between groups involved in the generation and use of atomic and molecular data.
Generalized linear models with random effects unified analysis via H-likelihood
Lee, Youngjo; Pawitan, Yudi
2006-01-01
Since their introduction in 1972, generalized linear models (GLMs) have proven useful in the generalization of classical normal models. Presenting methods for fitting GLMs with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including combining information over trials (meta-analysis), analysis of frailty models for survival data, genetic epidemiology, and analysis of spatial and temporal models with correlated errors.Written by pioneering authorities in the field, this reference provides an introduction to various theories and examines likelihood inference and GLMs. The authors show how to extend the class of GLMs while retaining as much simplicity as possible. By maximizing and deriving other quantities from h-likelihood, they also demonstrate how to use a single algorithm for all members of the class, resulting in a faster algorithm as compared to existing alternatives. Complementing theory with examples, many of...
Effects of Linear Falling Ramp Reset Pulse on Addressing Operation in AC PDP
International Nuclear Information System (INIS)
Liu Zujun; Liang Zhihu; Liu Chunliang; Meng Lingguo
2006-01-01
The effects of linear falling ramp reset pulse related to addressing operation in an alternating current plasma display panel (AC PDP) were studied. The wall charge waveforms were measured by the electrode balance method in a 12-inch coplanar AC PDP. The wall charge waveforms show the relationship between the slope ratio of the falling ramp reset pulse and the wall charges at the end of the falling ramp reset pulse which influences the addressing stability. Then the effects of the slope ratio of the linear falling ramp reset pulse on the addressing voltage and addressing time were investigated. The experimental results show that the minimum addressing voltage increases with the increase of the slope ratio of the falling ramp reset pulse, and so does the minimum addressing time. Based on the experimental results, the optimization of the addressing time and the slope ratio of the falling ramp pulse is discussed
International Nuclear Information System (INIS)
Flament, O.; Autran, J.L.; Roche, P.; Leray, J.L.; Musseau, O.
1996-01-01
Enhanced total dose damage of Junction Field-effect Transistors (JFETs) due to low dose rate and/or elevated temperature has been investigated for elementary p-channel structures fabricated on bulk and SOI substrates as well as for related linear integrated circuits. All these devices were fabricated with conventional junction isolation (field oxide). Large increases in damage have been revealed by performing high temperature and/or low dose rate irradiations. These results are consistent with previous studies concerning bipolar field oxides under low-field conditions. They suggest that the transport of radiation-induced holes through the oxide is the underlying mechanism. Such an enhanced degradation must be taken into account for low dose rate effects on linear integrated circuits
Effect of linear chirp on strong field photodissociation of H+2
International Nuclear Information System (INIS)
Prabhudesai, Vaibhav; Natan, Adi; Bruner, Barry; Silberberg, Yaron; Lev, Uri; Heber, Oded; Strasser, Daniel; Schwalm, Dirk; Zajfman, Daniel; Ben-Itzhak, Itzik
2011-01-01
We report the experimental findings of a systematic study of the effect of linear chirp on strong field photodissociation of H + 2 . For vibrational levels around or above the one photon crossing, the effect manifests itself in terms of a shift in the kinetic energy release (KER) peaks. The peaks shift up for negative chirp whereas they shift down for positive chirp. The measurements are carried out by varying two of the three laser pulse characteristics, energy, pulse peak intensity and linear chirp, while keeping the third constant. The shifts in the KER peaks are found to be intensity dependent for a given value of chirp. However, in the last two cases (i.e., fixed pulsed energy and fixed pulse peak intensity), they are found to be independent of the chirp magnitude. The results are understood on the basis of saturation of photodissociation probabilities for these levels.
Effect of linear chirp on strong field photodissociation of H{sup +}{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Prabhudesai, Vaibhav; Natan, Adi; Bruner, Barry; Silberberg, Yaron; Lev, Uri; Heber, Oded; Strasser, Daniel; Schwalm, Dirk; Zajfman, Daniel [Weizmann Institute of Science, 76100 (Israel); Ben-Itzhak, Itzik [Kansas State University, Kansas (United States)
2011-10-15
We report the experimental findings of a systematic study of the effect of linear chirp on strong field photodissociation of H{sup +}{sub 2}. For vibrational levels around or above the one photon crossing, the effect manifests itself in terms of a shift in the kinetic energy release (KER) peaks. The peaks shift up for negative chirp whereas they shift down for positive chirp. The measurements are carried out by varying two of the three laser pulse characteristics, energy, pulse peak intensity and linear chirp, while keeping the third constant. The shifts in the KER peaks are found to be intensity dependent for a given value of chirp. However, in the last two cases (i.e., fixed pulsed energy and fixed pulse peak intensity), they are found to be independent of the chirp magnitude. The results are understood on the basis of saturation of photodissociation probabilities for these levels.
International Nuclear Information System (INIS)
Giedt, Joel
2003-01-01
We compute the component field four-dimensional N = 1 supergravity Lagrangian that is obtained from a superfield Lagrangian in the U(1) K formalism with a linear dilaton multiplet. All fermionic terms are presented. In a variety of important ways, our results generalize those that have been reported previously, and are flexible enough to accommodate many situations of phenomenological interest in string-inspired effective supergravity, especially models based on orbifold compactifications of the weakly coupled heterotic string. We provide for an effective theory of hidden gaugino and matter condensation. We include supersymmetric Green-Schwarz counterterms associated with the cancellation of U(1) and modular duality anomalies; the modular duality counterterm is of a rather general form. Our assumed form for the dilaton Kaehler potential is quite general and can accommodate Kaehler stabilization methods. We note possible applications of our results. We also discuss the usefulness of the linear dilaton formulation as a complement to the chiral dilaton approach
Directory of Open Access Journals (Sweden)
Ana Paula Muraro
Full Text Available ABSTRACT: Objective: To assess the effect of socioeconomic position (SEP in childhood and social mobility on linear growth through adolescence in a population-based cohort. Methods: Children born in Cuiabá-MT, central-western Brazil, were evaluated during 1994 - 1999. They were first assessed during 1999 - 2000 (0 - 5 years and again during 2009 - 2011 (10 - 17 years, and their height-for-age was evaluated during these two periods.Awealth index was used to classify the SEP of each child’s family as low, medium, or high. Social mobility was categorized as upward mobility or no upward mobility. Linear mixed models were used. Results: We evaluated 1,716 children (71.4% of baseline after 10 years, and 60.6% of the families showed upward mobility, with a higher percentage among the lowest economic classes. A higher height-for-age was also observed among those from families with a high SEP both in childhood (low SEP= -0.35 z-score; high SEP= 0.15 z-score, p < 0.01 and adolescence (low SEP= -0.01 z-score; high SEP= 0.45 z-score, p < 0.01, whereas upward mobility did not affect their linear growth. Conclusion: Expressive social mobility was observed, but SEP in childhood and social mobility did not greatly influence linear growth through childhood in this central-western Brazilian cohort.
Directory of Open Access Journals (Sweden)
V. Popov
2013-03-01
Full Text Available In the course of microeconomics it is convenient to use additive functions of requirements in educational purposes, in which the volume of requirements is set by the linear function of the price, revenue and other factors. But in arriving at the substitution effect there is a number of problems in which impossible answers come out. The formula adjustment concluded by the author, which will allow to avoid contradictions, is described in the article.
Toroidal effects on the non-linearly saturated m = 1 island in tokamaks
International Nuclear Information System (INIS)
Avinash, K.; Haas, F.A.; Thyagaraja, A.
1990-01-01
This paper investigates the influence of toroidal effects (due to the coupling of various poloidal harmonics) on the non-linear saturation of the m=1 island. Bounds are obtained relating the aspect ratio, the shear at the q=1 surface and the saturated island width. Provided these bounds are satisfied, then we find that the cylindrical m=1 island theory is valid for toroidal geometry. (author)
Linear mixed-effects models for central statistical monitoring of multicenter clinical trials
Desmet, L.; Venet, D.; Doffagne, E.; Timmermans, C.; BURZYKOWSKI, Tomasz; LEGRAND, Catherine; BUYSE, Marc
2014-01-01
Multicenter studies are widely used to meet accrual targets in clinical trials. Clinical data monitoring is required to ensure the quality and validity of the data gathered across centers. One approach to this end is central statistical monitoring, which aims at detecting atypical patterns in the data by means of statistical methods. In this context, we consider the simple case of a continuous variable, and we propose a detection procedure based on a linear mixed-effects model to detect locat...
Kovacs-Like Memory Effect in Athermal Systems: Linear Response Analysis
Plata, Carlos; Prados, Antonio
2017-10-01
We analyse the emergence of Kovacs-like memory effects in athermal systems within the linear response regime. This is done by starting from both the master equation for the probability distribution and the equations for the physically relevant moments. The general results are applied to a general class of models with conserved momentum and non-conserved energy. Our theoretical predictions, obtained within the first Sonine approximation, show an excellent agreement with the numerical results.
End effect braking force reduction in high-speed single-sided linear induction machine
International Nuclear Information System (INIS)
Shiri, Abbas; Shoulaie, Abbas
2012-01-01
Highlights: ► A new analytical equation to model the end effect braking force of SLIM is derived. ► Equations for efficiency, power factor and output thrust are analytically derived. ► The effect of design variables on the performance of the motor is analyzed. ► An optimization method is employed to minimize the end effect braking force (EEBF). ► The results show that EEBF is minimized by appropriate selection of motor parameters. - Abstract: Linear induction motors have been widely employed in industry because of their simple structure and low construction cost. However, they suffer from low efficiency and power factor. In addition, existence of so called end effect influences their performance especially in high speeds. The end effect deteriorates the performance of the motor by producing braking force. So, in this paper, by using Duncan equivalent circuit model, a new analytical equation is proposed to model end effect braking force. Employing the proposed equation and considering all phenomena involved in the single-sided linear induction motor, a simple design procedure is presented and the effect of different design variables on the performance of the motor is analyzed. A multi-objective optimization method based on genetic algorithm is introduced to maximize efficiency and power factor, as well as to minimize the end effect braking force, simultaneously. Finally, to validate the optimization results, 2D finite element method is employed.
An effective description of dark matter and dark energy in the mildly non-linear regime
Energy Technology Data Exchange (ETDEWEB)
Lewandowski, Matthew; Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94306 (United States); Maleknejad, Azadeh, E-mail: matthew.lewandowski@cea.fr, E-mail: azade@ipm.ir, E-mail: senatore@stanford.edu [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. Code. 19538-33511, Tehran (Iran, Islamic Republic of)
2017-05-01
In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the information resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. The Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.
International Nuclear Information System (INIS)
Sandolache, G.; Zoita, V.; Bauchire, M.; Le Menn, E.; Gentils, F.; Fleurier, C.
2001-01-01
Copper lines are frequently observed in various types of plasma device and industrial plasmas and then it is desirable to develop methods of plasma diagnostics using the emission spectrum of copper lines. The aim of this work is to create a database for the neutral copper spectral lines directly usable for the diagnostic of plasmas with metal vapors. An experimental device has been developed to create a metal plasma having the required metrological properties to facilitate the spectroscopic measurements. A capillary discharge technique has been used to create a plasma jet representing a radially symmetric light source. The copper-hydrogen plasma jet was produced by the ablation of the capillary wall consisting of a copper-embedded elastomer. The plasma jet was observed side-on using the high-resolution spectrometers equipped with ICCD detectors. The 2D square matrix ICCD detectors have permitted the observation of cross sections of the plasma jet. The high-speed time resolved camera equipped with interference filters has been used to check the cylindrical shape and the homogeneity of the plasma jet. The electron density of the plasma jet was obtained by using the H α spectral line of the hydrogen component plasma. The temperature was determined by applying the relative intensity method to the measured intensities of the neutral copper spectral lines emitted by the plasma jet. The hydrogen and copper lines were broadened principally by the Stark effect. The measured temperatures were about 15,000 K and the electron density of about 2x10 17 cm -3 . The results of the Stark broadening of the neutral cooper concerned particularly the lines 453.9 nm, 465.1 nm, 515.3 nm and 529.2 nm. (authors)
Trends with coverage and pH in Stark tuning rates for CO on Pt(1 1 1) electrodes
International Nuclear Information System (INIS)
Uddin, Jamal; Anderson, Alfred B.
2013-01-01
The general understanding of so-called electrochemical Stark tuning rates, that is, the potential dependence of vibrational frequency of CO adsorbed on Pt(1 1 1), has developed over the past thirty years in terms of two semiempirical models. The first is the Fermi level shift model used in non-self-consistent-field one-electron molecular orbital theory. This approach has provided qualitative understanding in terms of Fermi level-dependent variations in σ and π orbital bonding between CO and the electrode surface atoms. The second is the use of self-consistent-field theory with surface charging to create adjustable electric fields. Adsorbed CO then reacts to the field in a classical Stark effect with some small uncharacterized Fermi level shift superimposed. It is now possible, using two-dimensional density functional theory, including electrolyte polarization from surface charging, and the dielectric continuum to approximate solvation energy, to calculate the tuning rate in response to shifts in the Fermi level and electrode potential caused by changing the surface charge density. Here we apply this first principles method to calculate trends in the tuning rate for CO adsorbed on 1-fold Pt(1 1 1) sites with changes in CO(ads) coverage and with changes in electrolyte pH. The tuning rate is calculated to decrease as the coverage is increased and, for high coverage, to increase as the pH is increased. These trends are shown to be in qualitative agreement with the very little existing experimental data for these trends
Kohli, Nidhi; Sullivan, Amanda L; Sadeh, Shanna; Zopluoglu, Cengiz
2015-04-01
Effective instructional planning and intervening rely heavily on accurate understanding of students' growth, but relatively few researchers have examined mathematics achievement trajectories, particularly for students with special needs. We applied linear, quadratic, and piecewise linear mixed-effects models to identify the best-fitting model for mathematics development over elementary and middle school and to ascertain differences in growth trajectories of children with learning disabilities relative to their typically developing peers. The analytic sample of 2150 students was drawn from the Early Childhood Longitudinal Study - Kindergarten Cohort, a nationally representative sample of United States children who entered kindergarten in 1998. We first modeled students' mathematics growth via multiple mixed-effects models to determine the best fitting model of 9-year growth and then compared the trajectories of students with and without learning disabilities. Results indicate that the piecewise linear mixed-effects model captured best the functional form of students' mathematics trajectories. In addition, there were substantial achievement gaps between students with learning disabilities and students with no disabilities, and their trajectories differed such that students without disabilities progressed at a higher rate than their peers who had learning disabilities. The results underscore the need for further research to understand how to appropriately model students' mathematics trajectories and the need for attention to mathematics achievement gaps in policy. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Dai, James Y.; Chan, Kwun Chuen Gary; Hsu, Li
2014-01-01
Instrumental variable regression is one way to overcome unmeasured confounding and estimate causal effect in observational studies. Built on structural mean models, there has been considerale work recently developed for consistent estimation of causal relative risk and causal odds ratio. Such models can sometimes suffer from identification issues for weak instruments. This hampered the applicability of Mendelian randomization analysis in genetic epidemiology. When there are multiple genetic variants available as instrumental variables, and causal effect is defined in a generalized linear model in the presence of unmeasured confounders, we propose to test concordance between instrumental variable effects on the intermediate exposure and instrumental variable effects on the disease outcome, as a means to test the causal effect. We show that a class of generalized least squares estimators provide valid and consistent tests of causality. For causal effect of a continuous exposure on a dichotomous outcome in logistic models, the proposed estimators are shown to be asymptotically conservative. When the disease outcome is rare, such estimators are consistent due to the log-linear approximation of the logistic function. Optimality of such estimators relative to the well-known two-stage least squares estimator and the double-logistic structural mean model is further discussed. PMID:24863158
CALiPER Report 21.3. Cost Effectiveness of Linear (T8) LED Lamps
Energy Technology Data Exchange (ETDEWEB)
None
2014-05-01
Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15 minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.
CALiPER Report 21.3: Cost-Effectiveness of Linear (T8) LED Lamps
Energy Technology Data Exchange (ETDEWEB)
Miller, Naomi J.; Perrin, Tess E.; Royer, Michael P.
2014-05-27
Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15 minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.
The Non-Linear Effect of Corporate Taxes on Economic Growth
Directory of Open Access Journals (Sweden)
Huňady Ján
2015-03-01
Full Text Available The paper deals with the problem of taxation and its potential impact on economic growth and presents some new empirical insights into this topic. The main aim of the paper is to verify an assumed nonlinear impact of corporate tax rates on economic growth. Based on the theory of public finance and taxation, we hypothesize that at relatively low tax rates it is possible that the impact of taxation on economic growth become slightly positive. On the other hand when the tax rates are higher a negative impact of taxation on economic growth could be expected. Despite the fact that the most of the existing studies find a negative linear relationship between these variables, we can also find strong support for a non-linear relationship from several theoretical models as well as some empirical studies. Based on panel data fixed-effects econometric models, we, as well, find empirical evidence for a non-linear relationship between nominal and effective corporate tax rates and economic growth. Our data consists of annual observations for the period 1999 to 2011 for EU Member States. Based on the results, we also estimated the optimal level of the corporate tax rate in terms of maximizing economic growth in the average of the EU countries.
A simulation study of linear coupling effects and their correction in RHIC
International Nuclear Information System (INIS)
Parzen, G.
1992-11-01
This paper describes a possible skew quadrupole correction system for linear coupling for the RHIC92 lattice. A simulation study has been done for the correction system. Results are given for the performance of the correction system, and the required strength of the skew quadruple correctors. An important effect of linear coupling in RHIC is to shift the tune ν x ν y , sometimes called tune splitting. Most of this tune splitting can be corrected with a two family skew quadrupole correction system. For RHIC92, the same 2 family correction system will work for all likely choices of β*. This was not the case for the RHIC91 lattice where different families of correctors were needed for different β*. The tune splitting described above which is corrected with a 2 family correction system is driven primarily by the ν x - ν y harmonic of the skew quadrupole field given by the field multipole αl. There are several other effects of linear coupling present which are driven primarily by the ν x + ν y harmonics of the skew quadrupole field, αl. These include the following: (1) A higher order residual tune shift that remains after correction with the 2 family correction system. This tune shift is roughly quadratic in αl; (2) Possible large changes in the beta functions; (3) Possible increase in the beam size at injection due to the beta function distortion and the emittance distortion at injection
On the effects of a screw dislocation and a linear potential on the harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Bueno, M.J.; Furtado, C., E-mail: furtado@fisica.ufpb.br; Bakke, K., E-mail: kbakke@fisica.ufpb.br
2016-09-01
Quantum effects on the harmonic oscillator due to the presence of a linear scalar potential and a screw dislocation are investigated. By searching for bound states solutions, it is shown that an Aharonov-Bohm-type effect for bound states and a restriction of the values of the angular frequency of the harmonic oscillator can be obtained, where the allowed values are determined by the topology of the screw dislocation and the quantum numbers associated with the radial modes and the angular momentum. As particular cases, the angular frequency and the energy levels associated with the ground state and the first excited state of the system are obtained.
Skew-t partially linear mixed-effects models for AIDS clinical studies.
Lu, Tao
2016-01-01
We propose partially linear mixed-effects models with asymmetry and missingness to investigate the relationship between two biomarkers in clinical studies. The proposed models take into account irregular time effects commonly observed in clinical studies under a semiparametric model framework. In addition, commonly assumed symmetric distributions for model errors are substituted by asymmetric distribution to account for skewness. Further, informative missing data mechanism is accounted for. A Bayesian approach is developed to perform parameter estimation simultaneously. The proposed model and method are applied to an AIDS dataset and comparisons with alternative models are performed.
The Effect of Using Concept Maps in Elementary Linear Algebra Course on Students’ Learning
Syarifuddin, H.
2018-04-01
This paper presents the results of a classroom action research that was done in Elementary Linear Algebra course at Universitas Negeri Padang. The focus of the research want to see the effect of using concept maps in the course on students’ learning. Data in this study were collected through classroom observation, students’ reflective journal and concept maps that were created by students. The result of the study was the using of concept maps in Elementary Linera Algebra course gave positive effect on students’ learning.
Effect of impedance and higher order chromaticity on the measurement of linear chromaticity
Directory of Open Access Journals (Sweden)
V. H. Ranjbar
2011-08-01
Full Text Available The combined effect of impedance and higher order chromaticity can act on the beam in a nontrivial manner which can cause a tune shift which depends on the relative momenta with respect to the “on momentum” particle (Δp/p. Experimentally, this tune shift affects the measurement of the linear chromaticity which is traditionally measured with a change of Δp/p. The theory behind this effect will be derived in this paper. Computer simulations and experimental data from the Tevatron will be used to support the theory.
Effect of impedance and higher order chromaticity on the measurement of linear chromaticity
V. H. Ranjbar; C. Y. Tan
2011-01-01
The combined effect of impedance and higher order chromaticity can act on the beam in a nontrivial manner which can cause a tune shift which depends on the relative momenta with respect to the “on momentum” particle (Δp/p). Experimentally, this tune shift affects the measurement of the linear chromaticity which is traditionally measured with a change of Δp/p. The theory behind this effect will be derived in this paper. Computer simulations and experimental data from the Tevatron will be used ...
New hybrid non-linear transformations of divergent perturbation series for quadratic Zeeman effects
International Nuclear Information System (INIS)
Belkic, D.
1989-01-01
The problem of hydrogen atoms in an external uniform magnetic field (quadratic Zeeman effect) is studied by means of perturbation theory. The power series for the ground-state energy in terms of magnetic-field strength B is divergent. Nevertheless, it is possible to induce convergence of this divergent series by applying various non-linear transformations. These transformations of originally divergent perturbation series yield new sequences, which then converge. The induced convergence is, however, quite slow. A new hybrid Shanks-Levin non-linear transform is devised here for accelerating these slowly converging series and sequences. Significant improvement in the convergence rate is obtained. Agreement with the exact results is excellent. (author)
Honorio, Tulio
2017-11-01
Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.
The acoustic Doppler effect applied to the study of linear motions
International Nuclear Information System (INIS)
Gómez-Tejedor, José A; Castro-Palacio, Juan C; Monsoriu, Juan A
2014-01-01
In this work, the change of frequency of a sound wave due to the Doppler effect has been measured using a smartphone. For this purpose, a speaker at rest and a smartphone placed on a cart on an air track were used. The change in frequency was measured by using an application for Android™, ‘Frequency Analyzer’, which was developed by us specifically for this work. This made it possible to analyze four types of mechanical motions: uniform linear motion, uniform accelerated linear motion, harmonic oscillations and damped harmonic oscillations. These experiments are suitable for undergraduate students. The main novelty of this work was the possibility of measuring the instantaneous frequency as a function of time with high precision. The results were compared with alternative measurements yielding good agreement. (paper)
Evolution in linear sizes and the Faraday effects in radio sources
International Nuclear Information System (INIS)
Anene, G.; Ugwoke, A.C.
2001-05-01
It is still a matter of conjecture whether the observed depolarization in radio sources originate from an external Faraday screen lying in our line of sight, or is largely due to internal processes occurring within these sources. This paper argues for an external origin. By applying recent evidences from the evolution of linear sizes while allowing for selection effects, it is shown that the density parameters within radio sources do not depend on redshift, implying that the observed depolarizations is epoch independent and may therefore, be largely external in origin. We also show that the observed low correlation between λ 1/2 and linear size(D) cannot be improved much even when allowance is made for evolution in D. (author)
Evaluation of the effectiveness of packed red blood cell irradiation by a linear accelerator.
Olivo, Ricardo Aparecido; da Silva, Marcus Vinícius; Garcia, Fernanda Bernadelli; Soares, Sheila; Rodrigues Junior, Virmondes; Moraes-Souza, Helio
2015-01-01
Irradiation of blood components with ionizing radiation generated by a specific device is recommended to prevent transfusion-associated graft-versus-host disease. However, a linear accelerator can also be used in the absence of such a device, which is the case of the blood bank facility studied herein. In order to evaluate the quality of the irradiated packed red blood cells, this study aimed to determine whether the procedure currently employed in the facility is effective in inhibiting the proliferation of T lymphocytes without damaging blood components. The proliferation of T lymphocytes, plasma potassium levels, and the degree of hemolysis were evaluated and compared to blood bags that received no irradiation. Packed red blood cell bags were irradiated at a dose of 25Gy in a linear accelerator. For this purpose, a container was designed to hold the bags and to ensure even distribution of irradiation as evaluated by computed tomography and dose-volume histogram. Irradiation was observed to inhibit the proliferation of lymphocytes. The percentage of hemolysis in irradiated bags was slightly higher than in non-irradiated bags (p-value >0.05), but it was always less than 0.4% of the red cell mass. Although potassium increased in both groups, it was more pronounced in irradiated red blood cells, especially after seven days of storage, with a linear increase over storage time. The findings showed that, at an appropriate dosage and under validated conditions, the irradiation of packed red blood cells in a linear accelerator is effective, inhibiting lymphocyte proliferation but without compromising the viability of the red cells. Copyright © 2015 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.
Stark broadening in hot, dense laser-produced plasmas
International Nuclear Information System (INIS)
Tighe, R.J.; Hooper, C.F. Jr.
1976-01-01
Broadened Lyman-α x-ray lines from neon X and argon XVIII radiators, which are immersed in a hot, dense deuterium or deuterium-tritium plasma, are discussed. In particular, these lines are analyzed for several temperature-density cases, characteristic of laser-produced plasmas; special attention paid to the relative importance of ion, electron, and Doppler effects. Static ion microfield distribution functions are tabulated
Observation of asymmetric Stark profiles from plasmas created by a picosecond KrF laser
International Nuclear Information System (INIS)
Nam, C.H.; Tighe, W.; Suckewer, S.; Seely, J.F.; Feldman, U.; Woltz, L.A.
1987-10-01
High-resolution extreme ultraviolet (XUV) spectra from solid targets irradiated by a picosecond KrF* laser focused to 10 16 W/cm 2 have been recorded. The line profiles of transitions in Li-like fluorine and oxygen are asymmetric and up to 2 A in width. Calculations indicate the presence of transitions of the type 2p-3p and other forbidden Stark components. 11 refs., 6 figs
International Nuclear Information System (INIS)
Takiyama, K.; Namba, S.; Furukawa, S.; Oda, T.; James, B.W.; Andruczyk, D.
2004-01-01
Interference between Stark-induced dipole and electric quadrupole amplitudes was observed in a He hollow cathode plasma with axial magnetic field perpendicular to the sheath electric field E by laser-induced fluorescence (LIF) method. Circularly polarized LIF signals were observed in the sheath region. Spatial profile of the degree of polarization P c showed characteristic features of the interference. Using theoretically calculated P c -E relationship, E-profile was successfully obtained form the measure P c . (author)
Soil non-linearity and its effect on the dynamic behaviour of offshore platform foundations
Energy Technology Data Exchange (ETDEWEB)
Madshus, Christian
1997-07-01
in the laboratory tests. It was also found that models where the hysteretic non-linearity is approximated by any type of viscous or complex stiffness effect will severely overpredict the soil damping of the superimposed load component. The resonant response of dynamic systems with cyclically time-varying stiffness has been studied through numerical simulations and analytical derivations. The responses of these systems have been compared to numerically simulated responses of systems with real hysteretic non-linearity and comparable loading. It has been concluded that the time-varying systems reasonably well reproduce the resonant response of the non-linear systems for most situations. The time-varying system approach is proposed as a candidate method for linearization of dynamic platform foundation response analyses. The thesis recommends investigations for further validation of the findings made in the thesis before the approach may be utilized in platform design. Recommendations are also given on improved methods for platform foundation monitoring systems and for improving elasto-plastic constitutive soil models.
Yu, Kyung-Hun; Suk, Min-Hwa; Kang, Shin-Woo; Shin, Yun-A
2014-10-01
The purpose of this study was to investigate the effect of combined linear and nonlinear periodic training on physical fitness and competition times in finswimmers. The linear resistance training model (6 days/week) and nonlinear underwater training (4 days/week) were applied to 12 finswimmers (age, 16.08± 1.44 yr; career, 3.78± 1.90 yr) for 12 weeks. Body composition measures included weight, body mass index (BMI), percent fat, and fat-free mass. Physical fitness measures included trunk flexion forward, trunk extension backward, sargent jump, 1-repetition-maximum (1 RM) squat, 1 RM dead lift, knee extension, knee flexion, trunk extension, trunk flexion, and competition times. Body composition and physical fitness were improved after the 12-week periodic training program. Weight, BMI, and percent fat were significantly decreased, and trunk flexion forward, trunk extension backward, sargent jump, 1 RM squat, 1 RM dead lift, and knee extension (right) were significantly increased. The 50- and 100-m times significantly decreased in all 12 athletes. After 12 weeks of training, all finswimmers who participated in this study improved their times in a public competition. These data indicate that combined linear and nonlinear periodic training enhanced the physical fitness and competition times in finswimmers.
Franklin, Timothy C; Granata, Kevin P; Madigan, Michael L; Hendricks, Scott L
2008-08-01
Linear stability methods were applied to a biomechanical model of the human musculoskeletal spine to investigate effects of reflex gain and reflex delay on stability. Equations of motion represented a dynamic 18 degrees-of-freedom rigid-body model with time-delayed reflexes. Optimal muscle activation levels were identified by minimizing metabolic power with the constraints of equilibrium and stability with zero reflex time delay. Muscle activation levels and associated muscle forces were used to find the delay margin, i.e., the maximum reflex delay for which the system was stable. Results demonstrated that stiffness due to antagonistic co-contraction necessary for stability declined with increased proportional reflex gain. Reflex delay limited the maximum acceptable proportional reflex gain, i.e., long reflex delay required smaller maximum reflex gain to avoid instability. As differential reflex gain increased, there was a small increase in acceptable reflex delay. However, differential reflex gain with values near intrinsic damping caused the delay margin to approach zero. Forward-dynamic simulations of the fully nonlinear time-delayed system verified the linear results. The linear methods accurately found the delay margin below which the nonlinear system was asymptotically stable. These methods may aid future investigations in the role of reflexes in musculoskeletal stability.
Linearization effect in multifractal analysis: Insights from the Random Energy Model
Angeletti, Florian; Mézard, Marc; Bertin, Eric; Abry, Patrice
2011-08-01
The analysis of the linearization effect in multifractal analysis, and hence of the estimation of moments for multifractal processes, is revisited borrowing concepts from the statistical physics of disordered systems, notably from the analysis of the so-called Random Energy Model. Considering a standard multifractal process (compound Poisson motion), chosen as a simple representative example, we show the following: (i) the existence of a critical order q∗ beyond which moments, though finite, cannot be estimated through empirical averages, irrespective of the sample size of the observation; (ii) multifractal exponents necessarily behave linearly in q, for q>q∗. Tailoring the analysis conducted for the Random Energy Model to that of Compound Poisson motion, we provide explicative and quantitative predictions for the values of q∗ and for the slope controlling the linear behavior of the multifractal exponents. These quantities are shown to be related only to the definition of the multifractal process and not to depend on the sample size of the observation. Monte Carlo simulations, conducted over a large number of large sample size realizations of compound Poisson motion, comfort and extend these analyses.
Size effects in non-linear heat conduction with flux-limited behaviors
Li, Shu-Nan; Cao, Bing-Yang
2017-11-01
Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.
Muraro, Ana Paula; Souza, Rita Adriana Gomes de; Rodrigues, Paulo Rogério Melo; Ferreira, Márcia Gonçalves; Sichieri, Rosely
2017-01-01
To assess the effect of socioeconomic position (SEP) in childhood and social mobility on linear growth through adolescence in a population-based cohort. Children born in Cuiabá-MT, central-western Brazil, were evaluated during 1994 - 1999. They were first assessed during 1999 - 2000 (0 - 5 years) and again during 2009 - 2011 (10 - 17 years), and their height-for-age was evaluated during these two periods.Awealth index was used to classify the SEP of each child's family as low, medium, or high. Social mobility was categorized as upward mobility or no upward mobility. Linear mixed models were used. We evaluated 1,716 children (71.4% of baseline) after 10 years, and 60.6% of the families showed upward mobility, with a higher percentage among the lowest economic classes. A higher height-for-age was also observed among those from families with a high SEP both in childhood (low SEP= -0.35 z-score; high SEP= 0.15 z-score, p childhood and social mobility did not greatly influence linear growth through childhood in this central-western Brazilian cohort.
On the linearity of the dose-effect relationship of DNA double strand breaks
International Nuclear Information System (INIS)
Chadwick, K.H.; Leenhouts, H.P.
1994-01-01
Most radiation biologists believe that DNA double-strand breaks are induced linearly with radiation dose for all types of radiation. Since 1985, with the advent of elution and gel electrophoresis techniques which permit the measurement of DNA double-strand breaks induced in mammalian cells at doses having radiobiological relevance, the true nature of the dose-effect relationship has been brought into some doubt. Many investigators measured curvilinear dose-effect relationships and a few found good correlations between the induction of the DNA double-strand breaks and cell survival. We approach the problem pragmatically by assuming that the induction of DNA double-strand breaks by 125 I Auger electron emitters incorporated into the DNA of the cells is a linear function of the number of 125 I decays, and by comparing the dose-effect relationship for sparsely ionizing radiation against this standard. The conclusion drawn that the curvilinear dose-effect relationships and the correlations with survival are real. (Author)
Non-linear phonon Peltier effect in dissipative quantum dot systems.
De, Bitan; Muralidharan, Bhaskaran
2018-03-26
Solid state thermoelectric cooling is based on the electronic Peltier effect, which cools via an electronic heat current in the absence of an applied temperature gradient. In this work, we demonstrate that equivalently, a phonon Peltier effect may arise in the non-linear thermoelectric transport regime of a dissipative quantum dot thermoelectric setup described via Anderson-Holstein model. This effect leads to an electron induced phonon heat current in the absence of a thermal gradient. Utilizing the modification of quasi-equilibrium phonon distribution via charge induced phonon accumulation, we show that in a special case the polarity of the phonon heat current can be reversed so that setup can dump heat into the hotter reservoirs. In further exploring possibilities that can arise from this effect, we propose a novel charge-induced phonon switching mechanism that may be incited via electrostatic gating.
Non-linear Analysis of Scalp EEG by Using Bispectra: The Effect of the Reference Choice
Directory of Open Access Journals (Sweden)
Federico Chella
2017-05-01
Full Text Available Bispectral analysis is a signal processing technique that makes it possible to capture the non-linear and non-Gaussian properties of the EEG signals. It has found various applications in EEG research and clinical practice, including the assessment of anesthetic depth, the identification of epileptic seizures, and more recently, the evaluation of non-linear cross-frequency brain functional connectivity. However, the validity and reliability of the indices drawn from bispectral analysis of EEG signals are potentially biased by the use of a non-neutral EEG reference. The present study aims at investigating the effects of the reference choice on the analysis of the non-linear features of EEG signals through bicoherence, as well as on the estimation of cross-frequency EEG connectivity through two different non-linear measures, i.e., the cross-bicoherence and the antisymmetric cross-bicoherence. To this end, four commonly used reference schemes were considered: the vertex electrode (Cz, the digitally linked mastoids, the average reference, and the Reference Electrode Standardization Technique (REST. The reference effects were assessed both in simulations and in a real EEG experiment. The simulations allowed to investigated: (i the effects of the electrode density on the performance of the above references in the estimation of bispectral measures; and (ii the effects of the head model accuracy in the performance of the REST. For real data, the EEG signals recorded from 10 subjects during eyes open resting state were examined, and the distortions induced by the reference choice in the patterns of alpha-beta bicoherence, cross-bicoherence, and antisymmetric cross-bicoherence were assessed. The results showed significant differences in the findings depending on the chosen reference, with the REST providing superior performance than all the other references in approximating the ideal neutral reference. In conclusion, this study highlights the importance of
Role of Statistical Random-Effects Linear Models in Personalized Medicine.
Diaz, Francisco J; Yeh, Hung-Wen; de Leon, Jose
2012-03-01
Some empirical studies and recent developments in pharmacokinetic theory suggest that statistical random-effects linear models are valuable tools that allow describing simultaneously patient populations as a whole and patients as individuals. This remarkable characteristic indicates that these models may be useful in the development of personalized medicine, which aims at finding treatment regimes that are appropriate for particular patients, not just appropriate for the average patient. In fact, published developments show that random-effects linear models may provide a solid theoretical framework for drug dosage individualization in chronic diseases. In particular, individualized dosages computed with these models by means of an empirical Bayesian approach may produce better results than dosages computed with some methods routinely used in therapeutic drug monitoring. This is further supported by published empirical and theoretical findings that show that random effects linear models may provide accurate representations of phase III and IV steady-state pharmacokinetic data, and may be useful for dosage computations. These models have applications in the design of clinical algorithms for drug dosage individualization in chronic diseases; in the computation of dose correction factors; computation of the minimum number of blood samples from a patient that are necessary for calculating an optimal individualized drug dosage in therapeutic drug monitoring; measure of the clinical importance of clinical, demographic, environmental or genetic covariates; study of drug-drug interactions in clinical settings; the implementation of computational tools for web-site-based evidence farming; design of pharmacogenomic studies; and in the development of a pharmacological theory of dosage individualization.
Stark broadening of potassium ns-4p and nd-4p lines in a wall-stabilized arc
International Nuclear Information System (INIS)
Hohimer, J.P.
1984-01-01
Stark-width measurements are reported for lines in the ns-4p (n = 7--10) and nd-4p (n = 5--8) series in neutral potassium (K I). These measurements were made by observing the end-on emission from a low pressure (20 Torr) potassium-argon wall-stabilized arc source. The on-axis electron density and temperature in the 20-A arc were (2.0 +- 0.2) x 10 15 cm -3 and 2955 +- 100 K, respectively. The experimentally determined Stark widths were compared with the theoretical values calculated by Griem. The measured Stark widths agreed with theory to within 30% for lines in the ns-4p series; while the measured Stark widths of the nd-4p series lines were only one-third of the theoretical values
A simulation study of linear coupling effects and their correction in RHIC
International Nuclear Information System (INIS)
Parzen, G.
1993-01-01
This paper describes a possible skew quadrupole correction system for linear coupling effects for the RHIC92 lattice. A simulation study has been done for this correction system. Results are given for the performance of the correction system and the required strength of the skew quadrupole corrections. The location of the correctors is discussed. For RHIC92, it appears possible to use the same 2 family correction system for all the likely choices of β*. The simulation study gives results for the residual tune splitting that remains after correction with a 2 family correction system. It also gives results for the beta functions before and after correction
Kovacs effect in the one-dimensional Ising model: A linear response analysis
Ruiz-García, M.; Prados, A.
2014-01-01
We analyze the so-called Kovacs effect in the one-dimensional Ising model with Glauber dynamics. We consider small enough temperature jumps, for which a linear response theory has been recently derived. Within this theory, the Kovacs hump is directly related to the monotonic relaxation function of the energy. The analytical results are compared with extensive Monte Carlo simulations, and an excellent agreement is found. Remarkably, the position of the maximum in the Kovacs hump depends on the fact that the true asymptotic behavior of the relaxation function is different from the stretched exponential describing the relevant part of the relaxation at low temperatures.
Characterization of a material by probability of linear scattering using effect of target thickness
International Nuclear Information System (INIS)
Nghiep, T.D.; Khai, N.T.; Cong, N.T.; Minh, D.T.N.
2013-01-01
We report on an experimental test with 662 keV gamma photons scattered from a set of samples from 6 C, 13 Al, 26 Fe, 29 Cu, 47 Ag, 82 Pb and stainless steel for determination of probability of linear scattering, which can be used for characterization of a material. The results show that for the given target and scattering angle, the effect of target thickness in gamma photons scattering relates to single and multiple scattering and that the scattered events exponentially increase with an increase in target thickness and saturation at some values of thickness. The experimental results correlate with the typical function of energy transfer model. (author)
Rodríguez-Barranco, Miguel; Tobías, Aurelio; Redondo, Daniel; Molina-Portillo, Elena; Sánchez, María José
2017-03-17
Meta-analysis is very useful to summarize the effect of a treatment or a risk factor for a given disease. Often studies report results based on log-transformed variables in order to achieve the principal assumptions of a linear regression model. If this is the case for some, but not all studies, the effects need to be homogenized. We derived a set of formulae to transform absolute changes into relative ones, and vice versa, to allow including all results in a meta-analysis. We applied our procedure to all possible combinations of log-transformed independent or dependent variables. We also evaluated it in a simulation based on two variables either normally or asymmetrically distributed. In all the scenarios, and based on different change criteria, the effect size estimated by the derived set of formulae was equivalent to the real effect size. To avoid biased estimates of the effect, this procedure should be used with caution in the case of independent variables with asymmetric distributions that significantly differ from the normal distribution. We illustrate an application of this procedure by an application to a meta-analysis on the potential effects on neurodevelopment in children exposed to arsenic and manganese. The procedure proposed has been shown to be valid and capable of expressing the effect size of a linear regression model based on different change criteria in the variables. Homogenizing the results from different studies beforehand allows them to be combined in a meta-analysis, independently of whether the transformations had been performed on the dependent and/or independent variables.
Spatial variability in floodplain sedimentation: the use of generalized linear mixed-effects models
Directory of Open Access Journals (Sweden)
A. Cabezas
2010-08-01
Full Text Available Sediment, Total Organic Carbon (TOC and total nitrogen (TN accumulation during one overbank flood (1.15 y return interval were examined at one reach of the Middle Ebro River (NE Spain for elucidating spatial patterns. To achieve this goal, four areas with different geomorphological features and located within the study reach were examined by using artificial grass mats. Within each area, 1 m^{2} study plots consisting of three pseudo-replicates were placed in a semi-regular grid oriented perpendicular to the main channel. TOC, TN and Particle-Size composition of deposited sediments were examined and accumulation rates estimated. Generalized linear mixed-effects models were used to analyze sedimentation patterns in order to handle clustered sampling units, specific-site effects and spatial self-correlation between observations. Our results confirm the importance of channel-floodplain morphology and site micro-topography in explaining sediment, TOC and TN deposition patterns, although the importance of other factors as vegetation pattern should be included in further studies to explain small-scale variability. Generalized linear mixed-effect models provide a good framework to deal with the high spatial heterogeneity of this phenomenon at different spatial scales, and should be further investigated in order to explore its validity when examining the importance of factors such as flood magnitude or suspended sediment concentration.
Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity.
Monte-Silva, Katia; Liebetanz, David; Grundey, Jessica; Paulus, Walter; Nitsche, Michael A
2010-09-15
The neuromodulator dopamine affects learning and memory formation and their likely physiological correlates, long-term depression and potentiation, in animals and humans. It is known from animal experiments that dopamine exerts a dosage-dependent, inverted U-shaped effect on these functions. However, this has not been explored in humans so far. In order to reveal a non-linear dose-dependent effect of dopamine on cortical plasticity in humans, we explored the impact of 25, 100 and 200 mg of L-dopa on transcranial direct current (tDCS)-induced plasticity in twelve healthy human subjects. The primary motor cortex served as a model system, and plasticity was monitored by motor evoked potential amplitudes elicited by transcranial magnetic stimulation. As compared to placebo medication, low and high dosages of L-dopa abolished facilitatory as well as inhibitory plasticity, whereas the medium dosage prolonged inhibitory plasticity, and turned facilitatory plasticity into inhibition. Thus the results show clear non-linear, dosage-dependent effects of dopamine on both facilitatory and inhibitory plasticity, and support the assumption of the importance of a specific dosage of dopamine optimally suited to improve plasticity. This might be important for the therapeutic application of dopaminergic agents, especially for rehabilitative purposes, and explain some opposing results in former studies.
International Nuclear Information System (INIS)
Shetulov, D.I.
1991-01-01
Consideration is given to results of investigation into effect of initial longitudinal stresses on the linearity of the shaped rolled products after accelerated cooling. Particular attention is placed on the influence of an initial stresses state of material on qualiti of heat-treated rolled products. Effect of stresses state of worked material residual bending is studed by the use of computerized simulation.Theoretical analysis of stress-strain state of shape hot-rolled products during accelerated cooling after finishing stand of rolls is developed. A residual stress-strain state of material does not affected by rolling stresses when using a rautine cooling device with rigid centering of the product under rolling. It is expected that the effect of initial stresses could be significant in the absence of a limitator for bending deformation of shaped product longitudinal axis
Díaz-Gómez, N Marta; Doménech, Eduardo; Barroso, Flora; Castells, Silvia; Cortabarria, Carmen; Jiménez, Alejandro
2003-05-01
The aim of our study was to evaluate the effect of zinc supplementation on linear growth, body composition, and growth factors in premature infants. Thirty-six preterm infants (gestational age: 32.0 +/- 2.1 weeks, birth weight: 1704 +/- 364 g) participated in a longitudinal double-blind, randomized clinical trial. They were randomly allocated either to the supplemental (S) group fed with a standard term formula supplemented with zinc (final content 10 mg/L) and a small quantity of copper (final content 0.6 mg/L), or to the placebo group fed with the same formula without supplementation (final content of zinc: 5 mg/L and copper: 0.4 mg/L), from 36 weeks postconceptional age until 6 months corrected postnatal age. At each evaluation, anthropometric variables and bioelectrical impedance were measured, a 3-day dietary record was collected, and a blood sample was taken. We analyzed serum levels of total alkaline phosphatase, skeletal alkaline phosphatase (sALP), insulin growth factor (IGF)-I, IGF binding protein-3, IGF binding protein-1, zinc and copper, and the concentrations of zinc in erythrocytes. The S group had significantly higher zinc levels in serum and erythrocytes and lower serum copper levels with respect to the placebo group. We found that the S group had a greater linear growth (from baseline to 3 months corrected age: Delta score deviation standard length: 1.32 +/-.8 vs.38 +/-.8). The increase in total body water and in serum levels of sALP was also significantly higher in the S group (total body water: 3 months; corrected age: 3.8 +/-.5 vs 3.5 +/-.4 kg, 6 months; corrected age: 4.5 +/-.5 vs 4.2 +/-.4 kg; sALP: 3 months; corrected age: 140.2 +/- 28.7 vs 118.7 +/- 18.8 micro g/L). Zinc supplementation has a positive effect on linear growth in premature infants.
Focal spot motion of linear accelerators and its effect on portal image analysis
International Nuclear Information System (INIS)
Sonke, Jan-Jakob; Brand, Bob; Herk, Marcel van
2003-01-01
The focal spot of a linear accelerator is often considered to have a fully stable position. In practice, however, the beam control loop of a linear accelerator needs to stabilize after the beam is turned on. As a result, some motion of the focal spot might occur during the start-up phase of irradiation. When acquiring portal images, this motion will affect the projected position of anatomy and field edges, especially when low exposures are used. In this paper, the motion of the focal spot and the effect of this motion on portal image analysis are quantified. A slightly tilted narrow slit phantom was placed at the isocenter of several linear accelerators and images were acquired (3.5 frames per second) by means of an amorphous silicon flat panel imager positioned ∼0.7 m below the isocenter. The motion of the focal spot was determined by converting the tilted slit images to subpixel accurate line spread functions. The error in portal image analysis due to focal spot motion was estimated by a subtraction of the relative displacement of the projected slit from the relative displacement of the field edges. It was found that the motion of the focal spot depends on the control system and design of the accelerator. The shift of the focal spot at the start of irradiation ranges between 0.05-0.7 mm in the gun-target (GT) direction. In the left-right (AB) direction the shift is generally smaller. The resulting error in portal image analysis due to focal spot motion ranges between 0.05-1.1 mm for a dose corresponding to two monitor units (MUs). For 20 MUs, the effect of the focal spot motion reduces to 0.01-0.3 mm. The error in portal image analysis due to focal spot motion can be reduced by reducing the applied dose rate
International Nuclear Information System (INIS)
Boure, J.
1967-01-01
The problem of the oscillatory behavior of heated channels is presented in terms of delay-times and a density effect model is proposed to explain the behavior. The density effect is the consequence of the physical relationship between enthalpy and density of the fluid. In the first part non-linear equations are derived from the model in a dimensionless form. A description of the mechanism of oscillations is given, based on the analysis of the equations. An inventory of the governing parameters is established. At this point of the study, some facts in agreement with the experiments can be pointed out. In the second part the start of the oscillatory behavior of heated channels is studied in terms of the density effect. The threshold equations are derived, after linearization of the equations obtained in Part I. They can be solved rigorously by numerical methods to yield: -1) a relation between the describing parameters at the onset of oscillations, and -2) the frequency of the oscillations. By comparing the results predicted by the model to the experimental behavior of actual systems, the density effect is very often shown to be the actual cause of oscillatory behaviors. (author) [fr
Effects of energy chirp on bunch length measurement in linear accelerator beams
Sabato, L.; Arpaia, P.; Giribono, A.; Liccardo, A.; Mostacci, A.; Palumbo, L.; Vaccarezza, C.; Variola, A.
2017-08-01
The effects of assumptions about bunch properties on the accuracy of the measurement method of the bunch length based on radio frequency deflectors (RFDs) in electron linear accelerators (LINACs) are investigated. In particular, when the electron bunch at the RFD has a non-negligible energy chirp (i.e. a correlation between the longitudinal positions and energies of the particle), the measurement is affected by a deterministic intrinsic error, which is directly related to the RFD phase offset. A case study on this effect in the electron LINAC of a gamma beam source at the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) is reported. The relative error is estimated by using an electron generation and tracking (ELEGANT) code to define the reference measurements of the bunch length. The relative error is proved to increase linearly with the RFD phase offset. In particular, for an offset of {{7}\\circ} , corresponding to a vertical centroid offset at a screen of about 1 mm, the relative error is 4.5%.
Using NCAP to predict RFI effects in linear bipolar integrated circuits
Fang, T.-F.; Whalen, J. J.; Chen, G. K. C.
1980-11-01
Applications of the Nonlinear Circuit Analysis Program (NCAP) to calculate RFI effects in electronic circuits containing discrete semiconductor devices have been reported upon previously. The objective of this paper is to demonstrate that the computer program NCAP also can be used to calcuate RFI effects in linear bipolar integrated circuits (IC's). The IC's reported upon are the microA741 operational amplifier (op amp) which is one of the most widely used IC's, and a differential pair which is a basic building block in many linear IC's. The microA741 op amp was used as the active component in a unity-gain buffer amplifier. The differential pair was used in a broad-band cascode amplifier circuit. The computer program NCAP was used to predict how amplitude-modulated RF signals are demodulated in the IC's to cause undesired low-frequency responses. The predicted and measured results for radio frequencies in the 0.050-60-MHz range are in good agreement.
Lu, Tao; Lu, Minggen; Wang, Min; Zhang, Jun; Dong, Guang-Hui; Xu, Yong
2017-12-18
Longitudinal competing risks data frequently arise in clinical studies. Skewness and missingness are commonly observed for these data in practice. However, most joint models do not account for these data features. In this article, we propose partially linear mixed-effects joint models to analyze skew longitudinal competing risks data with missingness. In particular, to account for skewness, we replace the commonly assumed symmetric distributions by asymmetric distribution for model errors. To deal with missingness, we employ an informative missing data model. The joint models that couple the partially linear mixed-effects model for the longitudinal process, the cause-specific proportional hazard model for competing risks process and missing data process are developed. To estimate the parameters in the joint models, we propose a fully Bayesian approach based on the joint likelihood. To illustrate the proposed model and method, we implement them to an AIDS clinical study. Some interesting findings are reported. We also conduct simulation studies to validate the proposed method.
Holmgren, Milena; Gómez-Aparicio, Lorena; Quero, José Luis; Valladares, Fernando
2012-06-01
The combined effects of shade and drought on plant performance and the implications for species interactions are highly debated in plant ecology. Empirical evidence for positive and negative effects of shade on the performance of plants under dry conditions supports two contrasting theoretical models about the role of shade under dry conditions: the trade-off and the facilitation hypotheses. We performed a meta-analysis of field and greenhouse studies evaluating the effects of drought at two or more irradiance levels on nine response variables describing plant physiological condition, growth, and survival. We explored differences in plant response across plant functional types, ecosystem types and methodological approaches. The data were best fit using quadratic models indicating a humped-back shape response to drought along an irradiance gradient for survival, whole plant biomass, maximum photosynthetic capacity, stomatal conductance and maximal photochemical efficiency. Drought effects were ameliorated at intermediate irradiance, becoming more severe at higher or lower light levels. This general pattern was maintained when controlling for potential variations in the strength of the drought treatment among light levels. Our quantitative meta-analysis indicates that dense shade ameliorates drought especially among drought-intolerant and shade-tolerant species. Wet tropical species showed larger negative effects of drought with increasing irradiance than semiarid and cold temperate species. Non-linear responses to irradiance were stronger under field conditions than under controlled greenhouse conditions. Non-linear responses to drought along the irradiance gradient reconciliate opposing views in plant ecology, indicating that facilitation is more likely within certain range of environmental conditions, fading under deep shade, especially for drought-tolerant species.
Quantum pump effect induced by a linearly polarized microwave in a two-dimensional electron gas.
Song, Juntao; Liu, Haiwen; Jiang, Hua
2012-05-30
A quantum pump effect is predicted in an ideal homogeneous two-dimensional electron gas (2DEG) that is normally irradiated by linearly polarized microwaves (MW). Without considering effects from spin-orbital coupling or the magnetic field, it is found that a polarized MW can continuously pump electrons from the longitudinal to the transverse direction, or from the transverse to the longitudinal direction, in the central irradiated region. The large pump current is obtained for both the low frequency limit and the high frequency case. Its magnitude depends on sample properties such as the size of the radiated region, the power and frequency of the MW, etc. Through the calculated results, the pump current should be attributed to the dominant photon-assisted tunneling processes as well as the asymmetry of the electron density of states with respect to the Fermi energy.
Effects of the time delays in a non linear pendular Fabry-Perot
International Nuclear Information System (INIS)
Tourrenc, P.; Deruelle, N.
1985-01-01
We study a one arm pendular Fabry-Perot interferometer with specifications corresponding to the two arms interferometers designed to detect gravitational radiation. We consider the non linearities originating from the radiation force and the effects of time delays due to the finite length of the arm. We derive the exact and the associated ''predictivised'' equations for the motion of the suspended mirror. We show that effects of time delays increase considerably the stability of the device when the optical relaxation time is of the order of the period of the pendulum, a case of relevance when light is recycled. However the thermal noise does not seem to be much modified when calculated within a simple approximation scheme
Mitigation of ground motion effects in linear accelerators via feed-forward control
Directory of Open Access Journals (Sweden)
J. Pfingstner
2014-12-01
Full Text Available Ground motion is a severe problem for many particle accelerators, since it excites beam oscillations, which decrease the beam quality and create beam-beam offset (at colliders. Orbit feedback systems can only compensate ground motion effects at frequencies significantly smaller than the beam repetition rate. In linear colliders, where the repetition rate is low, additional counter measures have to be put in place. For this reason, a ground motion mitigation method based on feed-forward control is presented in this paper. It has several advantages compared to other techniques (stabilization systems and intratrain feedback systems such as cost reduction and potential performance improvement. An analytical model is presented that allows the derivation of hardware specification and performance estimates for a specific accelerator and ground motion model. At the Accelerator Test Facility (ATF2, ground motion sensors have been installed to verify the feasibility of important parts of the mitigation strategy. In experimental studies, it has been shown that beam excitations due to ground motion can be predicted from ground motion measurements on a pulse-to-pulse basis. Correlations of up to 80% between the estimated and measured orbit jitter have been observed. Additionally, an orbit jitter source was identified and has been removed, which halved the orbit jitter power at ATF2 and shows that the feed-forward scheme is also very useful for the detection of installation issues. We believe that the presented mitigation method has the potential to reduce costs and improve the performance of linear colliders and potentially other linear accelerators.
Graf, Daniel; Beuerle, Matthias; Schurkus, Henry F; Luenser, Arne; Savasci, Gökcen; Ochsenfeld, Christian
2018-05-08
An efficient algorithm for calculating the random phase approximation (RPA) correlation energy is presented that is as accurate as the canonical molecular orbital resolution-of-the-identity RPA (RI-RPA) with the important advantage of an effective linear-scaling behavior (instead of quartic) for large systems due to a formulation in the local atomic orbital space. The high accuracy is achieved by utilizing optimized minimax integration schemes and the local Coulomb metric attenuated by the complementary error function for the RI approximation. The memory bottleneck of former atomic orbital (AO)-RI-RPA implementations ( Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016 , 144 , 031101 and Luenser, A.; Schurkus, H. F.; Ochsenfeld, C. J. Chem. Theory Comput. 2017 , 13 , 1647 - 1655 ) is addressed by precontraction of the large 3-center integral matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of [Formula: see text]. Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems, where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.
Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, Scott J.
2009-01-01
Previous studies have demonstrated an effect of frequency on the gain of tilt and translation perception. Results from different motion paradigms are often combined to extend the stimulus frequency range. For example, Off-Vertical Axis Rotation (OVAR) and Variable Radius Centrifugation (VRC) are useful to test low frequencies of linear acceleration at amplitudes that would require impractical sled lengths. The purpose of this study was to compare roll-tilt and lateral translation motion perception in 12 healthy subjects across four paradigms: OVAR, VRC, sled translation and rotation about an earth-horizontal axis. Subjects were oscillated in darkness at six frequencies from 0.01875 to 0.6 Hz (peak acceleration equivalent to 10 deg, less for sled motion below 0.15 Hz). Subjects verbally described the amplitude of perceived tilt and translation, and used a joystick to indicate the direction of motion. Consistent with previous reports, tilt perception gain decreased as a function of stimulus frequency in the motion paradigms without concordant canal tilt cues (OVAR, VRC and Sled). Translation perception gain was negligible at low stimulus frequencies and increased at higher frequencies. There were no significant differences between the phase of tilt and translation, nor did the phase significantly vary across stimulus frequency. There were differences in perception gain across the different paradigms. Paradigms that included actual tilt stimuli had the larger tilt gains, and paradigms that included actual translation stimuli had larger translation gains. In addition, the frequency at which there was a crossover of tilt and translation gains appeared to vary across motion paradigm between 0.15 and 0.3 Hz. Since the linear acceleration in the head lateral plane was equivalent across paradigms, differences in gain may be attributable to the presence of linear accelerations in orthogonal directions and/or cognitive aspects based on the expected motion paths.
Liu, Yan; Salvendy, Gavriel
2009-05-01
This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.
Directory of Open Access Journals (Sweden)
F. Sheykhe
Full Text Available The present paper, compares the effect of the annular and solid electron beam on the efficiency of linear and nonlinear TWTs. To do this, first we introduce four different geometric structure of the beam-helix. Then, we calculate the output power of each structure, in linear and nonlinear modes, at different frequencies using the numerical solution of the mathematical equations of the multi-frequency Eulerian model. Now, plot the output power in terms of distance for each structure at different frequencies and compare them. In a linear tube, the effect of annular beams on the output power is better than the solid beam, while this affects the frequency in nonlinear tubes. It is shown that in linear regime the power increase linearly with frequency but for nonlinear regimes is nonlinear. Keywords: Annular beam, Solid beam, Circuit power, Nonlinear, Traveling wave tube, Helix
Effect of mandibular plane angle on image dimensions in linear tomography
Directory of Open Access Journals (Sweden)
Bashizadeh Fakhar H
2011-02-01
Full Text Available "nBackground and Aims: Accurate bone measurements are essential for determining the optimal size and length of proposed implants. The radiologist should be aware of the head position effects on image dimensions in each imaging technique. The purpose of this study was to evaluate the effect of mandibular plane angle on image dimensions in linear tomography."nMaterials and Methods: In this in vitro study, the vertical dimensions of linear tomograms taken from 3 dry mandibles in different posteroantenior or mediolateral tilts were compared with actual condition. In order to evaluate the effects of head position in linear tomography, 16 series of images while mandibular plane angle was tilted with 5, 10, 15 and 20 degrees in anterior, posterior, medial, or lateral angulations as well as a series of standard images without any tilt in mandibular position were taken. Vertical distances between the alveolar crest and the superior border of the inferior alveolar canal were measured in posterior mandible and the vertical distances between the alveolar crest and inferior rim were measured in anterior mandible in 12 sites of tomograms. Each bone was then sectioned through the places marked with a radiopaque object. The radiographic values were compared with the real conditions. Repeat measure ANOVA was used to analyze the data."nResults: The findings of this study showed that there was significant statistical difference between standard position and 15º posteroanterior tilt (P<0.001. Also there was significant statistical difference between standard position and 10º lateral tilt (P<0.008, 15º tilt (P<0.001, and 20º upward tilt (P<0.001. In standard mandibular position with no tilt, the mean exact error was the same in all regions (0.22±0.19 mm except the premolar region which the mean exact error was calculated as 0.44±0.19 mm. The most mean exact error among various postroanterior tilts was seen in 20º lower tilt in the canine region (1±0.88 mm
Walker, Jeffrey A
2016-01-01
Self-contained tests estimate and test the association between a phenotype and mean expression level in a gene set defined a priori . Many self-contained gene set analysis methods have been developed but the performance of these methods for phenotypes that are continuous rather than discrete and with multiple nuisance covariates has not been well studied. Here, I use Monte Carlo simulation to evaluate the performance of both novel and previously published (and readily available via R) methods for inferring effects of a continuous predictor on mean expression in the presence of nuisance covariates. The motivating data are a high-profile dataset which was used to show opposing effects of hedonic and eudaimonic well-being (or happiness) on the mean expression level of a set of genes that has been correlated with social adversity (the CTRA gene set). The original analysis of these data used a linear model (GLS) of fixed effects with correlated error to infer effects of Hedonia and Eudaimonia on mean CTRA expression. The standardized effects of Hedonia and Eudaimonia on CTRA gene set expression estimated by GLS were compared to estimates using multivariate (OLS) linear models and generalized estimating equation (GEE) models. The OLS estimates were tested using O'Brien's OLS test, Anderson's permutation [Formula: see text]-test, two permutation F -tests (including GlobalAncova), and a rotation z -test (Roast). The GEE estimates were tested using a Wald test with robust standard errors. The performance (Type I, II, S, and M errors) of all tests was investigated using a Monte Carlo simulation of data explicitly modeled on the re-analyzed dataset. GLS estimates are inconsistent between data sets, and, in each dataset, at least one coefficient is large and highly statistically significant. By contrast, effects estimated by OLS or GEE are very small, especially relative to the standard errors. Bootstrap and permutation GLS distributions suggest that the GLS results in
Directory of Open Access Journals (Sweden)
Jeffrey A. Walker
2016-10-01
Full Text Available Background Self-contained tests estimate and test the association between a phenotype and mean expression level in a gene set defined a priori. Many self-contained gene set analysis methods have been developed but the performance of these methods for phenotypes that are continuous rather than discrete and with multiple nuisance covariates has not been well studied. Here, I use Monte Carlo simulation to evaluate the performance of both novel and previously published (and readily available via R methods for inferring effects of a continuous predictor on mean expression in the presence of nuisance covariates. The motivating data are a high-profile dataset which was used to show opposing effects of hedonic and eudaimonic well-being (or happiness on the mean expression level of a set of genes that has been correlated with social adversity (the CTRA gene set. The original analysis of these data used a linear model (GLS of fixed effects with correlated error to infer effects of Hedonia and Eudaimonia on mean CTRA expression. Methods The standardized effects of Hedonia and Eudaimonia on CTRA gene set expression estimated by GLS were compared to estimates using multivariate (OLS linear models and generalized estimating equation (GEE models. The OLS estimates were tested using O’Brien’s OLS test, Anderson’s permutation ${r}_{F}^{2}$ r F 2 -test, two permutation F-tests (including GlobalAncova, and a rotation z-test (Roast. The GEE estimates were tested using a Wald test with robust standard errors. The performance (Type I, II, S, and M errors of all tests was investigated using a Monte Carlo simulation of data explicitly modeled on the re-analyzed dataset. Results GLS estimates are inconsistent between data sets, and, in each dataset, at least one coefficient is large and highly statistically significant. By contrast, effects estimated by OLS or GEE are very small, especially relative to the standard errors. Bootstrap and permutation GLS
Non-linear effects and thermoelectric efficiency of quantum dot-based single-electron transistors.
Talbo, Vincent; Saint-Martin, Jérôme; Retailleau, Sylvie; Dollfus, Philippe
2017-11-01
By means of advanced numerical simulation, the thermoelectric properties of a Si-quantum dot-based single-electron transistor operating in sequential tunneling regime are investigated in terms of figure of merit, efficiency and power. By taking into account the phonon-induced collisional broadening of energy levels in the quantum dot, both heat and electrical currents are computed in a voltage range beyond the linear response. Using our homemade code consisting in a 3D Poisson-Schrödinger solver and the resolution of the Master equation, the Seebeck coefficient at low bias voltage appears to be material independent and nearly independent on the level broadening, which makes this device promising for metrology applications as a nanoscale standard of Seebeck coefficient. Besides, at higher voltage bias, the non-linear characteristics of the heat current are shown to be related to the multi-level effects. Finally, when considering only the electronic contribution to the thermal conductance, the single-electron transistor operating in generator regime is shown to exhibit very good efficiency at maximum power.
Fitness Effects of Network Non-Linearity Induced by Gene Expression Noise
Ray, Christian; Cooper, Tim; Balazsi, Gabor
2012-02-01
In the non-equilibrium dynamics of growing microbial cells, metabolic enzymes can create non-linearities in metabolite concentration because of non-linear degradation (utilization): an enzyme can saturate in the process of metabolite utilization. Increasing metabolite production past the saturation point then results in an ultrasensitive metabolite response. If the production rate of a metabolite depends on a second enzyme or other protein-mediated process, uncorrelated gene expression noise can thus cause transient metabolite concentration bursts. Such bursts are physiologically unnecessary and may represent a source of selection against the ultrasensitive switch, especially if the fluctuating metabolic intermediate is toxic. Selection may therefore favor correlated gene expression fluctuations for enzymes in the same pathway, such as by same-operon membership in bacteria. Using a modified experimental lac operon system, we are undertaking a combined theoretical-experimental approach to demonstrate that (i) the lac operon has an implicit ultrasensitive switch that we predict is avoided by gene expression correlations induced by same-operon membership; (ii) bacterial growth rates are sensitive to crossing the ultrasensitive threshold. Our results suggest that correlations in intrinsic gene expression noise are exploited by evolution to ameliorate the detrimental effects of nonlinearities in metabolite concentrations.
Two-step synthesis of silver selenide semiconductor with a linear magnetoresistance effect
International Nuclear Information System (INIS)
Yang, Fengxia; Xiong, Shuangtao; Liu, Fengxian; Han, Chong; Zhang, Duanming; Xia, Zhengcai
2012-01-01
A two-step synthesis method for polycrystalline β-silver selenide (β-Ag 2 Se) was developed. In the first step, nanopowder was prepared using a chemical conversion method at room temperature. In the second step, the nanopowder was compressed and then the bulk Ag 2 Se was fabricated by the solid-state sintering process. The crystalline phase and morphology were examined. The results showed that β-Ag 2 Se was fast fabricated at room temperature. The dense polycrystalline Ag-rich Ag 2 Se was synthesized successfully at 450 °C for 0.5 h under Argon flow. For the polycrystalline, the electronic properties and transverse magnetoresistance (TMR) in a pulsed magnetic field were investigated. The samples displayed n-type semiconducting behaviors and a critical temperature with a broaden temperature range of 140–150 K. Also, it presented a positive and nearly linear dependence on magnetic field H at H ≥ H c (crossover field) ranging from 2 to 20 T. Moreover, the linear dependence of TMR at strong field was non-saturating up to 35 T. Combining with the observation of morphology, it is thought that this unusual TMR effect was caused by slightly excess Ag. This new synthesis method provided a potential route to synthesize nonstoichiometric silver selenide. (paper)
Day of the week effect on the Zimbabwe Stock Exchange: A non-linear GARCH analysis
Directory of Open Access Journals (Sweden)
Batsirai Winmore Mazviona
2015-11-01
Full Text Available This study analysed the day of the week effect on the Zimbabwe Stock Exchange (ZSE by taking into account volatility of returns. The purpose of the study was to establish whether daily mean returns across a trading week differ from each other. We employ a non-linear approach in modelling the day of the week effects. In particular, we used the Generalised Autoregressive Conditional Heteroscedasticity (GARCH and the Exponential GARCH (EGARCH models. We used industrial and mining daily closing indices data from 19 February 2009 to 31 December 2013. The data was retrieved from the ZSE website. EViews 7 software was utilised for data analysis. In order to test the null hypothesis of equality of daily mean returns, a Wald test was carried out. The Wald F-statistic rejected the null hypothesis of equality of mean returns for the industrial index. We found the traditional negative Monday and positive Friday effect for the industrial index in GARCH (1,1 and EGARCH (1,1 models. The GARCH (1,1 detected a negative Friday effect and the EGARCH (1,1 detected negative Wednesday effect for the mining index. We found evidence of model dependency for the mining index results.
Kinetic Effects on the Stability Properties of Field-reversed Configurations: I. Linear Stability
Energy Technology Data Exchange (ETDEWEB)
Elena V. Belova; Ronald C. Davidson; Hantao Ji; Masaaki Yamada
2003-01-28
New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). We present results of hybrid and two-fluid (Hall-MHD) simulations of prolate FRCs. The n = 1 tilt instability mechanism and growth rate reduction mechanisms are investigated in detail including resonant particle effects, finite Larmor radius and Hall stabilization, and profile effects. It is shown that the Hall effect determines the mode rotation and the change in the linear mode structure in the kinetic regime; however, the reduction in the growth rate is mostly due to finite Larmor radius effects. Resonant wave-particle interactions are studied as a function of (a) elongation, (b) the kinetic parameter S*, which is proportional to the ratio of the separatrix radius to the thermal ion Larmor radius, and (c) the separatrix shape. It is demonstrated that, contrary to the usually assumed stochasticity of the ion orbits in the FRC, a large fraction of the orbits are regular in long configurations when S* is small. A stochasticity condition is found, and a scaling with the S* parameter is presented. Resonant particle effects are shown to maintain the instability in the large gyroradius regime regardless of the separatrix shape.
Comparison of three Stark problem solution techniques for the bounded case
Hatten, Noble; Russell, Ryan P.
2015-01-01
Three methods of obtaining solutions to the Stark problem—one developed by Lantoine and Russell using Jacobi elliptic and related functions, one developed by Biscani and Izzo using Weierstrass elliptic and related functions, and one developed by Pellegrini, Russell, and Vittaldev using and Taylor series extended to the Stark problem—are compared qualitatively and quantitatively for the bounded motion case. For consistency with existing available code for the series solution, Fortran routines of the Lantoine method and Biscani method are newly implemented and made available. For these implementations, the Lantoine formulation is found to be more efficient than the Biscani formulation in the propagation of a single trajectory segment. However, for applications for which acceptable accuracy may be achieved by orders up to 16, the Pellegrini series solution is shown to be more efficient than either analytical method. The three methods are also compared in the propagation of sequentially connected trajectory segments in a low-thrust orbital transfer maneuver. Separate tests are conducted for discretizations between 8 and 96 segments per orbit. For the series solution, the interaction between order and step size leads to computation times that are nearly invariable to discretization for a given truncation error tolerance over the tested range of discretizations. This finding makes the series solution particularly attractive for mission design applications where problems may require both coarse and fine discretizations. Example applications include the modeling of low-thrust propulsion and time-varying perturbations—problems for which the efficient propagation of relatively short Stark segments is paramount because the disturbing acceleration generally varies continuously.
Phonon-assisted hopping of an electron on a Wannier-Stark ladder in a strong electric field
International Nuclear Information System (INIS)
Emin, D.; Hart, C.F.
1987-01-01
With the application of a spatially constant electric field, the degeneracy of electronic energy levels of geometrically equivalent sites of a crystal is generally lifted. As a result, the electric field causes the electronic eigenstates of a one-dimensional periodic chain to become localized. In particular, they are Wannier-Stark states. With sufficiently large electric-field strengths these states become sufficiently well localized that it becomes appropriate to consider electronic transport to occur via a succession of phonon-assisted hops between the localized Wannier-Stark states. In this paper, we present calculations of the drift velocity arising from acoustic- and optical-phonon-assisted hopping motion between Wannier-Stark states. When the intersite electronic transfer energy is sufficiently small so that the Wannier-Stark states are essentially each confined to a single atomic site, the transport reduces to that of a small polaron. In this regime, while the drift velocity initially rises with increasing electric field strength, the drift velocity ultimately falls with increasing electric-field strength at extremely large electric fields. More generally, for common values of the electronic bandwidth and electric field strength, the Wannier-Stark states span many sites. At sufficiently large electric fields, the energy separation between Wannier-Stark states exceeds the energy uncertainty associated with the carrier's interaction with phonons. Then, it is appropriate to treat the electronic transport in terms of phonon-assisted hopping between Wannier-Stark states. The resulting high-field drift velocity falls with increasing field strength in a series of steps. Thus, we find a structured negative differential mobility at large electric fields
New neutral current effects at e sup + e sup - linear colliders
Pankov, A A
2002-01-01
Four fermion contact interaction effects in the processes e sup + e sup - -> mu sup +mu sup - , b-barb and c-barc at the e sup + e sup - linear colliders with sq root s = 0.5 TeV and longitudinally polarized initial beams have been studied. Presented analysis has been performed by means of new integrated observables expressed in terms of the forward (sigma sub F) and backward (sigma sub B) polarized cross sections such that they give information on individual helicity cross sections. The helicity cross sections allow to perform a general model-independent analysis of four-fermion contact interactions and obtain the corresponding constraints on their parameters. It is also shows that the sensitivity of the new polarized observables to contact interactions is quite larger than that of the conventional observables (sigma, A sub F sub B , A sub L sub R , A sub L sub R sub , sub F sub B)
Investigation into electron cloud effects in the International Linear Collider positron damping ring
Energy Technology Data Exchange (ETDEWEB)
Crittenden, J. A.; Conway, J.; Dugan, G. F.; Palmer, M. A.; Rubin, D. L.; Shanks, J.; Sonnad, K. G.; Boon, L.; Harkay, K.; Ishibashi, T.; Furman, M. A.; Guiducci, S.; Pivi, M. T. F.; Wang, L.
2014-03-01
We report modeling results for electron cloud buildup and instability in the International Linear Collider positron damping ring. Updated optics, wiggler magnets, and vacuum chamber designs have recently been developed for the 5 GeV, 3.2-km racetrack layout. An analysis of the synchrotron radiation profile around the ring has been performed, including the effects of diffuse and specular photon scattering on the interior surfaces of the vacuum chamber. The results provide input to the cloud buildup simulations for the various magnetic field regions of the ring. The modeled cloud densities thus obtained are used in the instability threshold calculations. We conclude that the mitigation techniques employed in this model will suffice to allow operation of the damping ring at the design operational specifications
Short communication: Alteration of priors for random effects in Gaussian linear mixed model
DEFF Research Database (Denmark)
Vandenplas, Jérémie; Christensen, Ole Fredslund; Gengler, Nicholas
2014-01-01
such alterations. Therefore, the aim of this study was to propose a method to alter both the mean and (co)variance of the prior multivariate normal distributions of random effects of linear mixed models while using currently available software packages. The proposed method was tested on simulated examples with 3......, multiple-trait predictions of lactation yields, and Bayesian approaches integrating external information into genetic evaluations) need to alter both the mean and (co)variance of the prior distributions and, to our knowledge, most software packages available in the animal breeding community do not permit...... different software packages available in animal breeding. The examples showed the possibility of the proposed method to alter both the mean and (co)variance of the prior distributions with currently available software packages through the use of an extended data file and a user-supplied (co)variance matrix....
International Nuclear Information System (INIS)
Lim, Jong Hyeuk; Kim, Kyong Nam; Park, Jung Kyun; Yeom, Geun Young
2008-01-01
This study examined the effect of the antenna capacitance of an inductively coupled plasma (ICP) source, which was varied using an internal linear antenna, on the electrical and plasma characteristics of the ICP source. The inductive coupling at a given rf current increased with decreasing antenna capacitance. This was caused by a decrease in the inner copper diameter of the antenna made from coaxial copper/quartz tubing, which resulted in a higher plasma density and lower plasma potential. By decreasing the diameter of the copper tube from 25 to 10 mm, the plasma density of a plasma source size of 2750x2350 mm 2 was increased from approximately 8x10 10 /cm 3 to 1.5x10 11 /cm 3 at 15 mTorr Ar and 9 kW of rf power
Solvent effects in ionic liquids: empirical linear energy-density relationships.
Cerda-Monje, A; Aizman, A; Tapia, R A; Chiappe, C; Contreras, R
2012-07-28
Multiparameter linear energy-density relationships to model solvent effects in room temperature ionic liquids (RTILs) are introduced and tested. The model incorporates two solvent dependent and two specific solute-solvent parameters represented by a set of electronic indexes derived from the conceptual density functional theory. The specific solute-solvent interactions are described in terms of the electronic chemical potential for proton migration between the anion or cation and the transition state structure of a specific reaction. These indexes provide a quantitative estimation of the hydrogen bond (HB) acceptor basicity and the hydrogen bond donor acidity of the ionic solvent, respectively. A sound quantitative scale of HB strength is thereby obtained. The solvent dependent contributions are described by the global electrophilicity of the cation and nucleophilicity of the anion forming the ionic liquid. The model is illustrated for the kinetics of cycloaddition of cyclopentadiene towards acrolein. In general, cation HB acidity outweighs the remaining parameters for this reaction.
International Nuclear Information System (INIS)
Ricaud, J.M.; Masson, R.; Masson, R.
2009-01-01
The Laplace-Carson transform classically used for homogenization of linear viscoelastic heterogeneous media yields integral formulations of effective behaviours. These are far less convenient than internal variables formulations with respect to computational aspects as well as to theoretical extensions to closely related problems such as ageing viscoelasticity. Noticing that the collocation method is usually adopted to invert the Laplace-Carson transforms, we first remark that this approximation is equivalent to an internal variables formulation which is exact in some specific situations. This result is illustrated for a two-phase composite with phases obeying a compressible Maxwellian behaviour. Next, an incremental formulation allows to extend at each time step the previous general framework to ageing viscoelasticity. Finally, with the help of a creep test of a porous viscoelastic matrix reinforced with elastic inclusions, it is shown that the method yields accurate predictions (comparing to reference results provided by periodic cell finite element computations). (authors)
Adaptive Digital Predistortion Schemes to Linearize RF Power Amplifiers with Memory Effects
Institute of Scientific and Technical Information of China (English)
ZHANG Peng; WU Si-liang; ZHANG Qin
2008-01-01
To compensate for nonlinear distortion introduced by RF power amplifiers (PAs) with memory effects, two correlated models, namely an extended memory polynomial (EMP) model and a memory lookup table (LUT) model, are proposed for predistorter design. Two adaptive digital predistortion (ADPD) schemes with indirect learning architecture are presented. One adopts the EMP model and the recursive least square (RLS) algorithm, and the other utilizes the memory LUT model and the least mean square (LMS) algorithm. Simulation results demonstrate that the EMP-based ADPD yields the best linearization performance in terms of suppressing spectral regrowth. It is also shown that the ADPD based on memory LUT makes optimum tradeoff between performance and computational complexity.
Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media
Gallican, Valentin; Brenner, Renald; Suquet, Pierre
2017-11-01
This article addresses the asymptotic response of viscoelastic heterogeneous media in the frequency domain, at high and low frequencies, for different types of elementary linear viscoelastic constituents. By resorting to stationary principles for complex viscoelasticity and adopting a classification of the viscoelastic behaviours based on the nature of their asymptotic regimes, either elastic or viscous, four exact relations are obtained on the overall viscoelastic complex moduli in each case. Two relations are related to the asymptotic uncoupled heterogeneous problems, while the two remaining ones result from the viscoelastic coupling that manifests itself in the transient regime. These results also provide exact conditions on certain integrals in time of the effective relaxation spectrum. This general setting encompasses the results obtained in preceding studies on mixtures of Maxwell constituents [1,2]. xml:lang="fr"
Non-linear sputtering effects induced by MeV energy gold clusters
International Nuclear Information System (INIS)
Boussofiane-Baudin, K.; Brunelle, A.; Chaurand, P.; Della-Negra, S.; Depauw, J.; Le Beyec, Y.; Hakansson, P.
1993-09-01
Gold clusters Au n + with 1 < n ≤ 4, accelerated to MeV energies at the Orsay tandem accelerator, have been used to induce secondary ion emission from the surface of thin organic and inorganic films. A non-linear enhancement of the secondary ion yields is observed when cluster impacts are compared to single atom impacts at the same velocity. It has been shown that the collective effects propagate in the solid over a depth larger than 2000 A. The equilibrium charge state of cluster constituents after their passage through a thin carbon foil (1000 A) has been measured. The mean value for the cluster constituents is the same as for single atoms at the same velocity. (authors). 41 refs., 8 figs., 1 tab
International Nuclear Information System (INIS)
Aggarwal, Munish; Vij, Shivani; Kant, Niti
2015-01-01
The propagation of quadruple Gaussian laser beam in a plasma characterized by axial inhomogeneity and nonlinearity due to ponderomotive force in the paraxial ray approximation is investigated. An appropriate expression for the nonlinear dielectric constant has been developed in the presence of external magnetic field, with linear absorption and due to saturation effects for arbitrary large intensity. The effects of different types of plasma axial inhomogeneities on self-focusing of laser beam have been studied with the typical laser and plasma parameters. Self-focusing of quadruple Gaussian laser beam in the presence of externally applied magnetic field and saturating parameter is found significantly improved in the case of extraordinary mode. Our results reveal that initially converging beam shows oscillatory convergence whereas initially diverging beam shows oscillatory divergence. The beam is more focussed at lower intensity in both cases viz. extraordinary and ordinary mode. (paper)
Direct measurement of electron density in microdischarge at atmospheric pressure by Stark broadening
International Nuclear Information System (INIS)
Dong Lifang; Ran Junxia; Mao Zhiguo
2005-01-01
We present a method and results for measurement of electron density in atmospheric-pressure dielectric barrier discharge. The electron density of microdischarge in atmospheric pressure argon is measured by using the spectral line profile method. The asymmetrical deconvolution is used to obtain Stark broadening. The results show that the electron density in single filamentary microdischarge at atmospheric pressure argon is 3.05x10 15 cm -3 if the electron temperature is 10,000 K. The result is in good agreement with the simulation. The electron density in dielectric barrier discharge increases with the increase of applied voltage
Extremely short pulses via stark modulation of the atomic transition frequencies.
Radeonychev, Y V; Polovinkin, V A; Kocharovskaya, Olga
2010-10-29
We propose a universal method to produce extremely short pulses of electromagnetic radiation in various spectral ranges. The essence of the method is a resonant interaction of radiation with atoms under the conditions of adiabatic periodic modulation of atomic transition frequencies by a far-off-resonant control laser field via dynamic Stark shift of the atomic levels and proper adjustment of the control field intensity and frequency, as well as the optical depth of the medium. The potential of the method is illustrated by an example in a hydrogenlike atomic system.
Application of Stark Tuned Laser for Interferometry and Polarimetry in Plasmas
International Nuclear Information System (INIS)
H.K. Park; K.C. Lee; B. Deng; C.W. Domier; M. Johnson; B. Nathan; N.C. Luhmann, Jr.
2001-01-01
A Stark-tuned optically pumped far-infrared CH(subscript ''3'')OH laser at 119 mm has been successfully applied in the Far Infrared Tangential Interferometer/Polarimeter (FIReTIP) system for the National Spherical Torus Experiment (NSTX). The system will provide temporally and radially resolved 2-D electron density profile [n(subscript ''e'')(r,t)] and toroidal field profile [B(subscript ''T'')(r,t)] data. In the 2001 campaign, a single channel interferometer system has been operated and tested for the Faraday rotation measurement. A plan for improvement and upgrading of the FIReTIP is discussed
Quantum logic gates using Stark-shifted Raman transitions in a cavity
International Nuclear Information System (INIS)
Biswas, Asoka; Agarwal, G.S.
2004-01-01
We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and the controlled-NOT gate using a detuned optical cavity interacting with a three-level Raman system. We discuss the role of Stark shifts, which are as important as the terms leading to the two-photon transition. The operation of the proposed logic gates involves metastable states of the atom and hence is not affected by spontaneous emission. These ideas can be extended to produce multiparticle entanglement
Effects of Linear-Polarized Near-Infrared Light Irradiation on Chronic Pain
Directory of Open Access Journals (Sweden)
Dong Huang
2012-01-01
Full Text Available In order to study the efficacy of linear-polarized near-infrared light irradiation (LPNIR on relieving chronic pain in conjunction with nerve block (NB or local block (LB, a 3-week prospective, randomized, double-blind, controlled study was conducted to evaluate the pre- and post-therapy pain intensity. Visual analogue scales (VASs were measured in all patients before and 6 months after therapy visiting the pain clinic during the period of August 2007 to January 2008. A total of 52 patients with either shoulder periarthritis or myofascial pain syndrome or lateral epicondylitis were randomly assigned into two groups by drawing lots. Patients in Group I were treated with NB or LB plus LPNIR; Group II patients, for their part, were treated with the same procedures as in Group I, but not using LPNIR. In both groups, the pain intensity (VAS score decreased significantly immediately after therapy as compared to therapy. There was a significant difference between the test and control groups immediately after therapy (P<0.05, while no effect 6 months later. No side effects were observed. It is concluded that LPNIR is an effective and safe modality to treat various chronic pains, which has synergic effects with NB or LB.
Integrating genomics and proteomics data to predict drug effects using binary linear programming.
Ji, Zhiwei; Su, Jing; Liu, Chenglin; Wang, Hongyan; Huang, Deshuang; Zhou, Xiaobo
2014-01-01
The Library of Integrated Network-Based Cellular Signatures (LINCS) project aims to create a network-based understanding of biology by cataloging changes in gene expression and signal transduction that occur when cells are exposed to a variety of perturbations. It is helpful for understanding cell pathways and facilitating drug discovery. Here, we developed a novel approach to infer cell-specific pathways and identify a compound's effects using gene expression and phosphoproteomics data under treatments with different compounds. Gene expression data were employed to infer potential targets of compounds and create a generic pathway map. Binary linear programming (BLP) was then developed to optimize the generic pathway topology based on the mid-stage signaling response of phosphorylation. To demonstrate effectiveness of this approach, we built a generic pathway map for the MCF7 breast cancer cell line and inferred the cell-specific pathways by BLP. The first group of 11 compounds was utilized to optimize the generic pathways, and then 4 compounds were used to identify effects based on the inferred cell-specific pathways. Cross-validation indicated that the cell-specific pathways reliably predicted a compound's effects. Finally, we applied BLP to re-optimize the cell-specific pathways to predict the effects of 4 compounds (trichostatin A, MS-275, staurosporine, and digoxigenin) according to compound-induced topological alterations. Trichostatin A and MS-275 (both HDAC inhibitors) inhibited the downstream pathway of HDAC1 and caused cell growth arrest via activation of p53 and p21; the effects of digoxigenin were totally opposite. Staurosporine blocked the cell cycle via p53 and p21, but also promoted cell growth via activated HDAC1 and its downstream pathway. Our approach was also applied to the PC3 prostate cancer cell line, and the cross-validation analysis showed very good accuracy in predicting effects of 4 compounds. In summary, our computational model can be
International Nuclear Information System (INIS)
Lee, Steve P.; Leu, Min Y.; Smathers, James B.; McBride, William H.; Parker, Robert G.; Withers, H. Rodney
1995-01-01
Purpose: Radiotherapy plans based on physical dose distributions do not necessarily entirely reflect the biological effects under various fractionation schemes. Over the past decade, the linear-quadratic (LQ) model has emerged as a convenient tool to quantify biological effects for radiotherapy. In this work, we set out to construct a mechanism to display biologically oriented dose distribution based on the LQ model. Methods and Materials: A computer program that converts a physical dose distribution calculated by a commercially available treatment planning system to a biologically effective dose (BED) distribution has been developed and verified against theoretical calculations. This software accepts a user's input of biological parameters for each structure of interest (linear and quadratic dose-response and repopulation kinetic parameters), as well as treatment scheme factors (number of fractions, fractional dose, and treatment time). It then presents a two-dimensional BED display in conjunction with anatomical structures. Furthermore, to facilitate clinicians' intuitive comparison with conventional fractionation regimen, a conversion of BED to normalized isoeffective dose (NID) is also allowed. Results: Two sample cases serve to illustrate the application of our tool in clinical practice. (a) For an orthogonal wedged pair of x-ray beams treating a maxillary sinus tumor, the biological effect at the ipsilateral mandible can be quantified, thus illustrates the so-called 'double-trouble' effects very well. (b) For a typical four-field, evenly weighted prostate treatment using 10 MV x-rays, physical dosimetry predicts a comparable dose at the femoral necks between an alternate two-fields/day and four-fields/day schups. However, our BED display reveals an approximate 21% higher BED for the two-fields/day scheme. This excessive dose to the femoral necks can be eliminated if the treatment is delivered with a 3:2 (anterio-posterior/posterio-anterior (AP
Effective temperatures, angular diameters, distances and linear radii for 160 O and B stars
International Nuclear Information System (INIS)
Underhill, A.B.; Divan, L.; Prevot-Burnichon, M.L.; Doazan, V.
1979-01-01
The significance is explained of the effective temperatures, angular diameters, distances and linear diameters which have been found from published ultraviolet spectrophotometry, visible and near infrared intermediate-band photometry and model-atmosphere fluxes for 160 O and B stars using a method which is fully explained and evaluated in the full paper which is reproduced on Microfiche MN 189/1. An appendix to the full paper presents BCD spectrophotometry for 77 of the program stars. The angular diameters are systematically the same as those measured previously, and the flux effective temperatures of the main-sequence and giant stars reproduce well the relationship established by other authors, for main-sequence and giant O and B stars. The O8 - B9 supergiants have systematically lower temperatures than do main-sequence stars of the same subtype. The Beta Cephei stars and most Be stars have the same effective temperature as normal stars of the same spectral type. The radii of O and B stars increase from main-sequence to supergiant. The late B supergiants are about twice as large as the O9 supergiants. (author)
Matrix effect study in the determination of linear alkylbenzene sulfonates in sewage sludge samples.
Cantarero, Samuel; Zafra-Gómez, Alberto; Ballesteros, Oscar; Navalón, Alberto; Vílchez, José L; Verge, Coral; De Ferrer, Juan A
2011-04-01
We propose a study of the matrix effect in the determination of linear alkylbenzene sulfonates (LAS) in sewage sludge samples. First, a rapid, selective and sensitive method is proposed. The method involves two stages: the extraction of the compound from the samples and analysis by liquid chromatography with fluorescence detection (LC-FLD). Three different techniques of extraction (microwave-assisted extraction, Soxhlet, and ultrasounds) were compared, and microwave-assisted extraction was selected as the best suited for our purpose. Microwave-assisted extraction allows reducing the extraction time (25 min compared with 12 h for conventional Soxhlet extraction) and solvent waste (25 ml of methanol compared with 200 ml for Soxhlet or more than 50 ml for the ultrasonic procedure). Absence of matrix effect was evaluated with two standards (2ØC(8:0) and 2ØC(16:0) ) that are not commercial; therefore, neither of them was detected in sewage sludge samples and they showed similar environmental behavior (adsorption and precipitation) to LAS (C(11:0) -C(13.0) ), which allow us to evaluate the matrix effect. Validation was carried out by a recovery assay, and the method was applied to samples from different sources; therefore, they had different compositions. Copyright © 2011 SETAC.
On the theory of the two-photon linear photovoltaic effect in n-GaP
Energy Technology Data Exchange (ETDEWEB)
Rasulov, V. R.; Rasulov, R. Ya., E-mail: r-rasulov51@mail.ru [Fergana State University (Uzbekistan)
2016-02-15
A quantitative theory of the diagonal (ballistic) and nondiagonal (shift) band index contributions to the two-photon current of the linear photovoltaic effect in a semiconductor with a complex band due to the asymmetry of events of electron scattering at phonons and photons is developed. It is shown that processes caused by the simultaneous absorption of two photons do not contribute to the ballistic photocurrent in n-GaP. This is due to the fact that, in this case, there is no asymmetric distribution of the momentum of electrons excited with photons; this distribution arises upon the sequential absorption of two photons with the involvement of LO phonons. It is demonstrated that the temperature dependence of the shift contribution to the two-photon photocurrent in n-GaP is determined by the temperature dependence of the light-absorption coefficient caused by direct optical transitions of electrons between subbands X{sub 1} and X{sub 3}. It is shown that the spectral dependence of the photocurrent has a feature in the light frequency range ω → Δ/2ℏ, which is related to the hump-like shape of subband X{sub 1} in n-GaP{sup 1} and the root-type singularity of the state density determined as k{sub ω}{sup -1}= (2ℏω–Δ){sup –1/2}, where Δ is the energy gap between subbands X{sub 1} and X{sub 3}. The spectral and temperature dependences of the coefficient of absorption of linearly polarized light in n-GaP are obtained with regard to the cone-shaped lower subband of the conduction band.
Stark broadening in the laser-induced Cu I and Cu II spectra
International Nuclear Information System (INIS)
Skočić, M; Burger, M; Nikolić, Z; Bukvić, S; Djeniže, S
2013-01-01
In this work we present the Stark widths (W) of 22 neutral (Cu I) and 100 singly ionized (Cu II) copper spectral lines that have been measured at 18 400 K and 19 300 K electron temperatures and 6.3 × 10 22 m −3 and 2.1 × 10 23 m −3 electron densities, respectively. The experiment is conducted in the laser-induced plasma—the Nd:YAG laser, operating at 532 nm, was used to produce plasma from the copper sample in the residual air atmosphere at a pressure of 8 Pa. The electron temperature and density were estimated by the Boltzmann-plot method and from the Saha equation. The investigated Cu I lines belong to the 4s–4p′, 4s 2 –4p″ and 4p′–4d′ transitions while Cu II spectral lines belong to the 4s–4p, 4p–5s, 4p–4d, 4p–4s 2 , 4d–4f and 4d–v transitions. Comparison with existing experimental data was possible only in the case of 17 Cu II lines due to a lack of experimental and theoretical values. The rest of the data, Stark widths of 22 Cu I and 83 Cu II lines are published for the first time. (paper)
Plasma density characterization at SPARC-LAB through Stark broadening of Hydrogen spectral lines
International Nuclear Information System (INIS)
Filippi, F.; Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2016-01-01
Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC-LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC-LAB is presented. - Highlights: • Stark broadening of Hydrogen lines has been measured to determine plasma density. • Plasma density diagnostic tool for plasma-based experiments at SPARC-LAB is presented. • Plasma density in tapered laser triggered ablative capillary discharge was measured. • Results of plasma density measurements in ablative capillaries are shown.
Plasma density characterization at SPARC-LAB through Stark broadening of Hydrogen spectral lines
Energy Technology Data Exchange (ETDEWEB)
Filippi, F., E-mail: francesco.filippi@roma1.infn.it [Dipartimento di Scienze di Base e Applicate per l' Ingegneria (SBAI), ‘Sapienza’ Università di Roma, Via A. Scarpa 14-16, 00161 Roma (Italy); INFN-Roma1, Piazzale Aldo Moro, 2 00161 Roma (Italy); Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Cianchi, A. [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Di Giovenale, D.; Di Pirro, G.; Ferrario, M. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Mostacci, A.; Palumbo, L. [Dipartimento di Scienze di Base e Applicate per l' Ingegneria (SBAI), ‘Sapienza’ Università di Roma, Via A. Scarpa 14-16, 00161 Roma (Italy); INFN-Roma1, Piazzale Aldo Moro, 2 00161 Roma (Italy); Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Zigler, A. [Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
2016-09-01
Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC-LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC-LAB is presented. - Highlights: • Stark broadening of Hydrogen lines has been measured to determine plasma density. • Plasma density diagnostic tool for plasma-based experiments at SPARC-LAB is presented. • Plasma density in tapered laser triggered ablative capillary discharge was measured. • Results of plasma density measurements in ablative capillaries are shown.
Optimal beam sources for Stark decelerators in collision experiments: a tutorial review
International Nuclear Information System (INIS)
Vogels, Sjoerd N.; Gao, Zhi; Meerakker, Sebastiaan Y.T. van de
2015-01-01
With the Stark deceleration technique, packets of molecules with a tunable velocity, a narrow velocity spread, and a high state purity can be produced. These tamed molecular beams find applications in high resolution spectroscopy, cold molecule trapping, and controlled scattering experiments. The quality and purity of the packets of molecules emerging from the decelerator critically depend on the specifications of the decelerator, but also on the characteristics of the molecular beam pulse with which the decelerator is loaded. We consider three frequently used molecular beam sources, and discuss their suitability for molecular beam deceleration experiments, in particular with the application in crossed beam scattering in mind. The performance of two valves in particular, the Nijmegen Pulsed Valve and the Jordan Valve, is illustrated by decelerating ND 3 molecules in a 2.6 meter-long Stark decelerator. We describe a protocol to characterize the valve, and to optimally load the pulse of molecules into the decelerator. We characterize the valves regarding opening time duration, optimal valve-to-skimmer distance, mean velocity, velocity spread, state purity, and relative intensity. (orig.)
Seenithurai, Sonai; Chai, Jeng-Da
2017-01-01
Accurate prediction of the electronic and hydrogen storage properties of linear carbon chains (C n ) and Li-terminated linear carbon chains (Li2C n ), with n carbon atoms (n?=?5?10), has been very challenging for traditional electronic structure methods, due to the presence of strong static correlation effects. To meet the challenge, we study these properties using our newly developed thermally-assisted-occupation density functional theory (TAO-DFT), a very efficient electronic structure meth...
Baghshahi, H. R.; Tavassoly, M. K.; Faghihi, M. J.
2014-12-01
An entangled state, as an essential tool in quantum information processing, may be generated through the interaction between light and matter in cavity quantum electrodynamics. In this paper, we study the interaction between two two-level atoms and a two-mode field in an optical cavity enclosed by a medium with Kerr nonlinearity in the presence of a detuning parameter and Stark effect. It is assumed that the atom-field coupling and third-order susceptibility of the Kerr medium depend on the intensity of the light. In order to investigate the dynamics of the introduced system, we obtain the exact analytical form of the state vector of the considered atom-field system under initial conditions which may be prepared for the atoms (in a coherent superposition of their ground and upper states) and the fields (in a standard coherent state). Then, in order to evaluate the degree of entanglement between the subsystems, we investigate the dynamics of the entanglement by employing the entanglement of formation. Finally, we analyze in detail the influences of the Stark shift, the deformed Kerr medium, the intensity-dependent coupling, and also the detuning parameter on the behavior of this measure for different subsystems. The numerical results show that the amount of entanglement between the different subsystems can be controlled by choosing the evolved parameters appropriately.
International Nuclear Information System (INIS)
Baghshahi, H R; Tavassoly, M K; Faghihi, M J
2014-01-01
An entangled state, as an essential tool in quantum information processing, may be generated through the interaction between light and matter in cavity quantum electrodynamics. In this paper, we study the interaction between two two-level atoms and a two-mode field in an optical cavity enclosed by a medium with Kerr nonlinearity in the presence of a detuning parameter and Stark effect. It is assumed that the atom–field coupling and third-order susceptibility of the Kerr medium depend on the intensity of the light. In order to investigate the dynamics of the introduced system, we obtain the exact analytical form of the state vector of the considered atom–field system under initial conditions which may be prepared for the atoms (in a coherent superposition of their ground and upper states) and the fields (in a standard coherent state). Then, in order to evaluate the degree of entanglement between the subsystems, we investigate the dynamics of the entanglement by employing the entanglement of formation. Finally, we analyze in detail the influences of the Stark shift, the deformed Kerr medium, the intensity-dependent coupling, and also the detuning parameter on the behavior of this measure for different subsystems. The numerical results show that the amount of entanglement between the different subsystems can be controlled by choosing the evolved parameters appropriately. (paper)
Contacts, non-linear transport effects and failure in multi-walled carbon nanotubes
International Nuclear Information System (INIS)
Berger, C; Yi, Y; Gezo, J; Poncharal, P; Heer, W A de
2003-01-01
Pristine arc-produced multi-walled carbon nanotubes are contacted to liquid mercury in situ in a transmission electron microscope. The conductance G(V) for all tubes increases with increasing bias voltage V. This is related to the electronic density of the nanotubes. Similar G(V) behaviour is observed for HOPG-graphite contacted in air with Hg, with dG(V)/dV∼0.3G 0 . Variations observed in the conductance are related to nanotube-Hg contact effects. For tubes barely touching the Hg surface, the conductance is low (typically G(V=0)∼0.1-0.5G 0 ); G(V) may maximize around V=1.5-2 V or continue to increase linearly depending on the MWNT-Hg contact. For good contacts the maximum low-bias conductance is 1G 0 . Non-conducting tubes are observed having a low-bias conductance smaller than 10 -3 G 0 . High-voltage tube failure usually occurs at the contact with Hg for clean tubes, or at tube defects. An important phenomenon is the formation of a Hg bubble near the contact nanotube-Hg surface when the nanotube is negatively biased, under high bias current conditions, indicating the heating effect of hot electrons injected into the mercury
Mathematical modeling of laser linear thermal effects on the anterior layer of the human eye
Rahbar, Sahar; Shokooh-Saremi, Mehrdad
2018-02-01
In this paper, mathematical analysis of thermal effects of excimer lasers on the anterior side of the human eye is presented, where linear effect of absorption by the human eye is considered. To this end, Argon Fluoride (ArF) and Holmium:Yttrium-Aluminum-Garent (Ho:YAG) lasers are utilized in this investigation. A three-dimensional model of the human eye with actual dimensions is employed and finite element method (FEM) is utilized to numerically solve the governing (Penne) heat transfer equation. The simulation results suggest the corneal temperature of 263 °C and 83.4 °C for ArF and Ho:YAG laser radiations, respectively, and show less heat penetration depth in comparison to the previous reports. Moreover, the heat transfer equation is solved semi-analytically in one-dimension. It is shown that the exploited simulation results are also consistent with those derived from the semi-analytical solution of the Penne heat transfer equation for both types of laser radiations.
Effects of rf breakdown on the beam in the Compact Linear Collider prototype accelerator structure
Directory of Open Access Journals (Sweden)
A. Palaia
2013-08-01
Full Text Available Understanding the effects of rf breakdown in high-gradient accelerator structures on the accelerated beam is an extremely relevant aspect in the development of the Compact Linear Collider (CLIC and is one of the main issues addressed at the Two-beam Test Stand at the CLIC Test Facility 3 at CERN. During a rf breakdown high currents are generated causing parasitic magnetic fields that interact with the accelerated beam affecting its orbit. The beam energy is also affected because the power is partly reflected and partly absorbed thus reducing the available energy to accelerate the beam. We discuss here measurements of such effects observed on an electron beam accelerated in a CLIC prototype structure. Measurements of the trajectory of bunch trains on a nanosecond time scale showed fast changes in correspondence of breakdown that we compare with measurements of the relative beam spots on a scintillating screen. We identify different breakdown scenarios for which we offer an explanation based also on measurements of the power at the input and output ports of the accelerator structure. Finally we present the distribution of the magnitude of the observed changes in the beam position and we discuss its correlation with rf power and breakdown location in the accelerator structure.
The effects of an inserted linear carbon chain on the vibration of a carbon nanotube
International Nuclear Information System (INIS)
Hu, Z L; Guo, X M; Ru, C Q
2007-01-01
An elastic string-elastic shell model is developed to study the coupled vibration of a carbon nanowire made of a linear carbon chain (C-chain) inserted inside a carbon nanotube (CNT). It is shown that the vibration of the inserted C-chain is coupled with vibration of the CNT only for vibration modes with circumferential wavenumber n = 1. In other cases, such as axisymmetric modes (n = 0) or higher-order vibration modes with n≥2, total resultant van der Waals (vdW) force acting on the C-chain due to the innermost tube always vanishes, and therefore vibration of the CNT does not cause vibration of the inserted C-chain, although the existence of the C-chain does have an effect on the vibration of the CNT through the chain-CNT vdW forces acting on the innermost tube. The present model predicts that non-coaxial vibration between the C-chain and the innermost tube does not occur due to negligible bending rigidity of the C-chain. In addition, it is found that the C-chain has most significant effect on the lowest frequency associated with the radial vibration mode for circumferential wavenumber 2 (n = 2). In particular, the effect of the C-chain on the axisymmetric radial breathing frequencies (n = 0) predicted by the present model is found to be in reasonable agreement with known experimental and modeling results available in the literature. The present work offers systematic modeling results on the effects of an inserted C-chain on the vibration of CNTs
Focal spot motion of linear accelerators and its effect on portal image analysis
Sonke, Jan-Jakob; Brand, Bob; van Herk, Marcel
2003-01-01
The focal spot of a linear accelerator is often considered to have a fully stable position. In practice, however, the beam control loop of a linear accelerator needs to stabilize after the beam is turned on. As a result, some motion of the focal spot might occur during the start-up phase of
The effect of dendrimer charge inversion in complexes with linear polyelectrolytes
Lyulin, S.V.; Lyulin, A.V.; Darinskii, A.A.; Emri, I.
2005-01-01
The structure of complexes formed by charged dendrimers and oppositely charged linear chains with a charge of at least the same as that of dendrimers was studied by computer simulation using the Brownian dynamics method. The freely jointed, free-draining model of the dendrimer and the linear chain
Denison, Marie F. C.
The reduction of drag and aerodynamic heating caused by boundary layer transition is of central interest for the development of hypersonic vehicles. Receptivity to flow perturbation in the form of Tollmien-Schlichting (TS) wave growth often determines the first stage of the transition process, which can be delayed by depositing specific excitations into the boundary layer. Weakly ionized Dielectric Barrier Discharge (DBD) actuators are being investigated as possible sources of such excitations, but little is known today about their interaction with high-speed flows. In this framework, the first part of the thesis is dedicated to a receptivity study of laminar compressible boundary layers over a flat plate by linear stability analysis following an adjoint operator formulation, under DBD representative excitations assumed independent of flow conditions. The second part of the work concentrates on the development of a coupled plasma-Navier and Stokes solver targeted at the study of supersonic flow and compressibility effects on DBD forcing and non-parallel receptivity. The linear receptivity study of quasi-parallel compressible flows reveals several interesting features such as a significant shift of the region of maximum receptivity deeper into the flow at high Mach number and strong wave amplitude reduction compared to incompressible flows. The response to DBD relevant excitation distributions and to variations of the base flow conditions and system length scales follows these trends. Observed absolute amplitude changes and relative sensitivity modifications between source types are related to the evolution of the offset between forcing peak profile and relevant adjoint mode maximum. The analysis highlights the crucial importance of designing and placing the actuator in a way that matches its force field to the position of maximum boundary layer receptivity for the specific flow conditions of interest. In order to address the broad time and length scale spectrum
Demura, S; Yamaji, S; Ikemoto, Y
2002-12-01
There is a possibility that heat stimulus by linear polarized near-infrared light irradiation (PL: Super Lizer HA-30, Tokyo Medical Laboratory) improves the range of joint motion, because the flexibility of soft-part tissues, such as a muscle or a tendon, is improved by increasing the muscle temperature. The purpose of this study was to examine the influence of PL-irradiation on the ranges of shoulder and ankle motions. 30 healthy young adults (15 males: mean+/-SD, age 19.1+/-0.8 yrs, height 173.3+/-4.6 cm, body mass 68.5+/-8.0 kg and 15 females: mean+/-SD, age 19.2+/-0.7 yrs, height 162.3+/-4.5 cm, body mass 58.1+/-6.6 kg) participated in the experiment under PL-irradiation and no-irradiation (placebo) conditions. the angles of shoulder and ankle joint motions were measured twice, before and after the PL- and placebo-irradiations. The angle of a motion was defined as the angle connecting 3 points at linearity as follows: for the shoulder, the greater trochanter, acromion, and caput ulnare, and for the ankle, the knee joint, fassa of lateral malleolus and metacarpal bone. Each angle was measured when a subject extended or flexed maximally without support. The trial-to-trial reliability of each range of joint motion was very high. All parameters in PL-irradiation were significantly larger in postirradiation than pre-irradiation, and the value of postirradiation in PL-irradiation was significantly greater than that for placebo. The ranges of shoulder and ankle motions in placebo-irradiation were also significantly greater in postirradiation than pre-irradiation. Moreover, the change rate for each range of joint motion between pre- and postirradiations was significantly greater in PL-irradiation in both joints. In PL-irradiation, most subject's motions were greater in postirradiation than pre-irradiation, but not in the placebo-irradiation. The effect of PL-irradiation tended to be greater on subjects with a small range of a joint motion. It is considered from the
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
International Nuclear Information System (INIS)
Karimi, M.J.; Rezaei, G.; Nazari, M.
2014-01-01
Based on the effective mass and parabolic one band approximations, simultaneous effects of the geometrical size, hydrogenic impurity, hydrostatic pressure, and temperature on the intersubband optical absorption coefficients and refractive index changes in multilayered spherical quantum dots are studied. Energy eigenvalues and eigenvectors are calculated using the fourth-order Runge–Kutta method and optical properties are obtained using the compact density matrix approach. The results indicate that the hydrogenic impurity, hydrostatic pressure, temperature and geometrical parameters such as the well and barrier widths have a great influence on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes. -- Highlights: • Hydrogenic impurity effects on the optical properties of a MSQD are investigated. • Hydrostatic pressure and temperature effects are also studied. • Hydrogenic impurity has a great influence on the linear and nonlinear ACs and RICs. • Hydrostatic pressure and temperature change the linear and nonlinear ACs and RICs
International Nuclear Information System (INIS)
Hunter, Nezahat; Muirhead, Colin R
2009-01-01
Information on Japanese A-bomb survivors exposed to gamma radiation has been used to estimate cancer risks for the whole range of photon (x-rays) and electron energies which are commonly encountered by radiation workers in the work place or by patients and workers in diagnostic radiology. However, there is some uncertainty regarding the radiation effectiveness of various low-linear energy transfer (low-LET) radiations (x-rays, gamma radiation and electrons). In this paper we review information on the effectiveness of low-LET radiations on the basis of epidemiological and in vitro radiobiological studies. Data from various experimental studies for chromosome aberrations and cell transformation in human lymphocytes and from epidemiological studies of the Japanese A-bomb survivors, patients medically exposed to radiation for diagnostic and therapeutic procedures, and occupational exposures of nuclear workers are considered. On the basis of in vitro cellular radiobiology, there is considerable evidence that the relative biological effectiveness (RBE) of high-energy low-LET radiation (gamma radiation, electrons) is less than that of low-energy low-LET radiation (x-rays, betas). This is a factor of about 3 to 4 for 29 kVp x-rays (e.g. as in diagnostic radiation exposures of the female breast) and for tritium beta-rays (encountered in parts of the nuclear industry) relative to Co-60 gamma radiation and 2-5 MeV gamma-rays (as received by the Japanese A-bomb survivors). In epidemiological studies, although for thyroid and breast cancer there appears to be a small tendency for the excess relative risks to decrease as the radiation energy increases for low-LET radiations, it is not statistically feasible to draw any conclusion regarding an underlying dependence of cancer risk on LET for the nominally low-LET radiations. (review)
Linear-quadratic model underestimates sparing effect of small doses per fraction in rat spinal cord
International Nuclear Information System (INIS)
Shun Wong, C.; Toronto University; Minkin, S.; Hill, R.P.; Toronto University
1993-01-01
The application of the linear-quadratic (LQ) model to describe iso-effective fractionation schedules for dose fraction sizes less than 2 Gy has been controversial. Experiments are described in which the effect of daily fractionated irradiation given with a wide range of fraction sizes was assessed in rat cervical spine cord. The first group of rats was given doses in 1, 2, 4, 8 and 40 fractions/day. The second group received 3 initial 'top-up'doses of 9 Gy given once daily, representing 3/4 tolerance, followed by doses in 1, 2, 10, 20, 30 and 40 fractions/day. The fractionated portion of the irradiation schedule therefore constituted only the final quarter of the tolerance dose. The endpoint of the experiments was paralysis of forelimbs secondary to white matter necrosis. Direct analysis of data from experiments with full course fractionation up to 40 fractions/day (25.0-1.98 Gy/fraction) indicated consistency with the LQ model yielding an α/β value of 2.41 Gy. Analysis of data from experiments in which the 3 'top-up' doses were followed by up to 10 fractions (10.0-1.64 Gy/fraction) gave an α/β value of 3.41 Gy. However, data from 'top-up' experiments with 20, 30 and 40 fractions (1.60-0.55 Gy/fraction) were inconsistent with LQ model and gave a very small α/β of 0.48 Gy. It is concluded that LQ model based on data from large doses/fraction underestimates the sparing effect of small doses/fraction, provided sufficient time is allowed between each fraction for repair of sublethal damage. (author). 28 refs., 5 figs., 1 tab
Honjo, Keita; Shiraki, Hiroto; Ashina, Shuichi
2018-01-01
After the severe nuclear disaster in Fukushima, which was triggered by the Great East Japan earthquake in March 2011, nuclear power plants in Japan were temporarily shut down for mandatory inspections. To prevent large-scale blackouts, the Japanese government requested companies and households to reduce electricity consumption in summer and winter. It is reported that the domestic electricity demand had a structural decrease because of the electricity conservation effect (ECE). However, quantitative analysis of the ECE is not sufficient, and especially time variation of the ECE remains unclear. Understanding the ECE is important because Japan's NDC (nationally determined contribution) assumes the reduction of CO2 emissions through aggressive energy conservation. In this study, we develop a time series model of monthly electricity demand in Japan and estimate time variation of the ECE. Moreover, we evaluate the impact of electricity conservation on CO2 emissions from power plants. The dynamic linear model is used to separate the ECE from the effects of other irrelevant factors (e.g. air temperature, economic production, and electricity price). Our result clearly shows that consumers' electricity conservation behavior after the earthquake was not temporary but became established as a habit. Between March 2011 and March 2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4%, and the ECE on residential electricity demand ranged from 1.6% to 7.6%. The ECE on the total electricity demand was estimated at 3.2%-6.0%. We found a seasonal pattern that the residential ECE in summer is higher than that in winter. The emissions increase from the shutdown of nuclear power plants was mitigated by electricity conservation. The emissions reduction effect was estimated at 0.82 MtCO2-2.26 MtCO2 (-4.5% on average compared to the zero-ECE case). The time-varying ECE is necessary for predicting Japan's electricity demand and CO2 emissions after the earthquake.
The Non-Linear Effect of Chinese Financial Developments on Energy Supply Structures
Directory of Open Access Journals (Sweden)
Jian Chai
2016-10-01
Full Text Available Currently, oversupply coal and coal-based power in China poses a great challenge to energy structure optimization and emissions reduction. The energy industry, however, is closely linked to the financial sector. In view of this, using a non-linear Panel Smooth Transition Regression (PSTR model, this paper examines the threshold effects of financial developments on energy supply structures for 17 energy supply provinces in China observed over 2000–2014. The main results are: (1 The ratio of coal supply (LCSR specification is seen to be a four-regime PSTR model with added value in the financial industry/GDP (LFIR as the threshold variable. The LFIR and LCSR show a positive correlation, and the elastic coefficients change between 0.02 and ~0.085; the impact of financial institutions’ loan balance/GDP (LLAN on LCSR takes on an inverse U-shaped curve: first positive, then negative, and again positive with the financial crisis in 2008 as the turning point; (2 The ratio of thermal power generation (LTPG specification is seen to be a two-regime PSTR model with investment in the coal industry/GDP (LCIR as the threshold variable. Results show that LFIR has a negative effect on LTPG, and the coefficients in the low regime tend to be 0.344%, then gradually decrease to 0.051% in the high regime. The influence of LLAN on the LTPG is positive before and negative after the financial crisis. The influence of the foreign direct investment GDP proportion (LFDI, the degree of financial openness on the LCSR and LTPG both remain negative. Therefore, in the process of formulating energy conservation policies and adjusting energy-intensive industrial structures, the government should fully consider the effect of financial developments.
International Nuclear Information System (INIS)
Ciocca, Mario; Cantone, Marie-Claire; Veronese, Ivan; Cattani, Federica; Pedroli, Guido; Molinelli, Silvia; Vitolo, Viviana; Orecchia, Roberto
2012-01-01
Purpose: Failure mode and effects analysis (FMEA) represents a prospective approach for risk assessment. A multidisciplinary working group of the Italian Association for Medical Physics applied FMEA to electron beam intraoperative radiation therapy (IORT) delivered using mobile linear accelerators, aiming at preventing accidental exposures to the patient. Methods and Materials: FMEA was applied to the IORT process, for the stages of the treatment delivery and verification, and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, based on the product of three parameters (severity, frequency of occurrence and detectability, each ranging from 1 to 10); 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results: Twenty-four subprocesses were identified. Ten potential failure modes were found and scored, in terms of RPN, in the range of 42–216. The most critical failure modes consisted of internal shield misalignment, wrong Monitor Unit calculation and incorrect data entry at treatment console. Potential causes of failure included shield displacement, human errors, such as underestimation of CTV extension, mainly because of lack of adequate training and time pressures, failure in the communication between operators, and machine malfunctioning. The main effects of failure were represented by CTV underdose, wrong dose distribution and/or delivery, unintended normal tissue irradiation. As additional safety measures, the utilization of a dedicated staff for IORT, double-checking of MU calculation and data entry and finally implementation of in vivo dosimetry were suggested. Conclusions: FMEA appeared as a useful tool for prospective evaluation of patient safety in radiotherapy
Lizotte, R E; Wong, D C; Dorn, P B; Rodgers, J H
1999-11-01
Effects of a homologous series of three primarily linear alcohol ethoxylate surfactants were studied in laboratory flow-through 28-day early-life-stage tests with fathead minnow (Pimephales promelas Rafinesque). Surfactants were a C(9-11), C(12-13), and C(14-15) with an average of 6, 6.5, and 7 ethylene oxide units per mole of alcohol, respectively. Average measured surfactant recoveries were 103%, 81%, and 79% of nominal concentrations for the C(9-11) EO 6, C(12-13) EO 6.5, and C(14-15) EO 7 studies, respectively. Embryo survival at 48 h was not adversely affected at any of the concentrations tested. Impaired hatching and deformed fry were observed only in the C(12-13) EO 6.5 study. The 28-day LC50 values were 4.87, 2.39, and 1.02 mg/L for the C(9-11) EO 6, C(12-13) EO 6.5, and C(14-15) EO 7 surfactants, respectively. The corresponding NOECs for survival were 1.01, 1.76, and 0.74 mg/L. Posthatch fry growth was more sensitive than survival for the C(12-13) EO 6.5 and C(14-15) EO 7 surfactants. Survival of posthatch fry decreased with increasing surfactant alkyl chain length. Twenty-eight-day laboratory data were compared to 96-h laboratory, 10-day laboratory and 30-day stream mesocosm data for fathead minnow previously determined for these surfactants. Survival endpoints from the different exposures were comparable and only varied within a factor of two. Similarity of results suggests that it is possible to effectively use 96-h, 10-day, or 28-day laboratory data to predict environmental effects concentrations of these surfactants for fish. http://link.springer-ny. com/link/service/journals/00244/bibs/37n4p536.html
The effect of Moidal non-linear blending function for dual-energy CT on CT image quality
International Nuclear Information System (INIS)
Zhang Fan; Yang Li
2011-01-01
Objective: To compare the difference between linear blending and non-linear blending function for dual-energy CT, and to evaluate the effect on CT image quality. Methods: The model was made of a piece of fresh pork liver inserted with 5 syringes containing various concentrations of iodine solutions (16.3, 26.4, 48.7, 74.6 and 112.3 HU). Linear blending images were automatically reformatted after the model was scanned in the dual-energy mode. Non-linear blending images were reformatted using the software of optimal contrast in Syngo workstation. Images were divided into 3 groups, including linear blending group, non-linear blending group and 120 kV group. Contrast noise ratio (CNR) were measured and calculated respectively in the 3 groups and the different figure of merit (FOM) values between the groups were compared using one-way ANOVA. Twenty patients scanned in the dual-energy mode were randomly selected and the SNR of their liver, renal cortex, spleen, pancreas and abdominal aorta were measured. The independent sample t test was used to compare the difference of signal to noise ratio (SNR) between linear blending group and non linear blending group. Two readers' agreement score and single-blind method were used to investigate the conspicuity difference between linear blending group and non linear blending group. Results: With models of different CT values, the FOM values in non-linear blending group were 20.65± 8.18, 11.40±4.25, 1.60±0.82, 2.40±1.13, 45.49±17.86. In 74.6 HU and 112.3 HU models, the differences of the FOM values observed among the three groups were statistically significant (P<0.05), which were 0.30±0.06 and 14.43±4.59 for linear blending group, and 0.22±0.05 and 15.31±5.16 for 120 kV group. And non-linear blending group had a better FOM value. The SNR of renal cortex and abdominal aorta were 19.2±5.1 and 36.5±13.9 for non-linear blending group, while they were 12.4±3.8 and 22.6±7.0 for linear blending group. There were statistically
Optimization of piezoelectric cantilever energy harvesters including non-linear effects
International Nuclear Information System (INIS)
Patel, R; McWilliam, S; Popov, A A
2014-01-01
This paper proposes a versatile non-linear model for predicting piezoelectric energy harvester performance. The presented model includes (i) material non-linearity, for both substrate and piezoelectric layers, and (ii) geometric non-linearity incorporated by assuming inextensibility and accurately representing beam curvature. The addition of a sub-model, which utilizes the transfer matrix method to predict eigenfrequencies and eigenvectors for segmented beams, allows for accurate optimization of piezoelectric layer coverage. A validation of the overall theoretical model is performed through experimental testing on both uniform and non-uniform samples manufactured in-house. For the harvester composition used in this work, the magnitude of material non-linearity exhibited by the piezoelectric layer is 35 times greater than that of the substrate layer. It is also observed that material non-linearity, responsible for reductions in resonant frequency with increases in base acceleration, is dominant over geometric non-linearity for standard piezoelectric harvesting devices. Finally, over the tested range, energy loss due to damping is found to increase in a quasi-linear fashion with base acceleration. During an optimization study on piezoelectric layer coverage, results from the developed model were compared with those from a linear model. Unbiased comparisons between harvesters were realized by using devices with identical natural frequencies—created by adjusting the device substrate thickness. Results from three studies, each with a different assumption on mechanical damping variations, are presented. Findings showed that, depending on damping variation, a non-linear model is essential for such optimization studies with each model predicting vastly differing optimum configurations. (paper)
Effects of new neutral currents at linear electron-positron colliders
International Nuclear Information System (INIS)
Pankov, A.A.
2002-01-01
Effects that are induced by contact four-fermion interactions in the processes e + e - → μ + μ - , b-barb, and c-barc at √(s) = 0.5 TeV linear electron-positron colliders are investigated for the case of longitudinally polarized initial beams. This analysis employs new integrated observables constructed from the polarized cross sections for the scattering of final fermions into the forward (σ F ) and the backward (σ B ) hemisphere in such a way that they single out the helicity cross sections for the processes in question. This property of the observables makes it possible to perform, in the most general form, a model-independent analysis of contact four-fermion interactions and to set constraints on their parameters. It is also shown that the sensitivity of new polarization observables to contact interactions is noticeably higher than the corresponding sensitivity of canonical observables like σ, A FB , A LR , and A LR,FB
Effect of liquid surface tension on circular and linear hydraulic jumps; theory and experiments
Bhagat, Rajesh Kumar; Jha, Narsing Kumar; Linden, Paul F.; Wilson, David Ian
2017-11-01
The hydraulic jump has attracted considerable attention since Rayleigh published his account in 1914. Watson (1964) proposed the first satisfactory explanation of the circular hydraulic jump by balancing the momentum and hydrostatic pressure across the jump, but this solution did not explain what actually causes the jump to form. Bohr et al. (1992) showed that the hydraulic jump happens close to the point where the local Froude number equals to one, suggesting a balance between inertial and hydrostatic contributions. Bush & Aristoff (2003) subsequently incorporated the effect of surface tension and showed that this is important when the jump radius is small. In this study, we propose a new account to explain the formation and evolution of hydraulic jumps under conditions where the jump radius is strongly influenced by the liquid surface tension. The theory is compared with experiments employing liquids of different surface tension and different viscosity, in circular and linear configurations. The model predictions and the experimental results show excellent agreement. Commonwealth Scholarship Commission, St. John's college, University of Cambridge.
Effect of linear temperature dependence of thermoelectric properties on energy conversion efficiency
International Nuclear Information System (INIS)
Yamashita, Osamu
2008-01-01
New thermal rate equations were developed by taking the temperature dependences of the electrical resistivity ρ and thermal conductivity κ of the thermoelectric (TE) materials into the thermal rate equations on the assumption that they vary linearly with temperature T. The relative energy conversion efficiency η/η 0 for a single TE element was formulated by approximate analysis, where η and η 0 are the energy conversion efficiencies derived from the new and conventional thermal rate equations, respectively. Applying it to Si-Ge alloys, the temperature dependence of ρ is stronger than that of κ, so the former has a more significant effect on η/η 0 than the latter. However, the degree of contribution from both of them to η/η 0 was a little lower than 1% at the temperature difference ΔT of 600 K. When the temperature dependence of κ was increased to become equal to that of ρ, however, it was found that η/η 0 is increased by about 10% at ΔT = 600 K. It is clarified here that the temperature dependences of ρ and κ are also important factors for an improvement in η
Effect of weak nonsphericity on linear and nonlinear optical properties of small particle composites
International Nuclear Information System (INIS)
Goncharenko, A.V.; Popelnukh, V.V.; Venger, E.F.
2002-01-01
A small particle composite in which the inclusions are slightly nonspherical and distributed in shape is considered. Within the framework of the mean-field approximation, the functions of linear and nonlinear optical responses are calculated in terms of a nonsphericity parameter specifying the width of the distribution function in shape. To estimate the effect of weak nonsphericity on the functions, their second derivatives with respect to the nonsphericity parameter are computed. The derivatives are shown to be complexly structured surfaces in the coordinates (Re(ε i /ε m ), Im(ε i /ε m )), where ε i and ε m are the inclusion and matrix permittivity, respectively. Based on the results obtained, applicability area of the classical Maxwell Garnett theory is discussed. The main conclusion is that weak nonsphericity is significant only in the close vicinity of a dipole resonance of a single ball made of inclusion material. At the same time, the role of nonsphericity increases with decreasing the imaginary part of inclusion permittivity. (author)
Significance tests to determine the direction of effects in linear regression models.
Wiedermann, Wolfgang; Hagmann, Michael; von Eye, Alexander
2015-02-01
Previous studies have discussed asymmetric interpretations of the Pearson correlation coefficient and have shown that higher moments can be used to decide on the direction of dependence in the bivariate linear regression setting. The current study extends this approach by illustrating that the third moment of regression residuals may also be used to derive conclusions concerning the direction of effects. Assuming non-normally distributed variables, it is shown that the distribution of residuals of the correctly specified regression model (e.g., Y is regressed on X) is more symmetric than the distribution of residuals of the competing model (i.e., X is regressed on Y). Based on this result, 4 one-sample tests are discussed which can be used to decide which variable is more likely to be the response and which one is more likely to be the explanatory variable. A fifth significance test is proposed based on the differences of skewness estimates, which leads to a more direct test of a hypothesis that is compatible with direction of dependence. A Monte Carlo simulation study was performed to examine the behaviour of the procedures under various degrees of associations, sample sizes, and distributional properties of the underlying population. An empirical example is given which illustrates the application of the tests in practice. © 2014 The British Psychological Society.
Effect of linear alcohol molecular size on the self-assembly of fullerene whiskers
International Nuclear Information System (INIS)
Amer, Maher S.; Todd, T. Kyle; Busbee, John D.
2011-01-01
Highlights: → The longer the alcohol molecule, the shorter the length of the assembled whisker. → Interaction between alcohol and fullerene solvent is the key factor. → The stronger the alcohol/solvent interaction, the longer the whisker. - Abstract: The recent development of self-assembled fullerene whiskers and wires has created an enormous potential and resolved a serious challenge for utilizing such unique class of carbon material in advanced nano-scale, molecular-based electronic, optical, and thermal devices. In this paper we investigate, the self-assembly of C 60 molecules into one-dimensional whiskers using a series of linear alcohols H(CH 2 ) n OH, with n changing from 1 (methanol) to 3 (isopropyl alcohol), to elucidate the effect of alcohol molecular size on the size distribution of the self-assemble fullerene whiskers. Our results show that the length of the produced fullerene whiskers is affected by the molecular size of the alcohol used in the process. The crucial role played by solvent/alcohol interaction in the assembly process is discussed. In addition, Raman spectroscopy measurements support the notion that the self-assembled whiskers are primarily held by depletion forces and no evidence of fullerene polymerization was observed.
Standard Test Method for Measuring Dose for Use in Linear Accelerator Pulsed Radiation Effects Tests
American Society for Testing and Materials. Philadelphia
2011-01-01
1.1 This test method covers a calorimetric measurement of the total dose delivered in a single pulse of electrons from an electron linear accelerator or a flash X-ray machine (FXR, e-beam mode) used as an ionizing source in radiation-effects testing. The test method is designed for use with pulses of electrons in the energy range from 10 to 50 MeV and is only valid for cases in which both the calorimeter and the test specimen to be irradiated are“thin” compared to the range of these electrons in the materials of which they are constructed. 1.2 The procedure described can be used in those cases in which (1) the dose delivered in a single pulse is 5 Gy (matl) (500 rd (matl)) or greater, or (2) multiple pulses of a lower dose can be delivered in a short time compared to the thermal time constant of the calorimeter. Matl refers to the material of the calorimeter. The minimum dose per pulse that can be acceptably monitored depends on the variables of the particular test, including pulse rate, pulse uniformity...
Study of effects gamma radiation linear low density polyethylene (LLDPE) injected
International Nuclear Information System (INIS)
Oliveira, Ana Claudia Feitoza de
2014-01-01
The use of package sterilization through gamma radiation aim to reduce the microbiological contamination. The linear low density polyethylene (LLDPE) can be obtained by a process in solution, suspension or gaseous phase, depending on the type of the catalyzer used, that can be heterogeneous, or homogeneous, or metallocenes Ziegler-Natta. According to the literature, the gamma radiation presents a high penetration at polymeric materials causing the appearing of scissions, reticulation, and degradation when oxygen presence. This paper were irradiated with 60 Co with 2000 kCi of activity, in presence of air, samples of LLDPE injected. Utilized doses of 5, 10, 20, 50 or 100 kGy, and about 5 kGy.h -1 dose rates, at room temperature. After irradiation, the samples were heated for 60 min at 100 deg C to promote recombination and annihilation of residual radicals. For characterization of PEBLD were used methods; Melt flow index, swelling, gel fraction, Fourier Transform Infrared (FTIR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (DRX), Thermogravimetric Analysis (TG), Dynamic Mechanical Analysis (DMA), rheological measurements, Scanning Electronic Microscopy and mechanical tests to identify the effects or gamma radiation in polyethylene. (author)
Surface Acoustic Bloch Oscillations, the Wannier-Stark Ladder, and Landau-Zener Tunneling in a Solid
de Lima, M. M., Jr.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.
2010-04-01
We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry.
A system for monitoring the radiation effects of a proton linear accelerator
Energy Technology Data Exchange (ETDEWEB)
Skorkin, V. M., E-mail: skorkin@inr.ru; Belyanski, K. L.; Skorkin, A. V. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)
2016-12-15
The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.
DEFF Research Database (Denmark)
Sommer, Stefan Horst; Lauze, Francois Bernard; Hauberg, Søren
2010-01-01
, we present a comparison between the non-linear analog of Principal Component Analysis, Principal Geodesic Analysis, in its linearized form and its exact counterpart that uses true intrinsic distances. We give examples of datasets for which the linearized version provides good approximations...... and for which it does not. Indicators for the differences between the two versions are then developed and applied to two examples of manifold valued data: outlines of vertebrae from a study of vertebral fractures and spacial coordinates of human skeleton end-effectors acquired using a stereo camera and tracking...
Primary processes in radiation chemistry. LET (Linear Energy Transfer) effect in water radiolysis
International Nuclear Information System (INIS)
Trupin-Wasselin, V.
2000-01-01
The effect of ionizing radiations on aqueous solutions leads to water ionization and then to the formation of radical species and molecular products (e - aq , H . , OH . , H 2 O 2 , H 2 ). It has been shown that the stopping power, characterized by the LET value (Linear Energy Transfer) becomes different when the nature of the ionizing radiations is different. Few data are nowadays available for high LET radiations such as protons and high energy heavy ions. These particles have been used to better understand the primary processes in radiation chemistry. The yield of a chemical dosimeter (the Fricke dosimeter) and those of the hydrogen peroxide have been determined for different LET. The effect of the dose rate on the Fricke dosimeter yield and on the H 2 O 2 yield has been studied too. When the dose rate increases, an increase of the molecular products yield is observed. At very high dose rate, this yield decreases on account of the attack of the molecular products by radicals. The H 2 O 2 yield in alkaline medium decreases when the pH reaches 12. This decrease can be explained by a slowing down of the H 2 O 2 formation velocity in alkaline medium. Superoxide radical has also been studied in this work. A new detection method: the time-resolved chemiluminescence has been perfected for this radical. This technique is more sensitive than the absorption spectroscopy. Experiments with heavy ions have allowed to determine the O 2 .- yield directly in the irradiation cell. The experimental results have been compared with those obtained with a Monte Carlo simulation code. (O.M.)
International Nuclear Information System (INIS)
Shafiq, Muhammad; Yasin, Tariq
2012-01-01
Radiation crosslinking is generally used to improve the thermo-mechanical properties of the composites. A study has been carried out to investigate the effect of gamma radiation on the thermo-mechanical properties of linear low density polyethylene containing magnesium hydroxide (MH) and sepiolite (SP) as non-halogenated flame retardant additives. The developed composites are irradiated at different doses upto maximum of 150 kGy. Infrared spectra of the irradiated composites reveal the reduction in the intensity of O-H band with increase in the absorbed doses, thus indicates a distinct structural change in MH at higher doses. The thermogravimetric analysis results of unirradiated and composites irradiated at low doses (≤75 kGy) show two steps weight loss, which is changed to single step at higher doses with lower thermal stability. The melting temperature (T m ) and crystallization temperature (T c ) of irradiated composites are lowered with irradiation whereas Vicat softening temperature (VST) is increased. The increasing trend in gel content with increase in the absorbed dose confirms the presence of crosslinked network. The mechanical properties, results show significant improvement in the modulus of irradiated composites. The results also confirm that MH gradually loses its OH functionality with irradiation. - Highlights: → We have studied the effect of γ radiation on LLDPE containing Mg(OH) 2 and sepiolite. → IR spectra of the irradiated composites show reduction in the intensity of O-H band. → Reduction in OH band show a distinct structural change in Mg(OH) 2 at higher doses. → TGA results show two steps weight loss at low doses and one step at higher doses. → These results confirm that MH gradually loses its OH functionality with irradiation.
Payoff non-linearity sways the effect of mistakes on the evolution of reciprocity.
Kurokawa, Shun
2016-09-01
The existence of cooperation is considered to require explanation, and reciprocity is a potential explanatory mechanism. Animals sometimes fail to cooperate even when they attempt to do so, and a reciprocator has an Achilles' heel: it is vulnerable to error (the interaction between two reciprocators can lead to an endless vendetta.). However, the strategy favored by natural selection is determined also by its interaction with other strategies. The relationship between two reciprocators leading to a collapse of cooperation through error does not straightforwardly imply that mistakes make the conditions under which reciprocity evolves stringent. Hence, mistakes may facilitate the evolution of reciprocity. However, it has been shown through the analysis of the interaction between reciprocators and unconditional defectors that the existence of mistakes makes the conditions for reciprocators stable against invasion by an unconditional defector more stringent, which indicates that mistakes discourage the evolution of reciprocity. However, this result is based on the assumption that the effects of cooperation are additive (payoff is linear), while the game played by real animals does not always display this feature. In such cases, the result may be swayed. In this paper, we remove this assumption, reexamining whether mistakes disturb the evolution of reciprocity. Using the analysis of an evolutionarily stable strategy (ESS), we show that when extra fitness costs are present in cases where mutual cooperation is established, mistakes can facilitate the evolution of reciprocity; whereas, when the effect of cooperation is additive, mistakes always disturb the evolution of reciprocity, as has been shown previously. Copyright © 2016. Published by Elsevier Inc.
Inertial and viscous effects in the non linear growth of the tearing mode
International Nuclear Information System (INIS)
Edery, D.; Frey, M.; Tagger, M.; Soule, J.L.; Pellat, R.; Bussac, M.N.; Somon, J.P.
1982-08-01
The non linear self similar Tearing mode solution of Rutherford is revisited. We compute explicitly the stream function for the plasma flow including inertia, convection and viscosity. In all cases, Rutherford's solution is asymptotically valid
Effects of dual-energy CT with non-linear blending on abdominal CT angiography
International Nuclear Information System (INIS)
Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge
2014-01-01
To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.
Effects of dual-energy CT with non-linear blending on abdominal CT angiography
Energy Technology Data Exchange (ETDEWEB)
Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge [Dept. of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)
2014-08-15
To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.
Hao, Xu; Yujun, Sun; Xinjie, Wang; Jin, Wang; Yao, Fu
2015-01-01
A multiple linear model was developed for individual tree crown width of Cunninghamia lanceolata (Lamb.) Hook in Fujian province, southeast China. Data were obtained from 55 sample plots of pure China-fir plantation stands. An Ordinary Linear Least Squares (OLS) regression was used to establish the crown width model. To adjust for correlations between observations from the same sample plots, we developed one level linear mixed-effects (LME) models based on the multiple linear model, which take into account the random effects of plots. The best random effects combinations for the LME models were determined by the Akaike's information criterion, the Bayesian information criterion and the -2logarithm likelihood. Heteroscedasticity was reduced by three residual variance functions: the power function, the exponential function and the constant plus power function. The spatial correlation was modeled by three correlation structures: the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)], and the compound symmetry structure (CS). Then, the LME model was compared to the multiple linear model using the absolute mean residual (AMR), the root mean square error (RMSE), and the adjusted coefficient of determination (adj-R2). For individual tree crown width models, the one level LME model showed the best performance. An independent dataset was used to test the performance of the models and to demonstrate the advantage of calibrating LME models.
Experimental transition probabilities and Stark parameters of singly ionized noble gases
Belmonte Sainz-Ezquerra, María Teresa
2016-01-01
La medida de parámetros atómicos, tales como las probabilidades de transición y las anchuras y desplazamientos Stark, es de gran importancia no solo en el campo de la física teórica y atómica, sino también en el diagnóstico de cualquier fuente emisora de radiación y en el área de la astrofísica. El objetivo de esta tesis doctoral es la medida de nuevos datos atómicos mediante una técnica de espectroscopia de emisión de plasmas. En concreto, este trabajo se ha centrado en: 1) Me...
Directory of Open Access Journals (Sweden)
Keita Honjo
Full Text Available After the severe nuclear disaster in Fukushima, which was triggered by the Great East Japan earthquake in March 2011, nuclear power plants in Japan were temporarily shut down for mandatory inspections. To prevent large-scale blackouts, the Japanese government requested companies and households to reduce electricity consumption in summer and winter. It is reported that the domestic electricity demand had a structural decrease because of the electricity conservation effect (ECE. However, quantitative analysis of the ECE is not sufficient, and especially time variation of the ECE remains unclear. Understanding the ECE is important because Japan's NDC (nationally determined contribution assumes the reduction of CO2 emissions through aggressive energy conservation. In this study, we develop a time series model of monthly electricity demand in Japan and estimate time variation of the ECE. Moreover, we evaluate the impact of electricity conservation on CO2 emissions from power plants. The dynamic linear model is used to separate the ECE from the effects of other irrelevant factors (e.g. air temperature, economic production, and electricity price. Our result clearly shows that consumers' electricity conservation behavior after the earthquake was not temporary but became established as a habit. Between March 2011 and March 2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4%, and the ECE on residential electricity demand ranged from 1.6% to 7.6%. The ECE on the total electricity demand was estimated at 3.2%-6.0%. We found a seasonal pattern that the residential ECE in summer is higher than that in winter. The emissions increase from the shutdown of nuclear power plants was mitigated by electricity conservation. The emissions reduction effect was estimated at 0.82 MtCO2-2.26 MtCO2 (-4.5% on average compared to the zero-ECE case. The time-varying ECE is necessary for predicting Japan's electricity demand and CO2 emissions after the
Shiraki, Hiroto; Ashina, Shuichi
2018-01-01
After the severe nuclear disaster in Fukushima, which was triggered by the Great East Japan earthquake in March 2011, nuclear power plants in Japan were temporarily shut down for mandatory inspections. To prevent large-scale blackouts, the Japanese government requested companies and households to reduce electricity consumption in summer and winter. It is reported that the domestic electricity demand had a structural decrease because of the electricity conservation effect (ECE). However, quantitative analysis of the ECE is not sufficient, and especially time variation of the ECE remains unclear. Understanding the ECE is important because Japan’s NDC (nationally determined contribution) assumes the reduction of CO2 emissions through aggressive energy conservation. In this study, we develop a time series model of monthly electricity demand in Japan and estimate time variation of the ECE. Moreover, we evaluate the impact of electricity conservation on CO2 emissions from power plants. The dynamic linear model is used to separate the ECE from the effects of other irrelevant factors (e.g. air temperature, economic production, and electricity price). Our result clearly shows that consumers’ electricity conservation behavior after the earthquake was not temporary but became established as a habit. Between March 2011 and March 2016, the ECE on industrial electricity demand ranged from 3.9% to 5.4%, and the ECE on residential electricity demand ranged from 1.6% to 7.6%. The ECE on the total electricity demand was estimated at 3.2%–6.0%. We found a seasonal pattern that the residential ECE in summer is higher than that in winter. The emissions increase from the shutdown of nuclear power plants was mitigated by electricity conservation. The emissions reduction effect was estimated at 0.82 MtCO2–2.26 MtCO2 (−4.5% on average compared to the zero-ECE case). The time-varying ECE is necessary for predicting Japan’s electricity demand and CO2 emissions after the
Díez, Ernesto; Fabián, Jesús San; Gerothanassis, Ioannis P.; Esteban, Angel L.; Abboud, José-Luis M.; Contreras, Ruben H.; de Kowalewski, Dora G.
1997-01-01
A multiple-linear-regression analysis (MLRA) has been carried out using the Kamlet-Abboud-Taft (KAT) solvatochromic parameters in order to elucidate and quantify the solvent effects on the17O chemical shifts ofN-methylformamide (NMF),N,N-dimethylformamide (DMF),N-methylacetamide (NMA), andN,N-dimethylacetamide (DMA). The chemical shifts of the four molecules show the same dependence (in ppm) on the solvent polarity-polarizability, i.e., -22π*. The influence of the solvent hydrogen-bond-donor (HBD) acidities is slightly larger for the acetamides NMA and DMA, i.e., -48α, than for the formamides NMF and DMF, i.e., -42α. The influence of the solvent hydrogen-bond-acceptor (HBA) basicities is negligible for the nonprotic molecules DMF and DMA but significant for the protic molecules NMF and NMA, i.e., -9β. The effect of substituting the N-H hydrogen by a methyl group amounts to -5.9 ppm in NMF and 5.4 ppm in NMA. The effect of substituting the O=C-H hydrogen amounts to 5.5 ppm in NMF and 16.8 ppm in DMF. The model of specific hydration sites of amides by I. P. Gerothanassis and C. Vakka [J. Org. Chem.59,2341 (1994)] is settled in a more quantitative basis and the model by M. I. Burgar, T. E. St. Amour, and D. Fiat [J. Phys. Chem.85,502 (1981)] is critically evaluated.17O hydration shifts have been calculated for formamide (FOR) by the ab initio LORG method at the 6-31G* level. For a formamide surrounded by the four in-plane molecules of water in the first hydration shell, the calculated17O shift change due to the four hydrogen bonds, -83.2 ppm, is smaller than the empirical hydration shift, -100 ppm. The17O shift change from each out-of-plane water molecule hydrogen-bonded to the amide oxygen is -18.0 ppm. These LORG results support the conclusion that no more than four water molecules are hydrogen-bonded to the amide oxygen in formamide.
End Effects on the Linear Induction MHD Generator Calculated by Two-Sided Laplace Transform
Energy Technology Data Exchange (ETDEWEB)
Engeln, F.; Peschka, W. [Deutsche Versuchsanstalt fuer Luft- und Raumfahrt e.V., Institut fuer Energiewandlung und Elektrische Antriebe, Stuttgart, Federal Republic of Germany (Germany)
1966-11-15
In induction MHD systems special problems occur where the flow enters or leaves the magnetic field. These problems are generally described as end effects. Large gradients of the magnetic field are present at the inlet and also at the outlet of an MHD induction engine, these generating electric current systems in the fluid which may spoil the performance characteristics of the generator due to the interaction with the primary field of the engine. The two-dimensional induction MHD generator of finite length, using a polyphase winding system to obtain a travelling magnetic field, is treated as a boundary value problem by two-sided Laplace transform. For simplicity incompressibility is assumed. The two- dimensional boundary value problem of the induction engine is solved for - {infinity} Less-Than-Over-Equal-To x Less-Than-Over-Equal-To {infinity}. x is parallel to the flow direction of the linear MHD generator. In the region 0 Less-Than-Over-Equal-To x Less-Than-Over-Equal-To L the magnetic travelling wave is sinusoidal with a cyclical frequency {omega} and a phase-velocity v{sub s}. At x = 0 the conducting incompressible working fluid enters the field region and leaves it at the point-x = L. Two mathematical methods can be used to solve the boundary value problem, the Fourier transform or the two-sided Laplace transform. The latter offers the advantage of representing a complex analytical function in the image space. Moreover, it is possible to obtain the characteristics of the generator in the image space (e. g. field configuration, power flow function, etc.). That implies a large simplification of mathematical treatment. The solution in the original space then is given by asymptotic expansion of the known image function. (author)
Non-linear density-dependent effects of an intertidal ecosystem engineer.
Harley, Christopher D G; O'Riley, Jaclyn L
2011-06-01
Ecosystem engineering is an important process in a variety of ecosystems. However, the relationship between engineer density and engineering impact remains poorly understood. We used experiments and a mathematical model to examine the role of engineer density in a rocky intertidal community in northern California. In this system, the whelk Nucella ostrina preys on barnacles (Balanus glandula and Chthamalus dalli), leaving empty barnacle tests as a resource (favorable microhabitat) for other species. Field experiments demonstrated that N. ostrina predation increased the availability of empty tests of both barnacle species, reduced the density of the competitively dominant B. glandula, and indirectly increased the density of the competitively inferior C. dalli. Empty barnacle tests altered microhabitat humidity, but not temperature, and presumably provided a refuge from wave action. The herbivorous snail Littorina plena was positively associated with empty test availability in both observational comparisons and experimental manipulations of empty test availability, and L. plena density was elevated in areas with foraging N. ostrina. To explore the effects of variation in N. ostrina predation, we constructed a demographic matrix model for barnacles in which we varied predation intensity. The model predicted that number of available empty tests increases with predation intensity to a point, but declines when predation pressure was strong enough to severely reduce adult barnacle densities. The modeled number of available empty tests therefore peaked at an intermediate level of N. ostrina predation. Non-linear relationships between engineer density and engineer impact may be a generally important attribute of systems in which engineers influence the population dynamics of the species that they manipulate.
Effects of Grafting Density on Block Polymer Self-Assembly: From Linear to Bottlebrush.
Lin, Tzu-Pin; Chang, Alice B; Luo, Shao-Xiong; Chen, Hsiang-Yun; Lee, Byeongdu; Grubbs, Robert H
2017-11-28
Grafting density is an important structural parameter that exerts significant influences over the physical properties of architecturally complex polymers. In this report, the physical consequences of varying the grafting density (z) were studied in the context of block polymer self-assembly. Well-defined block polymers spanning the linear, comb, and bottlebrush regimes (0 ≤ z ≤ 1) were prepared via grafting-through ring-opening-metathesis polymerization. ω-Norbornenyl poly(d,l-lactide) and polystyrene macromonomers were copolymerized with discrete comonomers in different feed ratios, enabling precise control over both the grafting density and molecular weight. Small-angle X-ray scattering experiments demonstrate that these graft block polymers self-assemble into long-range-ordered lamellar structures. For 17 series of block polymers with variable z, the scaling of the lamellar period with the total backbone degree of polymerization (d* ∼ N bb α ) was studied. The scaling exponent α monotonically decreases with decreasing z and exhibits an apparent transition at z ≈ 0.2, suggesting significant changes in the chain conformations. Comparison of two block polymer systems, one that is strongly segregated for all z (System I) and one that experiences weak segregation at low z (System II), indicates that the observed trends are primarily caused by the polymer architectures, not segregation effects. A model is proposed in which the characteristic ratio (C ∞ ), a proxy for the backbone stiffness, scales with N bb as a function of the grafting density: C ∞ ∼ N bb f(z) . The scaling behavior disclosed herein provides valuable insights into conformational changes with grafting density, thus introducing opportunities for block polymer and material design.
Some effects of horizontal discretization on linear baroclinic and symmetric instabilities
Barham, William; Bachman, Scott; Grooms, Ian
2018-05-01
The effects of horizontal discretization on linear baroclinic and symmetric instabilities are investigated by analyzing the behavior of the hydrostatic Eady problem in ocean models on the B and C grids. On the C grid a spurious baroclinic instability appears at small wavelengths. This instability does not disappear as the grid scale decreases; instead, it simply moves to smaller horizontal scales. The peak growth rate of the spurious instability is independent of the grid scale as the latter decreases. It is equal to cf /√{Ri} where Ri is the balanced Richardson number, f is the Coriolis parameter, and c is a nondimensional constant that depends on the Richardson number. As the Richardson number increases c increases towards an upper bound of approximately 1/2; for large Richardson numbers the spurious instability is faster than the Eady instability. To suppress the spurious instability it is recommended to use fourth-order centered tracer advection along with biharmonic viscosity and diffusion with coefficients (Δx) 4 f /(32√{Ri}) or larger where Δx is the grid scale. On the B grid, the growth rates of baroclinic and symmetric instabilities are too small, and converge upwards towards the correct values as the grid scale decreases; no spurious instabilities are observed. In B grid models at eddy-permitting resolution, the reduced growth rate of baroclinic instability may contribute to partially-resolved eddies being too weak. On the C grid the growth rate of symmetric instability is better (larger) than on the B grid, and converges upwards towards the correct value as the grid scale decreases.
Mungazi, Dickson A.
1989-01-01
Contends that educational policy in Zimbabwe from 1934 to 1954 served the political purposes of the colonial government and neglected genuine educational development of the colonized Africans. During George Stark's tenure as Director of Native Education, Zimbabweans were consigned to "practical training" programs and were denied access…
International Nuclear Information System (INIS)
Torres, J; Carabano, O; Fernandez, M; Rubio, S; Alvarez, R; Rodero, A; Lao, C; Quintero, M C; Gamero, A; Sola, A
2006-01-01
The use of the Stark broadening of Balmer lines spontaneously emitted by atmospheric-pressure plasmas as a method to determine both the electron density and temperature in high-pressure plasmas is discussed in this paper. This method is applied to argon and helium plasmas produced in microwave discharges. Especially for Ar plasmas, valuable and reliable results are obtained
Ayten, B.; Westerhof, E.; ASDEX Upgrade team,
2014-01-01
Due to the smallness of the volumes associated with the flux surfaces around the O-point of a magnetic island, the electron cyclotron power density applied inside the island for the stabilization of neoclassical tearing modes (NTMs) can exceed the threshold for non-linear effects as derived
Ertekin, E.; Solak, S.; Yazici, E.
2010-01-01
The aim of this study is to identify the effects of formalism in teaching on primary and secondary school mathematics teacher trainees' algebraic and geometric interpretations of the notions of linear dependency/independency. Quantitative research methods are drawn in order to determine differences in success levels between algebraic and geometric…
Ishitani, Terry T.
2010-01-01
This study applied hierarchical linear modeling to investigate the effect of congruence on intrinsic and extrinsic aspects of job satisfaction. Particular focus was given to differences in job satisfaction by gender and by Holland's first-letter codes. The study sample included nationally represented 1462 female and 1280 male college graduates who…
Kissi, Philip Siaw; Opoku, Gyabaah; Boateng, Sampson Kwadwo
2016-01-01
The aim of the study was to investigate the effect of Microsoft Math Tool (graphical calculator) on students' achievement in the linear function. The study employed Quasi-experimental research design (Pre-test Post-test two group designs). A total of ninety-eight (98) students were selected for the study from two different Senior High Schools…
Masood, W.; Mirza, Arshad M.
2010-11-01
Linear and nonlinear properties of coupled Shukla-Varma (SV) and convective cell modes in the presence of electron thermal effects are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. In the linear case, the modified dispersion relation is given and, in the nonlinear case, stationary solutions of the nonlinear equations that govern the dynamics of coupled SV and convective cell modes are obtained. It is found that electrostatic dipolar and vortex street type solutions can appear in such a plasma. The relevance of the present investigation with regard to the Earth's mesosphere as well as in ionospheric plasmas is also pointed out.
International Nuclear Information System (INIS)
Masood, W.; Mirza, Arshad M.
2010-01-01
Linear and nonlinear properties of coupled Shukla-Varma (SV) and convective cell modes in the presence of electron thermal effects are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. In the linear case, the modified dispersion relation is given and, in the nonlinear case, stationary solutions of the nonlinear equations that govern the dynamics of coupled SV and convective cell modes are obtained. It is found that electrostatic dipolar and vortex street type solutions can appear in such a plasma. The relevance of the present investigation with regard to the Earth's mesosphere as well as in ionospheric plasmas is also pointed out.
Rheokinetics and effect of shear rate on the kinetics of linear polyurethane formation
Navarchian, AH; Picchioni, F; Janssen, LPBM
In this article, the rheokinetics of polyurethane formation and the influence of shear rate on its kinetics have been studied. Two different linear polyurethane systems with 0% and 100% hard segments are examined in a cone and plate rheometer. The isothermal increase of viscosity during polyurethane
Effective linear two-body method for many-body problems in atomic and nuclear physics
International Nuclear Information System (INIS)
Kim, Y.E.; Zubarev, A.L.
2000-01-01
We present an equivalent linear two-body method for the many body problem, which is based on an approximate reduction of the many-body Schroedinger equation by the use of a variational principle. The method is applied to several problems in atomic and nuclear physics. (author)
The effect of workload constraints in linear programming models for production planning
Jansen, M.M.; Kok, de A.G.; Adan, I.J.B.F.
2011-01-01
Linear programming (LP) models for production planning incorporate a model of the manufacturing system that is necessarily deterministic. Although these deterministic models are the current state-of-the-art, it should be recognized that they are used in an environment that is inherently stochastic.
Zhu, Wei; Chen, Huaimin; Guo, Lili; Li, Ming
2016-08-01
The widespread use of detergents increases the concentration of surfactant in lakes and reservoirs. High surfactant loads produces toxicity to algae; however, the influence of the increasing surfactant on the competition between algae is not clear. In this paper, different amounts of linear alkylbenzene sulfonate (LAS) were added to test the effects of LAS on the competition between Microcystis aeruginosa and Scenedesmus obliquus under eutrophic condition. In single culture, the growth of S. obliquus was promoted under lower LAS concentrations (1 and 20 mg L(-1)), but cell density of S. obliquus reduced when treated with higher LAS concentration (100 mg L(-1)). The growth of M. aeruginosa was inhibited markedly with 20 and 100 mg L(-1) LAS. Compared with single culture, the result was opposite in co-cultures and the cell density of S. obliquus increased significantly when treated with LAS of 1, 20, and 100 mg L(-1). The specific growth rates of S. obliquus and M. aeruginosa in both cultures were 0.4-0.5 day(-1) and 0.6-0.7 day(-1), respectively, except that the specific growth rate of M. aeruginosa in both cultures treated with 100 mg L(-1) LAS was about 0.2 day(-1). M. aeruginosa dominated over S. obliquus in the co-culture without LAS, while the competition was completely opposite with the addition of 20 mg L(-1) LAS. The growth of S. obliquus treated with 20 mg L(-1) LAS was not affected significantly in single culture but was promoted by 75 % in co-culture. Moreover, the growth of S. obliquus in co-culture treated with 100 mg L(-1) LAS was promoted by more than 97 %. These results suggested that the increasing LAS would overturn the competition of algae in freshwater ecosystems.
International Nuclear Information System (INIS)
Shokouhmand, H.; Kahrobaian, A.; Tabandeh, N.; Jalilvand, A.
2002-01-01
Micro heat pipes are widely used for the thermal control of spacecraft and their electronic components. In this paper the influence of linear accelerations in micro grooves has been studied. A mathematical model for predicating the minimum meniscus radius and the maximum heat transport in triangular groove under the influence of linear acceleration is presented and method for determining the theoretical minimum meniscus radius is developed. It is shown that both, the direction and the magnitude of the acceleration have a great effect upon heat transfer capability of micro heat pipes. The analysis presented here provides a mechanism where by the groove geometry can be optimized with respect to the length of the heat pipe and direction and magnitude of linear acceleration
Directory of Open Access Journals (Sweden)
Hiroyuki Wakiwaka
2011-11-01
Full Text Available This paper discusses the effect of inductive coil shape on the sensing performance of a linear displacement sensor. The linear displacement sensor consists of a thin type inductive coil with a thin pattern guide, thus being suitable for tiny space applications. The position can be detected by measuring the inductance of the inductive coil. At each position due to the change in inductive coil area facing the pattern guide the value of inductance is different. Therefore, the objective of this research is to study various inductive coil pattern shapes and to propose the pattern that can achieve good sensing performance. Various shapes of meander, triangular type meander, square and circle shape with different turn number of inductive coils are examined in this study. The inductance is measured with the sensor sensitivity and linearity as a performance evaluation parameter of the sensor. In conclusion, each inductive coil shape has its own advantages and disadvantages. For instance, the circle shape inductive coil produces high sensitivity with a low linearity response. Meanwhile, the square shape inductive coil has a medium sensitivity with higher linearity.
International Nuclear Information System (INIS)
Ribeiro, Martha Simoes
2000-01-01
According to the Maxwell's equations to optical properties of surfaces, the energy deposition efficiency in a microroughness interface depends on the electrical field polarization component. Considering a linearly polarized beam, this efficiency will depend on the roughness parameters to p-polarized light and it will not depend on such parameters to s-polarized light. In this work it was investigated the effects of low-intensity, linearly polarized He-Ne laser beam on skin wounds healing, considering two orthogonal directions of polarization. We have considered a preferential axis as the animals' spinal column and we aligned the linear laser polarization first parallel, then perpendicular to this direction. Burns about 6 mm in diameter were created with liquid N 2 on the back of the animals and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1,0 J/cm 2 . Control lesions were not irradiated. The theoretical model consisted in describing linearly polarized light propagation in biological tissues using transport theory. The degree of polarization was measured in normal and pathological skin samples. It was verified that linearly polarized light can survive in the superficial layers of skin and it can be more preserved in skin under pathological condition when compared with health skin. The analysis of skin wound healing process has demonstrated that the relative direction of the laser polarization plays an important role on the wound healing process by light microscopy, transmission electron microscopy and radioautography. (author)
A simulation-based goodness-of-fit test for random effects in generalized linear mixed models
DEFF Research Database (Denmark)
Waagepetersen, Rasmus
2006-01-01
The goodness-of-fit of the distribution of random effects in a generalized linear mixed model is assessed using a conditional simulation of the random effects conditional on the observations. Provided that the specified joint model for random effects and observations is correct, the marginal...... distribution of the simulated random effects coincides with the assumed random effects distribution. In practice, the specified model depends on some unknown parameter which is replaced by an estimate. We obtain a correction for this by deriving the asymptotic distribution of the empirical distribution...
A simulation-based goodness-of-fit test for random effects in generalized linear mixed models
DEFF Research Database (Denmark)
Waagepetersen, Rasmus Plenge
The goodness-of-fit of the distribution of random effects in a generalized linear mixed model is assessed using a conditional simulation of the random effects conditional on the observations. Provided that the specified joint model for random effects and observations is correct, the marginal...... distribution of the simulated random effects coincides with the assumed random effects distribution. In practice the specified model depends on some unknown parameter which is replaced by an estimate. We obtain a correction for this by deriving the asymptotic distribution of the empirical distribution function...
Energy Technology Data Exchange (ETDEWEB)
Senatore, Giacomo [Department of Aerospace Engineering, Universita di Pisa, Pisa 56122 (Italy); Davis, Sean; Jacobs, Gustaaf, E-mail: gjacobs@mail.sdsu.edu [Department of Aerospace Engineering and Engineering Mechanics, San Diego State University, San Diego, 92182 California (United States)
2015-03-15
The effect of non-uniformity in bulk particle mass loading on the linear development of a particle-laden shear layer is analyzed by means of a stochastic Eulerian-Eulerian model. From the set of governing equations of the two-fluid model, a modified Rayleigh equation is derived that governs the linear growth of a spatially periodic disturbance. Eigenvalues for this Rayleigh equation are determined numerically using proper conditions at the co-flowing gas and particle interface locations. For the first time, it is shown that non-uniform loading of small-inertia particles (Stokes number (St) <0.2) may destabilize the inviscid mixing layer development as compared to the pure-gas flow. The destabilization is triggered by an energy transfer rate that globally flows from the particle phase to the gas phase. For intermediate St (1 < St < 10), a maximum stabilizing effect is computed, while at larger St, two unstable modes may coexist. The growth rate computations from linear stability analysis are verified numerically through simulations based on an Eulerian-Lagrangian (EL) model based on the inviscid Euler equations and a point particle model. The growth rates found in numerical experiments using the EL method are in very good agreement with growth rates from the linear stability analysis and validate the destabilizing effect induced by the presence of particles with low St.
International Nuclear Information System (INIS)
Rohrer, D.M.
1975-01-01
This study is the result of research findings and operational experiences gained by the author in over four years of work associated with the use of 60 Co for the treatment of waste-water. The effects of 60 Co are discussed with regard to radiochemical destruction of specific organic pollutant species. The study deals specifically with the effects of gamma radiation from a 30,000 Ci 60 Co source upon aqueous solutions of Linear Alkyl Sulfonate Surfactants. The new Linear Alkyl Sulfonate (LAS) Surfactants, the major surfactant produced in the United States of America since June 1965, was developed to replace the old Alkyl Benzene Sulfonate (ABS) Surfactants. The reason for the removal of Alkyl Benzene Sulfonate Surfactants was their extreme environmental stability and the associated appearance of foam in waste-water treatment plants and receiving streams. Although the Linear Alkyl Sulfonate Surfactants are considered 'bio-degradable', the time required for 'bio-degradation' is impractical within the present environmental guidelines. This led to research into alternate techniques of treatment for the destruction of Linear Alkyl Sulfonate Surfactants. Consideration is also given to similar effects of gamma radiation upon pesticides and to the practical aspects of the use of gamma radiation for the treatment of waste-water. Included are discussions of the general experimental procedures used, the sources and their calibration, and sampling techniques to ensure the accuracy of the data. (author)
Non-linear effects in vortex viscous flow in superconductors-role of finite heat removal velocity
International Nuclear Information System (INIS)
Bezuglyj, A.I.; Shklovskij, V.A.
1991-01-01
The role of finite heat removal velocity in experiments on non-linear effects in vortex viscous flow in superconducting films near critical temperature was investigated. It was shown that the account of thermal effects permits to explain the experimentally observed dependence of electron energy relaxation time and current break-down in voltage-current characteristic from magnetic field value. 5 refs.; 1 fig. (author)
International Nuclear Information System (INIS)
Varro, S.
2006-01-01
Complete test of publication follows. On the basis of classical electrodynamics the reflection and transmission of an ultra-short laser pulse impinging on a metal nano-layer have been analysed. The thickness of the layer was assumed to be of the order of 2-10 nm, and the metallic electrons were represented by a surface current density at the plane boundary of a dielectric substrate. It has been shown that in the scattered fields a non-oscillatory wake-field appears following the main pulse with an exponential decay and with a definite sign of the electric and magnetic fields. The characteristic time of these wake-fields is inversely proportional to the square of the plasma frequency and to the thickness of the metal nano-layer, and can be of order or larger then the original pulse duration. The magnitude of these wake-fields is proportional with the incoming field strength - so this is a linear effect - and the definite sign of them is governed by the cosine of the carrier-envelope phase difference of the incoming ultrashort laser pulse. As a consequence, when we let such a wake-field excite the electrons of a secondary target - say a plasma, a metal surface or a gas - we obtain 100 percent modulation depth in the electron signal in a given direction. This scheme can perhaps serve as a basis for the construction of a robust linear carrier-envelope phase difference mater. At relativistic laser intensities the target becomes a plasma layer generated, e.g. by the rising part of the incoming laser pulse. An approximate analytic solution has been given for the system of the coupled Maxwell-Lorentz equations describing the dynamics of the surface current (representing the plasma electrons) and the composite radiation field. With the help of these solutions the Fourier components of the reflected and transmitted radiation have been calculated. The nonlinearities stemming from the relativistic kinematics lead to the appearance of higher-order harmonics in the scattered
International Nuclear Information System (INIS)
Suwono.
1978-01-01
A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)
International Nuclear Information System (INIS)
Vretenar, M
2014-01-01
The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics
International Nuclear Information System (INIS)
Barbieri, M.
2007-01-01
Bose-Einstein coalescence of independent photons at the surface of a beam splitter is the physical process that allows linear optical quantum gates to be built. When distinct parametric down-conversion events are used as an independent photon source, distinguishability arises form the energy correlation of each photon with its twin. We derive upper bound for the entanglement which can be generated under these conditions
Dead time effects from linear amplifiers and discriminators in single detector systems
International Nuclear Information System (INIS)
Funck, E.
1986-01-01
The dead-time losses originating from a linear amplifier combined with a discriminator for pulse-height selection are investigated. Measurements are carried out to determine the type of dead time represented by the amplifier-discriminator combination. The corrections involved by feeding the discriminator output pulses into an electronic module producing a blocking time are discussed and practical hints are given to reduce them. (orig.)
Shielded coherent synchrotron radiation and its possible effect in the next linear collider
International Nuclear Information System (INIS)
Warnock, R.L.
1991-05-01
Shielded coherent synchrotron radiation is discussed in two cases: (1) a beam following a curved path in a plane midway between two parallel, perfectly conducting plates, and (2) a beam circulating in a toroidal chamber with resistive walls. Wake fields and the radiated energy are computed with parameters for the high-energy bunch compressor of the Next Linear Collider. 5 refs., 4 figs., 1 tab
Effect of Different Concrete Grade on Radiation Linear Attenuation Coefficient (μ)
International Nuclear Information System (INIS)
Noor Azreen Masenwat; Mohammad Shahrizan Samsu; Mohamad Pauzi Ismail; Suhairy Sani; Ismail Mustapha; Nasharuddin Isa; Mohamad Haniza Mahmud
2014-01-01
In calculating the quantity of absorption of radiation and its relationship with the thickness of a material, linear attenuation coefficient (μ) of the material is one of the parameters to be taken into account. For normal concrete, the (μ) varies depending on the type of radiation used, 0.105 cm -1 for Co-60 and 0.123 cm -1 for Cs-137. Value (μ) is used in the calculation of the radiation absorption for concrete material does not take into account factors such concrete grades. In this research, concrete with different grades (Grade 15, Grade 20, Grade 25, Grade 30, Grade 35, Grade 40) are designed and manufactured with reference to the mixing method described in British Standard. Then, the linear attenuation (μ) for each grade are measured using the radiation from the source Co-60 and Cs-137 sources. This paper describes and discusses the impact of differences in concrete grade of linear attenuation (μ) for Co-60 source/ source Cs-137 and its relationship with the compressive strength. (author)
Effects of noise, nonlinear processing, and linear filtering on perceived music quality.
Arehart, Kathryn H; Kates, James M; Anderson, Melinda C
2011-03-01
The purpose of this study was to determine the relative impact of different forms of hearing aid signal processing on quality ratings of music. Music quality was assessed using a rating scale for three types of music: orchestral classical music, jazz instrumental, and a female vocalist. The music stimuli were subjected to a wide range of simulated hearing aid processing conditions including, (1) noise and nonlinear processing, (2) linear filtering, and (3) combinations of noise, nonlinear, and linear filtering. Quality ratings were measured in a group of 19 listeners with normal hearing and a group of 15 listeners with sensorineural hearing impairment. Quality ratings in both groups were generally comparable, were reliable across test sessions, were impacted more by noise and nonlinear signal processing than by linear filtering, and were significantly affected by the genre of music. The average quality ratings for music were reasonably well predicted by the hearing aid speech quality index (HASQI), but additional work is needed to optimize the index to the wide range of music genres and processing conditions included in this study.
Shastry, Shamee; Ramya, B; Ninan, Jefy; Srinidhi, G C; Bhat, Sudha S; Fernandes, Donald J
2013-12-01
The dedicated devices for blood irradiation are available only at a few centers in developing countries thus the irradiation remains a service with limited availability due to prohibitive cost. To implement a blood irradiation program at our center using linear accelerator. The study is performed detailing the specific operational and quality assurance measures employed in providing a blood component-irradiation service at tertiary care hospital. X-rays generated from linear accelerator were used to irradiate the blood components. To facilitate and standardize the blood component irradiation, a blood irradiator box was designed and fabricated in acrylic. Using Elekta Precise Linear Accelerator, a dose of 25 Gy was delivered at the centre of the irradiation box. Standardization was done using five units of blood obtained from healthy voluntary blood donors. Each unit was divided to two parts. One aliquot was subjected to irradiation. Biochemical and hematological parameters were analyzed on various days of storage. Cost incurred was analyzed. Progressive increase in plasma hemoglobin, potassium and lactate dehydrogenase was noted in the irradiated units but all the parameters were within the acceptable range indicating the suitability of the product for transfusion. The irradiation process was completed in less than 30 min. Validation of the radiation dose done using TLD showed less than ± 3% variation. This study shows that that the blood component irradiation is within the scope of most of the hospitals in developing countries even in the absence of dedicated blood irradiators at affordable cost. Copyright © 2013 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Alexey Lyulin
2012-01-01
Full Text Available We report results from Brownian dynamics computer simulations of systems comprised by two terminally charged hyperbranched molecules preferentially branched in the periphery, with an oppositely charged linear chain of varying length. Comparison of the findings from the present study to stoichiometric counterparts and to analogous dendrimer-based complexes, reveal that the presence of the second hyperbranched molecule incurs significant changes in the conformational characteristics of both components of the complex. Instead of step-like changes in the average size and shape of the hyperbranched component that were noted in the previously studied stoichiometric systems, a rather smooth change is observed upon increase of the length of the linear component. In addition, a markedly different behavior is also noticed in the conformational characteristics of the linear chain when compared to that in similar dendrimer-based systems. The above findings are consistent with the higher degree of deformability of the peripherally branched molecules which allow appropriate rearrangements in shape in order to accommodate the favorable Coulombic interactions between the two components of the complex. This behavior offers new insight towards the design of more efficient hyperbranched-based systems which can take advantage of the multifunctionality and the structural properties of the highly branched polymer components.
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
International Nuclear Information System (INIS)
Esmaeilzadeh Khadem, S.; Rezaee, M.
2001-01-01
In this paper the large amplitude and non-linear vibration of a string is considered. The initial tension, lateral vibration amplitude, diameter and the modulus of elasticity of the string have main effects on its natural frequencies. Increasing the lateral vibration amplitude makes the assumption of constant initial tension invalid. In this case, therefore, it is impossible to use the classical equation of string with small amplitude transverse motion assumption. On the other hand, by increasing the string diameter, the bending moment effect will increase dramatically, and acts as an impressive restoring moment. Considering the effects of the bending moments, the nonlinear equation governing the large amplitude transverse vibration of a string is derived. The time dependent portion of the governing equation has the from of Duff ing equation is solved using the perturbation theory. The results of the analysis are shown in appropriate graphs, and the natural frequencies of the string due to the non-linear factors are compared with the natural frequencies of the linear vibration os a string without bending moment effects
Directory of Open Access Journals (Sweden)
Tanwiwat Jaikuna
2017-02-01
Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
International Nuclear Information System (INIS)
Sardar, Dhiraj K.; Yow, Raylon M.; Gruber, John B.; Allik, Toomas H.; Zandi, Bahram
2006-01-01
Stark energy levels of the 4 F 3/2 , 4 I 9/2 , and 4 I 11/2 manifolds have been characterized using the room temperature fluorescence spectra for the 4 F 3/2 → 4 I 9/2 and 4 F 3/2 → 4 I 11/2 transitions of Nd 3+ (4f 3 ) in polycrystalline ceramic garnet Y 3 Al 5 O 12 (YAG). The emission cross-sections of the intermanifold transitions, 4 F 3/2 → 4 I 9/2 and 4 F 3/2 → 4 I 11/2 , as well as the principal inter-Stark transitions, R 1 →Z 5 (945.3 nm) and R 1 →Y 2 (1063.5 nm), have also been determined. These results are finally compared with those of Nd 3+ :YAG single crystal
Effects of pole flux distribution in a homopolar linear synchronous machine
Balchin, M. J.; Eastham, J. F.; Coles, P. C.
1994-05-01
Linear forms of synchronous electrical machine are at present being considered as the propulsion means in high-speed, magnetically levitated (Maglev) ground transportation systems. A homopolar form of machine is considered in which the primary member, which carries both ac and dc windings, is supported on the vehicle. Test results and theoretical predictions are presented for a design of machine intended for driving a 100 passenger vehicle at a top speed of 400 km/h. The layout of the dc magnetic circuit is examined to locate the best position for the dc winding from the point of view of minimum core weight. Measurements of flux build-up under the machine at different operating speeds are given for two types of secondary pole: solid and laminated. The solid pole results, which are confirmed theoretically, show that this form of construction is impractical for high-speed drives. Measured motoring characteristics are presented for a short length of machine which simulates conditions at the leading and trailing ends of the full-sized machine. Combination of the results with those from a cylindrical version of the machine make it possible to infer the performance of the full-sized traction machine. This gives 0.8 pf and 0.9 efficiency at 300 km/h, which is much better than the reported performance of a comparable linear induction motor (0.52 pf and 0.82 efficiency). It is therefore concluded that in any projected high-speed Maglev systems, a linear synchronous machine should be the first choice as the propulsion means.
Non-linear effects of the U.S. Monetary Policy in the Long Run
Olmos, Lorena; Sanso Frago, Marcos
2014-01-01
We find non-linearities in the U.S. long-run relationships among trend inflation, growth rate and financial frictions. Moreover, our results show that mismeasurements of the natural rate of interest deviate the trend inflation from its target, which is especially clear when monetary policy reacts preventively against inflation deviations. The long-run growth rate, the trend inflation and the natural rate of interest, specified as time-varying, are jointly estimated over the period 1960:Q1-201...
A kinetic formulation of piezoresistance in N-type silicon: Application to non-linear effects
Charbonnieras, A. R.; Tellier, C. R.
1999-07-01
This paper is devoted to the theoretical study of the influence of the temperature and of the doping on the piezoresistance of N-type silicon. In the first step the fractional change in the resistivity caused by stresses is calculated in the framework of a multivalley model using a kinetic transport formulation based on the Boltzmann transport equation. In the second step shifts in the minima of the conduction band and the resulting shift of the Fermi level are expressed in terms of deformation potentials and of stresses. General expressions for the fundamental linear, π_{11} and π_{12}, and non-linear, π_{111}, π_{112}, π_{122} and π_{123}, piezoresistance coefficients are then derived. Plots of the non-linear piezoresistance coefficients against the reduced shift of the Fermi level or against temperature allow us to characterize the influence of doping and temperature. Finally some attempts are made to estimate the non-linearity for heavily doped semiconductor gauges. Cette publication est consacrée à l'étude théorique de l'influence de la température et du dopage sur la piezorésistivité du silicium type N. Dans une première étape nous adoptons le modèle de vallées et nous utilisons une formulation cinétique du transport électronique faisant appel à l'équation de transport de Boltzmann pour calculer la variation de la résistivité du semiconducteur sous contrainte. Dans la deuxième étape nous exprimons les déplacements des minima de la bande de conduction et du niveau de Fermi en termes de potentiels de déformation et de contraintes. Nous proposons ensuite des expressions générales pour les coefficients piezorésistifs fondamentaux linéaires, π_{11} et π_{12}, et non-linéaires, π_{111}, π_{112}, π_{122} et π_{123}. Des représentations graphiques des variations des coefficients non-linéaires permettent de caractériser l'influence du dopage et de la température. Enfin nous fournissons une première pré-estimation des effets
Linear energy transfer (LET) effects in the radiation-induced inactivation of papain
International Nuclear Information System (INIS)
Bisby, R.H.; Cundall, R.B.; Sims, H.E.; Burns, W.G.
1977-01-01
The inactivation of dilute aqueous solutions of papain by radiations of varying linear energy transfer has been studied in N 2 , N 2 0 and O 2 -saturated solutions. The results obtained with low LET radiation are very similar to those previously reported by Lin et al (Radiation Res.;62:438(1975)). The additional data obtained at higher LET, when radical product yields are reduced and the yield of hydrogen peroxide is increased, show that the hydrogen atom is more important in the inactivation of papain than previously considered. (author)
Rosenblum, Michael; van der Laan, Mark J.
2010-01-01
Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation. PMID:20628636
Rosenblum, Michael; van der Laan, Mark J
2010-04-01
Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation.
Magezi, David A
2015-01-01
Linear mixed-effects models (LMMs) are increasingly being used for data analysis in cognitive neuroscience and experimental psychology, where within-participant designs are common. The current article provides an introductory review of the use of LMMs for within-participant data analysis and describes a free, simple, graphical user interface (LMMgui). LMMgui uses the package lme4 (Bates et al., 2014a,b) in the statistical environment R (R Core Team).
Bamia, Christina; White, Ian R; Kenward, Michael G
2013-07-10
Linear mixed models are often used for the analysis of data from clinical trials with repeated quantitative outcomes. This paper considers linear mixed models where a particular form is assumed for the treatment effect, in particular constant over time or proportional to time. For simplicity, we assume no baseline covariates and complete post-baseline measures, and we model arbitrary mean responses for the control group at each time. For the variance-covariance matrix, we consider an unstructured model, a random intercepts model and a random intercepts and slopes model. We show that the treatment effect estimator can be expressed as a weighted average of the observed time-specific treatment effects, with weights depending on the covariance structure and the magnitude of the estimated variance components. For an assumed constant treatment effect, under the random intercepts model, all weights are equal, but in the random intercepts and slopes and the unstructured models, we show that some weights can be negative: thus, the estimated treatment effect can be negative, even if all time-specific treatment effects are positive. Our results suggest that particular models for the treatment effect combined with particular covariance structures may result in estimated treatment effects of unexpected magnitude and/or direction. Methods are illustrated using a Parkinson's disease trial. Copyright © 2012 John Wiley & Sons, Ltd.
Effect of temperature and pressure on non-linear conduction in GeTeSe chalcogenide glass
International Nuclear Information System (INIS)
El-Mansy, M.K.
1998-01-01
The I-V characteristic curves were studied in the temperature range 301-359 K and pressure range up to 7.15 x 10 9 Pa which illustrate a non-linear behaviour below (high-resistance region) and beyond (negative-resistance region) a breakdown point characterising Ge 27 Te 62 Se 11 chalcogenide glasses. The general behaviour is shifted towards lower voltage and higher current when the ambient temperature and/or the applied pressure were increased. The non-linear behaviour in the pre breakdown region is discussed according to the Poole-Frenkel field emission of electrons from deep traps located at a depth equal to 0.372eV. The analysis of the effect of field on the non-linear conduction in Ge 27 Te 62 Se 11 chalcogenide glass suggests a modification of the energy difference between filled and empty sites, where the effect of pressure suggests a reduction of the energy gap width. The analysis based on simple thermal effects in the region closer to the breakdown point implies the electrothermal process initiating the negative resistance region. The results of post breakdown region (negative-resistance region) imply the electron hopping between filled and empty localised states at Fermi level. The density of localised states is estimated which lies in the range 5.7 x 10 16 -1.84 x 10 18 cm -3 /eV
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Tsai, Shirley C; Tsai, Chen S
2013-08-01
A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery.
Solow, Daniel
2014-01-01
This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Berberian, Sterling K
2014-01-01
Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.
Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
International Nuclear Information System (INIS)
Torres, J; Jonkers, J; Sande, M J van de; Mullen, J J A M van der; Gamero, A; Sola, A
2003-01-01
This paper discusses the possibility of determining, at the same time, both the electron density and temperature in a discharge produced at atmospheric pressure using the Stark broadening of lines spontaneously emitted by a plasma. This direct method allows us to obtain experimental results that are in good agreement with others previously obtained for the same type of discharge. Its advantages and disadvantages compared to other direct methods of diagnostics, namely Thomson scattering, are also discussed. (rapid communication)
Efficient non-linear two-photon effects from the Cesium 6D manifold
Haluska, Nathan D.; Perram, Glen P.; Rice, Christopher A.
2018-02-01
We report several non-linear process that occur when two-photon pumping the cesium 6D states. Cesium vapor possess some of the largest two-photon pump cross sections in nature. Pumping these cross sections leads to strong amplified spontaneous emission that we observe on over 17 lasing lines. These new fields are strong enough to couple with the pump to create additional tunable lines. We use a heat pipe with cesium densities of 1014 to 1016 cm-3 and 0 to 5 Torr of helium buffer gas. The cesium 6D States are interrogated by both high energy pulses and low power CW sources. We observe four-wave mixing, six-wave mixing, potential two-photon lasing, other unknown nonlinear processes, and the persistence of some processes at low thresholds. This system is also uniquely qualified to support two-photon lasing under the proper conditions.
Effect of accelerating gap geometry on the beam breakup instability in linear induction accelerators
International Nuclear Information System (INIS)
Miller, R.B.; Marder, B.M.; Coleman, P.D.; Clark, R.E.
1988-01-01
The electron beam in a linear induction accelerator is generally susceptible to growth of the transverse beam breakup instability. In this paper we analyze a new technique for reducing the transverse coupling between the beam and the accelerating cavities, thereby reducing beam breakup growth. The basic idea is that the most worrisome cavity modes can be cutoff by a short section of coaxial transmission line inserted between the cavity structure and the accelerating gap region. We have used the three-dimensional simulation code SOS to analyze this problem. In brief, we find that the technique works, provided that the lowest TE mode cutoff frequency in the coaxial line is greater than the frequency of the most worrisome TM mode of the accelerating cavity
Mitigation of ground motion effects via feedback systems in the Compact Linear Collider
Pfingstner, Jürgen; Schmickler, Hermann; Schulte, Daniel
The Compact Linear Collider (CLIC) is a future multi-TeV electron positron collider, which is currently being designed at CERN. To achieve its ambitious goals, CLIC has to produce particle beams of the highest quality, which makes the accelerator very sensitive to ground motion. Four mitigation methods have been foreseen by the CLIC design group to cope with the feasibility issue of ground motion. This thesis is concerned with the design of one of these mitigation methods, named linac feedback (L-FB), but also with the simultaneous simulation and validation of all mitigation methods. Additionally, a technique to improve the quality of the indispensable system knowledge has been developed. The L-FB suppresses beam oscillations along the accelerator. Its design is based on the decoupling of the overall accelerator system into independent channels. For each channel an individual compensator is found with the help of a semi- automatic control synthesis procedure. This technique allows the designer to incorporate ...
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
Effect of the new carbon fiber board of Elekta Precise linear accelerator on the radiation dose
International Nuclear Information System (INIS)
Gan Jiaying; Hu Yinxiang; Luo Yuanqiang; Hong Wei; Wang Zhiyong; Lu Bing; Jin Feng
2012-01-01
Objective: To investigate the dosimetric influence of pure carbon fiber treatment tabletop of Elekta Precise new linear accelerator in radiotherapy. Methods: Surface-axis distance (SAD) technology was employed for the measurement. Two groups of fields were set and both of them were SAD opposed portals (one of them went through the tabletop,while the other did not). A PTW electrometer and a 0.6 cm 3 Farmer ionization chamber were utilized for comparison measurement. Then dose attenuation of the main table board, extended body board, the extended board for head, neck and shoulders, and the joints of these boards were calculated. Results: Under the energy of 6 MV,the dose attenuations of the following locations were: 1.4% - 7.2% at the main treatment table board; 2.8% - 38.7%, 1.4% -30.1%, 1.5% -20.8% and 1.4% - 11.2%, respectively at distances of 1, 4, 7 and 8 cm from the joint of the main table board; 0.5% - 5.0% at the extended body board; 4.7% - 15.4% at distance of 1 cm from the joint of the extended body board; 0.5% -3.3% at the neck position of the extended board for head, neck and shoulders; 5.3% - 16.7% at the shoulder positions; and 6.8% -30.4% at the joint between the extended boards and the main table board. Conclusions: The dose attenuations of the new linear accelerator pure carbon fiber treatment tabletop vary at different locations. Considerable higher attenuations are observed at the table board joints than other locations. (authors)
Determination of Stark parameters by cross-calibration in a multi-element laser-induced plasma
Liu, Hao; Truscott, Benjamin S.; Ashfold, Michael N. R.
2016-05-01
We illustrate a Stark broadening analysis of the electron density Ne and temperature Te in a laser-induced plasma (LIP), using a model free of assumptions regarding local thermodynamic equilibrium (LTE). The method relies on Stark parameters determined also without assuming LTE, which are often unknown and unavailable in the literature. Here, we demonstrate that the necessary values can be obtained in situ by cross-calibration between the spectral lines of different charge states, and even different elements, given determinations of Ne and Te based on appropriate parameters for at least one observed transition. This approach enables essentially free choice between species on which to base the analysis, extending the range over which these properties can be measured and giving improved access to low-density plasmas out of LTE. Because of the availability of suitable tabulated values for several charge states of both Si and C, the example of a SiC LIP is taken to illustrate the consistency and accuracy of the procedure. The cross-calibrated Stark parameters are at least as reliable as values obtained by other means, offering a straightforward route to extending the literature in this area.
DEFF Research Database (Denmark)
Yan, Siqi; Gao, Shengqian; Zhou, Feng
2017-01-01
A novel concept to generate a linear chirped microwave signal is proposed and experimentally demonstrated. The frequency to time mapping method is employed, where the photonic crystal waveguide Mach-Zehnder interferometer structure acts as the spectral shaper thanks to the slow light effect. By o....... The utilization of the slow light effect brings in significant advantages, including the ultra-small footprint of 0.096 mm(2) and simple structure to our scheme, which may be of great importance towards its potential applications. (C) 2017 Optical Society of America...
Hassan, A K
2015-01-01
In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility.
Riviere, Marie-Karelle; Ueckert, Sebastian; Mentré, France
2016-10-01
Non-linear mixed effect models (NLMEMs) are widely used for the analysis of longitudinal data. To design these studies, optimal design based on the expected Fisher information matrix (FIM) can be used instead of performing time-consuming clinical trial simulations. In recent years, estimation algorithms for NLMEMs have transitioned from linearization toward more exact higher-order methods. Optimal design, on the other hand, has mainly relied on first-order (FO) linearization to calculate the FIM. Although efficient in general, FO cannot be applied to complex non-linear models and with difficulty in studies with discrete data. We propose an approach to evaluate the expected FIM in NLMEMs for both discrete and continuous outcomes. We used Markov Chain Monte Carlo (MCMC) to integrate the derivatives of the log-likelihood over the random effects, and Monte Carlo to evaluate its expectation w.r.t. the observations. Our method was implemented in R using Stan, which efficiently draws MCMC samples and calculates partial derivatives of the log-likelihood. Evaluated on several examples, our approach showed good performance with relative standard errors (RSEs) close to those obtained by simulations. We studied the influence of the number of MC and MCMC samples and computed the uncertainty of the FIM evaluation. We also compared our approach to Adaptive Gaussian Quadrature, Laplace approximation, and FO. Our method is available in R-package MIXFIM and can be used to evaluate the FIM, its determinant with confidence intervals (CIs), and RSEs with CIs. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession were collected in Mediterranean Sea from ship STARK between January 7, 1992 and January 31, 1992. The real time data of water temperature...
Directory of Open Access Journals (Sweden)
Djeniže S.
2000-01-01
Full Text Available In order to find reliable Stark width data, needed in plasma spectroscopy comparision between the existing measured, calculated and predicted Stark width values was performed for ten singly ionized emitters: C, N, O, F, Ne Si, P, S, Cl and Ar in the lower lying 3s - 3p, 3p - 3d and 4s - 4p transitions. These emitters are present in many cosmic light sources. On the basis of the agreement between mentioned values 17 spectral lines from six singly ionized spectra have been recommended, for the first time, for plasma spectroscopy as spectral lines with reliable Stark width data. Critical analysis of the existing Stark width data is also given.
National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Station Data from 17 stations; and Conductivity, Temperature and Depth (CTD) data from 49 casts were collected using ship Stark during cruises # 688-711....
International Nuclear Information System (INIS)
Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sökmen, I.
2012-01-01
In this present work, we have investigated theoretically the effects of applied electric and magnetic fields on the linear and nonlinear optical properties in a GaAs/Al x Ga 1−x As inverse parabolic quantum well for different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The energy levels and wave functions are calculated within the effective mass approximation and the envelope function approach. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The linear, third-order nonlinear and total absorption and refractive index changes depending on the Al concentration at the well center are investigated as a function of the incident photon energy for the different values of the applied electric and magnetic fields. The results show that the applied electric and magnetic fields have a great effect on these optical quantities. - Highlights: ► The x c concentration has a great effect on the optical characteristics of these structures. ► The EM fields have a great effect on the optical properties of these structures. ► The total absorption coefficients increased as the electric and magnetic field increases. ► The RICs reduced as the electric and magnetic field increases.
EFFECTIVENESS OF WASTE STABILIZATION PONDS IN REMOVAL OF LINEAR ALKYL BENZENE SALFONATE (LAS
Directory of Open Access Journals (Sweden)
Ahmed. M. Abdel-Rahman
2013-06-01
Full Text Available Detergents contain synthetic or organic surface active agents called surfactants, which are derived from petroleum product precursors. They have the common property of lowering the surface tensions of water thus allowing dirt or grease adhered to various articles to be washed off. Linear alkyl benzene sulfonate (LAS is a most commonly used anionic surfactant. Discharge of raw or treated wastewater containing this chemical substance into the environment causes major public health and enviromental problems. In this study, samples were taken from raw wastewater and effluents of treatment ponds of Elzaraby waste stabilization ponds over a period of one year. The treated effluent is either discharged into surface waters or re-used in agricultural irrigation. The samples were analyzed according to the standard methods. The results obtained from the samples taken in different seasons showed that the highest overall removal efficiency of LAS was achieved in summer season (77%, and the least efficiency was observed in Winter season (55%, while the maximum overall efficiency of BOD5 was in summer (88% and minimum efficiency was (73% in winter season. The Dissolved oxygen concentrations along the pond series (DO ranged from 0.18 to 4.8 mg/l.
Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew; Ivezić, Željko
2018-03-01
Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor track and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.
EFFECTIVENESS OF WASTE STABILIZATION PONDS IN REMOVAL OF LINEAR ALKYL BENZENE SALFONATE (LAS
Directory of Open Access Journals (Sweden)
Ahmed. M. Abdel-Rahman
2013-01-01
Full Text Available Detergents contain synthetic or organic surface active agents called surfactants, which are derived from petroleum product precursors. They have the common property of lowering the surface tensions of water thus allowing dirt or grease adhered to various articles to be washed off. Linear alkyl benzene sulfonate (LAS is a most commonly used anionic surfactant. Discharge of raw or treated wastewater containing this chemical substance into the environment causes major public health and enviromental problems. In this study, samples were taken from raw wastewater and effluents of treatment ponds of Elzaraby waste stabilization ponds over a period of one year. The treated effluent is either discharged into surface waters or re-used in agricultural irrigation. The samples were analyzed according to the standard methods. The results obtained from the samples taken in different seasons showed that the highest overall removal efficiency of LAS was achieved in summer season (77%, and the least efficiency was observed in Winter season (55%, while the maximum overall efficiency of BOD5 was in summer (88% and minimum efficiency was (73% in winter season. The Dissolved oxygen concentrations along the pond series (DO ranged from 0.18 to 4.8 mg/l.
The effect of the observer vantage point on perceived distortions in linear perspective images.
Todorović, Dejan
2009-01-01
Some features of linear perspective images may look distorted. Such distortions appear in two drawings by Jan Vredeman de Vries involving perceived elliptical, instead of circular, pillars and tilted, instead of upright, columns. Distortions may be due to factors intrinsic to the images, such as violations of the so-called Perkins's laws, or factors extrinsic to them, such as observing the images from positions different from their center of projection. When the correct projection centers for the two drawings were reconstructed, it was found that they were very close to the images and, therefore, practically unattainable in normal observation. In two experiments, enlarged versions of images were used as stimuli, making the positions of the projection centers attainable for observers. When observed from the correct positions, the perceived distortions disappeared or were greatly diminished. Distortions perceived from other positions were smaller than would be predicted by geometrical analyses, possibly due to flatness cues in the images. The results are relevant for the practical purposes of creating faithful impressions of 3-D spaces using 2-D images.
Meta-Analysis of Effect Sizes Reported at Multiple Time Points Using General Linear Mixed Model
Musekiwa, Alfred; Manda, Samuel O. M.; Mwambi, Henry G.; Chen, Ding-Geng
2016-01-01
Meta-analysis of longitudinal studies combines effect sizes measured at pre-determined time points. The most common approach involves performing separate univariate meta-analyses at individual time points. This simplistic approach ignores dependence between longitudinal effect sizes, which might result in less precise parameter estimates. In this paper, we show how to conduct a meta-analysis of longitudinal effect sizes where we contrast different covariance structures for dependence between effect sizes, both within and between studies. We propose new combinations of covariance structures for the dependence between effect size and utilize a practical example involving meta-analysis of 17 trials comparing postoperative treatments for a type of cancer, where survival is measured at 6, 12, 18 and 24 months post randomization. Although the results from this particular data set show the benefit of accounting for within-study serial correlation between effect sizes, simulations are required to confirm these results. PMID:27798661
International Nuclear Information System (INIS)
Angleton, G.M.; Lee, A.C.; Benjamin, S.A.
1986-01-01
The dependency of the beagle-dog life span on level of and age at exposure to 60 Co gamma radiation was analyzed by several techniques; one of these methods was linear model analysis. Beagles of both sexes were given single, bilateral exposures at 8, 28, or 55 days postcoitus (dpc) or at 2, 70, or 365 days postpartum (dpp). Dogs exposed at 8, 28, or 55 dpc or at 2 dpp received 0, 20, or 100 R, whereas those exposed at 70 or 365 dpp received 0 or 100 R. Beagles were designated initially either as sacrifice or as life-span animals. All deaths of life-span study animals were classified as spontaneous, hence for this group the mean age of death was a quantitative response that can be analyzed by linear model analysis techniques. Such analyses for each age group were performed, taking into account differences due to sex, linear and quadratic dependency on dose, and interaction between sex and dose. At this time most of the animals have reached 11 years of age. No significant effects of radiation on mean life span have been detected. 6 refs., 3 figs., 3 tabs