Linear Processing Design of Amplify-and-Forward Relays for Maximizing the System Throughput
Directory of Open Access Journals (Sweden)
Qiang Wang
2018-01-01
Full Text Available In this paper, firstly, we study the linear processing of amplify-and-forward (AF relays for the multiple relays multiple users scenario. We regard all relays as one special “relay”, and then the subcarrier pairing, relay selection and channel assignment can be seen as a linear processing of the special “relay”. Under fixed power allocation, the linear processing of AF relays can be regarded as a permutation matrix. Employing the partitioned matrix, we propose an optimal linear processing design for AF relays to find the optimal permutation matrix based on the sorting of the received SNR over the subcarriers from BS to relays and from relays to users, respectively. Then, we prove the optimality of the proposed linear processing scheme. Through the proposed linear processing scheme, we can obtain the optimal subcarrier paring, relay selection and channel assignment under given power allocation in polynomial time. Finally, we propose an iterative algorithm based on the proposed linear processing scheme and Lagrange dual domain method to jointly optimize the joint optimization problem involving the subcarrier paring, relay selection, channel assignment and power allocation. Simulation results illustrate that the proposed algorithm can achieve a perfect performance.
Horowitz, Stanley H; Niemira, James K
2013-01-01
The previous three editions of Power System Relaying offer comprehensive and accessible coverage of the theory and fundamentals of relaying and have been widely adopted on university and industry courses worldwide. With the third edition, the authors have added new and detailed descriptions of power system phenomena such as stability, system-wide protection concepts and discussion of historic outages. Power System Relaying, 4th Edition continues its role as an outstanding textbook on power system protection for senior and graduate students in the field of electric power engineering and a refer
Alternate transmission relaying based on interference alignment in 3-relay half-duplex MIMO systems
Park, Seongho; Park, Kihong; Ko, Youngchai; Alouini, Mohamed-Slim
2012-01-01
In a half-duplex relaying, the capacity pre-log factor 1/2 is a major drawback in spectral efficiency. This paper proposes a linear precoding/decoding scheme and an alternate relaying protocol in a dual-hop half-duplex system where three relays help the communication between the source and the destination. In our proposed scheme, we consider a phase incoherent method in relays in which the source alternately transmits message signals to the different relays. In addition, we propose a linear interference alignment scheme which can suppress the inter-relay interference resulting from the phase incoherence of relaying. Based on our analysis of degrees of freedom and our simulation results, we show that our proposed scheme achieves additional degrees of freedom compared to the conventional half-duplex relaying. © 2012 IEEE.
Alternate transmission relaying based on interference alignment in 3-relay half-duplex MIMO systems
Park, Seongho
2012-09-01
In a half-duplex relaying, the capacity pre-log factor 1/2 is a major drawback in spectral efficiency. This paper proposes a linear precoding/decoding scheme and an alternate relaying protocol in a dual-hop half-duplex system where three relays help the communication between the source and the destination. In our proposed scheme, we consider a phase incoherent method in relays in which the source alternately transmits message signals to the different relays. In addition, we propose a linear interference alignment scheme which can suppress the inter-relay interference resulting from the phase incoherence of relaying. Based on our analysis of degrees of freedom and our simulation results, we show that our proposed scheme achieves additional degrees of freedom compared to the conventional half-duplex relaying. © 2012 IEEE.
Coordinated Direct and Relay Transmission with Linear Non-Regenerative Relay Beamforming
DEFF Research Database (Denmark)
Sun, Fan; De Carvalho, Elisabeth; Popovski, Petar
2012-01-01
Joint processing of multiple communication flows in wireless systems has given rise to a number of novel transmission techniques, notably the two-way relaying, but also more general traffic scenarios, such as coordinated direct and relay (CDR) transmissions. In a CDR scheme the relay has a central...... role in managing the interference and boosting the overall system performance. In this letter we consider the case in which an amplify-and-forward relay has multiple antennas and can use beamforming to support the coordinated transmissions. We focus on one representative traffic type with one uplink...... user and one downlink user. Two different criteria for relay beamforming are analyzed: maximal weighted sum-rate and maximization of the worst-case weighted SNR. We propose iterative optimal solutions, as well as low-complexity near-optimal solutions....
Outage performance of two-way DF relaying systems with a new relay selection metric
Hyadi, Amal; Benjillali, Mustapha; Alouini, Mohamed-Slim
2012-01-01
This paper investigates a new constrained relay selection scheme for two-way relaying systems where two end terminals communicate simultaneously via a relay. The introduced technique is based on the maximization of the weighted sum rate of both
Interference alignment for degrees of freedom improvement in 3-relay half-duplex systems
Park, Seongho; Ko, Youngchai; Park, Kihong; Alouini, Mohamed-Slim
2011-01-01
In a half-duplex relaying, the capacity pre-log factor is a major drawback in spectral efficiency. This paper proposes a linear precoding scheme and an alternate relaying protocol in a dual-hop half-duplex system where three relays help
Interference alignment for degrees of freedom improvement in 3-relay half-duplex systems
Park, Seongho
2011-12-01
In a half-duplex relaying, the capacity pre-log factor is a major drawback in spectral efficiency. This paper proposes a linear precoding scheme and an alternate relaying protocol in a dual-hop half-duplex system where three relays help the communication between the source and the destination. In our proposed scheme, we consider a phase incoherent method in relays in which the source alternately transmits message signals to the different relays. In addition, we propose a linear interference alignment scheme which can eliminate the inter-relay interference resulted from the phase incoherence of relaying. Based on our analysis of degrees of freedom and our simulation results, we show that our proposed scheme achieves additional degrees of freedom compared to the conventional half-duplex relaying. © 2011 IEEE.
Airborne relay-based regional positioning system.
Lee, Kyuman; Noh, Hongjun; Lim, Jaesung
2015-05-28
Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.
Uniqueness of solutions of relay systems, Special Issue on Hybrid Systems
Lootsma, Y.J.; van der Schaft, Arjan; Camlıbel, M.K.
1999-01-01
Conditions are given for uniqueness of solutions of linear time-invariant systems under relay feedback. From a hybrid dynamical point of view this entails the deterministic specification of the discrete transition rules. The results are based on the formulation of relay systems as complementarity
Park, Kihong
2013-02-01
In this paper, we study a two-hop relaying network consisting of one source, one destination, and three amplify-and-forward (AF) relays with multiple antennas. To compensate for the capacity prelog factor loss of 1/2$ due to the half-duplex relaying, alternate transmission is performed among three relays, and the inter-relay interference due to the alternate relaying is aligned to make additional degrees of freedom. In addition, suboptimal linear filter designs at the nodes are proposed to maximize the achievable sum rate for different fading scenarios when the destination utilizes a minimum mean-square error filter. © 1967-2012 IEEE.
Modelling and Verification of Relay Interlocking Systems
DEFF Research Database (Denmark)
Haxthausen, Anne Elisabeth; Bliguet, Marie Le; Kjær, Andreas
2010-01-01
This paper describes how relay interlocking systems as used by the Danish railways can be formally modelled and verified. Such systems are documented by circuit diagrams describing their static layout. It is explained how to derive a state transition system model for the dynamic behaviour...
Improper Signaling for Virtual Full-Duplex Relay Systems
Gaafar, Mohamed
2017-02-14
Virtual full-duplex (VFD) is a powerful solution to compensate the rate loss of half-duplex relaying without the need to full-duplex capable nodes. Inter-relay interference (IRI) challenges the operation of VFD relaying systems. Recently, improper signaling is employed at both relays of the VFD to mitigate the IRI by imposing the same signal characteristics for both relays. To further boost the achievable rate performance, asymmetric time sharing VFD relaying system is adopted with different improper signals at the half-duplex relays. The joint tuning of the three design parameters improves the achievable rate performance at different ranges of IRI and different relays locations. Extensive simulation results are presented and analyzed to show the achievable rate gain of the proposed system and understand the system behavior.
Improper Signaling for Virtual Full-Duplex Relay Systems
Gaafar, Mohamed; Amin, Osama; Schaefer, Rafael F.; Alouini, Mohamed-Slim
2017-01-01
Virtual full-duplex (VFD) is a powerful solution to compensate the rate loss of half-duplex relaying without the need to full-duplex capable nodes. Inter-relay interference (IRI) challenges the operation of VFD relaying systems. Recently, improper signaling is employed at both relays of the VFD to mitigate the IRI by imposing the same signal characteristics for both relays. To further boost the achievable rate performance, asymmetric time sharing VFD relaying system is adopted with different improper signals at the half-duplex relays. The joint tuning of the three design parameters improves the achievable rate performance at different ranges of IRI and different relays locations. Extensive simulation results are presented and analyzed to show the achievable rate gain of the proposed system and understand the system behavior.
Outage performance of two-way DF relaying systems with a new relay selection metric
Hyadi, Amal
2012-04-01
This paper investigates a new constrained relay selection scheme for two-way relaying systems where two end terminals communicate simultaneously via a relay. The introduced technique is based on the maximization of the weighted sum rate of both users. To evaluate the performance of the proposed system, the outage probability is derived in a general case (where an arbitrary channel is considered), and then over independently but not necessarily identically distributed (i.n.i.d.) Rayleigh fading channels. The analytical results are verified through simulations. © 2012 IEEE.
An economically viable space power relay system
Bekey, Ivan; Boudreault, Richard
1999-09-01
This paper describes and analyzes the economics of a power relay system that takes advantage of recent technological advances to implement a system that is economically viable. A series of power relay systems are described and analyzed which transport power ranging from 1,250 megawatts to 5,000 megawatts, and distribute it to receiving sites at transcontinental distances. Two classes of systems are discussed—those with a single reflector and delivering all the power to a single rectenna, and a second type which has multiple reflectors and distributes it to 10 rectenna sites, sharing power among them. It is shown that when offering electricity at prices competitive to those prevalent in developed cities in the US that a low IRR is inevitable, and economic feasibility of a business is unlikely. However, when the target market is Japan where the prevalent electricity prices are much greater, that an IRR exceeding 65% is readily attainable. This is extremely attractive to potential investors, making capitalization of a venture likely. The paper shows that the capital investment required for the system can be less than 1 per installed watt, contributing less than 0.02 /KW-hr to the cost of energy provision. Since selling prices in feasible regions range from 0.18 to over 030 $/kW-hr, these costs are but a small fraction of the operating expenses. Thus a very large IRR is possible for such a business.
Improving throughput of single-relay DF channel using linear constellation precoding
Fareed, Muhammad Mehboob
2014-08-01
In this letter, we propose a transmission scheme to improve the overall throughput of a cooperative communication system with single decode-and-forward relay. Symbol error rate and throughput analysis of the new scheme are presented to facilitate the performance comparison with the existing decode-and-forward relaying schemes. Simulation results are further provided to corroborate the analytical results. © 2012 IEEE.
Improving throughput of single-relay DF channel using linear constellation precoding
Fareed, Muhammad Mehboob; Yang, Hongchuan; Alouini, Mohamed-Slim
2014-01-01
In this letter, we propose a transmission scheme to improve the overall throughput of a cooperative communication system with single decode-and-forward relay. Symbol error rate and throughput analysis of the new scheme are presented to facilitate the performance comparison with the existing decode-and-forward relaying schemes. Simulation results are further provided to corroborate the analytical results. © 2012 IEEE.
Large Efficient Intelligent Heating Relay Station System
Wu, C. Z.; Wei, X. G.; Wu, M. Q.
2017-12-01
The design of large efficient intelligent heating relay station system aims at the improvement of the existing heating system in our country, such as low heating efficiency, waste of energy and serious pollution, and the control still depends on the artificial problem. In this design, we first improve the existing plate heat exchanger. Secondly, the ATM89C51 is used to control the whole system and realize the intelligent control. The detection part is using the PT100 temperature sensor, pressure sensor, turbine flowmeter, heating temperature, detection of user end liquid flow, hydraulic, and real-time feedback, feedback signal to the microcontroller through the heating for users to adjust, realize the whole system more efficient, intelligent and energy-saving.
Quasi-period oscillations of relay feedback systems
International Nuclear Information System (INIS)
Wen Guilin; Wang Qingguo; Lee, T.H.
2007-01-01
This paper presents an analytical method for investigation of the existence and stability of quasi-period oscillations (torus solutions) for a class of relay feedback systems. The idea is to analyze Poincare map from one switching surface to the next based on the Hopf bifurcation theory of maps. It is shown that there exist quasi-period oscillations in certain relay feedback systems
Directory of Open Access Journals (Sweden)
Buha Danilo
2016-01-01
Full Text Available The relay protection settings performed in the largest thermal powerplant (TE "Nikola Tesla B" are reffered and explained in this paper. The first calculation step is related to the coordination of the maximum stator current limiter settings, the overcurrent protection with inverse characteristics settings and the permitted overload of the generator stator B1. In the second calculation step the settings of impedance generator protection are determined, and the methods and criteria according to which the calculations are done are described. Criteria used to provide the protection to fulfill the backup protection role in the event of malfunction of the main protection of the transmission system. are clarified. The calculation of all protection functions (32 functions of generator B1 were performed in the project "Coordination of relay protection blocks B1 and B2 with the system of excitation and power system protections -TENT B".
Protective relaying of power systems using mathematical morphology
Wu, QH; Ji, TY
2009-01-01
Discusses the development of novel protective relaying algorithms, using Mathematical Morphology (MM). This book introduces the fundamental principles of MM, and brings together the applications of MM to develop different protective relaying algorithms for the protection of a variety of power system components.
Cognitive Spectrum Efficient Multiple Access Technique using Relay Systems
DEFF Research Database (Denmark)
Frederiksen, Flemming Bjerge; Prasad, Ramjee
2007-01-01
Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context will be presented and discussed in this paper. Ideas to increase the coverage of cellular systems by relay channels, relay stations and collaborate...
Sum-Rate Maximization of Coordinated Direct and Relay Systems
DEFF Research Database (Denmark)
Sun, Fan; Popovski, Petar; Thai, Chan
2012-01-01
Joint processing of multiple communication flows in wireless systems has given rise to a number of novel transmission techniques, notably the two-way relaying based on wireless network coding. Recently, a related set of techniques has emerged, termed coordinated direct and relay (CDR) transmissions......, where the constellation of traffic flows is more general than the two-way. Regardless of the actual traffic flows, in a CDR scheme the relay has a central role in managing the interference and boosting the overall system performance. In this paper we investigate the novel transmission modes, based...... on amplify-and-forward, that arise when the relay is equipped with multiple antennas and can use beamforming. We focus on one representative traffic type, with one uplink and one downlink users and consider the achievable sum-rate maximization relay beamforming. The beamforming criterion leads to a non...
Implementation of a Relay Coordination System for the Mars Network
Allard, Daniel A.
2010-01-01
Mars network relay operations involve the coordination of lander and orbiter teams through long-term and short-term planning, tactical changes and post-pass analysis. Much of this coordination is managed through email traffic and point-to-point file data exchanges. It is often difficult to construct a complete and accurate picture of the relay situation at any given moment, as there is no centralized store of correlated relay data. The Mars Relay Operations Service (MaROS) is being implemented to address the problem of relay coordination for current and next-generation relay missions. The service is provided for the purpose of coordinating communications sessions between landed spacecraft assets and orbiting spacecraft assets at Mars. The service centralizes a set of functions previously distributed across multiple spacecraft operations teams, and as such greatly improves visibility into the end-to-end strategic coordination process. Most of the process revolves around the scheduling of communications sessions between the spacecraft during periods of time when a landed asset on Mars is geometrically visible by an orbiting spacecraft. These "relay" sessions are used to transfer data both to and from the landed asset via the orbiting asset on behalf of Earth-based spacecraft operators. This paper will discuss the relay coordination problem space, overview the architecture and design selected to meet system requirements, and describe the first phase of system implementation
Distance relay performance in future converter dominated power systems
DEFF Research Database (Denmark)
Sarkar, Moumita; Jia, Jundi; Yang, Guangya
2017-01-01
Increasing penetration of converter-based generations in power system has led to new system challenges. Short circuit power response from converter-based generations is different from that of traditional synchronous generators. Power electronic converters can be designed for over-current only up ...... of converter controls on fault current response of converter-based generations is also investigated. Index Terms—Converter control, distance relays, power system protection, system modelling....... to 1.1-1.25 times of its nominal value. Low availability of short circuit power can cause many challenges such as misoperation of distance relays. The aim of this paper is to investigate the effect of converter dominated systems on performance of distance relays. Backup functionality of the distance...... relay is major concern as miscoordination of backup relays in case of cascading faults can lead to severe stress in system, which can develop into blackout. In this paper, response of relays in traditional system is compared with response of relays in low short-circuit-current power systems. Impact...
Multistability and hidden attractors in a relay system with hysteresis
DEFF Research Database (Denmark)
Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Rubanov, Vasily G.
2015-01-01
with the neighborhood of that cycle. We show how the equilibrium point of a relay system disappears in a boundary-equilibrium bifurcation as the system enters the region of autonomous switching dynamics and demonstrate experimentally how a relay system can exhibit large amplitude chaotic oscillations at high values...... of the supply voltage. By investigating a four-dimensional model of the experimental relay system we finally show how a variety of hidden periodic, quasiperiodic and chaotic attractors arise, transform and disappear through different bifurcations. (C) 2015 Elsevier B.V. All rights reserved....
Beamforming Design for Coordinated Direct and Relay Systems
DEFF Research Database (Denmark)
Sun, Fan; De Carvalho, Elisabeth; Thai, Chan
2012-01-01
Joint processing of multiple communication flows in wireless systems has given rise to a number of novel transmission techniques, notably the two-way relaying based on wireless network coding. Recently, a related set of techniques has emerged, termed coordinated direct and relay (CDR) transmissions......, where the constellation of traffic flows is more general than the two-way. Regardless of the actual traffic flows, in a CDR scheme the relay has a central role in managing the interference. In this paper we investigate the novel transmission modes, based on amplify-and-forward, that arise when the relay...... an iterative solution, as well as derive an upper performance bound. The numerical results demonstrate a clear benefit from usage of multiple antennas at the relay node....
Decode and Zero-Forcing Forward Relaying with Relay Selection in Cognitive Radio Systems
Park, Kihong; Alouini, Mohamed-Slim
2014-01-01
In this paper, we investigate a cognitive radio (CR) relay network with multiple relay nodes that help forwarding the signal of CR users. Best relay selection is considered to take advantage of its low complexity of implementation. When the primary
Self-oscillations in dynamic systems a new methodology via two-relay controllers
Aguilar, Luis T; Fridman, Leonid; Iriarte, Rafael
2015-01-01
This monograph presents a simple and efficient two-relay control algorithm for generation of self-excited oscillations of a desired amplitude and frequency in dynamic systems. Developed by the authors, the two-relay controller consists of two relays switched by the feedback received from a linear or nonlinear system, and represents a new approach to the self-generation of periodic motions in underactuated mechanical systems. The first part of the book explains the design procedures for two-relay control using three different methodologies – the describing-function method, Poincaré maps, and the locus-of-a perturbed-relay-system method – and concludes with stability analysis of designed periodic oscillations. Two methods to ensure the robustness of two-relay control algorithms are explored in the second part, one based on the combination of the high-order sliding mode controller and backstepping, and the other on higher-order sliding-modes-based reconstruction of uncertainties and their compensation where...
Synthesis of relay control systems for nuclear reactors
International Nuclear Information System (INIS)
Postnikov, N.S.
1996-01-01
The problem on stabilizing an oscillatory-unstable reactor by a single-link relay system, the characteristics whereof have a dead zone and hysteresis loop, is considered. The methodology of synthesis of feedback law, providing for stochastic steady-state mode of reactor operation with the minimum frequency of control impact introduction is proposed. This methodology is applicable to general-type relay systems with arbitrary oscillatory-unstable objects. 6 refs., 5 figs
Spreading Sequence System for Full Connectivity Relay Network
Kwon, Hyuck M. (Inventor); Yang, Jie (Inventor); Pham, Khanh D. (Inventor)
2018-01-01
Fully connected uplink and downlink fully connected relay network systems using pseudo-noise spreading and despreading sequences subjected to maximizing the signal-to-interference-plus-noise ratio. The relay network systems comprise one or more transmitting units, relays, and receiving units connected via a communication network. The transmitting units, relays, and receiving units each may include a computer for performing the methods and steps described herein and transceivers for transmitting and/or receiving signals. The computer encodes and/or decodes communication signals via optimum adaptive PN sequences found by employing Cholesky decompositions and singular value decompositions (SVD). The PN sequences employ channel state information (CSI) to more effectively and more securely computing the optimal sequences.
Overlay cognitive radio systems with adaptive two-way relaying
Hyadi, Amal
2013-12-01
In this paper, we propose a spectrum sharing mechanism with a two-phase two-way relaying protocol for an overlay cognitive network. The system comprises two primary users (PUs) and two secondary users (SUs). One of the SUs acts as a relay for the PUs and gains spectrum sharing as long as he respects outage probability constraints of the primary system. Moreover, we consider that the relaying node performs an optimal power allocation scheme that minimizes the outage performance of the secondary receiver. Closed form expressions for the outage probability are derived for the cases of Decode-and-Forward (DF), Amplify-and-Forward (AF), and adaptive relaying. Numerical simulations are presented to illustrate and compare the obtained results. © 2013 IEEE.
Four-Way Relaying in Wireless Cellular Systems
DEFF Research Database (Denmark)
Liu, Huaping; Popovski, Petar; De Carvalho, Elisabeth
2013-01-01
Two-way relaying in wireless systems has initiated a large research effort during the past few years. Nevertheless, it represents only a specific traffic pattern and it is of interest to investigate other traffic patterns where such a simultaneous processing of information flows can bring...... performance advantage. In this paper we consider a \\emph{four-way relaying} scenario, where each of the two Mobile Stations (MSs) has a two-way connection to the same Base Station (BS), while each connection is through a dedicated Relay Station (RS). The RSs are placed in such a way that one RS...... of the new scheme for Decode-and-Forward (DF) operational model for the RS. We compare the performance with a state-of-the-art reference scheme, based on two-way relaying with DF. The results indicate that the achievable rate regions are significantly enlarged for the new scheme....
An airborne meteorological data collection system using satellite relay /ASDAR/
Bagwell, J. W.; Lindow, B. G.
1978-01-01
The paper describes the aircraft to satellite data relay (ASDAR) project which processes information collected by the navigation and data systems of widebody jet aircraft which cross data-sparse areas of the tropics and southern hemisphere. The ASDAR system consists of a data acquisition and control unit to acquire, store, and format latitude, longitude, altitude, wind speed, wind direction, and outside air temperature data; a transmitter to relay the formatted data via satellite to the ground; and a clock to time the data sampling and transmission periods.
Optical bus of centralized relay protection and automation system of ...
African Journals Online (AJOL)
The article deals with the system of information collection and transfer from a centralized relay protection and automation system for medium voltage electrical units based on a passive optical bus. The issues of electromagnetic compatibility of technical devices are also considered, and the intensity of electromagnetic ...
Decode and Zero-Forcing Forward Relaying with Relay Selection in Cognitive Radio Systems
Park, Kihong
2014-05-01
In this paper, we investigate a cognitive radio (CR) relay network with multiple relay nodes that help forwarding the signal of CR users. Best relay selection is considered to take advantage of its low complexity of implementation. When the primary user (PU) is located close to the relay nodes, the performance of the secondary network is severely degraded due to the interference power constraint during the transmission in the second hop. We propose a decode and zero-forcing forward scheme to suppress the interference power at the relay nodes and analyze the statistics of the end-to-end signal-to-noise ratio when the relay nodes are located arbitrarily and experience therefore non-identical Rayleigh fading channels. Numerical results validate our theoretical results and show that our proposed scheme improves the performance of the CR network when the PU is close to the relay nodes. © 2014 IEEE.
Xia, Minghua; Aissa, Sonia
2012-01-01
For cooperative amplify-and-forward (AF) relaying in spectrum-sharing wireless systems, secondary users share spectrum resources originally licensed to primary users to communicate with each other and, thus, the transmit power of secondary
Distance relay performance in future converter dominated power systems
Sarkar, Moumita; Jia, Jundi; Yang, Guangya
2017-01-01
Increasing penetration of converter-based generations in power system has led to new system challenges. Short circuit power response from converter-based generations is different from that of traditional synchronous generators. Power electronic converters can be designed for over-current only up to 1.1-1.25 times of its nominal value. Low availability of short circuit power can cause many challenges such as misoperation of distance relays. The aim of this paper is to investigate the effect of...
Xia, Minghua
2012-11-01
For cooperative amplify-and-forward (AF) relaying in spectrum-sharing wireless systems, secondary users share spectrum resources originally licensed to primary users to communicate with each other and, thus, the transmit power of secondary transmitters is strictly limited by the tolerable interference powers at primary receivers. Furthermore, the received signals at a relay and at a secondary receiver are inevitably interfered by the signals from primary transmitters. These co-channel interferences (CCIs) from concurrent primary transmission can significantly degrade the performance of secondary transmission. This paper studies the effect of CCIs on outage probability of the secondary link in a spectrum-sharing environment. In particular, in order to compensate the performance loss due to CCIs, the transmit powers of a secondary transmitter and its relaying node are respectively optimized with respect to both the tolerable interference powers at the primary receivers and the CCIs from the primary transmitters. Moreover, when multiple relays are available, the technique of opportunistic relay selection is exploited to further improve system performance with low implementation complexity. By analyzing lower and upper bounds on the outage probability of the secondary system, this study reveals that it is the tolerable interference powers at primary receivers that dominate the system performance, rather than the CCIs from primary transmitters. System designers will benefit from this result in planning and designing next-generation broadband spectrum-sharing systems.
Robust Tomlinson-Harashima precoding for non-regenerative multi-antenna relaying systems
Xing, Chengwen
2012-04-01
In this paper, we consider the robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying systems. THP is adopted at the source to mitigate the spatial inter-symbol interference and then a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. Based on the elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the optimization problem is greatly simplified and can be efficiently solved. Finally, the performance advantage of the proposed robust design is assessed by simulation results. © 2012 IEEE.
Robust Transceiver with Tomlinson-Harashima Precoding for Amplify-and-Forward MIMO Relaying Systems
Xing, Chengwen
2012-09-01
In this paper, robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplifyand-forward (AF) multiple-input multiple-output (MIMO) relaying systems is investigated. At source node, THP is adopted to mitigate the spatial intersymbol interference. However, due to its nonlinear nature, THP is very sensitive to channel estimationerrors. In order to reduce the effects of channel estimation errors, a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. With novel applications of elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the transceiver design problem reduces to a much simpler one with only scalar variables which can be efficiently solved. Finally, the performance advantage of the proposed robust design over non-robust design is demonstrated by simulation results.
Physical-Layer Security of a Buffer-Aided Full-Duplex Relaying System
El Shafie, Ahmed
2016-07-07
This letter proposes a novel hybrid half-/full-duplex relaying scheme to enhance the relay channel security. A source node (Alice) communicates with her destination node (Bob) in the presence of a buffer-aided full-duplex relay node (Rooney) and a potential eavesdropper (Eve). Rooney adopts two different relaying, namely randomize-and-forward and decode-andforward relaying strategies, to improve the security of the legitimate system. In the first relaying strategy, Rooney uses a codebook different from that used at Alice. In the second relaying strategy, Rooney and Alice use the same codebooks. In addition, Rooney switches between half-duplex and full-duplex modes to further enhance the security of the legitimate system. The numerical results demonstrate that our proposed scheme achieves a significant average secrecy end-to-end throughput improvement relative to the conventional bufferless full-duplex relaying scheme.
Physical-Layer Security of a Buffer-Aided Full-Duplex Relaying System
El Shafie, Ahmed; Salem, Ahmed Sultan; Al-Dhahir, Naofal
2016-01-01
This letter proposes a novel hybrid half-/full-duplex relaying scheme to enhance the relay channel security. A source node (Alice) communicates with her destination node (Bob) in the presence of a buffer-aided full-duplex relay node (Rooney) and a potential eavesdropper (Eve). Rooney adopts two different relaying, namely randomize-and-forward and decode-andforward relaying strategies, to improve the security of the legitimate system. In the first relaying strategy, Rooney uses a codebook different from that used at Alice. In the second relaying strategy, Rooney and Alice use the same codebooks. In addition, Rooney switches between half-duplex and full-duplex modes to further enhance the security of the legitimate system. The numerical results demonstrate that our proposed scheme achieves a significant average secrecy end-to-end throughput improvement relative to the conventional bufferless full-duplex relaying scheme.
Buha Danilo; Buha Boško; Jačić Dušan; Gligorov Saša; Božilov Marko; Marinković Savo; Milosavljević Srđan
2016-01-01
The relay protection settings performed in the largest thermal powerplant (TE "Nikola Tesla B") are reffered and explained in this paper. The first calculation step is related to the coordination of the maximum stator current limiter settings, the overcurrent protection with inverse characteristics settings and the permitted overload of the generator stator B1. In the second calculation step the settings of impedance generator protection are determined, and the methods and criteria according ...
Park, Kihong; Alouini, Mohamed-Slim
2013-01-01
In this paper, we study a two-hop relaying network consisting of one source, one destination, and three amplify-and-forward (AF) relays with multiple antennas. To compensate for the capacity prelog factor loss of 1/2$ due to the half-duplex relaying
Relay Placement for FSO Multihop DF Systems With Link Obstacles and Infeasible Regions
Zhu, Bingcheng
2015-05-19
Optimal relay placement is studied for free-space optical multihop communication with link obstacles and infeasible regions. An optimal relay placement scheme is proposed to achieve the lowest outage probability, enable the links to bypass obstacles of various geometric shapes, and place the relay nodes in specified available regions. When the number of relay nodes is large, the searching space can grow exponentially, and thus, a grouping optimization technique is proposed to reduce the searching time. We numerically demonstrate that the grouping optimization can provide suboptimal solutions close to the optimal solutions, but the average searching time linearly grows with the number of relay nodes. Two useful theorems are presented to reveal insights into the optimal relay locations. Simulation results show that our proposed optimization framework can effectively provide desirable solution to the problem of optimal relay nodes placement. © 2015 IEEE.
Seismic qualification of the rotary relay for use in the solid state protection system
International Nuclear Information System (INIS)
Vogeding, E.L.; Jarecki, S.J.
1976-01-01
The seismic qualification of a rotary relay that can be used as a replacement for the type of relay located in the output section of the Solid State Protection System is described. The qualification test results indicate that the tested relays did not exhibit any contact bounce or abnormal operation; they performed satisfactorily before, during, and after the simulated seismic vibration tests
Achievable Rates of UAV-Relayed Cooperative Cognitive Radio MIMO Systems
Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim
2017-01-01
We study the achievable rate of an uplink MIMO cognitive radio system where the primary user (PU) and the secondary user (SU) aim to communicate to the closest primary base station (BS) via a multi-access channel through the same unmanned aerial vehicle (UAV) relay. The SU message is then forwarded from the primary BS to the secondary network with a certain incentive reward as a part of the cooperation protocol between both networks. A special linear precoding scheme is proposed to enable the SU to exploit the PU free eigenmodes. We analyze two scenarios in which the UAV relay gain matrix is either fixed or optimized. We derive the optimal power allocation that maximizes the achievable rate of the SU respecting power budget, interference, and relay power constraints. Numerical results highlight the cognitive rate gain of our proposed scheme with respect to various problem parameters. We also highlight the effect of UAV altitude on the SU and PU rates. Finally, when the relay matrix is optimized, we show that the PU rate is remarkably enhanced and that the SU rate is only improved at high power regime.
Achievable Rates of UAV-Relayed Cooperative Cognitive Radio MIMO Systems
Sboui, Lokman
2017-04-19
We study the achievable rate of an uplink MIMO cognitive radio system where the primary user (PU) and the secondary user (SU) aim to communicate to the closest primary base station (BS) via a multi-access channel through the same unmanned aerial vehicle (UAV) relay. The SU message is then forwarded from the primary BS to the secondary network with a certain incentive reward as a part of the cooperation protocol between both networks. A special linear precoding scheme is proposed to enable the SU to exploit the PU free eigenmodes. We analyze two scenarios in which the UAV relay gain matrix is either fixed or optimized. We derive the optimal power allocation that maximizes the achievable rate of the SU respecting power budget, interference, and relay power constraints. Numerical results highlight the cognitive rate gain of our proposed scheme with respect to various problem parameters. We also highlight the effect of UAV altitude on the SU and PU rates. Finally, when the relay matrix is optimized, we show that the PU rate is remarkably enhanced and that the SU rate is only improved at high power regime.
On the throughput of cognitive radio MIMO systems assisted with UAV relays
Sboui, Lokman
2017-07-20
We analyze the achievable rates of a cognitive radio MIMO system assisted by an unmanned aerial vehicle (UAV) relay. The primary user (PU) and the secondary user (SU) aim to communicate to the closest primary base station (BS) via a multi-access channel through the same UAV relay. The SU message is then forwarded from the primary BS to the secondary network with a certain incentive reward as a part of the cooperation protocol between both networks. We propose a special linear precoding scheme to enable the SU to exploit the PU free eigenmodes. We, also, present the expression of the power maximizing both primary and secondary rates under power budget, relay power, and interference constraints. In the numerical results, we evaluate the PU and SU rates of proposed scheme with respect to various problem parameters. We also highlight the effect of the UAV altitude on the SU and PU rates. Finally, we show that the relay matrix variation affects both rates that reach their peaks at different values of the matrix.
Switched diversity strategies for dual-hop relaying systems
Gaaloul, Fakhreddine; Alouini, Mohamed-Slim; Radaydeh, Redha M.
2011-01-01
This paper investigates the effect of different switched diversity configurations on the implementation complexity and achieved performance of dual-hop amplify-and-forward (AF) relaying networks. A low-complexity model of the relay station
International Nuclear Information System (INIS)
Lim, Mu Ji; Jung, Hae Sang
1974-10-01
This book is divided into two chapters, which deals with protective relay. The first chapter deals with the basic knowledge of relay on development of relay, classification of protective relay, rating of protective relay general structure of protective relay, detecting of ground protection, about point of contact, operating relay and trip relaying. The second chapter is about structure and explanation of relay on classification by structure such as motor type and moving-coil type, explanation of other relays over current relay, over voltage relay, short voltage relay, relay for power, relay for direction, test of over voltage relay, test of short voltage relay and test of directional circuit relay.
DEFF Research Database (Denmark)
Bak, Claus Leth; Sztykiel, Michal; Dollerup, Sebastian
2011-01-01
Based on the analysis of a specific relay model and an HVAC (High Voltage Alternating Current) cable system, a new approach to EMTDC/PSCAD modelling of protective relays is presented. Such approach allows creating complex and accurate relay models derived from the original algorithms. Relay models...... can be applied with various systems, allowing obtaining the most optimal configuration of the protective relaying. The present paper describes modelling methodology on the basis of Siemens SIPROTEC 4 7SD522/610. Relay model was verified experimentally with its real equivalent by both EMTP......-simulated and real world generated current signals connected to the relay....
Non linear system become linear system
Directory of Open Access Journals (Sweden)
Petre Bucur
2007-01-01
Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.
Polar On-Line Acquisition Relay and Transmission System (POLARATS)
Energy Technology Data Exchange (ETDEWEB)
Yuracko, K.
2004-07-15
POLARATS (Polar On-Line Acquisition Relay And Transmission System) is being developed by YAHSGS LLC (YAHSGS) and Oak Ridge National Laboratory (ORNL) to provide remote, unattended monitoring of environmental parameters under harsh environmental conditions. In particular, instrumental design and engineering is oriented towards protection of human health in the Arctic, and with the additional goal of advancing Arctic education and research. POLARATS will obtain and transmit environmental data from hardened monitoring devices deployed in locations important to understanding atmospheric and aquatic pollutant migration as it is biomagnified in Arctic food chains. An Internet- and personal computer (PC)-based educational module will provide real time sensor data, on-line educational content, and will be integrated with workbooks and textbooks for use in middle and high school science programs. The educational elements of POLARATS include an Internet-based educational module that will instruct students in the use of the data and how those data fit into changing Arctic environments and food chains. POLARATS will: (1) Enable students, members of the community, and scientific researchers to monitor local environmental conditions in real time over the Internet; and (2) Provide additional educational benefits through integration with middle- and high-school science curricula. Information will be relayed from POLARATS devices to classrooms and libraries along with custom-designed POLARATS teaching materials that will be integrated into existing curricula to enhance the educational benefits realized from the information obtained.
Formal Development of a Tool for Automated Modelling and Verification of Relay Interlocking Systems
DEFF Research Database (Denmark)
Haxthausen, Anne Elisabeth; Kjær, Andreas A.; Le Bliguet, Marie
2011-01-01
This paper describes a tool for formal modelling relay interlocking systems and explains how it has been stepwise, formally developed using the RAISE method. The developed tool takes the circuit diagrams of a relay interlocking system as input and gives as result a state transition system modelling...
Relay telescope for high power laser alignment system
Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.
2006-09-19
A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.
Is a Multi-Hop Relay Scheme Gainful in an IEEE 802.22-Based Cognitive Radio System?
Shin, Jungchae; Lee, Dong-Kyu; Cho, Ho-Shin
In this paper, we formulate a plan to operate multi-hop relays in IEEE 802.22-based cognitive radio (CR) systems and evaluate system performance to consider the propriety of a multi-hop relay scheme in CR systems. A centralized radio resource management and a simple deployment of relay stations (RSs) are assessed to make relay operations feasible under CR conditions. Simulation results show that the proposed multi-hop relay scheme significantly increases system throughput compared to a no-relay CR system as the incumbent user (IU) traffic gets heavier. Furthermore, the optimal number of hops can be determined given the traffic conditions.
Precoder Design and Power Allocation for MIMO Cognitive Radio Two-Way Relaying Systems
Sboui, Lokman
2016-08-11
In this paper, we study a multiple-antenna two-way relaying (TWR) cognitive radio (CR) system. A space alignment (SA) technique is adopted by the secondary users (SUs) to avoid interference with the primary users (PUs). We derive the optimal power allocation that maximizes the TWR achievable SU sum- rate while respecting the total power budget and the relay power constraints. We also analyze the case in which the relay is able to optimize its gain matrix structure to enhance the SU sum-rate. In the numerical results, we quantify the sum-rate gain of using the SA in the TWR CR and we show that the SU sum-rate is very limited when the relay power is low or the PU power and its resulting interference are high. In addition, we optimize the relay gain using an iterative algorithm and compare between different relay matrix structures.
Benkhelifa, Fatma
2015-05-01
In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) for a decode-and-forward (DF) multiple-input multiple-output (MIMO) relay system where the relay is an energy harvesting node. We consider the ideal scenario where both the energy harvesting (EH) receiver and information decoding (ID) receiver at the relay have access to the whole received signal and its energy. The relay harvests the energy while receiving the signal from the source and uses the harvested power to forward the signal to the destination. We obtain the optimal precoders at the source and the relay to maximize the achievable throughput rate of the overall link. In the numerical results, the effect of the transmit power at the source and the position of the relay between the source and the destination on the maximum achievable rate are investigated. © 2015 IEEE.
Simultaneous Wireless Information and Power Transfer for MIMO Amplify-and-Forward Relay Systems
Benkhelifa, Fatma; Alouini, Mohamed-Slim
2016-01-01
In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) for the two-hop Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication systems with the multiantenna energy harvesting relay. We derive the optimal source and relay covariance matrices to characterize the achievable region between the sourcedestination rate and the harvested energy at the relay, namely Rate-Energy (R-E) region. In this context, we consider the ideal scenario where the energy harvester (EH) receiver and the information decoder (ID) receiver at the relay can simultaneously decode the information and harvest the energy at the relay. Then, we consider more practical schemes which are the power splitting (PS) and the time switching (TS) which separate the EH and ID transfer over the power domain and the time domain, respectively.
Simultaneous Wireless Information and Power Transfer for MIMO Amplify-and-Forward Relay Systems
Benkhelifa, Fatma
2016-01-06
In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) for the two-hop Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication systems with the multiantenna energy harvesting relay. We derive the optimal source and relay covariance matrices to characterize the achievable region between the sourcedestination rate and the harvested energy at the relay, namely Rate-Energy (R-E) region. In this context, we consider the ideal scenario where the energy harvester (EH) receiver and the information decoder (ID) receiver at the relay can simultaneously decode the information and harvest the energy at the relay. Then, we consider more practical schemes which are the power splitting (PS) and the time switching (TS) which separate the EH and ID transfer over the power domain and the time domain, respectively.
Tracking and data relay satellite system (TDRSS) capabilities
Spearing, R. E.
1985-10-01
The Tracking and Data Relay Satellite System (TDRSS) is the latest implementation to tracking and data acquisition network for near-earth orbiting satellite support designed to meet the requirements of the current and projected (to the year 2000) satellite user community. The TDRSS consists of a space segment (SS) and a ground segment (GS) that fit within NASA's Space Network (SN) complex controlled at the Goddard Space Flight Center. The SS currently employs a single satellite, TDRS-1, with two additional satellites to be deployed in January 1986 and July 1986. The GS contains the communications and equipment required to manage the three TDR satellites and to transmit and receive information to and from TDRSS user satellites. Diagrams and tables illustrating the TDRSS signal characteristics, the situation of TDRSS within the SN, the SN operations and element interrelationships, as well as future plans for new missions are included.
Kwon, JaeWoo; Park, Kihong; Ko, Youngchai; Yang, Hongchuan
2012-01-01
In this paper, we investigate a relay enhanced cellular system, where a relay station is located in the overlap area served by two base stations. We propose cooperative joint precoding schemes for the downlink transmission of such relay enhanced cellular system to maximize the system capacity while minimizing the interference at both the relay station and the mobile stations. We formulate the optimization problems to maximize the system capacity and design the multiuser precoding vectors at each base station and the relay station. We quantify the ergodic rate performance of the proposed multiuser precoding schemes through statistical analysis. The extensively derived ergodic expressions will facilitate the accurate performance evaluation of the proposed transmission schemes. Numerical results show that the proposed schemes can effectively cancel the interference and improve the sum rate and the outage performance for cell edge users. © 2002-2012 IEEE.
On the Performance of a Wireless Powered Communication System Using a Helping Relay
Directory of Open Access Journals (Sweden)
T. N. Nguyen
2017-09-01
Full Text Available This paper studies the outage performance and system throughput of a bidirectional wireless information and power transfer system with a helping relay. The relay helps forward wireless power from the access point (AP to the user, and also the information from the user to the AP in the reverse direction. We assume that the relay uses time switching based energy harvesting protocol. The analytical results provide theoretical insights into the effect of various system parameters, such as time switching factor, source transmission rate, transmitting-power-to-noise ratio to system performance for both amplify-and-forward and decode-and-forward relaying protocols. The optimal time switching ratio is determined in each case to maximize the information throughput from the user to the AP subject to the energy harvesting and consumption balance constraints at both the relay and the user. All of the above analyses are confirmed by Monte-Carlo simulation.
Kwon, JaeWoo
2012-10-01
In this paper, we investigate a relay enhanced cellular system, where a relay station is located in the overlap area served by two base stations. We propose cooperative joint precoding schemes for the downlink transmission of such relay enhanced cellular system to maximize the system capacity while minimizing the interference at both the relay station and the mobile stations. We formulate the optimization problems to maximize the system capacity and design the multiuser precoding vectors at each base station and the relay station. We quantify the ergodic rate performance of the proposed multiuser precoding schemes through statistical analysis. The extensively derived ergodic expressions will facilitate the accurate performance evaluation of the proposed transmission schemes. Numerical results show that the proposed schemes can effectively cancel the interference and improve the sum rate and the outage performance for cell edge users. © 2002-2012 IEEE.
Ahmed, Qasim Zeeshan
2015-02-01
In this paper, a new detector is proposed for an amplify-and-forward (AF) relaying system. The detector is designed to minimize the symbol-error-rate (SER) of the system. The SER surface is non-linear and may have multiple minimas, therefore, designing an SER detector for cooperative communications becomes an optimization problem. Evolutionary based algorithms have the capability to find the global minima, therefore, evolutionary algorithms such as particle swarm optimization (PSO) and differential evolution (DE) are exploited to solve this optimization problem. The performance of proposed detectors is compared with the conventional detectors such as maximum likelihood (ML) and minimum mean square error (MMSE) detector. In the simulation results, it can be observed that the SER performance of the proposed detectors is less than 2 dB away from the ML detector. Significant improvement in SER performance is also observed when comparing with the MMSE detector. The computational complexity of the proposed detector is much less than the ML and MMSE algorithms. Moreover, in contrast to ML and MMSE detectors, the computational complexity of the proposed detectors increases linearly with respect to the number of relays.
Benkhelifa, Fatma; Alouini, Mohamed-Slim
2017-01-01
In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) in a Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication system where the relay is an energy harvesting (EH) node
Interactive effects of relay and circuit breaker aging in a safety-related system
International Nuclear Information System (INIS)
Toman, G.J.; Bacanskas, V.P.; Shook, T.A.; Ladlow, C.C.; Gunther, W.
1987-01-01
This paper provides an overview of the results of a program to evaluate the aging of circuit breakers and relays and the effects of that aging on the function of a safety system used in nuclear power plants. The program was performed under the Nuclear Plant Aging Research (NPAR) Program of the US Nuclear Regulatory Commission under subcontract to Brookhaven National Laboratory. There were two primary aspects to the program. In the first, the aging and failure modes of relays and circuit breakers were determined by evaluating the construction, design, and materials and the failure data related to nuclear power plant service. In the second, the interactions between a safety system and its relays and circuit breakers were evaluated to determine the effects of relay and circuit breaker aging on the function of the safety system. The aging of relays and circuit breakers was assessed through evaluation of failure data bases, discussions with utility personnel, and evaluation of equipment operating and maintenance manuals. The interaction study was based on an analysis of the safety injection system of a pressurized water reactor. The effects of stresses from the system were analyzed for the tendency to cause deterioration of the relays and circuit breakers in the system. Then the effect of the deterioration of relays and circuit breakers on the functional capability of the safety system was evaluated
Simultaneous Wireless Information and Power Transfer for MIMO Amplify-and-Forward Relay Systems
Benkhelifa, Fatma
2016-03-28
© 2015 IEEE. In this paper, we investigate two-hop Multiple- Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication systems with simultaneous wireless information and power transfer (SWIPT) at the multi-antenna energy harvesting relay. We derive the optimal source and relay covariance matrices to characterize the achievable region between the source-destination rate and the harvested energy at the relay, namely Rate-Energy (R-E) region. In this context, we consider the ideal scenario where the energy harvester (EH) receiver and the information decoder (ID) receiver at the relay can simultaneously decode the information and harvest the energy at the relay. This scheme provides an outer bound for the achievable R-E region since practical energy harvesting circuits are not yet able to harvest the energy and decode the information simultaneously. Then, we consider more practical schemes which are the power splitting (PS) and the time switching (TS) proposed in [1] and which separate the EH and ID transfer over the power domain and the time domain, respectively. In our study, we derive the boundary of the achievable R- E region and we show the effect of the source transmit power, the relay transmit power and the position of the relay between the source and the destination on the achievable R-E region for the ideal scenario and the two practical schemes.
Error-rate performance analysis of cooperative OFDMA system with decode-and-forward relaying
Fareed, Muhammad Mehboob; Uysal, Murat; Tsiftsis, Theodoros A.
2014-01-01
In this paper, we investigate the performance of a cooperative orthogonal frequency-division multiple-access (OFDMA) system with decode-and-forward (DaF) relaying. Specifically, we derive a closed-form approximate symbol-error-rate expression and analyze the achievable diversity orders. Depending on the relay location, a diversity order up to (LSkD + 1) + σ M m = 1 min(LSkRm + 1, LR mD + 1) is available, where M is the number of relays, and LS kD + 1, LSkRm + 1, and LRmD + 1 are the lengths of channel impulse responses of source-to-destination, source-to- mth relay, and mth relay-to-destination links, respectively. Monte Carlo simulation results are also presented to confirm the analytical findings. © 2013 IEEE.
Error-rate performance analysis of cooperative OFDMA system with decode-and-forward relaying
Fareed, Muhammad Mehboob
2014-06-01
In this paper, we investigate the performance of a cooperative orthogonal frequency-division multiple-access (OFDMA) system with decode-and-forward (DaF) relaying. Specifically, we derive a closed-form approximate symbol-error-rate expression and analyze the achievable diversity orders. Depending on the relay location, a diversity order up to (LSkD + 1) + σ M m = 1 min(LSkRm + 1, LR mD + 1) is available, where M is the number of relays, and LS kD + 1, LSkRm + 1, and LRmD + 1 are the lengths of channel impulse responses of source-to-destination, source-to- mth relay, and mth relay-to-destination links, respectively. Monte Carlo simulation results are also presented to confirm the analytical findings. © 2013 IEEE.
Wang, Rui; Tao, Meixia; Mehrpouyan, Hani; Hua, Yingbo
2014-01-01
In this paper, while considering the impact of antenna correlation and the interference from neighboring users, we analyze channel estimation and training sequence design for multi-input multi-output (MIMO) two-way relay (TWR) systems. To this end, we propose to decompose the bidirectional transmission links into two phases, i.e., the multiple access (MAC) phase and the broadcasting (BC) phase. By considering the Kronecker-structured channel model, we derive the optimal linear minimum mean-sq...
Callier, Frank M.; Desoer, Charles A.
1991-01-01
The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.
Dual-Hop VLC/RF Transmission System with Energy Harvesting Relay under Delay Constraint
Rakia, Tamer; Yang, Hong-Chuan; Gebali, Fayez; Alouini, Mohamed-Slim
2017-01-01
In this paper, we introduce a dual-hop visible light communication (VLC) / radio frequency (RF) transmission system to extend the coverage of indoor VLC systems. The relay between the two hops is able to harvest light energy from different
Coordinated Direct and Relay Transmission with Interference Cancelation in Wireless Systems
DEFF Research Database (Denmark)
Thai, Chan; Popovski, Petar
2011-01-01
Two-way relaying schemes in wireless systems obtain throughput gain by utilizing two features (1) jointly serve two communication flows, thus implementing network coding and (2) use of information that is a priori known to cancel interference and obtain the desired signal. Based on these principles......, we propose other schemes that bring throughput gains in wireless cellular systems, where relayed and direct transmissions are carried out in coordinated way. The results show that the coordinated transmission exhibit throughput improvement similar to the two–way relaying schemes....
Relay selection in cooperative communication systems over continuous time-varying fading channel
Directory of Open Access Journals (Sweden)
Ke Geng
2017-02-01
Full Text Available In this paper, we study relay selection under outdated channel state information (CSI in a decode-and-forward (DF cooperative system. Unlike previous researches on cooperative communication under outdated CSI, we consider that the channel varies continuously over time, i.e., the channel not only changes between relay selection and data transmission but also changes during data transmission. Thus the level of accuracy of the CSI used in relay selection degrades with data transmission. We first evaluate the packet error rate (PER of the cooperative system under continuous time-varying fading channel, and find that the PER performance deteriorates more seriously under continuous time-varying fading channel than when the channel is assumed to be constant during data transmission. Then, we propose a repeated relay selection (RRS strategy to improve the PER performance, in which the forwarded data is divided into multiple segments and relay is reselected before the transmission of each segment based on the updated CSI. Finally, we propose a combined relay selection (CRS strategy which takes advantage of three different relay selection strategies to further mitigate the impact of outdated CSI.
Hyadi, Amal; Benjillali, Mustapha; Alouini, Mohamed-Slim; Da Costa, Daniel Benevides Da
2013-01-01
Multihop relaying is an efficient strategy to improve the connectivity and extend the coverage area of secondary networks in underlay cognitive systems. In this work, we provide a comprehensive performance study of cognitive multihop regenerative
System for Relay Protection Command Transmission by High-Voltage Lines
Directory of Open Access Journals (Sweden)
D. A. Yenkov
2009-01-01
Full Text Available Development of a system for relay protection command transmission by high-voltage lines is shown in the paper. The paper describes an architecture of the system, main principles of its operation, engineering aspects of the development that is accomplishment of technical requirements, solution of trades-off. Justification of the selected design and an algorithm of the reliable detection of relay protection signals are given in the paper.
DEFF Research Database (Denmark)
Pedersen, Knud Ole Helgesen
1999-01-01
A method for implementing a digital distance relay in the power system is described.Instructions are given on how to program this relay on a 80537 based microcomputer system.The problem is used as a practical case study in the course 53113: Micocomputer applications in the power system.The relay...
Nitrogen economy in relay intercropping systems of wheat and cotton
Zhang, L.Z.; Spiertz, J.H.J.; Zhang, S.; Li, B.; Werf, van der W.
2008-01-01
Relay intercropping of wheat and cotton is practiced on a large scale in China. Winter wheat is thereby grown as a food crop from November to June and cotton as a cash crop from April to October. The crops overlap in time, growing as an intercrop, from April till June. High levels of nitrogen are
International Nuclear Information System (INIS)
Moravej, Zahra; Jazaeri, Mostafa; Gholamzadeh, Mehdi
2012-01-01
Highlight: ► Optimal coordination problem between distance relays and Directional Over-Current Relays (DOCRs) is studied. ► A new problem formulation for both uncompensated and series compensated system is proposed. ► In order to solve the coordination problem a Modified Adaptive Particle Swarm Optimization (MAPSO) is employed. ► The optimum results are found in both uncompensated and series compensated systems. - Abstract: In this paper, a novel problem formulation for optimal coordination between distance relays and Directional Over-Current Relays (DOCRs) in series compensated systems is proposed. The integration of the series capacitor (SC) into the transmission line makes the coordination problem more complex. The main contribution of this paper is a new systematic method for computing the optimal second zone timing of distance relays and optimal settings of DOCRs, in series compensated and uncompensated transmission systems, which have a combined protection scheme with DOCRs and distance relays. In order to solve this coordination problem, which is a nonlinear and non-convex problem, a Modified Adaptive Particle Swarm Optimization (MAPSO) is employed. The new proposed method is supported by obtained results from a typical test case and a real power system network.
Coordinated Transmissions to Direct and Relayed Users in Wireless Cellular Systems
DEFF Research Database (Denmark)
Thai, Chan; Popovski, Petar; Kaneko, Megumi
2011-01-01
The ideas of wireless network coding at the physical layer promise high throughput gains in wireless systems with relays and multi–way traffic flows. This gain can be ascribed to two principles: (1) joint transmission of multiple communication flows and (2) usage of a priori information to cancel...... the interference. In this paper we use these principles to devise new transmission schemes in wireless cellular systems that feature both users served directly by the base stations (direct users) and users served through relays (relayed users). We present four different schemes for coordinated transmission...... of uplink and downlink traffic in which one direct and one relayed user are served. These schemes are then used as building blocks in multi–user scenarios, where we present several schemes for scheduling pairs of users for coordinated transmissions. The optimal scheme involves exhaustive search of the best...
Proportional fair scheduling with superposition coding in a cellular cooperative relay system
DEFF Research Database (Denmark)
Kaneko, Megumi; Hayashi, Kazunori; Popovski, Petar
2013-01-01
Many works have tackled on the problem of throughput and fairness optimization in cellular cooperative relaying systems. Considering firstly a two-user relay broadcast channel, we design a scheme based on superposition coding (SC) which maximizes the achievable sum-rate under a proportional...... fairness constraint. Unlike most relaying schemes where users are allocated orthogonally, our scheme serves the two users simultaneously on the same time-frequency resource unit by superposing their messages into three SC layers. The optimal power allocation parameters of each SC layer are derived...... by analysis. Next, we consider the general multi-user case in a cellular relay system, for which we design resource allocation algorithms based on proportional fair scheduling exploiting the proposed SC-based scheme. Numerical results show that the proposed algorithms allowing simultaneous user allocation...
Efficient incremental relaying
Fareed, Muhammad Mehboob; Alouini, Mohamed-Slim
2013-01-01
We propose a novel relaying scheme which improves the spectral efficiency of cooperative diversity systems by utilizing limited feedback from destination. Our scheme capitalizes on the fact that relaying is only required when direct transmission
Ensuring Control Processes Quality in Relay System Without Speed Sensor
Directory of Open Access Journals (Sweden)
R. P. Simonyants
2014-01-01
Full Text Available The paper considers topical issues of constructing relay systems to control spacecraft attitude and stabilization with no speed sensors (SS owing to use of internal feedback (IF. To research this system by point methods, e.g. a point mapping method, is difficult because of the need to solve the transcendent equations containing parameters both of control object and of IF. We propose the “diagram of superimpositions" (DS method based on topological transformations of the phase space and introduction of a relative time, which enables us to solve engineering problems in analysis and synthesis effectively.The concept of the method is based on the assertion that there is an unambiguous dependence between quality of dynamical regimes in the control system and characteristics of IF transition function. To justify the method a simplified mathematical model of spacecraft motion is applied. The following conditions are accepted: perturbations can be neglected; when the control function is activated, the signal of IF is equal to zero. To the phase surfaces are applied topological symmetry transformations, alignment and projection onto the plane with one of its coordinates being the relative time.The paper gives specific examples of systems with aperiodic feedback (AF for two versions of parameters to satisfy the requirements: I – in quality of self-oscillation mode (by pulse width in the limit cycle; II – in quality of transition process (lack of sliding modes. It is shown that the requirements II and I are contradictory for the system with AF while the sliding modes are unacceptable.It is shown that DS can be used to synthesize the IF to meet requirements of both steady and transient processes consistently. Using the IF it is possible to implement the shutdown laws of the control action on the DS without SS, the same as in case of using the SS. It is shown that in sliding modes transient processes poor in quality can be completely eliminated by
Directory of Open Access Journals (Sweden)
Yuanxue Chen
Full Text Available Wheat (Triticum aestivum L./maize (Zea mays L./soybean (Glycine max L. relay strip intercropping (W/M/S system is commonly used by the smallholders in the Southwest of China. However, little known is how to manage phosphorus (P to enhance P use efficiency of the W/M/S system and to mitigate P leaching that is a major source of pollution. Field experiments were carried out in 2011, 2012, and 2013 to test the impact of five P application rates on yield and P use efficiency of the W/M/S system. The study measured grain yield, shoot P uptake, apparent P recovery efficiency (PRE and soil P content. A linear-plateau model was used to determine the critical P rate that maximizes gains in the indexes of system productivity. The results show that increase in P application rates aggrandized shoot P uptake and crops yields at threshold rates of 70 and 71.5 kg P ha-1 respectively. With P application rates increasing, the W/M/S system decreased the PRE from 35.9% to 12.3% averaged over the three years. A rational P application rate, 72 kg P ha-1, or an appropriate soil Olsen-P level, 19.1 mg kg-1, drives the W/M/S system to maximize total grain yield while minimizing P surplus, as a result of the PRE up to 28.0%. We conclude that rational P application is an important approach for relay intercropping to produce high yield while mitigating P pollution and the rational P application-based integrated P fertilizer management is vital for sustainable intensification of agriculture in the Southwest of China.
Switched diversity strategies for dual-hop relaying systems
Gaaloul, Fakhreddine
2011-04-29
This paper investigates the effect of different switched diversity configurations on the implementation complexity and achieved performance of dual-hop amplify-and-forward (AF) relaying networks. A low-complexity model of the relay station is adopted, wherein single-input single-output antenna configuration is employed. Each of the transmitter and the receiver however employs multiple antennas to improve the overall link performance. Single-phase and two-phase based receive switching strategies are investigated assuming optimum first hop signal-to-noise ratio (SNR). Moreover, the simple scheme in which the switched diversity is applied independently over the two hops is studied using tight upper bounds. Thorough performance comparisons and switching thresholds optimization for the aforementioned strategies are presented. Simulation results are also provided to validate the mathematical development and to verify the numerical computations.
Saito, Shoichi; Uehara, Tetsutaro; Izumi, Yutaka; Kunieda, Yoshitoshi
The VPN (Virtual Private Network) technique becomes more and more popular to protect contents of messages and to achieve secure communication from incidents, such as tapping. However, it grow in usage that a VPN server is used on a sub-network in part of an office-wide network. But, a PPTP system included in Windows operating systems cannot establish nested VPN links. Moreover encrypted communication by VPN hides a user of the VPN connection. Consequently, any administrators of network systems can’t find out the users of the VPN connection via firewall, moreover can’t decide whether if the user is legal or not. In order to solve this problem, we developed a multi step PPTP relay system on a firewall. This system solves all the problems of our previously developed PPTP relay system(1). The new relay system improves security by encrypting through the whole end-to-end communication and abolishing of prior registration of passwords for the next step. Furthermore, transport speed is accelerated, and the restriction of the number of steps on relay is also abolished. By these features the multi step PPTP relay system expands usability.
Growth, chlorophyll content and combined output value in eggplant/garlic relay intercropping systems
International Nuclear Information System (INIS)
Wang, M.; Wu, C.; Yang, F.; Cheng, Z.; Meng, H.
2015-01-01
A plastic tunnel experiment was conducted to investigate the effect of eggplant/garlic relay intercropping on the eggplant growth, chlorophyll content and combined output value in 2011 and 2012. The experimental design was randomized block with three replications consisting of eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG) and eggplant relay intercropping with green garlic (GG). It is showed that the eggplant stem in 2011 was first thicker then thinner in CK than NG, and it was always thicker in CK than GG; the plant height and stem diameter were both higher in relay intercropping treatments than CK in 2012. The chlorophyll content and chlorophyll a/b ratio were lower in NG compared with CK in most cases. In 2011, the eggplant yield and combined output value in GG were lower than CK, but in 2012, they were higher and the difference of combined output value between GG and CK was significant; for NG, they were always promoted both in 2011 and 2012. Different results between 2011 and 2012 may be due to the different time of green garlic uprooted in the spring. It is proved that uprooting green garlic before eggplant transplanting in 2012 was better to eggplant growth than uprooting them after eggplant transplanting in 2011. The conclusions are drawn that relay intercropping with normal or green garlic can improve the eggplant growth, increase the yield and the combined output value. As a result, eggplant/garlic relay intercropping systems may contribute to sustainable production of eggplant. (author)
Efficient incremental relaying
Fareed, Muhammad Mehboob
2013-07-01
We propose a novel relaying scheme which improves the spectral efficiency of cooperative diversity systems by utilizing limited feedback from destination. Our scheme capitalizes on the fact that relaying is only required when direct transmission suffers deep fading. We calculate the packet error rate for the proposed efficient incremental relaying scheme with both amplify and forward and decode and forward relaying. Numerical results are also presented to verify their analytical counterparts. © 2013 IEEE.
Performance analysis of AF cooperative systems with HPA nonlinearity in semi-blind relays
Qi, Jian; Aï ssa, Sonia; Alouini, Mohamed-Slim
2012-01-01
In this paper, dual-hop amplify-and-forward (AF) cooperative systems in the presence of high-power amplifier (HPA) nonlinearity at semi-blind relays, are investigated. Based on the modified AF cooperative system model taking into account the HPA nonlinearity, the expression for the output signal-to-noise ratio (SNR) at the destination node is derived, where the interference due to both the AF relaying mechanism and the HPA nonlinearity is characterized. The performance of the AF cooperative system under study is evaluated in terms of average symbol error probability (SEP), which is derived using the moment-generating function (MGF) approach, considering transmissions over Nakagami-m fading channels. Numerical results are provided and show the effects of some system parameters, such as the HPA parameters, numbers of relays, quadrature amplitude modulation (QAM) order, Nakagami parameters, on performance. © 2012 IEEE.
Performance analysis of AF cooperative systems with HPA nonlinearity in semi-blind relays
Qi, Jian
2012-12-01
In this paper, dual-hop amplify-and-forward (AF) cooperative systems in the presence of high-power amplifier (HPA) nonlinearity at semi-blind relays, are investigated. Based on the modified AF cooperative system model taking into account the HPA nonlinearity, the expression for the output signal-to-noise ratio (SNR) at the destination node is derived, where the interference due to both the AF relaying mechanism and the HPA nonlinearity is characterized. The performance of the AF cooperative system under study is evaluated in terms of average symbol error probability (SEP), which is derived using the moment-generating function (MGF) approach, considering transmissions over Nakagami-m fading channels. Numerical results are provided and show the effects of some system parameters, such as the HPA parameters, numbers of relays, quadrature amplitude modulation (QAM) order, Nakagami parameters, on performance. © 2012 IEEE.
Calibration and Evaluation of Fixed and Mobile Relay-Based System Level Simulator
Directory of Open Access Journals (Sweden)
Shahid Mumtaz
2010-01-01
Full Text Available Future wireless communication systems are expected to provide more stable and higher data rate transmissions in the whole OFDMA networks, but the mobile stations (MSs in the cell boundary experience poor spectral efficiency due to the path loss from the transmitting antenna and interference from adjacent cells. Therefore, satisfying QoS (Quality of Service requirements of each MS at the cell boundary has been an important issue. To resolve this spectral efficiency problem at the cell boundary, deploying relay stations has been actively considered. As multihop/relay has complex interactions between the routing and medium access control decisions, the extent to which analytical expressions can be used to explore its benefits is limited. Consequently, simulations tend to be the preferred way of assessing the performance of relays. In this paper, we evaluate the performance of relay-assisted OFDMA networks by means of system level simulator (SLS. We consistently observed that the throughput is increased and the outage is decreased in the relay-assisted OFDMA network, which is converted to range extension without any capacity penalty, for the realistic range of values of the propagation and other system parameters investigated.
Directory of Open Access Journals (Sweden)
Sučević Nikola
2016-01-01
Full Text Available This paper presents modeling of industrial network relay protection system using DIgSILENT PowerFactory software. The basis for the model of protection system is a model of a single substation in an industrial network. The paper presents the procedure for modeling of protective devices of 6 kV asynchronous motors, 6/0,4 kV/kV transformers as well as protection in the bus coupler and busbar protection. Protective relay system response for the simulated disturbances is shown in the paper.
Influence of reliability of the relay protection to the whole reliability of electric power systems
International Nuclear Information System (INIS)
Stojanovski, Ljupcho I.
2001-01-01
The influence of the reliability of the elements of relay protection up today analyses of the reliability on electric power systems, very rare has been taken into consideration, in other words, in these analyses it is assumed that the reliability of the protection has value one. In this work an attempt is that through modelling of individual types of protection of the elements of high-voltage systems to make calculation to the influence of the reliability of the relay protection on the total reliability of the high-voltage systems.(Author)
A minimum bit error-rate detector for amplify and forward relaying systems
Ahmed, Qasim Zeeshan; Alouini, Mohamed-Slim; Aissa, Sonia
2012-01-01
In this paper, a new detector is being proposed for amplify-and-forward (AF) relaying system when communicating with the assistance of L number of relays. The major goal of this detector is to improve the bit error rate (BER) performance of the system. The complexity of the system is further reduced by implementing this detector adaptively. The proposed detector is free from channel estimation. Our results demonstrate that the proposed detector is capable of achieving a gain of more than 1-dB at a BER of 10 -5 as compared to the conventional minimum mean square error detector when communicating over a correlated Rayleigh fading channel. © 2012 IEEE.
A minimum bit error-rate detector for amplify and forward relaying systems
Ahmed, Qasim Zeeshan
2012-05-01
In this paper, a new detector is being proposed for amplify-and-forward (AF) relaying system when communicating with the assistance of L number of relays. The major goal of this detector is to improve the bit error rate (BER) performance of the system. The complexity of the system is further reduced by implementing this detector adaptively. The proposed detector is free from channel estimation. Our results demonstrate that the proposed detector is capable of achieving a gain of more than 1-dB at a BER of 10 -5 as compared to the conventional minimum mean square error detector when communicating over a correlated Rayleigh fading channel. © 2012 IEEE.
Sučević Nikola; Milošević Dejan
2016-01-01
This paper presents modeling of industrial network relay protection system using DIgSILENT PowerFactory software. The basis for the model of protection system is a model of a single substation in an industrial network. The paper presents the procedure for modeling of protective devices of 6 kV asynchronous motors, 6/0,4 kV/kV transformers as well as protection in the bus coupler and busbar protection. Protective relay system response for the simulated disturbances is shown in the paper.
Relay Protection and Automation Systems Based on Programmable Logic Integrated Circuits
International Nuclear Information System (INIS)
Lashin, A. V.; Kozyrev, A. V.
2015-01-01
One of the most promising forms of developing the apparatus part of relay protection and automation devices is considered. The advantages of choosing programmable logic integrated circuits to obtain adaptive technological algorithms in power system protection and control systems are pointed out. The technical difficulties in the problems which today stand in the way of using relay protection and automation systems are indicated and a new technology for solving these problems is presented. Particular attention is devoted to the possibility of reconfiguring the logic of these devices, using programmable logic integrated circuits
Analysis and Solution for Operations of Overcurrent Relay in Wind Power System
Directory of Open Access Journals (Sweden)
Yeonho Ok
2016-06-01
Full Text Available Wind power systems are being integrated increasingly into the power grid because of their large capacity and easy access to the transmission grid. The reliability of wind power plants is very important and the elimination of protective relay’s malfunctions is essential to the mitigation of power quality problems due to the frequent starts and stops of high capacity wind generators. In this study, the problem of frequent false operations of the protective relays are analyzed using real data as line voltages, line currents, and wind speed. A new re-coordination of the overcurrent relay (OCR based on the wind speed is proposed to avoid frequent operations of relays and tested for a grid-connected wind farm. This study verifies that the false actions by the OCRs that are not accompanied by actual electrical faults in the power grid or wind power system can be solved by the appropriate re-coordination of the OCR.
Towards a Framework for Modelling and Verification of Relay Interlocking Systems
DEFF Research Database (Denmark)
Haxthausen, Anne Elisabeth
2011-01-01
This paper describes a framework currently under development for modelling, simulation, and verification of relay interlocking systems as used by the Danish railways. The framework is centred around a domain-specific language (DSL) for describing such systems, and provides (1) a graphical editor...
Two-Layer Coding Rate Optimization in Relay-Aided Systems
DEFF Research Database (Denmark)
Sun, Fan
2011-01-01
We consider a three-node transmission system, where a source node conveys a data block to a destination node with the help of a half-duplex decode and-forward (DF) relay node. The whole data block is transmitted as a sequence of packets. For reliable transmission in the three-node system, a two...
Towards a Framework for Modelling and Verification of Relay Interlocking Systems
DEFF Research Database (Denmark)
Haxthausen, Anne Elisabeth
2010-01-01
This paper describes a framework currently under development for modelling, simulation, and verification of relay interlocking systems as used by the Danish railways. The framework is centred around a domain-specific language (DSL) for describing such systems, and provides (1) a graphical editor ...
Robust Transceiver with Tomlinson-Harashima Precoding for Amplify-and-Forward MIMO Relaying Systems
Xing, Chengwen; Xia, Minghua; Gao, Feifei; Wu, Yik-Chung
2012-01-01
forwarding matrices at relays and linear equalizer at destination is proposed. With novel applications of elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the transceiver design problem reduces to a much simpler one with only scalar variables which can be efficiently solved. Finally, the performance advantage of the proposed robust design over non-robust design is demonstrated by simulation results.
On the throughput of cognitive radio MIMO systems assisted with UAV relays
Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim
2017-01-01
We analyze the achievable rates of a cognitive radio MIMO system assisted by an unmanned aerial vehicle (UAV) relay. The primary user (PU) and the secondary user (SU) aim to communicate to the closest primary base station (BS) via a multi
Bandwidth and power allocation for two-way relaying in overlay cognitive radio systems
Alsharoa, Ahmad M.; Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim
2014-01-01
In this paper, the problem of both bandwidth and power allocation for two-way multiple relay systems in overlay cognitive radio (CR) setup is investigated. In the CR overlay mode, primary users (PUs) cooperate with cognitive users (CUs) for mutual
Comparison of Low-Complexity Diversity Schemes for Dual-Hop AF Relaying Systems
Gaaloul, Fakhreddine; Alouini, Mohamed-Slim; Radaydeh, Redha M.
2012-01-01
This paper investigates the performance of two low-complexity combining schemes, which are based on one- or two-phase observation, to mitigate multipath fading in dual-hop amplify-and-forward relaying systems. For the one-phase-based combining, a
Robust Tomlinson-Harashima precoding for non-regenerative multi-antenna relaying systems
Xing, Chengwen; Xia, Minghua; Gao, Feifei; Wu, Yikchung
2012-01-01
In this paper, we consider the robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying systems. THP is adopted at the source to mitigate the spatial
The thermal relay design to improve power system security for the HTS cables in Icheon substation
International Nuclear Information System (INIS)
Lee, Hansang; Yang, Byeong-Mo; Jang, Gilsoo
2013-01-01
Highlights: •It is important to study thermal characteristics of the HTS cable. •The thermal relay in the Icheon substation has been developed. •Well-designed thermal relay has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes a model for thermal protection relay for the high temperature superconducting (HTS) cables and thermal protection scheme in Icheon substation in Korea. The thermal protection is one of the most important factors to guarantee the reliability of the HTS cable as well as power system security. The superconductivity of the HTS cables, which can be guaranteed by the liquid nitrogen near 70 K, can be threatened by the large fault current. To avoid the overheating in HTS cable and to secure the power system operation with the HTS cable, the thermal protection relay should be considered. To find the optimal thermal-protection scheme, the model for the superconducting power system has been achieved in Icheon substation and the thermal protection scheme has been verified through PSCAD/EMTDC simulation
The thermal relay design to improve power system security for the HTS cables in Icheon substation
Energy Technology Data Exchange (ETDEWEB)
Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Yang, Byeong-Mo [Korea Electric Power Research Institute, Munji-dong, Yuseong-gu, Daejeon 305-760 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)
2013-11-15
Highlights: •It is important to study thermal characteristics of the HTS cable. •The thermal relay in the Icheon substation has been developed. •Well-designed thermal relay has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes a model for thermal protection relay for the high temperature superconducting (HTS) cables and thermal protection scheme in Icheon substation in Korea. The thermal protection is one of the most important factors to guarantee the reliability of the HTS cable as well as power system security. The superconductivity of the HTS cables, which can be guaranteed by the liquid nitrogen near 70 K, can be threatened by the large fault current. To avoid the overheating in HTS cable and to secure the power system operation with the HTS cable, the thermal protection relay should be considered. To find the optimal thermal-protection scheme, the model for the superconducting power system has been achieved in Icheon substation and the thermal protection scheme has been verified through PSCAD/EMTDC simulation.
Mutual-Information-Based Incremental Relaying Communications for Wireless Biomedical Implant Systems
Directory of Open Access Journals (Sweden)
Yangzhe Liao
2018-02-01
Full Text Available Network lifetime maximization of wireless biomedical implant systems is one of the major research challenges of wireless body area networks (WBANs. In this paper, a mutual information (MI-based incremental relaying communication protocol is presented where several on-body relay nodes and one coordinator are attached to the clothes of a patient. Firstly, a comprehensive analysis of a system model is investigated in terms of channel path loss, energy consumption, and the outage probability from the network perspective. Secondly, only when the MI value becomes smaller than the predetermined threshold is data transmission allowed. The communication path selection can be either from the implanted sensor to the on-body relay then forwards to the coordinator or from the implanted sensor to the coordinator directly, depending on the communication distance. Moreover, mathematical models of quality of service (QoS metrics are derived along with the related subjective functions. The results show that the MI-based incremental relaying technique achieves better performance in comparison to our previous proposed protocol techniques regarding several selected performance metrics. The outcome of this paper can be applied to intra-body continuous physiological signal monitoring, artificial biofeedback-oriented WBANs, and telemedicine system design.
Linearization of the Lorenz system
International Nuclear Information System (INIS)
Li, Chunbiao; Sprott, Julien Clinton; Thio, Wesley
2015-01-01
A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation
Linearization of the Lorenz system
Energy Technology Data Exchange (ETDEWEB)
Li, Chunbiao, E-mail: goontry@126.com [School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Engineering Technology Research and Development Center of Jiangsu Circulation Modernization Sensor Network, Jiangsu Institute of Commerce, Nanjing 211168 (China); Sprott, Julien Clinton [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States); Thio, Wesley [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 (United States)
2015-05-08
A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation.
Bandwidth and power allocation for two-way relaying in overlay cognitive radio systems
Alsharoa, Ahmad M.
2014-12-01
In this paper, the problem of both bandwidth and power allocation for two-way multiple relay systems in overlay cognitive radio (CR) setup is investigated. In the CR overlay mode, primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. In our framework, we propose that the CUs are allowed to allocate a part of the PUs spectrum to perform their cognitive transmission. In return, acting as an amplify-and-forward two-way relays, they are used to support PUs to achieve their target data rates over the remaining bandwidth. More specifically, CUs acts as relays for the PUs and gain some spectrum as long as they respect a specific power budget and primary quality-of-service constraints. In this context, we first derive closed-form expressions for optimal transmit power allocated to PUs and CUs in order to maximize the cognitive objective. Then, we employ a strong optimization tool based on particle swarm optimization algorithm to find the optimal relay amplification gains and optimal cognitive released bandwidths as well. Our numerical results illustrate the performance of our proposed algorithm for different utility metrics and analyze the impact of some system parameters on the achieved performance.
S-band multiple-access interference study for advanced tracking and data relay satellite systems
Peng, Wei-Chung; Yang, Chau-Chin
1990-01-01
The results of a study on the effect of mutual interference among S-band multiple access (SMA) system users of advanced tracking and data relay satellite system (ATDRSS) are presented. In the ATDRSS era, the SMA system is required to support data rates ranging from 10 kb/s to 3 Mb/s. The system will consist of four advanced tracking and data relay satellites (ATDRS) each supporting up to five telemetry links. All users have 10 MHz bandwidth with their carrier frequency equal to 2.2875 GHz. A hybrid SDMA/CDMA scheme is used to mitigate the effect of the interference among system users. SMA system interference probability is evaluated with CLASS software. User link margin degradation due to mutual interference between two users is evaluated. System interference probability is evaluated for the projected 1996 mission model, a reference mission model, and a modified reference mission model.
Pandey, Saurabh; Majhi, Somanath; Ghorai, Prasenjit
2017-07-01
In this paper, the conventional relay feedback test has been modified for modelling and identification of a class of real-time dynamical systems in terms of linear transfer function models with time-delay. An ideal relay and unknown systems are connected through a negative feedback loop to bring the sustained oscillatory output around the non-zero setpoint. Thereafter, the obtained limit cycle information is substituted in the derived mathematical equations for accurate identification of unknown plants in terms of overdamped, underdamped, critically damped second-order plus dead time and stable first-order plus dead time transfer function models. Typical examples from the literature are included for the validation of the proposed identification scheme through computer simulations. Subsequently, the comparisons between estimated model and true system are drawn through integral absolute error criterion and frequency response plots. Finally, the obtained output responses through simulations are verified experimentally on real-time liquid level control system using Yokogawa Distributed Control System CENTUM CS3000 set up.
Directory of Open Access Journals (Sweden)
D. T. Do
2017-09-01
Full Text Available In this investigation, we consider wireless powered relaying systems, where energy is scavenged by a relay via radio frequency (RF signals. We explore hybrid time switching-based and power splitting-based relaying protocol (HTPSR and compare performance of Amplify-and-Forward (AF with Decode-and-Forward (DF scheme under imperfect channel state information (CSI. Most importantly, the instantaneous rate, achievable bit error rate (BER are determined in the closed-form expressions under the impact of imperfect CSI. Through numerical analysis, we evaluate system insights via different parameters such as power splitting (PS and time switching (TS ratio of the considered HTPSR which affect outage performance and BER. It is noted that DF relaying networks outperform AF relaying networks. Besides that, the numerical results are given to prove the optimization problems of PS and TS ratio to obtain optimal instantaneous rate.
Alternate MIMO relaying with three AF relays using interference alignment
Park, Kihong
2012-06-01
In this paper, we study a two-hop half-duplex relaying network with one source, one destination, and three amplify-and-forward (AF) relays equipped with M antennas each. We consider alternate transmission to compensate for the inherent loss of capacity pre-log factor 1/2 in half duplex mode, where source transmit message to two relays and the other relay alternately. The inter-relay interference caused by alternate transmission is aligned to make additional degrees of freedom (DOFs). It is shown that the proposed scheme enables us to exploit 3M/4 DOFs compared with the M/2 DOFs of conventional AF relaying. More specifically, suboptimal linear filter designs for a source and three relays are proposed to maximize the achievable sum-rate. We verify using some selected numerical results that the proposed filter designs give significant improvement of the sum-rate over a naive filter and conventional relaying schemes. © 2012 IEEE.
Switched diversity strategies for dual-hop amplify-and-forward relaying systems
Gaaloul, Fakhreddine
2012-01-01
This study investigates different receive single-branch switch-based diversity schemes for dual-hop amplify-and-forward relaying networks. Specifically, three receive processing algorithms are adopted, in which the receive branch is selected using the arbitrary selection algorithm, the switching algorithm, or the switching algorithm with post-examining best branch selection. The identification of the receive branch is carried out for two different system models. For the first model, a single-antenna relaying station is used in conjunction with a multiple-antenna transceiver, where the processing is performed independently of the first hop-fading conditions. The second model suggests the use of parallel deployment of single-antenna relays to transfer information from a multiple-antenna transmitter to a single-antenna receiver, where the active relaying station is determined based on the pre-combining end-to-end fading conditions. Performance comparisons for various transmission scenarios on the first hop are presented using new formulations for the statistics of the combined signal-to-noise ratio. Simulation results are also provided to validate the mathematical development and to verify the numerical computations. © 2012 The Institution of Engineering and Technology.
SER Derivation and Power Optimization of a Two-Way MultiRelay Cooperative Communication System
Directory of Open Access Journals (Sweden)
Shakeel-Ur-Rehman Rehman
2014-01-01
Full Text Available In this paper, we consider Rayleigh fading based cooperative communication system with AaF (Amplify and Forward relaying using multiple relays. We take spectrally efficient two-way model of cooperative communication terminals and formulate performance evaluation framework in terms of SER (Symbol Error Rate. We not only consider fading channel for this performance evaluation but also consider the effect of relay terminal location into our model which does not require any CSI (Channel State Information at transmitting nodes. We have proposed power allocation framework for these nodes and analytically derived SER performance results. We have numerically evaluated this framework for power optimization as well as minimizing required SER. Significant performance improvement as compared with equal power sharing among the cooperating terminals is achieved using our proposed framework. It is shown that virtual cooperative antenna configurations is able to demonstrate up to 3dB gain as compared with co-located antenna configurations. Thus incorporating relay location information for performance evaluation results significant power savings
Dynamical systems and linear algebra
Colonius, Fritz (Prof.)
2007-01-01
Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)
Amplitude death induced by mixed attractive and repulsive coupling in the relay system
Zhao, Nannan; Sun, Zhongkui; Xu, Wei
2018-01-01
The amplitude death (AD) phenomenon is found in the relay system in the presence of the mixed couplings composed of attractive coupling and repulsive coupling. The generation mechanism of AD is revealed and shows that the middle oscillator achieving AD is a prerequisite to further suppress oscillation of the outermost oscillators for the paradigmatic Stuart-Landau and Rössler models. Moreover, regarding the Stuart-Landau relay system as a small motif of star network, we also observe that the mixed couplings can facilitate AD state of the whole network system. Particularly, the threshold of coupling strength is invariable with the change of network size. Our findings may shed a new insight to explore the effects of hybrid coupling on complex systems, also provide a new strategy to control dynamic behaviors in engineering science and neuroscience fields.
Benkhelifa, Fatma
2017-03-02
In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) in a Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication system where the relay is an energy harvesting (EH) node and harvests the energy the signals transmitted from the source. The harvested energy is partially used to forward signals from the source to the destination, and the remaining energy is stored for other usages. The SWIPT in relay-assisted communication is interesting as long as the relay stores energy from the source and the destination receives successfully the data from the source. In this context, we propose to investigate the source and relay precoders that characterize the relationship between the achievable stored energy at the relay and the achievable sourceto- destination rate, namely the rate-stored energy (R-E) tradeo region. First, we consider the ideal scheme where there is the simultaneous operation of the EH and ID receivers at the relay. Then, we consider practical schemes such as the power splitting (PS) and the time switching (TS) that separate the operation of EH and information decoding (ID) receivers over power domain or time domain, respectively. Moreover, we study the case of imperfect channel state information (CSI) at the relay and the destination and characterize its impact on the achievable R-E region. Through the simulation results, we show the eect of the position of the relay and the channel uncertainty on the achievable R-E regions of all the schemes when the used energy at the relay is constant or variable. We also show that, although it provides an outer bound on the achievable rate-energy region in one-hop MIMO systems, the ideal scheme provides only an upper bound on the maximum achievable end-to-end rate and not an outer bound on the R-E region.
On Bit Error Probability and Power Optimization in Multihop Millimeter Wave Relay Systems
Chelli, Ali
2018-01-15
5G networks are expected to provide gigabit data rate to users via millimeter-wave (mmWave) communication technology. One of the major problem faced by mmWaves is that they cannot penetrate buildings. In this paper, we utilize multihop relaying to overcome the signal blockage problem in mmWave band. The multihop relay network comprises a source device, several relay devices and a destination device and uses device-todevice communication. Relay devices redirect the source signal to avoid the obstacles existing in the propagation environment. Each device amplifies and forwards the signal to the next device, such that a multihop link ensures the connectivity between the source device and the destination device. We consider that the relay devices and the destination device are affected by external interference and investigate the bit error probability (BEP) of this multihop mmWave system. Note that the study of the BEP allows quantifying the quality of communication and identifying the impact of different parameters on the system reliability. In this way, the system parameters, such as the powers allocated to different devices, can be tuned to maximize the link reliability. We derive exact expressions for the BEP of M-ary quadrature amplitude modulation (M-QAM) and M-ary phase-shift keying (M-PSK) in terms of multivariate Meijer’s G-function. Due to the complicated expression of the exact BEP, a tight lower-bound expression for the BEP is derived using a novel Mellin-approach. Moreover, an asymptotic expression for the BEP at high SIR regime is derived and used to determine the diversity and the coding gain of the system. Additionally, we optimize the power allocation at different devices subject to a sum power constraint such that the BEP is minimized. Our analysis reveals that optimal power allocation allows achieving more than 3 dB gain compared to the equal power allocation.This research work can serve as a framework for designing and optimizing mmWave multihop
Dual-Hop VLC/RF Transmission System with Energy Harvesting Relay under Delay Constraint
Rakia, Tamer
2017-02-09
In this paper, we introduce a dual-hop visible light communication (VLC) / radio frequency (RF) transmission system to extend the coverage of indoor VLC systems. The relay between the two hops is able to harvest light energy from different artificial light sources and sunlight entering the room. The relay receives data packet over a VLC channel and uses the harvested energy to retransmit it to a mobile terminal over an RF channel. We develop a novel statistical model for the harvested electrical power and analyze the probability of data packet loss. We define a system design parameter (α ∈ [0, 1)) that controls the time dedicated for excess energy harvesting and data packet retransmission. It was found that the parameter has an optimal value which minimizes the packet loss probability. Further more, this optimal value is independent of the RF channel path loss. However, optimal showed inverse dependence on the packet size.
Centralized vs decentralized options for a european data relay satellite system
Aubert, Ph. Saint; Hervieux, M.; Perbos, J. L.; Saggese, E.; Soprano, C.
The European Data Relay Satellite (DRS) is now being planned to support future European missions in the nineties and in particular the various elements of the in-orbit infrastructure. Studies are being conducted to investigate the usefulness of the Relay System as well as to provide the basis for issuing technical specifications for a development and launch in 1993. This paper presents the results of a study issued by ESA on possible options for a DRS System, concentrating on the comparison between a centralized and a decentralized data distribution concept. After recalling the space programmes foreseen in Europe, the paper discusses the architecture and design of the various elements of the System: space segment, DRS ground segment and user ground segment for different options of data dissemination.
Centralized vs decentralized options for an European Data Relay Satellite system
Saint Aubert, S.; Hervieux, M.; Perbos, J. L.; Saggese, E.; Soprano, C.
1985-10-01
The European Data Relay Satellite (DRS) is now being planned to support future European missions in the nineties and in particular the various elements of the in-orbit infrastructure. Studies are being conducted to investigate the usefulness of the relay system as well as to provide the basis for issuing technical specifications for a development and launch in 1993. This paper presents the results of a study issued by ESA on possible options for a DRS System, concentrating on the comparison between a centralized and a decentralized data distribution concept. After recalling the space programs foreseen in Europe, the paper discusses the architecture and design of the various elements of the System: space segment, DRS ground segment, and user ground segment for different options of data dissemination.
Two-way cooperative AF relaying in spectrum-sharing systems: Enhancing cell-edge performance
Xia, Minghua
2012-09-01
In this contribution, two-way cooperative amplify-and-forward (AF) relaying technique is integrated into spectrumsharing wireless systems to improve spectral efficiency of secondary users (SUs). In order to share the available spectrum resources originally dedicated to primary users (PUs), the transmit power of a SU is optimized with respect to the average tolerable interference power at primary receivers. By analyzing outage probability and achievable data rate at the base station and at a cell-edge SU, our results reveal that the uplink performance is dominated by the average tolerable interference power at primary receivers, while the downlink always behaves like conventional one-way AF relaying and its performance is dominated by the average signal-to-noise ratio (SNR). These important findings provide fresh perspectives for system designers to improve spectral efficiency of secondary users in next-generation broadband spectrum-sharing wireless systems. © 2012 IEEE.
Directory of Open Access Journals (Sweden)
Vandendorpe Luc
2010-01-01
Full Text Available The problem of jointly optimizing the source precoder, relay transceiver, and destination equalizer has been considered in this paper for a multiple-input-multiple-output (MIMO amplify-and-forward (AF relay channel, where the channel estimates of all links are assumed to be imperfect. The considered joint optimization problem is nonconvex and does not offer closed-form solutions. However, it has been shown that the optimization of one variable when others are fixed is a convex optimization problem which can be efficiently solved using interior-point algorithms. In this context, an iterative technique with the guaranteed convergence has been proposed for the AF MIMO relay channel that includes the direct link. It has been also shown that, for the double-hop relay case without the receive-side antenna correlations in each hop, the global optimality can be confirmed since the structures of the source precoder, relay transceiver, and destination equalizer have closed forms and the remaining joint power allocation can be solved using Geometric Programming (GP technique under high signal-to-noise ratio (SNR approximation. In the latter case, the performance of the iterative technique and the GP method has been compared with simulations to ensure that the iterative approach gives reasonably good solutions with an acceptable complexity. Moreover, simulation results verify the robustness of the proposed design when compared to the nonrobust design that assumes estimated channels as actual channels.
Javed, Sidrah
2016-12-01
Next generation of wireless communication mostly relies on multiple-input multipleoutput (MIMO) configuration and full-duplex relaying to improve data-rates, spectrale efficiency, spatial-multiplexing, quality-of-service and energy-efficiency etc. However, multiple radio frequency (RF) transceivers in MIMO system and multi-hops in relay networks, accumulate transceiver impairments, rendering an unacceptable system performance. Majority of the technical contributions either assume ideal hardware or inappropriately model hardware impairments which often induce misleading results especially for high data-rate communication systems. We propose statistical mathematical modeling of various hardware impairment (HWI) to characterize their deteriorating effects on the information signal. In addition, we model the aggregate HWI as improper Gaussian signaling (IGS), to fully characterize their asymmetric properties and the self-interfering signal attribute under I/Q imbalance. The proposed model encourages to adopt asymmetric transmission scheme, as opposed to traditional symmetric signaling. First, we present statistical baseband equivalent mathematical models for general MIMO system and two special scenarios of receive and transmit diversity systems under HWI. Then, we express their achievable rate under PGS and IGS transmit schemes. Moreover, we tune the IGS statistical characteristics to maximize the achievable rate. We also present optimal beam-forming/pre-coding and receive combiner vector for multiple-input single-output (MISO) and single-input multiple output (SIMO) systems, which lead to SDNR maximization. Moreover, we propose an adaptive scheme to switch between maximal IGS (MIGS) and PGS transmission based on the described conditions to reduce computational overhead. Subsequently, two case studies are presented. 1) Outage analysis has been carried out for SIMO, under transceiver distortion noise, for two diversity combining schemes 2) The benefits of employing IGS
Relay tracking control for second-order multi-agent systems with damaged agents.
Dong, Lijing; Li, Jing; Liu, Qin
2017-11-01
This paper investigates a situation where smart agents capable of sensory and mobility are deployed to monitor a designated area. A preset number of agents start tracking when a target intrudes this area. Some of the tracking agents are possible to be out of order over the tracking course. Thus, we propose a cooperative relay tracking strategy to ensure the successful tracking with existence of damaged agents. Relay means that, when a tracking agent quits tracking due to malfunction, one of the near deployed agents replaces it to continue the tracking task. This results in jump of tracking errors and dynamic switching of topology of the multi-agent system. Switched system technique is employed to solve this specific problem. Finally, the effectiveness of proposed tracking strategy and validity of the theoretical results are verified by conducting a numerical simulation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Outage probability of dual-hop FSO fixed gain relay transmission systems
Zedini, Emna
2016-12-24
In this paper, we analyze the end-to-end performance of dual-hop free-space optical (FSO) fixed gain relaying systems in the presence of atmospheric turbulence as well as pointing errors. More specifically, an exact closed-form expression for the outage probability is presented in terms of the bivariate Fox\\'s H function that accounts for both heterodyne detection as well as intensity modulation with direct detection. At high signal-to-noise ratio (SNR) regime, we provide very tight asymptotic result for this performance metric in terms of simple elementary functions. By using dual-hop FSO relaying, we demonstrate a better system performance as compared to the single FSO link. Numerical and Monte-Carlo simulation results are provided to verify the accuracy of the newly proposed results, and a perfect agreement is observed.
Hyadi, Amal
2013-12-01
Multihop relaying is an efficient strategy to improve the connectivity and extend the coverage area of secondary networks in underlay cognitive systems. In this work, we provide a comprehensive performance study of cognitive multihop regenerative relaying systems in an underlay spectrum sharing scenario with the presence of multiple primary receivers. Both interference power and peak power constraints are taken into account. In our analysis, all the links are subject to independent, non-identically distributed Nakagami-m fading. We derive closed-form expressions for the outage probability, high-order amount of fading, bit error rate, symbol error rate, and ergodic capacity. Different scenarios are presented to illustrate the obtained results and Monte Carlo simulations confirm the accuracy of our analytical derivations. © 2013 IEEE.
MODELING OF POWER SYSTEMS AND TESTING OF RELAY PROTECTION DEVICES IN REAL AND MODEL TIME
Directory of Open Access Journals (Sweden)
I. V. Novash
2017-01-01
Full Text Available The methods of modelling of power system modes and of testing of relay protection devices with the aid the simulation complexes in real time and with the help of computer software systems that enables the simulation of virtual time scale are considered. Information input protection signals in the simulation of the virtual model time are being obtained in the computational experiment, whereas the tests of protective devices are carried out with the help of hardware and software test systems with the use of estimated input signals. Study of power system stability when modes of generating and consuming electrical equipment and conditions of devices of relay protection are being changed requires testing with the use of digital simulators in a mode of a closed loop. Herewith feedbacks between a model of the power system operating in a real time and external devices or their models must be determined (modelled. Modelling in real time and the analysis of international experience in the use of digital simulation power systems for real-time simulation (RTDS simulator have been fulfilled. Examples are given of the use of RTDS systems by foreign energy companies to test relay protection systems and control, to test the equipment and devices of automatic control, analysis of cyber security and evaluation of the operation of energy systems under different scenarios of occurrence of emergency situations. Some quantitative data on the distribution of RTDS in different countries and Russia are presented. It is noted that the leading energy universities of Russia use the real-time simulation not only to solve scientific and technical problems, but also to conduct training and laboratory classes on modelling of electric networks and anti-emergency automatic equipment with the students. In order to check serviceability of devices of relay protection without taking into account the reaction of the power system tests can be performed in an open loop mode with the
Staff Association
2011-01-01
The CERN relay race will take place around the Meyrin site on Thursday 19th May starting at 12:15. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. Details on the course, and how to register your team for the relay race, can be found at: https://espace.cern.ch/Running-Club/CERN-Relay Some advice for all runners from the medical service can also be found here: https://espace.cern.ch/Running-Club/CERN-Relay/RelayPagePictures/MedicalServiceAnnoncement.pdf
Staff Association
2011-01-01
The CERN relay race will take place around the Meyrin site on Thursday 19th May starting at 12·15. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. Details on the course, and how to register your team for the relay race, can be found at: https://espace.cern.ch/Running-Club/CERN-Relay Some advice for all runners from the medical service can also be found here: https://espace.cern.ch/Running-Club/CERN-Relay/RelayPagePictures/MedicalServiceAnnoncement.pdf
Directory of Open Access Journals (Sweden)
Mohamed Zellagui
2017-09-01
Full Text Available The paper presents a new hybrid global optimization algorithm based on Chemical Reaction based Optimization (CRO and Di¤erential evolution (DE algorithm for nonlinear constrained optimization problems. This approach proposed for the optimal coordination and setting relays of directional overcurrent relays in complex power systems. In protection coordination problem, the objective function to be minimized is the sum of the operating time of all main relays. The optimization problem is subject to a number of constraints which are mainly focused on the operation of the backup relay, which should operate if a primary relay fails to respond to the fault near to it, Time Dial Setting (TDS, Plug Setting (PS and the minimum operating time of a relay. The hybrid global proposed optimization algorithm aims to minimize the total operating time of each protection relay. Two systems are used as case study to check the effeciency of the optimization algorithm which are IEEE 4-bus and IEEE 6-bus models. Results are obtained and presented for CRO and DE and hybrid CRO-DE algorithms. The obtained results for the studied cases are compared with those results obtained when using other optimization algorithms which are Teaching Learning-Based Optimization (TLBO, Chaotic Differential Evolution Algorithm (CDEA and Modiffied Differential Evolution Algorithm (MDEA, and Hybrid optimization algorithms (PSO-DE, IA-PSO, and BFOA-PSO. From analysing the obtained results, it has been concluded that hybrid CRO-DO algorithm provides the most optimum solution with the best convergence rate.
Asghari, Vahid Reza; Aissa, Sonia
2011-01-01
We propose adopting a cooperative relaying technique in spectrum-sharing cognitive radio (CR) systems to more effectively and efficiently utilize available transmission resources, such as power, rate, and bandwidth, while adhering to the quality
Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen; Zhang, Mengru; Zhang, Hongjing
2014-01-01
Soil sickness is a critical problem for eggplant (Solanum melongena L.) under continuous cropping that affects sustainable eggplant production. Relay intercropping is a significant technique on promoting soil quality, improving eco-environment, and raising output. Field experiments were conducted from September 2010 to November 2012 in northwest China to determine the effects of relay intercropping eggplant with garlic (Allium sativum L.) on soil enzyme activities, available nutrient contents, and pH value under a plastic tunnel. Three treatments were in triplicate using randomized block design: eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG) and eggplant relay intercropping with green garlic (GG). The major results are as follows: (1) the activities of soil invertase, urease, and alkaline phosphatase were generally enhanced in NG and GG treatments; (2) relay intercropping significantly increased the soil available nutrient contents, and they were mostly higher in GG than NG. On April 11, 2011, the eggplant/garlic co-growth stage, the available nitrogen content in GG was 76.30 mg·kg−1, significantly higher than 61.95 mg·kg−1 in NG. For available potassium on April 17, 2012, they were 398.48 and 387.97 mg·kg−1 in NG and GG, both were significantly higher than 314.84 mg·kg−1 in CK; (3) the soil pH showed a significantly higher level in NG treatment, but lower in GG treatment compared with CK. For the last samples in 2012, soil pH in NG and GG were 7.70 and 7.46, the highest and lowest one among them; (4) the alkaline phosphatase activity and pH displayed a similar decreasing trend with continuous cropping. These findings indicate that relay intercropping eggplant with garlic could be an ideal farming system to effectively improve soil nutrient content, increase soil fertility, and alleviate soil sickness to some extent. These findings are important in helping to develop sustainable eggplant production. PMID:25340875
Malik, Muhammad Talha
2014-09-01
We propose a new bit-interleaved coded modulation (BICM)-based cooperative communication system where different BICM modules can be optimized jointly considering the average signal to noise ratios of the direct and the two-hop Rayleigh fading channels. As such, the full benefit of BICM can be exploited in the context of cooperative communication. Our design considers cooperative communication systems with so called max-min relay selection scheme that has no loss in performance in terms of diversity- multiplexing trade off in orthogonal cooperation. The presented numerical results for rate 1/2 convolutional code with 8-ary pulse amplitude modulation equivalently 64-ary quadrature amplitude modulation show that the proposed design can offer gains up to 1.4 dB over the traditional BICM design for a target bit error rate of 10-6. Moreover the results show that the amount of gain depends on the relays\\' positions and increases with the number of relays available for selection.
Comparison of Low-Complexity Diversity Schemes for Dual-Hop AF Relaying Systems
Gaaloul, Fakhreddine
2012-02-13
This paper investigates the performance of two low-complexity combining schemes, which are based on one- or two-phase observation, to mitigate multipath fading in dual-hop amplify-and-forward relaying systems. For the one-phase-based combining, a single-antenna station is assumed to relay information from a multiple-antenna transmitter to a multiple-antenna receiver, and the activation of the receive antennas is adaptively performed based on the second-hop statistics, regardless of the first-hop conditions. On the other hand, the two-phase-based combining suggests using multiple single-antenna stations between the multiple-antenna transmitter and the single-antenna receiver, where the suitable set of active relays is identified according to the precombining end-to-end fading conditions. To facilitate comparisons between the two schemes, formulations for the statistics of the combined signal-to-noise ratio and some performance measures are presented. Numerical and simulation results are shown to clarify the tradeoff between the achieved diversity-array gain, the processing complexity, and the power consumption.
Tracking and Data Relay Satellite System /TDRSS/ telecommunication services
Deerkoski, L. F.
1975-01-01
The TDRSS and tracking services define the telecommunication performance of the TDRSS between the RF interface with user spacecraft and the data interface with NASCOM at the ground terminal. Attention is given to system constraints, forward link services, multiple-access signal design parameters, S-band single access signal design parameters, multiple-access return link services, and single-access return link services.
Directional Overcurrent Relays Coordination Problems in Distributed Generation Systems
Jakub Ehrenberger; Jan Švec
2017-01-01
This paper proposes a new approach to the distributed generation system protection coordination based on directional overcurrent protections with inverse-time characteristics. The key question of protection coordination is the determination of correct values of all inverse-time characteristics coefficients. The coefficients must be correctly chosen considering the sufficiently short tripping times and the sufficiently long selectivity times. In the paper a new approach to protection coordinat...
Directional Overcurrent Relays Coordination Problems in Distributed Generation Systems
Directory of Open Access Journals (Sweden)
Jakub Ehrenberger
2017-09-01
Full Text Available This paper proposes a new approach to the distributed generation system protection coordination based on directional overcurrent protections with inverse-time characteristics. The key question of protection coordination is the determination of correct values of all inverse-time characteristics coefficients. The coefficients must be correctly chosen considering the sufficiently short tripping times and the sufficiently long selectivity times. In the paper a new approach to protection coordination is designed, in which not only some, but all the required types of short-circuit contributions are taken into account. In radial systems, if the pickup currents are correctly chosen, protection coordination for maximum contributions is enough to ensure selectivity times for all the required short-circuit types. In distributed generation systems, due to different contributions flowing through the primary and selective protections, coordination for maximum contributions is not enough, but all the short-circuit types must be taken into account, and the protection coordination becomes a complex problem. A possible solution to the problem, based on an appropriately designed optimization, has been proposed in the paper. By repeating a simple optimization considering only one short-circuit type, the protection coordination considering all the required short-circuit types has been achieved. To show the importance of considering all the types of short-circuit contributions, setting optimizations with one (the highest and all the types of short-circuit contributions have been performed. Finally, selectivity time values are explored throughout the entire protected section, and both the settings are compared.
Asghari, Vahid Reza
2011-07-01
We propose adopting a cooperative relaying technique in spectrum-sharing cognitive radio (CR) systems to more effectively and efficiently utilize available transmission resources, such as power, rate, and bandwidth, while adhering to the quality of service (QoS) requirements of the licensed (primary) users of the shared spectrum band. In particular, we first consider that the cognitive (secondary) user\\'s communication is assisted by an intermediate relay that implements the decode-and-forward (DF) technique onto the secondary user\\'s relayed signal to help with communication between the corresponding source and the destination nodes. In this context, we obtain first-order statistics pertaining to the first- and second-hop transmission channels, and then, we investigate the end-to-end performance of the proposed spectrum-sharing cooperative relaying system under resource constraints defined to assure that the primary QoS is unaffected. Specifically, we investigate the overall average bit error rate (BER), ergodic capacity, and outage probability of the secondary\\'s communication subject to appropriate constraints on the interference power at the primary receivers. We then consider a general scenario where a cluster of relays is available between the secondary source and destination nodes. In this case, making use of the partial relay selection method, we generalize our results for the single-relay scheme and obtain the end-to-end performance of the cooperative spectrum-sharing system with a cluster of L available relays. Finally, we examine our theoretical results through simulations and comparisons, illustrating the overall performance of the proposed spectrum-sharing cooperative system and quantify its advantages for different operating scenarios and conditions. © 2011 IEEE.
DEFF Research Database (Denmark)
Frederiksen, Flemming Bjerge
2008-01-01
Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context have been presented and discussed in this paper. Ideas to improve the wireless transmission by orthogonal OFDM-based communication and to increase the...... the coverage of cellular systems by future wireless networks, relay channels, relay stations and collaborate radio have been presented as well. A revised hierarchical deployment of the future wireless and wired networks are shortly discussed....
1973-01-01
The report contains data on antenna configurations for the low data rate users of the Tracking and Data Relay Satellite System (TDRSS). It treats the coverage and mutual visibility considerations between the user satellites and the relay satellites and relates these considerations to requirements of antenna beamwidth and fractional user orbital coverage. A final section includes user/TDRS telecommunication link budgets and forward and return link data rate tradeoffs.
Reactive relay selection in underlay cognitive networks with fixed gain relays
Hussain, Syed Imtiaz; Alouini, Mohamed-Slim; Qaraqe, Khalid A.; Hasna, Mazen Omar
2012-01-01
Best relay selection is a bandwidth efficient technique for multiple relay environments without compromising the system performance. The problem of relay selection is more challenging in underlay cognitive networks due to strict interference
Xia, Minghua
2012-06-01
Since the electromagnetic spectrum resource becomes more and more scarce, improving spectral efficiency is extremely important for the sustainable development of wireless communication systems and services. Integrating cooperative relaying techniques into spectrum-sharing cognitive radio systems sheds new light on higher spectral efficiency. In this paper, we analyze the end-to-end performance of cooperative amplify-and-forward (AF) relaying in spectrum-sharing systems. In order to achieve the optimal end-to-end performance, the transmit powers of the secondary source and the relays are optimized with respect to average interference power constraints at primary users and Nakagami-$m$ fading parameters of interference channels (for mathematical tractability, the desired channels from secondary source to relay and from relay to secondary destination are assumed to be subject to Rayleigh fading). Also, both partial and opportunistic relay-selection strategies are exploited to further enhance system performance. Based on the exact distribution functions of the end-to-end signal-to-noise ratio (SNR) obtained herein, the outage probability, average symbol error probability, diversity order, and ergodic capacity of the system under study are analytically investigated. Our results show that system performance is dominated by the resource constraints and it improves slowly with increasing average SNR. Furthermore, larger Nakagami-m fading parameter on interference channels deteriorates system performance slightly. On the other hand, when interference power constraints are stringent, opportunistic relay selection can be exploited to improve system performance significantly. All analytical results are corroborated by simulation results and they are shown to be efficient tools for exact evaluation of system performance.
Relay Placement for FSO Multihop DF Systems With Link Obstacles and Infeasible Regions
Zhu, Bingcheng; Cheng, Julian; Alouini, Mohamed-Slim; Wu, Lenan
2015-01-01
Optimal relay placement is studied for free-space optical multihop communication with link obstacles and infeasible regions. An optimal relay placement scheme is proposed to achieve the lowest outage probability, enable the links to bypass obstacles
Benkhelifa, Fatma; Salem, Ahmed Sultan; Alouini, Mohamed-Slim
2015-01-01
scenario where both the energy harvesting (EH) receiver and information decoding (ID) receiver at the relay have access to the whole received signal and its energy. The relay harvests the energy while receiving the signal from the source and uses
Performance analysis of dual-hop relaying systems in the presence of Co-channel interference
Ikki, Salama Said
2010-12-01
In this paper, we investigate the effect of co-channel interference on the performance of dual-hop communications with amplify-and-forward relaying. Based on the derivation of the effective signal-to-interference-plus-noise ratio (SINR) at the destination node of the system, taking into account co-channel interference, we obtain expressions for the error and outage probabilities. Moreover, we study the performance of the system in the high SINR regime. Monte-Carlo simulations are further provided and confirm the accuracy of the analytical results. ©2010 IEEE.
A relay rack for a control and protection system for nuclear reactors
International Nuclear Information System (INIS)
Miyata, Yasuyuki; Oda, Noriaki; Akiyama, Toyoshi
1975-01-01
It is obvious that all the equipment in the various systems that constitute a nuclear power plant must exhibit the highest levels of reliability, but the reactor control and protection system is of vital importance, and thus it requires a particularly thorough approach, incorporating redundancy, independence and separation. The paper describes the functions, construction and specifications of the relay rack - one of the most important items of equipment for reactor control and protection in a generating facility using a pressurized-water reactor - and it gives details of the extent to which these three requirements are satisfied. (author)
Palermo, Gianluca; Golkar, Alessandro; Gaudenzi, Paolo
2015-06-01
As small satellites and Sun Synchronous Earth Observation systems are assuming an increased role in nowadays space activities, including commercial investments, it is of interest to assess how infrastructures could be developed to support the development of such systems and other spacecraft that could benefit from having a data relay service in Low Earth Orbit (LEO), as opposed to traditional Geostationary relays. This paper presents a tradespace exploration study of the architecture of such LEO commercial satellite data relay systems, here defined as Earth Orbiting Support Systems (EOSS). The paper proposes a methodology to formulate architectural decisions for EOSS constellations, and enumerate the corresponding tradespace of feasible architectures. Evaluation metrics are proposed to measure benefits and costs of architectures; lastly, a multicriteria Pareto criterion is used to downselect optimal architectures for subsequent analysis. The methodology is applied to two case studies for a set of 30 and 100 customer-spacecraft respectively, representing potential markets for LEO services in Exploration, Earth Observation, Science, and CubeSats. Pareto analysis shows how increased performance of the constellation is always achieved by an increased node size, as measured by the gain of the communications antenna mounted on EOSS spacecraft. On the other hand, nonlinear trends in optimal orbital altitude, number of satellites per plane, and number of orbital planes, are found in both cases. An upward trend in individual node memory capacity is found, although never exceeding 256 Gbits of onboard memory for both cases that have been considered, assuming the availability of a polar ground station for EOSS data downlink. System architects can use the proposed methodology to identify optimal EOSS constellations for a given service pricing strategy and customer target, thus identifying alternatives for selection by decision makers.
Feedback systems for linear colliders
Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G
1999-01-01
Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...
Simultaneous Wireless Information and Power Transfer for MIMO Amplify-and-Forward Relay Systems
Benkhelifa, Fatma; Alouini, Mohamed-Slim
2016-01-01
relay. We derive the optimal source and relay covariance matrices to characterize the achievable region between the source-destination rate and the harvested energy at the relay, namely Rate-Energy (R-E) region. In this context, we consider the ideal
Whether and Where to Code in the Wireless Relay Channel
DEFF Research Database (Denmark)
Shi, Xiaomeng; Médard, Muriel; Roetter, Daniel Enrique Lucani
2013-01-01
The throughput benefits of random linear network codes have been studied extensively for wirelined and wireless erasure networks. It is often assumed that all nodes within a network perform coding operations. In energy-constrained systems, however, coding subgraphs should be chosen to control...... the number of coding nodes while maintaining throughput. In this paper, we explore the strategic use of network coding in the wireless packet erasure relay channel according to both throughput and energy metrics. In the relay channel, a single source communicates to a single sink through the aid of a half......-duplex relay. The fluid flow model is used to describe the case where both the source and the relay are coding, and Markov chain models are proposed to describe packet evolution if only the source or only the relay is coding. In addition to transmission energy, we take into account coding and reception...
The impact of relay chatter on the availability of plant systems following a seismic event
International Nuclear Information System (INIS)
Evans, M.G.K.; Su, Y.J.
1985-01-01
In performing a risk analysis of a nuclear power plant, one of the most important factors in determining the availability of those systems required to safely shut down the plant is the impact of common cause failures resulting from such events as fire, flooding or earthquakes. In the latter case it is particularly important to do a thorough analysis of the effects of the earthquake for plants built in zones of high seismicity such as the western United States, Japan or Taiwan. Much work has been done on the susceptibility of components to gross failure but little on the possibilities of relay chatter leading to the unavailability of many systems as the result of lock out of pumps or the changed status of valves. In this paper the authors look at the potential for electrical breaker failure and found that it is possible for a significant number of breakers supplying emergency pumps to be locked out following earthquakes such that the only other failure may well have been a loss of offsite power due to failure of switchyard insulators. They also identified the potential for individual valve operation within a system as the result of relay chatter, and the impact on the overall system availability. Finally they show how this can be incorporated into the quantification of the overall impact of the earthquake
Testing Solutions of the Protection Systems Provided with Delay Maximum Current Relays
Directory of Open Access Journals (Sweden)
Horia BALAN
2017-12-01
Full Text Available Relay protection is one of the main forms of automation control of electro energy systems, having as primary aims fault detection and disconnection of the faulty element in order to avoid the extent of damages and the as fast as possible recovery to the normal operation regime for the rest of the system. Faults that occur in the electro energy system can be classified considering on one hand their causes and on the other their types, but in the vast majority of cases the causes of the faults are combined. Further, considering their nature, faults are classified in faults due to the insulation’s damage, in faults due to the destruction of the integrity of the circuits and faults determined by interruptions. With respect to their nature, faults are short circuits, earthing faults and phases interruptions. At the same time, considering their type, faults are divided in transversal and longitudinal ones. The paper presents a testing solution of the delayed maximal current relays using a T3000 ISA Test measuring equipment.
Feedback Systems for Linear Colliders
International Nuclear Information System (INIS)
1999-01-01
Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies
Window observers for linear systems
Directory of Open Access Journals (Sweden)
Utkin Vadim
2000-01-01
Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications
Distributed Role Selection With ANC and TDBC Protocols in Two-Way Relaying Systems
Ding, Haiyang
2015-09-28
This paper advocates a distributed role selection strategy to coordinate two-way relaying transmissions among three cooperative nodes. For such, the local channel state information comparison and decision feedback mechanism are merged into classical analog network coding (ANC) and time division broadcast (TDBC) protocols such that the cooperative role of each node can be designated in a distributed fashion. We refer to this distributed role selection rule as d-ROSE. In both ANC-based and TDBC-based two-way relaying scenarios, strict proof for the equivalence of d-ROSE and optimal ROSE is given, which indicates that albeit the different form, their final role decision is essentially the same. Outage analysis for the d-ROSE strategy is carried out and the scaling law of the system outage behavior at high signal-to-noise ratio (SNR) is characterized, which manifests that d-ROSE can enhance the system diversity gain to one-order higher relative to the ANC and TDBC protocols. It is also shown that d-ROSE can reduce the signaling overhead upto 60% to perform the outage-optimal role selection. Finally, the impacts of node placement on the outage performance as well as the average signaling overhead of d-ROSE are numerically evaluated and some useful conclusions are drawn. © 2015 IEEE.
OFDM AF Variable Gain Relay System for the Next Generation Mobile Cellular
Directory of Open Access Journals (Sweden)
E. Kocan
2012-06-01
Full Text Available In this paper we present analytical performance evaluation of a dual-hop OFDM amplify-andforward (AF variable gain (VG relay system implementing ordered subcarrier mapping (SCM at the relay station (R, considered to be a very interesting solution for the next generation mobile cellular networks. A scenario with no direct communication between the source of information (S and destination terminal (D, with the Rayleigh fading statistics on both hops is assumed. A closed form analytical expression for the bit error rate (BER performance of the considered system with DPSK modulation is derived, while for its ergodic capacity performance, a tight upper bound expression is obtained. The accuracy of the undertaken analytical approach is confirmed through comparison with simulation results. It is shown that significant capacity enhancement can be achieved through SCM implementation at R, for all the signal-to-noise ratio (SNR values on both hops, but especially in the region of small SNRs on hops. BER analysis reveals that in the region of small and medium average SNRs on both hops BER performance may also be improved with SCM at R station.
Yang, Yuli
2011-07-01
In addressing the issue of achieving high throughput in half-duplex relay channels, we exploit a concept of information-guided transmission for the network consisting of a source node, a destination node, and multiple half-duplex relay nodes. For further benefiting from multiple relay nodes, the relay-selection patterns are defined as the arbitrary combinations of given relay nodes. By exploiting the difference among the spatial channels states, in each relay-help transmission additional information to be forwarded is mapped onto the index of the active relay-selection pattern besides the basic information mapped onto the traditional constellation, which is forwarded by the relay node(s) in the active relay-selection pattern, so as to enhance the relay throughtput. With iterative decoding, the destination node can achieve a robust detection by decoupling the signals forwarded in different ways. We investigate the proposed scheme considering "decode-and-forward" protocol and establish its achievable transmission rate. The analytical results on capacity behaviors prove the efficiency of the proposed scheme by showing that it achieves better capacity performance than the conventional scheme. © 2011 IEEE.
DEFF Research Database (Denmark)
2008-01-01
The method involves utilizing a base station (BS) (100) to transmit data to a relay station (RS) (110) and a mobile station (MS) (120), where the data includes two messages. The BS is utilized to transmit the two messages by utilizing a linear combination method, and the data is received in the RS...
Multi-diversity combining and selection for relay-assisted mixed RF/FSO system
Chen, Li; Wang, Weidong
2017-12-01
We propose and analyze multi-diversity combining and selection to enhance the performance of relay-assisted mixed radio frequency/free-space optics (RF/FSO) system. We focus on a practical scenario for cellular network where a single-antenna source is communicating to a multi-apertures destination through a relay equipped with multiple receive antennas and multiple transmit apertures. The RF single input multiple output (SIMO) links employ either maximal-ratio combining (MRC) or receive antenna selection (RAS), and the FSO multiple input multiple output (MIMO) links adopt either repetition coding (RC) or transmit laser selection (TLS). The performance is evaluated via an outage probability analysis over Rayleigh fading RF links and Gamma-Gamma atmospheric turbulence FSO links with pointing errors where channel state information (CSI) assisted amplify-and-forward (AF) scheme is considered. Asymptotic closed-form expressions at high signal-to-noise ratio (SNR) are also derived. Coding gain and diversity order for different combining and selection schemes are further discussed. Numerical results are provided to verify and illustrate the analytical results.
Opportunistic Relay Selection in Multicast Relay Networks using Compressive Sensing
Elkhalil, Khalil
2014-12-01
Relay selection is a simple technique that achieves spatial diversity in cooperative relay networks. However, for relay selection algorithms to make a selection decision, channel state information (CSI) from all cooperating relays is usually required at a central node. This requirement poses two important challenges. Firstly, CSI acquisition generates a great deal of feedback overhead (air-time) that could result in significant transmission delays. Secondly, the fed back channel information is usually corrupted by additive noise. This could lead to transmission outages if the central node selects the set of cooperating relays based on inaccurate feedback information. In this paper, we introduce a limited feedback relay selection algorithm for a multicast relay network. The proposed algorithm exploits the theory of compressive sensing to first obtain the identity of the “strong” relays with limited feedback. Following that, the CSI of the selected relays is estimated using linear minimum mean square error estimation. To minimize the effect of noise on the fed back CSI, we introduce a back-off strategy that optimally backs-off on the noisy estimated CSI. For a fixed group size, we provide closed form expressions for the scaling law of the maximum equivalent SNR for both Decode and Forward (DF) and Amplify and Forward (AF) cases. Numerical results show that the proposed algorithm drastically reduces the feedback air-time and achieves a rate close to that obtained by selection algorithms with dedicated error-free feedback channels.
Systems of Inhomogeneous Linear Equations
Scherer, Philipp O. J.
Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.
Liu, Yang; Han, Guangjie; Shi, Sulong; Li, Zhengquan
2018-06-20
This study investigates the superiority of cooperative broadcast transmission over traditional orthogonal schemes when applied in a downlink relaying broadcast channel (RBC). Two proposed cooperative broadcast transmission protocols, one with an amplify-and-forward (AF) relay, and the other with a repetition-based decode-and-forward (DF) relay, are investigated. By utilizing superposition coding (SupC), the source and the relay transmit the private user messages simultaneously instead of sequentially as in traditional orthogonal schemes, which means the channel resources are reused and an increased channel degree of freedom is available to each user, hence the half-duplex penalty of relaying is alleviated. To facilitate a performance evaluation, theoretical outage probability expressions of the two broadcast transmission schemes are developed, based on which, we investigate the minimum total power consumption of each scheme for a given traffic requirement by numerical simulation. The results provide details on the overall system performance and fruitful insights on the essential characteristics of cooperative broadcast transmission in RBCs. It is observed that better overall outage performances and considerable power gains can be obtained by utilizing cooperative broadcast transmissions compared to traditional orthogonal schemes.
Linear collider systems and costs
International Nuclear Information System (INIS)
Loew, G.A.
1993-05-01
The purpose of this paper is to examine some of the systems and sub-systems involved in so-called ''conventional'' e + e - linear colliders and to study how their design affects the overall cost of these machines. There are presently a total of at least six 500 GeV c. of m. linear collider projects under study in the world. Aside from TESLA (superconducting linac at 1.3 GHz) and CLIC (two-beam accelerator with main linac at 30GHz), the other four proposed e + e - linear colliders can be considered ''conventional'' in that their main linacs use the proven technique of driving room temperature accelerator sections with pulsed klystrons and modulators. The centrally distinguishing feature between these projects is their main linac rf frequency: 3 GHz for the DESY machine, 11.424 GHz for the SLAC and JLC machines, and 14 GHz for the VLEPP machine. The other systems, namely the electron and positron sources, preaccelerators, compressors, damping rings and final foci, are fairly similar from project to project. Probably more than 80% of the cost of these linear colliders will be incurred in the two main linacs facing each other and it is therefore in their design and construction that major savings or extra costs may be found
2012-02-10
... Tracking and Data Relay Satellite System (TDRSS) Rates for Non- U.S. Government Customers AGENCY: National... customer flexibility, allowing more efficient use of the system. This notion was never implemented in the... commercial customers, as well as Arctic and Antarctic science programs. In this direct final rule, NASA is...
Evolution of NASA's Near-Earth Tracking and Data Relay Satellite System (TDRSS)
Flaherty, Roger; Stocklin, Frank; Weinberg, Aaron
2006-01-01
NASA's Tracking and Data Relay Satellite System (TDRSS) is now in its 23rd year of operations and its spacecraft fleet includes three second-generation spacecraft launched since the year 2000; a figure illustrates the first generation TDRSS spacecraft. During this time frame the TDRSS has provided communications relay support to a broad range of missions, with emphasis on low-earth-orbiting (LEO) spacecraft that include unmanned science spacecraft (e.g., Hubble Space Telescope), and human spaceflight (Space Shuttle and Space Station). Furthermore, the TDRSS has consistently demonstrated its uniqueness and adaptability in several ways. First, its S- and K-band services, combined with its multi-band/steerable single-access (SA) antennas and ground-based configuration flexibility, have permitted the mission set to expand to unique users such as scientific balloons and launch vehicles. Second, the bent-pipe nature of the system has enabled the introduction of new/improved services via technology insertion and upgrades at each of the ground terminals; a specific example here is the Demand Access Service (DAS), which, for example, is currently providing science-alert support to NASA science missions Third, the bent-pipe nature of the system, combined with the flexible ground-terminal signal processing architecture has permitted the demonstration/vaIidation of new techniques/services/technologies via a real satellite channel; over the past 10+ years these have, for example, included demonstrations/evaluations of emerging modulation/coding techniques. Given NASA's emerging Exploration plans, with missions beginning later this decade and expanding for decades to come, NASA is currently planning the development of a seamless, NASA-wide architecture that must accommodate missions from near-earth to deep space. Near-earth elements include Ground-Network (GN) and Near-Earth Relay (NER) components and both must efficiently and seamlessly support missions that encompass: earth
Multi-flow scheduling for coordinated direct and relayed users in cellular systems
DEFF Research Database (Denmark)
Thai, Chan; Popovski, Petar; Kaneko, Megumi
2013-01-01
. Such are the Coordinated Direct/Relay (CDR) schemes, where each basic transmission involves two flows to a direct and a relayed user. Usage of MFT schemes as building blocks of more complex transmission schemes essentially changes the problem of scheduling, since some of the flows to be scheduled are coupled in a signal...
Yang, Yuli; Aissa, Sonia
2011-01-01
In addressing the issue of achieving high throughput in half-duplex relay channels, we exploit a concept of information-guided transmission for the network consisting of a source node, a destination node, and multiple half-duplex relay nodes
Low-Complexity Combining Schemes in Dual-Hop AF Relaying Systems
Gaaloul, Fakhreddine; Alouini, Mohamed-Slim; Radaydeh, Redha M.
2011-01-01
This paper investigates the performance of different low-complexity combining schemes in the context of dual-hop amplify-and-forward (AF) relaying networks. It is assumed that the relay uses single transmit (receive) antenna due to space limitation
Analysis of overload conditions in distance relay under severe system contingencies
Energy Technology Data Exchange (ETDEWEB)
Halim Abu Bakar, Ab. [Department of Electrical Engineering, Universiti Malaya (Malaysia); Yatim, Fazilah Mat; Othman, Mohd Ridzal [Transmission Division, Tenaga Nasional Berhad (Malaysia); Yusof, Sallehuddin [Advanced Powor Solutions (Malaysia)
2010-06-15
Distance relay protection is widely used worldwide for protection scheme on high voltage transmission lines. This protection tends to be prone to load encroachment condition causing possible undesired tripping condition. Investigations of two system disturbances that occurred in TNB's (Tenaga Nasional Berhad) Grid in the year 2003 and 2005 have clearly revealed the occurrence of load encroachment condition following line overloads after large number of line tripping. Examination of the impedance locus trajectory during the overload events have enabled a distinction be made between power swing and load encroachment phenomena. This paper presents the analysis and findings of the investigation of the load encroachment phenomena of the two events, including other related transmission line contingencies. (author)
Directory of Open Access Journals (Sweden)
V.V. Laguta
2012-04-01
Full Text Available The paper deals with methods of preliminary analysis of sound signals to extract stable features in classifying the relay used in railway automation systems. The algorithm of the description of a sound signal on the basis of these attributes is offered.
DEFF Research Database (Denmark)
Frederiksen, Flemming Bjerge; Prasad, Ramjee
2007-01-01
Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context will be presented and discussed in this paper. Ideas to improve the wireless transmission by orthogonal OFDM-based communication and to increase...... the coverage of cellular systems by relay stations will be presented as well. ...
Relay Selection for Cooperative Relaying in Wireless Energy Harvesting Networks
Zhu, Kaiyan; Wang, Fei; Li, Songsong; Jiang, Fengjiao; Cao, Lijie
2018-01-01
Energy harvesting from the surroundings is a promising solution to provide energy supply and extend the life of wireless sensor networks. Recently, energy harvesting has been shown as an attractive solution to prolong the operation of cooperative networks. In this paper, we propose a relay selection scheme to optimize the amplify-and-forward (AF) cooperative transmission in wireless energy harvesting cooperative networks. The harvesting energy and channel conditions are considered to select the optimal relay as cooperative relay to minimize the outage probability of the system. Simulation results show that our proposed relay selection scheme achieves better outage performance than other strategies.
Massive MIMO Relay Systems with Multipair Wireless Information and Power Transfer
Directory of Open Access Journals (Sweden)
Hongwu Liu
2017-01-01
Full Text Available This paper investigates destination-aided simultaneous wireless information and power transfer (SWIPT for a decode-and-forward relay network, in which massive multiple-input multiple-output antennas are deployed at relay to assist communications among multiple source-destination pairs. During relaying, energy signals are emitted from multiple destinations when multiple sources are sending their information signals to relay. With power splitting and unlimited antennas at relay, asymptotic expression of harvested energy is derived. The analysis reveals that asymptotic harvested energy is independent of fast fading effect of wireless channels; meanwhile transmission powers of each source and destination can be scaled down inversely proportional to the number of relay antennas. To significantly reduce energy leakage interference and multipair interference, zero-forcing processing and maximum-ratio combing/maximum-ratio transmission are employed at relay. Fundamental trade-off between harvested energy and achievable sum rate is quantified. It is shown that asymptotic sum rate is neither convex nor concave with respect to power splitting and destination transmission power. Thus, a one-dimensional embedded bisection algorithm is proposed to jointly determine the optimal power splitting and destination transmission power. It shows that destination-aided SWIPT are beneficial for harvesting energy and increasing sum rate. The significant sum rate improvements of the proposed schemes are verified by numerical results.
On the performance of spectrum sharing systems with two-way relaying and multiuser diversity
Yang, Liang
2012-08-01
In this letter, we consider a spectrum sharing network with two-way relaying and multi-user diversity. More specifically, one secondary transmitter with the best channel quality is selected and splits its partial power to relay its received signals to the primary users by using the amplify-and-forward relaying protocol. We derive a tight approximation for the resulting outage probability. Based on this formula, the performance of the spectral sharing region and the cell coverage are analyzed. Numerical results are given to verify our analysis and are discussed to illustrate the advantages of our newly proposed scheme. © 1997-2012 IEEE.
Linear operator inequalities for strongly stable weakly regular linear systems
Curtain, RF
2001-01-01
We consider the question of the existence of solutions to certain linear operator inequalities (Lur'e equations) for strongly stable, weakly regular linear systems with generating operators A, B, C, 0. These operator inequalities are related to the spectral factorization of an associated Popov
Alsharoa, Ahmad; Ghazzai, Hakim; Yaacoub, Elias; Alouini, Mohamed-Slim; Kamal, Ahmed
2015-01-01
This paper studies the achievable cognitive sum rate of an overlay cognitive radio (CR) system assisted with multiple antennas two-way relays in which primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. In this context, the problem of both bandwidth and power allocation is investigated. We propose that the CUs are allowed to allocate a part of the PUs spectrum to perform their cognitive transmission. In return, acting as amplify-and-forward two-way relays, they are exploited to support PUs to reach their target data rates over the remaining bandwidth. Power expressions for optimal transmit power allocated per PU and CU antenna are derived under primary quality-of-service constraint in addition to bandwidth and power budget constraints. More specifically, CUs act as relays for the PUs transmission and gain some spectrum as long as they respect these constraints. After deriving the optimal transmit powers, we employ a strong optimization tool based on swarm intelligence to optimize the full and complex relay amplification gain matrices in addition to the bandwidths released to primary and cognitive transmission. Furthermore, three different utility functions are considered in our optimization problems depending on the level of fairness among CUs.
Wu, Xiaolin; Rong, Yue
2015-12-01
The quality-of-service (QoS) criteria (measured in terms of the minimum capacity requirement in this paper) are very important to practical indoor power line communication (PLC) applications as they greatly affect the user experience. With a two-way multicarrier relay configuration, in this paper we investigate the joint terminals and relay power optimization for the indoor broadband PLC environment, where the relay node works in the amplify-and-forward (AF) mode. As the QoS-constrained power allocation problem is highly non-convex, the globally optimal solution is computationally intractable to obtain. To overcome this challenge, we propose an alternating optimization (AO) method to decompose this problem into three convex/quasi-convex sub-problems. Simulation results demonstrate the fast convergence of the proposed algorithm under practical PLC channel conditions. Compared with the conventional bidirectional direct transmission (BDT) system, the relay-assisted two-way information exchange (R2WX) scheme can meet the same QoS requirement with less total power consumption.
Ghazzai, Hakim
2016-03-15
High-speed railway system equipped with moving relay stations placed on the middle of the ceiling of each train wagon is investigated. The users inside the train are served in two hops via the orthogonal frequency-division multiple access (OFDMA) technology. In this work, we first focus on minimizing the total downlink power consumption of the base station (BS) and the moving relays while respecting specific quality of service (QoS) constraints. We first derive the optimal resource allocation solution in terms of OFDMA subcarriers and power allocation using the dual decomposition method. Then, we propose an efficient algorithm based on the Hungarian method in order to find a suboptimal but low complexity solution. Moreover, we propose an OFDMA planning solution for high-speed train by finding the maximal inter-BS distance given the required user data rates in order to perform seamless handover. Our simulation results illustrate the performance of the proposed resource allocation schemes in the case of the 3GPP Long Term Evolution-Advanced (LTE-A) and compare them with previously developed algorithms as well as with the direct transmission scenario. Our results also highlight the significant planning gain obtained thanks to the use of multiple relays instead of the conventional single relay scenario.
Alsharoa, Ahmad
2015-10-08
This paper studies the achievable cognitive sum rate of an overlay cognitive radio (CR) system assisted with multiple antennas two-way relays in which primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. In this context, the problem of both bandwidth and power allocation is investigated. We propose that the CUs are allowed to allocate a part of the PUs spectrum to perform their cognitive transmission. In return, acting as amplify-and-forward two-way relays, they are exploited to support PUs to reach their target data rates over the remaining bandwidth. Power expressions for optimal transmit power allocated per PU and CU antenna are derived under primary quality-of-service constraint in addition to bandwidth and power budget constraints. More specifically, CUs act as relays for the PUs transmission and gain some spectrum as long as they respect these constraints. After deriving the optimal transmit powers, we employ a strong optimization tool based on swarm intelligence to optimize the full and complex relay amplification gain matrices in addition to the bandwidths released to primary and cognitive transmission. Furthermore, three different utility functions are considered in our optimization problems depending on the level of fairness among CUs.
Switched diversity strategies for dual-hop amplify-and-forward relaying systems
Gaaloul, Fakhreddine; Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim
2012-01-01
This study investigates different receive single-branch switch-based diversity schemes for dual-hop amplify-and-forward relaying networks. Specifically, three receive processing algorithms are adopted, in which the receive branch is selected using
Fairness-Aware and Energy Efficiency Resource Allocation in Multiuser OFDM Relaying System
Directory of Open Access Journals (Sweden)
Guangjun Liang
2016-01-01
Full Text Available A fairness-aware resource allocation scheme in a cooperative orthogonal frequency division multiple (OFDM network is proposed based on jointly optimizing the subcarrier pairing, power allocation, and channel-user assignment. Compared with traditional OFDM relaying networks, the source is permitted to retransfer the same data transmitted by it in the first time slot, further improving the system capacity performance. The problem which maximizes the energy efficiency (EE of the system with total power constraint and minimal spectral efficiency constraint is formulated into a mixed-integer nonlinear programming (MINLP problem which has an intractable complexity in general. The optimization model is simplified into a typical fractional programming problem which is testified to be quasiconcave. Thus we can adopt Dinkelbach method to deal with MINLP problem proposed to achieve the optimal solution. The simulation results show that the joint resource allocation method proposed can achieve an optimal EE performance under the minimum system service rate requirement with a good global convergence.
International Nuclear Information System (INIS)
Domijan, A.D. Jr.; Emami, M.V.
1990-01-01
This paper reports on a simulation of a MHO distance relay developed to study the effect of its operation under various system conditions. Simulation is accomplished using a state space approach and a modeling technique using ElectroMagnetic Transient Program (Transient Analysis of Control Systems). Furthermore, simulation results are compared with those obtained in another independent study as a control, to validate the results. A data code for the practical utilization of this simulation is given
Multihop Relaying over IM/DD FSO Systems with Pointing Errors
Zedini, Emna; Alouini, Mohamed-Slim
2015-01-01
In this paper, the end-to-end performance of a multihop free-space optical system with amplify-and-forward channelstate- information-assisted or fixed-gain relays using intensity modulation with direct detection technique over Gamma-Gamma turbulence fading with pointing error impairments is studied. More specifically, novel closed-form results for the probability density function and the cumulative distribution function of the end-to-end signal-to-noise ratio (SNR) are derived in terms of the Fox’s H function. Based on these formulas, closed-form bounds for the outage probability, the average bit-error rate (BER) of on-off keying modulation scheme, the moments, and the ergodic capacity are presented. Furthermore, using the momentsbased approach, tight asymptotic approximations at high and low average SNR regimes are derived for the ergodic capacity in terms of simple elementary functions. The obtained results indicate that the overall system performance degrades with an increase of the number of hops. The effects of the atmospheric turbulence conditions and the pointing error are also quantified. All the analytical results are verified via computer-based Monte- Carlo simulations.
Multihop Relaying over IM/DD FSO Systems with Pointing Errors
Zedini, Emna
2015-10-19
In this paper, the end-to-end performance of a multihop free-space optical system with amplify-and-forward channelstate- information-assisted or fixed-gain relays using intensity modulation with direct detection technique over Gamma-Gamma turbulence fading with pointing error impairments is studied. More specifically, novel closed-form results for the probability density function and the cumulative distribution function of the end-to-end signal-to-noise ratio (SNR) are derived in terms of the Fox’s H function. Based on these formulas, closed-form bounds for the outage probability, the average bit-error rate (BER) of on-off keying modulation scheme, the moments, and the ergodic capacity are presented. Furthermore, using the momentsbased approach, tight asymptotic approximations at high and low average SNR regimes are derived for the ergodic capacity in terms of simple elementary functions. The obtained results indicate that the overall system performance degrades with an increase of the number of hops. The effects of the atmospheric turbulence conditions and the pointing error are also quantified. All the analytical results are verified via computer-based Monte- Carlo simulations.
Robust Power Allocation for Multi-Carrier Amplify-and-Forward Relaying Systems
Rao, Anlei
2012-09-08
It has been shown that adaptive power allocation can provide a substantial performance gain in wireless communication systems when perfect channel state information (CSI) is available at the transmitter. However when only imperfect CSI is available, the performance may degrade significantly, and as such robust power allocation schemes have been developed to minimize the effects of this degradation. In this paper, we investigate power allocation strategies for multicarrier systems, in which each subcarrier employs single amplify-and-forward (AF) relaying scheme. Optimal power allocation schemes are proposed by maximizing the approximated channel capacity under aggregate power constraint (APC) and separate power constraint (SPC). By comparison with the uniform power allocation scheme and the best channel power allocation scheme, we confirm that both the APC and SPC schemes achieve a performance gain over benchmark schemes. In addition, the impact of channel uncertainty is also considered in this paper by modeling the uncertainty regions as bounded sets, and results show that the uncertainty can degrade the worst-case performance significantly.
Wang, Liping; Ji, Yusheng; Liu, Fuqiang
The integration of multihop relays with orthogonal frequency-division multiple access (OFDMA) cellular infrastructures can meet the growing demands for better coverage and higher throughput. Resource allocation in the OFDMA two-hop relay system is more complex than that in the conventional single-hop OFDMA system. With time division between transmissions from the base station (BS) and those from relay stations (RSs), fixed partitioning of the BS subframe and RS subframes can not adapt to various traffic demands. Moreover, single-hop scheduling algorithms can not be used directly in the two-hop system. Therefore, we propose a semi-distributed algorithm called ASP to adjust the length of every subframe adaptively, and suggest two ways to extend single-hop scheduling algorithms into multihop scenarios: link-based and end-to-end approaches. Simulation results indicate that the ASP algorithm increases system utilization and fairness. The max carrier-to-interference ratio (Max C/I) and proportional fairness (PF) scheduling algorithms extended using the end-to-end approach obtain higher throughput than those using the link-based approach, but at the expense of more overhead for information exchange between the BS and RSs. The resource allocation scheme using ASP and end-to-end PF scheduling achieves a tradeoff between system throughput maximization and fairness.
Joint source and relay optimization for interference MIMO relay networks
Khandaker, Muhammad R. A.; Wong, Kai-Kit
2017-12-01
This paper considers multiple-input multiple-output (MIMO) relay communication in multi-cellular (interference) systems in which MIMO source-destination pairs communicate simultaneously. It is assumed that due to severe attenuation and/or shadowing effects, communication links can be established only with the aid of a relay node. The aim is to minimize the maximal mean-square-error (MSE) among all the receiving nodes under constrained source and relay transmit powers. Both one- and two-way amplify-and-forward (AF) relaying mechanisms are considered. Since the exactly optimal solution for this practically appealing problem is intractable, we first propose optimizing the source, relay, and receiver matrices in an alternating fashion. Then we contrive a simplified semidefinite programming (SDP) solution based on the error covariance matrix decomposition technique, avoiding the high complexity of the iterative process. Numerical results reveal the effectiveness of the proposed schemes.
Multihop communications over CSI-assisted relay IM/DD FSO systems with pointing errors
Zedini, Emna
2015-09-14
In this paper, the end-to-end performance of a multihop free-space optical system with amplify-and-forward channel-state-information-assisted relays using intensity modulation with direct detection technique over Gamma-Gamma turbulence fading with pointing error impairments is studied. More specifically, novel closed-form expressions for the moment generating function, the cumulative distribution function, and the probability density function of the end-to-end signal-to-noise ratio (SNR) are derived in terms of the Meijer\\'s G function. Based on these formulas, closed-form bounds for the outage probability, the average bit-error rate (BER) of a variety of modulation schemes, the moments, and the ergodic capacity are presented. Furthermore, by using the asymptotic expansion of the Meijer\\'s G function at high SNR, accurate asymptotic results are introduced for the outage probability, the average BER and the ergodic capacity in terms of simple elementary functions. For the capacity, novel asymptotic results at low and high SNR regimes are also derived through the moments. All the analytical results are verified via computer-based Monte-carlo simulations.
Park, Kihong
2012-09-01
In this paper, we investigate secrecy communications in two-hop wireless relaying networks which consist of one source, one amplify-and-forward (AF) relay, one legitimate destination, and one eavesdropper. To prevent the eavesdropper from intercepting the source message, we make the destination send the intended noise to the AF relay during the first phase. This is referred to as cooperative jamming. According to the channel information at the destination, we address two types of jamming power allocation; (i) rate-optimal power allocation and (ii) outage-optimal power allocation. More specifically, without the instantaneous channel knowledge for the eavesdropper side, the outage probability of the secrecy rate is minimized with respect to the intended noise power level. We show that the outage-optimal allocation gives almost the same outage probability as the rateoptimal one. In addition, the jamming power consumption can be significantly reduced compared to the fixed and rate-optimal power allocation methods. © 2012 IEEE.
DEFF Research Database (Denmark)
Liu, Huaping; Sun, Fan; De Carvalho, Elisabeth
2013-01-01
Two-way relaying in wireless systems has initiated a large research effort during the past few years. Nevertheless, it represents only a specific traffic pattern and it is of interest to investigate other traffic patterns where such a simultaneous processing of information flows can bring...... performance advantage. In this paper we consider a \\emph{four-way relaying} multiple-input multiple-output (MIMO) scenario, where each of the two Mobile Stations (MSs) has a two-way connection to the same Base Station (BS), while each connection is through a dedicated Relay Station (RS). The RSs are placed...... the sum-rate of the new scheme for Decode-and-Forward (DF) operational model for the RS. We compare the performance with state-of-the-art reference schemes, based on two-way relaying with DF. The results indicate that the sum-rate of the two-phase four-way relaying scheme largely outperforms the four...
Alternate transmission with half-duplex relaying in MIMO interference relay networks
Park, Seongho
2013-12-01
In this paper, we consider an alternate transmission scheme for a multiple-input multiple-output interference relay channel where multiple sources transmit their own signals to their corresponding destinations via one of two relaying groups alternately every time phase. Each of the relaying groups has arbitrary number of relays, and each relay operates in half-duplex amplify-and-forward mode. In our scheme, the received signals at the relay nodes consist of desired signals and two different interference signals such as the inter-source interferences and the inter-group interferences which are caused by the phase incoherence of relaying. As such, we propose an iterative interference alignment algorithm to mitigate the interferences. We show that our proposed scheme achieves additional degrees of freedom compared to the conventional half-duplex relaying system in the interference relay channels. © 2013 IEEE.
Ahmed, Qasim Zeeshan
2013-01-01
In this letter, a new detector is proposed for amplifyand- forward (AF) relaying system when communicating with the assistance of relays. The major goal of this detector is to improve the bit error rate (BER) performance of the receiver. The probability density function is estimated with the help of kernel density technique. A generalized Gaussian kernel is proposed. This new kernel provides more flexibility and encompasses Gaussian and uniform kernels as special cases. The optimal window width of the kernel is calculated. Simulations results show that a gain of more than 1 dB can be achieved in terms of BER performance as compared to the minimum mean square error (MMSE) receiver when communicating over Rayleigh fading channels.
Telecommunications Relay Services
... Home » Health Info » Hearing, Ear Infections, and Deafness Telecommunications Relay Services On this page: What are telecommunication ... additional information about telecommunication relay services? What are telecommunication relay services? Title IV of the Americans with ...
Dynamic linearization system for a radiation gauge
International Nuclear Information System (INIS)
Panarello, J.A.
1977-01-01
The linearization system and process converts a high resolution non-linear analog input signal, representative of the thickness of an object, into a high resolution linear analog output signal suitable for use in driving a variety of output devices. The system requires only a small amount of memory for storing pre-calculated non-linear correction coefficients. The system channels the input signal to separate circuit paths so that it may be used directly to; locate an appropriate correction coefficient; develop a correction term after an appropriate correction coefficient is located; and develop a linearized signal having the same high resolution inherent in the input signal. The system processes the linearized signal to compensate for the possible errors introduced by radiation source noise. The processed linearized signal is the high resolution linear analog output signal which accurately represents the thickness of the object being gauged
On the benefits of location-based relay selection in mobile wireless networks
DEFF Research Database (Denmark)
Nielsen, Jimmy Jessen; Madsen, Tatiana Kozlova; Schwefel, Hans-Peter
2016-01-01
We consider infrastructure-based mobile networks that are assisted by a single relay transmission where both the downstream destination and relay nodes are mobile. Selecting the optimal transmission path for a destination node requires up-to-date link quality estimates of all relevant links....... If the relay selection is based on link quality measurements, the number of links to update grows quadratically with the number of nodes, and measurements need to be updated frequently when nodes are mobile. In this paper, we consider a location-based relay selection scheme where link qualities are estimated...... from node positions; in the scenario of a node-based location system such as GPS, the location-based approach reduces signaling overhead, which in this case only grows linearly with the number of nodes. This paper studies these two relay selection approaches and investigates how they are affected...
Mobile relays for enhanced broadband connectivity in high speed train systems
Yaacoub, Elias E.
2014-09-01
With the introduction of wireless modems and smart phones, the passenger transport industry is witnessing a high demand to ensure not only the safety of the trains, but also to provide users with Internet access all the time inside the train. When the Mobile Terminal (MT) communicates directly with the Base Station (BS), it will experience a severe degradation in the Quality of Service due to the path loss and shadowing effects as the wireless signal is traveling through the train. In this paper, we study the performance in the case of relays placed on top of each train car. In the proposed approach, these relays communicate with the cellular BS on one hand, and with the MTs inside the train cars on the other hand, using the Long Term Evolution (LTE) cellular technology. A low complexity heuristic LTE radio resource management approach is proposed and compared to the Hungarian algorithm, both in the presence and absence of the relays. The presence of the relays is shown to lead to significant enhancements in the effective data rates of the MTs. In addition, the proposed resource management approach is shown to reach a performance close to the optimal Hungarian algorithm. © 2014 Elsevier B.V.
On Bit Error Probability and Power Optimization in Multihop Millimeter Wave Relay Systems
Chelli, Ali; Kansanen, Kimmo; Alouini, Mohamed-Slim; Balasingham, Ilangko
2018-01-01
5G networks are expected to provide gigabit data rate to users via millimeter-wave (mmWave) communication technology. One of the major problem faced by mmWaves is that they cannot penetrate buildings. In this paper, we utilize multihop relaying
Linear quadratic optimization for positive LTI system
Muhafzan, Yenti, Syafrida Wirma; Zulakmal
2017-05-01
Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.
Joint opportunistic scheduling and network coding for bidirectional relay channel
Shaqfeh, Mohammad
2013-07-01
In this paper, we consider a two-way communication system in which two users communicate with each other through an intermediate relay over block-fading channels. We investigate the optimal opportunistic scheduling scheme in order to maximize the long-term average transmission rate in the system assuming symmetric information flow between the two users. Based on the channel state information, the scheduler decides that either one of the users transmits to the relay, or the relay transmits to a single user or broadcasts to both users a combined version of the two users\\' transmitted information by using linear network coding. We obtain the optimal scheduling scheme by using the Lagrangian dual problem. Furthermore, in order to characterize the gains of network coding and opportunistic scheduling, we compare the achievable rate of the system versus suboptimal schemes in which the gains of network coding and opportunistic scheduling are partially exploited. © 2013 IEEE.
On pole structure assignment in linear systems
Czech Academy of Sciences Publication Activity Database
Loiseau, J.-J.; Zagalak, Petr
2009-01-01
Roč. 82, č. 7 (2009), s. 1179-1192 ISSN 0020-7179 R&D Projects: GA ČR(CZ) GA102/07/1596 Institutional research plan: CEZ:AV0Z10750506 Keywords : linear systems * linear state feedback * pole structure assignment Subject RIV: BC - Control Systems Theory Impact factor: 1.124, year: 2009 http://library.utia.cas.cz/separaty/2009/AS/zagalak-on pole structure assignment in linear systems.pdf
Yang, Yuli; Aï ssa, Sonia
2013-01-01
For a cognitive radio relaying network, we propose a cross-layer design by combining information-guided transmission at the physical layer and network coding at the network layer. With this design, a common relay is exploited to help
Displacement measurement system for linear array detector
International Nuclear Information System (INIS)
Zhang Pengchong; Chen Ziyu; Shen Ji
2011-01-01
It presents a set of linear displacement measurement system based on encoder. The system includes displacement encoders, optical lens and read out circuit. Displacement read out unit includes linear CCD and its drive circuit, two amplifier circuits, second order Butterworth low-pass filter and the binarization circuit. The coding way is introduced, and various parts of the experimental signal waveforms are given, and finally a linear experimental test results are given. The experimental results are satisfactory. (authors)
Application of a proposed overcurrent relay in radial distribution networks
Energy Technology Data Exchange (ETDEWEB)
Conde, A.; Vazquez, E. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, A.P. 36-F, CU, CP 66450, San Nicolas de los Garza, Nuevo Leon (Mexico)
2011-02-15
This paper contains the application criteria and coordination process for a proposed overcurrent relay in a radial power system with feed from one or multiple sources. This relay uses independent functions to detect faults and to calculate the operation time. Also this relay uses a time element function that allows it to reduce the time relay operation, enhancing the backup protection. Some of the proposed approaches improve the sensitivity of the relay. The selection of the best approach in the proposed relay is defined by the needs of the application. The proposed protection can be considered as an additional function protection to conventional overcurrent relays. (author)
LCTS on ALPHASAT and Sentinel 1a: in orbit status of the LEO to geo data relay system
Zech, H.; Heine, F.; Troendle, D.; Pimentel, P. M.; Panzlaff, K.; Motzigemba, M.; Meyer, R.; Philipp-May, S.
2017-11-01
The performance of sensors for Earth Observation Missions is constantly improving. This drives the need for a reliable, high-speed data transfer capability from a Low Earth Orbit (LEO) spacecraft (S/C) to ground. In addition, for the transfer of time-critical data to ground, a low latency between data generation in orbit and data reception at the respective mission control center is of high importance. Laser communication between Satellites for high data transmission in combination with a GEO data relay system for reducing the latency time addresses these requirements.
Alheadary, Wael Ghazy
2017-07-20
This work investigates the end-to-end performance of a free space optical amplify-and-forward (AF) fixed-gain relaying system using heterodyne detection over misaligned general Malaga turbulence channels. More specifically, we present exact closed-form expressions for average bit-error rate achievable spectral efficiency non-adaptive/adaptive modulation schemes by employing generalized power series identity of Meijer\\'s G-function. Moreover, asymptotic closed-form expressions are derived to validate our results at high signal-to-noise ratio. In addition, the analytical results have been presented with compare to range of numerical values.
Alheadary, Wael Ghazy; Park, Kihong; Alouini, Mohamed-Slim
2017-01-01
This work investigates the end-to-end performance of a free space optical amplify-and-forward (AF) fixed-gain relaying system using heterodyne detection over misaligned general Malaga turbulence channels. More specifically, we present exact closed-form expressions for average bit-error rate achievable spectral efficiency non-adaptive/adaptive modulation schemes by employing generalized power series identity of Meijer's G-function. Moreover, asymptotic closed-form expressions are derived to validate our results at high signal-to-noise ratio. In addition, the analytical results have been presented with compare to range of numerical values.
Numerical solution of large sparse linear systems
International Nuclear Information System (INIS)
Meurant, Gerard; Golub, Gene.
1982-02-01
This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr
Balanced truncation for linear switched systems
DEFF Research Database (Denmark)
Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef
2013-01-01
In this paper, we present a theoretical analysis of the model reduction algorithm for linear switched systems from Shaker and Wisniewski (2011, 2009) and . This algorithm is a reminiscence of the balanced truncation method for linear parameter varying systems (Wood et al., 1996) [3]. Specifically...
Liu, Xiao-Ming; Yong, Tai-Wen; Liu, Wen-Yu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu
2014-08-01
A field experiment was conducted in 2012, including three planting pattern (maize-soybean relay strip intercropping, mono-cultured maize and soybean) and three nitrogen application level [0 kg N x hm(-2), 180 kg N x hm(-2) (reduced N) and 240 kg N x hm(-2) (normal N)]. Fields were assigned to different treatments in a randomized block design with three replicates. The objective of this work was to analyze the effects of planting patterns and nitrogen application rates on plant N uptake, soil N residue and N loss. After fertilization applications, NH4(+)-N and NO3(-)-N levels increased in the soil of intercropped maize but decreased in the soil of intercropped soybean. Compared with mono-crops, the soil N residue and loss of intercropped soybean were reduced, while those of intercropped maize were increased and decreased, respectively. With the reduced rate of N application, N residue rate, N loss rate and ammonia volatilization loss rate of the maize-soybean intercropping relay strip system were decreased by 17.7%, 21.5% and 0.4% compared to mono-cultured maize, but increased by 2.0%, 19.8% and 0.1% compared to mono-cultured soybean, respectively. Likewise, the reduced N application resulted in reductions in N residue, N loss, and the N loss via ammonia volatilization in the maize-soybean relay strip intercropping system compared with the conventional rate of N application adopted by local farmers, and the N residue rate, N loss rate and ammonia volatilization loss rate reduced by 12.0%, 15.4% and 1.2%, respectively.
Minimality of critical scenarios with linear logic and cutsets
African Journals Online (AJOL)
DK
Keywords: Dependability - Mechatronic systems -Petri net - Linear logic - Minimal Feared scenarios - Cutsets. ..... Energy supply. Detection high level. Relay. ET. Energy supply. Detection high level. Relay ..... Evaluation de la SdF des systèmes mécatroniques en utilisant ... in complex distributed systems, Proceedings of the.
Observability of linear systems with saturated outputs
Koplon, R.; Sontag, E.D.; Hautus, M.L.J.
1994-01-01
We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.
Directory of Open Access Journals (Sweden)
Y. Damchi
2015-06-01
Full Text Available The aim of the relay coordination is that protection systems detect and isolate the faulted part as fast and selective as possible. On the other hand, in order to reduce the fault clearing time, distance protection relays are usually equipped with pilot protection schemes. Such schemes can be considered in the distance and directional overcurrent relays (D&DOCRs coordination to achieve faster protection systems, while the selectivity is maintained. Therefore, in this paper, a new formulation is presented for the relay coordination problem considering pilot protection. In the proposed formulation, the selectivity constraints for the primary distance and backup overcurrent relays are defined based on the fault at the end of the transmission lines, rather than those at the end of the first zone of the primary distance relay. To solve this nonlinear optimization problem, a combination of genetic algorithm (GA and linear programming (LP is used as a hybrid genetic algorithm (HGA. The proposed approach is tested on an 8-bus and the IEEE 14-bus test systems. Simulation results indicate that considering the pilot protection in the D&DOCRS coordination, not only obtains feasible and effective solutions for the relay settings, but also reduces the overall operating time of the protection system.
Staff Association
2012-01-01
The CERN Relay Race will take place around the Meyrin site on Thursday 24th May at 12:00. This annual event is for teams of six runners covering distances of 1000 m, 800 m, 800 m, 500 m, 500 m and 300 m respectively. Teams may be entered in the Seniors, Veterans, Ladies, Mixed or Open categories. There will also this year be a Nordic Walking event, as part of the Medical Service’s initiative “Move more, eat better!” The registration fee is 10 CHF per runner, and each runner will receive a souvenir prize. There will be a programme of entertainment from 12:00 on the arrival area (the lawn in front of Restaurant 1): 12:00 - 12:45 Music from the Old Bottom Street band 12:15 Start of the race 12:45 - 13h Demonstrations by the Fitness club and Dancing club 13:00 Results and prize giving (including a raffle to win an iPad2 3G offered by the Micro club) 13:20 à 14:00 Music from “What’s next” And many information st...
Isolators Including Main Spring Linear Guide Systems
Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)
2017-01-01
Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.
Low-Complexity Combining Schemes in Dual-Hop AF Relaying Systems
Gaaloul, Fakhreddine
2011-07-18
This paper investigates the performance of different low-complexity combining schemes in the context of dual-hop amplify-and-forward (AF) relaying networks. It is assumed that the relay uses single transmit (receive) antenna due to space limitation and to reduce the processing complexity. On the other hand, the transmitter and the receiver use antenna arrays to improve the overall diversity gain. However, this gain is achieved at the expense of increased processing complexity and power consumption. To this end, some combining schemes aiming at reducing the processing complexity and decreasing the number of active receive channels are investigated. Through the analysis, new formulas for the end-to-end signal-to-noise ratio (SNR) statistics in slowly varying and frequency flat Rayleigh fading channels are derived, which are then used to present some performance measures. Numerical and simulation results are presented to clarify the trade-off between the achieved diversity gain and the receive processing complexity. © 2011 IEEE.
Linear systems a measurement based approach
Bhattacharyya, S P; Mohsenizadeh, D N
2014-01-01
This brief presents recent results obtained on the analysis, synthesis and design of systems described by linear equations. It is well known that linear equations arise in most branches of science and engineering as well as social, biological and economic systems. The novelty of this approach is that no models of the system are assumed to be available, nor are they required. Instead, a few measurements made on the system can be processed strategically to directly extract design values that meet specifications without constructing a model of the system, implicitly or explicitly. These new concepts are illustrated by applying them to linear DC and AC circuits, mechanical, civil and hydraulic systems, signal flow block diagrams and control systems. These applications are preliminary and suggest many open problems. The results presented in this brief are the latest effort in this direction and the authors hope these will lead to attractive alternatives to model-based design of engineering and other systems.
Final focus systems for linear colliders
International Nuclear Information System (INIS)
Erickson, R.A.
1987-11-01
The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs
On deformations of linear differential systems
Gontsov, R.R.; Poberezhnyi, V.A.; Helminck, G.F.
2011-01-01
This article concerns deformations of meromorphic linear differential systems. Problems relating to their existence and classification are reviewed, and the global and local behaviour of solutions to deformation equations in a neighbourhood of their singular set is analysed. Certain classical
Superconducting linear accelerator system for NSC
Indian Academy of Sciences (India)
59, No. 5. — journal of. November 2002 physics pp. 849–858. Superconducting linear accelerator system for NSC ... cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indige- ... Prototype resonator was.
Fast Solvers for Dense Linear Systems
Energy Technology Data Exchange (ETDEWEB)
Kauers, Manuel [Research Institute for Symbolic Computation (RISC), Altenbergerstrasse 69, A4040 Linz (Austria)
2008-10-15
It appears that large scale calculations in particle physics often require to solve systems of linear equations with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a standard technique from computer algebra that avoids this exponential growth: homomorphic images. Using this technique, big dense linear systems can be solved in a much more reasonable time than using Gaussian elimination over the rationals.
Signals and transforms in linear systems analysis
Wasylkiwskyj, Wasyl
2013-01-01
Signals and Transforms in Linear Systems Analysis covers the subject of signals and transforms, particularly in the context of linear systems theory. Chapter 2 provides the theoretical background for the remainder of the text. Chapter 3 treats Fourier series and integrals. Particular attention is paid to convergence properties at step discontinuities. This includes the Gibbs phenomenon and its amelioration via the Fejer summation techniques. Special topics include modulation and analytic signal representation, Fourier transforms and analytic function theory, time-frequency analysis and frequency dispersion. Fundamentals of linear system theory for LTI analogue systems, with a brief account of time-varying systems, are covered in Chapter 4 . Discrete systems are covered in Chapters 6 and 7. The Laplace transform treatment in Chapter 5 relies heavily on analytic function theory as does Chapter 8 on Z -transforms. The necessary background on complex variables is provided in Appendix A. This book is intended to...
Boland, J. S., III
1973-01-01
The conventional six-engine reaction control jet relay attitude control law with deadband is shown to be a good linear approximation to a weighted time-fuel optimal control law. Techniques for evaluating the value of the relative weighting between time and fuel for a particular relay control law is studied along with techniques to interrelate other parameters for the two control laws. Vehicle attitude control laws employing control moment gyros are then investigated. Steering laws obtained from the expression for the reaction torque of the gyro configuration are compared to a total optimal attitude control law that is derived from optimal linear regulator theory. This total optimal attitude control law has computational disadvantages in the solving of the matrix Riccati equation. Several computational algorithms for solving the matrix Riccati equation are investigated with respect to accuracy, computational storage requirements, and computational speed.
Linear integral equations and soliton systems
International Nuclear Information System (INIS)
Quispel, G.R.W.
1983-01-01
A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)
Directory of Open Access Journals (Sweden)
Y. Damchi
2015-09-01
Full Text Available Most studies in relay coordination have focused solely on coordination of overcurrent relays while distance relays are used as the main protection of transmission lines. Since, simultaneous coordination of these two types of relays can provide a better protection, in this paper, a new approach is proposed for simultaneous coordination of distance and directional overcurrent relays (D&DOCRs. Also, pursued by most of the previously published studies, the settings of D&DOCRs are usually determined based on a main network topology which may result in mis-coordination of relays when changes occur in the network topology. In the proposed method, in order to have a robust coordination, network topology changes are taken into account in the coordination problem. In the new formulation, coordination constraints for different network topologies are added to those of the main topology. A complex nonlinear optimization problem is derived to find the desirable relay settings. Then, the problem is solved using hybridized genetic algorithm (GA with linear programming (LP method (HGA. The proposed method is evaluated using the IEEE 14-bus test system. According to the results, a feasible and robust solution is obtained for D&DOCRs coordination while all constraints, which are due to different network topologies, are satisfied.
STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS
Directory of Open Access Journals (Sweden)
Jorge Enrique Mayta Guillermo
2016-12-01
Full Text Available In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is nite. Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory.
Microcomputer relay regulator in the CAMAC standard
International Nuclear Information System (INIS)
Nikolaev, V.P.
1984-01-01
The digital relay regulator is developed on the base of the KM001 microcomputer and KK06 controller for automatic control ob ects with transfer functions describing a broad class of systems using actuating motors (stabilitation, follow-up systems). The CAMAC relay-unit realizes the regulation law and provides the possibility to control analogous values by 8 channels
Correlated Levy Noise in Linear Dynamical Systems
International Nuclear Information System (INIS)
Srokowski, T.
2011-01-01
Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)
Introduction to linear systems of differential equations
Adrianova, L Ya
1995-01-01
The theory of linear systems of differential equations is one of the cornerstones of the whole theory of differential equations. At its root is the concept of the Lyapunov characteristic exponent. In this book, Adrianova presents introductory material and further detailed discussions of Lyapunov exponents. She also discusses the structure of the space of solutions of linear systems. Classes of linear systems examined are from the narrowest to widest: 1)�autonomous, 2)�periodic, 3)�reducible to autonomous, 4)�nearly reducible to autonomous, 5)�regular. In addition, Adrianova considers the following: stability of linear systems and the influence of perturbations of the coefficients on the stability the criteria of uniform stability and of uniform asymptotic stability in terms of properties of the solutions several estimates of the growth rate of solutions of a linear system in terms of its coefficients How perturbations of the coefficients change all the elements of the spectrum of the system is defin...
Optimizing Completion Time and Energy Consumption in a Bidirectional Relay Network
DEFF Research Database (Denmark)
Liu, Huaping; Sun, Fan; Thai, Chan
2012-01-01
consumption required for multiple flows depends on the current channel realizations, transmission methods used and, notably, the relation between the data sizes of different source nodes. In this paper we investigate the shortest completion time and minimal energy consumption in a two-way relay wireless...... arises for the minimal required energy. While the requirement for minimal energy consumption is obvious, the shortest completion time is relevant when certain multi-node network needs to reserve the wireless medium in order to carry out the data exchange among its nodes. The completion time/energy...... network. The system applies optimal time multiplexing of several known transmission methods, including one-way relaying and wireless network coding (WNC). We show that when the relay applies Amplify-and-Forward (AF), both minimizations are linear optimization problems. On the other hand, when the relay...
Final Focus Systems in Linear Colliders
International Nuclear Information System (INIS)
Raubenheimer, Tor
1998-01-01
In colliding beam facilities, the ''final focus system'' must demagnify the beams to attain the very small spot sizes required at the interaction points. The first final focus system with local chromatic correction was developed for the Stanford Linear Collider where very large demagnifications were desired. This same conceptual design has been adopted by all the future linear collider designs as well as the SuperConducting Supercollider, the Stanford and KEK B-Factories, and the proposed Muon Collider. In this paper, the over-all layout, physics constraints, and optimization techniques relevant to the design of final focus systems for high-energy electron-positron linear colliders are reviewed. Finally, advanced concepts to avoid some of the limitations of these systems are discussed
Generalized Cross-Gramian for Linear Systems
DEFF Research Database (Denmark)
Shaker, Hamid Reza
2012-01-01
The cross-gramian is a well-known matrix with embedded controllability and observability information. The cross-gramian is related to the Hankel operator and the Hankel singular values of a linear square system and it has several interesting properties. These properties make the cross...... square symmetric systems, the ordinary cross-gramian does not exist. To cope with this problem, a new generalized cross-gramian is introduced in this paper. In contrast to the ordinary cross-gramian, the generalized cross-gramian can be easily obtained for general linear systems and therefore can be used...
Linear dynamic coupling in geared rotor systems
David, J. W.; Mitchell, L. D.
1986-01-01
The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.
On output regulation for linear systems
Saberi, Ali; Stoorvogel, Antonie Arij; Sannuti, Peddapullaiah
For both continuous- and discrete-time systems, we revisit the output regulation problem for linear systems. We generalize the problem formulation in order • to expand the class of reference or disturbance signals, • to utilize the derivative or feedforward information of reference signals whenever
Linear response theory for quantum open systems
Wei, J. H.; Yan, YiJing
2011-01-01
Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.
When to call a linear system nonnegative
Nieuwenhuis, J.W.
1998-01-01
In this paper we will consider discrete time invariant linear systems that allow for an input-state-output representation with a finite dimensional state space, and that have a finite number of inputs and outputs. The basic issue in this paper is when to call these systems nonnegative. An important
Tikhonov theorem for linear hyperbolic systems
Tang , Ying; Prieur , Christophe; Girard , Antoine
2015-01-01
International audience; A class of linear systems of conservation laws with a small perturbation parameter is introduced. By setting the perturbation parameter to zero, two subsystems, the reduced system standing for the slow dynamics and the boundary-layer system representing the fast dynamics, are computed. It is first proved that the exponential stability of the full system implies the stability of both subsystems. Secondly, a counter example is given to indicate that the converse is not t...
protective relay studies for the nigerian national electric 330 kv
African Journals Online (AJOL)
user
1985-09-01
Sep 1, 1985 ... protective relay schemes of the National Electric Power Authority. Some of the basic ... Nigerian special system characteristics, schemes to correct existing protection inadequacies .... relays buried in the transformer. A reach of ...
ITMETH, Iterative Routines for Linear System
International Nuclear Information System (INIS)
Greenbaum, A.
1989-01-01
1 - Description of program or function: ITMETH is a collection of iterative routines for solving large, sparse linear systems. 2 - Method of solution: ITMETH solves general linear systems of the form AX=B using a variety of methods: Jacobi iteration; Gauss-Seidel iteration; incomplete LU decomposition or matrix splitting with iterative refinement; diagonal scaling, matrix splitting, or incomplete LU decomposition with the conjugate gradient method for the problem AA'Y=B, X=A'Y; bi-conjugate gradient method with diagonal scaling, matrix splitting, or incomplete LU decomposition; and ortho-min method with diagonal scaling, matrix splitting, or incomplete LU decomposition. ITMETH also solves symmetric positive definite linear systems AX=B using the conjugate gradient method with diagonal scaling or matrix splitting, or the incomplete Cholesky conjugate gradient method
Conduction cooling systems for linear accelerator cavities
Kephart, Robert
2017-05-02
A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.
Rf system specifications for a linear accelerator
International Nuclear Information System (INIS)
Young, A.; Eaton, L.E.
1992-01-01
A linear accelerator contains many systems; however, the most complex and costly is the RF system. The goal of an RF system is usually simply stated as maintaining the phase and amplitude of the RF signal within a given tolerance to accelerate the charged particle beam. An RF system that drives a linear accelerator needs a complete system specification, which should contain specifications for all the subsystems (i.e., high-power RF, low-level RF, RF generation/distribution, and automation control). This paper defines a format for the specifications of these subsystems and discusses each RF subsystem independently to provide a comprehensive understanding of the function of each subsystem. This paper concludes with an example of a specification spreadsheet allowing one to input the specifications of a subsystem. Thus, some fundamental parameters (i.e., the cost and size) of the RF system can be determined
49 CFR 236.52 - Relayed cut-section.
2010-10-01
..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Track Circuits § 236.52 Relayed cut-section. Where relayed cut-section is used in... 49 Transportation 4 2010-10-01 2010-10-01 false Relayed cut-section. 236.52 Section 236.52...
Chaos as an intermittently forced linear system.
Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan
2017-05-30
Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.
Final focus systems for linear colliders
International Nuclear Information System (INIS)
Helm, R.; Irwin, J.
1992-08-01
Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We will outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We will discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread, bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, will be described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC will be given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC)
Final focus systems for linear colliders
International Nuclear Information System (INIS)
Helm, R.; Irwing, J.
1992-01-01
Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread , bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, are described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC are given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC). (Author) 16 refs., 4 tabs., 6 figs
Dual-range linearized transimpedance amplifier system
Wessendorf, Kurt O.
2010-11-02
A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).
Consys Linear Control System Design Software Package
International Nuclear Information System (INIS)
Diamantidis, Z.
1987-01-01
This package is created in order to help engineers, researchers, students and all who work on linear control systems. The software includes all time and frequency domain analysises, spectral analysises and networks, active filters and regulators design aids. The programmes are written on Hewlett Packard computer in Basic 4.0
Disturbance Decoupling of Switched Linear Systems
Yurtseven, E.; Heemels, W.P.M.H.; Camlibel, M.K.
2010-01-01
In this paper we consider disturbance decoupling problems for switched linear systems. We will provide necessary and sufficient conditions for three different versions of disturbance decoupling, which differ based on which signals are considered to be the disturbance. In the first version the
Uzawa method for fuzzy linear system
Ke Wang
2013-01-01
An Uzawa method is presented for solving fuzzy linear systems whose coefficient matrix is crisp and the right-hand side column is arbitrary fuzzy number vector. The explicit iterative scheme is given. The convergence is analyzed with convergence theorems and the optimal parameter is obtained. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.
International Nuclear Information System (INIS)
Lee, S.; Lee, J.; Song, S.; Yoon, J.; Lee, B.
2015-01-01
Highlights: • This paper presents an outline of the new project of the 154 kV SFCL in Korea. • And then we review some protection problems for the application of 154 kV SFCLs. • This paper proposes a new adaptive protection algorithm for 154 kV SFCLs. • The developed algorithm is tested in a simple distance relay system. - Abstract: In general, SFCLs can have a negative impact on the protective coordination in power transmission system because of the variable impedance of SFCLs. It is very important to solve the protection problems of the power system for the successful application of SFCLs to real power transmission system. This paper reviews some protection problems which can be caused by the application of 154 kV SFCLs to power transmission systems in South Korea. And then we propose an adaptive protection algorithm to solve the problems. The adaptive protection algorithm uses the real time information of the SFCL system operation.
On Alternate Relaying with Improper Gaussian Signaling
Gaafar, Mohamed
2016-06-06
In this letter, we investigate the potential benefits of adopting improper Gaussian signaling (IGS) in a two-hop alternate relaying (AR) system. Given the known benefits of using IGS in interference-limited networks, we propose to use IGS to relieve the inter-relay interference (IRI) impact on the AR system assuming no channel state information is available at the source. In this regard, we assume that the two relays use IGS and the source uses proper Gaussian signaling (PGS). Then, we optimize the degree of impropriety of the relays signal, measured by the circularity coefficient, to maximize the total achievable rate. Simulation results show that using IGS yields a significant performance improvement over PGS, especially when the first hop is a bottleneck due to weak source-relay channel gains and/or strong IRI.
On Alternate Relaying with Improper Gaussian Signaling
Gaafar, Mohamed; Amin, Osama; Ikhlef, Aissa; Chaaban, Anas; Alouini, Mohamed-Slim
2016-01-01
In this letter, we investigate the potential benefits of adopting improper Gaussian signaling (IGS) in a two-hop alternate relaying (AR) system. Given the known benefits of using IGS in interference-limited networks, we propose to use IGS to relieve the inter-relay interference (IRI) impact on the AR system assuming no channel state information is available at the source. In this regard, we assume that the two relays use IGS and the source uses proper Gaussian signaling (PGS). Then, we optimize the degree of impropriety of the relays signal, measured by the circularity coefficient, to maximize the total achievable rate. Simulation results show that using IGS yields a significant performance improvement over PGS, especially when the first hop is a bottleneck due to weak source-relay channel gains and/or strong IRI.
Collimation systems in the next linear collider
International Nuclear Information System (INIS)
Merminga, N.; Irwin, J.; Helm, R.; Ruth, R.D.
1991-02-01
Experience indicates that beam collimation will be an essential element of the next generation e + E - linear colliders. A proposal for using nonlinear lenses to drive beam tails to large amplitudes was presented in a previous paper. Here we study the optimization of such systems including effects of wakefields and optical aberrations. Protection and design of the scrapers in these systems are discussed. 9 refs., 7 figs
Standard diffusive systems are well-posed linear systems
Matignon, Denis; Zwart, Heiko J.
2004-01-01
The class of well-posed linear systems as introduced by Salamon has become a well-understood class of systems, see e.g. the work of Weiss and the book of Staffans. Many partial partial differential equations with boundary control and point observation can be formulated as a well-posed linear system.
Performance limitations of relay neurons.
Directory of Open Access Journals (Sweden)
Rahul Agarwal
Full Text Available Relay cells are prevalent throughout sensory systems and receive two types of inputs: driving and modulating. The driving input contains receptive field properties that must be transmitted while the modulating input alters the specifics of transmission. For example, the visual thalamus contains relay neurons that receive driving inputs from the retina that encode a visual image, and modulating inputs from reticular activating system and layer 6 of visual cortex that control what aspects of the image will be relayed back to visual cortex for perception. What gets relayed depends on several factors such as attentional demands and a subject's goals. In this paper, we analyze a biophysical based model of a relay cell and use systems theoretic tools to construct analytic bounds on how well the cell transmits a driving input as a function of the neuron's electrophysiological properties, the modulating input, and the driving signal parameters. We assume that the modulating input belongs to a class of sinusoidal signals and that the driving input is an irregular train of pulses with inter-pulse intervals obeying an exponential distribution. Our analysis applies to any [Formula: see text] order model as long as the neuron does not spike without a driving input pulse and exhibits a refractory period. Our bounds on relay reliability contain performance obtained through simulation of a second and third order model, and suggest, for instance, that if the frequency of the modulating input increases or the DC offset decreases, then relay increases. Our analysis also shows, for the first time, how the biophysical properties of the neuron (e.g. ion channel dynamics define the oscillatory patterns needed in the modulating input for appropriately timed relay of sensory information. In our discussion, we describe how our bounds predict experimentally observed neural activity in the basal ganglia in (i health, (ii in Parkinson's disease (PD, and (iii in PD during
Partial relay selection in underlay cognitive networks with fixed gain relays
Hussain, Syed Imtiaz; Alouini, Mohamed-Slim; Hasna, Mazen Omar; Qaraqe, Khalid A.
2012-01-01
In a communication system with multiple cooperative relays, selecting the best relay utilizes the available spectrum more efficiently. However, selective relaying poses a different problem in underlay cognitive networks compared to the traditional cooperative networks due to interference thresholds to the primary users. In most cases, a best relay is the one which provides the maximum end-to-end signal to noise ratio (SNR). This approach needs plenty of instantaneous channel state information (CSI). The CSI burden could be reduced by partial relay selection. In this paper, a partial relay selection scheme is presented and analyzed for an underlay cognitive network with fixed gain relays operating in the vicinity of a primary user. The system model is adopted in a way that each node needs minimal CSI to perform its task. The best relay is chosen on the basis of maximum source to relay link SNR which then forwards the message to the destination. We derive closed form expressions for the received SNR distributions, system outage, probability of bit error and average channel capacity of the system. The derived results are confirmed through simulations. © 2012 IEEE.
Partial relay selection in underlay cognitive networks with fixed gain relays
Hussain, Syed Imtiaz
2012-05-01
In a communication system with multiple cooperative relays, selecting the best relay utilizes the available spectrum more efficiently. However, selective relaying poses a different problem in underlay cognitive networks compared to the traditional cooperative networks due to interference thresholds to the primary users. In most cases, a best relay is the one which provides the maximum end-to-end signal to noise ratio (SNR). This approach needs plenty of instantaneous channel state information (CSI). The CSI burden could be reduced by partial relay selection. In this paper, a partial relay selection scheme is presented and analyzed for an underlay cognitive network with fixed gain relays operating in the vicinity of a primary user. The system model is adopted in a way that each node needs minimal CSI to perform its task. The best relay is chosen on the basis of maximum source to relay link SNR which then forwards the message to the destination. We derive closed form expressions for the received SNR distributions, system outage, probability of bit error and average channel capacity of the system. The derived results are confirmed through simulations. © 2012 IEEE.
Optimized Power Allocation and Relay Location Selection in Cooperative Relay Networks
Directory of Open Access Journals (Sweden)
Jianrong Bao
2017-01-01
Full Text Available An incremental selection hybrid decode-amplify forward (ISHDAF scheme for the two-hop single relay systems and a relay selection strategy based on the hybrid decode-amplify-and-forward (HDAF scheme for the multirelay systems are proposed along with an optimized power allocation for the Internet of Thing (IoT. Given total power as the constraint and outage probability as an objective function, the proposed scheme possesses good power efficiency better than the equal power allocation. By the ISHDAF scheme and HDAF relay selection strategy, an optimized power allocation for both the source and relay nodes is obtained, as well as an effective reduction of outage probability. In addition, the optimal relay location for maximizing the gain of the proposed algorithm is also investigated and designed. Simulation results show that, in both single relay and multirelay selection systems, some outage probability gains by the proposed scheme can be obtained. In the comparison of the optimized power allocation scheme with the equal power allocation one, nearly 0.1695 gains are obtained in the ISHDAF single relay network at a total power of 2 dB, and about 0.083 gains are obtained in the HDAF relay selection system with 2 relays at a total power of 2 dB.
Spatially Controlled Relay Beamforming
Kalogerias, Dionysios
This thesis is about fusion of optimal stochastic motion control and physical layer communications. Distributed, networked communication systems, such as relay beamforming networks (e.g., Amplify & Forward (AF)), are typically designed without explicitly considering how the positions of the respective nodes might affect the quality of the communication. Optimum placement of network nodes, which could potentially improve the quality of the communication, is not typically considered. However, in most practical settings in physical layer communications, such as relay beamforming, the Channel State Information (CSI) observed by each node, per channel use, although it might be (modeled as) random, it is both spatially and temporally correlated. It is, therefore, reasonable to ask if and how the performance of the system could be improved by (predictively) controlling the positions of the network nodes (e.g., the relays), based on causal side (CSI) information, and exploitting the spatiotemporal dependencies of the wireless medium. In this work, we address this problem in the context of AF relay beamforming networks. This novel, cyber-physical system approach to relay beamforming is termed as "Spatially Controlled Relay Beamforming". First, we discuss wireless channel modeling, however, in a rigorous, Bayesian framework. Experimentally accurate and, at the same time, technically precise channel modeling is absolutely essential for designing and analyzing spatially controlled communication systems. In this work, we are interested in two distinct spatiotemporal statistical models, for describing the behavior of the log-scale magnitude of the wireless channel: 1. Stationary Gaussian Fields: In this case, the channel is assumed to evolve as a stationary, Gaussian stochastic field in continuous space and discrete time (say, for instance, time slots). Under such assumptions, spatial and temporal statistical interactions are determined by a set of time and space invariant
Parameter identifiability of linear dynamical systems
Glover, K.; Willems, J. C.
1974-01-01
It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.
Stability problems for linear hyperbolic systems
International Nuclear Information System (INIS)
Eckhoff, K.S.
1975-05-01
The stability properties for the trivial solution of a general linear hyperbolic system of partial differential equations of the first order are studied. It is shown that results may be obtained by studying the stability properties of certain systems of ordinary differential equations which can be constructed from the hyperbolic system (the so-called transport equations). In some cases the associated stability problem for the transport equations can in fact be shown to be equivalent to the stability problem for the hyperbolic system, but in general the transport equations will only give the necessary conditions for stability. (Auth.)
Li, Yunji; Peng, Li
2018-02-28
Wireless sensors have many new applications where remote estimation is essential. Considering that a remote estimator is located far away from the process and the wireless transmission distance of sensor nodes is limited, sensor nodes always forward data packets to the remote estimator through a series of relays over a multi-hop link. In this paper, we consider a network with sensor nodes and relay nodes where the relay nodes can forward the estimated values to the remote estimator. An event-triggered remote estimator of state and fault with the corresponding data-forwarding scheme is investigated for stochastic systems subject to both randomly occurring nonlinearity and randomly occurring packet dropouts governed by Bernoulli-distributed sequences to achieve a trade-off between estimation accuracy and energy consumption. Recursive Riccati-like matrix equations are established to calculate the estimator gain to minimize an upper bound of the estimator error covariance. Subsequently, a sufficient condition and data-forwarding scheme are presented under which the error covariance is mean-square bounded in the multi-hop links with random packet dropouts. Furthermore, implementation issues of the theoretical results are discussed where a new data-forwarding communication protocol is designed. Finally, the effectiveness of the proposed algorithms and communication protocol are extensively evaluated using an experimental platform that was established for performance evaluation with a sensor and two relay nodes.
Xia, Minghua; Aissa, Sonia
2012-01-01
the optimal end-to-end performance, the transmit powers of the secondary source and the relays are optimized with respect to average interference power constraints at primary users and Nakagami-$m$ fading parameters of interference channels (for mathematical
Identification of general linear mechanical systems
Sirlin, S. W.; Longman, R. W.; Juang, J. N.
1983-01-01
Previous work in identification theory has been concerned with the general first order time derivative form. Linear mechanical systems, a large and important class, naturally have a second order form. This paper utilizes this additional structural information for the purpose of identification. A realization is obtained from input-output data, and then knowledge of the system input, output, and inertia matrices is used to determine a set of linear equations whereby we identify the remaining unknown system matrices. Necessary and sufficient conditions on the number, type and placement of sensors and actuators are given which guarantee identificability, and less stringent conditions are given which guarantee generic identifiability. Both a priori identifiability and a posteriori identifiability are considered, i.e., identifiability being insured prior to obtaining data, and identifiability being assured with a given data set.
Linear systems optimal and robust control
Sinha, Alok
2007-01-01
Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...
CERN Running Club
2010-01-01
The CERN relay race will take place around the Meyrin site on Thursday 20 May, starting at 12.15. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. Details on the route, and how to register your team for the relay race, can be found at: https://espace.cern.ch/Running-Club/CERN-Relay
International Nuclear Information System (INIS)
Pozdnyakov, V.N.; Sazonov, O.L.; Taksar, I.M.; Tesnavs, Eh.R.; Yanushkovskij, V.A.
1974-01-01
The paper describes a radioisotope relay device containing a radiation source, a detector, an electronic relay block with a comparative threshold mechanism. The device differs from previously known ones in that, for the purpose of increasing stability and speed of action, the electronic relay block is a separate unit and contains two threshold pulse generators which are joined up, across series-connected ''and'' and ''or'' elements, with one of the inputs of the comparative threshold mechanism, whose second input is connected with a detector and whose outputs are connected with a relay element connected by feedback with the above-mentioned ''and'' elements. (author)
Lectures on algebraic system theory: Linear systems over rings
Kamen, E. W.
1978-01-01
The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.
International Nuclear Information System (INIS)
Belov, S.A.; Kardash, A.A.; Medvedev, V.A.; Perebejnos, V.K.; Shirokov, V.G.
1979-01-01
A static supply system for slow beam guiding on targets used in the IHEP synchrotron is discussed. As a regulating element use is made of a module-type gate bridge circuit. The power unit rated at an operating current of up to 200 A at a supply voltage of up to 200 V consists of 12 paralleled modules. Every module contains four transistors, four diodes and a part of a storage capacitor (200 μF). One module is rated at a current of 16 A. The regulator has been investigated in the pulse-width modulation mode and in the mode of relay control with normal and leading hysteresis loops. The minimum modulation of the secondary-particle beam density has been obtained when using leading hysteresis loops for regulation. In addition to the main task of guiding on targets the system provides shaping trapezoidal current pulses in the current range from 10 to 200 A at a current plateau stability of 0.5% and better
Weinberg, Aaron
1989-01-01
The Tracking and Data Relay Satellite System (TDRSS) is an integral part of the overall NASA Space Network (SN) that will continue to evolve into the 1990's. Projections for the first decade of the 21st century indicate the need for an SN evolution that must accommodate growth int he LEO user population and must further support the introduction of new/improved user services. A central ingredient of this evolution is an Advanced TDRSS (ATDRSS) follow-on to the current TDRSS that must initiate operations by the late 1990's in a manner that permits an orderly transition from the TDRSS to the ATDRSS era. An SN/ATDRSS architectural and operational concept that will satisfy the above goals is being developed. To this date, an SN/ATDRSS baseline concept was established that provides users with an end-to-end data transport (ENDAT) service. An expanded description of the baseline ENDAT concept, from the user perspective, is provided with special emphasis on the TDRSS/ATDRSS evolution. A high-level description of the end-to-end system that identifies the role of ATDRSS is presented; also included is a description of the baseline ATDRSS architecture and its relationship with the TDRSS 1996 baseline. Other key features of the ENDAT service are then expanded upon, including the multiple grades of service, and the RF telecommunications/tracking services to be available. The ATDRSS service options are described.
Directory of Open Access Journals (Sweden)
Madhivanan K
2016-02-01
Full Text Available Kayalvizhi Madhivanan,* Swetha Ramadesikan,* R Claudio Aguilar Department of Biological Sciences, Purdue University, West Lafayette, IN, USA *These authors contributed equally to this work Abstract: The primary cilium (PC is a plasma membrane-derived structure of great importance for cell and organismal physiology. Indeed, abnormalities in assembly or function of the PC trigger the onset of a group of genetic diseases collectively known as ciliopathies. In recent years, it has become evident that the integrity and function of the PC depends substantially on signaling elements such as phosphoinositides (PI and their regulators. Because phospholipids such as PI(4,5P2 constitute recruitment platforms for cytoskeleton, signaling, and trafficking machinery, control over their levels is critical for PC function. Although information about phosphoinositol phosphate (PIP kinases in the PC is scarce, a growing body of evidence supports a role for PIP phosphatases in cilia assembly/maintenance. Indeed, deficiencies in two 5′ PIP phosphatases, Inpp5E and Ocrl1, are clearly linked to ciliopathies like Joubert/MORM syndromes, or ciliopathy-associated diseases like Lowe syndrome. Here, we review the unique roles of these proteins and their specific site of action for ensuring ciliary integrity. Further, we discuss the possibility that a phosphatase relay system able to pass PI control from a preciliary to an intraciliary compartment is in place to ensure PC integrity/function. Keywords: primary cilia, Ocrl1, Inpp5E, Pip2, Pip3
An injection system for a linear accelerator
International Nuclear Information System (INIS)
Santos, A.C.R.
1978-03-01
An injection system for the Linear Accelerator is developed using the parameters of machines at the Centro Brasileiro de Pesquisas Fisicas and the Instituto Militar de Engenharia. The proposed system consists basically of a prebuncher and a chopper. The pre-buncher is used to improve the energy resolution and also to increase the accelerator target current. The chopper is used to remove from the beam the electrons that have no possibility of attaining the desired energy and that are usually lost in the walls and the cavity tube, thus producing undesirable background. Theoretical development of the chopper is performed in order to obtain its dimensions for future construction. The complete design the pre-buncher and its feed supply system and the experimental verication of its performance are also presented. It is intended to give the necessary information for the design and construction of the complete injection system proposed. (Author) [pt
Operator approach to linear control systems
Cheremensky, A
1996-01-01
Within the framework of the optimization problem for linear control systems with quadratic performance index (LQP), the operator approach allows the construction of a systems theory including a number of particular infinite-dimensional optimization problems with hardly visible concreteness. This approach yields interesting interpretations of these problems and more effective feedback design methods. This book is unique in its emphasis on developing methods for solving a sufficiently general LQP. Although this is complex material, the theory developed here is built on transparent and relatively simple principles, and readers with less experience in the field of operator theory will find enough material to give them a good overview of the current state of LQP theory and its applications. Audience: Graduate students and researchers in the fields of mathematical systems theory, operator theory, cybernetics, and control systems.
Directory of Open Access Journals (Sweden)
Sučević Nikola
2017-01-01
Full Text Available In this paper the influence of a large number of small hydro power plants on the short-circuit currents is analysed, as well as the operation of the relay protection system within the real distribution network in Serbia. The necessary modification of the existing protection functions, as well as the implementation of the new proposed protection functions, are presented and discussed. Network modeling and analysis are performed using the program tool DIgSILENT PowerFactory.
Nam, Sung Sik; Alouini, Mohamed-Slim; Choi, Seyeong
2018-01-01
-generation cellular systems (e.g., LTE-Advanced and beyond). The proposed IRS-HARQ aims to increase the achievable data rate by iteratively scheduling a relatively better UE relay closer to the end user in a probabilistic sense, provided that the relay-to-end user
Joint Network Coding and Opportunistic Scheduling for the Bidirectional Relay Channel
Shaqfeh, Mohammad
2013-05-27
In this paper, we consider a two-way communication system in which two users communicate with each other through an intermediate relay over block-fading channels. We investigate the optimal opportunistic scheduling scheme in order to maximize the long-term average transmission rate in the system assuming symmetric information flow between the two users. Based on the channel state information, the scheduler decides that either one of the users transmits to the relay, or the relay transmits to a single user or broadcasts to both users a combined version of the two users’ transmitted information by using linear network coding. We obtain the optimal scheduling scheme by using the Lagrangian dual problem. Furthermore, in order to characterize the gains of network coding and opportunistic scheduling, we compare the achievable rate of the system versus suboptimal schemes in which the gains of network coding and opportunistic scheduling are partially exploited.
Joint Network Coding and Opportunistic Scheduling for the Bidirectional Relay Channel
Shaqfeh, Mohammad; Alnuweiri, Hussein; Alouini, Mohamed-Slim; Zafar, Ammar
2013-01-01
In this paper, we consider a two-way communication system in which two users communicate with each other through an intermediate relay over block-fading channels. We investigate the optimal opportunistic scheduling scheme in order to maximize the long-term average transmission rate in the system assuming symmetric information flow between the two users. Based on the channel state information, the scheduler decides that either one of the users transmits to the relay, or the relay transmits to a single user or broadcasts to both users a combined version of the two users’ transmitted information by using linear network coding. We obtain the optimal scheduling scheme by using the Lagrangian dual problem. Furthermore, in order to characterize the gains of network coding and opportunistic scheduling, we compare the achievable rate of the system versus suboptimal schemes in which the gains of network coding and opportunistic scheduling are partially exploited.
Yang, Yuli
2013-02-01
For a cognitive radio relaying network, we propose a cross-layer design by combining information-guided transmission at the physical layer and network coding at the network layer. With this design, a common relay is exploited to help the communications between multiple secondary source-destination pairs, which allows for a more efficient use of the radio resources, and moreover, generates less interference to primary licensees in the network. Considering the spectrum-sharing constraints on the relay and secondary sources, the achievable data rate of the proposed cross-layer design is derived and evaluated. Numerical results on average capacity and uniform capacity in the network under study substantiate the efficiency of our proposed design. © 2013 IEEE.
Two-way cooperative AF relaying in spectrum-sharing systems: Enhancing cell-edge performance
Xia, Minghua; Aï ssa, Sonia
2012-01-01
signal-to-noise ratio (SNR). These important findings provide fresh perspectives for system designers to improve spectral efficiency of secondary users in next-generation broadband spectrum-sharing wireless systems. © 2012 IEEE.
Iterative solution of large linear systems
Young, David Matheson
1971-01-01
This self-contained treatment offers a systematic development of the theory of iterative methods. Its focal point resides in an analysis of the convergence properties of the successive overrelaxation (SOR) method, as applied to a linear system with a consistently ordered matrix. The text explores the convergence properties of the SOR method and related techniques in terms of the spectral radii of the associated matrices as well as in terms of certain matrix norms. Contents include a review of matrix theory and general properties of iterative methods; SOR method and stationary modified SOR meth
a Continuous-Time Positive Linear System
Directory of Open Access Journals (Sweden)
Kyungsup Kim
2013-01-01
Full Text Available This paper discusses a computational method to construct positive realizations with sparse matrices for continuous-time positive linear systems with multiple complex poles. To construct a positive realization of a continuous-time system, we use a Markov sequence similar to the impulse response sequence that is used in the discrete-time case. The existence of the proposed positive realization can be analyzed with the concept of a polyhedral convex cone. We provide a constructive algorithm to compute positive realizations with sparse matrices of some positive systems under certain conditions. A sufficient condition for the existence of a positive realization, under which the proposed constructive algorithm works well, is analyzed.
International Nuclear Information System (INIS)
Petrila, Iulian; Bodale, Ilie; Rotarescu, Cristian; Stancu, Alexandru
2011-01-01
A comparative analysis between linear and non-linear energy barriers used for modeling statistical thermally-excited ferromagnetic systems is presented. The linear energy barrier is obtained by new symmetry considerations about the anisotropy energy and the link with the non-linear energy barrier is also presented. For a relevant analysis we compare the effects of linear and non-linear energy barriers implemented in two different models: Preisach-Neel and Ising-Metropolis. The differences between energy barriers which are reflected in different coercive field dependence of the temperature are also presented. -- Highlights: → The linear energy barrier is obtained from symmetry considerations. → The linear and non-linear energy barriers are calibrated and implemented in Preisach-Neel and Ising-Metropolis models. → The temperature and time effects of the linear and non-linear energy barriers are analyzed.
New approach to solve symmetric fully fuzzy linear systems
Indian Academy of Sciences (India)
concepts of fuzzy set theory and then define a fully fuzzy linear system of equations. .... To represent the above problem as fully fuzzy linear system, we represent x .... Fully fuzzy linear systems can be solved by Linear programming approach, ...
Reactive relay selection in underlay cognitive networks with fixed gain relays
Hussain, Syed Imtiaz
2012-06-01
Best relay selection is a bandwidth efficient technique for multiple relay environments without compromising the system performance. The problem of relay selection is more challenging in underlay cognitive networks due to strict interference constraints to the primary users. Generally, relay selection is done on the basis of maximum end-to-end signal to noise ratio (SNR). However, it requires large amounts of channel state information (CSI) at different network nodes. In this paper, we present and analyze a reactive relay selection scheme in underlay cognitive networks where the relays are operating with fixed gains near a primary user. The system model minimizes the amount of CSI required at different nodes and the destination selects the best relay on the basis of maximum relay to destination SNR. We derive close form expressions for the received SNR statistics, outage probability, bit error probability and average channel capacity of the system. Simulation results are also presented to confirm the validity of the derived expressions. © 2012 IEEE.
SLAP, Large Sparse Linear System Solution Package
International Nuclear Information System (INIS)
Greenbaum, A.
1987-01-01
1 - Description of program or function: SLAP is a set of routines for solving large sparse systems of linear equations. One need not store the entire matrix - only the nonzero elements and their row and column numbers. Any nonzero structure is acceptable, so the linear system solver need not be modified when the structure of the matrix changes. Auxiliary storage space is acquired and released within the routines themselves by use of the LRLTRAN POINTER statement. 2 - Method of solution: SLAP contains one direct solver, a band matrix factorization and solution routine, BAND, and several interactive solvers. The iterative routines are as follows: JACOBI, Jacobi iteration; GS, Gauss-Seidel Iteration; ILUIR, incomplete LU decomposition with iterative refinement; DSCG and ICCG, diagonal scaling and incomplete Cholesky decomposition with conjugate gradient iteration (for symmetric positive definite matrices only); DSCGN and ILUGGN, diagonal scaling and incomplete LU decomposition with conjugate gradient interaction on the normal equations; DSBCG and ILUBCG, diagonal scaling and incomplete LU decomposition with bi-conjugate gradient iteration; and DSOMN and ILUOMN, diagonal scaling and incomplete LU decomposition with ORTHOMIN iteration
Distributed Role Selection With ANC and TDBC Protocols in Two-Way Relaying Systems
Ding, Haiyang; da Costa, Daniel Benevides; Alouini, Mohamed-Slim; Ge, Jianhua; Gong, Feng-Kui
2015-01-01
and the scaling law of the system outage behavior at high signal-to-noise ratio (SNR) is characterized, which manifests that d-ROSE can enhance the system diversity gain to one-order higher relative to the ANC and TDBC protocols. It is also shown that d-ROSE can
Relay Architectures for 3GPP LTE-Advanced
Directory of Open Access Journals (Sweden)
Peters StevenW
2009-01-01
Full Text Available The Third Generation Partnership Project's Long Term Evolution-Advanced is considering relaying for cost-effective throughput enhancement and coverage extension. While analog repeaters have been used to enhance coverage in commercial cellular networks, the use of more sophisticated fixed relays is relatively new. The main challenge faced by relay deployments in cellular systems is overcoming the extra interference added by the presence of relays. Most prior work on relaying does not consider interference, however. This paper analyzes the performance of several emerging half-duplex relay strategies in interference-limited cellular systems: one-way, two-way, and shared relays. The performance of each strategy as a function of location, sectoring, and frequency reuse are compared with localized base station coordination. One-way relaying is shown to provide modest gains over single-hop cellular networks in some regimes. Shared relaying is shown to approach the gains of local base station coordination at reduced complexity, while two-way relaying further reduces complexity but only works well when the relay is close to the handset. Frequency reuse of one, where each sector uses the same spectrum, is shown to have the highest network throughput. Simulations with realistic channel models provide performance comparisons that reveal the importance of interference mitigation in multihop cellular networks.
ROBUST MPC FOR STABLE LINEAR SYSTEMS
Directory of Open Access Journals (Sweden)
M.A. Rodrigues
2002-03-01
Full Text Available In this paper, a new model predictive controller (MPC, which is robust for a class of model uncertainties, is developed. Systems with stable dynamics and time-invariant model uncertainty are treated. The development herein proposed is focused on real industrial systems where the controller is part of an on-line optimization scheme and works in the output-tracking mode. In addition, the system has a time-varying number of degrees of freedom since some of the manipulated inputs may become constrained. Moreover, the number of controlled outputs may also vary during system operation. Consequently, the actual system may show operating conditions with a number of controlled outputs larger than the number of available manipulated inputs. The proposed controller uses a state-space model, which is aimed at the representation of the output-predicted trajectory. Based on this model, a cost function is proposed whereby the output error is integrated along an infinite prediction horizon. It is considered the case of multiple operating points, where the controller stabilizes a set of models corresponding to different operating conditions for the system. It is shown that closed-loop stability is guaranteed by the feasibility of a linear matrix optimization problem.
Optimal Control of Switching Linear Systems
Directory of Open Access Journals (Sweden)
Ali Benmerzouga
2004-06-01
Full Text Available A solution to the control of switching linear systems with input constraints was given in Benmerzouga (1997 for both the conventional enumeration approach and the new approach. The solution given there turned out to be not unique. The main objective in this work is to determine the optimal control sequences {Ui(k , i = 1,..., M ; k = 0, 1, ..., N -1} which transfer the system from a given initial state X0 to a specific target state XT (or to be as close as possible by using the same discrete time solution obtained in Benmerzouga (1997 and minimizing a running cost-to-go function. By using the dynamic programming technique, the optimal solution is found for both approaches given in Benmerzouga (1997. The computational complexity of the modified algorithm is also given.
Well logging system with linearity control
International Nuclear Information System (INIS)
Jones, J.M.
1973-01-01
Apparatus is described for controlling the gain of a nuclear well logging system comprising: (1) means for measuring the energy spectrum of gamma rays produced by earth formation materials surrounding a well borehole; (2) means for measuring the number of counts of a gamma rays having an energy falling within each of at least two predetermined energy band portions of the gamma ray energy spectrum; (3) means for generating a signal proportional to the ratio of the gamma ray counts and for comparing the ratio signal with at least one constant ratio calibration signal; (4) means for generating an error signal representative of the difference of the ratio signal and the constant ratio calibration signal; and (5) means for using the error signal to control the linearity of the well logging system. (author)
Linear concentration system; Sistema de concentracion lineal
Energy Technology Data Exchange (ETDEWEB)
Gonzalez Lugo, J.I; Leon Rovira, N; Aguayo Tellez, H [Instituto Tecnologico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon (Mexico)]. E-mails: a00812662@itesm.mx; noel.leon@itesm.mx; haguayo@itesm.mx
2013-03-15
Solar linear concentration technologies to generate high temperatures are limited to the ranges of 200 to 500 degrees Celsius. While its performance has been tested through prototypes and pilot plants around the world, there are still areas of opportunity that can be exploited to obtain a linear concentration that achieves temperatures above this range in order to have a better use of the available solar energy. Because of this: It is possible to develop a linear concentration system that can track the sun with minimal movement of the absorber-receiver while maintaining temperatures above 850 degrees Celsius sufficient for industrial processes that require that temperature. The methodology consists of a series of stages (conceptual design, simulation, evaluation, development concept, results and validation) through which concepts are generated that allow design and evaluation of solar concentrator configurations with the help of simulation software. We have designed a linear parabolic concentrating system which comprises a set of mirrors segments with different focal lengths that works within the range of 600 degrees Celsius; however, it is advancing in the development of a double concentration to reach 850 degrees Celsius. [Spanish] Las tecnologias de concentracion lineal solar para generar altas temperaturas se ven limitadas a los rangos de 200 a 500 grados centigrados. Si bien su funcionamiento ha sido probado a traves de prototipos y plantas piloto alrededor del mundo, aun existen areas de oportunidad que pueden ser aprovechadas para obtener un sistema de concentracion lineal que permita alcanzar temperaturas mayores a este rango para asi tener un mejor aprovechamiento de la energia solar disponible. Debido a esto: Es posible desarrollar un sistema de concentracion lineal capaz de seguir la trayectoria del Sol con minimo movimiento del absorbedor-recibidor al mismo tiempo que mantiene temperaturas superiores a los 850 grados centigrados suficientes para
Linear Actuator System for the NASA Docking System
Dick, Brandon N.; Oesch, Christopher; Rupp, Timothy W.
2017-01-01
The Linear Actuator System (LAS) is a major sub-system within the NASA Docking System (NDS). The NDS Block 1 will be used on the Boeing Crew Space Transportation (CST-100) system to achieve docking with the International Space Station. Critical functions in the Soft Capture aspect of docking are performed by the LAS. This paper describes the general function of the LAS, the system's key requirements and technical challenges, and the development and qualification approach for the system.
Robust Power Allocation for Multi-Carrier Amplify-and-Forward Relaying Systems
Rao, Anlei; Nisar, M. Danish; Alouini, Mohamed-Slim
2012-01-01
It has been shown that adaptive power allocation can provide a substantial performance gain in wireless communication systems when perfect channel state information (CSI) is available at the transmitter. However when only imperfect CSI is available
Malik, Muhammad Talha; Hossain, Md Jahangir; Alouini, Mohamed-Slim
2014-01-01
We propose a new bit-interleaved coded modulation (BICM)-based cooperative communication system where different BICM modules can be optimized jointly considering the average signal to noise ratios of the direct and the two-hop Rayleigh fading
Relative null controllability of linear systems with multiple delays in ...
African Journals Online (AJOL)
varying multiple delays in state and control are developed. If the uncontrolled system is uniformly asymptotically stable, and if the linear system is controllable, then the linear system is null controllable. Journal of the Nigerian Association of ...
2008-01-01
The CERN relay race will take place around the Meyrin site on Thursday 5 June starting at 12:15 p.m. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. Details on how to register your team for the relay race are given on the Staff Association Bulletin web site. You can access the online registration form at: http://cern.ch/club-running-relay/form.html
2007-01-01
The CERN relay race will take place around the Meyrin site on Wednesday 23 May starting at 12:15. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. Details on how to register your team for the relay race are given on the Staff Association Bulletin web site. You can access the online registration form at: http://cern.ch/club-running-relay/form.html
Linear optical response of finite systems using multishift linear system solvers
Energy Technology Data Exchange (ETDEWEB)
Hübener, Hannes; Giustino, Feliciano [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)
2014-07-28
We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.
Control system analysis for the perturbed linear accelerator rf system
Sung Il Kwon
2002-01-01
This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.
CONTROL SYSTEM ANALYSIS FOR THE PERTURBED LINEAR ACCELERATOR RF SYSTEM
International Nuclear Information System (INIS)
SUNG-IL KWON; AMY H. REGAN
2002-01-01
This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller
Ghazzai, Hakim; Bouchoucha, Taha; Alsharoa, Ahmad; Yaacoub, Elias; Alouini, Mohamed-Slim; Al-Naffouri, Tareq Y.
2016-01-01
of the 3GPP Long Term Evolution-Advanced (LTE-A) and compare them with previously developed algorithms as well as with the direct transmission scenario. Our results also highlight the significant planning gain obtained thanks to the use of multiple relays
Linear-array systems for aerospace NDE
International Nuclear Information System (INIS)
Smith, Robert A.; Willsher, Stephen J.; Bending, Jamie M.
1999-01-01
Rapid large-area inspection of composite structures for impact damage and multi-layered aluminum skins for corrosion has been a recognized priority for several years in both military and civil aerospace applications. Approaches to this requirement have followed two clearly different routes: the development of novel large-area inspection systems, and the enhancement of current ultrasonic or eddy-current methods to reduce inspection times. Ultrasonic inspection is possible with standard flaw detection equipment but the addition of a linear ultrasonic array could reduce inspection times considerably. In order to investigate their potential, 9-element and 17-element linear ultrasonic arrays for composites, and 64-element arrays for aluminum skins, have been developed to DERA specifications for use with the ANDSCAN area scanning system. A 5 m 2 composite wing surface has been scanned with a scan resolution of approximately 3 mm in 6 hours. With subsequent software and hardware improvements all four composite wing surfaces (top/bottom, left/right) of a military fighter aircraft can potentially be inspected in less than a day. Array technology has been very widely used in the medical ultrasound field although rarely above 10 MHz, whereas lap-joint inspection requires a pulse center-frequency of 12 to 20 MHz in order to resolve the separate interfaces in the lap joint. A 128 mm-long multi-element array of 5 mmx2 mm ultrasonic elements for use with the ANDSCAN scanning software was produced to a DERA specification by an NDT manufacturer with experience in the medical imaging field. This paper analyses the performance of the transducers that have been produced and evaluates their use in scanning systems of different configurations
Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems
Directory of Open Access Journals (Sweden)
Bambang Riyanto
2005-11-01
Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.
International Nuclear Information System (INIS)
Foley, W.J.; Dean, R.S.; Hennick, A.
1991-01-01
Documentation is provided in this report to close IE Bulletin 84--02 regarding the failure of General Electric Type HFA relays in Class 1E safety systems. The relay failures were due to aging of coil wire insulation and nylon or Lexan spools under certain environmental conditions. The bulletin was issued to nuclear power reactor licensees and holders of construction permits to provide assurance that the manufacturer's recommendations for corrective actions would be implemented. The bulletin required four specific actions, plus a review of the general concerns of the bulletin even though some facilities had different relays from those of bulletin concern. Evaluation of utility responses, NRC/Region inspection reports, and regional telephone calls has resulted in bulletin closeout of 116 (98%) of the 118 facilities to which the bulletin was issued for action. Facilities which were shut down or had construction halted indefinitely or permanently when the report was issued are not included in this review. A follow-up item is proposed in Appendix C for the two facilities with open status. Background information is supplied in the Introduction and Appendix A
Thermodynamics of (1-alkanol + linear monoether) systems
International Nuclear Information System (INIS)
Gonzalez, Juan Antonio; Mozo, Ismael; Garcia de la Fuente, Isaias; Cobos, Jose Carlos; Riesco, Nicolas
2008-01-01
Densities, ρ, and speeds of sound, u, of systems formed by 1-heptanol, or 1-octanol, or 1-decanol and dibutylether have been measured at a temperature of (293.15, 298.15, and 303.15) K and atmospheric pressure using a vibrating tube densimeter and sound analyser Anton Paar model DSA-5000. The ρ and u values were used to calculate excess molar volumes, V E , and deviations from the ideal behaviour of the thermal expansion coefficient, Δα p and of the isentropic compressibilities, Δκ S . The available database on molar excess enthalpies, H E , and V E for (1-alkanol + linear monoether) systems was used to investigate interactional and structural effects in such mixtures. The enthalpy of the OH...O bonds is lower for methanol solutions, and for the remainder systems, it is practically independent of the mixture compounds. The V E variation with the chain length of the 1-alkanol points out the existence of structural effects for systems including longer 1-alkanols. The ERAS model is applied to the studied mixtures. ERAS represents quite accurately H E and V E data using parameters which consistently depend on the molecular structure
Identification problems in linear transformation system
International Nuclear Information System (INIS)
Delforge, Jacques.
1975-01-01
An attempt was made to solve the theoretical and numerical difficulties involved in the identification problem relative to the linear part of P. Delattre's theory of transformation systems. The theoretical difficulties are due to the very important problem of the uniqueness of the solution, which must be demonstrated in order to justify the value of the solution found. Simple criteria have been found when measurements are possible on all the equivalence classes, but the problem remains imperfectly solved when certain evolution curves are unknown. The numerical difficulties are of two kinds: a slow convergence of iterative methods and a strong repercussion of numerical and experimental errors on the solution. In the former case a fast convergence was obtained by transformation of the parametric space, while in the latter it was possible, from sensitivity functions, to estimate the errors, to define and measure the conditioning of the identification problem then to minimize this conditioning as a function of the experimental conditions [fr
2008-01-01
Thursday 5 June. With another year comes another success for CERN’s Relay Race. With 76 teams taking part it was the second highest turnout in the race’s history. ‘The Shabbys’ won the relay race in 10 minutes 51 seconds.As popular as ever, this year the relay race took on the atmosphere of a mini carnival. Gathering on the lawn outside Restaurant 1, various stalls and attractions added to the party feeling of the event, with beer courtesy of ‘AGLUP’, the Belgian beer club, and a wandering jazz group entertaining spectators and competitors alike. Reflecting the greater involvement of other associations in the relay race, the president of the Staff Association Clubs Committee, James Purvis, was the guest of honour, launching the start of the race and presenting the prizes. As regular followers of the race could have probably predicted, The Shabbys were once again victorious and claimed first place. The team members th...
International Nuclear Information System (INIS)
Mudassar, I.; Cheema, A.; Shoab, A.
2014-01-01
Cooperative Diversity Orthogonal Frequency Division Modulation (CD-OFDM) systems are very sensitive to synchronization errors. In CD-OFDM, synchronization is more complex because all cooperative nodes (CNs) have their own frequency oscillator and different channel path which results in different timing and carrier frequency offset (CFO) for each node. Consequently, each node has to be synchronized separately without affecting the synchronization process of other nodes. All CNs transmit simultaneously during cooperation phase (C-phase) and their aggregate signal is received at the destination node. A unique frequency domain (FD) preamble is proposed for each CN during C-phase that will allow simple separation of cooperative nodes. These FD multiplexed preambles make the synchronization problem identical to OFDMA uplink. OFDMA system typically uses highly complex iterative CFO estimators for uplink synchronization. However, a simple one-shot CFO estimator is proposed that uses repeated preamble of two OFDM symbol duration. The proposed method is computationally efficient because it relies on FFT operation for user separation and interference mitigation. Subsequently, time domain (TD) multiplication is used for CFO correction of each CN. Furthermore, a CD-OFDM protocol for data transmission is presented that suites the proposed estimator and harnesses spatial diversity. The proposed estimator shows good statistical results during simulations in AWGN and Rayleigh environments. During evaluation, estimator variance, mean square error and symbol error rate are used as performance measure. (author)
2009-01-01
The CERN relay race will take place around the Meyrin site on Thursday 14th May starting at 12:15. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. More details on how to register your team for the relay race
2006-01-01
The CERN relay race will take place around the Meyrin site on Wednesday 17 May starting at 12:15. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Details on how to register your team for the relay race are given on the Staff Association Bulletin web site.
Ivarsson, Mikael
2010-01-01
Enics Sweden AB, Västerås, is an electronics manufacturing services company with its main business in manufacturing electronics. Most, if not all, electronic devices that are manufactured are being widely tested before delivery to ensure proper functionality. Often during tests a large number of signals are measured by one to a few digital multimeters and are therefore controlled through relays. Relays are also used when applying stimuli with high currents or voltages to the unit under test. ...
System theory as applied differential geometry. [linear system
Hermann, R.
1979-01-01
The invariants of input-output systems under the action of the feedback group was examined. The approach used the theory of Lie groups and concepts of modern differential geometry, and illustrated how the latter provides a basis for the discussion of the analytic structure of systems. Finite dimensional linear systems in a single independent variable are considered. Lessons of more general situations (e.g., distributed parameter and multidimensional systems) which are increasingly encountered as technology advances are presented.
Sungjoon Park,
2011-11-01
In this paper we present opportunistic relay communication strategies of decode and forward relaying. The channel that we are considering includes pathloss, shadowing, and fast fading effects. We find a simple outage probability formula for opportunistic relaying in the channel, and validate the results by comparing it with the exact outage probability. Also, we suggest a new relay selection algorithm that incorporates shadowing. We consider a protocol of broadcasting the channel gain of the previously selected relay. This saves resources in slow fading channel by reducing collisions in relay selection. We further investigate the optimal relay selection period to maximize the throughput while avoiding selection overhead. © 2011 IEEE.
LTE-Advanced Relay Technology and Standardization
Yuan, Yifei
2013-01-01
LTE-Advanced Relay Technology and Standardization provides a timely reference work for relay technology with the finalizing of LTE Release 10 specifications. LTE-Advanced is quickly becoming the global standard for 4G cellular communications. The relay technology, as one of the key features in LTE-Advanced, helps not only to improve the system coverage and capacity, but also to save the costs of laying wireline backhaul. As a leading researcher in the field of LTE-Advanced standards, the author provides an in-depth description of LTE-A relay technology, and explains in detail the standard specification and design principles. Readers from both academic and industrial fields can find sections of interest to them: Sections 2 & 4 could benefit researchers in academia and those who are engaged in exploratory work, while Sections 3 & 4 are more useful to engineers. Dr. Yifei Yuan is the Technical Director at the Standards Department of ZTE Inc.
Developing a Domain Model for Relay Circuits
DEFF Research Database (Denmark)
Haxthausen, Anne Elisabeth
2009-01-01
In this paper we stepwise develop a domain model for relay circuits as used in railway control systems. First we provide an abstract, property-oriented model of networks consisting of components that can be glued together with connectors. This model is strongly inspired by a network model...... for railways madeby Bjørner et.al., however our model is more general: the components can be of any kind and can later be refined to e.g. railway components or circuit components. Then we show how the abstract network model can be refined into an explicit model for relay circuits. The circuit model describes...... the statics as well as the dynamics of relay circuits, i.e. how a relay circuit can be composed legally from electrical components as well as how the components may change state over time. Finally the circuit model is transformed into an executable model, and we show how a concrete circuit can be defined...
Normal form of linear systems depending on parameters
International Nuclear Information System (INIS)
Nguyen Huynh Phan.
1995-12-01
In this paper we resolve completely the problem to find normal forms of linear systems depending on parameters for the feedback action that we have studied for the special case of controllable linear systems. (author). 24 refs
PWR control system design using advanced linear and non-linear methodologies
International Nuclear Information System (INIS)
Rabindran, N.; Whitmarsh-Everiss, M.J.
2004-01-01
Consideration is here given to the methodology deployed for non-linear heuristic analysis in the time domain supported by multi-variable linear control system design methods for the purposes of operational dynamics and control system analysis. This methodology is illustrated by the application of structural singular value μ analysis to Pressurised Water Reactor control system design. (author)
Evaluation of Harmonics Impact on Digital Relays
Directory of Open Access Journals (Sweden)
Kinan Wannous
2018-04-01
Full Text Available This paper presents the concept of the impact of harmonic distortion on a digital protection relay. The aim is to verify and determine the reasons of a mal-trip or failure to trip the protection relays; the suggested solution of the harmonic distortion is explained by a mathematical model in the Matlab Simulink programming environment. The digital relays have been tested under harmonic distortions in order to verify the function of the relays algorithm under abnormal conditions. The comparison between the protection relay algorithm under abnormal conditions and a mathematical model in the Matlab Simulink programming environment based on injected harmonics of high values is provided. The test is separated into different levels; the first level is based on the harmonic effect of an individual harmonic and mixed harmonics. The test includes the effect of the harmonics in the location of the fault point into distance protection zones. This paper is a new proposal in the signal processing of power quality disturbances using Matlab Simulink and the power quality impact on the measurements of the power system quantities; the test simulates the function of protection in power systems in terms of calculating the current and voltage values of short circuits and their faults. The paper includes several tests: frequency variations and decomposition of voltage waveforms with Fourier transforms (model and commercial relay, the effect of the power factor on the location of fault points, the relation between the tripping time and the total harmonic distortion (THD levels in a commercial relay, and a comparison of the THD capture between the commercial relay and the model.
Superconducting linear accelerator system for NSC
Indian Academy of Sciences (India)
This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed ...
Relaying Strategies and Protocols for Efficient Wireless Networks
Zafar, Ammar
2014-10-01
Next generation wireless networks are expected to provide high data rate and satisfy the Quality-of-Service (QoS) constraints of the users. A significant component of achieving these goals is to increase the effi ciency of wireless networks by either optimizing current architectures or exploring new technologies which achieve that. The latter includes revisiting technologies which were previously proposed, but due to a multitude of reasons were ignored at that time. One such technology is relaying which was initially proposed in the latter half of the 1960s and then was revived in the early 2000s. In this dissertation, we study relaying in conjunction with resource allocation to increase the effi ciency of wireless networks. In this regard, we differentiate between conventional relaying and relaying with buffers. Conventional relaying is traditional relaying where the relay forwards the signal it received immediately. On the other hand, in relaying with buffers or buffer-aided relaying as it is called, the relay can store received data in its buffer and forward it later on. This gives the benefit of taking advantage of good channel conditions as the relay can only transmit when the channel conditions are good. The dissertation starts with conventional relaying and considers the problem of minimizing the total consumed power while maintaining system QoS. After upper bounding the system performance, more practical algorithms which require reduced feedback overhead are explored. Buffer-aided relaying is then considered and the joint user-and-hop scheduler is introduced which exploits multi-user diversity (MUD) and 5 multi-hop diversity (MHD) gains together in dual-hop broadcast channels. Next joint user-and-hop scheduling is extended to the shared relay channel where two source-destination pairs share a single relay. The benefits of buffer-aided relaying in the bidirectional relay channel utilizing network coding are then explored. Finally, a new transmission protocol
Sajjad, Aamer; Anjum, Shakeel Ahmad; Ahmad, Riaz; Waraich, Ejaz Ahmad
2018-01-01
Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net
Symmetric linear systems - An application of algebraic systems theory
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
An assessment of fire vulnerability for aged electrical relays
International Nuclear Information System (INIS)
Vigil, R.A.; Nowlen, S.P.
1995-03-01
There has been some concern that, as nuclear power plants age, protective measures taken to control and minimize the impact of fire may become ineffective, or significantly less effective, and hence result in an increased fire risk. One objective of the Fire Vulnerability of Aged Electrical Components Program is to assess the effects of aging and service wear on the fire vulnerability of electrical equipment. An increased fire vulnerability of components may lead to an overall increase in fire risk to the plant. Because of their widespread use in various electrical safety systems, electromechanical relays were chosen to be the initial components for evaluation. This test program assessed the impact of operational and thermal aging on the vulnerability of these relays to fire-induced damage. Only thermal effects of a fire were examined in this test program. The impact of smoke, corrosive materials, or fire suppression effects on relay performance were not addressed in this test program. The purpose of this test program was to assess whether the fire vulnerability of electrical relays increased with aging. The sequence followed for the test program was to: identify specific relay types, develop three fire scenarios, artificially age several relays, test the unaged and aged relays in the fire exposure scenarios, and compare the results. The relays tested were Agastat GPI, General Electric (GE) HMA, HGA, and HFA. At least two relays of each type were artificially aged and at least two relays of each type were new. Relays were operationally aged by cycling the relay under rated load for 2,000 operations. These relays were then thermally aged for 60 days with their coil energized
Protective relaying theory and applications
Elmore, Walter A
2003-01-01
Targeting the latest microprocessor technologies for more sophisticated applications in the field of power system short circuit detection, this revised and updated source imparts fundamental concepts and breakthrough science for the isolation of faulty equipment and minimization of damage in power system apparatus. The Second Edition clearly describes key procedures, devices, and elements crucial to the protection and control of power system function and stability. It includes chapters and expertise from the most knowledgeable experts in the field of protective relaying, and describes micropro
Amplify-and-forward relaying in wireless communications
Rodriguez, Leonardo Jimenez; Le-Ngoc, Tho
2015-01-01
This SpringerBrief explores the advantage of relaying techniques in addressing the increasing demand for high data rates and reliable services over the air. It demonstrates how to design cost-effective relay systems that provide high spectral efficiency and fully exploit the diversity of the relay channel. The brief covers advances in achievable rates, power allocation schemes, and error performance for half-duplex (HD) and full-duplex (FD) amplify-and-forward (AF) single-relay systems. The authors discuss the capacity and respective optimal power allocation for a wide range of HD protocols ov
77 FR 16435 - Transmission Relay Loadability Reliability Standard
2012-03-21
... conditions on all applicable transmission lines and transformers. I. Background A. Relay Protection Systems 2... and a power swing. If a power swing is detected, the protection system, ``blocks,'' or prevents the... to the reliability of the Bulk-Power System by requiring load-responsive phase protection relay...
International Nuclear Information System (INIS)
Bandyopadhyay, K.K.; Kunkel, C.; Shteyngart, S.
1994-02-01
This report presents the results of a relay test program conducted by Brookhaven National Laboratory (BNL) under the sponsorship of the US Nuclear Regulatory Commission (NRC). The program is a continuation of an earlier test program the results of which were published in NUREG/CR-4867. The current program was carried out in two phases: electrical testing and vibration testing. The objective was primarily to focus on the electrical discontinuity or continuity of relays and circuit breaker tripping mechanisms subjected to electrical pulses and vibration loads. The electrical testing was conducted by KEMA-Powertest Company and the vibration testing was performed at Wyle Laboratories, Huntsville, Alabama. This report discusses the test procedures, presents the test data, includes an analysis of the data and provides recommendations regarding reliable relay testing
A study on switched linear system identification using game ...
African Journals Online (AJOL)
A study on switched linear system identification using game-theoretic strategies and neural computing. ... This study deals with application of game-theoretic strategies and neural computing to switched linear ... AJOL African Journals Online.
Reduction of Linear Functional Systems using Fuhrmann's Equivalence
Directory of Open Access Journals (Sweden)
Mohamed S. Boudellioua
2016-11-01
Full Text Available Functional systems arise in the treatment of systems of partial differential equations, delay-differential equations, multidimensional equations, etc. The problem of reducing a linear functional system to a system containing fewer equations and unknowns was first studied by Serre. Finding an equivalent presentation of a linear functional system containing fewer equations and fewer unknowns can generally simplify both the study of the structural properties of the linear functional system and of different numerical analysis issues, and it can sometimes help in solving the linear functional system. In this paper, Fuhrmann's equivalence is used to present a constructive result on the reduction of under-determined linear functional systems to a single equation involving a single unknown. This equivalence transformation has been studied by a number of authors and has been shown to play an important role in the theory of linear functional systems.
Hwang, Kyusung
2011-02-01
In this letter, we propose two-way amplify-and-forward relaying in conjunction with adaptive modulation in order to improve spectral efficiency of relayed communication systems while monitoring the required error performance. We also consider a multiple relay network where only the best relay node is utilized so that the diversity order increases while maintaining a low complexity of implementation as the number of relays increases. Based on the best relay selection criterion, we offer an upper bound on the signal-to-noise ratio to keep the performance analysis tractable. Our numerical examples show that the proposed system offers a considerable gain in spectral efficiency while satisfying the error rate requirements. © 2011 IEEE.
Hwang, Kyusung; Ko, Youngchai; Alouini, Mohamed-Slim
2011-01-01
In this letter, we propose two-way amplify-and-forward relaying in conjunction with adaptive modulation in order to improve spectral efficiency of relayed communication systems while monitoring the required error performance. We also consider a multiple relay network where only the best relay node is utilized so that the diversity order increases while maintaining a low complexity of implementation as the number of relays increases. Based on the best relay selection criterion, we offer an upper bound on the signal-to-noise ratio to keep the performance analysis tractable. Our numerical examples show that the proposed system offers a considerable gain in spectral efficiency while satisfying the error rate requirements. © 2011 IEEE.
2011-01-01
The CERN relay race will take place around the Meyrin site on Thursday 19 May starting at 12-15. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. Details of the course and of how to register your team for the relay race can be found here. Some advice for all runners from the Medical Service can also be found here.
Relay Selection with Limited and Noisy Feedback
Eltayeb, Mohammed E.; Elkhalil, Khalil; Mas'ud, Abdullahi Abubakar; Al-Naffouri, Tareq Y.
2016-01-01
Relay selection is a simple technique that achieves spatial diversity in cooperative relay networks. Nonetheless, relay selection algorithms generally require error-free channel state information (CSI) from all cooperating relays. Practically, CSI
Opportunistic Relay Selection With Limited Feedback
Eltayeb, Mohammed E.; Elkhalil, Khalil; Bahrami, Hamid Reza; Al-Naffouri, Tareq Y.
2015-01-01
Relay selection is a simple technique that achieves spatial diversity in cooperative relay networks. Generally, relay selection algorithms require channel state information (CSI) feedback from all cooperating relays to make a selection decision
High density linear systems for fusion power
International Nuclear Information System (INIS)
Ellis, W.R.; Krakowski, R.A.
1975-01-01
The physics and technological limitations and uncertainties associated with the linear theta pinch are discussed in terms of a generalized energy balance, which has as its basis the ratio (Q/sub E/) of total electrical energy generated to net electrical energy consumed. Included in this total is the virtual energy of bred fissile fuel, if a hybrid blanket is used, as well as the actual of real energy deposited in the blanket by the fusion neutron. The advantages and disadvantages of the pulsed operation demanded by the linear theta pinch are also discussed
Advanced Strategic and Tactical Relay Request Management for the Mars Relay Operations Service
Allard, Daniel A.; Wallick, Michael N.; Gladden, Roy E.; Wang, Paul; Hy, Franklin H.
2013-01-01
This software provides a new set of capabilities for the Mars Relay Operations Service (MaROS) in support of Strategic and Tactical relay, including a highly interactive relay request Web user interface, mission control over relay planning time periods, and mission management of allowed strategic vs. tactical request parameters. Together, these new capabilities expand the scope of the system to include all elements critical for Tactical relay operations. Planning of replay activities spans a time period that is split into two distinct phases. The first phase is called Strategic, which begins at the time that relay opportunities are identified, and concludes at the point that the orbiter generates the flight sequences for on board execution. Any relay request changes from this point on are called Tactical. Tactical requests, otherwise called Orbit - er Relay State Changes (ORSC), are highly restricted in terms of what types of changes can be made, and the types of parameters that can be changed may differ from one orbiter to the next. For example, one orbiter may be able to delay the start of a relay request, while another may not. The legacy approach to ORSC management involves exchanges of e-mail with "requests for change" and "acknowledgement of approval," with no other tracking of changes outside of e-mail folders. MaROS Phases 1 and 2 provided the infrastructure for strategic relay for all supported missions. This new version, 3.0, introduces several capabilities that fully expand the scope of the system to include tactical relay. One new feature allows orbiter users to manage and "lock" Planning Periods, which allows the orbiter team to formalize the changeover from Strategic to Tactical operations. Another major feature allows users to interactively submit tactical request changes via a Web user interface. A third new feature allows orbiter missions to specify allowed tactical updates, which are automatically incorporated into the tactical change process
Analysis of Linear Hybrid Systems in CLP
DEFF Research Database (Denmark)
Banda, Gourinath; Gallagher, John Patrick
2009-01-01
In this paper we present a procedure for representing the semantics of linear hybrid automata (LHAs) as constraint logic programs (CLP); flexible and accurate analysis and verification of LHAs can then be performed using generic CLP analysis and transformation tools. LHAs provide an expressive...
Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel
El-Gebeily, M.; Yushau, B.
2008-01-01
In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…
Modified Dynamic Decode-and-Forward Relaying Protocol for Type II Relay in LTE-Advanced and Beyond.
Nam, Sung Sik; Alouini, Mohamed-Slim; Choi, Seyeong
2016-01-01
In this paper, we propose a modified dynamic decode-and-forward (MoDDF) relaying protocol to meet the critical requirements for user equipment (UE) relays in next-generation cellular systems (e.g., LTE-Advanced and beyond). The proposed MoDDF realizes the fast jump-in relaying and the sequential decoding with an application of random codeset to encoding and re-encoding process at the source and the multiple UE relays, respectively. A subframe-by-subframe decoding based on the accumulated (or buffered) messages is employed to achieve energy, information, or mixed combining. Finally, possible early termination of decoding at the end user can lead to the higher spectral efficiency and more energy saving by reducing the frequency of redundant subframe transmission and decoding. These attractive features eliminate the need of directly exchanging control messages between multiple UE relays and the end user, which is an important prerequisite for the practical UE relay deployment.
A SYSTEMIC VISION OF BIOLOGY: OVERCOMING LINEARITY
Directory of Open Access Journals (Sweden)
M. Mayer
2005-07-01
were used to build a hipermedia material. This technology permit overcomes a linear communication, improving the comprehension of the network perspective. The teachers speeches revealed their conceptual con- structions along the course, showed the development of the competences in identify interconnection points in the flow and chemical cycling of energy, compatible with a systemic view of life.
2004-01-01
The CERN Relay Race will take place around the Meyrin site on Wednesday 19 May between 12.15 and 12.35. If possible, please avoid driving on the site during this 20 minute period. If you do meet runners in your car, please STOP until they all have passed. Thank you for your understanding
2003-01-01
The CERN Relay Race will take place around the Meyrin site on Wednesday May 21st between 12h15 and 12h35. If possible, please avoid driving on the site during this 20 minute period. If you do meet runners in your car, please STOP until they all have passed. Thank you for your understanding
2001-01-01
The CERN Relay Race will take place around the Meyrin site on Wednesday 23 May between 12:20 and 12:35. If possible, please avoid driving on the site during this 15 minute period. If you do meet runners in your car, please stop until they all have passed. Thank you for your understanding.
2002-01-01
The CERN Relay Race will take place around the Meyrin site on Wednesday 22 May between 12h20 and 12h35. If possible, please avoid driving on the site during this 15 minute period. If you do meet runners in your car, please STOP until they all have passed. Thank you for your understanding.
2009-01-01
The CERN relay race, now in its 39th year, is already a well-known tradition, but this year the organizers say the event will have even more of a festival feeling. Just off the starting line of the CERN relay race.For the past few years, spectators and runners at the CERN relay race have been able to enjoy a beer while listening to music from the CERN music and jazz clubs. But this year the organizers are aiming for "even more of a festival atmosphere". As David Nisbet, President of the CERN running club and organizer of the relay race, says: "Work is not just about getting your head down and doing the theory, it’s also about enjoying the company of your colleagues." This year, on top of music from the Santa Luis Band and the Canettes Blues Band, there will be demonstrations from the Aikido and softball clubs, a stretching session by the Fitness club, as well as various stalls and of course, the well-earned beer from AGLUP, the B...
Patrice Loiez
2005-01-01
The CERN Relay Race takes place each year in May and sees participants from all areas of the CERN staff. The winners in 2005 were The Shabbys with Los Latinos Volantes in second and Charmilles Technologies a close third. To add a touch of colour and levity, the CERN Jazz Club provided music at the finishing line.
Half-Duplex and Full-Duplex AF and DF Relaying with Energy-Harvesting in Log-Normal Fading
Rabie, Khaled M.; Adebisi, Bamidele; Alouini, Mohamed-Slim
2017-01-01
, in both HD and FD scenarios, AF relaying performs only slightly worse than DF relaying which can make the former a more efficient solution when the processing energy cost at the DF relay is taken into account. It is also shown that FD relaying systems can
Solving Fully Fuzzy Linear System of Equations in General Form
Directory of Open Access Journals (Sweden)
A. Yousefzadeh
2012-06-01
Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.
Sungjoon Park,; Stark, Wayne E.
2011-01-01
In this paper we present opportunistic relay communication strategies of decode and forward relaying. The channel that we are considering includes pathloss, shadowing, and fast fading effects. We find a simple outage probability formula
Duplex Schemes in Multiple Antenna Two-Hop Relaying
Directory of Open Access Journals (Sweden)
Anja Klein
2008-04-01
Full Text Available A novel scheme for two-hop relaying defined as space division duplex (SDD relaying is proposed. In SDD relaying, multiple antenna beamforming techniques are applied at the intermediate relay station (RS in order to separate downlink and uplink signals of a bi-directional two-hop communication between two nodes, namely, S1 and S2. For conventional amplify-and-forward two-hop relaying, there appears a loss in spectral efficiency due to the fact that the RS cannot receive and transmit simultaneously on the same channel resource. In SDD relaying, this loss in spectral efficiency is circumvented by giving up the strict separation of downlink and uplink signals by either time division duplex or frequency division duplex. Two novel concepts for the derivation of the linear beamforming filters at the RS are proposed; they can be designed either by a three-step or a one-step concept. In SDD relaying, receive signals at S1 are interfered by transmit signals of S1, and receive signals at S2 are interfered by transmit signals of S2. An efficient method in order to combat this kind of interference is proposed in this paper. Furthermore, it is shown how the overall spectral efficiency of SDD relaying can be improved if the channels from S1 and S2 to the RS have different qualities.
Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time
Wang, Yu
1995-08-01
The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.
Reliability modelling and simulation of switched linear system ...
African Journals Online (AJOL)
Reliability modelling and simulation of switched linear system control using temporal databases. ... design of fault-tolerant real-time switching systems control and modelling embedded micro-schedulers for complex systems maintenance.
A low complexity algorithm for multiple relay selection in two-way relaying Cognitive Radio networks
Alsharoa, Ahmad M.
2013-06-01
In this paper, a multiple relay selection scheme for two-way relaying cognitive radio network is investigated. We consider a cooperative Cognitive Radio (CR) system with spectrum sharing scenario using Amplify-and-Forward (AF) protocol, where licensed users and unlicensed users operate on the same frequency band. The main objective is to maximize the sum rate of the unlicensed users allowed to share the spectrum with the licensed users by respecting a tolerated interference threshold. A practical low complexity heuristic approach is proposed to solve our formulated optimization problem. Selected numerical results show that the proposed algorithm reaches a performance close to the performance of the optimal multiple relay selection scheme either with discrete or continuous power distributions while providing a considerable saving in terms of computational complexity. In addition, these results show that our proposed scheme significantly outperforms the single relay selection scheme. © 2013 IEEE.
Energy Technology Data Exchange (ETDEWEB)
Trujillo-Guajardo, L.A.; Conde-Enriquez, A. [Universidad Autonoma de Nuevo Leon, Nuevo Leon (Mexico)]. E-mail: luistrujillo84@gmail.com; con_de@yahoo.com
2012-04-15
In this article, a graphical software tool is presented; this tool is based on the education of protection system engineers. The theoretical fundaments used for the design of operation characteristics of distance relays and their algorithms are presented. The software allows the evaluation and analysis of real time events or simulated ones of every stage of design of the distance relay. Some example cases are presented to illustrate the activities that could be done with the graphical software tool developed. [Spanish] En este articulo se presenta una herramienta computacional grafica para apoyar la formacion de ingenieros en protecciones electricas. Los fundamentos teoricos para el diseno de caracteristicas de operacion de relevadores de distancia, asi como las rutinas de programacion de un relevador de distancia son presentados. La herramienta desarrollada permite la evaluacion de las etapas de diseno de relevadores y el analisis de la operacion ante eventos reales o simulados. Se presentan algunos casos de ejemplo para ilustrar las actividades didacticas que son posibles de realizar con la herramienta presentada.
Detect-and-forward in two-hop relay channels: a metrics-based analysis
Benjillali, Mustapha; Szczecinski, Leszek
2010-01-01
In this paper, we analyze the coded performance of a cooperative system with multiple parallel relays using "Detect-and-Forward" (DetF) strategy where each relay demodulates the overheard signal and forwards the detected binary words. The proposed
Multiple relay selection for delay-limited applications
Alsharoa, Ahmad M.
2013-12-01
A multiple relay selection system model that implements the decode-and-forward mode is investigated. All communication nodes are assumed to be equipped by multiple antennas. Furthermore, lattices space-time coded multiple-input multiple-output half duplex channel is applied. The main goal is to increase the throughput of the system by selecting multiple number of relays. The selection criteria depends on the maximum decoding delay at relays where the system implements a decoding time-out algorithm at each relay. This leads to a significant saving in the overall system power consumptions and attempts to solve the relays synchronization problem. All results are presented using numerical simulations. © 2012 IEEE.
Energy balance in a system with quasispherical linear compression
International Nuclear Information System (INIS)
Es'kov, A.G.; Kozlov, N.P.; Kurtmullaev, R.K.; Semenov, V.N.; Khvesyuk, V.I.; Yaminskii, A.V.
1983-01-01
This letter reports the resists of some experimental studies and a numerical simulation of the Tor-linear fusion system, 1 in which a heavy plasma shell with a closed magnetic structure is compressed in a quasispherical manner. The parameters of the Tor-Linear, at the Kurchatov Institute of Atomic Energy in Moscow are as follows: The energy stored in the system which accelerates the linear is E = 0.5 MJ; the linear mass is m = 0.2 kg; the working volume of the linear module is 1.5 x 10 -3 m 3 ; the linear velocity is approx.10 3 m/s; the guiding field in the toriod in the linear is 1--10 x 10 21 m -3 ; and the intial volume of the plasma in the linear chamber is 2.5 x 10 -4 m 3 . In this series of experiments, new solutions were developed for all the systems of the plasma--linear complex of the Tor-Linear: to produce a plasma toroid, to transport it, and to trap it in the linear cavity
Cognitive Relay Networks: A Comprehensive Survey
Directory of Open Access Journals (Sweden)
Ayesha Naeem
2015-07-01
Full Text Available Cognitive radio is an emerging technology to deal with the scarcity and requirement of radio spectrum by dynamically assigning spectrum to unlicensed user . This revolutionary technology shifts the paradigm in the wireless system design by all owing unlicensed user the ability to sense, adapt and share the dynamic spectrum. Cognitive radio technology have been applied to different networks and applications ranging from wireless to public saf ety, smart grid, medical, rela y and cellular applications to increase the throughput and spectrum efficiency of the network. Among these applications, cognitive relay networks is one of the application where cognitive radio technology has been applied. Cognitiv e rela y network increases the network throughput by reducing the complete pa th loss and also by ensuring cooper ation among secondary users and cooperation among primary and secondary users. In this paper , our aim is to provide a survey on cognitive relay network. We also provide a detailed review on existing schemes in cognitive relay networks on the basis of relaying protocol, relay cooperation and channel model.
A Proposed Method for Solving Fuzzy System of Linear Equations
Directory of Open Access Journals (Sweden)
Reza Kargar
2014-01-01
Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.
Effects of Unified Power Flow Controller (UPFC) on Distance Relay ...
African Journals Online (AJOL)
This paper investigates the effects of UPFC on Distance Relay tripping characteristics in Nigerian 330kV (North-Central) Network. Its operation is based on impedance measurement at the relaying point. However, the system performance is often impeded by certain operational or structural factors such as load angle, the ...
Protective Relay Studies for the Nigerian National Electric 330 KV ...
African Journals Online (AJOL)
The fundamental reasons for requiring these specific protective relaying features are also reviewed. Other protective relaying schemes that can accomplish the same basic protection objectives are presented. Based on the Nigerian special system characteristics, schemes to correct existing protection inadequacies are ...
Relay Coordination in the Protection of Radially-Connected Power ...
African Journals Online (AJOL)
Protective relays detect intolerable or unwanted conditions within an assigned area, and then trip or open one or more circuit breakers to isolate the problem area before it can damage or otherwise interfere with the eective operation of the rest of the power system. It often happens that a substation feeder relay and ...
Pilkey, W. D.; Chen, Y. H.
1974-01-01
An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.
Minimal solution of general dual fuzzy linear systems
International Nuclear Information System (INIS)
Abbasbandy, S.; Otadi, M.; Mosleh, M.
2008-01-01
Fuzzy linear systems of equations, play a major role in several applications in various area such as engineering, physics and economics. In this paper, we investigate the existence of a minimal solution of general dual fuzzy linear equation systems. Two necessary and sufficient conditions for the minimal solution existence are given. Also, some examples in engineering and economic are considered
Partial Linearization of Mechanical Systems with Application to Observer Design
Sarras, Ioannis; Venkatraman, Aneesh; Ortega, Romeo; Schaft, Arjan van der
2008-01-01
We consider general mechanical systems and establish a necessary and sufficient condition for the existence of a suitable change in the generalized momentum coordinates such that the new dynamics become linear in the transformed momenta. The class of systems which can be (partially) linearized by
Simultaneous Balancing and Model Reduction of Switched Linear Systems
Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.
2011-01-01
In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not
Nam, Sung Sik
2018-01-09
In this work, we propose an iterative relay scheduling with hybrid ARQ (IRS-HARQ) scheme which realizes fast jump-in/successive relaying and subframe-based decoding under the multiple user equipment (UE) relay environments applicable to the next-generation cellular systems (e.g., LTE-Advanced and beyond). The proposed IRS-HARQ aims to increase the achievable data rate by iteratively scheduling a relatively better UE relay closer to the end user in a probabilistic sense, provided that the relay-to-end user link should be operated in an open-loop and transparent mode. The latter is due to the fact that not only there are no dedicated control channels between the UE relay and the end user but also a new cell is not created. Under this open-loop and transparent mode, our proposed protocol is implemented by partially exploiting the channel state information based on the overhearing mechanism of ACK/NACK for HARQ. Further, the iterative scheduling enables UE-to-UE direct communication with proximity that offers spatial frequency reuse and energy saving.
MaROS Strategic Relay Planning and Coordination Interfaces
Allard, Daniel A.
2010-01-01
The Mars Relay Operations Service (MaROS) is designed to provide planning and analysis tools in support of ongoing Mars Network relay operations. Strategic relay planning requires coordination between lander and orbiter mission ground data system (GDS) teams to schedule and execute relay communications passes. MaROS centralizes this process, correlating all data relevant to relay coordination to provide a cohesive picture of the relay state. Service users interact with the system through thin-layer command line and web user interface client applications. Users provide and utilize data such as lander view periods of orbiters, Deep Space Network (DSN) antenna tracks, and reports of relay pass performance. Users upload and download relevant relay data via formally defined and documented file structures including some described in Extensible Markup Language (XML). Clients interface with the system via an http-based Representational State Transfer (ReST) pattern using Javascript Object Notation (JSON) formats. This paper will provide a general overview of the service architecture and detail the software interfaces and considerations for interface design.
Linear System Control Using Stochastic Learning Automata
Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.
1998-01-01
This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.
Useful tools for non-linear systems: Several non-linear integral inequalities
Czech Academy of Sciences Publication Activity Database
Agahi, H.; Mohammadpour, A.; Mesiar, Radko; Vaezpour, M. S.
2013-01-01
Roč. 49, č. 1 (2013), s. 73-80 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : Monotone measure * Comonotone functions * Integral inequalities * Universal integral Subject RIV: BA - General Mathematics Impact factor: 3.058, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf
Decentralized linear quadratic power system stabilizers for multi ...
Indian Academy of Sciences (India)
Introduction. Modern excitation systems considerably enhance the overall transient stability of power systems ..... to the local bus rather than the angle δ measured with respect to the remote bus. ... With this in view, the linear and nonlinear per-.
Deep space optical communication via relay satellite
Dolinar, S.; Vilnrotter, V.; Gagliardi, R.
1981-01-01
The application of optical communications for a deep space link via an earth-orbiting relay satellite is discussed. The system uses optical frequencies for the free-space channel and RF links for atmospheric transmission. The relay satellite is in geostationary orbit and contains the optics necessary for data processing and formatting. It returns the data to earth through the RF terrestrial link and also transmits an optical beacon to the satellite for spacecraft return pointing and for the alignment of the transmitting optics. Future work will turn to modulation and coding, pointing and tracking, and optical-RF interfacing.
Spectral efficiency enhancement with interference cancellation for wireless relay network
DEFF Research Database (Denmark)
Yomo, Hiroyuki; De Carvalho, Elisabeth
The introduction of relaying into wireless communication system for coverage enhancement can cause severe decrease of spectral efficiency due to the requirement on extra radio resource. In this paper, we propose a method to increase spectral efficiency in such a wireless relay network by employing...... an interference cancellation technique. We focus on a typical scenario of relaying in a cellular system, where a mobile station (MS) requires the help of a relay station (RS) to communicate with the base station (BS). In such a case, interference cancellation can be used to achieve a small reuse distance...... of identical radio resource. We analyze a simple scenario with BS, single RS, and 2 MSs, and show that the proposed method has significant potential to enhance spectral efficiency in wireless relay networks....
A new active absorption system and its performance to linear and non-linear waves
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Clavero, M.; Frigaard, Peter Bak
2016-01-01
Highlights •An active absorption system for wavemakers has been developed. •The theory for flush mounted gauges has been extended to cover also small gaps. •The new system has been validated in a wave flume with wavemakers in both ends. •A generation and absorption procedure for highly non-linear...
Efficient Resource Scheduling by Exploiting Relay Cache for Cellular Networks
Directory of Open Access Journals (Sweden)
Chun He
2015-01-01
Full Text Available In relay-enhanced cellular systems, throughput of User Equipment (UE is constrained by the bottleneck of the two-hop link, backhaul link (or the first hop link, and access link (the second hop link. To maximize the throughput, resource allocation should be coordinated between these two hops. A common resource scheduling algorithm, Adaptive Distributed Proportional Fair, only ensures that the throughput of the first hop is greater than or equal to that of the second hop. But it cannot guarantee a good balance of the throughput and fairness between the two hops. In this paper, we propose a Two-Hop Balanced Distributed Scheduling (TBS algorithm by exploiting relay cache for non-real-time data traffic. The evolved Node Basestation (eNB adaptively adjusts the number of Resource Blocks (RBs allocated to the backhaul link and direct links based on the cache information of relays. Each relay allocates RBs for relay UEs based on the size of the relay UE’s Transport Block. We also design a relay UE’s ACK feedback mechanism to update the data at relay cache. Simulation results show that the proposed TBS can effectively improve resource utilization and achieve a good trade-off between system throughput and fairness by balancing the throughput of backhaul and access link.
On Optimal Feedback Control for Stationary Linear Systems
International Nuclear Information System (INIS)
Russell, David L.
2010-01-01
We study linear-quadratic optimal control problems for finite dimensional stationary linear systems AX+BU=Z with output Y=CX+DU from the viewpoint of linear feedback solution. We interpret solutions in relation to system robustness with respect to disturbances Z and relate them to nonlinear matrix equations of Riccati type and eigenvalue-eigenvector problems for the corresponding Hamiltonian system. Examples are included along with an indication of extensions to continuous, i.e., infinite dimensional, systems, primarily of elliptic type.
Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis
Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel
2013-01-01
This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007
Channel allocation and rate adaptation for relayed transmission over correlated fading channels
Hwang, Kyusung; Hossain, Md Jahangir; Ko, Youngchai; Alouini, Mohamed-Slim
2009-01-01
at both the source and relay nodes, we develop an optimal channel allocation and rate adaptation policy for a dual-hop relayed transmission. As such the overall transmit power for the relayed system is minimized while a target packet dropping rate (PDR
49 CFR 236.206 - Battery or power supply with respect to relay; location.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Battery or power supply with respect to relay..., AND APPLIANCES Automatic Block Signal Systems Standards § 236.206 Battery or power supply with respect to relay; location. The battery or power supply for each signal control relay circuit, where an open...
Asymptotic analysis for Nakagami-m fading channels with relay selection
Zhong, Caijun; Wong, Kaikit; Jin, Shi; Alouini, Mohamed-Slim; Ratnarajah, Tharm
2011-01-01
In this paper, we analyze the asymptotic outage probability performance of both decode-and-forward (DF) and amplify-and-forward (AF) relaying systems using partial relay selection and the "best" relay selection schemes for Nakagami-m fading channels
Development of a Relay Performance Web Tool for the Mars Network
Allard, Daniel A.; Edwards, Charles D.
2009-01-01
Modern Mars surface missions rely upon orbiting spacecraft to relay communications to and from Earth systems. An important component of this multi-mission relay process is the collection of relay performance statistics supporting strategic trend analysis and tactical anomaly identification and tracking.
Gradient remediability in linear distributed parabolic systems ...
African Journals Online (AJOL)
The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...
Linearization of Nonautonomous Impulsive System with Nonuniform Exponential Dichotomy
Directory of Open Access Journals (Sweden)
Yongfei Gao
2014-01-01
Full Text Available This paper gives a version of Hartman-Grobman theorem for the impulsive differential equations. We assume that the linear impulsive system has a nonuniform exponential dichotomy. Under some suitable conditions, we proved that the nonlinear impulsive system is topologically conjugated to its linear system. Indeed, we do construct the topologically equivalent function (the transformation. Moreover, the method to prove the topological conjugacy is quite different from those in previous works (e.g., see Barreira and Valls, 2006.
On the throughput of a relay-assisted cognitive radio MIMO channel with space alignment
Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim
2014-01-01
We study the achievable rate of a multiple antenna relay-assisted cognitive radio system where a secondary user (SU) aims to communicate instantaneously with the primary user (PU). A special linear precoding scheme is proposed to enable the SU to take advantage of the primary eigenmodes. The used eigenmodes are subject to an interference constraint fixed beforehand by the primary transmitter. Due to the absence of a direct link, both users exploit an amplify-and-forward relay to accomplish their transmissions to a common receiver. After decoding the PU signal, the receiver employs a successive interference cancellation (SIC) to estimate the secondary message. We derive the optimal power allocation that maximizes the achievable rate of the SU respecting interference, peak and relay power constraints. Furthermore, we analyze the SIC detection accuracy on the PU throughput. Numerical results highlight the cognitive rate gain achieved by our proposed scheme without harming the primary rate. In addition, we show that the relay has an important role in increasing or decreasing PU and SU rates especially when varying its power and/or its amplifying gain. © 2014 IFIP.
On the throughput of a relay-assisted cognitive radio MIMO channel with space alignment
Sboui, Lokman
2014-05-01
We study the achievable rate of a multiple antenna relay-assisted cognitive radio system where a secondary user (SU) aims to communicate instantaneously with the primary user (PU). A special linear precoding scheme is proposed to enable the SU to take advantage of the primary eigenmodes. The used eigenmodes are subject to an interference constraint fixed beforehand by the primary transmitter. Due to the absence of a direct link, both users exploit an amplify-and-forward relay to accomplish their transmissions to a common receiver. After decoding the PU signal, the receiver employs a successive interference cancellation (SIC) to estimate the secondary message. We derive the optimal power allocation that maximizes the achievable rate of the SU respecting interference, peak and relay power constraints. Furthermore, we analyze the SIC detection accuracy on the PU throughput. Numerical results highlight the cognitive rate gain achieved by our proposed scheme without harming the primary rate. In addition, we show that the relay has an important role in increasing or decreasing PU and SU rates especially when varying its power and/or its amplifying gain. © 2014 IFIP.
On the discretization of linear fractional representations of LPV systems
Toth, R.; Lovera, M.; Heuberger, P.S.C.; Corno, M.; Hof, Van den P.M.J.
2012-01-01
Commonly, controllers for linear parameter-varying (LPV) systems are designed in continuous time using a linear fractional representation (LFR) of the plant. However, the resulting controllers are implemented on digital hardware. Furthermore, discrete-time LPV synthesis approaches require a
Automatic frequency control system for driving a linear accelerator
International Nuclear Information System (INIS)
Helgesson, A.L.
1976-01-01
An automatic frequency control system is described for maintaining the drive frequency applied to a linear accelerator to produce maximum particle output from the accelerator. The particle output amplitude is measured and the frequency of the radio frequency source powering the linear accelerator is adjusted to maximize particle output amplitude
Improper signaling in two-path relay channels
Gaafar, Mohamed
2017-07-03
Inter-relay interference (IRI) challenges the operation of two-path relaying systems. Furthermore, the unavailability of the channel state information (CSI) at the source and the limited detection capabilities at the relays prevent neither eliminating the interference nor adopting joint detection at the relays nodes. Improper signaling is a powerful signaling scheme that has the capability to reduce the interference impact at the receiver side and improves the achievable rate performance. Therefore, improper signaling is adopted at both relays, which have access to the global CSI. Then, improper signal characteristics are designed to maximize the total end-to-end achievable rate at the relays. To this end, both the power and the circularity coefficient, a measure of the impropriety degree of the signal, are optimized at the relays. Although the optimization problem is not convex, optimal power allocation for both relays for a fixed circularity coefficient is obtained. Moreover, the circularity coefficient is tuned to maximize the rate for a given power allocation. Finally, a joint solution of the optimization problem is proposed using a coordinate descent method based on alternate optimization. The simulation results show that employing improper signaling improves the achievable rate at medium and high IRI.
Improper signaling in two-path relay channels
Gaafar, Mohamed; Amin, Osama; Schaefer, Rafael F.; Alouini, Mohamed-Slim
2017-01-01
Inter-relay interference (IRI) challenges the operation of two-path relaying systems. Furthermore, the unavailability of the channel state information (CSI) at the source and the limited detection capabilities at the relays prevent neither eliminating the interference nor adopting joint detection at the relays nodes. Improper signaling is a powerful signaling scheme that has the capability to reduce the interference impact at the receiver side and improves the achievable rate performance. Therefore, improper signaling is adopted at both relays, which have access to the global CSI. Then, improper signal characteristics are designed to maximize the total end-to-end achievable rate at the relays. To this end, both the power and the circularity coefficient, a measure of the impropriety degree of the signal, are optimized at the relays. Although the optimization problem is not convex, optimal power allocation for both relays for a fixed circularity coefficient is obtained. Moreover, the circularity coefficient is tuned to maximize the rate for a given power allocation. Finally, a joint solution of the optimization problem is proposed using a coordinate descent method based on alternate optimization. The simulation results show that employing improper signaling improves the achievable rate at medium and high IRI.
Effects of relay chatter in seismic probabilistic safety analysis
International Nuclear Information System (INIS)
Reed, J.W.; Shiu, K.K.
1985-01-01
In the Zion and Indian Point Probabilistic Safety Studies, relay chatter was dismissed as a credible event and hence was not formally included in the analyses. Although little discussion is given in the Zion and Indian Point PSA documentation concerning the basis for this decision, it has been expressed informally that it was assumed that the operators will be able to reset all relays in a timely manner. Currently, it is the opinion of many professionals that this may be an oversimplification. The three basic areas which must be considered in addressing relay chatter include the fragility of the relays per se, the reliability of the operators to reset the relays and finally the systems response aspects. Each of these areas is reviewed and the implications for seismic PSA are discussed. Finally, recommendations for future research are given
Application of Nearly Linear Solvers to Electric Power System Computation
Grant, Lisa L.
To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement online control and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within reasonable time. This project expands on the current work in fast linear solvers, developed for solving symmetric and diagonally dominant linear systems, in order to produce power system specific methods that can be solved in nearly-linear run times. The work explores a new theoretical method that is based on ideas in graph theory and combinatorics. The technique builds a chain of progressively smaller approximate systems with preconditioners based on the system's low stretch spanning tree. The method is compared to traditional linear solvers and shown to reduce the time and iterations required for an accurate solution, especially as the system size increases. A simulation validation is performed, comparing the solution capabilities of the chain method to LU factorization, which is the standard linear solver for power flow. The chain method was successfully demonstrated to produce accurate solutions for power flow simulation on a number of IEEE test cases, and a discussion on how to further improve the method's speed and accuracy is included.
Feedback linearizing control of a MIMO power system
Ilyes, Laszlo
Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.
Portable, x-band, linear accelerator systems
International Nuclear Information System (INIS)
Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.
1985-01-01
Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for nondestructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz
Throughput maximization for buffer-aided hybrid half-/full-duplex relaying with self-interference
Khafagy, Mohammad Galal
2015-06-01
In this work, we consider a two-hop cooperative setting where a source communicates with a destination through an intermediate relay node with a buffer. Unlike the existing body of work on buffer-aided half-duplex relaying, we consider a hybrid half-/full-duplex relaying scenario with loopback interference in the full-duplex mode. Depending on the channel outage and buffer states that are assumed available at the transmitters, the source and relay may either transmit simultaneously or revert to orthogonal transmission. Specifically, a joint source/relay scheduling and relaying mode selection mechanism is proposed to maximize the end-to-end throughput. The throughput maximization problem is converted to a linear program where the exact global optimal solution is efficiently obtained via standard convex/linear numerical optimization tools. Finally, the theoretical findings are corroborated with event-based simulations to provide the necessary performance validation.
Structure Learning in Stochastic Non-linear Dynamical Systems
Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.
2005-12-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.
Portable, x-band, linear accelerator systems
International Nuclear Information System (INIS)
Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.
1985-01-01
Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for non-destructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz
New results on performance analysis of opportunistic regenerative relaying
Tourki, Kamel
2013-12-01
In this paper, we investigate an opportunistic relaying scheme where the selected relay assists the source-destination (direct) communication. In our study, we consider a regenerative opportunistic relaying scheme in which the direct path may be unusable, and takes into account the effect of the possible erroneously detected and transmitted data at the selected relay. We first derive the signal-to-noise (SNR) statistics for each hop, which are used to determine accurate closed form expressions for end-to-end bit-error rate (BER) of binary phase-shift keying (BPSK) modulation and end-to-end outage probability for a transmission rate R over Rayleigh fading channels. Furthermore, we evaluate the asymptotical performance and deduce the diversity order. Finally, we validate our analysis by showing that performance simulation results coincide with our analytical results over linear network architecture. © 2013 Elsevier B.V.
Error-rate performance analysis of opportunistic regenerative relaying
Tourki, Kamel
2011-09-01
In this paper, we investigate an opportunistic relaying scheme where the selected relay assists the source-destination (direct) communication. In our study, we consider a regenerative opportunistic relaying scheme in which the direct path can be considered unusable, and takes into account the effect of the possible erroneously detected and transmitted data at the best relay. We first derive the exact statistics of each hop, in terms of probability density function (PDF). Then, the PDFs are used to determine accurate closed form expressions for end-to-end bit-error rate (BER) of binary phase-shift keying (BPSK) modulation where the detector may use maximum ration combining (MRC) or selection combining (SC). Finally, we validate our analysis by showing that performance simulation results coincide with our analytical results over linear network (LN) architecture and considering Rayleigh fading channels. © 2011 IEEE.
Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems
Opmeer, MR; Curtain, RF
2004-01-01
In this paper, we study the existence of linear quadratic Gaussian (LQG)-balanced realizations for discrete-time infinite-dimensional systems. LQG-balanced realizations are those for which the smallest nonnegative self-adjoint solutions of the control and filter Riccati equations are equal. We show
Alternate MIMO relaying with three AF relays using interference alignment
Park, Kihong; Alouini, Mohamed-Slim
2012-01-01
In this paper, we study a two-hop half-duplex relaying network with one source, one destination, and three amplify-and-forward (AF) relays equipped with M antennas each. We consider alternate transmission to compensate for the inherent loss
Sparse Linear Solver for Power System Analysis Using FPGA
National Research Council Canada - National Science Library
Johnson, J. R; Nagvajara, P; Nwankpa, C
2005-01-01
.... Numerical solution to load flow equations are typically computed using Newton-Raphson iteration, and the most time consuming component of the computation is the solution of a sparse linear system...
Perfect commuting-operator strategies for linear system games
Cleve, Richard; Liu, Li; Slofstra, William
2017-01-01
Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.
A conceptual design of Final Focus Systems for linear colliders
International Nuclear Information System (INIS)
Brown, K.L.
1987-06-01
Linear colliders are a relatively recent development in the evolution of particle accelerators. This report discusses some of the approaches that have been considered for the design of Final Focus Systems to demagnify the beam exiting from a linac to the small size suitable for collisions at the interaction point. The system receiving the most attention is the one adopted for the SLAC Linear Collider. However, the theory and optical techniques discussed should be applicable to the design efforts for future machines
ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE
Directory of Open Access Journals (Sweden)
Kirillov
2014-11-01
Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.
Iterative algorithms for large sparse linear systems on parallel computers
Adams, L. M.
1982-01-01
Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.
Simultaneous Balancing and Model Reduction of Switched Linear Systems
Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.
2011-01-01
In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not limited to a certain type of balancing, and they are applicable for different types of balancing corresponding to different equations, like Lyapunov or Riccati equations. The results obtained are ...
Solar photovoltaic water pumping system using a new linear actuator
Andrada Gascón, Pedro; Castro, Javier
2007-01-01
In this paper a photovoltaic solar pumping system using a new linear actuator is presented. This linear actuator is a double-sided flat two-phase variable-reluctance linear stepper motor that moves a piston-type water pump with the help of a rope, a pulley and a counterweight. The entire actuator pump ensemble is controlled by a simple electronic unit that manages the electric power generated by a photovoltaic array. The proposed system is suitable for rural communities in developing...
Phase and amplitude detection system for the Stanford Linear Accelerator
International Nuclear Information System (INIS)
Fox, J.D.; Schwarz, H.D.
1983-01-01
A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system
International Nuclear Information System (INIS)
Chen, H.-H.; Chen, C.-S.; Lee, C.-I
2009-01-01
This paper investigates the synchronization of unidirectional and bidirectional coupled unified chaotic systems. A balanced coupling coefficient control method is presented for global asymptotic synchronization using the Lyapunov stability theorem and a minimum scheme with no constraints/constraints. By using the result of the above analysis, the balanced coupling coefficients are then designed to achieve the chaos synchronization of linearly coupled unified chaotic systems. The feasibility and effectiveness of the proposed chaos synchronization scheme are verified via numerical simulations.
Cooperative beamforming for dual-hop amplify-and-forward multi-antenna relaying cellular networks
Xing, Chengwen
2012-11-01
In this paper, linear beamforming design for amplify-and-forward relaying cellular networks is considered, in which base station, relay station and mobile terminals are all equipped with multiple antennas. The design is based on minimum mean-square-error criterion, and both uplink and downlink scenarios are considered. It is found that the downlink and uplink beamforming design problems are in the same form, and iterative algorithms with the same structure can be used to solve the design problems. For the specific cases of fully loaded or overloaded uplink systems, a novel algorithm is derived and its relationships with several existing beamforming design algorithms for conventional MIMO or multiuser systems are revealed. Simulation results are presented to demonstrate the performance advantage of the proposed design algorithms. © 2012 Published by Elsevier B.V. All rights reserved.
Cooperative beamforming for dual-hop amplify-and-forward multi-antenna relaying cellular networks
Xing, Chengwen; Ma, Shaodan; Xia, Minghua; Wu, Yikchung
2012-01-01
In this paper, linear beamforming design for amplify-and-forward relaying cellular networks is considered, in which base station, relay station and mobile terminals are all equipped with multiple antennas. The design is based on minimum mean-square-error criterion, and both uplink and downlink scenarios are considered. It is found that the downlink and uplink beamforming design problems are in the same form, and iterative algorithms with the same structure can be used to solve the design problems. For the specific cases of fully loaded or overloaded uplink systems, a novel algorithm is derived and its relationships with several existing beamforming design algorithms for conventional MIMO or multiuser systems are revealed. Simulation results are presented to demonstrate the performance advantage of the proposed design algorithms. © 2012 Published by Elsevier B.V. All rights reserved.
CERN Running club
2018-01-01
The CERN running club, in collaboration with the Staff Association, is happy to announce the 2018 relay race edition. It will take place on Thursday, May 24th and will consist as every year in a round trip of the CERN Meyrin site in teams of 6 members. It is a fun event, and you do not have to run fast to enjoy it. Registrations will be open from May 1st to May 22nd on the running club web site. All information concerning the race and the registration are available there too: http://runningclub.web.cern.ch/content/cern-relay-race. A video of the previous edition is also available here : http://cern.ch/go/Nk7C. As every year, there will be animations starting at noon on the lawn in front of restaurant 1, and information stands for many CERN associations and clubs will be available. The running club partners will also be participate in the event, namely Berthie Sport, Interfon and Uniqa.
Staff Association
2017-01-01
On Thursday June 1st at 12.15, Fabiola Gianotti, our Director-General, will fire the starting shot for the 47th Relay Race. This Race is above all a festive CERN event, open for runners and walkers, as well as the people cheering them on throughout the race, and those who wish to participate in the various activities organised between 11.30 and 14.30 out on the lawn in front of Restaurant 1. In order to make this sports event accessible for everyone, our Director-General will allow for flexible lunch hours on the day, applicable for all the members of personnel. An alert for the closure of roads will be send out on the day of the event. The Staff Association and the CERN Running Club thank you in advance for your participation and your continued support throughout the years. This year the CERN Running Club has announced the participation of locally and internationally renowned runners, no less! A bit over a week from the Relay Race of 1st June, the number of teams is going up nicely (already almost 40). Am...
Running Club
2010-01-01
This year’s CERN Relay Race will take place around the Meyrin site on Thursday 20th May at 12h00. This annual event is for teams of 6 runners covering distances of 1000m, 800m, 800m, 500m, 500m and 300m respectively. Teams may be entered in the Seniors, Veterans, Ladies, Mixed or Open categories. The registration fee is 10 CHF per runner, and each runner receives a souvenir prize. As usual, there will be a programme of entertainments from 12h in the arrival area, in front of the Restaurant no. 1. Drinks, food, CERN club information and music will be available for the pleasure of both runners and spectators. The race starts at 12h15, with results and prize giving at 13:15. For details of the race, and of how to sign up a team, please visit: https://espace.cern.ch/Running-Club/CERN-Relay The event is organised by the CERN Running Club with the support of the CERN Staff Association.
International Nuclear Information System (INIS)
Burton, J.C.
1977-01-01
Utilities are required by the Nuclear Regulatory Commission to document that seismic vibration will not adversely affect critical electrical equipment. Seismic testing should be designed to determine the malfunction level (fragility testing). Input possibilities include a continuous sine, a decaying sine, a sine beat, random vibrations, and combinations of random vibrations and sine beat. The sine beat most accurately simulates a seismic event. Test frequencies have a broad range in order to accommodate a variety of relay types and cabinet mounting. Simulation of motion along three axes offers several options, but is best achieved by three in-phase single-axis vibration machines that are less likely to induce testing fatigue failure. Consensus on what constitutes relay failure favors a maximum two microsecond discontinuity. Performance tests should be conducted for at least two of the following: (1) nonoperating modes, (2) operating modes, or (3) the transition above the two modes, with the monitoring mode documented for all three. Results should specify a capability curve of maximum safe seismic acceleration and a graph plotting acceleration with sine-beat frequency
Solution of generalized shifted linear systems with complex symmetric matrices
International Nuclear Information System (INIS)
Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo
2012-01-01
We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.
Economic MPC for a linear stochastic system of energy units
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Sokoler, Leo Emil; Standardi, Laura
2016-01-01
This paper summarizes comprehensively the work in four recent PhD theses from the Technical University of Denmark related to Economic MPC of future power systems. Future power systems will consist of a large number of decentralized power producers and a large number of controllable power consumers...... in addition to stochastic power producers such as wind turbines and solar power plants. Control of such large scale systems requires new control algorithms. In this paper, we formulate the control of such a system as an Economic Model Predictive Control (MPC) problem. When the power producers and controllable...... power consumers have linear dynamics, the Economic MPC may be expressed as a linear program. We provide linear models for a number of energy units in an energy system, formulate an Economic MPC for coordination of such a system. We indicate how advances in computational MPC makes the solutions...
Stability analysis of switched linear systems defined by graphs
Athanasopoulos, N.; Lazar, M.
2014-01-01
We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching,
Euclidean null controllability of linear systems with delays in state ...
African Journals Online (AJOL)
Sufficient conditions are developed for the Euclidean controllability of linear systems with delay in state and in control. Namely, if the uncontrolled system is uniformly asymptotically stable and the control equation proper, then the control system is Euclidean null controllable. Journal of the Nigerian Association of ...
Incremental Closed-loop Identification of Linear Parameter Varying Systems
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, Klaus
2011-01-01
, closed-loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can be extended...
Stability and response bounds of non-conservative linear systems
DEFF Research Database (Denmark)
Pommer, Christian
2003-01-01
For a linear system of second order differential equations the stability is studied by Lyapunov's direct method. The Lyapunov matrix equation is solved and a sufficient condition for stability is expressed by the system matrices. For a system which satisfies the condition for stability the Lyapunov...
Linear Optimization of Frequency Spectrum Assignments Across System
2016-03-01
selection tools, frequency allocation, transmission optimization, electromagnetic maneuver warfare, electronic protection, assignment model 15. NUMBER ...Characteristics Modeled ...............................................................29 Table 10. Antenna Systems Modeled , Number of Systems and...surveillance EW early warning GAMS general algebraic modeling system GHz gigahertz IDE integrated development environment ILP integer linear program
Asymptotic analysis for Nakagami-m fading channels with relay selection
Zhong, Caijun
2011-06-01
In this paper, we analyze the asymptotic outage probability performance of both decode-and-forward (DF) and amplify-and-forward (AF) relaying systems using partial relay selection and the "best" relay selection schemes for Nakagami-m fading channels. We derive their respective outage probability expressions in the asymptotic high signal-to-noise ratio (SNR) regime, from which the diversity order and coding gain are analyzed. In addition, we investigate the impact of power allocation between the source and relay terminals and derive the diversity-multiplexing tradeoff (DMT) for these relay selection systems. The theoretical findings suggest that partial relay selection can improve the diversity of the system and can achieve the same DMT as the "best" relay selection scheme under certain conditions. © 2011 IEEE.
Stability analysis of switched linear systems defined by graphs
Athanasopoulos, Nikolaos; Lazar, Mircea
2015-01-01
We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching, periodic systems, and systems with minimum and maximum dwell time specifications. To reach the result, we describe the set of rules that define the admissible transitions with a weighted directed gra...
Modeling and analysis of linear hyperbolic systems of balance laws
Bartecki, Krzysztof
2016-01-01
This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...
A convex optimization approach for solving large scale linear systems
Directory of Open Access Journals (Sweden)
Debora Cores
2017-01-01
Full Text Available The well-known Conjugate Gradient (CG method minimizes a strictly convex quadratic function for solving large-scale linear system of equations when the coefficient matrix is symmetric and positive definite. In this work we present and analyze a non-quadratic convex function for solving any large-scale linear system of equations regardless of the characteristics of the coefficient matrix. For finding the global minimizers, of this new convex function, any low-cost iterative optimization technique could be applied. In particular, we propose to use the low-cost globally convergent Spectral Projected Gradient (SPG method, which allow us to extend this optimization approach for solving consistent square and rectangular linear system, as well as linear feasibility problem, with and without convex constraints and with and without preconditioning strategies. Our numerical results indicate that the new scheme outperforms state-of-the-art iterative techniques for solving linear systems when the symmetric part of the coefficient matrix is indefinite, and also for solving linear feasibility problems.
Mobile User Connectivity in Relay-Assisted Visible Light Communications
Directory of Open Access Journals (Sweden)
Petr Pešek
2018-04-01
Full Text Available In this paper, we investigate relay-assisted visible light communications (VLC where a mobile user acts as a relay and forwards data from a transmitter to the end mobile user. We analyse the utilization of the amplify-and-forward (AF and decode-and-forward (DF relaying schemes. The focus of the paper is on analysis of the behavior of the mobile user acting as a relay while considering a realistic locations of the receivers and transmitters on a standard mobile phone, more specifically with two photodetectors on both sides of a mobile phone and a transmitting LED array located upright. We also investigate dependency of the bit error rate (BER performance on the azimuth and elevation angles of the mobile relay device within a typical office environment. We provide a new analytical description of BER for AF and DF-based relays in VLC. In addition we compare AF and DF-based systems and show that DF offers a marginal improvement in the coverage area with a BER < 10–3 and a data rate of 100 Mb/s. Numerical results also illustrate that relay-based systems offer a significant improvement in terms of the coverage compared to direct non-line of sight VLC links.
Optimized Policies for Improving Fairness of Location-based Relay Selection
DEFF Research Database (Denmark)
Nielsen, Jimmy Jessen; Olsen, Rasmus Løvenstein; Madsen, Tatiana Kozlova
2013-01-01
For WLAN systems in which relaying is used to improve throughput performance for nodes located at the cell edge, node mobility and information collection delays can have a significant impact on the performance of a relay selection scheme. In this paper we extend our existing Markov Chain modeling...... framework for relay selection to allow for efficient calculation of relay policies given either mean throughput or kth throughput percentile as optimization criterium. In a scenario with static access point, static relay, and a mobile destination node, the kth throughput percentile optimization...
A comparison between linear and toroidal Extrap systems
International Nuclear Information System (INIS)
Lehnert, B.
1988-09-01
The Extrap scheme consists of a Z-pinch immersed in an octupole field generated by currents in a set of external conductors. A comparison between linear and toroidal Extrap geometry is made in this paper. As compared to toroidal systems, linear geometry has the advantages of relative simplicity and of a current drive by means of electrodes. Linear devices are convenient for basic studies of Extrap, at moderately high pinch currents and plasma temperatures. Within the parameter ranges of experiments at high pinch currents and plasma temperatures, linear systems have on the other hand some substantial disadvantages, on account of the plasma interaction with the end regions. This results in a limitation of the energy confinement time, and leads in the case of an ohmically heated plasma to excessively high plasma densities and small pinch radii which also complicate the introduction of the external conductors. (author)
Linear local stability of electrostatic drift modes in helical systems
International Nuclear Information System (INIS)
Yamagishi, O.; Nakajima, N.; Sugama, H.; Nakamura, Y.
2003-01-01
We investigate the stability of the drift wave in helical systems. For this purpose, we solve the linear local gyrokinetic-Poisson equation, in the electrostatic regime. As a model of helical plasmas, Large helical Device (LHD) is considered. The equation we apply is rather exact in the framework of linear gyrokinetic theory, where only the approximation is the ballooning representation. In this paper, we consider only collisionless cases. All the frequency regime can be naturally reated without any assumptions, and in such cases, ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron temperature gradient modes (ETG) are expected to become unstable linearly independently. (orig.)
I Dewa Gde Agung Budhi Udiana; I G Dyana Arjana; Tjok Gede Indra Partha
2017-01-01
Short circuit causing over current problem and can might causing interference of the equipment performance such as distribution transformers also causing widespread disruption occurred. In resolving such interference is required as protection system on the distribution system. Seeing all above is needed coordination between the supporting component of the protection system which is consisted of Over Current Relay (OCR) and Ground Fault Relay (GFR). The research was conducted at PT. PLN (Perse...
Multiple relay selection for delay-limited applications
Alsharoa, Ahmad M.; Abediseid, Walid; Alouini, Mohamed-Slim
2013-01-01
A multiple relay selection system model that implements the decode-and-forward mode is investigated. All communication nodes are assumed to be equipped by multiple antennas. Furthermore, lattices space-time coded multiple-input multiple-output half
relay coordination in the protection of radially-connected power
African Journals Online (AJOL)
... PROTECTION OF. RADIALLY-CONNECTED POWER SYSTEM NETWORK ... Protective relays detect intolerable or unwanted conditions within an assigned area, and then trip or open one ... time, and current transformer ratio errors. 2.2.1.
Efficient incremental relaying for packet transmission over fading channels
Fareed, Muhammad Mehboob; Alouini, Mohamed-Slim; Yang, Hongchuan
2014-01-01
In this paper, we propose a novel relaying scheme for packet transmission over fading channels, which improves the spectral efficiency of cooperative diversity systems by utilizing limited feedback from the destination. Our scheme capitalizes
H 2 guaranteed cost control of discrete linear systems
Directory of Open Access Journals (Sweden)
Colmenares W.
2000-01-01
Full Text Available This paper presents necessary and sufficient conditions for the existence of a quadratically stabilizing output feedback controller which also assures H 2 guaranteed cost performance on a discrete linear uncertain system where the uncertainty is of the norm bounded type. The conditions are presented as a collection of linear matrix inequalities.The solution, however requires a search over a scalar parameter space.
Structured Control of Affine Linear Parameter Varying Systems
DEFF Research Database (Denmark)
Adegas, Fabiano Daher; Stoustrup, Jakob
2011-01-01
This paper presents a new procedure to design structured controllers for discrete-time afﬁne linear parametervarying systems (A LPV). The class of control structures includes decentralized of any order, ﬁxed order output feedback, simultaneous plant-control design, among others. A parametervarying...... non-convex condition for an upper bound on the induced L2-norm performance is solved by an iterative linear matrix inequalities (LMI) optimization algorithm. Numerical examples demostrate the effectiveness of the proposed approach....
On the stability of non-linear systems
International Nuclear Information System (INIS)
Guelman, M.
1968-09-01
A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [fr
Applications of equivalent linearization approaches to nonlinear piping systems
International Nuclear Information System (INIS)
Park, Y.; Hofmayer, C.; Chokshi, N.
1997-01-01
The piping systems in nuclear power plants, even with conventional snubber supports, are highly complex nonlinear structures under severe earthquake loadings mainly due to various mechanical gaps in support structures. Some type of nonlinear analysis is necessary to accurately predict the piping responses under earthquake loadings. The application of equivalent linearization approaches (ELA) to seismic analyses of nonlinear piping systems is presented. Two types of ELA's are studied; i.e., one based on the response spectrum method and the other based on the linear random vibration theory. The test results of main steam and feedwater piping systems supported by snubbers and energy absorbers are used to evaluate the numerical accuracy and limitations
2005-01-01
The CERN Relay Race will take place around the Meyrin site on Wednesday 18 May between 12.15 and 12.35. This year, weather permitting, there will be some new attractions in the start/finish area on the field behind the Main Building. You will be able to: listen to music played by the CERN Jazz Club; buy drinks at the bar organised by the CERN Running Club; buy lunch served directly on the terrace by the restaurant Novae. ATTENTION: concerning traffic, the recommendations are the same as always: If possible, please avoid driving on the site during this 20 minute period. If you do meet runners in your car, please STOP until they all have passed. Thank you for your understanding.
D´Elia, Gabriel Anibal
2000-01-01
Esta tesis trata el tema de VOFR, desde la digitalización de la voz hasta su transmisión a través de dicha red, así también como la comparación con otros medios de transporte como VOIP. Dada las características del protocolo frame relay y su disponibilidad se eligió como el medio más apropiado para la transmisión de voz y datos en forma integrada sobre una misma red. El trabajo comienza con una breve explicación de la voz, su digitalización y forma actual de transmisión a través de una red di...
State space and input-output linear systems
Delchamps, David F
1988-01-01
It is difficult for me to forget the mild sense of betrayal I felt some ten years ago when I discovered, with considerable dismay, that my two favorite books on linear system theory - Desoer's Notes for a Second Course on Linear Systems and Brockett's Finite Dimensional Linear Systems - were both out of print. Since that time, of course, linear system theory has undergone a transformation of the sort which always attends the maturation of a theory whose range of applicability is expanding in a fashion governed by technological developments and by the rate at which such advances become a part of engineering practice. The growth of the field has inspired the publication of some excellent books; the encyclopedic treatises by Kailath and Chen, in particular, come immediately to mind. Nonetheless, I was inspired to write this book primarily by my practical needs as a teacher and researcher in the field. For the past five years, I have taught a one semester first year gradu ate level linear system theory course i...
Unification of three linear models for the transient visual system
Brinker, den A.C.
1989-01-01
Three different linear filters are considered as a model describing the experimentally determined triphasic impulse responses of discs. These impulse responses arc associated with the transient visual system. Each model reveals a different feature of the system. Unification of the models is
Punctuated equilibrium in a non-linear system of action
J.S. Timmermans (Jos)
2008-01-01
textabstractColeman's equilibrium model of social development, the Linear System of Action, is extended to cover the dynamics of societal transitions. The model implemented has the characteristics of a dissipative system. A variation and selection algorithm favoring the retention of relatively
Lag synchronization of chaotic systems with time-delayed linear
Indian Academy of Sciences (India)
In this paper, the lag synchronization of chaotic systems with time-delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differential equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic systems.
INPUT-OUTPUT STRUCTURE OF LINEAR-DIFFERENTIAL ALGEBRAIC SYSTEMS
KUIJPER, M; SCHUMACHER, JM
Systems of linear differential and algebraic equations occur in various ways, for instance, as a result of automated modeling procedures and in problems involving algebraic constraints, such as zero dynamics and exact model matching. Differential/algebraic systems may represent an input-output
Frequency Interval Cross Gramians for Linear and Bilinear Systems
DEFF Research Database (Denmark)
Jazlan, Ahmad; Sreeram, Victor; Shaker, Hamid Reza
2017-01-01
In many control engineering problems, it is desired to analyze the systems at particular frequency intervals of interest. This paper focuses on the development of frequency interval cross gramians for both linear and bilinear systems. New generalized Sylvester equations for calculating the freque...
Switching control of linear systems for generating chaos
International Nuclear Information System (INIS)
Liu Xinzhi; Teo, Kok-Lay; Zhang Hongtao; Chen Guanrong
2006-01-01
In this paper, a new switching method is developed, which can be applied to generating different types of chaos or chaos-like dynamics from two or more linear systems. A numerical simulation is given to illustrate the generated chaotic dynamic behavior of the systems with some variable parameters. Finally, a circuit is built to realize various chaotic dynamical behaviors
New approach to solve symmetric fully fuzzy linear systems
Indian Academy of Sciences (India)
In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefﬁcient matrix. The symmetric coefﬁcient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.
Criteria for stability of linear dynamical systems with multiple delays ...
African Journals Online (AJOL)
In this study we considered a linear Dynamical system with multiple delays and find suitable conditions on the systems parameters such that for a given initial function, we can define a mapping in a carefully chosen complete metric space on which the mapping has a unique fixed point. An asymptotic stability theory for the ...
A data-acquisition system for high speed linear CCD
International Nuclear Information System (INIS)
Liu Zhiyan; Chen Xiangcai; Jiang Xiaoshan; Zhang Hongyu; Liang Zhongwang; Xiang Haisheng; Hu Jun
2010-01-01
A data-acquisition system for high speed linear CCD (Charge Coupled device) is mainly introduced. The optical fiber transmission technology is used. The data is sent to PC through USB or PCI interface. The construction of the system, the design of the PCI interface hardware, software design and the design of the control program running on host computer are also introduced. (authors)
Partial Synchronization Manifolds for Linearly Time-Delay Coupled Systems
Steur, Erik; van Leeuwen, Cees; Michiels, Wim
2014-01-01
Sometimes a network of dynamical systems shows a form of incomplete synchronization characterized by synchronization of some but not all of its systems. This type of incomplete synchronization is called partial synchronization. Partial synchronization is associated with the existence of partial synchronization manifolds, which are linear invariant subspaces of C, the state space of the network of systems. We focus on partial synchronization manifolds in networks of system...
The linear sizes tolerances and fits system modernization
Glukhov, V. I.; Grinevich, V. A.; Shalay, V. V.
2018-04-01
The study is carried out on the urgent topic for technical products quality providing in the tolerancing process of the component parts. The aim of the paper is to develop alternatives for improving the system linear sizes tolerances and dimensional fits in the international standard ISO 286-1. The tasks of the work are, firstly, to classify as linear sizes the elements additionally linear coordinating sizes that determine the detail elements location and, secondly, to justify the basic deviation of the tolerance interval for the element's linear size. The geometrical modeling method of real details elements, the analytical and experimental methods are used in the research. It is shown that the linear coordinates are the dimensional basis of the elements linear sizes. To standardize the accuracy of linear coordinating sizes in all accuracy classes, it is sufficient to select in the standardized tolerance system only one tolerance interval with symmetrical deviations: Js for internal dimensional elements (holes) and js for external elements (shafts). The main deviation of this coordinating tolerance is the average zero deviation, which coincides with the nominal value of the coordinating size. Other intervals of the tolerance system are remained for normalizing the accuracy of the elements linear sizes with a fundamental change in the basic deviation of all tolerance intervals is the maximum deviation corresponding to the limit of the element material: EI is the lower tolerance for the of the internal elements (holes) sizes and es is the upper tolerance deviation for the outer elements (shafts) sizes. It is the sizes of the material maximum that are involved in the of the dimensional elements mating of the shafts and holes and determine the fits type.
Directory of Open Access Journals (Sweden)
I Dewa Gde Agung Budhi Udiana
2017-08-01
Full Text Available Short circuit causing over current problem and can might causing interference of the equipment performance such as distribution transformers also causing widespread disruption occurred. In resolving such interference is required as protection system on the distribution system. Seeing all above is needed coordination between the supporting component of the protection system which is consisted of Over Current Relay (OCR and Ground Fault Relay (GFR. The research was conducted at PT. PLN (Persero South Bali Area Network, INDONESIA on recloser in the feeder line of Penebel. OCR setting between the Relay feeder of Penebel, Recloser Celagi, Recloser Bakisan, and Recloser Benana still less selective, with time value coordination between average security was still less than 0,2 second. Then OCR setting and GFR relay feeder of Penebel, Recloser Celagi, Recloser Bakisan, and Recloser Benana was recommended for re-setting in order to minimize disruption and electric power distribution system to be reliable.
Distributed stability control using intelligent voltage-margin relay
Energy Technology Data Exchange (ETDEWEB)
Wiszniewski, A.; Rebizant, W. [Wroclaw Univ. of Technology (Poland); Klimek, A. [Powertech Labs Inc., Surrey, BC (Canada)
2010-07-01
This paper presented an intelligent relay that operates if the load to source impedance ratio decreases to a level that is dangerously close to the stability limit, which leads to power system blackouts. The intelligent voltage-margin/difference relay installed at receiving substations automatically initiates action if the voltage stability margin drops to a dangerously low level. The relay decides if the tap changing devices are to be blocked and if under-voltage load shedding should be initiated, thereby mitigating an evolving instability. The intelligent relay has two levels of operation. At the first stage, which corresponds to the higher load to source impedance ratio, the relay initiates blocking of the tap changer. At the second stage, corresponding to the lower source to load impedance ratio, load shedding is initiated. The relay operates when the load to source impedance ratio reaches a certain predetermined level, but it does not depend either on the level of the source voltage or on the difference of source and load impedance phase angles. The algorithm for the relay is relatively simple and uses only locally available signals. Consequently, the transformer is well controlled to eliminate the cases of voltage instability. 6 refs., 7 figs.
Two-Hop Secure Communication Using an Untrusted Relay
Directory of Open Access Journals (Sweden)
Xiang He
2009-01-01
Full Text Available We consider a source-destination pair that can only communicate through an untrusted intermediate relay node. The intermediate node is willing to employ a designated relaying scheme to facilitate reliable communication between the source and the destination. Yet, the information it relays needs to be kept secret from it. In this two-hop communication scenario, where the use of the untrusted relay node is essential, we find that a positive secrecy rate is achievable. The center piece of the achievability scheme is the help provided by either the destination node with transmission capability, or an external “good samaritan” node. In either case, the helper performs cooperative jamming that confuses the eavesdropping relay and disables it from being able to decipher what it is relaying. We next derive an upper bound on the secrecy rate for this system. We observe that the gap between the upper bound and the achievable rate vanishes as the power of the relay node goes to infinity. Overall, the paper presents a case for intentional interference, that is, cooperative jamming, as an enabler for secure communication.
Ruffel, Sandrine; Krouk, Gabriel; Ristova, Daniela; Shasha, Dennis; Birnbaum, Kenneth D; Coruzzi, Gloria M
2011-11-08
As sessile organisms, root plasticity enables plants to forage for and acquire nutrients in a fluctuating underground environment. Here, we use genetic and genomic approaches in a "split-root" framework--in which physically isolated root systems of the same plant are challenged with different nitrogen (N) environments--to investigate how systemic signaling affects genome-wide reprogramming and root development. The integration of transcriptome and root phenotypes enables us to identify distinct mechanisms underlying "N economy" (i.e., N supply and demand) of plants as a system. Under nitrate-limited conditions, plant roots adopt an "active-foraging strategy", characterized by lateral root outgrowth and a shared pattern of transcriptome reprogramming, in response to either local or distal nitrate deprivation. By contrast, in nitrate-replete conditions, plant roots adopt a "dormant strategy", characterized by a repression of lateral root outgrowth and a shared pattern of transcriptome reprogramming, in response to either local or distal nitrate supply. Sentinel genes responding to systemic N signaling identified by genome-wide comparisons of heterogeneous vs. homogeneous split-root N treatments were used to probe systemic N responses in Arabidopsis mutants impaired in nitrate reduction and hormone synthesis and also in decapitated plants. This combined analysis identified genetically distinct systemic signaling underlying plant N economy: (i) N supply, corresponding to a long-distance systemic signaling triggered by nitrate sensing; and (ii) N demand, experimental support for the transitive closure of a previously inferred nitrate-cytokinin shoot-root relay system that reports the nitrate demand of the whole plant, promoting a compensatory root growth in nitrate-rich patches of heterogeneous soil.
Ou-Yang, Mang; Hsieh, Yao-Fang; Lee, Cheng-Chung
Cytopathological examination through biopsy is very important for carcinoma detection. The embedded relay lens microscopic hyperspectral imaging system (ERL-MHIS) provides a morphological image of a biopsy sample and the spectrum of each pixel in the image simultaneously. Based on the ERL-MHIS, this work develops morphological and spectral methods to diagnose oral carcinoma biopsy. In morphological discrimination, the fractal dimension method is applied to differentiate between normal and abnormal tissues. In spectral identification, normal and cancerous cells are distinguished using five methods. However, the spectra of normal and cancerous cells vary with patient. The diagnostic performances of the five methods are thus not ideal. Hence, the proposed cocktail approach is used to determine the effectiveness of the spectral methods in correlating with the sampling conditions. And then we use a combination of effective spectral methods according to the sample conditions for diagnosing a sample. A total of 68 biopsies from 34 patients are analyzed using the ERL-MHIS. The results demonstrate a sensitivity of 90 ± 4.53 % and a specificity of 87.8 ± 5.21 %. Furthermore, in our survey, this system is the first time utilized to study oral carcinoma biopsies.
Damped oscillations of linear systems a mathematical introduction
Veselić, Krešimir
2011-01-01
The theory of linear damped oscillations was originally developed more than hundred years ago and is still of vital research interest to engineers, mathematicians and physicists alike. This theory plays a central role in explaining the stability of mechanical structures in civil engineering, but it also has applications in other fields such as electrical network systems and quantum mechanics. This volume gives an introduction to linear finite dimensional damped systems as they are viewed by an applied mathematician. After a short overview of the physical principles leading to the linear system model, a largely self-contained mathematical theory for this model is presented. This includes the geometry of the underlying indefinite metric space, spectral theory of J-symmetric matrices and the associated quadratic eigenvalue problem. Particular attention is paid to the sensitivity issues which influence numerical computations. Finally, several recent research developments are included, e.g. Lyapunov stability and ...
Ultra-high Frequency Linear Fiber Optic Systems
Lau, Kam
2011-01-01
This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...
DEFF Research Database (Denmark)
Bajric, Anela
A single mass Bouc-Wen oscillator with linear static restoring force contribution is approximated by an equivalent linear system. The aim of the linearized model is to emulate the correct force-displacement response of the Bouc-Wenmodel with characteristic hysteretic behaviour. The linearized mod...
A study on Relay Effect via Magnetic Resonant Coupling for Wireless Power Transfer
Directory of Open Access Journals (Sweden)
Rashid N.A.
2016-01-01
Full Text Available Wireless power transfer (WPT transmits electrical energy from a power source to an electrical load wirelessly or without any conductors. The capability of WPT to transmit the energy is limited. Therefore, a relay was introduced to increase the distance of the WPT capabilities. The effect of the relay has been investigated to extend the energy transfer distance. The effect of relay was demonstrated by placing a relay coil between transmitter and receiver, relay biased to transmitter and placing two relay coils in the designed system. Experimental results are provided to prove the concept of the relay effect. The power transmission efficiency can be achieved up to 75% at 1 meter distance.
Half-Duplex and Full-Duplex AF and DF Relaying with Energy-Harvesting in Log-Normal Fading
Rabie, Khaled M.
2017-08-15
Energy-harvesting (EH) and wireless power transfer in cooperative relaying networks have recently attracted a considerable amount of research attention. Most of the existing work on this topic however focuses on Rayleigh fading channels, which represent outdoor environments. In contrast, this paper is dedicated to analyze the performance of dual-hop relaying systems with EH over indoor channels characterized by log-normal fading. Both half-duplex (HD) and full-duplex (FD) relaying mechanisms are studied in this work with decode-and-forward (DF) and amplify-and-forward (AF) relaying protocols. In addition, three EH schemes are investigated, namely, time switching relaying, power splitting relaying and ideal relaying receiver which serves as a lower bound. The system performance is evaluated in terms of the ergodic outage probability for which we derive accurate analytical expressions. Monte Carlo simulations are provided throughout to validate the accuracy of our analysis. Results reveal that, in both HD and FD scenarios, AF relaying performs only slightly worse than DF relaying which can make the former a more efficient solution when the processing energy cost at the DF relay is taken into account. It is also shown that FD relaying systems can generally outperform HD relaying schemes as long as the loop-back interference in FD is relatively small. Furthermore, increasing the variance of the log-normal channel has shown to deteriorate the performance in all the relaying and EH protocols considered.
Linearly and nonlinearly bidirectionally coupled synchronization of hyperchaotic systems
International Nuclear Information System (INIS)
Zhou Jin; Lu Junan; Wu Xiaoqun
2007-01-01
To date, there have been many results about unidirectionally coupled synchronization of chaotic systems. However, much less work is reported on bidirectionally-coupled synchronization. In this paper, we investigate the synchronization of two bidirectionally coupled Chen hyperchaotic systems, which are coupled linearly and nonlinearly respectively. Firstly, linearly coupled synchronization of two hyperchaotic Chen systems is investigated, and a theorem on how to choose the coupling coefficients are developed to guarantee the global asymptotical synchronization of two coupled hyperchaotic systems. Analysis shows that the choice of the coupling coefficients relies on the bound of the chaotic system. Secondly, the nonlinearly coupled synchronization is studied; a sufficient condition for the locally asymptotical synchronization is derived, which is independent of the bound of the hyperchaotic system. Finally, numerical simulations are included to verify the effectiveness and feasibility of the developed theorems
Linear dynamical quantum systems analysis, synthesis, and control
Nurdin, Hendra I
2017-01-01
This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...
Nonautonomous linear system of the terrestrial carbon cycle
Luo, Y.
2012-12-01
Carbon cycle has been studied by uses of observation through various networks, field and laboratory experiments, and simulation models. Much less has been done on theoretical thinking and analysis to understand fundament properties of carbon cycle and then guide observatory, experimental, and modeling research. This presentation is to explore what would be the theoretical properties of terrestrial carbon cycle and how those properties can be used to make observatory, experimental, and modeling research more effective. Thousands of published data sets from litter decomposition and soil incubation studies almost all indicate that decay processes of litter and soil organic carbon can be well described by first order differential equations with one or more pools. Carbon pool dynamics in plants and soil after disturbances (e.g., wildfire, clear-cut of forests, and plows of soil for cropping) and during natural recovery or ecosystem restoration also exhibit characteristics of first-order linear systems. Thus, numerous lines of empirical evidence indicate that the terrestrial carbon cycle can be adequately described as a nonautonomous linear system. The linearity reflects the nature of the carbon cycle that carbon, once fixed by photosynthesis, is linearly transferred among pools within an ecosystem. The linear carbon transfer, however, is modified by nonlinear functions of external forcing variables. In addition, photosynthetic carbon influx is also nonlinearly influenced by external variables. This nonautonomous linear system can be mathematically expressed by a first-order linear ordinary matrix equation. We have recently used this theoretical property of terrestrial carbon cycle to develop a semi-analytic solution of spinup. The new methods have been applied to five global land models, including NCAR's CLM and CABLE models and can computationally accelerate spinup by two orders of magnitude. We also use this theoretical property to develop an analytic framework to
Refined Fuchs inequalities for systems of linear differential equations
International Nuclear Information System (INIS)
Gontsov, R R
2004-01-01
We refine the Fuchs inequalities obtained by Corel for systems of linear meromorphic differential equations given on the Riemann sphere. Fuchs inequalities enable one to estimate the sum of exponents of the system over all its singular points. We refine these well-known inequalities by considering the Jordan structure of the leading coefficient of the Laurent series for the matrix of the right-hand side of the system in the neighbourhood of a singular point
The graphics software of the Saclay linear accelerator control system
International Nuclear Information System (INIS)
Gournay, J.F.
1987-06-01
The Control system of the Saclay Linear Accelerator is based upon modern technology hardware. In the graphic software, pictures are created in exactly the same manner for all the graphic devices supported by the system. The informations used to draw a picture are stored in an array called a graphic segment. Three output primitives are used to add graphic material in a segment. Three coordinate systems are defined
Stability analysis of linear switching systems with time delays
International Nuclear Information System (INIS)
Li Ping; Zhong Shouming; Cui Jinzhong
2009-01-01
The issue of stability analysis of linear switching system with discrete and distributed time delays is studied in this paper. An appropriate switching rule is applied to guarantee the stability of the whole switching system. Our results use a Riccati-type Lyapunov functional under a condition on the time delay. So, switching systems with mixed delays are developed. A numerical example is given to illustrate the effectiveness of our results.
Chaos synchronization of a unified chaotic system via partial linearization
International Nuclear Information System (INIS)
Yu Yongguang; Li Hanxiong; Duan Jian
2009-01-01
A partial linearization method is proposed for realizing the chaos synchronization of an unified chaotic system. Through synchronizing partial state of the chaotic systems can result in the synchronization of their entire states, and the resulting controller is singularity free. The results can be easily extended to the synchronization of other similar chaotic systems. Simulation results are conducted to show the effectiveness of the method.
PERFORMANCE ANALYSIS OF COOPERATION SCHEMES IN EAVESDROPPER ASSISTED RELAY CHANNEL
Directory of Open Access Journals (Sweden)
Vaibhav Kumar Gupta
2014-06-01
Full Text Available The prominence of the wireless communication has been urging the monotonically increasing demand of security and privacy. In wireless systems, the notion of perfect secrecy of information with respect to illegitimate nodes can be ensured via physical layer security (PLS techniques. Unfortunately, they can be made less effective if source- eavesdropper wiretap channel is better than the main source-receiver channel. The various node cooperation schemes can be employed to combat this limitation where a relay node assists the communication to improve the performance significantly. In this paper, a four node wireless communication system consisting of a source, a destination, a relay and an eavesdropper as wire-tapper has been considered. The performance of the traditional cooperation schemes in terms of secrecy rate has been investigated with a different scenario where relay node helps the eavesdropper to deteriorate the secrecy rate. In addition, since legitimate receiver can overhear the transmission of relay, it favours the achievable secrecy rate. We formulate an analytical expression of conditional secrecy outage probability for the investigated system. From the obtained simulation results, it has been observed that secrecy rate is monotonically increases with path loss index. Furthermore, the proper selection of the system parameters leads to enhance the secrecy performance of the system even if relay pertains to degrade the performance. Amplify-and-forward, cooperation, decode-and-Forward, secrecy rate, relay.
Uplink Capacity of 802.16j Mobile Multihop Relay Networks with Transparent Relays
DEFF Research Database (Denmark)
Wang, Hua; Andrews, Jeffrey G.; Iversen, Villy Bæk
2009-01-01
-to-end spectral efficiency. Furthermore, the position and the number of relay stations (RSs) have a great impact on the capacity gain. These results are further verified in the evaluation of the system Erlang capacity. The study demonstrates that with proper deployment of RSs and use of MIMO transmission...
Nessel, James A.; Kory, Carol L.; Lambert, Kevin M.; Acosta, Roberto J.
2006-01-01
Short Backfire Antennas (SBAs) are widely utilized for mobile satellite communications, tracking, telemetry, and wireless local area network (WLAN) applications due to their compact structure and excellent radiation characteristics [1-3]. Typically, these SBA s consist of an excitation element (i.e., a half-wavelength dipole), a reflective bottom plane, a planar sub-reflector located above the "exciter", and an outer circular rim. This configuration is capable of achieving gains on the order of 13-15 dBi, but with relatively narrow bandwidths (approx.3%-5%), making it incompatible with the requirements of the next generation enhanced Tracking and Data Relay Satellite System-Continuation (TDRSS-C) Multiple Access (MA) array [1]. Several attempts have been made to enhance the bandwidth performance of the common dipole-fed SBA by employing various other feeding mechanisms (e.g., waveguide, slot) with moderate success [4-5]. In this paper, a novel method of using a microstrip patch is employed for the first time to excite an SBA. The patch element is fed via two H-shaped slots electromagnetically coupled to a broadband hybrid coupler to maintain a wide bandwidth, as well as provide for dual circular polarization capabilities.
SNR Estimation in Linear Systems with Gaussian Matrices
Suliman, Mohamed Abdalla Elhag; Alrashdi, Ayed; Ballal, Tarig; Al-Naffouri, Tareq Y.
2017-01-01
This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.
SNR Estimation in Linear Systems with Gaussian Matrices
Suliman, Mohamed Abdalla Elhag
2017-09-27
This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.
Experimental quantum computing to solve systems of linear equations.
Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2013-06-07
Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.
Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions
Energy Technology Data Exchange (ETDEWEB)
Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)
2010-05-15
In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)
Theoretical analysis of balanced truncation for linear switched systems
DEFF Research Database (Denmark)
Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef
2012-01-01
In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians and their singu......In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians...... for showing this independence is realization theory of linear switched systems. [1] H. R. Shaker and R. Wisniewski, "Generalized gramian framework for model/controller order reduction of switched systems", International Journal of Systems Science, Vol. 42, Issue 8, 2011, 1277-1291. [2] H. R. Shaker and R....... Wisniewski, "Switched Systems Reduction Framework Based on Convex Combination of Generalized Gramians", Journal of Control Science and Engineering, 2009....
Control circuit for transformer relay
International Nuclear Information System (INIS)
Wyatt, G.A.
1984-01-01
A control circuit for a transformer relay which will automatically momentarily control the transformer relay to a selected state upon energization of the control circuit. The control circuit has an energy storage element and a current director coupled in series and adapted to be coupled with the secondary winding of the transformer relay. A device for discharge is coupled across the energy storage element. The energy storage element and current director will momentarily allow a unidirectional flow of current in the secondary winding of the transformer relay upon application of energy to the control circuit. When energy is not applied to the control circuit the device for discharge will allow the energy storage element to discharge and be available for another operation of the control circuit
Linear-constraint wavefront control for exoplanet coronagraphic imaging systems
Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean
2017-01-01
A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.
International Nuclear Information System (INIS)
Murakami, H.; Hirai, T.; Nakata, M.; Kobori, T.; Mizukoshi, K.; Takenaka, Y.; Miyagawa, N.
1989-01-01
Many of the equipment systems of nuclear power plants contain a number of non-linearities, such as gap and friction, due to their mechanical functions. It is desirable to take such non-linearities into account appropriately for the evaluation of the aseismic soundness. However, in usual design works, linear analysis method with rough assumptions is applied from engineering point of view. An equivalent linearization method is considered to be one of the effective analytical techniques to evaluate non-linear responses, provided that errors to a certain extent are tolerated, because it has greater simplicity in analysis and economization in computing time than non-linear analysis. The objective of this paper is to investigate the applicability of the equivalent linearization method to evaluate the maximum earthquake response of equipment systems such as the CANDU Fuelling Machine which has multiple non- linearities
Design techniques for large scale linear measurement systems
International Nuclear Information System (INIS)
Candy, J.V.
1979-03-01
Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented
Decentralized linear quadratic power system stabilizers for multi ...
Indian Academy of Sciences (India)
Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...
Force analysis of linear induction motor for magnetic levitation system
Kuijpers, A.A.; Nemlioglu, C.; Sahin, F.; Verdel, A.J.D.; Compter, J.C.; Lomonova, E.
2010-01-01
This paper presents the analyses of thrust and normal forces of linear induction motor (LIM) segments which are implemented in a rotating ring system. To obtain magnetic levitation in a cost effective and sustainable way, decoupled control of thrust and normal forces is required. This study includes
Input design for linear dynamic systems using maxmin criteria
DEFF Research Database (Denmark)
Sadegh, Payman; Hansen, Lars H.; Madsen, Henrik
1998-01-01
This paper considers the problem of input design for maximizing the smallest eigenvalue of the information matrix for linear dynamic systems. The optimization of the smallest eigenvalue is of interest in parameter estimation and parameter change detection problems. We describe a simple cutting...
Generating Nice Linear Systems for Matrix Gaussian Elimination
Homewood, L. James
2004-01-01
In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…
Daylighting System Based on Novel Design of Linear Fresnel lens
Directory of Open Access Journals (Sweden)
Thanh Tuan Pham
2017-10-01
Full Text Available In this paper, we present a design and optical simulation of a daylighting system using a novel design of linear Fresnel lens, which is constructed based on the conservation of optical path length and edge ray theorem. The linear Fresnel lens can achieve a high uniformity by using a new idea of design in which each groove of the lens distributes sunlight uniformly over the receiver so that the whole lens also uniformly distributes sunlight over the receiver. In this daylighting system, the novel design of linear Fresnel lens significantly improves the uniformity of collector and distributor. Therefore, it can help to improve the performance of the daylighting system. The structure of the linear Fresnel lenses is designed by using Matlab. Then, the structure of lenses is appreciated by ray tracing in LightToolsTM to find out the optimum lens shape. In addition, the simulation is performed by using LightToolsTM to estimate the efficiency of the daylighting system. The results show that the designed collector can achieve the efficiency of ~80% with the tolerance of ~0.60 and the concentration ratio of 340 times, while the designed distributor can reach a high uniformity of >90%.
Robust self-triggered MPC for constrained linear systems
Brunner, F.D.; Heemels, W.P.M.H.; Allgöwer, F.
2014-01-01
In this paper we propose a robust self-triggered model predictive control algorithm for linear systems with additive bounded disturbances and hard constraints on the inputs and state. In self-triggered control, at every sampling instant the time until the next sampling instant is computed online
Stability Analysis for Multi-Parameter Linear Periodic Systems
DEFF Research Database (Denmark)
Seyranian, A.P.; Solem, Frederik; Pedersen, Pauli
1999-01-01
This paper is devoted to stability analysis of general linear periodic systems depending on real parameters. The Floquet method and perturbation technique are the basis of the development. We start out with the first and higher-order derivatives of the Floquet matrix with respect to problem...
Relative controllability and null controllability of linear delay systems ...
African Journals Online (AJOL)
Necessary and sufficient conditions are established for the relative, absolute controllability and null controllability of the generalized linear delay system and its discrete prototype. The paper presents illuminating examples on previous controllability results by Manitius and Olbrot [7] and carries over the results of Onwuatu [8] ...
Time-optimal feedback control for linear systems
International Nuclear Information System (INIS)
Mirica, S.
1976-01-01
The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)
2009-01-01
The 2009 CERN Relay Race was as popular as ever, with a record number of 88 teams competing. var flash_video_player=get_video_player_path(); insert_player_for_external('Video/Public/Movies/2009/CERN-MOVIE-2009-048/CERN-MOVIE-2009-048-0753-kbps-480x360-25-fps-audio-64-kbps-44-kHz-stereo', 'mms://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-048/CERN-MOVIE-2009-048-Multirate-200-to-753-kbps-480x360.wmv', 'false', 288, 216, 'https://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-048/CERN-MOVIE-2009-048-posterframe-480x360-at-10-percent.jpg', '1178303', true, 'Video/Public/Movies/2009/CERN-MOVIE-2009-048/CERN-MOVIE-2009-048-0600-kbps-maxH-360-25-fps-audio-128-kbps-48-kHz-stereo.mp4'); Even the rain didn’t dampen the spirits, and it still managed to capture the ‘festival feeling’ with live music, beer and stalls from various CERN clubs set up outside Restaurant 1. The Powercuts on the podium after win...
Energy Technology Data Exchange (ETDEWEB)
Yosimura, K.; Sudzuki, Y.
1981-06-18
The synchronous micromotor of the time relay by means of a two staged cylindrical gear drive drives the gear wheel and the shaft of an actuating mechanism. The shaped drum of a cam mechanism, equipped with a vertical groove, which interacts in its upper part with a lever for driving the first commutating subassembly and in the lower, with a bent sector of a spring and plate movable contact of the second commutating subassembly, is attached to the lower end of the mechanism's shaft (V). The L-shaped lever of the second commutating subassembly's drive rests on a vertical rocking axle, located parallel to the shaft. Both pairs of spring and plate contacts are bracketed in two dielectric brackets which provide for a plane parallel disposition of the cited contacts. The operational time setting for the unit is a function of the initial angular position of the shaft, which is provided for by the attachment of a handle on its upper end.