WorldWideScience

Sample records for linear regression estimators

  1. Estimating monotonic rates from biological data using local linear regression.

    Olito, Colin; White, Craig R; Marshall, Dustin J; Barneche, Diego R

    2017-03-01

    Accessing many fundamental questions in biology begins with empirical estimation of simple monotonic rates of underlying biological processes. Across a variety of disciplines, ranging from physiology to biogeochemistry, these rates are routinely estimated from non-linear and noisy time series data using linear regression and ad hoc manual truncation of non-linearities. Here, we introduce the R package LoLinR, a flexible toolkit to implement local linear regression techniques to objectively and reproducibly estimate monotonic biological rates from non-linear time series data, and demonstrate possible applications using metabolic rate data. LoLinR provides methods to easily and reliably estimate monotonic rates from time series data in a way that is statistically robust, facilitates reproducible research and is applicable to a wide variety of research disciplines in the biological sciences. © 2017. Published by The Company of Biologists Ltd.

  2. Using the Ridge Regression Procedures to Estimate the Multiple Linear Regression Coefficients

    Gorgees, HazimMansoor; Mahdi, FatimahAssim

    2018-05-01

    This article concerns with comparing the performance of different types of ordinary ridge regression estimators that have been already proposed to estimate the regression parameters when the near exact linear relationships among the explanatory variables is presented. For this situations we employ the data obtained from tagi gas filling company during the period (2008-2010). The main result we reached is that the method based on the condition number performs better than other methods since it has smaller mean square error (MSE) than the other stated methods.

  3. Linear regression

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  4. Two biased estimation techniques in linear regression: Application to aircraft

    Klein, Vladislav

    1988-01-01

    Several ways for detection and assessment of collinearity in measured data are discussed. Because data collinearity usually results in poor least squares estimates, two estimation techniques which can limit a damaging effect of collinearity are presented. These two techniques, the principal components regression and mixed estimation, belong to a class of biased estimation techniques. Detection and assessment of data collinearity and the two biased estimation techniques are demonstrated in two examples using flight test data from longitudinal maneuvers of an experimental aircraft. The eigensystem analysis and parameter variance decomposition appeared to be a promising tool for collinearity evaluation. The biased estimators had far better accuracy than the results from the ordinary least squares technique.

  5. Estimating Loess Plateau Average Annual Precipitation with Multiple Linear Regression Kriging and Geographically Weighted Regression Kriging

    Qiutong Jin

    2016-06-01

    Full Text Available Estimating the spatial distribution of precipitation is an important and challenging task in hydrology, climatology, ecology, and environmental science. In order to generate a highly accurate distribution map of average annual precipitation for the Loess Plateau in China, multiple linear regression Kriging (MLRK and geographically weighted regression Kriging (GWRK methods were employed using precipitation data from the period 1980–2010 from 435 meteorological stations. The predictors in regression Kriging were selected by stepwise regression analysis from many auxiliary environmental factors, such as elevation (DEM, normalized difference vegetation index (NDVI, solar radiation, slope, and aspect. All predictor distribution maps had a 500 m spatial resolution. Validation precipitation data from 130 hydrometeorological stations were used to assess the prediction accuracies of the MLRK and GWRK approaches. Results showed that both prediction maps with a 500 m spatial resolution interpolated by MLRK and GWRK had a high accuracy and captured detailed spatial distribution data; however, MLRK produced a lower prediction error and a higher variance explanation than GWRK, although the differences were small, in contrast to conclusions from similar studies.

  6. Tightness of M-estimators for multiple linear regression in time series

    Johansen, Søren; Nielsen, Bent

    We show tightness of a general M-estimator for multiple linear regression in time series. The positive criterion function for the M-estimator is assumed lower semi-continuous and sufficiently large for large argument: Particular cases are the Huber-skip and quantile regression. Tightness requires...

  7. truncSP: An R Package for Estimation of Semi-Parametric Truncated Linear Regression Models

    Maria Karlsson

    2014-05-01

    Full Text Available Problems with truncated data occur in many areas, complicating estimation and inference. Regarding linear regression models, the ordinary least squares estimator is inconsistent and biased for these types of data and is therefore unsuitable for use. Alternative estimators, designed for the estimation of truncated regression models, have been developed. This paper presents the R package truncSP. The package contains functions for the estimation of semi-parametric truncated linear regression models using three different estimators: the symmetrically trimmed least squares, quadratic mode, and left truncated estimators, all of which have been shown to have good asymptotic and ?nite sample properties. The package also provides functions for the analysis of the estimated models. Data from the environmental sciences are used to illustrate the functions in the package.

  8. Estimating integrated variance in the presence of microstructure noise using linear regression

    Holý, Vladimír

    2017-07-01

    Using financial high-frequency data for estimation of integrated variance of asset prices is beneficial but with increasing number of observations so-called microstructure noise occurs. This noise can significantly bias the realized variance estimator. We propose a method for estimation of the integrated variance robust to microstructure noise as well as for testing the presence of the noise. Our method utilizes linear regression in which realized variances estimated from different data subsamples act as dependent variable while the number of observations act as explanatory variable. We compare proposed estimator with other methods on simulated data for several microstructure noise structures.

  9. Inverse estimation of multiple muscle activations based on linear logistic regression.

    Sekiya, Masashi; Tsuji, Toshiaki

    2017-07-01

    This study deals with a technology to estimate the muscle activity from the movement data using a statistical model. A linear regression (LR) model and artificial neural networks (ANN) have been known as statistical models for such use. Although ANN has a high estimation capability, it is often in the clinical application that the lack of data amount leads to performance deterioration. On the other hand, the LR model has a limitation in generalization performance. We therefore propose a muscle activity estimation method to improve the generalization performance through the use of linear logistic regression model. The proposed method was compared with the LR model and ANN in the verification experiment with 7 participants. As a result, the proposed method showed better generalization performance than the conventional methods in various tasks.

  10. Robust best linear estimation for regression analysis using surrogate and instrumental variables.

    Wang, C Y

    2012-04-01

    We investigate methods for regression analysis when covariates are measured with errors. In a subset of the whole cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies the classical measurement error model, but it may not have repeated measurements. In addition to the surrogate variables that are available among the subjects in the calibration sample, we assume that there is an instrumental variable (IV) that is available for all study subjects. An IV is correlated with the unobserved true exposure variable and hence can be useful in the estimation of the regression coefficients. We propose a robust best linear estimator that uses all the available data, which is the most efficient among a class of consistent estimators. The proposed estimator is shown to be consistent and asymptotically normal under very weak distributional assumptions. For Poisson or linear regression, the proposed estimator is consistent even if the measurement error from the surrogate or IV is heteroscedastic. Finite-sample performance of the proposed estimator is examined and compared with other estimators via intensive simulation studies. The proposed method and other methods are applied to a bladder cancer case-control study.

  11. Estimating traffic volume on Wyoming low volume roads using linear and logistic regression methods

    Dick Apronti

    2016-12-01

    Full Text Available Traffic volume is an important parameter in most transportation planning applications. Low volume roads make up about 69% of road miles in the United States. Estimating traffic on the low volume roads is a cost-effective alternative to taking traffic counts. This is because traditional traffic counts are expensive and impractical for low priority roads. The purpose of this paper is to present the development of two alternative means of cost-effectively estimating traffic volumes for low volume roads in Wyoming and to make recommendations for their implementation. The study methodology involves reviewing existing studies, identifying data sources, and carrying out the model development. The utility of the models developed were then verified by comparing actual traffic volumes to those predicted by the model. The study resulted in two regression models that are inexpensive and easy to implement. The first regression model was a linear regression model that utilized pavement type, access to highways, predominant land use types, and population to estimate traffic volume. In verifying the model, an R2 value of 0.64 and a root mean square error of 73.4% were obtained. The second model was a logistic regression model that identified the level of traffic on roads using five thresholds or levels. The logistic regression model was verified by estimating traffic volume thresholds and determining the percentage of roads that were accurately classified as belonging to the given thresholds. For the five thresholds, the percentage of roads classified correctly ranged from 79% to 88%. In conclusion, the verification of the models indicated both model types to be useful for accurate and cost-effective estimation of traffic volumes for low volume Wyoming roads. The models developed were recommended for use in traffic volume estimations for low volume roads in pavement management and environmental impact assessment studies.

  12. Applied linear regression

    Weisberg, Sanford

    2013-01-01

    Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

  13. Estimating leaf photosynthetic pigments information by stepwise multiple linear regression analysis and a leaf optical model

    Liu, Pudong; Shi, Runhe; Wang, Hong; Bai, Kaixu; Gao, Wei

    2014-10-01

    Leaf pigments are key elements for plant photosynthesis and growth. Traditional manual sampling of these pigments is labor-intensive and costly, which also has the difficulty in capturing their temporal and spatial characteristics. The aim of this work is to estimate photosynthetic pigments at large scale by remote sensing. For this purpose, inverse model were proposed with the aid of stepwise multiple linear regression (SMLR) analysis. Furthermore, a leaf radiative transfer model (i.e. PROSPECT model) was employed to simulate the leaf reflectance where wavelength varies from 400 to 780 nm at 1 nm interval, and then these values were treated as the data from remote sensing observations. Meanwhile, simulated chlorophyll concentration (Cab), carotenoid concentration (Car) and their ratio (Cab/Car) were taken as target to build the regression model respectively. In this study, a total of 4000 samples were simulated via PROSPECT with different Cab, Car and leaf mesophyll structures as 70% of these samples were applied for training while the last 30% for model validation. Reflectance (r) and its mathematic transformations (1/r and log (1/r)) were all employed to build regression model respectively. Results showed fair agreements between pigments and simulated reflectance with all adjusted coefficients of determination (R2) larger than 0.8 as 6 wavebands were selected to build the SMLR model. The largest value of R2 for Cab, Car and Cab/Car are 0.8845, 0.876 and 0.8765, respectively. Meanwhile, mathematic transformations of reflectance showed little influence on regression accuracy. We concluded that it was feasible to estimate the chlorophyll and carotenoids and their ratio based on statistical model with leaf reflectance data.

  14. Soil moisture estimation using multi linear regression with terraSAR-X data

    G. García

    2016-06-01

    Full Text Available The first five centimeters of soil form an interface where the main heat fluxes exchanges between the land surface and the atmosphere occur. Besides ground measurements, remote sensing has proven to be an excellent tool for the monitoring of spatial and temporal distributed data of the most relevant Earth surface parameters including soil’s parameters. Indeed, active microwave sensors (Synthetic Aperture Radar - SAR offer the opportunity to monitor soil moisture (HS at global, regional and local scales by monitoring involved processes. Several inversion algorithms, that derive geophysical information as HS from SAR data, were developed. Many of them use electromagnetic models for simulating the backscattering coefficient and are based on statistical techniques, such as neural networks, inversion methods and regression models. Recent studies have shown that simple multiple regression techniques yield satisfactory results. The involved geophysical variables in these methodologies are descriptive of the soil structure, microwave characteristics and land use. Therefore, in this paper we aim at developing a multiple linear regression model to estimate HS on flat agricultural regions using TerraSAR-X satellite data and data from a ground weather station. The results show that the backscatter, the precipitation and the relative humidity are the explanatory variables of HS. The results obtained presented a RMSE of 5.4 and a R2  of about 0.6

  15. Comparison of some biased estimation methods (including ordinary subset regression) in the linear model

    Sidik, S. M.

    1975-01-01

    Ridge, Marquardt's generalized inverse, shrunken, and principal components estimators are discussed in terms of the objectives of point estimation of parameters, estimation of the predictive regression function, and hypothesis testing. It is found that as the normal equations approach singularity, more consideration must be given to estimable functions of the parameters as opposed to estimation of the full parameter vector; that biased estimators all introduce constraints on the parameter space; that adoption of mean squared error as a criterion of goodness should be independent of the degree of singularity; and that ordinary least-squares subset regression is the best overall method.

  16. Monopole and dipole estimation for multi-frequency sky maps by linear regression

    Wehus, I. K.; Fuskeland, U.; Eriksen, H. K.; Banday, A. J.; Dickinson, C.; Ghosh, T.; Górski, K. M.; Lawrence, C. R.; Leahy, J. P.; Maino, D.; Reich, P.; Reich, W.

    2017-01-01

    We describe a simple but efficient method for deriving a consistent set of monopole and dipole corrections for multi-frequency sky map data sets, allowing robust parametric component separation with the same data set. The computational core of this method is linear regression between pairs of frequency maps, often called T-T plots. Individual contributions from monopole and dipole terms are determined by performing the regression locally in patches on the sky, while the degeneracy between different frequencies is lifted whenever the dominant foreground component exhibits a significant spatial spectral index variation. Based on this method, we present two different, but each internally consistent, sets of monopole and dipole coefficients for the nine-year WMAP, Planck 2013, SFD 100 μm, Haslam 408 MHz and Reich & Reich 1420 MHz maps. The two sets have been derived with different analysis assumptions and data selection, and provide an estimate of residual systematic uncertainties. In general, our values are in good agreement with previously published results. Among the most notable results are a relative dipole between the WMAP and Planck experiments of 10-15μK (depending on frequency), an estimate of the 408 MHz map monopole of 8.9 ± 1.3 K, and a non-zero dipole in the 1420 MHz map of 0.15 ± 0.03 K pointing towards Galactic coordinates (l,b) = (308°,-36°) ± 14°. These values represent the sum of any instrumental and data processing offsets, as well as any Galactic or extra-Galactic component that is spectrally uniform over the full sky.

  17. Linear regressive model structures for estimation and prediction of compartmental diffusive systems

    Vries, D; Keesman, K.J.; Zwart, Heiko J.

    In input-output relations of (compartmental) diffusive systems, physical parameters appear non-linearly, resulting in the use of (constrained) non-linear parameter estimation techniques with its short-comings regarding global optimality and computational effort. Given a LTI system in state space

  18. Linear regressive model structures for estimation and prediction of compartmental diffusive systems

    Vries, D.; Keesman, K.J.; Zwart, H.

    2006-01-01

    Abstract In input-output relations of (compartmental) diffusive systems, physical parameters appear non-linearly, resulting in the use of (constrained) non-linear parameter estimation techniques with its short-comings regarding global optimality and computational effort. Given a LTI system in state

  19. Comparing Regression Coefficients between Nested Linear Models for Clustered Data with Generalized Estimating Equations

    Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer

    2013-01-01

    Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…

  20. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials.

    Hu, L; Zhang, Z G; Mouraux, A; Iannetti, G D

    2015-05-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical

  1. Estimate the contribution of incubation parameters influence egg hatchability using multiple linear regression analysis.

    Khalil, Mohamed H; Shebl, Mostafa K; Kosba, Mohamed A; El-Sabrout, Karim; Zaki, Nesma

    2016-08-01

    This research was conducted to determine the most affecting parameters on hatchability of indigenous and improved local chickens' eggs. Five parameters were studied (fertility, early and late embryonic mortalities, shape index, egg weight, and egg weight loss) on four strains, namely Fayoumi, Alexandria, Matrouh, and Montazah. Multiple linear regression was performed on the studied parameters to determine the most influencing one on hatchability. The results showed significant differences in commercial and scientific hatchability among strains. Alexandria strain has the highest significant commercial hatchability (80.70%). Regarding the studied strains, highly significant differences in hatching chick weight among strains were observed. Using multiple linear regression analysis, fertility made the greatest percent contribution (71.31%) to hatchability, and the lowest percent contributions were made by shape index and egg weight loss. A prediction of hatchability using multiple regression analysis could be a good tool to improve hatchability percentage in chickens.

  2. Estimation of error components in a multi-error linear regression model, with an application to track fitting

    Fruehwirth, R.

    1993-01-01

    We present an estimation procedure of the error components in a linear regression model with multiple independent stochastic error contributions. After solving the general problem we apply the results to the estimation of the actual trajectory in track fitting with multiple scattering. (orig.)

  3. Linear regression in astronomy. I

    Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh

    1990-01-01

    Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.

  4. Recursive Algorithm For Linear Regression

    Varanasi, S. V.

    1988-01-01

    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  5. The estimation and prediction of the inventories for the liquid and gaseous radwaste systems using the linear regression analysis

    Kim, J. Y.; Shin, C. H.; Kim, J. K.; Lee, J. K.; Park, Y. J.

    2003-01-01

    The variation transitions of the inventories for the liquid radwaste system and the radioactive gas have being released in containment, and their predictive values according to the operation histories of Yonggwang(YGN) 3 and 4 were analyzed by linear regression analysis methodology. The results show that the variation transitions of the inventories for those systems are linearly increasing according to the operation histories but the inventories released to the environment are considerably lower than the recommended values based on the FSAR suggestions. It is considered that some conservation were presented in the estimation methodology in preparing stage of FSAR

  6. Multiple linear regression analysis

    Edwards, T. R.

    1980-01-01

    Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

  7. Linear Regression Analysis

    Seber, George A F

    2012-01-01

    Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.

  8. Precision Interval Estimation of the Response Surface by Means of an Integrated Algorithm of Neural Network and Linear Regression

    Lo, Ching F.

    1999-01-01

    The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.

  9. Fragility estimation for seismically isolated nuclear structures by high confidence low probability of failure values and bi-linear regression

    Carausu, A.

    1996-01-01

    A method for the fragility estimation of seismically isolated nuclear power plant structure is proposed. The relationship between the ground motion intensity parameter (e.g. peak ground velocity or peak ground acceleration) and the response of isolated structures is expressed in terms of a bi-linear regression line, whose coefficients are estimated by the least-square method in terms of available data on seismic input and structural response. The notion of high confidence low probability of failure (HCLPF) value is also used for deriving compound fragility curves for coupled subsystems. (orig.)

  10. Advanced statistics: linear regression, part I: simple linear regression.

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  11. Robust Multiple Linear Regression.

    1982-12-01

    difficulty, but it might have more solutions corresponding to local minima. Influence Function of M-Estimates The influence function describes the effect...distributionn n function. In case of M-Estimates the influence function was found to be pro- portional to and given as T(X F)) " C(xpF,T) = .(X.T(F) F(dx...where the inverse of any distribution function F is defined in the usual way as F- (s) = inf{x IF(x) > s) 0<sə Influence Function of L-Estimates In a

  12. Quantum algorithm for linear regression

    Wang, Guoming

    2017-07-01

    We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.

  13. Estimating severity of sideways fall using a generic multi linear regression model based on kinematic input variables.

    van der Zijden, A M; Groen, B E; Tanck, E; Nienhuis, B; Verdonschot, N; Weerdesteyn, V

    2017-03-21

    Many research groups have studied fall impact mechanics to understand how fall severity can be reduced to prevent hip fractures. Yet, direct impact force measurements with force plates are restricted to a very limited repertoire of experimental falls. The purpose of this study was to develop a generic model for estimating hip impact forces (i.e. fall severity) in in vivo sideways falls without the use of force plates. Twelve experienced judokas performed sideways Martial Arts (MA) and Block ('natural') falls on a force plate, both with and without a mat on top. Data were analyzed to determine the hip impact force and to derive 11 selected (subject-specific and kinematic) variables. Falls from kneeling height were used to perform a stepwise regression procedure to assess the effects of these input variables and build the model. The final model includes four input variables, involving one subject-specific measure and three kinematic variables: maximum upper body deceleration, body mass, shoulder angle at the instant of 'maximum impact' and maximum hip deceleration. The results showed that estimated and measured hip impact forces were linearly related (explained variances ranging from 46 to 63%). Hip impact forces of MA falls onto the mat from a standing position (3650±916N) estimated by the final model were comparable with measured values (3698±689N), even though these data were not used for training the model. In conclusion, a generic linear regression model was developed that enables the assessment of fall severity through kinematic measures of sideways falls, without using force plates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Linear regression in astronomy. II

    Feigelson, Eric D.; Babu, Gutti J.

    1992-01-01

    A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

  15. Advanced statistics: linear regression, part II: multiple linear regression.

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  16. Correlation and simple linear regression.

    Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G

    2003-06-01

    In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.

  17. Aspects of robust linear regression

    Davies, P.L.

    1993-01-01

    Section 1 of the paper contains a general discussion of robustness. In Section 2 the influence function of the Hampel-Rousseeuw least median of squares estimator is derived. Linearly invariant weak metrics are constructed in Section 3. It is shown in Section 4 that $S$-estimators satisfy an exact

  18. Piecewise linear regression splines with hyperbolic covariates

    Cologne, John B.; Sposto, Richard

    1992-09-01

    Consider the problem of fitting a curve to data that exhibit a multiphase linear response with smooth transitions between phases. We propose substituting hyperbolas as covariates in piecewise linear regression splines to obtain curves that are smoothly joined. The method provides an intuitive and easy way to extend the two-phase linear hyperbolic response model of Griffiths and Miller and Watts and Bacon to accommodate more than two linear segments. The resulting regression spline with hyperbolic covariates may be fit by nonlinear regression methods to estimate the degree of curvature between adjoining linear segments. The added complexity of fitting nonlinear, as opposed to linear, regression models is not great. The extra effort is particularly worthwhile when investigators are unwilling to assume that the slope of the response changes abruptly at the join points. We can also estimate the join points (the values of the abscissas where the linear segments would intersect if extrapolated) if their number and approximate locations may be presumed known. An example using data on changing age at menarche in a cohort of Japanese women illustrates the use of the method for exploratory data analysis. (author)

  19. Finite Algorithms for Robust Linear Regression

    Madsen, Kaj; Nielsen, Hans Bruun

    1990-01-01

    The Huber M-estimator for robust linear regression is analyzed. Newton type methods for solution of the problem are defined and analyzed, and finite convergence is proved. Numerical experiments with a large number of test problems demonstrate efficiency and indicate that this kind of approach may...

  20. Regularized Label Relaxation Linear Regression.

    Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu

    2018-04-01

    Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.

  1. Linear regression and the normality assumption.

    Schmidt, Amand F; Finan, Chris

    2017-12-16

    Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates. Linear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient. Although outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings. Given that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Estimating the input function non-invasively for FDG-PET quantification with multiple linear regression analysis: simulation and verification with in vivo data

    Fang, Yu-Hua; Kao, Tsair; Liu, Ren-Shyan; Wu, Liang-Chih

    2004-01-01

    A novel statistical method, namely Regression-Estimated Input Function (REIF), is proposed in this study for the purpose of non-invasive estimation of the input function for fluorine-18 2-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) quantitative analysis. We collected 44 patients who had undergone a blood sampling procedure during their FDG-PET scans. First, we generated tissue time-activity curves of the grey matter and the whole brain with a segmentation technique for every subject. Summations of different intervals of these two curves were used as a feature vector, which also included the net injection dose. Multiple linear regression analysis was then applied to find the correlation between the input function and the feature vector. After a simulation study with in vivo data, the data of 29 patients were applied to calculate the regression coefficients, which were then used to estimate the input functions of the other 15 subjects. Comparing the estimated input functions with the corresponding real input functions, the averaged error percentages of the area under the curve and the cerebral metabolic rate of glucose (CMRGlc) were 12.13±8.85 and 16.60±9.61, respectively. Regression analysis of the CMRGlc values derived from the real and estimated input functions revealed a high correlation (r=0.91). No significant difference was found between the real CMRGlc and that derived from our regression-estimated input function (Student's t test, P>0.05). The proposed REIF method demonstrated good abilities for input function and CMRGlc estimation, and represents a reliable replacement for the blood sampling procedures in FDG-PET quantification. (orig.)

  3. Estimation of perceptible water vapor of atmosphere using artificial neural network, support vector machine and multiple linear regression algorithm and their comparative study

    Shastri, Niket; Pathak, Kamlesh

    2018-05-01

    The water vapor content in atmosphere plays very important role in climate. In this paper the application of GPS signal in meteorology is discussed, which is useful technique that is used to estimate the perceptible water vapor of atmosphere. In this paper various algorithms like artificial neural network, support vector machine and multiple linear regression are use to predict perceptible water vapor. The comparative studies in terms of root mean square error and mean absolute errors are also carried out for all the algorithms.

  4. Regression Equations for Birth Weight Estimation using ...

    In this study, Birth Weight has been estimated from anthropometric measurements of hand and foot. Linear regression equations were formed from each of the measured variables. These simple equations can be used to estimate Birth Weight of new born babies, in order to identify those with low birth weight and referred to ...

  5. The Efficiency of OLS Estimators of Structural Parameters in a Simple Linear Regression Model in the Calibration of the Averages Scheme

    Kowal Robert

    2016-12-01

    Full Text Available A simple linear regression model is one of the pillars of classic econometrics. Multiple areas of research function within its scope. One of the many fundamental questions in the model concerns proving the efficiency of the most commonly used OLS estimators and examining their properties. In the literature of the subject one can find taking back to this scope and certain solutions in that regard. Methodically, they are borrowed from the multiple regression model or also from a boundary partial model. Not everything, however, is here complete and consistent. In the paper a completely new scheme is proposed, based on the implementation of the Cauchy-Schwarz inequality in the arrangement of the constraint aggregated from calibrated appropriately secondary constraints of unbiasedness which in a result of choice the appropriate calibrator for each variable directly leads to showing this property. A separate range-is a matter of choice of such a calibrator. These deliberations, on account of the volume and kinds of the calibration, were divided into a few parts. In the one the efficiency of OLS estimators is proven in a mixed scheme of the calibration by averages, that is preliminary, and in the most basic frames of the proposed methodology. In these frames the future outlines and general premises constituting the base of more distant generalizations are being created.

  6. [From clinical judgment to linear regression model.

    Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O

    2013-01-01

    When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.

  7. Determination of regression laws: Linear and nonlinear

    Onishchenko, A.M.

    1994-01-01

    A detailed mathematical determination of regression laws is presented in the article. Particular emphasis is place on determining the laws of X j on X l to account for source nuclei decay and detector errors in nuclear physics instrumentation. Both linear and nonlinear relations are presented. Linearization of 19 functions is tabulated, including graph, relation, variable substitution, obtained linear function, and remarks. 6 refs., 1 tab

  8. Discriminative Elastic-Net Regularized Linear Regression.

    Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen

    2017-03-01

    In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.

  9. Estimating Dbh of Trees Employing Multiple Linear Regression of the best Lidar-Derived Parameter Combination Automated in Python in a Natural Broadleaf Forest in the Philippines

    Ibanez, C. A. G.; Carcellar, B. G., III; Paringit, E. C.; Argamosa, R. J. L.; Faelga, R. A. G.; Posilero, M. A. V.; Zaragosa, G. P.; Dimayacyac, N. A.

    2016-06-01

    Diameter-at-Breast-Height Estimation is a prerequisite in various allometric equations estimating important forestry indices like stem volume, basal area, biomass and carbon stock. LiDAR Technology has a means of directly obtaining different forest parameters, except DBH, from the behavior and characteristics of point cloud unique in different forest classes. Extensive tree inventory was done on a two-hectare established sample plot in Mt. Makiling, Laguna for a natural growth forest. Coordinates, height, and canopy cover were measured and types of species were identified to compare to LiDAR derivatives. Multiple linear regression was used to get LiDAR-derived DBH by integrating field-derived DBH and 27 LiDAR-derived parameters at 20m, 10m, and 5m grid resolutions. To know the best combination of parameters in DBH Estimation, all possible combinations of parameters were generated and automated using python scripts and additional regression related libraries such as Numpy, Scipy, and Scikit learn were used. The combination that yields the highest r-squared or coefficient of determination and lowest AIC (Akaike's Information Criterion) and BIC (Bayesian Information Criterion) was determined to be the best equation. The equation is at its best using 11 parameters at 10mgrid size and at of 0.604 r-squared, 154.04 AIC and 175.08 BIC. Combination of parameters may differ among forest classes for further studies. Additional statistical tests can be supplemented to help determine the correlation among parameters such as Kaiser- Meyer-Olkin (KMO) Coefficient and the Barlett's Test for Spherecity (BTS).

  10. Taking into account latency, amplitude, and morphology: improved estimation of single-trial ERPs by wavelet filtering and multiple linear regression.

    Hu, L; Liang, M; Mouraux, A; Wise, R G; Hu, Y; Iannetti, G D

    2011-12-01

    Across-trial averaging is a widely used approach to enhance the signal-to-noise ratio (SNR) of event-related potentials (ERPs). However, across-trial variability of ERP latency and amplitude may contain physiologically relevant information that is lost by across-trial averaging. Hence, we aimed to develop a novel method that uses 1) wavelet filtering (WF) to enhance the SNR of ERPs and 2) a multiple linear regression with a dispersion term (MLR(d)) that takes into account shape distortions to estimate the single-trial latency and amplitude of ERP peaks. Using simulated ERP data sets containing different levels of noise, we provide evidence that, compared with other approaches, the proposed WF+MLR(d) method yields the most accurate estimate of single-trial ERP features. When applied to a real laser-evoked potential data set, the WF+MLR(d) approach provides reliable estimation of single-trial latency, amplitude, and morphology of ERPs and thereby allows performing meaningful correlations at single-trial level. We obtained three main findings. First, WF significantly enhances the SNR of single-trial ERPs. Second, MLR(d) effectively captures and measures the variability in the morphology of single-trial ERPs, thus providing an accurate and unbiased estimate of their peak latency and amplitude. Third, intensity of pain perception significantly correlates with the single-trial estimates of N2 and P2 amplitude. These results indicate that WF+MLR(d) can be used to explore the dynamics between different ERP features, behavioral variables, and other neuroimaging measures of brain activity, thus providing new insights into the functional significance of the different brain processes underlying the brain responses to sensory stimuli.

  11. Removing Malmquist bias from linear regressions

    Verter, Frances

    1993-01-01

    Malmquist bias is present in all astronomical surveys where sources are observed above an apparent brightness threshold. Those sources which can be detected at progressively larger distances are progressively more limited to the intrinsically luminous portion of the true distribution. This bias does not distort any of the measurements, but distorts the sample composition. We have developed the first treatment to correct for Malmquist bias in linear regressions of astronomical data. A demonstration of the corrected linear regression that is computed in four steps is presented.

  12. Teaching the Concept of Breakdown Point in Simple Linear Regression.

    Chan, Wai-Sum

    2001-01-01

    Most introductory textbooks on simple linear regression analysis mention the fact that extreme data points have a great influence on ordinary least-squares regression estimation; however, not many textbooks provide a rigorous mathematical explanation of this phenomenon. Suggests a way to fill this gap by teaching students the concept of breakdown…

  13. Multiple Linear Regression: A Realistic Reflector.

    Nutt, A. T.; Batsell, R. R.

    Examples of the use of Multiple Linear Regression (MLR) techniques are presented. This is done to show how MLR aids data processing and decision-making by providing the decision-maker with freedom in phrasing questions and by accurately reflecting the data on hand. A brief overview of the rationale underlying MLR is given, some basic definitions…

  14. Controlling attribute effect in linear regression

    Calders, Toon; Karim, Asim A.; Kamiran, Faisal; Ali, Wasif Mohammad; Zhang, Xiangliang

    2013-01-01

    In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.

  15. Controlling attribute effect in linear regression

    Calders, Toon

    2013-12-01

    In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.

  16. Post-processing through linear regression

    van Schaeybroeck, B.; Vannitsem, S.

    2011-03-01

    Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS) method, a new time-dependent Tikhonov regularization (TDTR) method, the total least-square method, a new geometric-mean regression (GM), a recently introduced error-in-variables (EVMOS) method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified. These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise). At long lead times the regression schemes (EVMOS, TDTR) which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.

  17. Post-processing through linear regression

    B. Van Schaeybroeck

    2011-03-01

    Full Text Available Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS method, a new time-dependent Tikhonov regularization (TDTR method, the total least-square method, a new geometric-mean regression (GM, a recently introduced error-in-variables (EVMOS method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified.

    These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise. At long lead times the regression schemes (EVMOS, TDTR which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.

  18. Principal component regression for crop yield estimation

    Suryanarayana, T M V

    2016-01-01

    This book highlights the estimation of crop yield in Central Gujarat, especially with regard to the development of Multiple Regression Models and Principal Component Regression (PCR) models using climatological parameters as independent variables and crop yield as a dependent variable. It subsequently compares the multiple linear regression (MLR) and PCR results, and discusses the significance of PCR for crop yield estimation. In this context, the book also covers Principal Component Analysis (PCA), a statistical procedure used to reduce a number of correlated variables into a smaller number of uncorrelated variables called principal components (PC). This book will be helpful to the students and researchers, starting their works on climate and agriculture, mainly focussing on estimation models. The flow of chapters takes the readers in a smooth path, in understanding climate and weather and impact of climate change, and gradually proceeds towards downscaling techniques and then finally towards development of ...

  19. Seasonal variation of benzo(a)pyrene in the Spanish airborne PM10. Multivariate linear regression model applied to estimate BaP concentrations.

    Callén, M S; López, J M; Mastral, A M

    2010-08-15

    The estimation of benzo(a)pyrene (BaP) concentrations in ambient air is very important from an environmental point of view especially with the introduction of the Directive 2004/107/EC and due to the carcinogenic character of this pollutant. A sampling campaign of particulate matter less or equal than 10 microns (PM10) carried out during 2008-2009 in four locations of Spain was collected to determine experimentally BaP concentrations by gas chromatography mass-spectrometry mass-spectrometry (GC-MS-MS). Multivariate linear regression models (MLRM) were used to predict BaP air concentrations in two sampling places, taking PM10 and meteorological variables as possible predictors. The model obtained with data from two sampling sites (all sites model) (R(2)=0.817, PRESS/SSY=0.183) included the significant variables like PM10, temperature, solar radiation and wind speed and was internally and externally validated. The first validation was performed by cross validation and the last one by BaP concentrations from previous campaigns carried out in Zaragoza from 2001-2004. The proposed model constitutes a first approximation to estimate BaP concentrations in urban atmospheres with very good internal prediction (Q(CV)(2)=0.813, PRESS/SSY=0.187) and with the maximal external prediction for the 2001-2002 campaign (Q(ext)(2)=0.679 and PRESS/SSY=0.321) versus the 2001-2004 campaign (Q(ext)(2)=0.551, PRESS/SSY=0.449). Copyright 2010 Elsevier B.V. All rights reserved.

  20. Seasonal variation of benzo(a)pyrene in the Spanish airborne PM10. Multivariate linear regression model applied to estimate BaP concentrations

    Callen, M.S.; Lopez, J.M.; Mastral, A.M.

    2010-01-01

    The estimation of benzo(a)pyrene (BaP) concentrations in ambient air is very important from an environmental point of view especially with the introduction of the Directive 2004/107/EC and due to the carcinogenic character of this pollutant. A sampling campaign of particulate matter less or equal than 10 microns (PM10) carried out during 2008-2009 in four locations of Spain was collected to determine experimentally BaP concentrations by gas chromatography mass-spectrometry mass-spectrometry (GC-MS-MS). Multivariate linear regression models (MLRM) were used to predict BaP air concentrations in two sampling places, taking PM10 and meteorological variables as possible predictors. The model obtained with data from two sampling sites (all sites model) (R 2 = 0.817, PRESS/SSY = 0.183) included the significant variables like PM10, temperature, solar radiation and wind speed and was internally and externally validated. The first validation was performed by cross validation and the last one by BaP concentrations from previous campaigns carried out in Zaragoza from 2001-2004. The proposed model constitutes a first approximation to estimate BaP concentrations in urban atmospheres with very good internal prediction (Q CV 2 =0.813, PRESS/SSY = 0.187) and with the maximal external prediction for the 2001-2002 campaign (Q ext 2 =0.679 and PRESS/SSY = 0.321) versus the 2001-2004 campaign (Q ext 2 =0.551, PRESS/SSY = 0.449).

  1. Use of probabilistic weights to enhance linear regression myoelectric control.

    Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J

    2015-12-01

    Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts' law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p linear regression control. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.

  2. Neutrosophic Correlation and Simple Linear Regression

    A. A. Salama

    2014-09-01

    Full Text Available Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache. Recently, Salama et al., introduced the concept of correlation coefficient of neutrosophic data. In this paper, we introduce and study the concepts of correlation and correlation coefficient of neutrosophic data in probability spaces and study some of their properties. Also, we introduce and study the neutrosophic simple linear regression model. Possible applications to data processing are touched upon.

  3. Linear regression methods a ccording to objective functions

    Yasemin Sisman; Sebahattin Bektas

    2012-01-01

    The aim of the study is to explain the parameter estimation methods and the regression analysis. The simple linear regressionmethods grouped according to the objective function are introduced. The numerical solution is achieved for the simple linear regressionmethods according to objective function of Least Squares and theLeast Absolute Value adjustment methods. The success of the appliedmethods is analyzed using their objective function values.

  4. Optimal choice of basis functions in the linear regression analysis

    Khotinskij, A.M.

    1988-01-01

    Problem of optimal choice of basis functions in the linear regression analysis is investigated. Step algorithm with estimation of its efficiency, which holds true at finite number of measurements, is suggested. Conditions, providing the probability of correct choice close to 1 are formulated. Application of the step algorithm to analysis of decay curves is substantiated. 8 refs

  5. Use of probabilistic weights to enhance linear regression myoelectric control

    Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

    2015-12-01

    Objective. Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Approach. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts’ law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Main results. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p < 0.05) by preventing extraneous movement at additional DOFs. Similar results were seen in experiments with two transradial amputees. Though goodness-of-fit evaluations suggested that the EMG feature distributions showed some deviations from the Gaussian, equal-covariance assumptions used in this experiment, the assumptions were sufficiently met to provide improved performance compared to linear regression control. Significance. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.

  6. Linear regression crash prediction models : issues and proposed solutions.

    2010-05-01

    The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...

  7. Establishment of regression dependences. Linear and nonlinear dependences

    Onishchenko, A.M.

    1994-01-01

    The main problems of determination of linear and 19 types of nonlinear regression dependences are completely discussed. It is taken into consideration that total dispersions are the sum of measurement dispersions and parameter variation dispersions themselves. Approaches to all dispersions determination are described. It is shown that the least square fit gives inconsistent estimation for industrial objects and processes. The correction methods by taking into account comparable measurement errors for both variable give an opportunity to obtain consistent estimation for the regression equation parameters. The condition of the correction technique application expediency is given. The technique for determination of nonlinear regression dependences taking into account the dependence form and comparable errors of both variables is described. 6 refs., 1 tab

  8. Direction of Effects in Multiple Linear Regression Models.

    Wiedermann, Wolfgang; von Eye, Alexander

    2015-01-01

    Previous studies analyzed asymmetric properties of the Pearson correlation coefficient using higher than second order moments. These asymmetric properties can be used to determine the direction of dependence in a linear regression setting (i.e., establish which of two variables is more likely to be on the outcome side) within the framework of cross-sectional observational data. Extant approaches are restricted to the bivariate regression case. The present contribution extends the direction of dependence methodology to a multiple linear regression setting by analyzing distributional properties of residuals of competing multiple regression models. It is shown that, under certain conditions, the third central moments of estimated regression residuals can be used to decide upon direction of effects. In addition, three different approaches for statistical inference are discussed: a combined D'Agostino normality test, a skewness difference test, and a bootstrap difference test. Type I error and power of the procedures are assessed using Monte Carlo simulations, and an empirical example is provided for illustrative purposes. In the discussion, issues concerning the quality of psychological data, possible extensions of the proposed methods to the fourth central moment of regression residuals, and potential applications are addressed.

  9. Suppression Situations in Multiple Linear Regression

    Shieh, Gwowen

    2006-01-01

    This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…

  10. Two Paradoxes in Linear Regression Analysis

    FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong

    2016-01-01

    Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214

  11. Fuzzy multiple linear regression: A computational approach

    Juang, C. H.; Huang, X. H.; Fleming, J. W.

    1992-01-01

    This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.

  12. Simple and multiple linear regression: sample size considerations.

    Hanley, James A

    2016-11-01

    The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Thresholding projection estimators in functional linear models

    Cardot, Hervé; Johannes, Jan

    2010-01-01

    We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squ...

  14. Linear Regression Based Real-Time Filtering

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  15. Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment

    Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos

    2013-01-01

    In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…

  16. Dynamic travel time estimation using regression trees.

    2008-10-01

    This report presents a methodology for travel time estimation by using regression trees. The dissemination of travel time information has become crucial for effective traffic management, especially under congested road conditions. In the absence of c...

  17. The microcomputer scientific software series 2: general linear model--regression.

    Harold M. Rauscher

    1983-01-01

    The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...

  18. Kendall-Theil Robust Line (KTRLine--version 1.0)-A Visual Basic Program for Calculating and Graphing Robust Nonparametric Estimates of Linear-Regression Coefficients Between Two Continuous Variables

    Granato, Gregory E.

    2006-01-01

    The Kendall-Theil Robust Line software (KTRLine-version 1.0) is a Visual Basic program that may be used with the Microsoft Windows operating system to calculate parameters for robust, nonparametric estimates of linear-regression coefficients between two continuous variables. The KTRLine software was developed by the U.S. Geological Survey, in cooperation with the Federal Highway Administration, for use in stochastic data modeling with local, regional, and national hydrologic data sets to develop planning-level estimates of potential effects of highway runoff on the quality of receiving waters. The Kendall-Theil robust line was selected because this robust nonparametric method is resistant to the effects of outliers and nonnormality in residuals that commonly characterize hydrologic data sets. The slope of the line is calculated as the median of all possible pairwise slopes between points. The intercept is calculated so that the line will run through the median of input data. A single-line model or a multisegment model may be specified. The program was developed to provide regression equations with an error component for stochastic data generation because nonparametric multisegment regression tools are not available with the software that is commonly used to develop regression models. The Kendall-Theil robust line is a median line and, therefore, may underestimate total mass, volume, or loads unless the error component or a bias correction factor is incorporated into the estimate. Regression statistics such as the median error, the median absolute deviation, the prediction error sum of squares, the root mean square error, the confidence interval for the slope, and the bias correction factor for median estimates are calculated by use of nonparametric methods. These statistics, however, may be used to formulate estimates of mass, volume, or total loads. The program is used to read a two- or three-column tab-delimited input file with variable names in the first row and

  19. Stochastic development regression on non-linear manifolds

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...... processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded...... in the connection of the manifold. We propose an estimation procedure which applies the Laplace approximation of the likelihood function. A simulation study of the performance of the model is performed and the model is applied to a real dataset of Corpus Callosum shapes....

  20. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data

    Ramoelo, A.; Skidmore, A.K.; Cho, M.A.; Mathieu, R.; Heitkonig, I.M.A.; Dudeni-Tlhone, N.; Schlerf, M.; Prins, H.H.T.

    2013-01-01

    Grass nitrogen (N) and phosphorus (P) concentrations are direct indicators of rangeland quality and provide imperative information for sound management of wildlife and livestock. It is challenging to estimate grass N and P concentrations using remote sensing in the savanna ecosystems. These areas

  1. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data

    Ramoelo, Abel

    2013-06-01

    Full Text Available in situ hyperspectral and environmental variables yielded the highest grass N and P estimation accuracy (R2 = 0.81, root mean square error (RMSE) = 0.08, and R2 = 0.80, RMSE = 0.03, respectively) as compared to using remote sensing variables only...

  2. Augmenting Data with Published Results in Bayesian Linear Regression

    de Leeuw, Christiaan; Klugkist, Irene

    2012-01-01

    In most research, linear regression analyses are performed without taking into account published results (i.e., reported summary statistics) of similar previous studies. Although the prior density in Bayesian linear regression could accommodate such prior knowledge, formal models for doing so are absent from the literature. The goal of this…

  3. A test for the parameters of multiple linear regression models ...

    A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...

  4. Who Will Win?: Predicting the Presidential Election Using Linear Regression

    Lamb, John H.

    2007-01-01

    This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…

  5. Seasonal variation of benzo(a) pyrene in the Spanish airborne PM10. Multivariate linear regression model applied to estimate BaP concentrations

    Callén Romero, Mª Soledad; López Sebastián, José Manuel; Mastral Lamarca, Ana María

    2010-01-01

    The estimation of benzo(a)pyrene (BaP) concentrations in ambient air is very important from an environmental point of view especially with the introduction of the Directive 2004/107/EC and due to the carcinogenic character of this pollutant. A sampling campaign of particulate matter less or equal than 10 microns (PM10) carried out during 2008-2009 in four locations of Spain was collected to determine experimentally BaP concentrations by gas chromatography-mass spectrometry-mass spectrometry (...

  6. Independent contrasts and PGLS regression estimators are equivalent.

    Blomberg, Simon P; Lefevre, James G; Wells, Jessie A; Waterhouse, Mary

    2012-05-01

    We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives.

  7. Sparse reduced-rank regression with covariance estimation

    Chen, Lisha

    2014-12-08

    Improving the predicting performance of the multiple response regression compared with separate linear regressions is a challenging question. On the one hand, it is desirable to seek model parsimony when facing a large number of parameters. On the other hand, for certain applications it is necessary to take into account the general covariance structure for the errors of the regression model. We assume a reduced-rank regression model and work with the likelihood function with general error covariance to achieve both objectives. In addition we propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty, and to estimate the error covariance matrix simultaneously by using a similar penalty on the precision matrix. We develop a numerical algorithm to solve the penalized regression problem. In a simulation study and real data analysis, the new method is compared with two recent methods for multivariate regression and exhibits competitive performance in prediction and variable selection.

  8. Sparse reduced-rank regression with covariance estimation

    Chen, Lisha; Huang, Jianhua Z.

    2014-01-01

    Improving the predicting performance of the multiple response regression compared with separate linear regressions is a challenging question. On the one hand, it is desirable to seek model parsimony when facing a large number of parameters. On the other hand, for certain applications it is necessary to take into account the general covariance structure for the errors of the regression model. We assume a reduced-rank regression model and work with the likelihood function with general error covariance to achieve both objectives. In addition we propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty, and to estimate the error covariance matrix simultaneously by using a similar penalty on the precision matrix. We develop a numerical algorithm to solve the penalized regression problem. In a simulation study and real data analysis, the new method is compared with two recent methods for multivariate regression and exhibits competitive performance in prediction and variable selection.

  9. Robust linear registration of CT images using random regression forests

    Konukoglu, Ender; Criminisi, Antonio; Pathak, Sayan; Robertson, Duncan; White, Steve; Haynor, David; Siddiqui, Khan

    2011-03-01

    Global linear registration is a necessary first step for many different tasks in medical image analysis. Comparing longitudinal studies1, cross-modality fusion2, and many other applications depend heavily on the success of the automatic registration. The robustness and efficiency of this step is crucial as it affects all subsequent operations. Most common techniques cast the linear registration problem as the minimization of a global energy function based on the image intensities. Although these algorithms have proved useful, their robustness in fully automated scenarios is still an open question. In fact, the optimization step often gets caught in local minima yielding unsatisfactory results. Recent algorithms constrain the space of registration parameters by exploiting implicit or explicit organ segmentations, thus increasing robustness4,5. In this work we propose a novel robust algorithm for automatic global linear image registration. Our method uses random regression forests to estimate posterior probability distributions for the locations of anatomical structures - represented as axis aligned bounding boxes6. These posterior distributions are later integrated in a global linear registration algorithm. The biggest advantage of our algorithm is that it does not require pre-defined segmentations or regions. Yet it yields robust registration results. We compare the robustness of our algorithm with that of the state of the art Elastix toolbox7. Validation is performed via 1464 pair-wise registrations in a database of very diverse 3D CT images. We show that our method decreases the "failure" rate of the global linear registration from 12.5% (Elastix) to only 1.9%.

  10. Distributed Monitoring of the R2 Statistic for Linear Regression

    National Aeronautics and Space Administration — The problem of monitoring a multivariate linear regression model is relevant in studying the evolving relationship between a set of input variables (features) and...

  11. Linear Regression Models for Estimating True Subsurface ...

    47

    The objective is to minimize the processing time and computer memory required. 10 to carry out inversion .... to the mainland by two long bridges. .... term. In this approach, the model converges when the squared sum of the differences. 143.

  12. Identification of Influential Points in a Linear Regression Model

    Jan Grosz

    2011-03-01

    Full Text Available The article deals with the detection and identification of influential points in the linear regression model. Three methods of detection of outliers and leverage points are described. These procedures can also be used for one-sample (independentdatasets. This paper briefly describes theoretical aspects of several robust methods as well. Robust statistics is a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. A simulation model of the simple linear regression is presented.

  13. Learning a Nonnegative Sparse Graph for Linear Regression.

    Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung

    2015-09-01

    Previous graph-based semisupervised learning (G-SSL) methods have the following drawbacks: 1) they usually predefine the graph structure and then use it to perform label prediction, which cannot guarantee an overall optimum and 2) they only focus on the label prediction or the graph structure construction but are not competent in handling new samples. To this end, a novel nonnegative sparse graph (NNSG) learning method was first proposed. Then, both the label prediction and projection learning were integrated into linear regression. Finally, the linear regression and graph structure learning were unified within the same framework to overcome these two drawbacks. Therefore, a novel method, named learning a NNSG for linear regression was presented, in which the linear regression and graph learning were simultaneously performed to guarantee an overall optimum. In the learning process, the label information can be accurately propagated via the graph structure so that the linear regression can learn a discriminative projection to better fit sample labels and accurately classify new samples. An effective algorithm was designed to solve the corresponding optimization problem with fast convergence. Furthermore, NNSG provides a unified perceptiveness for a number of graph-based learning methods and linear regression methods. The experimental results showed that NNSG can obtain very high classification accuracy and greatly outperforms conventional G-SSL methods, especially some conventional graph construction methods.

  14. Testing hypotheses for differences between linear regression lines

    Stanley J. Zarnoch

    2009-01-01

    Five hypotheses are identified for testing differences between simple linear regression lines. The distinctions between these hypotheses are based on a priori assumptions and illustrated with full and reduced models. The contrast approach is presented as an easy and complete method for testing for overall differences between the regressions and for making pairwise...

  15. Robust median estimator in logisitc regression

    Hobza, T.; Pardo, L.; Vajda, Igor

    2008-01-01

    Roč. 138, č. 12 (2008), s. 3822-3840 ISSN 0378-3758 R&D Projects: GA MŠk 1M0572 Grant - others:Instituto Nacional de Estadistica (ES) MPO FI - IM3/136; GA MŠk(CZ) MTM 2006-06872 Institutional research plan: CEZ:AV0Z10750506 Keywords : Logistic regression * Median * Robustness * Consistency and asymptotic normality * Morgenthaler * Bianco and Yohai * Croux and Hasellbroeck Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.679, year: 2008 http://library.utia.cas.cz/separaty/2008/SI/vajda-robust%20median%20estimator%20in%20logistic%20regression.pdf

  16. Modeling Pan Evaporation for Kuwait by Multiple Linear Regression

    Almedeij, Jaber

    2012-01-01

    Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values. PMID:23226984

  17. Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.

    Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J

    2016-04-01

    The objective of this study was to evaluate the ability of linear regression models to decode patterns of muscle coactivation from intramuscular electromyogram (EMG) and provide simultaneous myoelectric control of a virtual 3-DOF wrist/hand system. Performance was compared to the simultaneous control of conventional myoelectric prosthesis methods using intramuscular EMG (parallel dual-site control)-an approach that requires users to independently modulate individual muscles in the residual limb, which can be challenging for amputees. Linear regression control was evaluated in eight able-bodied subjects during a virtual Fitts' law task and was compared to performance of eight subjects using parallel dual-site control. An offline analysis also evaluated how different types of training data affected prediction accuracy of linear regression control. The two control systems demonstrated similar overall performance; however, the linear regression method demonstrated improved performance for targets requiring use of all three DOFs, whereas parallel dual-site control demonstrated improved performance for targets that required use of only one DOF. Subjects using linear regression control could more easily activate multiple DOFs simultaneously, but often experienced unintended movements when trying to isolate individual DOFs. Offline analyses also suggested that the method used to train linear regression systems may influence controllability. Linear regression myoelectric control using intramuscular EMG provided an alternative to parallel dual-site control for 3-DOF simultaneous control at the wrist and hand. The two methods demonstrated different strengths in controllability, highlighting the tradeoff between providing simultaneous control and the ability to isolate individual DOFs when desired.

  18. Comparison of Classical Linear Regression and Orthogonal Regression According to the Sum of Squares Perpendicular Distances

    KELEŞ, Taliha; ALTUN, Murat

    2016-01-01

    Regression analysis is a statistical technique for investigating and modeling the relationship between variables. The purpose of this study was the trivial presentation of the equation for orthogonal regression (OR) and the comparison of classical linear regression (CLR) and OR techniques with respect to the sum of squared perpendicular distances. For that purpose, the analyses were shown by an example. It was found that the sum of squared perpendicular distances of OR is smaller. Thus, it wa...

  19. Wheat bran reduces concentrations of digestible, metabolizable, and net energy in diets fed to pigs, but energy values in wheat bran determined by the difference procedure are not different from values estimated from a linear regression procedure.

    Jaworski, N W; Liu, D W; Li, D F; Stein, H H

    2016-07-01

    . The DE, ME, and NE of wheat bran determined using the difference procedure were 2,168, 2,117, and 896 kcal/kg, respectively, and these values were within the 95% confidence interval of the DE (2,285 kcal/kg), ME (2,217 kcal/kg), and NE (961 kcal/kg) estimated by linear regression. In conclusion, increasing the inclusion of wheat bran in a corn-soybean meal based diet reduced energy and nutrient digestibility and heat production as well as DE, ME, and NE of diets, but values for DE, ME, and NE for wheat bran determined using the difference procedure were not different from values determined using linear regression.

  20. Biostatistics Series Module 6: Correlation and Linear Regression.

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.

  1. Weibull and lognormal Taguchi analysis using multiple linear regression

    Piña-Monarrez, Manuel R.; Ortiz-Yañez, Jesús F.

    2015-01-01

    The paper provides to reliability practitioners with a method (1) to estimate the robust Weibull family when the Taguchi method (TM) is applied, (2) to estimate the normal operational Weibull family in an accelerated life testing (ALT) analysis to give confidence to the extrapolation and (3) to perform the ANOVA analysis to both the robust and the normal operational Weibull family. On the other hand, because the Weibull distribution neither has the normal additive property nor has a direct relationship with the normal parameters (µ, σ), in this paper, the issues of estimating a Weibull family by using a design of experiment (DOE) are first addressed by using an L_9 (3"4) orthogonal array (OA) in both the TM and in the Weibull proportional hazard model approach (WPHM). Then, by using the Weibull/Gumbel and the lognormal/normal relationships and multiple linear regression, the direct relationships between the Weibull and the lifetime parameters are derived and used to formulate the proposed method. Moreover, since the derived direct relationships always hold, the method is generalized to the lognormal and ALT analysis. Finally, the method’s efficiency is shown through its application to the used OA and to a set of ALT data. - Highlights: • It gives the statistical relations and steps to use the Taguchi Method (TM) to analyze Weibull data. • It gives the steps to determine the unknown Weibull family to both the robust TM setting and the normal ALT level. • It gives a method to determine the expected lifetimes and to perform its ANOVA analysis in TM and ALT analysis. • It gives a method to give confidence to the extrapolation in an ALT analysis by using the Weibull family of the normal level.

  2. The number of subjects per variable required in linear regression analyses.

    Austin, Peter C; Steyerberg, Ewout W

    2015-06-01

    To determine the number of independent variables that can be included in a linear regression model. We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable (SPV) on the accuracy of estimated regression coefficients and standard errors, on the empirical coverage of estimated confidence intervals, and on the accuracy of the estimated R(2) of the fitted model. A minimum of approximately two SPV tended to result in estimation of regression coefficients with relative bias of less than 10%. Furthermore, with this minimum number of SPV, the standard errors of the regression coefficients were accurately estimated and estimated confidence intervals had approximately the advertised coverage rates. A much higher number of SPV were necessary to minimize bias in estimating the model R(2), although adjusted R(2) estimates behaved well. The bias in estimating the model R(2) statistic was inversely proportional to the magnitude of the proportion of variation explained by the population regression model. Linear regression models require only two SPV for adequate estimation of regression coefficients, standard errors, and confidence intervals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Performance of a New Restricted Biased Estimator in Logistic Regression

    Yasin ASAR

    2017-12-01

    Full Text Available It is known that the variance of the maximum likelihood estimator (MLE inflates when the explanatory variables are correlated. This situation is called the multicollinearity problem. As a result, the estimations of the model may not be trustful. Therefore, this paper introduces a new restricted estimator (RLTE that may be applied to get rid of the multicollinearity when the parameters lie in some linear subspace  in logistic regression. The mean squared errors (MSE and the matrix mean squared errors (MMSE of the estimators considered in this paper are given. A Monte Carlo experiment is designed to evaluate the performances of the proposed estimator, the restricted MLE (RMLE, MLE and Liu-type estimator (LTE. The criterion of performance is chosen to be MSE. Moreover, a real data example is presented. According to the results, proposed estimator has better performance than MLE, RMLE and LTE.

  4. The number of subjects per variable required in linear regression analyses

    P.C. Austin (Peter); E.W. Steyerberg (Ewout)

    2015-01-01

    textabstractObjectives To determine the number of independent variables that can be included in a linear regression model. Study Design and Setting We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable (SPV) on the accuracy of estimated regression

  5. Characteristics and Properties of a Simple Linear Regression Model

    Kowal Robert

    2016-12-01

    Full Text Available A simple linear regression model is one of the pillars of classic econometrics. Despite the passage of time, it continues to raise interest both from the theoretical side as well as from the application side. One of the many fundamental questions in the model concerns determining derivative characteristics and studying the properties existing in their scope, referring to the first of these aspects. The literature of the subject provides several classic solutions in that regard. In the paper, a completely new design is proposed, based on the direct application of variance and its properties, resulting from the non-correlation of certain estimators with the mean, within the scope of which some fundamental dependencies of the model characteristics are obtained in a much more compact manner. The apparatus allows for a simple and uniform demonstration of multiple dependencies and fundamental properties in the model, and it does it in an intuitive manner. The results were obtained in a classic, traditional area, where everything, as it might seem, has already been thoroughly studied and discovered.

  6. Common pitfalls in statistical analysis: Linear regression analysis

    Rakesh Aggarwal

    2017-01-01

    Full Text Available In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis.

  7. How Robust Is Linear Regression with Dummy Variables?

    Blankmeyer, Eric

    2006-01-01

    Researchers in education and the social sciences make extensive use of linear regression models in which the dependent variable is continuous-valued while the explanatory variables are a combination of continuous-valued regressors and dummy variables. The dummies partition the sample into groups, some of which may contain only a few observations.…

  8. On the null distribution of Bayes factors in linear regression

    We show that under the null, the 2 log (Bayes factor) is asymptotically distributed as a weighted sum of chi-squared random variables with a shifted mean. This claim holds for Bayesian multi-linear regression with a family of conjugate priors, namely, the normal-inverse-gamma prior, the g-prior, and...

  9. Fitting program for linear regressions according to Mahon (1996)

    2018-01-09

    This program takes the users' Input data and fits a linear regression to it using the prescription presented by Mahon (1996). Compared to the commonly used York fit, this method has the correct prescription for measurement error propagation. This software should facilitate the proper fitting of measurements with a simple Interface.

  10. Data Transformations for Inference with Linear Regression: Clarifications and Recommendations

    Pek, Jolynn; Wong, Octavia; Wong, C. M.

    2017-01-01

    Data transformations have been promoted as a popular and easy-to-implement remedy to address the assumption of normally distributed errors (in the population) in linear regression. However, the application of data transformations introduces non-ignorable complexities which should be fully appreciated before their implementation. This paper adds to…

  11. Linear regression and sensitivity analysis in nuclear reactor design

    Kumar, Akansha; Tsvetkov, Pavel V.; McClarren, Ryan G.

    2015-01-01

    Highlights: • Presented a benchmark for the applicability of linear regression to complex systems. • Applied linear regression to a nuclear reactor power system. • Performed neutronics, thermal–hydraulics, and energy conversion using Brayton’s cycle for the design of a GCFBR. • Performed detailed sensitivity analysis to a set of parameters in a nuclear reactor power system. • Modeled and developed reactor design using MCNP, regression using R, and thermal–hydraulics in Java. - Abstract: The paper presents a general strategy applicable for sensitivity analysis (SA), and uncertainity quantification analysis (UA) of parameters related to a nuclear reactor design. This work also validates the use of linear regression (LR) for predictive analysis in a nuclear reactor design. The analysis helps to determine the parameters on which a LR model can be fit for predictive analysis. For those parameters, a regression surface is created based on trial data and predictions are made using this surface. A general strategy of SA to determine and identify the influential parameters those affect the operation of the reactor is mentioned. Identification of design parameters and validation of linearity assumption for the application of LR of reactor design based on a set of tests is performed. The testing methods used to determine the behavior of the parameters can be used as a general strategy for UA, and SA of nuclear reactor models, and thermal hydraulics calculations. A design of a gas cooled fast breeder reactor (GCFBR), with thermal–hydraulics, and energy transfer has been used for the demonstration of this method. MCNP6 is used to simulate the GCFBR design, and perform the necessary criticality calculations. Java is used to build and run input samples, and to extract data from the output files of MCNP6, and R is used to perform regression analysis and other multivariate variance, and analysis of the collinearity of data

  12. SPLINE LINEAR REGRESSION USED FOR EVALUATING FINANCIAL ASSETS 1

    Liviu GEAMBAŞU

    2010-12-01

    Full Text Available One of the most important preoccupations of financial markets participants was and still is the problem of determining more precise the trend of financial assets prices. For solving this problem there were written many scientific papers and were developed many mathematical and statistical models in order to better determine the financial assets price trend. If until recently the simple linear models were largely used due to their facile utilization, the financial crises that affected the world economy starting with 2008 highlight the necessity of adapting the mathematical models to variation of economy. A simple to use model but adapted to economic life realities is the spline linear regression. This type of regression keeps the continuity of regression function, but split the studied data in intervals with homogenous characteristics. The characteristics of each interval are highlighted and also the evolution of market over all the intervals, resulting reduced standard errors. The first objective of the article is the theoretical presentation of the spline linear regression, also referring to scientific national and international papers related to this subject. The second objective is applying the theoretical model to data from the Bucharest Stock Exchange

  13. Algorithms for non-linear M-estimation

    Madsen, Kaj; Edlund, O; Ekblom, H

    1997-01-01

    In non-linear regression, the least squares method is most often used. Since this estimator is highly sensitive to outliers in the data, alternatives have became increasingly popular during the last decades. We present algorithms for non-linear M-estimation. A trust region approach is used, where...

  14. Ridge regression estimator: combining unbiased and ordinary ridge regression methods of estimation

    Sharad Damodar Gore

    2009-10-01

    Full Text Available Statistical literature has several methods for coping with multicollinearity. This paper introduces a new shrinkage estimator, called modified unbiased ridge (MUR. This estimator is obtained from unbiased ridge regression (URR in the same way that ordinary ridge regression (ORR is obtained from ordinary least squares (OLS. Properties of MUR are derived. Results on its matrix mean squared error (MMSE are obtained. MUR is compared with ORR and URR in terms of MMSE. These results are illustrated with an example based on data generated by Hoerl and Kennard (1975.

  15. Implementing fuzzy polynomial interpolation (FPI and fuzzy linear regression (LFR

    Maria Cristina Floreno

    1996-05-01

    Full Text Available This paper presents some preliminary results arising within a general framework concerning the development of software tools for fuzzy arithmetic. The program is in a preliminary stage. What has been already implemented consists of a set of routines for elementary operations, optimized functions evaluation, interpolation and regression. Some of these have been applied to real problems.This paper describes a prototype of a library in C++ for polynomial interpolation of fuzzifying functions, a set of routines in FORTRAN for fuzzy linear regression and a program with graphical user interface allowing the use of such routines.

  16. Analysis of interactive fixed effects dynamic linear panel regression with measurement error

    Nayoung Lee; Hyungsik Roger Moon; Martin Weidner

    2011-01-01

    This paper studies a simple dynamic panel linear regression model with interactive fixed effects in which the variable of interest is measured with error. To estimate the dynamic coefficient, we consider the least-squares minimum distance (LS-MD) estimation method.

  17. Stochastic development regression on non-linear manifolds

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...... processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded...

  18. A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield

    Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan

    2018-04-01

    In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.

  19. Computer software for linear and nonlinear regression in organic NMR

    Canto, Eduardo Leite do; Rittner, Roberto

    1991-01-01

    Calculation involving two variable linear regressions, require specific procedures generally not familiar to chemist. For attending the necessity of fast and efficient handling of NMR data, a self explained and Pc portable software has been developed, which allows user to produce and use diskette recorded tables, containing chemical shift or any other substituent physical-chemical measurements and constants (σ T , σ o R , E s , ...)

  20. Multicollinearity in applied economics research and the Bayesian linear regression

    EISENSTAT, Eric

    2016-01-01

    This article revises the popular issue of collinearity amongst explanatory variables in the context of a multiple linear regression analysis, particularly in empirical studies within social science related fields. Some important interpretations and explanations are highlighted from the econometrics literature with respect to the effects of multicollinearity on statistical inference, as well as the general shortcomings of the once fervent search for methods intended to detect and mitigate thes...

  1. Analysis of γ spectra in airborne radioactivity measurements using multiple linear regressions

    Bao Min; Shi Quanlin; Zhang Jiamei

    2004-01-01

    This paper describes the net peak counts calculating of nuclide 137 Cs at 662 keV of γ spectra in airborne radioactivity measurements using multiple linear regressions. Mathematic model is founded by analyzing every factor that has contribution to Cs peak counts in spectra, and multiple linear regression function is established. Calculating process adopts stepwise regression, and the indistinctive factors are eliminated by F check. The regression results and its uncertainty are calculated using Least Square Estimation, then the Cs peak net counts and its uncertainty can be gotten. The analysis results for experimental spectrum are displayed. The influence of energy shift and energy resolution on the analyzing result is discussed. In comparison with the stripping spectra method, multiple linear regression method needn't stripping radios, and the calculating result has relation with the counts in Cs peak only, and the calculating uncertainty is reduced. (authors)

  2. Extending the linear model with R generalized linear, mixed effects and nonparametric regression models

    Faraway, Julian J

    2005-01-01

    Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...

  3. Least Squares Adjustment: Linear and Nonlinear Weighted Regression Analysis

    Nielsen, Allan Aasbjerg

    2007-01-01

    This note primarily describes the mathematics of least squares regression analysis as it is often used in geodesy including land surveying and satellite positioning applications. In these fields regression is often termed adjustment. The note also contains a couple of typical land surveying...... and satellite positioning application examples. In these application areas we are typically interested in the parameters in the model typically 2- or 3-D positions and not in predictive modelling which is often the main concern in other regression analysis applications. Adjustment is often used to obtain...... the clock error) and to obtain estimates of the uncertainty with which the position is determined. Regression analysis is used in many other fields of application both in the natural, the technical and the social sciences. Examples may be curve fitting, calibration, establishing relationships between...

  4. Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression

    D.E. Allen (David); A.K. Singh (Abhay); R.J. Powell (Robert); M.J. McAleer (Michael); J. Taylor (James); L. Thomas (Lyn)

    2013-01-01

    textabstractThe purpose of this paper is to examine the asymmetric relationship between price and implied volatility and the associated extreme quantile dependence using linear and non linear quantile regression approach. Our goal in this paper is to demonstrate that the relationship between the

  5. A Monte Carlo simulation study comparing linear regression, beta regression, variable-dispersion beta regression and fractional logit regression at recovering average difference measures in a two sample design.

    Meaney, Christopher; Moineddin, Rahim

    2014-01-24

    In biomedical research, response variables are often encountered which have bounded support on the open unit interval--(0,1). Traditionally, researchers have attempted to estimate covariate effects on these types of response data using linear regression. Alternative modelling strategies may include: beta regression, variable-dispersion beta regression, and fractional logit regression models. This study employs a Monte Carlo simulation design to compare the statistical properties of the linear regression model to that of the more novel beta regression, variable-dispersion beta regression, and fractional logit regression models. In the Monte Carlo experiment we assume a simple two sample design. We assume observations are realizations of independent draws from their respective probability models. The randomly simulated draws from the various probability models are chosen to emulate average proportion/percentage/rate differences of pre-specified magnitudes. Following simulation of the experimental data we estimate average proportion/percentage/rate differences. We compare the estimators in terms of bias, variance, type-1 error and power. Estimates of Monte Carlo error associated with these quantities are provided. If response data are beta distributed with constant dispersion parameters across the two samples, then all models are unbiased and have reasonable type-1 error rates and power profiles. If the response data in the two samples have different dispersion parameters, then the simple beta regression model is biased. When the sample size is small (N0 = N1 = 25) linear regression has superior type-1 error rates compared to the other models. Small sample type-1 error rates can be improved in beta regression models using bias correction/reduction methods. In the power experiments, variable-dispersion beta regression and fractional logit regression models have slightly elevated power compared to linear regression models. Similar results were observed if the

  6. Uso da regressão linear para estimativa da relação entre a condutividade elétrica e a composição iônica da água de irrigação Use of linear regression to estimate the relationship between electrical conductivity and ionic composition of irrigation water

    Giorgio M. Ribeiro

    2005-03-01

    Full Text Available Vários estudos vêm sendo realizados ultimamente, com o propósito de se avaliar a qualidade de água de irrigação na região semi-árida do Nordeste brasileiro. Em alguns desses estudos, os autores têm ajustado diversas características químicas, como cálcio, magnésio, sódio e cloreto e soma de cátions, em função da condutividade elétrica (CE através de equações empíricas; porém atenção deve ser dada às variações temporal e espacial dessas variáveis. Objetivou-se, com o presente trabalho, avaliar a influência da fonte, da época e do tipo de solo sobre a condutividade elétrica, em função dos íons da água de irrigação, utilizando-se a regressão linear. Foi utilizado um banco de dados composto por 562 análises, oriundas de 55 propriedades rurais. As determinações químicas feitas nas amostras de águas, foram: pH, CE, Ca2+, Mg2+, Na+, K+, Cl-, HCO3-, CO3(2- e SO4(2-. A partir de janeiro de 1988 realizaram-se amostragens nas propriedades, até 411 dias. O banco de dados foi dividido em 14 épocas de amostragem, três fontes (poço, rio e açude e para 10 solos. Para se comparar as equações ajustadas, empregou-se o teste de identidade de modelo, cujos resultados mostraram que as equações lineares ajustadas com a condutividade elétrica em função dos teores de cálcio, magnésio, potássio, sódio, cloreto, bicarbonato, carbonato e sulfato variaram significativamente com a época de amostragem, a fonte de água e com o tipo de solo.Several studies have been accomplished lately to evaluate irrigation water quality in the semi-arid region of the Northeast Brazil. In some of these studies, the authors have adjusted some chemical characteristics such as calcium, magnesium, sodium, chloride and sum of cations as a function of electrical conductivity (EC through empirical equations, however attention should be given to temporal and spatial variations. In this paper, the influence of water source, time of sampling

  7. On macroeconomic values investigation using fuzzy linear regression analysis

    Richard Pospíšil

    2017-06-01

    Full Text Available The theoretical background for abstract formalization of the vague phenomenon of complex systems is the fuzzy set theory. In the paper, vague data is defined as specialized fuzzy sets - fuzzy numbers and there is described a fuzzy linear regression model as a fuzzy function with fuzzy numbers as vague parameters. To identify the fuzzy coefficients of the model, the genetic algorithm is used. The linear approximation of the vague function together with its possibility area is analytically and graphically expressed. A suitable application is performed in the tasks of the time series fuzzy regression analysis. The time-trend and seasonal cycles including their possibility areas are calculated and expressed. The examples are presented from the economy field, namely the time-development of unemployment, agricultural production and construction respectively between 2009 and 2011 in the Czech Republic. The results are shown in the form of the fuzzy regression models of variables of time series. For the period 2009-2011, the analysis assumptions about seasonal behaviour of variables and the relationship between them were confirmed; in 2010, the system behaved fuzzier and the relationships between the variables were vaguer, that has a lot of causes, from the different elasticity of demand, through state interventions to globalization and transnational impacts.

  8. BRGLM, Interactive Linear Regression Analysis by Least Square Fit

    Ringland, J.T.; Bohrer, R.E.; Sherman, M.E.

    1985-01-01

    1 - Description of program or function: BRGLM is an interactive program written to fit general linear regression models by least squares and to provide a variety of statistical diagnostic information about the fit. Stepwise and all-subsets regression can be carried out also. There are facilities for interactive data management (e.g. setting missing value flags, data transformations) and tools for constructing design matrices for the more commonly-used models such as factorials, cubic Splines, and auto-regressions. 2 - Method of solution: The least squares computations are based on the orthogonal (QR) decomposition of the design matrix obtained using the modified Gram-Schmidt algorithm. 3 - Restrictions on the complexity of the problem: The current release of BRGLM allows maxima of 1000 observations, 99 variables, and 3000 words of main memory workspace. For a problem with N observations and P variables, the number of words of main memory storage required is MAX(N*(P+6), N*P+P*P+3*N, and 3*P*P+6*N). Any linear model may be fit although the in-memory workspace will have to be increased for larger problems

  9. A comparison of random forest regression and multiple linear regression for prediction in neuroscience.

    Smith, Paul F; Ganesh, Siva; Liu, Ping

    2013-10-30

    Regression is a common statistical tool for prediction in neuroscience. However, linear regression is by far the most common form of regression used, with regression trees receiving comparatively little attention. In this study, the results of conventional multiple linear regression (MLR) were compared with those of random forest regression (RFR), in the prediction of the concentrations of 9 neurochemicals in the vestibular nucleus complex and cerebellum that are part of the l-arginine biochemical pathway (agmatine, putrescine, spermidine, spermine, l-arginine, l-ornithine, l-citrulline, glutamate and γ-aminobutyric acid (GABA)). The R(2) values for the MLRs were higher than the proportion of variance explained values for the RFRs: 6/9 of them were ≥ 0.70 compared to 4/9 for RFRs. Even the variables that had the lowest R(2) values for the MLRs, e.g. ornithine (0.50) and glutamate (0.61), had much lower proportion of variance explained values for the RFRs (0.27 and 0.49, respectively). The RSE values for the MLRs were lower than those for the RFRs in all but two cases. In general, MLRs seemed to be superior to the RFRs in terms of predictive value and error. In the case of this data set, MLR appeared to be superior to RFR in terms of its explanatory value and error. This result suggests that MLR may have advantages over RFR for prediction in neuroscience with this kind of data set, but that RFR can still have good predictive value in some cases. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Estimating linear temporal trends from aggregated environmental monitoring data

    Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.

    2017-01-01

    Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.

  11. Relative Importance for Linear Regression in R: The Package relaimpo

    Ulrike Gromping

    2006-09-01

    Full Text Available Relative importance is a topic that has seen a lot of interest in recent years, particularly in applied work. The R package relaimpo implements six different metrics for assessing relative importance of regressors in the linear model, two of which are recommended - averaging over orderings of regressors and a newly proposed metric (Feldman 2005 called pmvd. Apart from delivering the metrics themselves, relaimpo also provides (exploratory bootstrap confidence intervals. This paper offers a brief tutorial introduction to the package. The methods and relaimpo’s functionality are illustrated using the data set swiss that is generally available in R. The paper targets readers who have a basic understanding of multiple linear regression. For the background of more advanced aspects, references are provided.

  12. Nonparametric Regression Estimation for Multivariate Null Recurrent Processes

    Biqing Cai

    2015-04-01

    Full Text Available This paper discusses nonparametric kernel regression with the regressor being a \\(d\\-dimensional \\(\\beta\\-null recurrent process in presence of conditional heteroscedasticity. We show that the mean function estimator is consistent with convergence rate \\(\\sqrt{n(Th^{d}}\\, where \\(n(T\\ is the number of regenerations for a \\(\\beta\\-null recurrent process and the limiting distribution (with proper normalization is normal. Furthermore, we show that the two-step estimator for the volatility function is consistent. The finite sample performance of the estimate is quite reasonable when the leave-one-out cross validation method is used for bandwidth selection. We apply the proposed method to study the relationship of Federal funds rate with 3-month and 5-year T-bill rates and discover the existence of nonlinearity of the relationship. Furthermore, the in-sample and out-of-sample performance of the nonparametric model is far better than the linear model.

  13. Error analysis of dimensionless scaling experiments with multiple points using linear regression

    Guercan, Oe.D.; Vermare, L.; Hennequin, P.; Bourdelle, C.

    2010-01-01

    A general method of error estimation in the case of multiple point dimensionless scaling experiments, using linear regression and standard error propagation, is proposed. The method reduces to the previous result of Cordey (2009 Nucl. Fusion 49 052001) in the case of a two-point scan. On the other hand, if the points follow a linear trend, it explains how the estimated error decreases as more points are added to the scan. Based on the analytical expression that is derived, it is argued that for a low number of points, adding points to the ends of the scanned range, rather than the middle, results in a smaller error estimate. (letter)

  14. Fuzzy Linear Regression for the Time Series Data which is Fuzzified with SMRGT Method

    Seçil YALAZ

    2016-10-01

    Full Text Available Our work on regression and classification provides a new contribution to the analysis of time series used in many areas for years. Owing to the fact that convergence could not obtained with the methods used in autocorrelation fixing process faced with time series regression application, success is not met or fall into obligation of changing the models’ degree. Changing the models’ degree may not be desirable in every situation. In our study, recommended for these situations, time series data was fuzzified by using the simple membership function and fuzzy rule generation technique (SMRGT and to estimate future an equation has created by applying fuzzy least square regression (FLSR method which is a simple linear regression method to this data. Although SMRGT has success in determining the flow discharge in open channels and can be used confidently for flow discharge modeling in open canals, as well as in pipe flow with some modifications, there is no clue about that this technique is successful in fuzzy linear regression modeling. Therefore, in order to address the luck of such a modeling, a new hybrid model has been described within this study. In conclusion, to demonstrate our methods’ efficiency, classical linear regression for time series data and linear regression for fuzzy time series data were applied to two different data sets, and these two approaches performances were compared by using different measures.

  15. An introduction to using Bayesian linear regression with clinical data.

    Baldwin, Scott A; Larson, Michael J

    2017-11-01

    Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to standard frequentist methods. This article provides researchers with an introduction to fundamental ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to illustrate Bayesian models. Specifically, the models examine the relationship between error-related negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered include: how to set up a regression model in a Bayesian framework, specifying priors, examining convergence of the model, visualizing and interpreting posterior distributions, interval estimates, expected and predicted values, and model comparison tools. We also discuss situations where Bayesian methods can outperform frequentist methods as well has how to specify more complicated regression models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian methods in their own research. We provide data and R code for replicating our analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Using the classical linear regression model in analysis of the dependences of conveyor belt life

    Miriam Andrejiová

    2013-12-01

    Full Text Available The paper deals with the classical linear regression model of the dependence of conveyor belt life on some selected parameters: thickness of paint layer, width and length of the belt, conveyor speed and quantity of transported material. The first part of the article is about regression model design, point and interval estimation of parameters, verification of statistical significance of the model, and about the parameters of the proposed regression model. The second part of the article deals with identification of influential and extreme values that can have an impact on estimation of regression model parameters. The third part focuses on assumptions of the classical regression model, i.e. on verification of independence assumptions, normality and homoscedasticity of residuals.

  17. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19

  18. Comparison of Linear and Non-linear Regression Analysis to Determine Pulmonary Pressure in Hyperthyroidism.

    Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan

    2017-01-01

    This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second

  19. High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis.

    Laurens, L M L; Wolfrum, E J

    2013-12-18

    One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.

  20. The regression-calibration method for fitting generalized linear models with additive measurement error

    James W. Hardin; Henrik Schmeidiche; Raymond J. Carroll

    2003-01-01

    This paper discusses and illustrates the method of regression calibration. This is a straightforward technique for fitting models with additive measurement error. We present this discussion in terms of generalized linear models (GLMs) following the notation defined in Hardin and Carroll (2003). Discussion will include specified measurement error, measurement error estimated by replicate error-prone proxies, and measurement error estimated by instrumental variables. The discussion focuses on s...

  1. Convergence diagnostics for Eigenvalue problems with linear regression model

    Shi, Bo; Petrovic, Bojan

    2011-01-01

    Although the Monte Carlo method has been extensively used for criticality/Eigenvalue problems, a reliable, robust, and efficient convergence diagnostics method is still desired. Most methods are based on integral parameters (multiplication factor, entropy) and either condense the local distribution information into a single value (e.g., entropy) or even disregard it. We propose to employ the detailed cycle-by-cycle local flux evolution obtained by using mesh tally mechanism to assess the source and flux convergence. By applying a linear regression model to each individual mesh in a mesh tally for convergence diagnostics, a global convergence criterion can be obtained. We exemplify this method on two problems and obtain promising diagnostics results. (author)

  2. Electricity consumption forecasting in Italy using linear regression models

    Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio [DIAM, Seconda Universita degli Studi di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy)

    2009-09-15

    The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of {+-}1% for the best case and {+-}11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)

  3. Electricity consumption forecasting in Italy using linear regression models

    Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio

    2009-01-01

    The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of ±1% for the best case and ±11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)

  4. Regressão linear geograficamente ponderada em ambiente SIG

    Luís Eduardo Ximenes Carvalho

    2009-10-01

    Full Text Available

    Este artigo aborda considerações teóricas e resultados da implementação em ambiente SIG de um modelo confirmatório de estatística espacial — regressão linear geograficamente ponderada (RGP — não disponível em ambiente livre. Os aspectos teóricos deste modelo local de regressão espacial foram amplamente discutidos em virtude da escassa bibliografia existente. O modelo RGP foi implementado na linguagem de programação GISDK do SIG-T TransCAD, utilizando compreensivamente as ferramentas de manipulação, tratamento georreferenciado dos dados e rotinas de análise espacial disponibilizadas em plataformas SIG. Ao final, espera-se ter desenvolvido, ainda que de maneira parcial, uma importante ferramenta que contribuirá para a compreensão e refinamento da modelagem de fenômenos geográficos tão amplamente analisados em estudos de Planejamento de Transportes.

  5. COLOR IMAGE RETRIEVAL BASED ON FEATURE FUSION THROUGH MULTIPLE LINEAR REGRESSION ANALYSIS

    K. Seetharaman

    2015-08-01

    Full Text Available This paper proposes a novel technique based on feature fusion using multiple linear regression analysis, and the least-square estimation method is employed to estimate the parameters. The given input query image is segmented into various regions according to the structure of the image. The color and texture features are extracted on each region of the query image, and the features are fused together using the multiple linear regression model. The estimated parameters of the model, which is modeled based on the features, are formed as a vector called a feature vector. The Canberra distance measure is adopted to compare the feature vectors of the query and target images. The F-measure is applied to evaluate the performance of the proposed technique. The obtained results expose that the proposed technique is comparable to the other existing techniques.

  6. User's Guide to the Weighted-Multiple-Linear Regression Program (WREG version 1.0)

    Eng, Ken; Chen, Yin-Yu; Kiang, Julie.E.

    2009-01-01

    Streamflow is not measured at every location in a stream network. Yet hydrologists, State and local agencies, and the general public still seek to know streamflow characteristics, such as mean annual flow or flood flows with different exceedance probabilities, at ungaged basins. The goals of this guide are to introduce and familiarize the user with the weighted multiple-linear regression (WREG) program, and to also provide the theoretical background for program features. The program is intended to be used to develop a regional estimation equation for streamflow characteristics that can be applied at an ungaged basin, or to improve the corresponding estimate at continuous-record streamflow gages with short records. The regional estimation equation results from a multiple-linear regression that relates the observable basin characteristics, such as drainage area, to streamflow characteristics.

  7. A simple bias correction in linear regression for quantitative trait association under two-tail extreme selection.

    Kwan, Johnny S H; Kung, Annie W C; Sham, Pak C

    2011-09-01

    Selective genotyping can increase power in quantitative trait association. One example of selective genotyping is two-tail extreme selection, but simple linear regression analysis gives a biased genetic effect estimate. Here, we present a simple correction for the bias.

  8. A logistic regression estimating function for spatial Gibbs point processes

    Baddeley, Adrian; Coeurjolly, Jean-François; Rubak, Ege

    We propose a computationally efficient logistic regression estimating function for spatial Gibbs point processes. The sample points for the logistic regression consist of the observed point pattern together with a random pattern of dummy points. The estimating function is closely related to the p......We propose a computationally efficient logistic regression estimating function for spatial Gibbs point processes. The sample points for the logistic regression consist of the observed point pattern together with a random pattern of dummy points. The estimating function is closely related...

  9. Estimation of adjusted rate differences using additive negative binomial regression.

    Donoghoe, Mark W; Marschner, Ian C

    2016-08-15

    Rate differences are an important effect measure in biostatistics and provide an alternative perspective to rate ratios. When the data are event counts observed during an exposure period, adjusted rate differences may be estimated using an identity-link Poisson generalised linear model, also known as additive Poisson regression. A problem with this approach is that the assumption of equality of mean and variance rarely holds in real data, which often show overdispersion. An additive negative binomial model is the natural alternative to account for this; however, standard model-fitting methods are often unable to cope with the constrained parameter space arising from the non-negativity restrictions of the additive model. In this paper, we propose a novel solution to this problem using a variant of the expectation-conditional maximisation-either algorithm. Our method provides a reliable way to fit an additive negative binomial regression model and also permits flexible generalisations using semi-parametric regression functions. We illustrate the method using a placebo-controlled clinical trial of fenofibrate treatment in patients with type II diabetes, where the outcome is the number of laser therapy courses administered to treat diabetic retinopathy. An R package is available that implements the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Enhancement of Visual Field Predictions with Pointwise Exponential Regression (PER) and Pointwise Linear Regression (PLR).

    Morales, Esteban; de Leon, John Mark S; Abdollahi, Niloufar; Yu, Fei; Nouri-Mahdavi, Kouros; Caprioli, Joseph

    2016-03-01

    The study was conducted to evaluate threshold smoothing algorithms to enhance prediction of the rates of visual field (VF) worsening in glaucoma. We studied 798 patients with primary open-angle glaucoma and 6 or more years of follow-up who underwent 8 or more VF examinations. Thresholds at each VF location for the first 4 years or first half of the follow-up time (whichever was greater) were smoothed with clusters defined by the nearest neighbor (NN), Garway-Heath, Glaucoma Hemifield Test (GHT), and weighting by the correlation of rates at all other VF locations. Thresholds were regressed with a pointwise exponential regression (PER) model and a pointwise linear regression (PLR) model. Smaller root mean square error (RMSE) values of the differences between the observed and the predicted thresholds at last two follow-ups indicated better model predictions. The mean (SD) follow-up times for the smoothing and prediction phase were 5.3 (1.5) and 10.5 (3.9) years. The mean RMSE values for the PER and PLR models were unsmoothed data, 6.09 and 6.55; NN, 3.40 and 3.42; Garway-Heath, 3.47 and 3.48; GHT, 3.57 and 3.74; and correlation of rates, 3.59 and 3.64. Smoothed VF data predicted better than unsmoothed data. Nearest neighbor provided the best predictions; PER also predicted consistently more accurately than PLR. Smoothing algorithms should be used when forecasting VF results with PER or PLR. The application of smoothing algorithms on VF data can improve forecasting in VF points to assist in treatment decisions.

  11. On the Relationship Between Confidence Sets and Exchangeable Weights in Multiple Linear Regression.

    Pek, Jolynn; Chalmers, R Philip; Monette, Georges

    2016-01-01

    When statistical models are employed to provide a parsimonious description of empirical relationships, the extent to which strong conclusions can be drawn rests on quantifying the uncertainty in parameter estimates. In multiple linear regression (MLR), regression weights carry two kinds of uncertainty represented by confidence sets (CSs) and exchangeable weights (EWs). Confidence sets quantify uncertainty in estimation whereas the set of EWs quantify uncertainty in the substantive interpretation of regression weights. As CSs and EWs share certain commonalities, we clarify the relationship between these two kinds of uncertainty about regression weights. We introduce a general framework describing how CSs and the set of EWs for regression weights are estimated from the likelihood-based and Wald-type approach, and establish the analytical relationship between CSs and sets of EWs. With empirical examples on posttraumatic growth of caregivers (Cadell et al., 2014; Schneider, Steele, Cadell & Hemsworth, 2011) and on graduate grade point average (Kuncel, Hezlett & Ones, 2001), we illustrate the usefulness of CSs and EWs for drawing strong scientific conclusions. We discuss the importance of considering both CSs and EWs as part of the scientific process, and provide an Online Appendix with R code for estimating Wald-type CSs and EWs for k regression weights.

  12. A simplified procedure of linear regression in a preliminary analysis

    Silvia Facchinetti

    2013-05-01

    Full Text Available The analysis of a statistical large data-set can be led by the study of a particularly interesting variable Y – regressed – and an explicative variable X, chosen among the remained variables, conjointly observed. The study gives a simplified procedure to obtain the functional link of the variables y=y(x by a partition of the data-set into m subsets, in which the observations are synthesized by location indices (mean or median of X and Y. Polynomial models for y(x of order r are considered to verify the characteristics of the given procedure, in particular we assume r= 1 and 2. The distributions of the parameter estimators are obtained by simulation, when the fitting is done for m= r + 1. Comparisons of the results, in terms of distribution and efficiency, are made with the results obtained by the ordinary least square methods. The study also gives some considerations on the consistency of the estimated parameters obtained by the given procedure.

  13. Exhaustive Search for Sparse Variable Selection in Linear Regression

    Igarashi, Yasuhiko; Takenaka, Hikaru; Nakanishi-Ohno, Yoshinori; Uemura, Makoto; Ikeda, Shiro; Okada, Masato

    2018-04-01

    We propose a K-sparse exhaustive search (ES-K) method and a K-sparse approximate exhaustive search method (AES-K) for selecting variables in linear regression. With these methods, K-sparse combinations of variables are tested exhaustively assuming that the optimal combination of explanatory variables is K-sparse. By collecting the results of exhaustively computing ES-K, various approximate methods for selecting sparse variables can be summarized as density of states. With this density of states, we can compare different methods for selecting sparse variables such as relaxation and sampling. For large problems where the combinatorial explosion of explanatory variables is crucial, the AES-K method enables density of states to be effectively reconstructed by using the replica-exchange Monte Carlo method and the multiple histogram method. Applying the ES-K and AES-K methods to type Ia supernova data, we confirmed the conventional understanding in astronomy when an appropriate K is given beforehand. However, we found the difficulty to determine K from the data. Using virtual measurement and analysis, we argue that this is caused by data shortage.

  14. Linear and evolutionary polynomial regression models to forecast coastal dynamics: Comparison and reliability assessment

    Bruno, Delia Evelina; Barca, Emanuele; Goncalves, Rodrigo Mikosz; de Araujo Queiroz, Heithor Alexandre; Berardi, Luigi; Passarella, Giuseppe

    2018-01-01

    In this paper, the Evolutionary Polynomial Regression data modelling strategy has been applied to study small scale, short-term coastal morphodynamics, given its capability for treating a wide database of known information, non-linearly. Simple linear and multilinear regression models were also applied to achieve a balance between the computational load and reliability of estimations of the three models. In fact, even though it is easy to imagine that the more complex the model, the more the prediction improves, sometimes a "slight" worsening of estimations can be accepted in exchange for the time saved in data organization and computational load. The models' outcomes were validated through a detailed statistical, error analysis, which revealed a slightly better estimation of the polynomial model with respect to the multilinear model, as expected. On the other hand, even though the data organization was identical for the two models, the multilinear one required a simpler simulation setting and a faster run time. Finally, the most reliable evolutionary polynomial regression model was used in order to make some conjecture about the uncertainty increase with the extension of extrapolation time of the estimation. The overlapping rate between the confidence band of the mean of the known coast position and the prediction band of the estimated position can be a good index of the weakness in producing reliable estimations when the extrapolation time increases too much. The proposed models and tests have been applied to a coastal sector located nearby Torre Colimena in the Apulia region, south Italy.

  15. Optimal difference-based estimation for partially linear models

    Zhou, Yuejin; Cheng, Yebin; Dai, Wenlin; Tong, Tiejun

    2017-01-01

    Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.

  16. Optimal difference-based estimation for partially linear models

    Zhou, Yuejin

    2017-12-16

    Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.

  17. USE OF THE SIMPLE LINEAR REGRESSION MODEL IN MACRO-ECONOMICAL ANALYSES

    Constantin ANGHELACHE

    2011-10-01

    Full Text Available The article presents the fundamental aspects of the linear regression, as a toolbox which can be used in macroeconomic analyses. The article describes the estimation of the parameters, the statistical tests used, the homoscesasticity and heteroskedasticity. The use of econometrics instrument in macroeconomics is an important factor that guarantees the quality of the models, analyses, results and possible interpretation that can be drawn at this level.

  18. Efficient estimation of an additive quantile regression model

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2011-01-01

    In this paper, two non-parametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a more viable alternative to existing kernel-based approaches. The second estimator

  19. Linear Regression on Sparse Features for Single-Channel Speech Separation

    Schmidt, Mikkel N.; Olsson, Rasmus Kongsgaard

    2007-01-01

    In this work we address the problem of separating multiple speakers from a single microphone recording. We formulate a linear regression model for estimating each speaker based on features derived from the mixture. The employed feature representation is a sparse, non-negative encoding of the speech...... mixture in terms of pre-learned speaker-dependent dictionaries. Previous work has shown that this feature representation by itself provides some degree of separation. We show that the performance is significantly improved when regression analysis is performed on the sparse, non-negative features, both...

  20. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.

    Lian, Yao; Ge, Meng; Pan, Xian-Ming

    2014-12-19

    B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task. In this work, based on the antigen's primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728. We have presented a reliable method for the identification of linear B cell epitope using antigen's primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/ .

  1. LINEAR REGRESSION MODEL ESTİMATİON FOR RIGHT CENSORED DATA

    Ersin Yılmaz

    2016-05-01

    Full Text Available In this study, firstly we will define a right censored data. If we say shortly right-censored data is censoring values that above the exact line. This may be related with scaling device. And then  we will use response variable acquainted from right-censored explanatory variables. Then the linear regression model will be estimated. For censored data’s existence, Kaplan-Meier weights will be used for  the estimation of the model. With the weights regression model  will be consistent and unbiased with that.   And also there is a method for the censored data that is a semi parametric regression and this method also give  useful results  for censored data too. This study also might be useful for the health studies because of the censored data used in medical issues generally.

  2. Genomic prediction based on data from three layer lines using non-linear regression models.

    Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L

    2014-11-06

    Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional

  3. Linear regression metamodeling as a tool to summarize and present simulation model results.

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  4. Analysis of dental caries using generalized linear and count regression models

    Javali M. Phil

    2013-11-01

    Full Text Available Generalized linear models (GLM are generalization of linear regression models, which allow fitting regression models to response data in all the sciences especially medical and dental sciences that follow a general exponential family. These are flexible and widely used class of such models that can accommodate response variables. Count data are frequently characterized by overdispersion and excess zeros. Zero-inflated count models provide a parsimonious yet powerful way to model this type of situation. Such models assume that the data are a mixture of two separate data generation processes: one generates only zeros, and the other is either a Poisson or a negative binomial data-generating process. Zero inflated count regression models such as the zero-inflated Poisson (ZIP, zero-inflated negative binomial (ZINB regression models have been used to handle dental caries count data with many zeros. We present an evaluation framework to the suitability of applying the GLM, Poisson, NB, ZIP and ZINB to dental caries data set where the count data may exhibit evidence of many zeros and over-dispersion. Estimation of the model parameters using the method of maximum likelihood is provided. Based on the Vuong test statistic and the goodness of fit measure for dental caries data, the NB and ZINB regression models perform better than other count regression models.

  5. Adding a Parameter Increases the Variance of an Estimated Regression Function

    Withers, Christopher S.; Nadarajah, Saralees

    2011-01-01

    The linear regression model is one of the most popular models in statistics. It is also one of the simplest models in statistics. It has received applications in almost every area of science, engineering and medicine. In this article, the authors show that adding a predictor to a linear model increases the variance of the estimated regression…

  6. Predicting recovery of cognitive function soon after stroke: differential modeling of logarithmic and linear regression.

    Suzuki, Makoto; Sugimura, Yuko; Yamada, Sumio; Omori, Yoshitsugu; Miyamoto, Masaaki; Yamamoto, Jun-ichi

    2013-01-01

    Cognitive disorders in the acute stage of stroke are common and are important independent predictors of adverse outcome in the long term. Despite the impact of cognitive disorders on both patients and their families, it is still difficult to predict the extent or duration of cognitive impairments. The objective of the present study was, therefore, to provide data on predicting the recovery of cognitive function soon after stroke by differential modeling with logarithmic and linear regression. This study included two rounds of data collection comprising 57 stroke patients enrolled in the first round for the purpose of identifying the time course of cognitive recovery in the early-phase group data, and 43 stroke patients in the second round for the purpose of ensuring that the correlation of the early-phase group data applied to the prediction of each individual's degree of cognitive recovery. In the first round, Mini-Mental State Examination (MMSE) scores were assessed 3 times during hospitalization, and the scores were regressed on the logarithm and linear of time. In the second round, calculations of MMSE scores were made for the first two scoring times after admission to tailor the structures of logarithmic and linear regression formulae to fit an individual's degree of functional recovery. The time course of early-phase recovery for cognitive functions resembled both logarithmic and linear functions. However, MMSE scores sampled at two baseline points based on logarithmic regression modeling could estimate prediction of cognitive recovery more accurately than could linear regression modeling (logarithmic modeling, R(2) = 0.676, PLogarithmic modeling based on MMSE scores could accurately predict the recovery of cognitive function soon after the occurrence of stroke. This logarithmic modeling with mathematical procedures is simple enough to be adopted in daily clinical practice.

  7. An evaluation of bias in propensity score-adjusted non-linear regression models.

    Wan, Fei; Mitra, Nandita

    2018-03-01

    Propensity score methods are commonly used to adjust for observed confounding when estimating the conditional treatment effect in observational studies. One popular method, covariate adjustment of the propensity score in a regression model, has been empirically shown to be biased in non-linear models. However, no compelling underlying theoretical reason has been presented. We propose a new framework to investigate bias and consistency of propensity score-adjusted treatment effects in non-linear models that uses a simple geometric approach to forge a link between the consistency of the propensity score estimator and the collapsibility of non-linear models. Under this framework, we demonstrate that adjustment of the propensity score in an outcome model results in the decomposition of observed covariates into the propensity score and a remainder term. Omission of this remainder term from a non-collapsible regression model leads to biased estimates of the conditional odds ratio and conditional hazard ratio, but not for the conditional rate ratio. We further show, via simulation studies, that the bias in these propensity score-adjusted estimators increases with larger treatment effect size, larger covariate effects, and increasing dissimilarity between the coefficients of the covariates in the treatment model versus the outcome model.

  8. Implicit collinearity effect in linear regression: Application to basal ...

    Collinearity of predictor variables is a severe problem in the least square regression analysis. It contributes to the instability of regression coefficients and leads to a wrong prediction accuracy. Despite these problems, studies are conducted with a large number of observed and derived variables linked with a response ...

  9. Height and Weight Estimation From Anthropometric Measurements Using Machine Learning Regressions.

    Rativa, Diego; Fernandes, Bruno J T; Roque, Alexandre

    2018-01-01

    Height and weight are measurements explored to tracking nutritional diseases, energy expenditure, clinical conditions, drug dosages, and infusion rates. Many patients are not ambulant or may be unable to communicate, and a sequence of these factors may not allow accurate estimation or measurements; in those cases, it can be estimated approximately by anthropometric means. Different groups have proposed different linear or non-linear equations which coefficients are obtained by using single or multiple linear regressions. In this paper, we present a complete study of the application of different learning models to estimate height and weight from anthropometric measurements: support vector regression, Gaussian process, and artificial neural networks. The predicted values are significantly more accurate than that obtained with conventional linear regressions. In all the cases, the predictions are non-sensitive to ethnicity, and to gender, if more than two anthropometric parameters are analyzed. The learning model analysis creates new opportunities for anthropometric applications in industry, textile technology, security, and health care.

  10. Evaluation of linear regression techniques for atmospheric applications: the importance of appropriate weighting

    C. Wu

    2018-03-01

    Full Text Available Linear regression techniques are widely used in atmospheric science, but they are often improperly applied due to lack of consideration or inappropriate handling of measurement uncertainty. In this work, numerical experiments are performed to evaluate the performance of five linear regression techniques, significantly extending previous works by Chu and Saylor. The five techniques are ordinary least squares (OLS, Deming regression (DR, orthogonal distance regression (ODR, weighted ODR (WODR, and York regression (YR. We first introduce a new data generation scheme that employs the Mersenne twister (MT pseudorandom number generator. The numerical simulations are also improved by (a refining the parameterization of nonlinear measurement uncertainties, (b inclusion of a linear measurement uncertainty, and (c inclusion of WODR for comparison. Results show that DR, WODR and YR produce an accurate slope, but the intercept by WODR and YR is overestimated and the degree of bias is more pronounced with a low R2 XY dataset. The importance of a properly weighting parameter λ in DR is investigated by sensitivity tests, and it is found that an improper λ in DR can lead to a bias in both the slope and intercept estimation. Because the λ calculation depends on the actual form of the measurement error, it is essential to determine the exact form of measurement error in the XY data during the measurement stage. If a priori error in one of the variables is unknown, or the measurement error described cannot be trusted, DR, WODR and YR can provide the least biases in slope and intercept among all tested regression techniques. For these reasons, DR, WODR and YR are recommended for atmospheric studies when both X and Y data have measurement errors. An Igor Pro-based program (Scatter Plot was developed to facilitate the implementation of error-in-variables regressions.

  11. Evaluation of linear regression techniques for atmospheric applications: the importance of appropriate weighting

    Wu, Cheng; Zhen Yu, Jian

    2018-03-01

    Linear regression techniques are widely used in atmospheric science, but they are often improperly applied due to lack of consideration or inappropriate handling of measurement uncertainty. In this work, numerical experiments are performed to evaluate the performance of five linear regression techniques, significantly extending previous works by Chu and Saylor. The five techniques are ordinary least squares (OLS), Deming regression (DR), orthogonal distance regression (ODR), weighted ODR (WODR), and York regression (YR). We first introduce a new data generation scheme that employs the Mersenne twister (MT) pseudorandom number generator. The numerical simulations are also improved by (a) refining the parameterization of nonlinear measurement uncertainties, (b) inclusion of a linear measurement uncertainty, and (c) inclusion of WODR for comparison. Results show that DR, WODR and YR produce an accurate slope, but the intercept by WODR and YR is overestimated and the degree of bias is more pronounced with a low R2 XY dataset. The importance of a properly weighting parameter λ in DR is investigated by sensitivity tests, and it is found that an improper λ in DR can lead to a bias in both the slope and intercept estimation. Because the λ calculation depends on the actual form of the measurement error, it is essential to determine the exact form of measurement error in the XY data during the measurement stage. If a priori error in one of the variables is unknown, or the measurement error described cannot be trusted, DR, WODR and YR can provide the least biases in slope and intercept among all tested regression techniques. For these reasons, DR, WODR and YR are recommended for atmospheric studies when both X and Y data have measurement errors. An Igor Pro-based program (Scatter Plot) was developed to facilitate the implementation of error-in-variables regressions.

  12. Efficient estimation of an additive quantile regression model

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2009-01-01

    In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By

  13. Efficient estimation of an additive quantile regression model

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2010-01-01

    In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By

  14. The comparison between several robust ridge regression estimators in the presence of multicollinearity and multiple outliers

    Zahari, Siti Meriam; Ramli, Norazan Mohamed; Moktar, Balkiah; Zainol, Mohammad Said

    2014-09-01

    In the presence of multicollinearity and multiple outliers, statistical inference of linear regression model using ordinary least squares (OLS) estimators would be severely affected and produces misleading results. To overcome this, many approaches have been investigated. These include robust methods which were reported to be less sensitive to the presence of outliers. In addition, ridge regression technique was employed to tackle multicollinearity problem. In order to mitigate both problems, a combination of ridge regression and robust methods was discussed in this study. The superiority of this approach was examined when simultaneous presence of multicollinearity and multiple outliers occurred in multiple linear regression. This study aimed to look at the performance of several well-known robust estimators; M, MM, RIDGE and robust ridge regression estimators, namely Weighted Ridge M-estimator (WRM), Weighted Ridge MM (WRMM), Ridge MM (RMM), in such a situation. Results of the study showed that in the presence of simultaneous multicollinearity and multiple outliers (in both x and y-direction), the RMM and RIDGE are more or less similar in terms of superiority over the other estimators, regardless of the number of observation, level of collinearity and percentage of outliers used. However, when outliers occurred in only single direction (y-direction), the WRMM estimator is the most superior among the robust ridge regression estimators, by producing the least variance. In conclusion, the robust ridge regression is the best alternative as compared to robust and conventional least squares estimators when dealing with simultaneous presence of multicollinearity and outliers.

  15. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  16. Admissible Estimators in the General Multivariate Linear Model with Respect to Inequality Restricted Parameter Set

    Shangli Zhang

    2009-01-01

    Full Text Available By using the methods of linear algebra and matrix inequality theory, we obtain the characterization of admissible estimators in the general multivariate linear model with respect to inequality restricted parameter set. In the classes of homogeneous and general linear estimators, the necessary and suffcient conditions that the estimators of regression coeffcient function are admissible are established.

  17. Estimating the exceedance probability of rain rate by logistic regression

    Chiu, Long S.; Kedem, Benjamin

    1990-01-01

    Recent studies have shown that the fraction of an area with rain intensity above a fixed threshold is highly correlated with the area-averaged rain rate. To estimate the fractional rainy area, a logistic regression model, which estimates the conditional probability that rain rate over an area exceeds a fixed threshold given the values of related covariates, is developed. The problem of dependency in the data in the estimation procedure is bypassed by the method of partial likelihood. Analyses of simulated scanning multichannel microwave radiometer and observed electrically scanning microwave radiometer data during the Global Atlantic Tropical Experiment period show that the use of logistic regression in pixel classification is superior to multiple regression in predicting whether rain rate at each pixel exceeds a given threshold, even in the presence of noisy data. The potential of the logistic regression technique in satellite rain rate estimation is discussed.

  18. Linear Covariance Analysis and Epoch State Estimators

    Markley, F. Landis; Carpenter, J. Russell

    2014-01-01

    This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.

  19. Surface tensor estimation from linear sections

    Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel

    From Crofton's formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....

  20. Surface tensor estimation from linear sections

    Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel

    2015-01-01

    From Crofton’s formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....

  1. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.

    Kawashima, Issaku; Kumano, Hiroaki

    2017-01-01

    Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  2. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling

    Issaku Kawashima

    2017-07-01

    Full Text Available Mind-wandering (MW, task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  3. A flexible fuzzy regression algorithm for forecasting oil consumption estimation

    Azadeh, A.; Khakestani, M.; Saberi, M.

    2009-01-01

    Oil consumption plays a vital role in socio-economic development of most countries. This study presents a flexible fuzzy regression algorithm for forecasting oil consumption based on standard economic indicators. The standard indicators are annual population, cost of crude oil import, gross domestic production (GDP) and annual oil production in the last period. The proposed algorithm uses analysis of variance (ANOVA) to select either fuzzy regression or conventional regression for future demand estimation. The significance of the proposed algorithm is three fold. First, it is flexible and identifies the best model based on the results of ANOVA and minimum absolute percentage error (MAPE), whereas previous studies consider the best fitted fuzzy regression model based on MAPE or other relative error results. Second, the proposed model may identify conventional regression as the best model for future oil consumption forecasting because of its dynamic structure, whereas previous studies assume that fuzzy regression always provide the best solutions and estimation. Third, it utilizes the most standard independent variables for the regression models. To show the applicability and superiority of the proposed flexible fuzzy regression algorithm the data for oil consumption in Canada, United States, Japan and Australia from 1990 to 2005 are used. The results show that the flexible algorithm provides accurate solution for oil consumption estimation problem. The algorithm may be used by policy makers to accurately foresee the behavior of oil consumption in various regions.

  4. Linear regression models for quantitative assessment of left ...

    Changes in left ventricular structures and function have been reported in cardiomyopathies. No prediction models have been established in this environment. This study established regression models for prediction of left ventricular structures in normal subjects. A sample of normal subjects was drawn from a large urban ...

  5. Linearity and Misspecification Tests for Vector Smooth Transition Regression Models

    Teräsvirta, Timo; Yang, Yukai

    The purpose of the paper is to derive Lagrange multiplier and Lagrange multiplier type specification and misspecification tests for vector smooth transition regression models. We report results from simulation studies in which the size and power properties of the proposed asymptotic tests in small...

  6. Using multiple linear regression techniques to quantify carbon ...

    Fallow ecosystems provide a significant carbon stock that can be quantified for inclusion in the accounts of global carbon budgets. Process and statistical models of productivity, though useful, are often technically rigid as the conditions for their application are not easy to satisfy. Multiple regression techniques have been ...

  7. Interpreting Multiple Linear Regression: A Guidebook of Variable Importance

    Nathans, Laura L.; Oswald, Frederick L.; Nimon, Kim

    2012-01-01

    Multiple regression (MR) analyses are commonly employed in social science fields. It is also common for interpretation of results to typically reflect overreliance on beta weights, often resulting in very limited interpretations of variable importance. It appears that few researchers employ other methods to obtain a fuller understanding of what…

  8. Testing for marginal linear effects in quantile regression

    Wang, Huixia Judy

    2017-10-23

    The paper develops a new marginal testing procedure to detect significant predictors that are associated with the conditional quantiles of a scalar response. The idea is to fit the marginal quantile regression on each predictor one at a time, and then to base the test on the t-statistics that are associated with the most predictive predictors. A resampling method is devised to calibrate this test statistic, which has non-regular limiting behaviour due to the selection of the most predictive variables. Asymptotic validity of the procedure is established in a general quantile regression setting in which the marginal quantile regression models can be misspecified. Even though a fixed dimension is assumed to derive the asymptotic results, the test proposed is applicable and computationally feasible for large dimensional predictors. The method is more flexible than existing marginal screening test methods based on mean regression and has the added advantage of being robust against outliers in the response. The approach is illustrated by using an application to a human immunodeficiency virus drug resistance data set.

  9. Testing for marginal linear effects in quantile regression

    Wang, Huixia Judy; McKeague, Ian W.; Qian, Min

    2017-01-01

    The paper develops a new marginal testing procedure to detect significant predictors that are associated with the conditional quantiles of a scalar response. The idea is to fit the marginal quantile regression on each predictor one at a time, and then to base the test on the t-statistics that are associated with the most predictive predictors. A resampling method is devised to calibrate this test statistic, which has non-regular limiting behaviour due to the selection of the most predictive variables. Asymptotic validity of the procedure is established in a general quantile regression setting in which the marginal quantile regression models can be misspecified. Even though a fixed dimension is assumed to derive the asymptotic results, the test proposed is applicable and computationally feasible for large dimensional predictors. The method is more flexible than existing marginal screening test methods based on mean regression and has the added advantage of being robust against outliers in the response. The approach is illustrated by using an application to a human immunodeficiency virus drug resistance data set.

  10. Generalised Partially Linear Regression with Misclassified Data and an Application to Labour Market Transitions

    Dlugosz, Stephan; Mammen, Enno; Wilke, Ralf

    We consider the semiparametric generalised linear regression model which has mainstream empirical models such as the (partially) linear mean regression, logistic and multinomial regression as special cases. As an extension to related literature we allow a misclassified covariate to be interacted...

  11. Estimating linear effects in ANOVA designs: the easy way.

    Pinhas, Michal; Tzelgov, Joseph; Ganor-Stern, Dana

    2012-09-01

    Research in cognitive science has documented numerous phenomena that are approximated by linear relationships. In the domain of numerical cognition, the use of linear regression for estimating linear effects (e.g., distance and SNARC effects) became common following Fias, Brysbaert, Geypens, and d'Ydewalle's (1996) study on the SNARC effect. While their work has become the model for analyzing linear effects in the field, it requires statistical analysis of individual participants and does not provide measures of the proportions of variability accounted for (cf. Lorch & Myers, 1990). In the present methodological note, using both the distance and SNARC effects as examples, we demonstrate how linear effects can be estimated in a simple way within the framework of repeated measures analysis of variance. This method allows for estimating effect sizes in terms of both slope and proportions of variability accounted for. Finally, we show that our method can easily be extended to estimate linear interaction effects, not just linear effects calculated as main effects.

  12. Variable selection in multiple linear regression: The influence of ...

    provide an indication of whether the fit of the selected model improves or ... and calculate M(−i); quantify the influence of case i in terms of a function, f(•), of M and ..... [21] Venter JH & Snyman JLJ, 1997, Linear model selection based on risk ...

  13. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach.

    Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne

    2016-04-01

    Existing evidence suggests that ambient ultrafine particles (UFPs) (regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  14. Regression and kriging analysis for grid power factor estimation

    Rajesh Guntaka

    2014-12-01

    Full Text Available The measurement of power factor (PF in electrical utility grids is a mainstay of load balancing and is also a critical element of transmission and distribution efficiency. The measurement of PF dates back to the earliest periods of electrical power distribution to public grids. In the wide-area distribution grid, measurement of current waveforms is trivial and may be accomplished at any point in the grid using a current tap transformer. However, voltage measurement requires reference to ground and so is more problematic and measurements are normally constrained to points that have ready and easy access to a ground source. We present two mathematical analysis methods based on kriging and linear least square estimation (LLSE (regression to derive PF at nodes with unknown voltages that are within a perimeter of sample nodes with ground reference across a selected power grid. Our results indicate an error average of 1.884% that is within acceptable tolerances for PF measurements that are used in load balancing tasks.

  15. Comparison of l₁-Norm SVR and Sparse Coding Algorithms for Linear Regression.

    Zhang, Qingtian; Hu, Xiaolin; Zhang, Bo

    2015-08-01

    Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l1-norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l1-norm SVR and SC can be used for linear regression. In this brief, the close connection between the l1-norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l1-norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm.

  16. On the estimation and testing of predictive panel regressions

    Karabiyik, H.; Westerlund, Joakim; Narayan, Paresh

    2016-01-01

    Hjalmarsson (2010) considers an OLS-based estimator of predictive panel regressions that is argued to be mixed normal under very general conditions. In a recent paper, Westerlund et al. (2016) show that while consistent, the estimator is generally not mixed normal, which invalidates standard normal

  17. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

    Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

    2016-03-01

    In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Bivariate least squares linear regression: Towards a unified analytic formalism. I. Functional models

    Caimmi, R.

    2011-08-01

    Concerning bivariate least squares linear regression, the classical approach pursued for functional models in earlier attempts ( York, 1966, 1969) is reviewed using a new formalism in terms of deviation (matrix) traces which, for unweighted data, reduce to usual quantities leaving aside an unessential (but dimensional) multiplicative factor. Within the framework of classical error models, the dependent variable relates to the independent variable according to the usual additive model. The classes of linear models considered are regression lines in the general case of correlated errors in X and in Y for weighted data, and in the opposite limiting situations of (i) uncorrelated errors in X and in Y, and (ii) completely correlated errors in X and in Y. The special case of (C) generalized orthogonal regression is considered in detail together with well known subcases, namely: (Y) errors in X negligible (ideally null) with respect to errors in Y; (X) errors in Y negligible (ideally null) with respect to errors in X; (O) genuine orthogonal regression; (R) reduced major-axis regression. In the limit of unweighted data, the results determined for functional models are compared with their counterparts related to extreme structural models i.e. the instrumental scatter is negligible (ideally null) with respect to the intrinsic scatter ( Isobe et al., 1990; Feigelson and Babu, 1992). While regression line slope and intercept estimators for functional and structural models necessarily coincide, the contrary holds for related variance estimators even if the residuals obey a Gaussian distribution, with the exception of Y models. An example of astronomical application is considered, concerning the [O/H]-[Fe/H] empirical relations deduced from five samples related to different stars and/or different methods of oxygen abundance determination. For selected samples and assigned methods, different regression models yield consistent results within the errors (∓ σ) for both

  19. Linearized motion estimation for articulated planes.

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  20. Subset Statistics in the linear IV regression model

    Kleibergen, F.R.

    2005-01-01

    We show that the limiting distributions of subset generalizations of the weak instrument robust instrumental variable statistics are boundedly similar when the remaining structural parameters are estimated using maximum likelihood. They are bounded from above by the limiting distributions which

  1. Relative Importance for Linear Regression in R: The Package relaimpo

    Groemping, Ulrike

    2006-01-01

    Relative importance is a topic that has seen a lot of interest in recent years, particularly in applied work. The R package relaimpo implements six different metrics for assessing relative importance of regressors in the linear model, two of which are recommended - averaging over orderings of regressors and a newly proposed metric (Feldman 2005) called pmvd. Apart from delivering the metrics themselves, relaimpo also provides (exploratory) bootstrap confidence intervals. This paper offers a b...

  2. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data.

    Ying, Gui-Shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

    2017-04-01

    To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field in the elderly. When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI -0.03 to 0.32D, p = 0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, p = 0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller p-values, while analysis of the worse eye provided larger p-values than mixed effects models and marginal models. In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision.

  3. Quantitative electron microscope autoradiography: application of multiple linear regression analysis

    Markov, D.V.

    1986-01-01

    A new method for the analysis of high resolution EM autoradiographs is described. It identifies labelled cell organelle profiles in sections on a strictly statistical basis and provides accurate estimates for their radioactivity without the need to make any assumptions about their size, shape and spatial arrangement. (author)

  4. Least-Squares Linear Regression and Schrodinger's Cat: Perspectives on the Analysis of Regression Residuals.

    Hecht, Jeffrey B.

    The analysis of regression residuals and detection of outliers are discussed, with emphasis on determining how deviant an individual data point must be to be considered an outlier and the impact that multiple suspected outlier data points have on the process of outlier determination and treatment. Only bivariate (one dependent and one independent)…

  5. Parameter Estimation for Improving Association Indicators in Binary Logistic Regression

    Mahdi Bashiri

    2012-02-01

    Full Text Available The aim of this paper is estimation of Binary logistic regression parameters for maximizing the log-likelihood function with improved association indicators. In this paper the parameter estimation steps have been explained and then measures of association have been introduced and their calculations have been analyzed. Moreover a new related indicators based on membership degree level have been expressed. Indeed association measures demonstrate the number of success responses occurred in front of failure in certain number of Bernoulli independent experiments. In parameter estimation, existing indicators values is not sensitive to the parameter values, whereas the proposed indicators are sensitive to the estimated parameters during the iterative procedure. Therefore, proposing a new association indicator of binary logistic regression with more sensitivity to the estimated parameters in maximizing the log- likelihood in iterative procedure is innovation of this study.

  6. Direct integral linear least square regression method for kinetic evaluation of hepatobiliary scintigraphy

    Shuke, Noriyuki

    1991-01-01

    In hepatobiliary scintigraphy, kinetic model analysis, which provides kinetic parameters like hepatic extraction or excretion rate, have been done for quantitative evaluation of liver function. In this analysis, unknown model parameters are usually determined using nonlinear least square regression method (NLS method) where iterative calculation and initial estimate for unknown parameters are required. As a simple alternative to NLS method, direct integral linear least square regression method (DILS method), which can determine model parameters by a simple calculation without initial estimate, is proposed, and tested the applicability to analysis of hepatobiliary scintigraphy. In order to see whether DILS method could determine model parameters as good as NLS method, or to determine appropriate weight for DILS method, simulated theoretical data based on prefixed parameters were fitted to 1 compartment model using both DILS method with various weightings and NLS method. The parameter values obtained were then compared with prefixed values which were used for data generation. The effect of various weights on the error of parameter estimate was examined, and inverse of time was found to be the best weight to make the error minimum. When using this weight, DILS method could give parameter values close to those obtained by NLS method and both parameter values were very close to prefixed values. With appropriate weighting, the DILS method could provide reliable parameter estimate which is relatively insensitive to the data noise. In conclusion, the DILS method could be used as a simple alternative to NLS method, providing reliable parameter estimate. (author)

  7. Significance tests to determine the direction of effects in linear regression models.

    Wiedermann, Wolfgang; Hagmann, Michael; von Eye, Alexander

    2015-02-01

    Previous studies have discussed asymmetric interpretations of the Pearson correlation coefficient and have shown that higher moments can be used to decide on the direction of dependence in the bivariate linear regression setting. The current study extends this approach by illustrating that the third moment of regression residuals may also be used to derive conclusions concerning the direction of effects. Assuming non-normally distributed variables, it is shown that the distribution of residuals of the correctly specified regression model (e.g., Y is regressed on X) is more symmetric than the distribution of residuals of the competing model (i.e., X is regressed on Y). Based on this result, 4 one-sample tests are discussed which can be used to decide which variable is more likely to be the response and which one is more likely to be the explanatory variable. A fifth significance test is proposed based on the differences of skewness estimates, which leads to a more direct test of a hypothesis that is compatible with direction of dependence. A Monte Carlo simulation study was performed to examine the behaviour of the procedures under various degrees of associations, sample sizes, and distributional properties of the underlying population. An empirical example is given which illustrates the application of the tests in practice. © 2014 The British Psychological Society.

  8. Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure.

    Li, Yanming; Nan, Bin; Zhu, Ji

    2015-06-01

    We propose a multivariate sparse group lasso variable selection and estimation method for data with high-dimensional predictors as well as high-dimensional response variables. The method is carried out through a penalized multivariate multiple linear regression model with an arbitrary group structure for the regression coefficient matrix. It suits many biology studies well in detecting associations between multiple traits and multiple predictors, with each trait and each predictor embedded in some biological functional groups such as genes, pathways or brain regions. The method is able to effectively remove unimportant groups as well as unimportant individual coefficients within important groups, particularly for large p small n problems, and is flexible in handling various complex group structures such as overlapping or nested or multilevel hierarchical structures. The method is evaluated through extensive simulations with comparisons to the conventional lasso and group lasso methods, and is applied to an eQTL association study. © 2015, The International Biometric Society.

  9. Detection of epistatic effects with logic regression and a classical linear regression model.

    Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata

    2014-02-01

    To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.

  10. Small sample GEE estimation of regression parameters for longitudinal data.

    Paul, Sudhir; Zhang, Xuemao

    2014-09-28

    Longitudinal (clustered) response data arise in many bio-statistical applications which, in general, cannot be assumed to be independent. Generalized estimating equation (GEE) is a widely used method to estimate marginal regression parameters for correlated responses. The advantage of the GEE is that the estimates of the regression parameters are asymptotically unbiased even if the correlation structure is misspecified, although their small sample properties are not known. In this paper, two bias adjusted GEE estimators of the regression parameters in longitudinal data are obtained when the number of subjects is small. One is based on a bias correction, and the other is based on a bias reduction. Simulations show that the performances of both the bias-corrected methods are similar in terms of bias, efficiency, coverage probability, average coverage length, impact of misspecification of correlation structure, and impact of cluster size on bias correction. Both these methods show superior properties over the GEE estimates for small samples. Further, analysis of data involving a small number of subjects also shows improvement in bias, MSE, standard error, and length of the confidence interval of the estimates by the two bias adjusted methods over the GEE estimates. For small to moderate sample sizes (N ≤50), either of the bias-corrected methods GEEBc and GEEBr can be used. However, the method GEEBc should be preferred over GEEBr, as the former is computationally easier. For large sample sizes, the GEE method can be used. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling.

    Edelman, Eric R; van Kuijk, Sander M J; Hamaekers, Ankie E W; de Korte, Marcel J M; van Merode, Godefridus G; Buhre, Wolfgang F F A

    2017-01-01

    For efficient utilization of operating rooms (ORs), accurate schedules of assigned block time and sequences of patient cases need to be made. The quality of these planning tools is dependent on the accurate prediction of total procedure time (TPT) per case. In this paper, we attempt to improve the accuracy of TPT predictions by using linear regression models based on estimated surgeon-controlled time (eSCT) and other variables relevant to TPT. We extracted data from a Dutch benchmarking database of all surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. Potential predictors of TPT that were included in the subsequent analysis were eSCT, patient age, type of operation, American Society of Anesthesiologists (ASA) physical status classification, and type of anesthesia used. First, we computed the predicted TPT based on a previously described fixed ratio model for each record, multiplying eSCT by 1.33. This number is based on the research performed by van Veen-Berkx et al., which showed that 33% of SCT is generally a good approximation of anesthesia-controlled time (ACT). We then systematically tested all possible linear regression models to predict TPT using eSCT in combination with the other available independent variables. In addition, all regression models were again tested without eSCT as a predictor to predict ACT separately (which leads to TPT by adding SCT). TPT was most accurately predicted using a linear regression model based on the independent variables eSCT, type of operation, ASA classification, and type of anesthesia. This model performed significantly better than the fixed ratio model and the method of predicting ACT separately. Making use of these more accurate predictions in planning and sequencing algorithms may enable an increase in utilization of ORs, leading to significant financial and productivity related benefits.

  12. Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling

    Eric R. Edelman

    2017-06-01

    Full Text Available For efficient utilization of operating rooms (ORs, accurate schedules of assigned block time and sequences of patient cases need to be made. The quality of these planning tools is dependent on the accurate prediction of total procedure time (TPT per case. In this paper, we attempt to improve the accuracy of TPT predictions by using linear regression models based on estimated surgeon-controlled time (eSCT and other variables relevant to TPT. We extracted data from a Dutch benchmarking database of all surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. Potential predictors of TPT that were included in the subsequent analysis were eSCT, patient age, type of operation, American Society of Anesthesiologists (ASA physical status classification, and type of anesthesia used. First, we computed the predicted TPT based on a previously described fixed ratio model for each record, multiplying eSCT by 1.33. This number is based on the research performed by van Veen-Berkx et al., which showed that 33% of SCT is generally a good approximation of anesthesia-controlled time (ACT. We then systematically tested all possible linear regression models to predict TPT using eSCT in combination with the other available independent variables. In addition, all regression models were again tested without eSCT as a predictor to predict ACT separately (which leads to TPT by adding SCT. TPT was most accurately predicted using a linear regression model based on the independent variables eSCT, type of operation, ASA classification, and type of anesthesia. This model performed significantly better than the fixed ratio model and the method of predicting ACT separately. Making use of these more accurate predictions in planning and sequencing algorithms may enable an increase in utilization of ORs, leading to significant financial and productivity related

  13. Building a new predictor for multiple linear regression technique-based corrective maintenance turnaround time.

    Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa

    2008-01-01

    This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.

  14. A Linear Regression Model for Global Solar Radiation on Horizontal Surfaces at Warri, Nigeria

    Michael S. Okundamiya

    2013-10-01

    Full Text Available The growing anxiety on the negative effects of fossil fuels on the environment and the global emission reduction targets call for a more extensive use of renewable energy alternatives. Efficient solar energy utilization is an essential solution to the high atmospheric pollution caused by fossil fuel combustion. Global solar radiation (GSR data, which are useful for the design and evaluation of solar energy conversion system, are not measured at the forty-five meteorological stations in Nigeria. The dearth of the measured solar radiation data calls for accurate estimation. This study proposed a temperature-based linear regression, for predicting the monthly average daily GSR on horizontal surfaces, at Warri (latitude 5.020N and longitude 7.880E an oil city located in the south-south geopolitical zone, in Nigeria. The proposed model is analyzed based on five statistical indicators (coefficient of correlation, coefficient of determination, mean bias error, root mean square error, and t-statistic, and compared with the existing sunshine-based model for the same study. The results indicate that the proposed temperature-based linear regression model could replace the existing sunshine-based model for generating global solar radiation data. Keywords: air temperature; empirical model; global solar radiation; regression analysis; renewable energy; Warri

  15. Multiple regression technique for Pth degree polynominals with and without linear cross products

    Davis, J. W.

    1973-01-01

    A multiple regression technique was developed by which the nonlinear behavior of specified independent variables can be related to a given dependent variable. The polynomial expression can be of Pth degree and can incorporate N independent variables. Two cases are treated such that mathematical models can be studied both with and without linear cross products. The resulting surface fits can be used to summarize trends for a given phenomenon and provide a mathematical relationship for subsequent analysis. To implement this technique, separate computer programs were developed for the case without linear cross products and for the case incorporating such cross products which evaluate the various constants in the model regression equation. In addition, the significance of the estimated regression equation is considered and the standard deviation, the F statistic, the maximum absolute percent error, and the average of the absolute values of the percent of error evaluated. The computer programs and their manner of utilization are described. Sample problems are included to illustrate the use and capability of the technique which show the output formats and typical plots comparing computer results to each set of input data.

  16. Research on the multiple linear regression in non-invasive blood glucose measurement.

    Zhu, Jianming; Chen, Zhencheng

    2015-01-01

    A non-invasive blood glucose measurement sensor and the data process algorithm based on the metabolic energy conservation (MEC) method are presented in this paper. The physiological parameters of human fingertip can be measured by various sensing modalities, and blood glucose value can be evaluated with the physiological parameters by the multiple linear regression analysis. Five methods such as enter, remove, forward, backward and stepwise in multiple linear regression were compared, and the backward method had the best performance. The best correlation coefficient was 0.876 with the standard error of the estimate 0.534, and the significance was 0.012 (sig. regression equation was valid. The Clarke error grid analysis was performed to compare the MEC method with the hexokinase method, using 200 data points. The correlation coefficient R was 0.867 and all of the points were located in Zone A and Zone B, which shows the MEC method provides a feasible and valid way for non-invasive blood glucose measurement.

  17. SNR Estimation in Linear Systems with Gaussian Matrices

    Suliman, Mohamed Abdalla Elhag; Alrashdi, Ayed; Ballal, Tarig; Al-Naffouri, Tareq Y.

    2017-01-01

    This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.

  18. SNR Estimation in Linear Systems with Gaussian Matrices

    Suliman, Mohamed Abdalla Elhag

    2017-09-27

    This letter proposes a highly accurate algorithm to estimate the signal-to-noise ratio (SNR) for a linear system from a single realization of the received signal. We assume that the linear system has a Gaussian matrix with one sided left correlation. The unknown entries of the signal and the noise are assumed to be independent and identically distributed with zero mean and can be drawn from any distribution. We use the ridge regression function of this linear model in company with tools and techniques adapted from random matrix theory to achieve, in closed form, accurate estimation of the SNR without prior statistical knowledge on the signal or the noise. Simulation results show that the proposed method is very accurate.

  19. Improvement of Storm Forecasts Using Gridded Bayesian Linear Regression for Northeast United States

    Yang, J.; Astitha, M.; Schwartz, C. S.

    2017-12-01

    Bayesian linear regression (BLR) is a post-processing technique in which regression coefficients are derived and used to correct raw forecasts based on pairs of observation-model values. This study presents the development and application of a gridded Bayesian linear regression (GBLR) as a new post-processing technique to improve numerical weather prediction (NWP) of rain and wind storm forecasts over northeast United States. Ten controlled variables produced from ten ensemble members of the National Center for Atmospheric Research (NCAR) real-time prediction system are used for a GBLR model. In the GBLR framework, leave-one-storm-out cross-validation is utilized to study the performances of the post-processing technique in a database composed of 92 storms. To estimate the regression coefficients of the GBLR, optimization procedures that minimize the systematic and random error of predicted atmospheric variables (wind speed, precipitation, etc.) are implemented for the modeled-observed pairs of training storms. The regression coefficients calculated for meteorological stations of the National Weather Service are interpolated back to the model domain. An analysis of forecast improvements based on error reductions during the storms will demonstrate the value of GBLR approach. This presentation will also illustrate how the variances are optimized for the training partition in GBLR and discuss the verification strategy for grid points where no observations are available. The new post-processing technique is successful in improving wind speed and precipitation storm forecasts using past event-based data and has the potential to be implemented in real-time.

  20. Multiplication factor versus regression analysis in stature estimation from hand and foot dimensions.

    Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha

    2012-05-01

    Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  1. Estimation of Production KWS Maize Hybrids Using Nonlinear Regression

    Florica MORAR

    2018-06-01

    Full Text Available This article approaches the model of non-linear regression and the method of smallest squares with examples, including calculations for the model of logarithmic function. This required data obtained from a study which involved the observation of the phases of growth and development in KWS maize hybrids in order to analyze the influence of the MMB quality indicator on grain production per hectare.

  2. Identifying predictors of physics item difficulty: A linear regression approach

    Mesic, Vanes; Muratovic, Hasnija

    2011-06-01

    Large-scale assessments of student achievement in physics are often approached with an intention to discriminate students based on the attained level of their physics competencies. Therefore, for purposes of test design, it is important that items display an acceptable discriminatory behavior. To that end, it is recommended to avoid extraordinary difficult and very easy items. Knowing the factors that influence physics item difficulty makes it possible to model the item difficulty even before the first pilot study is conducted. Thus, by identifying predictors of physics item difficulty, we can improve the test-design process. Furthermore, we get additional qualitative feedback regarding the basic aspects of student cognitive achievement in physics that are directly responsible for the obtained, quantitative test results. In this study, we conducted a secondary analysis of data that came from two large-scale assessments of student physics achievement at the end of compulsory education in Bosnia and Herzegovina. Foremost, we explored the concept of “physics competence” and performed a content analysis of 123 physics items that were included within the above-mentioned assessments. Thereafter, an item database was created. Items were described by variables which reflect some basic cognitive aspects of physics competence. For each of the assessments, Rasch item difficulties were calculated in separate analyses. In order to make the item difficulties from different assessments comparable, a virtual test equating procedure had to be implemented. Finally, a regression model of physics item difficulty was created. It has been shown that 61.2% of item difficulty variance can be explained by factors which reflect the automaticity, complexity, and modality of the knowledge structure that is relevant for generating the most probable correct solution, as well as by the divergence of required thinking and interference effects between intuitive and formal physics knowledge

  3. Identifying predictors of physics item difficulty: A linear regression approach

    Hasnija Muratovic

    2011-06-01

    Full Text Available Large-scale assessments of student achievement in physics are often approached with an intention to discriminate students based on the attained level of their physics competencies. Therefore, for purposes of test design, it is important that items display an acceptable discriminatory behavior. To that end, it is recommended to avoid extraordinary difficult and very easy items. Knowing the factors that influence physics item difficulty makes it possible to model the item difficulty even before the first pilot study is conducted. Thus, by identifying predictors of physics item difficulty, we can improve the test-design process. Furthermore, we get additional qualitative feedback regarding the basic aspects of student cognitive achievement in physics that are directly responsible for the obtained, quantitative test results. In this study, we conducted a secondary analysis of data that came from two large-scale assessments of student physics achievement at the end of compulsory education in Bosnia and Herzegovina. Foremost, we explored the concept of “physics competence” and performed a content analysis of 123 physics items that were included within the above-mentioned assessments. Thereafter, an item database was created. Items were described by variables which reflect some basic cognitive aspects of physics competence. For each of the assessments, Rasch item difficulties were calculated in separate analyses. In order to make the item difficulties from different assessments comparable, a virtual test equating procedure had to be implemented. Finally, a regression model of physics item difficulty was created. It has been shown that 61.2% of item difficulty variance can be explained by factors which reflect the automaticity, complexity, and modality of the knowledge structure that is relevant for generating the most probable correct solution, as well as by the divergence of required thinking and interference effects between intuitive and formal

  4. On the robust nonparametric regression estimation for a functional regressor

    Azzedine , Nadjia; Laksaci , Ali; Ould-Saïd , Elias

    2009-01-01

    On the robust nonparametric regression estimation for a functional regressor correspondance: Corresponding author. (Ould-Said, Elias) (Azzedine, Nadjia) (Laksaci, Ali) (Ould-Said, Elias) Departement de Mathematiques--> , Univ. Djillali Liabes--> , BP 89--> , 22000 Sidi Bel Abbes--> - ALGERIA (Azzedine, Nadjia) Departement de Mathema...

  5. Generalized Partially Linear Regression with Misclassified Data and an Application to Labour Market Transitions

    Dlugosz, Stephan; Mammen, Enno; Wilke, Ralf

    2017-01-01

    Large data sets that originate from administrative or operational activity are increasingly used for statistical analysis as they often contain very precise information and a large number of observations. But there is evidence that some variables can be subject to severe misclassification...... or contain missing values. Given the size of the data, a flexible semiparametric misclassification model would be good choice but their use in practise is scarce. To close this gap a semiparametric model for the probability of observing labour market transitions is estimated using a sample of 20 m...... observations from Germany. It is shown that estimated marginal effects of a number of covariates are sizeably affected by misclassification and missing values in the analysis data. The proposed generalized partially linear regression extends existing models by allowing a misclassified discrete covariate...

  6. Regression tools for CO2 inversions: application of a shrinkage estimator to process attribution

    Shaby, Benjamin A.; Field, Christopher B.

    2006-01-01

    In this study we perform an atmospheric inversion based on a shrinkage estimator. This method is used to estimate surface fluxes of CO 2 , first partitioned according to constituent geographic regions, and then according to constituent processes that are responsible for the total flux. Our approach differs from previous approaches in two important ways. The first is that the technique of linear Bayesian inversion is recast as a regression problem. Seen as such, standard regression tools are employed to analyse and reduce errors in the resultant estimates. A shrinkage estimator, which combines standard ridge regression with the linear 'Bayesian inversion' model, is introduced. This method introduces additional bias into the model with the aim of reducing variance such that errors are decreased overall. Compared with standard linear Bayesian inversion, the ridge technique seems to reduce both flux estimation errors and prediction errors. The second divergence from previous studies is that instead of dividing the world into geographically distinct regions and estimating the CO 2 flux in each region, the flux space is divided conceptually into processes that contribute to the total global flux. Formulating the problem in this manner adds to the interpretability of the resultant estimates and attempts to shed light on the problem of attributing sources and sinks to their underlying mechanisms

  7. A computer tool for a minimax criterion in binary response and heteroscedastic simple linear regression models.

    Casero-Alonso, V; López-Fidalgo, J; Torsney, B

    2017-01-01

    Binary response models are used in many real applications. For these models the Fisher information matrix (FIM) is proportional to the FIM of a weighted simple linear regression model. The same is also true when the weight function has a finite integral. Thus, optimal designs for one binary model are also optimal for the corresponding weighted linear regression model. The main objective of this paper is to provide a tool for the construction of MV-optimal designs, minimizing the maximum of the variances of the estimates, for a general design space. MV-optimality is a potentially difficult criterion because of its nondifferentiability at equal variance designs. A methodology for obtaining MV-optimal designs where the design space is a compact interval [a, b] will be given for several standard weight functions. The methodology will allow us to build a user-friendly computer tool based on Mathematica to compute MV-optimal designs. Some illustrative examples will show a representation of MV-optimal designs in the Euclidean plane, taking a and b as the axes. The applet will be explained using two relevant models. In the first one the case of a weighted linear regression model is considered, where the weight function is directly chosen from a typical family. In the second example a binary response model is assumed, where the probability of the outcome is given by a typical probability distribution. Practitioners can use the provided applet to identify the solution and to know the exact support points and design weights. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Online and Batch Supervised Background Estimation via L1 Regression

    Dutta, Aritra

    2017-11-23

    We propose a surprisingly simple model for supervised video background estimation. Our model is based on $\\\\ell_1$ regression. As existing methods for $\\\\ell_1$ regression do not scale to high-resolution videos, we propose several simple and scalable methods for solving the problem, including iteratively reweighted least squares, a homotopy method, and stochastic gradient descent. We show through extensive experiments that our model and methods match or outperform the state-of-the-art online and batch methods in virtually all quantitative and qualitative measures.

  9. Online and Batch Supervised Background Estimation via L1 Regression

    Dutta, Aritra; Richtarik, Peter

    2017-01-01

    We propose a surprisingly simple model for supervised video background estimation. Our model is based on $\\ell_1$ regression. As existing methods for $\\ell_1$ regression do not scale to high-resolution videos, we propose several simple and scalable methods for solving the problem, including iteratively reweighted least squares, a homotopy method, and stochastic gradient descent. We show through extensive experiments that our model and methods match or outperform the state-of-the-art online and batch methods in virtually all quantitative and qualitative measures.

  10. A simple bias correction in linear regression for quantitative trait association under two-tail extreme selection

    Kwan, Johnny S. H.; Kung, Annie W. C.; Sham, Pak C.

    2011-01-01

    Selective genotyping can increase power in quantitative trait association. One example of selective genotyping is two-tail extreme selection, but simple linear regression analysis gives a biased genetic effect estimate. Here, we present a simple correction for the bias. © The Author(s) 2011.

  11. Multivariate Linear Regression and CART Regression Analysis of TBM Performance at Abu Hamour Phase-I Tunnel

    Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.

    2017-12-01

    The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.

  12. Healthcare Expenditures Associated with Depression Among Individuals with Osteoarthritis: Post-Regression Linear Decomposition Approach.

    Agarwal, Parul; Sambamoorthi, Usha

    2015-12-01

    Depression is common among individuals with osteoarthritis and leads to increased healthcare burden. The objective of this study was to examine excess total healthcare expenditures associated with depression among individuals with osteoarthritis in the US. Adults with self-reported osteoarthritis (n = 1881) were identified using data from the 2010 Medical Expenditure Panel Survey (MEPS). Among those with osteoarthritis, chi-square tests and ordinary least square regressions (OLS) were used to examine differences in healthcare expenditures between those with and without depression. Post-regression linear decomposition technique was used to estimate the relative contribution of different constructs of the Anderson's behavioral model, i.e., predisposing, enabling, need, personal healthcare practices, and external environment factors, to the excess expenditures associated with depression among individuals with osteoarthritis. All analysis accounted for the complex survey design of MEPS. Depression coexisted among 20.6 % of adults with osteoarthritis. The average total healthcare expenditures were $13,684 among adults with depression compared to $9284 among those without depression. Multivariable OLS regression revealed that adults with depression had 38.8 % higher healthcare expenditures (p regression linear decomposition analysis indicated that 50 % of differences in expenditures among adults with and without depression can be explained by differences in need factors. Among individuals with coexisting osteoarthritis and depression, excess healthcare expenditures associated with depression were mainly due to comorbid anxiety, chronic conditions and poor health status. These expenditures may potentially be reduced by providing timely intervention for need factors or by providing care under a collaborative care model.

  13. Slope Estimation in Noisy Piecewise Linear Functions.

    Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy

    2015-03-01

    This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure.

  14. Uncertainty of pesticide residue concentration determined from ordinary and weighted linear regression curve.

    Yolci Omeroglu, Perihan; Ambrus, Árpad; Boyacioglu, Dilek

    2018-03-28

    Determination of pesticide residues is based on calibration curves constructed for each batch of analysis. Calibration standard solutions are prepared from a known amount of reference material at different concentration levels covering the concentration range of the analyte in the analysed samples. In the scope of this study, the applicability of both ordinary linear and weighted linear regression (OLR and WLR) for pesticide residue analysis was investigated. We used 782 multipoint calibration curves obtained for 72 different analytical batches with high-pressure liquid chromatography equipped with an ultraviolet detector, and gas chromatography with electron capture, nitrogen phosphorus or mass spectrophotometer detectors. Quality criteria of the linear curves including regression coefficient, standard deviation of relative residuals and deviation of back calculated concentrations were calculated both for WLR and OLR methods. Moreover, the relative uncertainty of the predicted analyte concentration was estimated for both methods. It was concluded that calibration curve based on WLR complies with all the quality criteria set by international guidelines compared to those calculated with OLR. It means that all the data fit well with WLR for pesticide residue analysis. It was estimated that, regardless of the actual concentration range of the calibration, relative uncertainty at the lowest calibrated level ranged between 0.3% and 113.7% for OLR and between 0.2% and 22.1% for WLR. At or above 1/3 of the calibrated range, uncertainty of calibration curve ranged between 0.1% and 16.3% for OLR and 0% and 12.2% for WLR, and therefore, the two methods gave comparable results.

  15. Regression modeling strategies with applications to linear models, logistic and ordinal regression, and survival analysis

    Harrell , Jr , Frank E

    2015-01-01

    This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for fitting nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap.  The reader will gain a keen understanding of predictive accuracy, and the harm of categorizing continuous predictors or outcomes.  This text realistically...

  16. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner

    Yubo Wang

    2017-06-01

    Full Text Available It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC. In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976 ratio and outperforms existing methods such as short-time Fourier transfrom (STFT, continuous Wavelet transform (CWT and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  17. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner.

    Wang, Yubo; Veluvolu, Kalyana C

    2017-06-14

    It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  18. Causal correlation of foliar biochemical concentrations with AVIRIS spectra using forced entry linear regression

    Dawson, Terence P.; Curran, Paul J.; Kupiec, John A.

    1995-01-01

    link between wavelengths chosen by stepwise regression and the biochemical of interest, and this in turn has cast doubts on the use of imaging spectrometry for the estimation of foliar biochemical concentrations at sites distant from the training sites. To investigate this problem, an analysis was conducted on the variation in canopy biochemical concentrations and reflectance spectra using forced entry linear regression.

  19. An Entropic Estimator for Linear Inverse Problems

    Amos Golan

    2012-05-01

    Full Text Available In this paper we examine an Information-Theoretic method for solving noisy linear inverse estimation problems which encompasses under a single framework a whole class of estimation methods. Under this framework, the prior information about the unknown parameters (when such information exists, and constraints on the parameters can be incorporated in the statement of the problem. The method builds on the basics of the maximum entropy principle and consists of transforming the original problem into an estimation of a probability density on an appropriate space naturally associated with the statement of the problem. This estimation method is generic in the sense that it provides a framework for analyzing non-normal models, it is easy to implement and is suitable for all types of inverse problems such as small and or ill-conditioned, noisy data. First order approximation, large sample properties and convergence in distribution are developed as well. Analytical examples, statistics for model comparisons and evaluations, that are inherent to this method, are discussed and complemented with explicit examples.

  20. Optimized support vector regression for drilling rate of penetration estimation

    Bodaghi, Asadollah; Ansari, Hamid Reza; Gholami, Mahsa

    2015-12-01

    In the petroleum industry, drilling optimization involves the selection of operating conditions for achieving the desired depth with the minimum expenditure while requirements of personal safety, environment protection, adequate information of penetrated formations and productivity are fulfilled. Since drilling optimization is highly dependent on the rate of penetration (ROP), estimation of this parameter is of great importance during well planning. In this research, a novel approach called `optimized support vector regression' is employed for making a formulation between input variables and ROP. Algorithms used for optimizing the support vector regression are the genetic algorithm (GA) and the cuckoo search algorithm (CS). Optimization implementation improved the support vector regression performance by virtue of selecting proper values for its parameters. In order to evaluate the ability of optimization algorithms in enhancing SVR performance, their results were compared to the hybrid of pattern search and grid search (HPG) which is conventionally employed for optimizing SVR. The results demonstrated that the CS algorithm achieved further improvement on prediction accuracy of SVR compared to the GA and HPG as well. Moreover, the predictive model derived from back propagation neural network (BPNN), which is the traditional approach for estimating ROP, is selected for comparisons with CSSVR. The comparative results revealed the superiority of CSSVR. This study inferred that CSSVR is a viable option for precise estimation of ROP.

  1. Multivariate linear regression of high-dimensional fMRI data with multiple target variables.

    Valente, Giancarlo; Castellanos, Agustin Lage; Vanacore, Gianluca; Formisano, Elia

    2014-05-01

    Multivariate regression is increasingly used to study the relation between fMRI spatial activation patterns and experimental stimuli or behavioral ratings. With linear models, informative brain locations are identified by mapping the model coefficients. This is a central aspect in neuroimaging, as it provides the sought-after link between the activity of neuronal populations and subject's perception, cognition or behavior. Here, we show that mapping of informative brain locations using multivariate linear regression (MLR) may lead to incorrect conclusions and interpretations. MLR algorithms for high dimensional data are designed to deal with targets (stimuli or behavioral ratings, in fMRI) separately, and the predictive map of a model integrates information deriving from both neural activity patterns and experimental design. Not accounting explicitly for the presence of other targets whose associated activity spatially overlaps with the one of interest may lead to predictive maps of troublesome interpretation. We propose a new model that can correctly identify the spatial patterns associated with a target while achieving good generalization. For each target, the training is based on an augmented dataset, which includes all remaining targets. The estimation on such datasets produces both maps and interaction coefficients, which are then used to generalize. The proposed formulation is independent of the regression algorithm employed. We validate this model on simulated fMRI data and on a publicly available dataset. Results indicate that our method achieves high spatial sensitivity and good generalization and that it helps disentangle specific neural effects from interaction with predictive maps associated with other targets. Copyright © 2013 Wiley Periodicals, Inc.

  2. Linear regression models and k-means clustering for statistical analysis of fNIRS data.

    Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro

    2015-02-01

    We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets.

  3. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  4. Multiple Linear Regression Model for Estimating the Price of a ...

    Michael

    2, December, 2017 ... by log transformation of the data, ensuring the data is normally distributed and there is no correlation ... (Chaphalkar and Dhatunde, 2015) but the possible ...... Mathematical Sciences of the University of ... Management.

  5. Multiple Linear Regression Model for Estimating the Price of a ...

    Ghana Mining Journal ... In the modeling, the Ordinary Least Squares (OLS) normality assumption which could introduce errors in the statistical analyses was dealt with by log transformation of the data, ensuring the data is normally ... The resultant MLRM is: Ŷi MLRM = (X'X)-1X'Y(xi') where X is the sample data matrix.

  6. SOME STATISTICAL ISSUES RELATED TO MULTIPLE LINEAR REGRESSION MODELING OF BEACH BACTERIA CONCENTRATIONS

    As a fast and effective technique, the multiple linear regression (MLR) method has been widely used in modeling and prediction of beach bacteria concentrations. Among previous works on this subject, however, several issues were insufficiently or inconsistently addressed. Those is...

  7. Predicting Fuel Ignition Quality Using 1H NMR Spectroscopy and Multiple Linear Regression

    Abdul Jameel, Abdul Gani; Naser, Nimal; Emwas, Abdul-Hamid M.; Dooley, Stephen; Sarathy, Mani

    2016-01-01

    An improved model for the prediction of ignition quality of hydrocarbon fuels has been developed using 1H nuclear magnetic resonance (NMR) spectroscopy and multiple linear regression (MLR) modeling. Cetane number (CN) and derived cetane number (DCN

  8. How to deal with continuous and dichotomic outcomes in epidemiological research: linear and logistic regression analyses

    Tripepi, Giovanni; Jager, Kitty J.; Stel, Vianda S.; Dekker, Friedo W.; Zoccali, Carmine

    2011-01-01

    Because of some limitations of stratification methods, epidemiologists frequently use multiple linear and logistic regression analyses to address specific epidemiological questions. If the dependent variable is a continuous one (for example, systolic pressure and serum creatinine), the researcher

  9. Standardizing effect size from linear regression models with log-transformed variables for meta-analysis.

    Rodríguez-Barranco, Miguel; Tobías, Aurelio; Redondo, Daniel; Molina-Portillo, Elena; Sánchez, María José

    2017-03-17

    Meta-analysis is very useful to summarize the effect of a treatment or a risk factor for a given disease. Often studies report results based on log-transformed variables in order to achieve the principal assumptions of a linear regression model. If this is the case for some, but not all studies, the effects need to be homogenized. We derived a set of formulae to transform absolute changes into relative ones, and vice versa, to allow including all results in a meta-analysis. We applied our procedure to all possible combinations of log-transformed independent or dependent variables. We also evaluated it in a simulation based on two variables either normally or asymmetrically distributed. In all the scenarios, and based on different change criteria, the effect size estimated by the derived set of formulae was equivalent to the real effect size. To avoid biased estimates of the effect, this procedure should be used with caution in the case of independent variables with asymmetric distributions that significantly differ from the normal distribution. We illustrate an application of this procedure by an application to a meta-analysis on the potential effects on neurodevelopment in children exposed to arsenic and manganese. The procedure proposed has been shown to be valid and capable of expressing the effect size of a linear regression model based on different change criteria in the variables. Homogenizing the results from different studies beforehand allows them to be combined in a meta-analysis, independently of whether the transformations had been performed on the dependent and/or independent variables.

  10. Do clinical and translational science graduate students understand linear regression? Development and early validation of the REGRESS quiz.

    Enders, Felicity

    2013-12-01

    Although regression is widely used for reading and publishing in the medical literature, no instruments were previously available to assess students' understanding. The goal of this study was to design and assess such an instrument for graduate students in Clinical and Translational Science and Public Health. A 27-item REsearch on Global Regression Expectations in StatisticS (REGRESS) quiz was developed through an iterative process. Consenting students taking a course on linear regression in a Clinical and Translational Science program completed the quiz pre- and postcourse. Student results were compared to practicing statisticians with a master's or doctoral degree in statistics or a closely related field. Fifty-two students responded precourse, 59 postcourse , and 22 practicing statisticians completed the quiz. The mean (SD) score was 9.3 (4.3) for students precourse and 19.0 (3.5) postcourse (P REGRESS quiz was internally reliable (Cronbach's alpha 0.89). The initial validation is quite promising with statistically significant and meaningful differences across time and study populations. Further work is needed to validate the quiz across multiple institutions. © 2013 Wiley Periodicals, Inc.

  11. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Drzewiecki Wojciech

    2016-12-01

    Full Text Available In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques.

  12. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  13. Transmission of linear regression patterns between time series: from relationship in time series to complex networks.

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  14. Piecewise linear regression techniques to analyze the timing of head coach dismissals in Dutch soccer clubs

    Schryver, T. de; Eisinga, R.

    2010-01-01

    The key question in research on dismissals of head coaches in sports clubs is not whether they should happen but when they will happen. This paper applies piecewise linear regression to advance our understanding of the timing of head coach dismissals. Essentially, the regression sacrifices degrees

  15. On estimation of the noise variance in high-dimensional linear models

    Golubev, Yuri; Krymova, Ekaterina

    2017-01-01

    We consider the problem of recovering the unknown noise variance in the linear regression model. To estimate the nuisance (a vector of regression coefficients) we use a family of spectral regularisers of the maximum likelihood estimator. The noise estimation is based on the adaptive normalisation of the squared error. We derive the upper bound for the concentration of the proposed method around the ideal estimator (the case of zero nuisance).

  16. On the Choice of Difference Sequence in a Unified Framework for Variance Estimation in Nonparametric Regression

    Dai, Wenlin; Tong, Tiejun; Zhu, Lixing

    2017-01-01

    Difference-based methods do not require estimating the mean function in nonparametric regression and are therefore popular in practice. In this paper, we propose a unified framework for variance estimation that combines the linear regression method with the higher-order difference estimators systematically. The unified framework has greatly enriched the existing literature on variance estimation that includes most existing estimators as special cases. More importantly, the unified framework has also provided a smart way to solve the challenging difference sequence selection problem that remains a long-standing controversial issue in nonparametric regression for several decades. Using both theory and simulations, we recommend to use the ordinary difference sequence in the unified framework, no matter if the sample size is small or if the signal-to-noise ratio is large. Finally, to cater for the demands of the application, we have developed a unified R package, named VarED, that integrates the existing difference-based estimators and the unified estimators in nonparametric regression and have made it freely available in the R statistical program http://cran.r-project.org/web/packages/.

  17. On the Choice of Difference Sequence in a Unified Framework for Variance Estimation in Nonparametric Regression

    Dai, Wenlin

    2017-09-01

    Difference-based methods do not require estimating the mean function in nonparametric regression and are therefore popular in practice. In this paper, we propose a unified framework for variance estimation that combines the linear regression method with the higher-order difference estimators systematically. The unified framework has greatly enriched the existing literature on variance estimation that includes most existing estimators as special cases. More importantly, the unified framework has also provided a smart way to solve the challenging difference sequence selection problem that remains a long-standing controversial issue in nonparametric regression for several decades. Using both theory and simulations, we recommend to use the ordinary difference sequence in the unified framework, no matter if the sample size is small or if the signal-to-noise ratio is large. Finally, to cater for the demands of the application, we have developed a unified R package, named VarED, that integrates the existing difference-based estimators and the unified estimators in nonparametric regression and have made it freely available in the R statistical program http://cran.r-project.org/web/packages/.

  18. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

    Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

    2006-01-01

    Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

  19. Investigation of linear regression of EPR dosimetric signal of the man tooth enamel

    Pivovarov, S.P.; Rukhin, A.B.; Zhakparov, R.K.; Vasilevskaya, L.A.

    2001-01-01

    The experimental relations of the EPR radiation signal in samples of man tooth enamel of three donors of different age up to doses 1350 Gy are examined. To all of them the linear regression is applicable. The considerable errors leading to apparent non-linearity are eliminated most. (author)

  20. Genomic prediction based on data from three layer lines using non-linear regression models

    Huang, H.; Windig, J.J.; Vereijken, A.; Calus, M.P.L.

    2014-01-01

    Background - Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. Methods - In an attempt to alleviate

  1. A hybrid genetic algorithm and linear regression for prediction of NOx emission in power generation plant

    Bunyamin, Muhammad Afif; Yap, Keem Siah; Aziz, Nur Liyana Afiqah Abdul; Tiong, Sheih Kiong; Wong, Shen Yuong; Kamal, Md Fauzan

    2013-01-01

    This paper presents a new approach of gas emission estimation in power generation plant using a hybrid Genetic Algorithm (GA) and Linear Regression (LR) (denoted as GA-LR). The LR is one of the approaches that model the relationship between an output dependant variable, y, with one or more explanatory variables or inputs which denoted as x. It is able to estimate unknown model parameters from inputs data. On the other hand, GA is used to search for the optimal solution until specific criteria is met causing termination. These results include providing good solutions as compared to one optimal solution for complex problems. Thus, GA is widely used as feature selection. By combining the LR and GA (GA-LR), this new technique is able to select the most important input features as well as giving more accurate prediction by minimizing the prediction errors. This new technique is able to produce more consistent of gas emission estimation, which may help in reducing population to the environment. In this paper, the study's interest is focused on nitrous oxides (NOx) prediction. The results of the experiment are encouraging.

  2. Estimating Frequency by Interpolation Using Least Squares Support Vector Regression

    Changwei Ma

    2015-01-01

    Full Text Available Discrete Fourier transform- (DFT- based maximum likelihood (ML algorithm is an important part of single sinusoid frequency estimation. As signal to noise ratio (SNR increases and is above the threshold value, it will lie very close to Cramer-Rao lower bound (CRLB, which is dependent on the number of DFT points. However, its mean square error (MSE performance is directly proportional to its calculation cost. As a modified version of support vector regression (SVR, least squares SVR (LS-SVR can not only still keep excellent capabilities for generalizing and fitting but also exhibit lower computational complexity. In this paper, therefore, LS-SVR is employed to interpolate on Fourier coefficients of received signals and attain high frequency estimation accuracy. Our results show that the proposed algorithm can make a good compromise between calculation cost and MSE performance under the assumption that the sample size, number of DFT points, and resampling points are already known.

  3. Multiple linear regression and regression with time series error models in forecasting PM10 concentrations in Peninsular Malaysia.

    Ng, Kar Yong; Awang, Norhashidah

    2018-01-06

    Frequent haze occurrences in Malaysia have made the management of PM 10 (particulate matter with aerodynamic less than 10 μm) pollution a critical task. This requires knowledge on factors associating with PM 10 variation and good forecast of PM 10 concentrations. Hence, this paper demonstrates the prediction of 1-day-ahead daily average PM 10 concentrations based on predictor variables including meteorological parameters and gaseous pollutants. Three different models were built. They were multiple linear regression (MLR) model with lagged predictor variables (MLR1), MLR model with lagged predictor variables and PM 10 concentrations (MLR2) and regression with time series error (RTSE) model. The findings revealed that humidity, temperature, wind speed, wind direction, carbon monoxide and ozone were the main factors explaining the PM 10 variation in Peninsular Malaysia. Comparison among the three models showed that MLR2 model was on a same level with RTSE model in terms of forecasting accuracy, while MLR1 model was the worst.

  4. Modeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression.

    Song, Chao; Kwan, Mei-Po; Zhu, Jiping

    2017-04-08

    An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.

  5. OPLS statistical model versus linear regression to assess sonographic predictors of stroke prognosis.

    Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi

    2012-01-01

    The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.

  6. Describing Growth Pattern of Bali Cows Using Non-linear Regression Models

    Mohd. Hafiz A.W

    2016-12-01

    Full Text Available The objective of this study was to evaluate the best fit non-linear regression model to describe the growth pattern of Bali cows. Estimates of asymptotic mature weight, rate of maturing and constant of integration were derived from Brody, von Bertalanffy, Gompertz and Logistic models which were fitted to cross-sectional data of body weight taken from 74 Bali cows raised in MARDI Research Station Muadzam Shah Pahang. Coefficient of determination (R2 and residual mean squares (MSE were used to determine the best fit model in describing the growth pattern of Bali cows. Von Bertalanffy model was the best model among the four growth functions evaluated to determine the mature weight of Bali cattle as shown by the highest R2 and lowest MSE values (0.973 and 601.9, respectively, followed by Gompertz (0.972 and 621.2, respectively, Logistic (0.971 and 648.4, respectively and Brody (0.932 and 660.5, respectively models. The correlation between rate of maturing and mature weight was found to be negative in the range of -0.170 to -0.929 for all models, indicating that animals of heavier mature weight had lower rate of maturing. The use of non-linear model could summarize the weight-age relationship into several biologically interpreted parameters compared to the entire lifespan weight-age data points that are difficult and time consuming to interpret.

  7. Genomic breeding value estimation using nonparametric additive regression models

    Solberg Trygve

    2009-01-01

    Full Text Available Abstract Genomic selection refers to the use of genomewide dense markers for breeding value estimation and subsequently for selection. The main challenge of genomic breeding value estimation is the estimation of many effects from a limited number of observations. Bayesian methods have been proposed to successfully cope with these challenges. As an alternative class of models, non- and semiparametric models were recently introduced. The present study investigated the ability of nonparametric additive regression models to predict genomic breeding values. The genotypes were modelled for each marker or pair of flanking markers (i.e. the predictors separately. The nonparametric functions for the predictors were estimated simultaneously using additive model theory, applying a binomial kernel. The optimal degree of smoothing was determined by bootstrapping. A mutation-drift-balance simulation was carried out. The breeding values of the last generation (genotyped was predicted using data from the next last generation (genotyped and phenotyped. The results show moderate to high accuracies of the predicted breeding values. A determination of predictor specific degree of smoothing increased the accuracy.

  8. An improved multiple linear regression and data analysis computer program package

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  9. A stepwise regression tree for nonlinear approximation: applications to estimating subpixel land cover

    Huang, C.; Townshend, J.R.G.

    2003-01-01

    A stepwise regression tree (SRT) algorithm was developed for approximating complex nonlinear relationships. Based on the regression tree of Breiman et al . (BRT) and a stepwise linear regression (SLR) method, this algorithm represents an improvement over SLR in that it can approximate nonlinear relationships and over BRT in that it gives more realistic predictions. The applicability of this method to estimating subpixel forest was demonstrated using three test data sets, on all of which it gave more accurate predictions than SLR and BRT. SRT also generated more compact trees and performed better than or at least as well as BRT at all 10 equal forest proportion interval ranging from 0 to 100%. This method is appealing to estimating subpixel land cover over large areas.

  10. Single camera multi-view anthropometric measurement of human height and mid-upper arm circumference using linear regression.

    Liu, Yingying; Sowmya, Arcot; Khamis, Heba

    2018-01-01

    Manually measured anthropometric quantities are used in many applications including human malnutrition assessment. Training is required to collect anthropometric measurements manually, which is not ideal in resource-constrained environments. Photogrammetric methods have been gaining attention in recent years, due to the availability and affordability of digital cameras. The primary goal is to demonstrate that height and mid-upper arm circumference (MUAC)-indicators of malnutrition-can be accurately estimated by applying linear regression to distance measurements from photographs of participants taken from five views, and determine the optimal view combinations. A secondary goal is to observe the effect on estimate error of two approaches which reduce complexity of the setup, computational requirements and the expertise required of the observer. Thirty-one participants (11 female, 20 male; 18-37 years) were photographed from five views. Distances were computed using both camera calibration and reference object techniques from manually annotated photos. To estimate height, linear regression was applied to the distances between the top of the participants head and the floor, as well as the height of a bounding box enclosing the participant's silhouette which eliminates the need to identify the floor. To estimate MUAC, linear regression was applied to the mid-upper arm width. Estimates were computed for all view combinations and performance was compared to other photogrammetric methods from the literature-linear distance method for height, and shape models for MUAC. The mean absolute difference (MAD) between the linear regression estimates and manual measurements were smaller compared to other methods. For the optimal view combinations (smallest MAD), the technical error of measurement and coefficient of reliability also indicate the linear regression methods are more reliable. The optimal view combination was the front and side views. When estimating height by linear

  11. Development of statistical linear regression model for metals from transportation land uses.

    Maniquiz, Marla C; Lee, Soyoung; Lee, Eunju; Kim, Lee-Hyung

    2009-01-01

    The transportation landuses possessing impervious surfaces such as highways, parking lots, roads, and bridges were recognized as the highly polluted non-point sources (NPSs) in the urban areas. Lots of pollutants from urban transportation are accumulating on the paved surfaces during dry periods and are washed-off during a storm. In Korea, the identification and monitoring of NPSs still represent a great challenge. Since 2004, the Ministry of Environment (MOE) has been engaged in several researches and monitoring to develop stormwater management policies and treatment systems for future implementation. The data over 131 storm events during May 2004 to September 2008 at eleven sites were analyzed to identify correlation relationships between particulates and metals, and to develop simple linear regression (SLR) model to estimate event mean concentration (EMC). Results indicate that there was no significant relationship between metals and TSS EMC. However, the SLR estimation models although not providing useful results are valuable indicators of high uncertainties that NPS pollution possess. Therefore, long term monitoring employing proper methods and precise statistical analysis of the data should be undertaken to eliminate these uncertainties.

  12. Non-linear auto-regressive models for cross-frequency coupling in neural time series

    Tallot, Lucille; Grabot, Laetitia; Doyère, Valérie; Grenier, Yves; Gramfort, Alexandre

    2017-01-01

    We address the issue of reliably detecting and quantifying cross-frequency coupling (CFC) in neural time series. Based on non-linear auto-regressive models, the proposed method provides a generative and parametric model of the time-varying spectral content of the signals. As this method models the entire spectrum simultaneously, it avoids the pitfalls related to incorrect filtering or the use of the Hilbert transform on wide-band signals. As the model is probabilistic, it also provides a score of the model “goodness of fit” via the likelihood, enabling easy and legitimate model selection and parameter comparison; this data-driven feature is unique to our model-based approach. Using three datasets obtained with invasive neurophysiological recordings in humans and rodents, we demonstrate that these models are able to replicate previous results obtained with other metrics, but also reveal new insights such as the influence of the amplitude of the slow oscillation. Using simulations, we demonstrate that our parametric method can reveal neural couplings with shorter signals than non-parametric methods. We also show how the likelihood can be used to find optimal filtering parameters, suggesting new properties on the spectrum of the driving signal, but also to estimate the optimal delay between the coupled signals, enabling a directionality estimation in the coupling. PMID:29227989

  13. Image Jacobian Matrix Estimation Based on Online Support Vector Regression

    Shangqin Mao

    2012-10-01

    Full Text Available Research into robotics visual servoing is an important area in the field of robotics. It has proven difficult to achieve successful results for machine vision and robotics in unstructured environments without using any a priori camera or kinematic models. In uncalibrated visual servoing, image Jacobian matrix estimation methods can be divided into two groups: the online method and the offline method. The offline method is not appropriate for most natural environments. The online method is robust but rough. Moreover, if the images feature configuration changes, it needs to restart the approximating procedure. A novel approach based on an online support vector regression (OL-SVR algorithm is proposed which overcomes the drawbacks and combines the virtues just mentioned.

  14. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-03-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.

  15. Use of multiple linear regression and logistic regression models to investigate changes in birthweight for term singleton infants in Scotland.

    Bonellie, Sandra R

    2012-10-01

    To illustrate the use of regression and logistic regression models to investigate changes over time in size of babies particularly in relation to social deprivation, age of the mother and smoking. Mean birthweight has been found to be increasing in many countries in recent years, but there are still a group of babies who are born with low birthweights. Population-based retrospective cohort study. Multiple linear regression and logistic regression models are used to analyse data on term 'singleton births' from Scottish hospitals between 1994-2003. Mothers who smoke are shown to give birth to lighter babies on average, a difference of approximately 0.57 Standard deviations lower (95% confidence interval. 0.55-0.58) when adjusted for sex and parity. These mothers are also more likely to have babies that are low birthweight (odds ratio 3.46, 95% confidence interval 3.30-3.63) compared with non-smokers. Low birthweight is 30% more likely where the mother lives in the most deprived areas compared with the least deprived, (odds ratio 1.30, 95% confidence interval 1.21-1.40). Smoking during pregnancy is shown to have a detrimental effect on the size of infants at birth. This effect explains some, though not all, of the observed socioeconomic birthweight. It also explains much of the observed birthweight differences by the age of the mother.   Identifying mothers at greater risk of having a low birthweight baby as important implications for the care and advice this group receives. © 2012 Blackwell Publishing Ltd.

  16. Treating experimental data of inverse kinetic method by unitary linear regression analysis

    Zhao Yusen; Chen Xiaoliang

    2009-01-01

    The theory of treating experimental data of inverse kinetic method by unitary linear regression analysis was described. Not only the reactivity, but also the effective neutron source intensity could be calculated by this method. Computer code was compiled base on the inverse kinetic method and unitary linear regression analysis. The data of zero power facility BFS-1 in Russia were processed and the results were compared. The results show that the reactivity and the effective neutron source intensity can be obtained correctly by treating experimental data of inverse kinetic method using unitary linear regression analysis and the precision of reactivity measurement is improved. The central element efficiency can be calculated by using the reactivity. The result also shows that the effect to reactivity measurement caused by external neutron source should be considered when the reactor power is low and the intensity of external neutron source is strong. (authors)

  17. Toward Customer-Centric Organizational Science: A Common Language Effect Size Indicator for Multiple Linear Regressions and Regressions With Higher-Order Terms.

    Krasikova, Dina V; Le, Huy; Bachura, Eric

    2018-01-22

    To address a long-standing concern regarding a gap between organizational science and practice, scholars called for more intuitive and meaningful ways of communicating research results to users of academic research. In this article, we develop a common language effect size index (CLβ) that can help translate research results to practice. We demonstrate how CLβ can be computed and used to interpret the effects of continuous and categorical predictors in multiple linear regression models. We also elaborate on how the proposed CLβ index is computed and used to interpret interactions and nonlinear effects in regression models. In addition, we test the robustness of the proposed index to violations of normality and provide means for computing standard errors and constructing confidence intervals around its estimates. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. A primer for biomedical scientists on how to execute model II linear regression analysis.

    Ludbrook, John

    2012-04-01

    1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.

  19. The Relationship between Economic Growth and Money Laundering – a Linear Regression Model

    Daniel Rece

    2009-09-01

    Full Text Available This study provides an overview of the relationship between economic growth and money laundering modeled by a least squares function. The report analyzes statistically data collected from USA, Russia, Romania and other eleven European countries, rendering a linear regression model. The study illustrates that 23.7% of the total variance in the regressand (level of money laundering is “explained” by the linear regression model. In our opinion, this model will provide critical auxiliary judgment and decision support for anti-money laundering service systems.

  20. Two-Stage Method Based on Local Polynomial Fitting for a Linear Heteroscedastic Regression Model and Its Application in Economics

    Liyun Su

    2012-01-01

    Full Text Available We introduce the extension of local polynomial fitting to the linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to nonparametric technique of local polynomial estimation, we do not need to know the heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we focus on comparison of parameters and reach an optimal fitting. Besides, we verify the asymptotic normality of parameters based on numerical simulations. Finally, this approach is applied to a case of economics, and it indicates that our method is surely effective in finite-sample situations.

  1. Use of empirical likelihood to calibrate auxiliary information in partly linear monotone regression models.

    Chen, Baojiang; Qin, Jing

    2014-05-10

    In statistical analysis, a regression model is needed if one is interested in finding the relationship between a response variable and covariates. When the response depends on the covariate, then it may also depend on the function of this covariate. If one has no knowledge of this functional form but expect for monotonic increasing or decreasing, then the isotonic regression model is preferable. Estimation of parameters for isotonic regression models is based on the pool-adjacent-violators algorithm (PAVA), where the monotonicity constraints are built in. With missing data, people often employ the augmented estimating method to improve estimation efficiency by incorporating auxiliary information through a working regression model. However, under the framework of the isotonic regression model, the PAVA does not work as the monotonicity constraints are violated. In this paper, we develop an empirical likelihood-based method for isotonic regression model to incorporate the auxiliary information. Because the monotonicity constraints still hold, the PAVA can be used for parameter estimation. Simulation studies demonstrate that the proposed method can yield more efficient estimates, and in some situations, the efficiency improvement is substantial. We apply this method to a dementia study. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Regression of non-linear coupling of noise in LIGO detectors

    Da Silva Costa, C. F.; Billman, C.; Effler, A.; Klimenko, S.; Cheng, H.-P.

    2018-03-01

    In 2015, after their upgrade, the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors started acquiring data. The effort to improve their sensitivity has never stopped since then. The goal to achieve design sensitivity is challenging. Environmental and instrumental noise couple to the detector output with different, linear and non-linear, coupling mechanisms. The noise regression method we use is based on the Wiener–Kolmogorov filter, which uses witness channels to make noise predictions. We present here how this method helped to determine complex non-linear noise couplings in the output mode cleaner and in the mirror suspension system of the LIGO detector.

  3. Water quality control in Third River Reservoir (Argentina using geographical information systems and linear regression models

    Claudia Ledesma

    2013-08-01

    Full Text Available Water quality is traditionally monitored and evaluated based upon field data collected at limited locations. The storage capacity of reservoirs is reduced by deposits of suspended matter. The major factors affecting surface water quality are suspended sediments, chlorophyll and nutrients. Modeling and monitoring the biogeochemical status of reservoirs can be done through data from remote sensors. Since the improvement of sensors’ spatial and spectral resolutions, satellites have been used to monitor the interior areas of bodies of water. Water quality parameters, such as chlorophyll-a concentration and secchi disk depth, were found to have a high correlation with transformed spectral variables derived from bands 1, 2, 3 and 4 of LANDSAT 5TM satellite. We created models of estimated responses in regard to values of chlorophyll-a. To do so, we used population models of single and multiple linear regression, whose parameters are associated with the reflectance data of bands 2 and 4 of the sub-image of the satellite, as well as the data of chlorophyll-a obtained in 25 selected stations. According to the physico-chemical analyzes performed, the characteristics of the water in the reservoir of Rio Tercero, correspond to somewhat hard freshwater with calcium bicarbonate. The water was classified as usable as a source of plant treatment, excellent for irrigation because of its low salinity and low residual sodium carbonate content, but unsuitable for animal consumption because of its low salt content.

  4. A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants

    Cooper, Paul D.

    2010-01-01

    A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…

  5. An Introduction to Graphical and Mathematical Methods for Detecting Heteroscedasticity in Linear Regression.

    Thompson, Russel L.

    Homoscedasticity is an important assumption of linear regression. This paper explains what it is and why it is important to the researcher. Graphical and mathematical methods for testing the homoscedasticity assumption are demonstrated. Sources of homoscedasticity and types of homoscedasticity are discussed, and methods for correction are…

  6. INTRODUCTION TO A COMBINED MULTIPLE LINEAR REGRESSION AND ARMA MODELING APPROACH FOR BEACH BACTERIA PREDICTION

    Due to the complexity of the processes contributing to beach bacteria concentrations, many researchers rely on statistical modeling, among which multiple linear regression (MLR) modeling is most widely used. Despite its ease of use and interpretation, there may be time dependence...

  7. Application of range-test in multiple linear regression analysis in ...

    Application of range-test in multiple linear regression analysis in the presence of outliers is studied in this paper. First, the plot of the explanatory variables (i.e. Administration, Social/Commercial, Economic services and Transfer) on the dependent variable (i.e. GDP) was done to identify the statistical trend over the years.

  8. [Prediction model of health workforce and beds in county hospitals of Hunan by multiple linear regression].

    Ling, Ru; Liu, Jiawang

    2011-12-01

    To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.

  9. Calculation of U, Ra, Th and K contents in uranium ore by multiple linear regression method

    Lin Chao; Chen Yingqiang; Zhang Qingwen; Tan Fuwen; Peng Guanghui

    1991-01-01

    A multiple linear regression method was used to compute γ spectra of uranium ore samples and to calculate contents of U, Ra, Th, and K. In comparison with the inverse matrix method, its advantage is that no standard samples of pure U, Ra, Th and K are needed for obtaining response coefficients

  10. Bayesian linear regression : different conjugate models and their (in)sensitivity to prior-data conflict

    Walter, G.M.; Augustin, Th.; Kneib, Thomas; Tutz, Gerhard

    2010-01-01

    The paper is concerned with Bayesian analysis under prior-data conflict, i.e. the situation when observed data are rather unexpected under the prior (and the sample size is not large enough to eliminate the influence of the prior). Two approaches for Bayesian linear regression modeling based on

  11. A unified framework for testing in the linear regression model under unknown order of fractional integration

    Christensen, Bent Jesper; Kruse, Robinson; Sibbertsen, Philipp

    We consider hypothesis testing in a general linear time series regression framework when the possibly fractional order of integration of the error term is unknown. We show that the approach suggested by Vogelsang (1998a) for the case of integer integration does not apply to the case of fractional...

  12. Alpins and thibos vectorial astigmatism analyses: proposal of a linear regression model between methods

    Giuliano de Oliveira Freitas

    2013-10-01

    Full Text Available PURPOSE: To determine linear regression models between Alpins descriptive indices and Thibos astigmatic power vectors (APV, assessing the validity and strength of such correlations. METHODS: This case series prospectively assessed 62 eyes of 31 consecutive cataract patients with preoperative corneal astigmatism between 0.75 and 2.50 diopters in both eyes. Patients were randomly assorted among two phacoemulsification groups: one assigned to receive AcrySof®Toric intraocular lens (IOL in both eyes and another assigned to have AcrySof Natural IOL associated with limbal relaxing incisions, also in both eyes. All patients were reevaluated postoperatively at 6 months, when refractive astigmatism analysis was performed using both Alpins and Thibos methods. The ratio between Thibos postoperative APV and preoperative APV (APVratio and its linear regression to Alpins percentage of success of astigmatic surgery, percentage of astigmatism corrected and percentage of astigmatism reduction at the intended axis were assessed. RESULTS: Significant negative correlation between the ratio of post- and preoperative Thibos APVratio and Alpins percentage of success (%Success was found (Spearman's ρ=-0.93; linear regression is given by the following equation: %Success = (-APVratio + 1.00x100. CONCLUSION: The linear regression we found between APVratio and %Success permits a validated mathematical inference concerning the overall success of astigmatic surgery.

  13. Power properties of invariant tests for spatial autocorrelation in linear regression

    Martellosio, F.

    2006-01-01

    Many popular tests for residual spatial autocorrelation in the context of the linear regression model belong to the class of invariant tests. This paper derives a number of exact properties of the power function of such tests. In particular, we extend the work of Krämer (2005, Journal of Statistical

  14. Leaf area estimation of cassava from linear dimensions

    SAMARA ZANETTI

    2017-08-01

    Full Text Available ABSTRACT The objective of this study was to determine predictor models of leaf area of cassava from linear leaf measurements. The experiment was carried out in greenhouse in the municipality of Botucatu, São Paulo state, Brazil. The stem cuttings with 5-7 nodes of the cultivar IAC 576-70 were planted in boxes filled with about 320 liters of soil, keeping soil moisture at field capacity, monitored by puncturing tensiometers. At 80 days after planting, 140 leaves were randomly collected from the top, middle third and base of cassava plants. We evaluated the length and width of the central lobe of leaves, number of lobes and leaf area. The measurements of leaf areas were correlated with the length and width of the central lobe and the number of lobes of the leaves, and adjusted to polynomial and multiple regression models. The linear function that used the length of the central lobe LA = -69.91114 + 15.06462L and linear multiple functions LA = -69.9188 + 15.5102L + 0.0197726K - 0.0768998J or LA = -69.9346 + 15.0106L + 0.188931K - 0.0264323H are suitable models to estimate leaf area of cassava cultivar IAC 576-70.

  15. Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression

    Ndiaye, Eugene; Fercoq, Olivier; Gramfort, Alexandre; Leclère, Vincent; Salmon, Joseph

    2017-10-01

    In high dimensional settings, sparse structures are crucial for efficiency, both in term of memory, computation and performance. It is customary to consider ℓ 1 penalty to enforce sparsity in such scenarios. Sparsity enforcing methods, the Lasso being a canonical example, are popular candidates to address high dimension. For efficiency, they rely on tuning a parameter trading data fitting versus sparsity. For the Lasso theory to hold this tuning parameter should be proportional to the noise level, yet the latter is often unknown in practice. A possible remedy is to jointly optimize over the regression parameter as well as over the noise level. This has been considered under several names in the literature: Scaled-Lasso, Square-root Lasso, Concomitant Lasso estimation for instance, and could be of interest for uncertainty quantification. In this work, after illustrating numerical difficulties for the Concomitant Lasso formulation, we propose a modification we coined Smoothed Concomitant Lasso, aimed at increasing numerical stability. We propose an efficient and accurate solver leading to a computational cost no more expensive than the one for the Lasso. We leverage on standard ingredients behind the success of fast Lasso solvers: a coordinate descent algorithm, combined with safe screening rules to achieve speed efficiency, by eliminating early irrelevant features.

  16. Single image super-resolution using locally adaptive multiple linear regression.

    Yu, Soohwan; Kang, Wonseok; Ko, Seungyong; Paik, Joonki

    2015-12-01

    This paper presents a regularized superresolution (SR) reconstruction method using locally adaptive multiple linear regression to overcome the limitation of spatial resolution of digital images. In order to make the SR problem better-posed, the proposed method incorporates the locally adaptive multiple linear regression into the regularization process as a local prior. The local regularization prior assumes that the target high-resolution (HR) pixel is generated by a linear combination of similar pixels in differently scaled patches and optimum weight parameters. In addition, we adapt a modified version of the nonlocal means filter as a smoothness prior to utilize the patch redundancy. Experimental results show that the proposed algorithm better restores HR images than existing state-of-the-art methods in the sense of the most objective measures in the literature.

  17. Modeling of Soil Aggregate Stability using Support Vector Machines and Multiple Linear Regression

    Ali Asghar Besalatpour

    2016-02-01

    Full Text Available Introduction: Soil aggregate stability is a key factor in soil resistivity to mechanical stresses, including the impacts of rainfall and surface runoff, and thus to water erosion (Canasveras et al., 2010. Various indicators have been proposed to characterize and quantify soil aggregate stability, for example percentage of water-stable aggregates (WSA, mean weight diameter (MWD, geometric mean diameter (GMD of aggregates, and water-dispersible clay (WDC content (Calero et al., 2008. Unfortunately, the experimental methods available to determine these indicators are laborious, time-consuming and difficult to standardize (Canasveras et al., 2010. Therefore, it would be advantageous if aggregate stability could be predicted indirectly from more easily available data (Besalatpour et al., 2014. The main objective of this study is to investigate the potential use of support vector machines (SVMs method for estimating soil aggregate stability (as quantified by GMD as compared to multiple linear regression approach. Materials and Methods: The study area was part of the Bazoft watershed (31° 37′ to 32° 39′ N and 49° 34′ to 50° 32′ E, which is located in the Northern part of the Karun river basin in central Iran. A total of 160 soil samples were collected from the top 5 cm of soil surface. Some easily available characteristics including topographic, vegetation, and soil properties were used as inputs. Soil organic matter (SOM content was determined by the Walkley-Black method (Nelson & Sommers, 1986. Particle size distribution in the soil samples (clay, silt, sand, fine sand, and very fine sand were measured using the procedure described by Gee & Bauder (1986 and calcium carbonate equivalent (CCE content was determined by the back-titration method (Nelson, 1982. The modified Kemper & Rosenau (1986 method was used to determine wet-aggregate stability (GMD. The topographic attributes of elevation, slope, and aspect were characterized using a 20-m

  18. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression.

    Yu, Xu; Lin, Jun-Yu; Jiang, Feng; Du, Jun-Wei; Han, Ji-Zhong

    2018-01-01

    Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.

  19. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression

    Xu Yu

    2018-01-01

    Full Text Available Cross-domain collaborative filtering (CDCF solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR. We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.

  20. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Drzewiecki, Wojciech

    2016-12-01

    In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.

  1. Improved linear least squares estimation using bounded data uncertainty

    Ballal, Tarig

    2015-04-01

    This paper addresses the problemof linear least squares (LS) estimation of a vector x from linearly related observations. In spite of being unbiased, the original LS estimator suffers from high mean squared error, especially at low signal-to-noise ratios. The mean squared error (MSE) of the LS estimator can be improved by introducing some form of regularization based on certain constraints. We propose an improved LS (ILS) estimator that approximately minimizes the MSE, without imposing any constraints. To achieve this, we allow for perturbation in the measurement matrix. Then we utilize a bounded data uncertainty (BDU) framework to derive a simple iterative procedure to estimate the regularization parameter. Numerical results demonstrate that the proposed BDU-ILS estimator is superior to the original LS estimator, and it converges to the best linear estimator, the linear-minimum-mean-squared error estimator (LMMSE), when the elements of x are statistically white.

  2. Improved linear least squares estimation using bounded data uncertainty

    Ballal, Tarig; Al-Naffouri, Tareq Y.

    2015-01-01

    This paper addresses the problemof linear least squares (LS) estimation of a vector x from linearly related observations. In spite of being unbiased, the original LS estimator suffers from high mean squared error, especially at low signal-to-noise ratios. The mean squared error (MSE) of the LS estimator can be improved by introducing some form of regularization based on certain constraints. We propose an improved LS (ILS) estimator that approximately minimizes the MSE, without imposing any constraints. To achieve this, we allow for perturbation in the measurement matrix. Then we utilize a bounded data uncertainty (BDU) framework to derive a simple iterative procedure to estimate the regularization parameter. Numerical results demonstrate that the proposed BDU-ILS estimator is superior to the original LS estimator, and it converges to the best linear estimator, the linear-minimum-mean-squared error estimator (LMMSE), when the elements of x are statistically white.

  3. A Quantile Regression Approach to Estimating the Distribution of Anesthetic Procedure Time during Induction.

    Hsin-Lun Wu

    Full Text Available Although procedure time analyses are important for operating room management, it is not easy to extract useful information from clinical procedure time data. A novel approach was proposed to analyze procedure time during anesthetic induction. A two-step regression analysis was performed to explore influential factors of anesthetic induction time (AIT. Linear regression with stepwise model selection was used to select significant correlates of AIT and then quantile regression was employed to illustrate the dynamic relationships between AIT and selected variables at distinct quantiles. A total of 1,060 patients were analyzed. The first and second-year residents (R1-R2 required longer AIT than the third and fourth-year residents and attending anesthesiologists (p = 0.006. Factors prolonging AIT included American Society of Anesthesiologist physical status ≧ III, arterial, central venous and epidural catheterization, and use of bronchoscopy. Presence of surgeon before induction would decrease AIT (p < 0.001. Types of surgery also had significant influence on AIT. Quantile regression satisfactorily estimated extra time needed to complete induction for each influential factor at distinct quantiles. Our analysis on AIT demonstrated the benefit of quantile regression analysis to provide more comprehensive view of the relationships between procedure time and related factors. This novel two-step regression approach has potential applications to procedure time analysis in operating room management.

  4. Linear Multivariable Regression Models for Prediction of Eddy Dissipation Rate from Available Meteorological Data

    MCKissick, Burnell T. (Technical Monitor); Plassman, Gerald E.; Mall, Gerald H.; Quagliano, John R.

    2005-01-01

    Linear multivariable regression models for predicting day and night Eddy Dissipation Rate (EDR) from available meteorological data sources are defined and validated. Model definition is based on a combination of 1997-2000 Dallas/Fort Worth (DFW) data sources, EDR from Aircraft Vortex Spacing System (AVOSS) deployment data, and regression variables primarily from corresponding Automated Surface Observation System (ASOS) data. Model validation is accomplished through EDR predictions on a similar combination of 1994-1995 Memphis (MEM) AVOSS and ASOS data. Model forms include an intercept plus a single term of fixed optimal power for each of these regression variables; 30-minute forward averaged mean and variance of near-surface wind speed and temperature, variance of wind direction, and a discrete cloud cover metric. Distinct day and night models, regressing on EDR and the natural log of EDR respectively, yield best performance and avoid model discontinuity over day/night data boundaries.

  5. A method for fitting regression splines with varying polynomial order in the linear mixed model.

    Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W

    2006-02-15

    The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.

  6. Regression to fuzziness method for estimation of remaining useful life in power plant components

    Alamaniotis, Miltiadis; Grelle, Austin; Tsoukalas, Lefteri H.

    2014-10-01

    Mitigation of severe accidents in power plants requires the reliable operation of all systems and the on-time replacement of mechanical components. Therefore, the continuous surveillance of power systems is a crucial concern for the overall safety, cost control, and on-time maintenance of a power plant. In this paper a methodology called regression to fuzziness is presented that estimates the remaining useful life (RUL) of power plant components. The RUL is defined as the difference between the time that a measurement was taken and the estimated failure time of that component. The methodology aims to compensate for a potential lack of historical data by modeling an expert's operational experience and expertise applied to the system. It initially identifies critical degradation parameters and their associated value range. Once completed, the operator's experience is modeled through fuzzy sets which span the entire parameter range. This model is then synergistically used with linear regression and a component's failure point to estimate the RUL. The proposed methodology is tested on estimating the RUL of a turbine (the basic electrical generating component of a power plant) in three different cases. Results demonstrate the benefits of the methodology for components for which operational data is not readily available and emphasize the significance of the selection of fuzzy sets and the effect of knowledge representation on the predicted output. To verify the effectiveness of the methodology, it was benchmarked against the data-based simple linear regression model used for predictions which was shown to perform equal or worse than the presented methodology. Furthermore, methodology comparison highlighted the improvement in estimation offered by the adoption of appropriate of fuzzy sets for parameter representation.

  7. A multiple linear regression analysis of hot corrosion attack on a series of nickel base turbine alloys

    Barrett, C. A.

    1985-01-01

    Multiple linear regression analysis was used to determine an equation for estimating hot corrosion attack for a series of Ni base cast turbine alloys. The U transform (i.e., 1/sin (% A/100) to the 1/2) was shown to give the best estimate of the dependent variable, y. A complete second degree equation is described for the centered" weight chemistries for the elements Cr, Al, Ti, Mo, W, Cb, Ta, and Co. In addition linear terms for the minor elements C, B, and Zr were added for a basic 47 term equation. The best reduced equation was determined by the stepwise selection method with essentially 13 terms. The Cr term was found to be the most important accounting for 60 percent of the explained variability hot corrosion attack.

  8. Linear regression analysis: part 14 of a series on evaluation of scientific publications.

    Schneider, Astrid; Hommel, Gerhard; Blettner, Maria

    2010-11-01

    Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.

  9. Regression and Sparse Regression Methods for Viscosity Estimation of Acid Milk From it’s Sls Features

    Sharifzadeh, Sara; Skytte, Jacob Lercke; Nielsen, Otto Højager Attermann

    2012-01-01

    Statistical solutions find wide spread use in food and medicine quality control. We investigate the effect of different regression and sparse regression methods for a viscosity estimation problem using the spectro-temporal features from new Sub-Surface Laser Scattering (SLS) vision system. From...... with sparse LAR, lasso and Elastic Net (EN) sparse regression methods. Due to the inconsistent measurement condition, Locally Weighted Scatter plot Smoothing (Loess) has been employed to alleviate the undesired variation in the estimated viscosity. The experimental results of applying different methods show...

  10. Linear regression based on Minimum Covariance Determinant (MCD) and TELBS methods on the productivity of phytoplankton

    Gusriani, N.; Firdaniza

    2018-03-01

    The existence of outliers on multiple linear regression analysis causes the Gaussian assumption to be unfulfilled. If the Least Square method is forcedly used on these data, it will produce a model that cannot represent most data. For that, we need a robust regression method against outliers. This paper will compare the Minimum Covariance Determinant (MCD) method and the TELBS method on secondary data on the productivity of phytoplankton, which contains outliers. Based on the robust determinant coefficient value, MCD method produces a better model compared to TELBS method.

  11. Non-destructive linear model for leaf area estimation in Vernonia ferruginea Less

    MC. Souza

    Full Text Available Leaf area estimation is an important biometrical trait for evaluating leaf development and plant growth in field and pot experiments. We developed a non-destructive model to estimate the leaf area (LA of Vernonia ferruginea using the length (L and width (W leaf dimensions. Different combinations of linear equations were obtained from L, L2, W, W2, LW and L2W2. The linear regressions using the product of LW dimensions were more efficient to estimate the LA of V. ferruginea than models based on a single dimension (L, W, L2 or W2. Therefore, the linear regression “LA=0.463+0.676WL” provided the most accurate estimate of V. ferruginea leaf area. Validation of the selected model showed that the correlation between real measured leaf area and estimated leaf area was very high.

  12. Modeling the frequency of opposing left-turn conflicts at signalized intersections using generalized linear regression models.

    Zhang, Xin; Liu, Pan; Chen, Yuguang; Bai, Lu; Wang, Wei

    2014-01-01

    The primary objective of this study was to identify whether the frequency of traffic conflicts at signalized intersections can be modeled. The opposing left-turn conflicts were selected for the development of conflict predictive models. Using data collected at 30 approaches at 20 signalized intersections, the underlying distributions of the conflicts under different traffic conditions were examined. Different conflict-predictive models were developed to relate the frequency of opposing left-turn conflicts to various explanatory variables. The models considered include a linear regression model, a negative binomial model, and separate models developed for four traffic scenarios. The prediction performance of different models was compared. The frequency of traffic conflicts follows a negative binominal distribution. The linear regression model is not appropriate for the conflict frequency data. In addition, drivers behaved differently under different traffic conditions. Accordingly, the effects of conflicting traffic volumes on conflict frequency vary across different traffic conditions. The occurrences of traffic conflicts at signalized intersections can be modeled using generalized linear regression models. The use of conflict predictive models has potential to expand the uses of surrogate safety measures in safety estimation and evaluation.

  13. Comparison of Classical and Robust Estimates of Threshold Auto-regression Parameters

    V. B. Goryainov

    2017-01-01

    Full Text Available The study object is the first-order threshold auto-regression model with a single zero-located threshold. The model describes a stochastic temporal series with discrete time by means of a piecewise linear equation consisting of two linear classical first-order autoregressive equations. One of these equations is used to calculate a running value of the temporal series. A control variable that determines the choice between these two equations is the sign of the previous value of the same series.The first-order threshold autoregressive model with a single threshold depends on two real parameters that coincide with the coefficients of the piecewise linear threshold equation. These parameters are assumed to be unknown. The paper studies an estimate of the least squares, an estimate the least modules, and the M-estimates of these parameters. The aim of the paper is a comparative study of the accuracy of these estimates for the main probabilistic distributions of the updating process of the threshold autoregressive equation. These probability distributions were normal, contaminated normal, logistic, double-exponential distributions, a Student's distribution with different number of degrees of freedom, and a Cauchy distribution.As a measure of the accuracy of each estimate, was chosen its variance to measure the scattering of the estimate around the estimated parameter. An estimate with smaller variance made from the two estimates was considered to be the best. The variance was estimated by computer simulation. To estimate the smallest modules an iterative weighted least-squares method was used and the M-estimates were done by the method of a deformable polyhedron (the Nelder-Mead method. To calculate the least squares estimate, an explicit analytic expression was used.It turned out that the estimation of least squares is best only with the normal distribution of the updating process. For the logistic distribution and the Student's distribution with the

  14. Estimation of Stature from Foot Dimensions and Stature among South Indian Medical Students Using Regression Models

    Rajesh D. R

    2015-01-01

    Full Text Available Background: At times fragments of soft tissues are found disposed off in the open, in ditches at the crime scene and the same are brought to forensic experts for the purpose of identification and such type of cases pose a real challenge. Objectives: This study was aimed at developing a methodology which could help in personal identification by studying the relation between foot dimensions and stature among south subjects using regression models. Material and Methods: Stature and foot length of 100 subjects (age range 18-22 years were measured. Linear regression equations for stature estimation were calculated. Result: The correlation coefficients between stature and foot lengths were found to be positive and statistically significant. Height = 98.159 + 3.746 × FLRT (r = 0.821 and Height = 91.242 + 3.284 × FLRT (r = 0.837 are the regression formulas from foot lengths for males and females respectively. Conclusion: The regression equation derived in the study can be used reliably for estimation of stature in a diverse population group thus would be of immense value in the field of personal identification especially from mutilated bodies or fragmentary remains.

  15. The Collinearity Free and Bias Reduced Regression Estimation Project: The Theory of Normalization Ridge Regression. Report No. 2.

    Bulcock, J. W.; And Others

    Multicollinearity refers to the presence of highly intercorrelated independent variables in structural equation models, that is, models estimated by using techniques such as least squares regression and maximum likelihood. There is a problem of multicollinearity in both the natural and social sciences where theory formulation and estimation is in…

  16. Dynamic Optimization for IPS2 Resource Allocation Based on Improved Fuzzy Multiple Linear Regression

    Maokuan Zheng

    2017-01-01

    Full Text Available The study mainly focuses on resource allocation optimization for industrial product-service systems (IPS2. The development of IPS2 leads to sustainable economy by introducing cooperative mechanisms apart from commodity transaction. The randomness and fluctuation of service requests from customers lead to the volatility of IPS2 resource utilization ratio. Three basic rules for resource allocation optimization are put forward to improve system operation efficiency and cut unnecessary costs. An approach based on fuzzy multiple linear regression (FMLR is developed, which integrates the strength and concision of multiple linear regression in data fitting and factor analysis and the merit of fuzzy theory in dealing with uncertain or vague problems, which helps reduce those costs caused by unnecessary resource transfer. The iteration mechanism is introduced in the FMLR algorithm to improve forecasting accuracy. A case study of human resource allocation optimization in construction machinery industry is implemented to test and verify the proposed model.

  17. BFLCRM: A BAYESIAN FUNCTIONAL LINEAR COX REGRESSION MODEL FOR PREDICTING TIME TO CONVERSION TO ALZHEIMER'S DISEASE.

    Lee, Eunjee; Zhu, Hongtu; Kong, Dehan; Wang, Yalin; Giovanello, Kelly Sullivan; Ibrahim, Joseph G

    2015-12-01

    The aim of this paper is to develop a Bayesian functional linear Cox regression model (BFLCRM) with both functional and scalar covariates. This new development is motivated by establishing the likelihood of conversion to Alzheimer's disease (AD) in 346 patients with mild cognitive impairment (MCI) enrolled in the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) and the early markers of conversion. These 346 MCI patients were followed over 48 months, with 161 MCI participants progressing to AD at 48 months. The functional linear Cox regression model was used to establish that functional covariates including hippocampus surface morphology and scalar covariates including brain MRI volumes, cognitive performance (ADAS-Cog), and APOE status can accurately predict time to onset of AD. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. A simulation study is performed to evaluate the finite sample performance of BFLCRM.

  18. Alzheimer's Disease Detection by Pseudo Zernike Moment and Linear Regression Classification.

    Wang, Shui-Hua; Du, Sidan; Zhang, Yin; Phillips, Preetha; Wu, Le-Nan; Chen, Xian-Qing; Zhang, Yu-Dong

    2017-01-01

    This study presents an improved method based on "Gorji et al. Neuroscience. 2015" by introducing a relatively new classifier-linear regression classification. Our method selects one axial slice from 3D brain image, and employed pseudo Zernike moment with maximum order of 15 to extract 256 features from each image. Finally, linear regression classification was harnessed as the classifier. The proposed approach obtains an accuracy of 97.51%, a sensitivity of 96.71%, and a specificity of 97.73%. Our method performs better than Gorji's approach and five other state-of-the-art approaches. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Modeling daily soil temperature over diverse climate conditions in Iran—a comparison of multiple linear regression and support vector regression techniques

    Delbari, Masoomeh; Sharifazari, Salman; Mohammadi, Ehsan

    2018-02-01

    The knowledge of soil temperature at different depths is important for agricultural industry and for understanding climate change. The aim of this study is to evaluate the performance of a support vector regression (SVR)-based model in estimating daily soil temperature at 10, 30 and 100 cm depth at different climate conditions over Iran. The obtained results were compared to those obtained from a more classical multiple linear regression (MLR) model. The correlation sensitivity for the input combinations and periodicity effect were also investigated. Climatic data used as inputs to the models were minimum and maximum air temperature, solar radiation, relative humidity, dew point, and the atmospheric pressure (reduced to see level), collected from five synoptic stations Kerman, Ahvaz, Tabriz, Saghez, and Rasht located respectively in the hyper-arid, arid, semi-arid, Mediterranean, and hyper-humid climate conditions. According to the results, the performance of both MLR and SVR models was quite well at surface layer, i.e., 10-cm depth. However, SVR performed better than MLR in estimating soil temperature at deeper layers especially 100 cm depth. Moreover, both models performed better in humid climate condition than arid and hyper-arid areas. Further, adding a periodicity component into the modeling process considerably improved the models' performance especially in the case of SVR.

  20. MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY

    Chayalakshmi C.L

    2018-01-01

    MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY ABSTRACT Calculation of boiler efficiency is essential if its parameters need to be controlled for either maintaining or enhancing its efficiency. But determination of boiler efficiency using conventional method is time consuming and very expensive. Hence, it is not recommended to find boiler efficiency frequently. The work presented in this paper deals with establishing the statistical mo...

  1. A Simple Linear Regression Method for Quantitative Trait Loci Linkage Analysis With Censored Observations

    Anderson, Carl A.; McRae, Allan F.; Visscher, Peter M.

    2006-01-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using...

  2. The detection of influential subsets in linear regression using an influence matrix

    Peña, Daniel; Yohai, Víctor J.

    1991-01-01

    This paper presents a new method to identify influential subsets in linear regression problems. The procedure uses the eigenstructure of an influence matrix which is defined as the matrix of uncentered covariance of the effect on the whole data set of deleting each observation, normalized to include the univariate Cook's statistics in the diagonal. It is shown that points in an influential subset will appear with large weight in at least one of the eigenvector linked to the largest eigenvalue...

  3. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages

    Kim, Yoonsang; Emery, Sherry

    2013-01-01

    Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes. PMID:24288415

  4. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages.

    Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry

    2013-08-01

    Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.

  5. Privacy-Preserving Distributed Linear Regression on High-Dimensional Data

    Gascón Adrià

    2017-10-01

    Full Text Available We propose privacy-preserving protocols for computing linear regression models, in the setting where the training dataset is vertically distributed among several parties. Our main contribution is a hybrid multi-party computation protocol that combines Yao’s garbled circuits with tailored protocols for computing inner products. Like many machine learning tasks, building a linear regression model involves solving a system of linear equations. We conduct a comprehensive evaluation and comparison of different techniques for securely performing this task, including a new Conjugate Gradient Descent (CGD algorithm. This algorithm is suitable for secure computation because it uses an efficient fixed-point representation of real numbers while maintaining accuracy and convergence rates comparable to what can be obtained with a classical solution using floating point numbers. Our technique improves on Nikolaenko et al.’s method for privacy-preserving ridge regression (S&P 2013, and can be used as a building block in other analyses. We implement a complete system and demonstrate that our approach is highly scalable, solving data analysis problems with one million records and one hundred features in less than one hour of total running time.

  6. [Multiple linear regression analysis of X-ray measurement and WOMAC scores of knee osteoarthritis].

    Ma, Yu-Feng; Wang, Qing-Fu; Chen, Zhao-Jun; Du, Chun-Lin; Li, Jun-Hai; Huang, Hu; Shi, Zong-Ting; Yin, Yue-Shan; Zhang, Lei; A-Di, Li-Jiang; Dong, Shi-Yu; Wu, Ji

    2012-05-01

    To perform Multiple Linear Regression analysis of X-ray measurement and WOMAC scores of knee osteoarthritis, and to analyze their relationship with clinical and biomechanical concepts. From March 2011 to July 2011, 140 patients (250 knees) were reviewed, including 132 knees in the left and 118 knees in the right; ranging in age from 40 to 71 years, with an average of 54.68 years. The MB-RULER measurement software was applied to measure femoral angle, tibial angle, femorotibial angle, joint gap angle from antero-posterir and lateral position of X-rays. The WOMAC scores were also collected. Then multiple regression equations was applied for the linear regression analysis of correlation between the X-ray measurement and WOMAC scores. There was statistical significance in the regression equation of AP X-rays value and WOMAC scores (Pregression equation of lateral X-ray value and WOMAC scores (P>0.05). 1) X-ray measurement of knee joint can reflect the WOMAC scores to a certain extent. 2) It is necessary to measure the X-ray mechanical axis of knee, which is important for diagnosis and treatment of osteoarthritis. 3) The correlation between tibial angle,joint gap angle on antero-posterior X-ray and WOMAC scores is significant, which can be used to assess the functional recovery of patients before and after treatment.

  7. Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings

    Chung, William

    2012-01-01

    Highlights: ► Fuzzy linear regression method is used for developing benchmarking systems. ► The systems can be used to benchmark energy efficiency of commercial buildings. ► The resulting benchmarking model can be used by public users. ► The resulting benchmarking model can capture the fuzzy nature of input–output data. -- Abstract: Benchmarking systems from a sample of reference buildings need to be developed to conduct benchmarking processes for the energy efficiency of commercial buildings. However, not all benchmarking systems can be adopted by public users (i.e., other non-reference building owners) because of the different methods in developing such systems. An approach for benchmarking the energy efficiency of commercial buildings using statistical regression analysis to normalize other factors, such as management performance, was developed in a previous work. However, the field data given by experts can be regarded as a distribution of possibility. Thus, the previous work may not be adequate to handle such fuzzy input–output data. Consequently, a number of fuzzy structures cannot be fully captured by statistical regression analysis. This present paper proposes the use of fuzzy linear regression analysis to develop a benchmarking process, the resulting model of which can be used by public users. An illustrative example is given as well.

  8. Evaluation of accuracy of linear regression models in predicting urban stormwater discharge characteristics.

    Madarang, Krish J; Kang, Joo-Hyon

    2014-06-01

    Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive models and mathematical models have been developed. Predictive tools such as regression models have been widely used to predict stormwater discharge characteristics. Storm event characteristics, such as antecedent dry days (ADD), have been related to response variables, such as pollutant loads and concentrations. However it has been a controversial issue among many studies to consider ADD as an important variable in predicting stormwater discharge characteristics. In this study, we examined the accuracy of general linear regression models in predicting discharge characteristics of roadway runoff. A total of 17 storm events were monitored in two highway segments, located in Gwangju, Korea. Data from the monitoring were used to calibrate United States Environmental Protection Agency's Storm Water Management Model (SWMM). The calibrated SWMM was simulated for 55 storm events, and the results of total suspended solid (TSS) discharge loads and event mean concentrations (EMC) were extracted. From these data, linear regression models were developed. R(2) and p-values of the regression of ADD for both TSS loads and EMCs were investigated. Results showed that pollutant loads were better predicted than pollutant EMC in the multiple regression models. Regression may not provide the true effect of site-specific characteristics, due to uncertainty in the data. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  9. The effect of high leverage points on the logistic ridge regression estimator having multicollinearity

    Ariffin, Syaiba Balqish; Midi, Habshah

    2014-06-01

    This article is concerned with the performance of logistic ridge regression estimation technique in the presence of multicollinearity and high leverage points. In logistic regression, multicollinearity exists among predictors and in the information matrix. The maximum likelihood estimator suffers a huge setback in the presence of multicollinearity which cause regression estimates to have unduly large standard errors. To remedy this problem, a logistic ridge regression estimator is put forward. It is evident that the logistic ridge regression estimator outperforms the maximum likelihood approach for handling multicollinearity. The effect of high leverage points are then investigated on the performance of the logistic ridge regression estimator through real data set and simulation study. The findings signify that logistic ridge regression estimator fails to provide better parameter estimates in the presence of both high leverage points and multicollinearity.

  10. Hippocampal atrophy and developmental regression as first sign of linear scleroderma "en coup de sabre".

    Verhelst, Helene E; Beele, Hilde; Joos, Rik; Vanneuville, Benedicte; Van Coster, Rudy N

    2008-11-01

    An 8-year-old girl with linear scleroderma "en coup de sabre" is reported who, at preschool age, presented with intractable simple partial seizures more than 1 year before skin lesions were first noticed. MRI revealed hippocampal atrophy, controlaterally to the seizures and ipsilaterally to the skin lesions. In the following months, a mental and motor regression was noticed. Cerebral CT scan showed multiple foci of calcifications in the affected hemisphere. In previously reported patients the skin lesions preceded the neurological signs. To the best of our knowledge, hippocampal atrophy was not earlier reported as presenting symptom of linear scleroderma. Linear scleroderma should be included in the differential diagnosis in patients with unilateral hippocampal atrophy even when the typical skin lesions are not present.

  11. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography

    Menon Carlo

    2011-09-01

    Full Text Available Abstract Background Several regression models have been proposed for estimation of isometric joint torque using surface electromyography (SEMG signals. Common issues related to torque estimation models are degradation of model accuracy with passage of time, electrode displacement, and alteration of limb posture. This work compares the performance of the most commonly used regression models under these circumstances, in order to assist researchers with identifying the most appropriate model for a specific biomedical application. Methods Eleven healthy volunteers participated in this study. A custom-built rig, equipped with a torque sensor, was used to measure isometric torque as each volunteer flexed and extended his wrist. SEMG signals from eight forearm muscles, in addition to wrist joint torque data were gathered during the experiment. Additional data were gathered one hour and twenty-four hours following the completion of the first data gathering session, for the purpose of evaluating the effects of passage of time and electrode displacement on accuracy of models. Acquired SEMG signals were filtered, rectified, normalized and then fed to models for training. Results It was shown that mean adjusted coefficient of determination (Ra2 values decrease between 20%-35% for different models after one hour while altering arm posture decreased mean Ra2 values between 64% to 74% for different models. Conclusions Model estimation accuracy drops significantly with passage of time, electrode displacement, and alteration of limb posture. Therefore model retraining is crucial for preserving estimation accuracy. Data resampling can significantly reduce model training time without losing estimation accuracy. Among the models compared, ordinary least squares linear regression model (OLS was shown to have high isometric torque estimation accuracy combined with very short training times.

  12. Computer software for linear and nonlinear regression in organic NMR; Programa de computador para regressao linear e nao linear em R.M.N. organica

    Canto, Eduardo Leite do; Rittner, Roberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica

    1992-12-31

    Calculation involving two variable linear regressions, require specific procedures generally not familiar to chemist. For attending the necessity of fast and efficient handling of NMR data, a self explained and Pc portable software has been developed, which allows user to produce and use diskette recorded tables, containing chemical shift or any other substituent physical-chemical measurements and constants ({sigma}{sub T}, {sigma}{sup o}{sub R}, E{sub s}, ...) 9 refs., 1 fig.

  13. Evaluating Non-Linear Regression Models in Analysis of Persian Walnut Fruit Growth

    I. Karamatlou

    2016-02-01

    Full Text Available Introduction: Persian walnut (Juglans regia L. is a large, wind-pollinated, monoecious, dichogamous, long lived, perennial tree cultivated for its high quality wood and nuts throughout the temperate regions of the world. Growth model methodology has been widely used in the modeling of plant growth. Mathematical models are important tools to study the plant growth and agricultural systems. These models can be applied for decision-making anddesigning management procedures in horticulture. Through growth analysis, planning for planting systems, fertilization, pruning operations, harvest time as well as obtaining economical yield can be more accessible.Non-linear models are more difficult to specify and estimate than linear models. This research was aimed to studynon-linear regression models based on data obtained from fruit weight, length and width. Selecting the best models which explain that fruit inherent growth pattern of Persian walnut was a further goal of this study. Materials and Methods: The experimental material comprising 14 Persian walnut genotypes propagated by seed collected from a walnut orchard in Golestan province, Minoudasht region, Iran, at latitude 37◦04’N; longitude 55◦32’E; altitude 1060 m, in a silt loam soil type. These genotypes were selected as a representative sampling of the many walnut genotypes available throughout the Northeastern Iran. The age range of walnut trees was 30 to 50 years. The annual mean temperature at the location is16.3◦C, with annual mean rainfall of 690 mm.The data used here is the average of walnut fresh fruit and measured withgram/millimeter/day in2011.According to the data distribution pattern, several equations have been proposed to describesigmoidal growth patterns. Here, we used double-sigmoid and logistic–monomolecular models to evaluate fruit growth based on fruit weight and4different regression models in cluding Richards, Gompertz, Logistic and Exponential growth for evaluation

  14. Bias in regression coefficient estimates upon different treatments of ...

    MS and PW consistently overestimated the population parameter. EM and RI, on the other hand, tended to consistently underestimate the population parameter under non-monotonic pattern. Keywords: Missing data, bias, regression, percent missing, non-normality, missing pattern > East African Journal of Statistics Vol.

  15. Hierarchical Matching and Regression with Application to Photometric Redshift Estimation

    Murtagh, Fionn

    2017-06-01

    This work emphasizes that heterogeneity, diversity, discontinuity, and discreteness in data is to be exploited in classification and regression problems. A global a priori model may not be desirable. For data analytics in cosmology, this is motivated by the variety of cosmological objects such as elliptical, spiral, active, and merging galaxies at a wide range of redshifts. Our aim is matching and similarity-based analytics that takes account of discrete relationships in the data. The information structure of the data is represented by a hierarchy or tree where the branch structure, rather than just the proximity, is important. The representation is related to p-adic number theory. The clustering or binning of the data values, related to the precision of the measurements, has a central role in this methodology. If used for regression, our approach is a method of cluster-wise regression, generalizing nearest neighbour regression. Both to exemplify this analytics approach, and to demonstrate computational benefits, we address the well-known photometric redshift or `photo-z' problem, seeking to match Sloan Digital Sky Survey (SDSS) spectroscopic and photometric redshifts.

  16. Stellar atmospheric parameter estimation using Gaussian process regression

    Bu, Yude; Pan, Jingchang

    2015-02-01

    As is well known, it is necessary to derive stellar parameters from massive amounts of spectral data automatically and efficiently. However, in traditional automatic methods such as artificial neural networks (ANNs) and kernel regression (KR), it is often difficult to optimize the algorithm structure and determine the optimal algorithm parameters. Gaussian process regression (GPR) is a recently developed method that has been proven to be capable of overcoming these difficulties. Here we apply GPR to derive stellar atmospheric parameters from spectra. Through evaluating the performance of GPR on Sloan Digital Sky Survey (SDSS) spectra, Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES) spectra, ELODIE spectra and the spectra of member stars of galactic globular clusters, we conclude that GPR can derive stellar parameters accurately and precisely, especially when we use data preprocessed with principal component analysis (PCA). We then compare the performance of GPR with that of several widely used regression methods (ANNs, support-vector regression and KR) and find that with GPR it is easier to optimize structures and parameters and more efficient and accurate to extract atmospheric parameters.

  17. Is it the intervention or the students? using linear regression to control for student characteristics in undergraduate STEM education research.

    Theobald, Roddy; Freeman, Scott

    2014-01-01

    Although researchers in undergraduate science, technology, engineering, and mathematics education are currently using several methods to analyze learning gains from pre- and posttest data, the most commonly used approaches have significant shortcomings. Chief among these is the inability to distinguish whether differences in learning gains are due to the effect of an instructional intervention or to differences in student characteristics when students cannot be assigned to control and treatment groups at random. Using pre- and posttest scores from an introductory biology course, we illustrate how the methods currently in wide use can lead to erroneous conclusions, and how multiple linear regression offers an effective framework for distinguishing the impact of an instructional intervention from the impact of student characteristics on test score gains. In general, we recommend that researchers always use student-level regression models that control for possible differences in student ability and preparation to estimate the effect of any nonrandomized instructional intervention on student performance.

  18. Construction of multiple linear regression models using blood biomarkers for selecting against abdominal fat traits in broilers.

    Dong, J Q; Zhang, X Y; Wang, S Z; Jiang, X F; Zhang, K; Ma, G W; Wu, M Q; Li, H; Zhang, H

    2018-01-01

    Plasma very low-density lipoprotein (VLDL) can be used to select for low body fat or abdominal fat (AF) in broilers, but its correlation with AF is limited. We investigated whether any other biochemical indicator can be used in combination with VLDL for a better selective effect. Nineteen plasma biochemical indicators were measured in male chickens from the Northeast Agricultural University broiler lines divergently selected for AF content (NEAUHLF) in the fed state at 46 and 48 d of age. The average concentration of every parameter for the 2 d was used for statistical analysis. Levels of these 19 plasma biochemical parameters were compared between the lean and fat lines. The phenotypic correlations between these plasma biochemical indicators and AF traits were analyzed. Then, multiple linear regression models were constructed to select the best model used for selecting against AF content. and the heritabilities of plasma indicators contained in the best models were estimated. The results showed that 11 plasma biochemical indicators (triglycerides, total bile acid, total protein, globulin, albumin/globulin, aspartate transaminase, alanine transaminase, gamma-glutamyl transpeptidase, uric acid, creatinine, and VLDL) differed significantly between the lean and fat lines (P linear regression models based on albumin/globulin, VLDL, triglycerides, globulin, total bile acid, and uric acid, had higher R2 (0.73) than the model based only on VLDL (0.21). The plasma parameters included in the best models had moderate heritability estimates (0.21 ≤ h2 ≤ 0.43). These results indicate that these multiple linear regression models can be used to select for lean broiler chickens. © 2017 Poultry Science Association Inc.

  19. Outlier Detection in Regression Using an Iterated One-Step Approximation to the Huber-Skip Estimator

    Johansen, Søren; Nielsen, Bent

    2013-01-01

    In regression we can delete outliers based upon a preliminary estimator and reestimate the parameters by least squares based upon the retained observations. We study the properties of an iteratively defined sequence of estimators based on this idea. We relate the sequence to the Huber-skip estima......In regression we can delete outliers based upon a preliminary estimator and reestimate the parameters by least squares based upon the retained observations. We study the properties of an iteratively defined sequence of estimators based on this idea. We relate the sequence to the Huber...... that the normalized estimation errors are tight and are close to a linear function of the kernel, thus providing a stochastic expansion of the estimators, which is the same as for the Huber-skip. This implies that the iterated estimator is a close approximation of the Huber-skip...

  20. Performances Of Estimators Of Linear Models With Autocorrelated ...

    The performances of five estimators of linear models with Autocorrelated error terms are compared when the independent variable is autoregressive. The results reveal that the properties of the estimators when the sample size is finite is quite similar to the properties of the estimators when the sample size is infinite although ...

  1. Generating linear regression model to predict motor functions by use of laser range finder during TUG.

    Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki

    2017-05-01

    The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  2. Partitioning of late gestation energy expenditure in ewes using indirect calorimetry and a linear regression approach

    Kiani, Alishir; Chwalibog, André; Nielsen, Mette O

    2007-01-01

    Late gestation energy expenditure (EE(gest)) originates from energy expenditure (EE) of development of conceptus (EE(conceptus)) and EE of homeorhetic adaptation of metabolism (EE(homeorhetic)). Even though EE(gest) is relatively easy to quantify, its partitioning is problematic. In the present...... study metabolizable energy (ME) intake ranges for twin-bearing ewes were 220-440, 350- 700, 350-900 kJ per metabolic body weight (W0.75) at week seven, five, two pre-partum respectively. Indirect calorimetry and a linear regression approach were used to quantify EE(gest) and then partition to EE......(conceptus) and EE(homeorhetic). Energy expenditure of basal metabolism of the non-gravid tissues (EE(bmng)), derived from the intercept of the linear regression equation of retained energy [kJ/W0.75] and ME intake [kJ/W(0.75)], was 298 [kJ/ W0.75]. Values of the intercepts of the regression equations at week seven...

  3. Distributed Monitoring of the R(sup 2) Statistic for Linear Regression

    Bhaduri, Kanishka; Das, Kamalika; Giannella, Chris R.

    2011-01-01

    The problem of monitoring a multivariate linear regression model is relevant in studying the evolving relationship between a set of input variables (features) and one or more dependent target variables. This problem becomes challenging for large scale data in a distributed computing environment when only a subset of instances is available at individual nodes and the local data changes frequently. Data centralization and periodic model recomputation can add high overhead to tasks like anomaly detection in such dynamic settings. Therefore, the goal is to develop techniques for monitoring and updating the model over the union of all nodes data in a communication-efficient fashion. Correctness guarantees on such techniques are also often highly desirable, especially in safety-critical application scenarios. In this paper we develop DReMo a distributed algorithm with very low resource overhead, for monitoring the quality of a regression model in terms of its coefficient of determination (R2 statistic). When the nodes collectively determine that R2 has dropped below a fixed threshold, the linear regression model is recomputed via a network-wide convergecast and the updated model is broadcast back to all nodes. We show empirically, using both synthetic and real data, that our proposed method is highly communication-efficient and scalable, and also provide theoretical guarantees on correctness.

  4. Estimation and variable selection for generalized additive partial linear models

    Wang, Li

    2011-08-01

    We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.

  5. Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis

    Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel

    2013-01-01

    This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007

  6. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.

    Choi, Jae-Seok; Kim, Munchurl

    2017-03-01

    Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower

  7. A note on the use of multiple linear regression in molecular ecology.

    Frasier, Timothy R

    2016-03-01

    Multiple linear regression analyses (also often referred to as generalized linear models--GLMs, or generalized linear mixed models--GLMMs) are widely used in the analysis of data in molecular ecology, often to assess the relative effects of genetic characteristics on individual fitness or traits, or how environmental characteristics influence patterns of genetic differentiation. However, the coefficients resulting from multiple regression analyses are sometimes misinterpreted, which can lead to incorrect interpretations and conclusions within individual studies, and can propagate to wider-spread errors in the general understanding of a topic. The primary issue revolves around the interpretation of coefficients for independent variables when interaction terms are also included in the analyses. In this scenario, the coefficients associated with each independent variable are often interpreted as the independent effect of each predictor variable on the predicted variable. However, this interpretation is incorrect. The correct interpretation is that these coefficients represent the effect of each predictor variable on the predicted variable when all other predictor variables are zero. This difference may sound subtle, but the ramifications cannot be overstated. Here, my goals are to raise awareness of this issue, to demonstrate and emphasize the problems that can result and to provide alternative approaches for obtaining the desired information. © 2015 John Wiley & Sons Ltd.

  8. Weighted functional linear regression models for gene-based association analysis.

    Belonogova, Nadezhda M; Svishcheva, Gulnara R; Wilson, James F; Campbell, Harry; Axenovich, Tatiana I

    2018-01-01

    Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.

  9. Oil and gas pipeline construction cost analysis and developing regression models for cost estimation

    Thaduri, Ravi Kiran

    In this study, cost data for 180 pipelines and 136 compressor stations have been analyzed. On the basis of the distribution analysis, regression models have been developed. Material, Labor, ROW and miscellaneous costs make up the total cost of a pipeline construction. The pipelines are analyzed based on different pipeline lengths, diameter, location, pipeline volume and year of completion. In a pipeline construction, labor costs dominate the total costs with a share of about 40%. Multiple non-linear regression models are developed to estimate the component costs of pipelines for various cross-sectional areas, lengths and locations. The Compressor stations are analyzed based on the capacity, year of completion and location. Unlike the pipeline costs, material costs dominate the total costs in the construction of compressor station, with an average share of about 50.6%. Land costs have very little influence on the total costs. Similar regression models are developed to estimate the component costs of compressor station for various capacities and locations.

  10. Bayesian quantile regression-based partially linear mixed-effects joint models for longitudinal data with multiple features.

    Zhang, Hanze; Huang, Yangxin; Wang, Wei; Chen, Henian; Langland-Orban, Barbara

    2017-01-01

    In longitudinal AIDS studies, it is of interest to investigate the relationship between HIV viral load and CD4 cell counts, as well as the complicated time effect. Most of common models to analyze such complex longitudinal data are based on mean-regression, which fails to provide efficient estimates due to outliers and/or heavy tails. Quantile regression-based partially linear mixed-effects models, a special case of semiparametric models enjoying benefits of both parametric and nonparametric models, have the flexibility to monitor the viral dynamics nonparametrically and detect the varying CD4 effects parametrically at different quantiles of viral load. Meanwhile, it is critical to consider various data features of repeated measurements, including left-censoring due to a limit of detection, covariate measurement error, and asymmetric distribution. In this research, we first establish a Bayesian joint models that accounts for all these data features simultaneously in the framework of quantile regression-based partially linear mixed-effects models. The proposed models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also conducted to assess the performance of the proposed methods under different scenarios.

  11. Regularized Regression and Density Estimation based on Optimal Transport

    Burger, M.; Franek, M.; Schonlieb, C.-B.

    2012-01-01

    for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations

  12. Estimating life expectancies for US small areas: a regression framework

    Congdon, Peter

    2014-01-01

    Analysis of area mortality variations and estimation of area life tables raise methodological questions relevant to assessing spatial clustering, and socioeconomic inequalities in mortality. Existing small area analyses of US life expectancy variation generally adopt ad hoc amalgamations of counties to alleviate potential instability of mortality rates involved in deriving life tables, and use conventional life table analysis which takes no account of correlated mortality for adjacent areas or ages. The alternative strategy here uses structured random effects methods that recognize correlations between adjacent ages and areas, and allows retention of the original county boundaries. This strategy generalizes to include effects of area category (e.g. poverty status, ethnic mix), allowing estimation of life tables according to area category, and providing additional stabilization of estimated life table functions. This approach is used here to estimate stabilized mortality rates, derive life expectancies in US counties, and assess trends in clustering and in inequality according to county poverty category.

  13. Discussion on Regression Methods Based on Ensemble Learning and Applicability Domains of Linear Submodels.

    Kaneko, Hiromasa

    2018-02-26

    To develop a new ensemble learning method and construct highly predictive regression models in chemoinformatics and chemometrics, applicability domains (ADs) are introduced into the ensemble learning process of prediction. When estimating values of an objective variable using subregression models, only the submodels with ADs that cover a query sample, i.e., the sample is inside the model's AD, are used. By constructing submodels and changing a list of selected explanatory variables, the union of the submodels' ADs, which defines the overall AD, becomes large, and the prediction performance is enhanced for diverse compounds. By analyzing a quantitative structure-activity relationship data set and a quantitative structure-property relationship data set, it is confirmed that the ADs can be enlarged and the estimation performance of regression models is improved compared with traditional methods.

  14. Adaptive Linear and Normalized Combination of Radial Basis Function Networks for Function Approximation and Regression

    Yunfeng Wu

    2014-01-01

    Full Text Available This paper presents a novel adaptive linear and normalized combination (ALNC method that can be used to combine the component radial basis function networks (RBFNs to implement better function approximation and regression tasks. The optimization of the fusion weights is obtained by solving a constrained quadratic programming problem. According to the instantaneous errors generated by the component RBFNs, the ALNC is able to perform the selective ensemble of multiple leaners by adaptively adjusting the fusion weights from one instance to another. The results of the experiments on eight synthetic function approximation and six benchmark regression data sets show that the ALNC method can effectively help the ensemble system achieve a higher accuracy (measured in terms of mean-squared error and the better fidelity (characterized by normalized correlation coefficient of approximation, in relation to the popular simple average, weighted average, and the Bagging methods.

  15. Linear and support vector regressions based on geometrical correlation of data

    Kaijun Wang

    2007-10-01

    Full Text Available Linear regression (LR and support vector regression (SVR are widely used in data analysis. Geometrical correlation learning (GcLearn was proposed recently to improve the predictive ability of LR and SVR through mining and using correlations between data of a variable (inner correlation. This paper theoretically analyzes prediction performance of the GcLearn method and proves that GcLearn LR and SVR will have better prediction performance than traditional LR and SVR for prediction tasks when good inner correlations are obtained and predictions by traditional LR and SVR are far away from their neighbor training data under inner correlation. This gives the applicable condition of GcLearn method.

  16. Radioligand assays - methods and applications. IV. Uniform regression of hyperbolic and linear radioimmunoassay calibration curves

    Keilacker, H; Becker, G; Ziegler, M; Gottschling, H D [Zentralinstitut fuer Diabetes, Karlsburg (German Democratic Republic)

    1980-10-01

    In order to handle all types of radioimmunoassay (RIA) calibration curves obtained in the authors' laboratory in the same way, they tried to find a non-linear expression for their regression which allows calibration curves with different degrees of curvature to be fitted. Considering the two boundary cases of the incubation protocol they derived a hyperbolic inverse regression function: x = a/sub 1/y + a/sub 0/ + asub(-1)y/sup -1/, where x is the total concentration of antigen, asub(i) are constants, and y is the specifically bound radioactivity. An RIA evaluation procedure based on this function is described providing a fitted inverse RIA calibration curve and some statistical quality parameters. The latter are of an order which is normal for RIA systems. There is an excellent agreement between fitted and experimentally obtained calibration curves having a different degree of curvature.

  17. SOCP relaxation bounds for the optimal subset selection problem applied to robust linear regression

    Flores, Salvador

    2015-01-01

    This paper deals with the problem of finding the globally optimal subset of h elements from a larger set of n elements in d space dimensions so as to minimize a quadratic criterion, with an special emphasis on applications to computing the Least Trimmed Squares Estimator (LTSE) for robust regression. The computation of the LTSE is a challenging subset selection problem involving a nonlinear program with continuous and binary variables, linked in a highly nonlinear fashion. The selection of a ...

  18. Face Hallucination with Linear Regression Model in Semi-Orthogonal Multilinear PCA Method

    Asavaskulkiet, Krissada

    2018-04-01

    In this paper, we propose a new face hallucination technique, face images reconstruction in HSV color space with a semi-orthogonal multilinear principal component analysis method. This novel hallucination technique can perform directly from tensors via tensor-to-vector projection by imposing the orthogonality constraint in only one mode. In our experiments, we use facial images from FERET database to test our hallucination approach which is demonstrated by extensive experiments with high-quality hallucinated color faces. The experimental results assure clearly demonstrated that we can generate photorealistic color face images by using the SO-MPCA subspace with a linear regression model.

  19. Application of genetic algorithm - multiple linear regressions to predict the activity of RSK inhibitors

    Avval Zhila Mohajeri

    2015-01-01

    Full Text Available This paper deals with developing a linear quantitative structure-activity relationship (QSAR model for predicting the RSK inhibition activity of some new compounds. A dataset consisting of 62 pyrazino [1,2-α] indole, diazepino [1,2-α] indole, and imidazole derivatives with known inhibitory activities was used. Multiple linear regressions (MLR technique combined with the stepwise (SW and the genetic algorithm (GA methods as variable selection tools was employed. For more checking stability, robustness and predictability of the proposed models, internal and external validation techniques were used. Comparison of the results obtained, indicate that the GA-MLR model is superior to the SW-MLR model and that it isapplicable for designing novel RSK inhibitors.

  20. Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.

    Lin, Huiming; Fu, Bo; Qin, Guoyou; Zhu, Zhongyi

    2017-12-01

    We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed method and use simulation studies to compare its finite sample performance with that of Qu's method, the complete-case generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated using data from a longitudinal cohort study. © 2017, The International Biometric Society.

  1. Bounded Perturbation Regularization for Linear Least Squares Estimation

    Ballal, Tarig; Suliman, Mohamed Abdalla Elhag; Al-Naffouri, Tareq Y.

    2017-01-01

    This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded

  2. Robust estimation for partially linear models with large-dimensional covariates.

    Zhu, LiPing; Li, RunZe; Cui, HengJian

    2013-10-01

    We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon-cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of [Formula: see text], where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.

  3. Allelic drop-out probabilities estimated by logistic regression

    Tvedebrink, Torben; Eriksen, Poul Svante; Asplund, Maria

    2012-01-01

    We discuss the model for estimating drop-out probabilities presented by Tvedebrink et al. [7] and the concerns, that have been raised. The criticism of the model has demonstrated that the model is not perfect. However, the model is very useful for advanced forensic genetic work, where allelic drop-out...... is occurring. With this discussion, we hope to improve the drop-out model, so that it can be used for practical forensic genetics and stimulate further discussions. We discuss how to estimate drop-out probabilities when using a varying number of PCR cycles and other experimental conditions....

  4. Lattice Designs in Standard and Simple Implicit Multi-linear Regression

    Wooten, Rebecca D.

    2016-01-01

    Statisticians generally use ordinary least squares to minimize the random error in a subject response with respect to independent explanatory variable. However, Wooten shows illustrates how ordinary least squares can be used to minimize the random error in the system without defining a subject response. Using lattice design Wooten shows that non-response analysis is a superior alternative rotation of the pyramidal relationship between random variables and parameter estimates in multi-linear r...

  5. On the estimation of the degree of regression polynomial

    Toeroek, Cs.

    1997-01-01

    The mathematical functions most commonly used to model curvature in plots are polynomials. Generally, the higher the degree of the polynomial, the more complex is the trend that its graph can represent. We propose a new statistical-graphical approach based on the discrete projective transformation (DPT) to estimating the degree of polynomial that adequately describes the trend in the plot

  6. Effects of measurement errors on psychometric measurements in ergonomics studies: Implications for correlations, ANOVA, linear regression, factor analysis, and linear discriminant analysis.

    Liu, Yan; Salvendy, Gavriel

    2009-05-01

    This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.

  7. Estimation Of Body Weight From Linear Body Measurements In Two ...

    The prediction of body weight from body girth, keel length and thigh length was studied using one hundred Ross and one hundred Anak Titan broilers. Data were collected on the birds from day-old to 9 weeks of age. Body measurement was regressed against body weight at 9 weeks of age using simple linear and ...

  8. Introduction to statistical modelling 2: categorical variables and interactions in linear regression.

    Lunt, Mark

    2015-07-01

    In the first article in this series we explored the use of linear regression to predict an outcome variable from a number of predictive factors. It assumed that the predictive factors were measured on an interval scale. However, this article shows how categorical variables can also be included in a linear regression model, enabling predictions to be made separately for different groups and allowing for testing the hypothesis that the outcome differs between groups. The use of interaction terms to measure whether the effect of a particular predictor variable differs between groups is also explained. An alternative approach to testing the difference between groups of the effect of a given predictor, which consists of measuring the effect in each group separately and seeing whether the statistical significance differs between the groups, is shown to be misleading. © The Author 2013. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Method validation using weighted linear regression models for quantification of UV filters in water samples.

    da Silva, Claudia Pereira; Emídio, Elissandro Soares; de Marchi, Mary Rosa Rodrigues

    2015-01-01

    This paper describes the validation of a method consisting of solid-phase extraction followed by gas chromatography-tandem mass spectrometry for the analysis of the ultraviolet (UV) filters benzophenone-3, ethylhexyl salicylate, ethylhexyl methoxycinnamate and octocrylene. The method validation criteria included evaluation of selectivity, analytical curve, trueness, precision, limits of detection and limits of quantification. The non-weighted linear regression model has traditionally been used for calibration, but it is not necessarily the optimal model in all cases. Because the assumption of homoscedasticity was not met for the analytical data in this work, a weighted least squares linear regression was used for the calibration method. The evaluated analytical parameters were satisfactory for the analytes and showed recoveries at four fortification levels between 62% and 107%, with relative standard deviations less than 14%. The detection limits ranged from 7.6 to 24.1 ng L(-1). The proposed method was used to determine the amount of UV filters in water samples from water treatment plants in Araraquara and Jau in São Paulo, Brazil. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  11. A Feature-Free 30-Disease Pathological Brain Detection System by Linear Regression Classifier.

    Chen, Yi; Shao, Ying; Yan, Jie; Yuan, Ti-Fei; Qu, Yanwen; Lee, Elizabeth; Wang, Shuihua

    2017-01-01

    Alzheimer's disease patients are increasing rapidly every year. Scholars tend to use computer vision methods to develop automatic diagnosis system. (Background) In 2015, Gorji et al. proposed a novel method using pseudo Zernike moment. They tested four classifiers: learning vector quantization neural network, pattern recognition neural network trained by Levenberg-Marquardt, by resilient backpropagation, and by scaled conjugate gradient. This study presents an improved method by introducing a relatively new classifier-linear regression classification. Our method selects one axial slice from 3D brain image, and employed pseudo Zernike moment with maximum order of 15 to extract 256 features from each image. Finally, linear regression classification was harnessed as the classifier. The proposed approach obtains an accuracy of 97.51%, a sensitivity of 96.71%, and a specificity of 97.73%. Our method performs better than Gorji's approach and five other state-of-the-art approaches. Therefore, it can be used to detect Alzheimer's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Linear Regression between CIE-Lab Color Parameters and Organic Matter in Soils of Tea Plantations

    Chen, Yonggen; Zhang, Min; Fan, Dongmei; Fan, Kai; Wang, Xiaochang

    2018-02-01

    To quantify the relationship between the soil organic matter and color parameters using the CIE-Lab system, 62 soil samples (0-10 cm, Ferralic Acrisols) from tea plantations were collected from southern China. After air-drying and sieving, numerical color information and reflectance spectra of soil samples were measured under laboratory conditions using an UltraScan VIS (HunterLab) spectrophotometer equipped with CIE-Lab color models. We found that soil total organic carbon (TOC) and nitrogen (TN) contents were negatively correlated with the L* value (lightness) ( r = -0.84 and -0.80, respectively), a* value (correlation coefficient r = -0.51 and -0.46, respectively) and b* value ( r = -0.76 and -0.70, respectively). There were also linear regressions between TOC and TN contents with the L* value and b* value. Results showed that color parameters from a spectrophotometer equipped with CIE-Lab color models can predict TOC contents well for soils in tea plantations. The linear regression model between color values and soil organic carbon contents showed it can be used as a rapid, cost-effective method to evaluate content of soil organic matter in Chinese tea plantations.

  13. Regularized Regression and Density Estimation based on Optimal Transport

    Burger, M.

    2012-03-11

    The aim of this paper is to investigate a novel nonparametric approach for estimating and smoothing density functions as well as probability densities from discrete samples based on a variational regularization method with the Wasserstein metric as a data fidelity. The approach allows a unified treatment of discrete and continuous probability measures and is hence attractive for various tasks. In particular, the variational model for special regularization functionals yields a natural method for estimating densities and for preserving edges in the case of total variation regularization. In order to compute solutions of the variational problems, a regularized optimal transport problem needs to be solved, for which we discuss several formulations and provide a detailed analysis. Moreover, we compute special self-similar solutions for standard regularization functionals and we discuss several computational approaches and results. © 2012 The Author(s).

  14. SU-G-BRA-08: Diaphragm Motion Tracking Based On KV CBCT Projections with a Constrained Linear Regression Optimization

    Wei, J [City College of New York, New York, NY (United States); Chao, M [The Mount Sinai Medical Center, New York, NY (United States)

    2016-06-15

    Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associated algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately

  15. SU-G-BRA-08: Diaphragm Motion Tracking Based On KV CBCT Projections with a Constrained Linear Regression Optimization

    Wei, J; Chao, M

    2016-01-01

    Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associated algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately

  16. Nonparametric Estimation of Regression Parameters in Measurement Error Models

    Ehsanes Saleh, A.K.M.D.; Picek, J.; Kalina, Jan

    2009-01-01

    Roč. 67, č. 2 (2009), s. 177-200 ISSN 0026-1424 Grant - others:GA AV ČR(CZ) IAA101120801; GA MŠk(CZ) LC06024 Institutional research plan: CEZ:AV0Z10300504 Keywords : asymptotic relative efficiency(ARE) * asymptotic theory * emaculate mode * Me model * R-estimation * Reliabilty ratio(RR) Subject RIV: BB - Applied Statistics, Operational Research

  17. A SAS-macro for estimation of the cumulative incidence using Poisson regression

    Waltoft, Berit Lindum

    2009-01-01

    the hazard rates, and the hazard rates are often estimated by the Cox regression. This procedure may not be suitable for large studies due to limited computer resources. Instead one uses Poisson regression, which approximates the Cox regression. Rosthøj et al. presented a SAS-macro for the estimation...... of the cumulative incidences based on the Cox regression. I present the functional form of the probabilities and variances when using piecewise constant hazard rates and a SAS-macro for the estimation using Poisson regression. The use of the macro is demonstrated through examples and compared to the macro presented...

  18. Two-Sample Tests for High-Dimensional Linear Regression with an Application to Detecting Interactions.

    Xia, Yin; Cai, Tianxi; Cai, T Tony

    2018-01-01

    Motivated by applications in genomics, we consider in this paper global and multiple testing for the comparisons of two high-dimensional linear regression models. A procedure for testing the equality of the two regression vectors globally is proposed and shown to be particularly powerful against sparse alternatives. We then introduce a multiple testing procedure for identifying unequal coordinates while controlling the false discovery rate and false discovery proportion. Theoretical justifications are provided to guarantee the validity of the proposed tests and optimality results are established under sparsity assumptions on the regression coefficients. The proposed testing procedures are easy to implement. Numerical properties of the procedures are investigated through simulation and data analysis. The results show that the proposed tests maintain the desired error rates under the null and have good power under the alternative at moderate sample sizes. The procedures are applied to the Framingham Offspring study to investigate the interactions between smoking and cardiovascular related genetic mutations important for an inflammation marker.

  19. Synthesis of linear regression coefficients by recovering the within-study covariance matrix from summary statistics.

    Yoneoka, Daisuke; Henmi, Masayuki

    2017-06-01

    Recently, the number of regression models has dramatically increased in several academic fields. However, within the context of meta-analysis, synthesis methods for such models have not been developed in a commensurate trend. One of the difficulties hindering the development is the disparity in sets of covariates among literature models. If the sets of covariates differ across models, interpretation of coefficients will differ, thereby making it difficult to synthesize them. Moreover, previous synthesis methods for regression models, such as multivariate meta-analysis, often have problems because covariance matrix of coefficients (i.e. within-study correlations) or individual patient data are not necessarily available. This study, therefore, proposes a brief explanation regarding a method to synthesize linear regression models under different covariate sets by using a generalized least squares method involving bias correction terms. Especially, we also propose an approach to recover (at most) threecorrelations of covariates, which is required for the calculation of the bias term without individual patient data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Impact of regression methods on improved effects of soil structure on soil water retention estimates

    Nguyen, Phuong Minh; De Pue, Jan; Le, Khoa Van; Cornelis, Wim

    2015-06-01

    Increasing the accuracy of pedotransfer functions (PTFs), an indirect method for predicting non-readily available soil features such as soil water retention characteristics (SWRC), is of crucial importance for large scale agro-hydrological modeling. Adding significant predictors (i.e., soil structure), and implementing more flexible regression algorithms are among the main strategies of PTFs improvement. The aim of this study was to investigate whether the improved effect of categorical soil structure information on estimating soil-water content at various matric potentials, which has been reported in literature, could be enduringly captured by regression techniques other than the usually applied linear regression. Two data mining techniques, i.e., Support Vector Machines (SVM), and k-Nearest Neighbors (kNN), which have been recently introduced as promising tools for PTF development, were utilized to test if the incorporation of soil structure will improve PTF's accuracy under a context of rather limited training data. The results show that incorporating descriptive soil structure information, i.e., massive, structured and structureless, as grouping criterion can improve the accuracy of PTFs derived by SVM approach in the range of matric potential of -6 to -33 kPa (average RMSE decreased up to 0.005 m3 m-3 after grouping, depending on matric potentials). The improvement was primarily attributed to the outperformance of SVM-PTFs calibrated on structureless soils. No improvement was obtained with kNN technique, at least not in our study in which the data set became limited in size after grouping. Since there is an impact of regression techniques on the improved effect of incorporating qualitative soil structure information, selecting a proper technique will help to maximize the combined influence of flexible regression algorithms and soil structure information on PTF accuracy.

  1. Common Nearly Best Linear Estimates of Location and Scale ...

    Common nearly best linear estimates of location and scale parameters of normal and logistic distributions, which are based on complete samples, are considered. Here, the population from which the samples are drawn is either normal or logistic population or a fusion of both distributions and the estimates are computed ...

  2. Performances of estimators of linear auto-correlated error model ...

    The performances of five estimators of linear models with autocorrelated disturbance terms are compared when the independent variable is exponential. The results reveal that for both small and large samples, the Ordinary Least Squares (OLS) compares favourably with the Generalized least Squares (GLS) estimators in ...

  3. Heteroscedasticity as a Basis of Direction Dependence in Reversible Linear Regression Models.

    Wiedermann, Wolfgang; Artner, Richard; von Eye, Alexander

    2017-01-01

    Heteroscedasticity is a well-known issue in linear regression modeling. When heteroscedasticity is observed, researchers are advised to remedy possible model misspecification of the explanatory part of the model (e.g., considering alternative functional forms and/or omitted variables). The present contribution discusses another source of heteroscedasticity in observational data: Directional model misspecifications in the case of nonnormal variables. Directional misspecification refers to situations where alternative models are equally likely to explain the data-generating process (e.g., x → y versus y → x). It is shown that the homoscedasticity assumption is likely to be violated in models that erroneously treat true nonnormal predictors as response variables. Recently, Direction Dependence Analysis (DDA) has been proposed as a framework to empirically evaluate the direction of effects in linear models. The present study links the phenomenon of heteroscedasticity with DDA and describes visual diagnostics and nine homoscedasticity tests that can be used to make decisions concerning the direction of effects in linear models. Results of a Monte Carlo simulation that demonstrate the adequacy of the approach are presented. An empirical example is provided, and applicability of the methodology in cases of violated assumptions is discussed.

  4. Unstable volatility functions: the break preserving local linear estimator

    Casas, Isabel; Gijbels, Irene

    The objective of this paper is to introduce the break preserving local linear (BPLL) estimator for the estimation of unstable volatility functions. Breaks in the structure of the conditional mean and/or the volatility functions are common in Finance. Markov switching models (Hamilton, 1989......) and threshold models (Lin and Terasvirta, 1994) are amongst the most popular models to describe the behaviour of data with structural breaks. The local linear (LL) estimator is not consistent at points where the volatility function has a break and it may even report negative values for finite samples...

  5. 10 km running performance predicted by a multiple linear regression model with allometrically adjusted variables.

    Abad, Cesar C C; Barros, Ronaldo V; Bertuzzi, Romulo; Gagliardi, João F L; Lima-Silva, Adriano E; Lambert, Mike I; Pires, Flavio O

    2016-06-01

    The aim of this study was to verify the power of VO 2max , peak treadmill running velocity (PTV), and running economy (RE), unadjusted or allometrically adjusted, in predicting 10 km running performance. Eighteen male endurance runners performed: 1) an incremental test to exhaustion to determine VO 2max and PTV; 2) a constant submaximal run at 12 km·h -1 on an outdoor track for RE determination; and 3) a 10 km running race. Unadjusted (VO 2max , PTV and RE) and adjusted variables (VO 2max 0.72 , PTV 0.72 and RE 0.60 ) were investigated through independent multiple regression models to predict 10 km running race time. There were no significant correlations between 10 km running time and either the adjusted or unadjusted VO 2max . Significant correlations (p 0.84 and power > 0.88. The allometrically adjusted predictive model was composed of PTV 0.72 and RE 0.60 and explained 83% of the variance in 10 km running time with a standard error of the estimate (SEE) of 1.5 min. The unadjusted model composed of a single PVT accounted for 72% of the variance in 10 km running time (SEE of 1.9 min). Both regression models provided powerful estimates of 10 km running time; however, the unadjusted PTV may provide an uncomplicated estimation.

  6. Early Parallel Activation of Semantics and Phonology in Picture Naming: Evidence from a Multiple Linear Regression MEG Study.

    Miozzo, Michele; Pulvermüller, Friedemann; Hauk, Olaf

    2015-10-01

    The time course of brain activation during word production has become an area of increasingly intense investigation in cognitive neuroscience. The predominant view has been that semantic and phonological processes are activated sequentially, at about 150 and 200-400 ms after picture onset. Although evidence from prior studies has been interpreted as supporting this view, these studies were arguably not ideally suited to detect early brain activation of semantic and phonological processes. We here used a multiple linear regression approach to magnetoencephalography (MEG) analysis of picture naming in order to investigate early effects of variables specifically related to visual, semantic, and phonological processing. This was combined with distributed minimum-norm source estimation and region-of-interest analysis. Brain activation associated with visual image complexity appeared in occipital cortex at about 100 ms after picture presentation onset. At about 150 ms, semantic variables became physiologically manifest in left frontotemporal regions. In the same latency range, we found an effect of phonological variables in the left middle temporal gyrus. Our results demonstrate that multiple linear regression analysis is sensitive to early effects of multiple psycholinguistic variables in picture naming. Crucially, our results suggest that access to phonological information might begin in parallel with semantic processing around 150 ms after picture onset. © The Author 2014. Published by Oxford University Press.

  7. Boosted regression trees, multivariate adaptive regression splines and their two-step combinations with multiple linear regression or partial least squares to predict blood-brain barrier passage: a case study.

    Deconinck, E; Zhang, M H; Petitet, F; Dubus, E; Ijjaali, I; Coomans, D; Vander Heyden, Y

    2008-02-18

    The use of some unconventional non-linear modeling techniques, i.e. classification and regression trees and multivariate adaptive regression splines-based methods, was explored to model the blood-brain barrier (BBB) passage of drugs and drug-like molecules. The data set contains BBB passage values for 299 structural and pharmacological diverse drugs, originating from a structured knowledge-based database. Models were built using boosted regression trees (BRT) and multivariate adaptive regression splines (MARS), as well as their respective combinations with stepwise multiple linear regression (MLR) and partial least squares (PLS) regression in two-step approaches. The best models were obtained using combinations of MARS with either stepwise MLR or PLS. It could be concluded that the use of combinations of a linear with a non-linear modeling technique results in some improved properties compared to the individual linear and non-linear models and that, when the use of such a combination is appropriate, combinations using MARS as non-linear technique should be preferred over those with BRT, due to some serious drawbacks of the BRT approaches.

  8. Flexible regression models for estimating postmortem interval (PMI) in forensic medicine.

    Muñoz Barús, José Ignacio; Febrero-Bande, Manuel; Cadarso-Suárez, Carmen

    2008-10-30

    Correct determination of time of death is an important goal in forensic medicine. Numerous methods have been described for estimating postmortem interval (PMI), but most are imprecise, poorly reproducible and/or have not been validated with real data. In recent years, however, some progress in PMI estimation has been made, notably through the use of new biochemical methods for quantifying relevant indicator compounds in the vitreous humour. The best, but unverified, results have been obtained with [K+] and hypoxanthine [Hx], using simple linear regression (LR) models. The main aim of this paper is to offer more flexible alternatives to LR, such as generalized additive models (GAMs) and support vector machines (SVMs) in order to obtain improved PMI estimates. The present study, based on detailed analysis of [K+] and [Hx] in more than 200 vitreous humour samples from subjects with known PMI, compared classical LR methodology with GAM and SVM methodologies. Both proved better than LR for estimation of PMI. SVM showed somewhat greater precision than GAM, but GAM offers a readily interpretable graphical output, facilitating understanding of findings by legal professionals; there are thus arguments for using both types of models. R code for these methods is available from the authors, permitting accurate prediction of PMI from vitreous humour [K+], [Hx] and [U], with confidence intervals and graphical output provided. Copyright 2008 John Wiley & Sons, Ltd.

  9. Daily Suspended Sediment Discharge Prediction Using Multiple Linear Regression and Artificial Neural Network

    Uca; Toriman, Ekhwan; Jaafar, Othman; Maru, Rosmini; Arfan, Amal; Saleh Ahmar, Ansari

    2018-01-01

    Prediction of suspended sediment discharge in a catchments area is very important because it can be used to evaluation the erosion hazard, management of its water resources, water quality, hydrology project management (dams, reservoirs, and irrigation) and to determine the extent of the damage that occurred in the catchments. Multiple Linear Regression analysis and artificial neural network can be used to predict the amount of daily suspended sediment discharge. Regression analysis using the least square method, whereas artificial neural networks using Radial Basis Function (RBF) and feedforward multilayer perceptron with three learning algorithms namely Levenberg-Marquardt (LM), Scaled Conjugate Descent (SCD) and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS). The number neuron of hidden layer is three to sixteen, while in output layer only one neuron because only one output target. The mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2 ) and coefficient of efficiency (CE) of the multiple linear regression (MLRg) value Model 2 (6 input variable independent) has the lowest the value of MAE and RMSE (0.0000002 and 13.6039) and highest R2 and CE (0.9971 and 0.9971). When compared between LM, SCG and RBF, the BFGS model structure 3-7-1 is the better and more accurate to prediction suspended sediment discharge in Jenderam catchment. The performance value in testing process, MAE and RMSE (13.5769 and 17.9011) is smallest, meanwhile R2 and CE (0.9999 and 0.9998) is the highest if it compared with the another BFGS Quasi-Newton model (6-3-1, 9-10-1 and 12-12-1). Based on the performance statistics value, MLRg, LM, SCG, BFGS and RBF suitable and accurately for prediction by modeling the non-linear complex behavior of suspended sediment responses to rainfall, water depth and discharge. The comparison between artificial neural network (ANN) and MLRg, the MLRg Model 2 accurately for to prediction suspended sediment discharge (kg

  10. Carbon 13 nuclear magnetic resonance chemical shifts empiric calculations of polymers by multi linear regression and molecular modeling

    Da Silva Pinto, P.S.; Eustache, R.P.; Audenaert, M.; Bernassau, J.M.

    1996-01-01

    This work deals with carbon 13 nuclear magnetic resonance chemical shifts empiric calculations by multi linear regression and molecular modeling. The multi linear regression is indeed one way to obtain an equation able to describe the behaviour of the chemical shift for some molecules which are in the data base (rigid molecules with carbons). The methodology consists of structures describer parameters definition which can be bound to carbon 13 chemical shift known for these molecules. Then, the linear regression is used to determine the equation significant parameters. This one can be extrapolated to molecules which presents some resemblances with those of the data base. (O.L.). 20 refs., 4 figs., 1 tab

  11. Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data.

    Yelland, Lisa N; Salter, Amy B; Ryan, Philip

    2011-10-15

    Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both analytically and by simulation that modified Poisson regression is appropriate for independent prospective data. This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data, by using generalized estimating equations to account for clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression for analyzing clustered data from intervention and observational studies. Both methods generally perform well in terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The results presented in this article support the use of modified Poisson regression as an alternative to log binomial regression for analyzing clustered prospective data when clustering is taken into account by using generalized estimating equations.

  12. Analysis of the Covered Electrode Welding Process Stability on the Basis of Linear Regression Equation

    Słania J.

    2014-10-01

    Full Text Available The article presents the process of production of coated electrodes and their welding properties. The factors concerning the welding properties and the currently applied method of assessing are given. The methodology of the testing based on the measuring and recording of instantaneous values of welding current and welding arc voltage is discussed. Algorithm for creation of reference data base of the expert system is shown, aiding the assessment of covered electrodes welding properties. The stability of voltage–current characteristics was discussed. Statistical factors of instantaneous values of welding current and welding arc voltage waveforms used for determining of welding process stability are presented. The results of coated electrodes welding properties are compared. The article presents the results of linear regression as well as the impact of the independent variables on the welding process performance. Finally the conclusions drawn from the research are given.

  13. hMuLab: A Biomedical Hybrid MUlti-LABel Classifier Based on Multiple Linear Regression.

    Wang, Pu; Ge, Ruiquan; Xiao, Xuan; Zhou, Manli; Zhou, Fengfeng

    2017-01-01

    Many biomedical classification problems are multi-label by nature, e.g., a gene involved in a variety of functions and a patient with multiple diseases. The majority of existing classification algorithms assumes each sample with only one class label, and the multi-label classification problem remains to be a challenge for biomedical researchers. This study proposes a novel multi-label learning algorithm, hMuLab, by integrating both feature-based and neighbor-based similarity scores. The multiple linear regression modeling techniques make hMuLab capable of producing multiple label assignments for a query sample. The comparison results over six commonly-used multi-label performance measurements suggest that hMuLab performs accurately and stably for the biomedical datasets, and may serve as a complement to the existing literature.

  14. Multiple Linear Regression Model Based on Neural Network and Its Application in the MBR Simulation

    Chunqing Li

    2012-01-01

    Full Text Available The computer simulation of the membrane bioreactor MBR has become the research focus of the MBR simulation. In order to compensate for the defects, for example, long test period, high cost, invisible equipment seal, and so forth, on the basis of conducting in-depth study of the mathematical model of the MBR, combining with neural network theory, this paper proposed a three-dimensional simulation system for MBR wastewater treatment, with fast speed, high efficiency, and good visualization. The system is researched and developed with the hybrid programming of VC++ programming language and OpenGL, with a multifactor linear regression model of affecting MBR membrane fluxes based on neural network, applying modeling method of integer instead of float and quad tree recursion. The experiments show that the three-dimensional simulation system, using the above models and methods, has the inspiration and reference for the future research and application of the MBR simulation technology.

  15. Railway Crossing Risk Area Detection Using Linear Regression and Terrain Drop Compensation Techniques

    Chen, Wen-Yuan; Wang, Mei; Fu, Zhou-Xing

    2014-01-01

    Most railway accidents happen at railway crossings. Therefore, how to detect humans or objects present in the risk area of a railway crossing and thus prevent accidents are important tasks. In this paper, three strategies are used to detect the risk area of a railway crossing: (1) we use a terrain drop compensation (TDC) technique to solve the problem of the concavity of railway crossings; (2) we use a linear regression technique to predict the position and length of an object from image processing; (3) we have developed a novel strategy called calculating local maximum Y-coordinate object points (CLMYOP) to obtain the ground points of the object. In addition, image preprocessing is also applied to filter out the noise and successfully improve the object detection. From the experimental results, it is demonstrated that our scheme is an effective and corrective method for the detection of railway crossing risk areas. PMID:24936948

  16. Railway Crossing Risk Area Detection Using Linear Regression and Terrain Drop Compensation Techniques

    Wen-Yuan Chen

    2014-06-01

    Full Text Available Most railway accidents happen at railway crossings. Therefore, how to detect humans or objects present in the risk area of a railway crossing and thus prevent accidents are important tasks. In this paper, three strategies are used to detect the risk area of a railway crossing: (1 we use a terrain drop compensation (TDC technique to solve the problem of the concavity of railway crossings; (2 we use a linear regression technique to predict the position and length of an object from image processing; (3 we have developed a novel strategy called calculating local maximum Y-coordinate object points (CLMYOP to obtain the ground points of the object. In addition, image preprocessing is also applied to filter out the noise and successfully improve the object detection. From the experimental results, it is demonstrated that our scheme is an effective and corrective method for the detection of railway crossing risk areas.

  17. Predicting Fuel Ignition Quality Using 1H NMR Spectroscopy and Multiple Linear Regression

    Abdul Jameel, Abdul Gani

    2016-09-14

    An improved model for the prediction of ignition quality of hydrocarbon fuels has been developed using 1H nuclear magnetic resonance (NMR) spectroscopy and multiple linear regression (MLR) modeling. Cetane number (CN) and derived cetane number (DCN) of 71 pure hydrocarbons and 54 hydrocarbon blends were utilized as a data set to study the relationship between ignition quality and molecular structure. CN and DCN are functional equivalents and collectively referred to as D/CN, herein. The effect of molecular weight and weight percent of structural parameters such as paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic CH–CH2 groups, naphthenic CH–CH2 groups, and aromatic C–CH groups on D/CN was studied. A particular emphasis on the effect of branching (i.e., methyl substitution) on the D/CN was studied, and a new parameter denoted as the branching index (BI) was introduced to quantify this effect. A new formula was developed to calculate the BI of hydrocarbon fuels using 1H NMR spectroscopy. Multiple linear regression (MLR) modeling was used to develop an empirical relationship between D/CN and the eight structural parameters. This was then used to predict the DCN of many hydrocarbon fuels. The developed model has a high correlation coefficient (R2 = 0.97) and was validated with experimentally measured DCN of twenty-two real fuel mixtures (e.g., gasolines and diesels) and fifty-nine blends of known composition, and the predicted values matched well with the experimental data.

  18. Multiple linear combination (MLC) regression tests for common variants adapted to linkage disequilibrium structure.

    Yoo, Yun Joo; Sun, Lei; Poirier, Julia G; Paterson, Andrew D; Bull, Shelley B

    2017-02-01

    By jointly analyzing multiple variants within a gene, instead of one at a time, gene-based multiple regression can improve power, robustness, and interpretation in genetic association analysis. We investigate multiple linear combination (MLC) test statistics for analysis of common variants under realistic trait models with linkage disequilibrium (LD) based on HapMap Asian haplotypes. MLC is a directional test that exploits LD structure in a gene to construct clusters of closely correlated variants recoded such that the majority of pairwise correlations are positive. It combines variant effects within the same cluster linearly, and aggregates cluster-specific effects in a quadratic sum of squares and cross-products, producing a test statistic with reduced degrees of freedom (df) equal to the number of clusters. By simulation studies of 1000 genes from across the genome, we demonstrate that MLC is a well-powered and robust choice among existing methods across a broad range of gene structures. Compared to minimum P-value, variance-component, and principal-component methods, the mean power of MLC is never much lower than that of other methods, and can be higher, particularly with multiple causal variants. Moreover, the variation in gene-specific MLC test size and power across 1000 genes is less than that of other methods, suggesting it is a complementary approach for discovery in genome-wide analysis. The cluster construction of the MLC test statistics helps reveal within-gene LD structure, allowing interpretation of clustered variants as haplotypic effects, while multiple regression helps to distinguish direct and indirect associations. © 2016 The Authors Genetic Epidemiology Published by Wiley Periodicals, Inc.

  19. A SOCIOLOGICAL ANALYSIS OF THE CHILDBEARING COEFFICIENT IN THE ALTAI REGION BASED ON METHOD OF FUZZY LINEAR REGRESSION

    Sergei Vladimirovich Varaksin

    2017-06-01

    Full Text Available Purpose. Construction of a mathematical model of the dynamics of childbearing change in the Altai region in 2000–2016, analysis of the dynamics of changes in birth rates for multiple age categories of women of childbearing age. Methodology. A auxiliary analysis element is the construction of linear mathematical models of the dynamics of childbearing by using fuzzy linear regression method based on fuzzy numbers. Fuzzy linear regression is considered as an alternative to standard statistical linear regression for short time series and unknown distribution law. The parameters of fuzzy linear and standard statistical regressions for childbearing time series were defined with using the built in language MatLab algorithm. Method of fuzzy linear regression is not used in sociological researches yet. Results. There are made the conclusions about the socio-demographic changes in society, the high efficiency of the demographic policy of the leadership of the region and the country, and the applicability of the method of fuzzy linear regression for sociological analysis.

  20. Neck-focused panic attacks among Cambodian refugees; a logistic and linear regression analysis.

    Hinton, Devon E; Chhean, Dara; Pich, Vuth; Um, Khin; Fama, Jeanne M; Pollack, Mark H

    2006-01-01

    Consecutive Cambodian refugees attending a psychiatric clinic were assessed for the presence and severity of current--i.e., at least one episode in the last month--neck-focused panic. Among the whole sample (N=130), in a logistic regression analysis, the Anxiety Sensitivity Index (ASI; odds ratio=3.70) and the Clinician-Administered PTSD Scale (CAPS; odds ratio=2.61) significantly predicted the presence of current neck panic (NP). Among the neck panic patients (N=60), in the linear regression analysis, NP severity was significantly predicted by NP-associated flashbacks (beta=.42), NP-associated catastrophic cognitions (beta=.22), and CAPS score (beta=.28). Further analysis revealed the effect of the CAPS score to be significantly mediated (Sobel test [Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182]) by both NP-associated flashbacks and catastrophic cognitions. In the care of traumatized Cambodian refugees, NP severity, as well as NP-associated flashbacks and catastrophic cognitions, should be specifically assessed and treated.

  1. QSAR Study of Insecticides of Phthalamide Derivatives Using Multiple Linear Regression and Artificial Neural Network Methods

    Adi Syahputra

    2014-03-01

    Full Text Available Quantitative structure activity relationship (QSAR for 21 insecticides of phthalamides containing hydrazone (PCH was studied using multiple linear regression (MLR, principle component regression (PCR and artificial neural network (ANN. Five descriptors were included in the model for MLR and ANN analysis, and five latent variables obtained from principle component analysis (PCA were used in PCR analysis. Calculation of descriptors was performed using semi-empirical PM6 method. ANN analysis was found to be superior statistical technique compared to the other methods and gave a good correlation between descriptors and activity (r2 = 0.84. Based on the obtained model, we have successfully designed some new insecticides with higher predicted activity than those of previously synthesized compounds, e.g.2-(decalinecarbamoyl-5-chloro-N’-((5-methylthiophen-2-ylmethylene benzohydrazide, 2-(decalinecarbamoyl-5-chloro-N’-((thiophen-2-yl-methylene benzohydrazide and 2-(decaline carbamoyl-N’-(4-fluorobenzylidene-5-chlorobenzohydrazide with predicted log LC50 of 1.640, 1.672, and 1.769 respectively.

  2. Bayesian linear regression with skew-symmetric error distributions with applications to survival analysis

    Rubio, Francisco J.

    2016-02-09

    We study Bayesian linear regression models with skew-symmetric scale mixtures of normal error distributions. These kinds of models can be used to capture departures from the usual assumption of normality of the errors in terms of heavy tails and asymmetry. We propose a general noninformative prior structure for these regression models and show that the corresponding posterior distribution is proper under mild conditions. We extend these propriety results to cases where the response variables are censored. The latter scenario is of interest in the context of accelerated failure time models, which are relevant in survival analysis. We present a simulation study that demonstrates good frequentist properties of the posterior credible intervals associated with the proposed priors. This study also sheds some light on the trade-off between increased model flexibility and the risk of over-fitting. We illustrate the performance of the proposed models with real data. Although we focus on models with univariate response variables, we also present some extensions to the multivariate case in the Supporting Information.

  3. Comparison of a neural network with multiple linear regression for quantitative analysis in ICP-atomic emission spectroscopy

    Schierle, C.; Otto, M.

    1992-01-01

    A two layer perceptron with backpropagation of error is used for quantitative analysis in ICP-AES. The network was trained by emission spectra of two interfering lines of Cd and As and the concentrations of both elements were subsequently estimated from mixture spectra. The spectra of the Cd and As lines were also used to perform multiple linear regression (MLR) via the calculation of the pseudoinverse S + of the sensitivity matrix S. In the present paper it is shown that there exist close relations between the operation of the perceptron and the MLR procedure. These are most clearly apparent in the correlation between the weights of the backpropagation network and the elements of the pseudoinverse. Using MLR, the confidence intervals over the predictions are exploited to correct for the optical device of the wavelength shift. (orig.)

  4. Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography

    Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A.; Chee, Kok Han; Liew, Yih Miin

    2017-12-01

    Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame.

  5. Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography.

    Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A; Chee, Kok Han; Liew, Yih Miin

    2017-12-01

    Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  6. A simplified calculation procedure for mass isotopomer distribution analysis (MIDA) based on multiple linear regression.

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; García Alonso, J Ignacio

    2016-10-01

    We have developed a novel, rapid and easy calculation procedure for Mass Isotopomer Distribution Analysis based on multiple linear regression which allows the simultaneous calculation of the precursor pool enrichment and the fraction of newly synthesized labelled proteins (fractional synthesis) using linear algebra. To test this approach, we used the peptide RGGGLK as a model tryptic peptide containing three subunits of glycine. We selected glycine labelled in two 13 C atoms ( 13 C 2 -glycine) as labelled amino acid to demonstrate that spectral overlap is not a problem in the proposed methodology. The developed methodology was tested first in vitro by changing the precursor pool enrichment from 10 to 40% of 13 C 2 -glycine. Secondly, a simulated in vivo synthesis of proteins was designed by combining the natural abundance RGGGLK peptide and 10 or 20% 13 C 2 -glycine at 1 : 1, 1 : 3 and 3 : 1 ratios. Precursor pool enrichments and fractional synthesis values were calculated with satisfactory precision and accuracy using a simple spreadsheet. This novel approach can provide a relatively rapid and easy means to measure protein turnover based on stable isotope tracers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Association of footprint measurements with plantar kinetics: a linear regression model.

    Fascione, Jeanna M; Crews, Ryan T; Wrobel, James S

    2014-03-01

    The use of foot measurements to classify morphology and interpret foot function remains one of the focal concepts of lower-extremity biomechanics. However, only 27% to 55% of midfoot variance in foot pressures has been determined in the most comprehensive models. We investigated whether dynamic walking footprint measurements are associated with inter-individual foot loading variability. Thirty individuals (15 men and 15 women; mean ± SD age, 27.17 ± 2.21 years) walked at a self-selected speed over an electronic pedography platform using the midgait technique. Kinetic variables (contact time, peak pressure, pressure-time integral, and force-time integral) were collected for six masked regions. Footprints were digitized for area and linear boundaries using digital photo planimetry software. Six footprint measurements were determined: contact area, footprint index, arch index, truncated arch index, Chippaux-Smirak index, and Staheli index. Linear regression analysis with a Bonferroni adjustment was performed to determine the association between the footprint measurements and each of the kinetic variables. The findings demonstrate that a relationship exists between increased midfoot contact and increased kinetic values in respective locations. Many of these variables produced large effect sizes while describing 38% to 71% of the common variance of select plantar kinetic variables in the medial midfoot region. In addition, larger footprints were associated with larger kinetic values at the medial heel region and both masked forefoot regions. Dynamic footprint measurements are associated with dynamic plantar loading kinetics, with emphasis on the midfoot region.

  8. Using the Coefficient of Determination "R"[superscript 2] to Test the Significance of Multiple Linear Regression

    Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.

    2013-01-01

    This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)

  9. Improved regression models for ventilation estimation based on chest and abdomen movements

    Liu, Shaopeng; Gao, Robert; He, Qingbo; Staudenmayer, John; Freedson, Patty

    2012-01-01

    Non-invasive estimation of minute ventilation is important for quantifying the intensity of physical activity of individuals. In this paper, several improved regression models are presented, based on the measurement of chest and abdomen movements from sensor belts worn by subjects (n = 50) engaged in 14 types of physical activity. Five linear models involving a combination of 11 features were developed, and the effects of different model training approaches and window sizes for computing the features were investigated. The performance of the models was evaluated using experimental data collected during the physical activity protocol. The predicted minute ventilation was compared to the criterion ventilation measured using a bidirectional digital volume transducer housed in a respiratory gas exchange system. The results indicate that the inclusion of breathing frequency and the use of percentile points instead of interdecile ranges over a 60 s window size reduced error by about 43%, when applied to the classical two-degrees-of-freedom model. The mean percentage error of the minute ventilation estimated for all the activities was below 7.5%, verifying reasonably good performance of the models and the applicability of the wearable sensing system for minute ventilation estimation during physical activity. (paper)

  10. Multinomial Logistic Regression & Bootstrapping for Bayesian Estimation of Vertical Facies Prediction in Heterogeneous Sandstone Reservoirs

    Al-Mudhafar, W. J.

    2013-12-01

    Precisely prediction of rock facies leads to adequate reservoir characterization by improving the porosity-permeability relationships to estimate the properties in non-cored intervals. It also helps to accurately identify the spatial facies distribution to perform an accurate reservoir model for optimal future reservoir performance. In this paper, the facies estimation has been done through Multinomial logistic regression (MLR) with respect to the well logs and core data in a well in upper sandstone formation of South Rumaila oil field. The entire independent variables are gamma rays, formation density, water saturation, shale volume, log porosity, core porosity, and core permeability. Firstly, Robust Sequential Imputation Algorithm has been considered to impute the missing data. This algorithm starts from a complete subset of the dataset and estimates sequentially the missing values in an incomplete observation by minimizing the determinant of the covariance of the augmented data matrix. Then, the observation is added to the complete data matrix and the algorithm continues with the next observation with missing values. The MLR has been chosen to estimate the maximum likelihood and minimize the standard error for the nonlinear relationships between facies & core and log data. The MLR is used to predict the probabilities of the different possible facies given each independent variable by constructing a linear predictor function having a set of weights that are linearly combined with the independent variables by using a dot product. Beta distribution of facies has been considered as prior knowledge and the resulted predicted probability (posterior) has been estimated from MLR based on Baye's theorem that represents the relationship between predicted probability (posterior) with the conditional probability and the prior knowledge. To assess the statistical accuracy of the model, the bootstrap should be carried out to estimate extra-sample prediction error by randomly

  11. Error Estimation for the Linearized Auto-Localization Algorithm

    Fernando Seco

    2012-02-01

    Full Text Available The Linearized Auto-Localization (LAL algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs, using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL, the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method.

  12. Power system state estimation using an iteratively reweighted least squares method for sequential L{sub 1}-regression

    Jabr, R.A. [Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box 72, Zouk Mikhael, Zouk Mosbeh (Lebanon)

    2006-02-15

    This paper presents an implementation of the least absolute value (LAV) power system state estimator based on obtaining a sequence of solutions to the L{sub 1}-regression problem using an iteratively reweighted least squares (IRLS{sub L1}) method. The proposed implementation avoids reformulating the regression problem into standard linear programming (LP) form and consequently does not require the use of common methods of LP, such as those based on the simplex method or interior-point methods. It is shown that the IRLS{sub L1} method is equivalent to solving a sequence of linear weighted least squares (LS) problems. Thus, its implementation presents little additional effort since the sparse LS solver is common to existing LS state estimators. Studies on the termination criteria of the IRLS{sub L1} method have been carried out to determine a procedure for which the proposed estimator is more computationally efficient than a previously proposed non-linear iteratively reweighted least squares (IRLS) estimator. Indeed, it is revealed that the proposed method is a generalization of the previously reported IRLS estimator, but is based on more rigorous theory. (author)

  13. Explicit estimating equations for semiparametric generalized linear latent variable models

    Ma, Yanyuan

    2010-07-05

    We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.

  14. Estimation of Physical Parameters in Linear and Nonlinear Dynamic Systems

    Knudsen, Morten

    variance and confidence ellipsoid is demonstrated. The relation is based on a new theorem on maxima of an ellipsoid. The procedure for input signal design and physical parameter estimation is tested on a number of examples, linear as well as nonlinear and simulated as well as real processes, and it appears...

  15. Estimation of failure probabilities of linear dynamic systems by ...

    An iterative method for estimating the failure probability for certain time-variant reliability problems has been developed. In the paper, the focus is on the displacement response of a linear oscillator driven by white noise. Failure is then assumed to occur when the displacement response exceeds a critical threshold.

  16. Linear Estimation of Standard Deviation of Logistic Distribution ...

    The paper presents a theoretical method based on order statistics and a FORTRAN program for computing the variance and relative efficiencies of the standard deviation of the logistic population with respect to the Cramer-Rao lower variance bound and the best linear unbiased estimators (BLUE\\'s) when the mean is ...

  17. Ranking contributing areas of salt and selenium in the Lower Gunnison River Basin, Colorado, using multiple linear regression models

    Linard, Joshua I.

    2013-01-01

    Mitigating the effects of salt and selenium on water quality in the Grand Valley and lower Gunnison River Basin in western Colorado is a major concern for land managers. Previous modeling indicated means to improve the models by including more detailed geospatial data and a more rigorous method for developing the models. After evaluating all possible combinations of geospatial variables, four multiple linear regression models resulted that could estimate irrigation-season salt yield, nonirrigation-season salt yield, irrigation-season selenium yield, and nonirrigation-season selenium yield. The adjusted r-squared and the residual standard error (in units of log-transformed yield) of the models were, respectively, 0.87 and 2.03 for the irrigation-season salt model, 0.90 and 1.25 for the nonirrigation-season salt model, 0.85 and 2.94 for the irrigation-season selenium model, and 0.93 and 1.75 for the nonirrigation-season selenium model. The four models were used to estimate yields and loads from contributing areas corresponding to 12-digit hydrologic unit codes in the lower Gunnison River Basin study area. Each of the 175 contributing areas was ranked according to its estimated mean seasonal yield of salt and selenium.

  18. Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures.

    Alexeeff, Stacey E; Carroll, Raymond J; Coull, Brent

    2016-04-01

    Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Skeletal height estimation from regression analysis of sternal lengths in a Northwest Indian population of Chandigarh region: a postmortem study.

    Singh, Jagmahender; Pathak, R K; Chavali, Krishnadutt H

    2011-03-20

    Skeletal height estimation from regression analysis of eight sternal lengths in the subjects of Chandigarh zone of Northwest India is the topic of discussion in this study. Analysis of eight sternal lengths (length of manubrium, length of mesosternum, combined length of manubrium and mesosternum, total sternal length and first four intercostals lengths of mesosternum) measured from 252 male and 91 female sternums obtained at postmortems revealed that mean cadaver stature and sternal lengths were more in North Indians and males than the South Indians and females. Except intercostal lengths, all the sternal lengths were positively correlated with stature of the deceased in both sexes (P regression analysis of sternal lengths was found more useful than the linear regression for stature estimation. Using multivariate regression analysis, the combined length of manubrium and mesosternum in both sexes and the length of manubrium along with 2nd and 3rd intercostal lengths of mesosternum in males were selected as best estimators of stature. Nonetheless, the stature of males can be predicted with SEE of 6.66 (R(2) = 0.16, r = 0.318) from combination of MBL+BL_3+LM+BL_2, and in females from MBL only, it can be estimated with SEE of 6.65 (R(2) = 0.10, r = 0.318), whereas from the multiple regression analysis of pooled data, stature can be known with SEE of 6.97 (R(2) = 0.387, r = 575) from the combination of MBL+LM+BL_2+TSL+BL_3. The R(2) and F-ratio were found to be statistically significant for almost all the variables in both the sexes, except 4th intercostal length in males and 2nd to 4th intercostal lengths in females. The 'major' sternal lengths were more useful than the 'minor' ones for stature estimation The universal regression analysis used by Kanchan et al. [39] when applied to sternal lengths, gave satisfactory estimates of stature for males only but female stature was comparatively better estimated from simple linear regressions. But they are not proposed for the

  20. The efficiency of modified jackknife and ridge type regression estimators: a comparison

    Sharad Damodar Gore

    2008-09-01

    Full Text Available A common problem in multiple regression models is multicollinearity, which produces undesirable effects on the least squares estimator. To circumvent this problem, two well known estimation procedures are often suggested in the literature. They are Generalized Ridge Regression (GRR estimation suggested by Hoerl and Kennard iteb8 and the Jackknifed Ridge Regression (JRR estimation suggested by Singh et al. iteb13. The GRR estimation leads to a reduction in the sampling variance, whereas, JRR leads to a reduction in the bias. In this paper, we propose a new estimator namely, Modified Jackknife Ridge Regression Estimator (MJR. It is based on the criterion that combines the ideas underlying both the GRR and JRR estimators. We have investigated standard properties of this new estimator. From a simulation study, we find that the new estimator often outperforms the LASSO, and it is superior to both GRR and JRR estimators, using the mean squared error criterion. The conditions under which the MJR estimator is better than the other two competing estimators have been investigated.

  1. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

    Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

    2017-05-10

    We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P valuelinear regression P value). The statistical power of CAT test decreased, while the result of linear regression analysis remained the same when population size was reduced by 100 times and AMI incidence rate remained unchanged. The two statistical methods have their advantages and disadvantages. It is necessary to choose statistical method according the fitting degree of data, or comprehensively analyze the results of two methods.

  2. Modeling the kinetics of essential oil hydrodistillation from juniper berries (Juniperus communis L. using non-linear regression

    Radosavljević Dragana B.

    2017-01-01

    Full Text Available This paper presents kinetics modeling of essential oil hydrodistillation from juniper berries (Juniperus communis L. by using a non-linear regression methodology. The proposed model has the polynomial-logarithmic form. The initial equation of the proposed non-linear model is q = q∞•(a•(logt2 + b•logt + c and by substituting a1=q∞•a, b1 = q∞•b and c1 = q∞•c, the final equation is obtained as q = a1•(logt2 + b1•logt + c1. In this equation q is the quantity of the obtained oil at time t, while a1, b1 and c1 are parameters to be determined for each sample. From the final equation it can be seen that the key parameter q∞, which presents the maximal oil quantity obtained after infinite time, is already included in parameters a1, b1 and c1. In this way, experimental determination of this parameter is avoided. Using the proposed model with parameters obtained by regression, the values of oil hydrodistillation in time are calculated for each sample and compared to the experimental values. In addition, two kinetic models previously proposed in literature were applied to the same experimental results. The developed model provided better agreements with the experimental values than the two, generally accepted kinetic models of this process. The average values of error measures (RSS, RSE, AIC and MRPD obtained for our model (0.005; 0.017; –84.33; 1.65 were generally lower than the corresponding values of the other two models (0.025; 0.041; –53.20; 3.89 and (0.0035; 0.015; –86.83; 1.59. Also, parameter estimation for the proposed model was significantly simpler (maximum 2 iterations per sample using the non-linear regression than that for the existing models (maximum 9 iterations per sample. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-35026

  3. An Application of Robust Method in Multiple Linear Regression Model toward Credit Card Debt

    Amira Azmi, Nur; Saifullah Rusiman, Mohd; Khalid, Kamil; Roslan, Rozaini; Sufahani, Suliadi; Mohamad, Mahathir; Salleh, Rohayu Mohd; Hamzah, Nur Shamsidah Amir

    2018-04-01

    Credit card is a convenient alternative replaced cash or cheque, and it is essential component for electronic and internet commerce. In this study, the researchers attempt to determine the relationship and significance variables between credit card debt and demographic variables such as age, household income, education level, years with current employer, years at current address, debt to income ratio and other debt. The provided data covers 850 customers information. There are three methods that applied to the credit card debt data which are multiple linear regression (MLR) models, MLR models with least quartile difference (LQD) method and MLR models with mean absolute deviation method. After comparing among three methods, it is found that MLR model with LQD method became the best model with the lowest value of mean square error (MSE). According to the final model, it shows that the years with current employer, years at current address, household income in thousands and debt to income ratio are positively associated with the amount of credit debt. Meanwhile variables for age, level of education and other debt are negatively associated with amount of credit debt. This study may serve as a reference for the bank company by using robust methods, so that they could better understand their options and choice that is best aligned with their goals for inference regarding to the credit card debt.

  4. Performance Prediction Modelling for Flexible Pavement on Low Volume Roads Using Multiple Linear Regression Analysis

    C. Makendran

    2015-01-01

    Full Text Available Prediction models for low volume village roads in India are developed to evaluate the progression of different types of distress such as roughness, cracking, and potholes. Even though the Government of India is investing huge quantum of money on road construction every year, poor control over the quality of road construction and its subsequent maintenance is leading to the faster road deterioration. In this regard, it is essential that scientific maintenance procedures are to be evolved on the basis of performance of low volume flexible pavements. Considering the above, an attempt has been made in this research endeavor to develop prediction models to understand the progression of roughness, cracking, and potholes in flexible pavements exposed to least or nil routine maintenance. Distress data were collected from the low volume rural roads covering about 173 stretches spread across Tamil Nadu state in India. Based on the above collected data, distress prediction models have been developed using multiple linear regression analysis. Further, the models have been validated using independent field data. It can be concluded that the models developed in this study can serve as useful tools for the practicing engineers maintaining flexible pavements on low volume roads.

  5. A consensus successive projections algorithm--multiple linear regression method for analyzing near infrared spectra.

    Liu, Ke; Chen, Xiaojing; Li, Limin; Chen, Huiling; Ruan, Xiukai; Liu, Wenbin

    2015-02-09

    The successive projections algorithm (SPA) is widely used to select variables for multiple linear regression (MLR) modeling. However, SPA used only once may not obtain all the useful information of the full spectra, because the number of selected variables cannot exceed the number of calibration samples in the SPA algorithm. Therefore, the SPA-MLR method risks the loss of useful information. To make a full use of the useful information in the spectra, a new method named "consensus SPA-MLR" (C-SPA-MLR) is proposed herein. This method is the combination of consensus strategy and SPA-MLR method. In the C-SPA-MLR method, SPA-MLR is used to construct member models with different subsets of variables, which are selected from the remaining variables iteratively. A consensus prediction is obtained by combining the predictions of the member models. The proposed method is evaluated by analyzing the near infrared (NIR) spectra of corn and diesel. The results of C-SPA-MLR method showed a better prediction performance compared with the SPA-MLR and full-spectra PLS methods. Moreover, these results could serve as a reference for combination the consensus strategy and other variable selection methods when analyzing NIR spectra and other spectroscopic techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. [Multiple linear regression and ROC curve analysis of the factors of lumbar spine bone mineral density].

    Zhang, Xiaodong; Zhao, Yinxia; Hu, Shaoyong; Hao, Shuai; Yan, Jiewen; Zhang, Lingyan; Zhao, Jing; Li, Shaolin

    2015-09-01

    To investigate the correlation between the lumbar vertebra bone mineral density (BMD) and age, gender, height, weight, body mass index, waistline, hipline, bone marrow and abdomen fat, and to explore the key factor affecting the BMD. A total of 72 cases were randomly recruited. All the subjects underwent a spectroscopic examination of the third lumber vertebra with single-voxel method in 1.5T MR. Lipid fractions (FF%) were measured. Quantitative CT were also performed to get the BMD of L3 and the corresponding abdomen subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). The statistical analysis were performed by SPSS 19.0. Multiple linear regression showed except the age and FF% showed significant difference (P0.05). The correlation of age and FF% with BMD was statistically negatively significant (r=-0.830, -0.521, P<0.05). The ROC curve analysis showed that the sensitivety and specificity of predicting osteoporosis were 81.8% and 86.9%, with a threshold of 58.5 years old. And it showed that the sensitivety and specificity of predicting osteoporosis were 90.9% and 55.7%, with a threshold of 52.8% for FF%. The lumbar vertebra BMD was significantly and negatively correlated with age and bone marrow FF%, but it was not significantly correlated with gender, height, weight, BMI, waistline, hipline, SAT and VAT. And age was the critical factor.

  7. Prediction of Depression in Cancer Patients With Different Classification Criteria, Linear Discriminant Analysis versus Logistic Regression.

    Shayan, Zahra; Mohammad Gholi Mezerji, Naser; Shayan, Leila; Naseri, Parisa

    2015-11-03

    Logistic regression (LR) and linear discriminant analysis (LDA) are two popular statistical models for prediction of group membership. Although they are very similar, the LDA makes more assumptions about the data. When categorical and continuous variables used simultaneously, the optimal choice between the two models is questionable. In most studies, classification error (CE) is used to discriminate between subjects in several groups, but this index is not suitable to predict the accuracy of the outcome. The present study compared LR and LDA models using classification indices. This cross-sectional study selected 243 cancer patients. Sample sets of different sizes (n = 50, 100, 150, 200, 220) were randomly selected and the CE, B, and Q classification indices were calculated by the LR and LDA models. CE revealed the a lack of superiority for one model over the other, but the results showed that LR performed better than LDA for the B and Q indices in all situations. No significant effect for sample size on CE was noted for selection of an optimal model. Assessment of the accuracy of prediction of real data indicated that the B and Q indices are appropriate for selection of an optimal model. The results of this study showed that LR performs better in some cases and LDA in others when based on CE. The CE index is not appropriate for classification, although the B and Q indices performed better and offered more efficient criteria for comparison and discrimination between groups.

  8. An Ionospheric Index Model based on Linear Regression and Neural Network Approaches

    Tshisaphungo, Mpho; McKinnell, Lee-Anne; Bosco Habarulema, John

    2017-04-01

    The ionosphere is well known to reflect radio wave signals in the high frequency (HF) band due to the present of electron and ions within the region. To optimise the use of long distance HF communications, it is important to understand the drivers of ionospheric storms and accurately predict the propagation conditions especially during disturbed days. This paper presents the development of an ionospheric storm-time index over the South African region for the application of HF communication users. The model will result into a valuable tool to measure the complex ionospheric behaviour in an operational space weather monitoring and forecasting environment. The development of an ionospheric storm-time index is based on a single ionosonde station data over Grahamstown (33.3°S,26.5°E), South Africa. Critical frequency of the F2 layer (foF2) measurements for a period 1996-2014 were considered for this study. The model was developed based on linear regression and neural network approaches. In this talk validation results for low, medium and high solar activity periods will be discussed to demonstrate model's performance.

  9. Time series linear regression of half-hourly radon levels in a residence

    Hull, D.A.

    1990-01-01

    This paper uses time series linear regression modelling to assess the impact of temperature and pressure differences on the radon measured in the basement and in the basement drain of a research house in the Princeton area of New Jersey. The models examine half-hour averages of several climate and house parameters for several periods of up to 11 days. The drain radon concentrations follow a strong diurnal pattern that shifts 12 hours in phase between the summer and the fall seasons. This shift can be linked both to the change in temperature differences between seasons and to an experiment which involved sealing the connection between the drain and the basement. We have found that both the basement and the drain radon concentrations are correlated to basement-outdoor and soil-outdoor temperature differences (the coefficient of determination varies between 0.6 and 0.8). The statistical models for the summer periods clearly describe a physical system where the basement drain pumps radon in during the night and sucks radon out during the day

  10. A linear regression approach to evaluate the green supply chain management impact on industrial organizational performance.

    Mumtaz, Ubaidullah; Ali, Yousaf; Petrillo, Antonella

    2018-05-15

    The increase in the environmental pollution is one of the most important topic in today's world. In this context, the industrial activities can pose a significant threat to the environment. To manage problems associate to industrial activities several methods, techniques and approaches have been developed. Green supply chain management (GSCM) is considered one of the most important "environmental management approach". In developing countries such as Pakistan the implementation of GSCM practices is still in its initial stages. Lack of knowledge about its effects on economic performance is the reason because of industries fear to implement these practices. The aim of this research is to perceive the effects of GSCM practices on organizational performance in Pakistan. In this research the GSCM practices considered are: internal practices, external practices, investment recovery and eco-design. While, the performance parameters considered are: environmental pollution, operational cost and organizational flexibility. A set of hypothesis propose the effect of each GSCM practice on the performance parameters. Factor analysis and linear regression are used to analyze the survey data of Pakistani industries, in order to authenticate these hypotheses. The findings of this research indicate a decrease in environmental pollution and operational cost with the implementation of GSCM practices, whereas organizational flexibility has not improved for Pakistani industries. These results aim to help managers regarding their decision of implementing GSCM practices in the industrial sector of Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Influence of plant root morphology and tissue composition on phenanthrene uptake: Stepwise multiple linear regression analysis

    Zhan, Xinhua; Liang, Xiao; Xu, Guohua; Zhou, Lixiang

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that reside mainly in surface soils. Dietary intake of plant-based foods can make a major contribution to total PAH exposure. Little information is available on the relationship between root morphology and plant uptake of PAHs. An understanding of plant root morphologic and compositional factors that affect root uptake of contaminants is important and can inform both agricultural (chemical contamination of crops) and engineering (phytoremediation) applications. Five crop plant species are grown hydroponically in solutions containing the PAH phenanthrene. Measurements are taken for 1) phenanthrene uptake, 2) root morphology – specific surface area, volume, surface area, tip number and total root length and 3) root tissue composition – water, lipid, protein and carbohydrate content. These factors are compared through Pearson's correlation and multiple linear regression analysis. The major factors which promote phenanthrene uptake are specific surface area and lipid content. -- Highlights: •There is no correlation between phenanthrene uptake and total root length, and water. •Specific surface area and lipid are the most crucial factors for phenanthrene uptake. •The contribution of specific surface area is greater than that of lipid. -- The contribution of specific surface area is greater than that of lipid in the two most important root morphological and compositional factors affecting phenanthrene uptake

  12. Forecasting on the total volumes of Malaysia's imports and exports by multiple linear regression

    Beh, W. L.; Yong, M. K. Au

    2017-04-01

    This study is to give an insight on the doubt of the important of macroeconomic variables that affecting the total volumes of Malaysia's imports and exports by using multiple linear regression (MLR) analysis. The time frame for this study will be determined by using quarterly data of the total volumes of Malaysia's imports and exports covering the period between 2000-2015. The macroeconomic variables will be limited to eleven variables which are the exchange rate of US Dollar with Malaysia Ringgit (USD-MYR), exchange rate of China Yuan with Malaysia Ringgit (RMB-MYR), exchange rate of European Euro with Malaysia Ringgit (EUR-MYR), exchange rate of Singapore Dollar with Malaysia Ringgit (SGD-MYR), crude oil prices, gold prices, producer price index (PPI), interest rate, consumer price index (CPI), industrial production index (IPI) and gross domestic product (GDP). This study has applied the Johansen Co-integration test to investigate the relationship among the total volumes to Malaysia's imports and exports. The result shows that crude oil prices, RMB-MYR, EUR-MYR and IPI play important roles in the total volumes of Malaysia's imports. Meanwhile crude oil price, USD-MYR and GDP play important roles in the total volumes of Malaysia's exports.

  13. Correction of TRMM 3B42V7 Based on Linear Regression Models over China

    Shaohua Liu

    2016-01-01

    Full Text Available High temporal-spatial precipitation is necessary for hydrological simulation and water resource management, and remotely sensed precipitation products (RSPPs play a key role in supporting high temporal-spatial precipitation, especially in sparse gauge regions. TRMM 3B42V7 data (TRMM precipitation is an essential RSPP outperforming other RSPPs. Yet the utilization of TRMM precipitation is still limited by the inaccuracy and low spatial resolution at regional scale. In this paper, linear regression models (LRMs have been constructed to correct and downscale the TRMM precipitation based on the gauge precipitation at 2257 stations over China from 1998 to 2013. Then, the corrected TRMM precipitation was validated by gauge precipitation at 839 out of 2257 stations in 2014 at station and grid scales. The results show that both monthly and annual LRMs have obviously improved the accuracy of corrected TRMM precipitation with acceptable error, and monthly LRM performs slightly better than annual LRM in Mideastern China. Although the performance of corrected TRMM precipitation from the LRMs has been increased in Northwest China and Tibetan plateau, the error of corrected TRMM precipitation is still significant due to the large deviation between TRMM precipitation and low-density gauge precipitation.

  14. An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models

    Harlim, John; Mahdi, Adam; Majda, Andrew J.

    2014-01-01

    A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model

  15. Estimation of the laser cutting operating cost by support vector regression methodology

    Jović, Srđan; Radović, Aleksandar; Šarkoćević, Živče; Petković, Dalibor; Alizamir, Meysam

    2016-09-01

    Laser cutting is a popular manufacturing process utilized to cut various types of materials economically. The operating cost is affected by laser power, cutting speed, assist gas pressure, nozzle diameter and focus point position as well as the workpiece material. In this article, the process factors investigated were: laser power, cutting speed, air pressure and focal point position. The aim of this work is to relate the operating cost to the process parameters mentioned above. CO2 laser cutting of stainless steel of medical grade AISI316L has been investigated. The main goal was to analyze the operating cost through the laser power, cutting speed, air pressure, focal point position and material thickness. Since the laser operating cost is a complex, non-linear task, soft computing optimization algorithms can be used. Intelligent soft computing scheme support vector regression (SVR) was implemented. The performance of the proposed estimator was confirmed with the simulation results. The SVR results are then compared with artificial neural network and genetic programing. According to the results, a greater improvement in estimation accuracy can be achieved through the SVR compared to other soft computing methodologies. The new optimization methods benefit from the soft computing capabilities of global optimization and multiobjective optimization rather than choosing a starting point by trial and error and combining multiple criteria into a single criterion.

  16. Linear minimax estimation for random vectors with parametric uncertainty

    Bitar, E

    2010-06-01

    In this paper, we take a minimax approach to the problem of computing a worst-case linear mean squared error (MSE) estimate of X given Y , where X and Y are jointly distributed random vectors with parametric uncertainty in their distribution. We consider two uncertainty models, PA and PB. Model PA represents X and Y as jointly Gaussian whose covariance matrix Λ belongs to the convex hull of a set of m known covariance matrices. Model PB characterizes X and Y as jointly distributed according to a Gaussian mixture model with m known zero-mean components, but unknown component weights. We show: (a) the linear minimax estimator computed under model PA is identical to that computed under model PB when the vertices of the uncertain covariance set in PA are the same as the component covariances in model PB, and (b) the problem of computing the linear minimax estimator under either model reduces to a semidefinite program (SDP). We also consider the dynamic situation where x(t) and y(t) evolve according to a discrete-time LTI state space model driven by white noise, the statistics of which is modeled by PA and PB as before. We derive a recursive linear minimax filter for x(t) given y(t).

  17. Estimating nonlinear selection gradients using quadratic regression coefficients: double or nothing?

    Stinchcombe, John R; Agrawal, Aneil F; Hohenlohe, Paul A; Arnold, Stevan J; Blows, Mark W

    2008-09-01

    The use of regression analysis has been instrumental in allowing evolutionary biologists to estimate the strength and mode of natural selection. Although directional and correlational selection gradients are equal to their corresponding regression coefficients, quadratic regression coefficients must be doubled to estimate stabilizing/disruptive selection gradients. Based on a sample of 33 papers published in Evolution between 2002 and 2007, at least 78% of papers have not doubled quadratic regression coefficients, leading to an appreciable underestimate of the strength of stabilizing and disruptive selection. Proper treatment of quadratic regression coefficients is necessary for estimation of fitness surfaces and contour plots, canonical analysis of the gamma matrix, and modeling the evolution of populations on an adaptive landscape.

  18. A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy

    Jibo Yue

    2018-01-01

    Full Text Available Above-ground biomass (AGB provides a vital link between solar energy consumption and yield, so its correct estimation is crucial to accurately monitor crop growth and predict yield. In this work, we estimate AGB by using 54 vegetation indexes (e.g., Normalized Difference Vegetation Index, Soil-Adjusted Vegetation Index and eight statistical regression techniques: artificial neural network (ANN, multivariable linear regression (MLR, decision-tree regression (DT, boosted binary regression tree (BBRT, partial least squares regression (PLSR, random forest regression (RF, support vector machine regression (SVM, and principal component regression (PCR, which are used to analyze hyperspectral data acquired by using a field spectrophotometer. The vegetation indexes (VIs determined from the spectra were first used to train regression techniques for modeling and validation to select the best VI input, and then summed with white Gaussian noise to study how remote sensing errors affect the regression techniques. Next, the VIs were divided into groups of different sizes by using various sampling methods for modeling and validation to test the stability of the techniques. Finally, the AGB was estimated by using a leave-one-out cross validation with these powerful techniques. The results of the study demonstrate that, of the eight techniques investigated, PLSR and MLR perform best in terms of stability and are most suitable when high-accuracy and stable estimates are required from relatively few samples. In addition, RF is extremely robust against noise and is best suited to deal with repeated observations involving remote-sensing data (i.e., data affected by atmosphere, clouds, observation times, and/or sensor noise. Finally, the leave-one-out cross-validation method indicates that PLSR provides the highest accuracy (R2 = 0.89, RMSE = 1.20 t/ha, MAE = 0.90 t/ha, NRMSE = 0.07, CV (RMSE = 0.18; thus, PLSR is best suited for works requiring high

  19. Estimation of pyrethroid pesticide intake using regression modeling of food groups based on composite dietary samples

    U.S. Environmental Protection Agency — Population-based estimates of pesticide intake are needed to characterize exposure for particular demographic groups based on their dietary behaviors. Regression...

  20. Evapotranspiration Modeling by Linear, Nonlinear Regression and Artificial Neural Network in Greenhouse (Case study Reference Crop, Cucumber and Tomato

    vahid Rezaverdinejad

    2017-01-01

    important models to estimate ETc in greenhouse. The inputs of these models are net radiation, temperature, day after planting and air vapour pressure deficit (or relative humidity. Materials and Methods: In this study, daily ETc of reference crop, greenhouse tomato and cucumber crops were measured using lysimeter method in Urmia region. Several linear, nonlinear regressions and artificial neural networks were considered for ETc modelling in greenhouse. For this purpose, the effective meteorological parameters on ETc process includes: air temperature (T, air humidity (RH, air pressure (P, air vapour pressure deficit (VPD, day after planting (N and greenhouse net radiation (SR were considered and measured. According to the goodness of fit, different models of artificial neural networks and regression were compared and evaluated. Furthermore, based on partial derivatives of regression models, sensitivity analysis was conducted. The accuracy and performance of the employed models was judged by ten statistical indices namely root mean square error (RMSE, normalized root mean square error (NRMSE and coefficient of determination (R2. Results and Discussion: Based on the results, the most accurate regression model to reference ETc prediction was obtained three variables exponential function of VPD, RH and SR with RMSE=0.378 mm day-1. The RMSE of optimal artificial neural network to reference ET prediction for train and test data sets were obtained 0.089 and 0.365 mm day-1, respectively. The performance of logarithmic and exponential functions to prediction of cucumber ETc were proper, with high dependent variables especially, and the most accurate regression model to cucumber ET prediction was obtained for exponential function of five variables: VPD, N, T, RH and SR with RMSE=0.353 mm day-1. In addition, for tomato ET prediction, the most accurate regression model was obtained for exponential function of four variables: VPD, N, RH and SR with RMSE= 0.329 mm day-1. The best

  1. Simultaneous Estimation of Regression Functions for Marine Corps Technical Training Specialties.

    Dunbar, Stephen B.; And Others

    This paper considers the application of Bayesian techniques for simultaneous estimation to the specification of regression weights for selection tests used in various technical training courses in the Marine Corps. Results of a method for m-group regression developed by Molenaar and Lewis (1979) suggest that common weights for training courses…

  2. A regressive methodology for estimating missing data in rainfall daily time series

    Barca, E.; Passarella, G.

    2009-04-01

    the multivariate approach. Another approach follows the paradigm of the "multiple imputation" (Rubin, 1987; Rubin, 1988), which consists in using a set of "similar stations" instead than the most similar. This way, a sort of estimation range can be determined allowing the introduction of uncertainty. Finally, time series can be grouped on the basis of monthly rainfall rates defining classes of wetness (i.e.: dry, moderately rainy and rainy), in order to achieve the estimation using homogeneous data subsets. We expect that integrating the methodology with these enhancements will certainly improve its reliability. The methodology was applied to the daily rainfall time series data registered in the Candelaro River Basin (Apulia - South Italy) from 1970 to 2001. REFERENCES D.B., Rubin, 1976. Inference and Missing Data. Biometrika 63 581-592 D.B. Rubin, 1987. Multiple Imputation for Nonresponce in Surveys, New York: John Wiley & Sons, Inc. D.B. Rubin, 1988. An overview of multiple imputation. In Survey Research Section, pp. 79-84, American Statistical Association, 1988. J.L., Schafer, 1997. Analysis of Incomplete Multivariate Data, Chapman & Hall. J., Scheffer, 2002. Dealing with Missing Data. Res. Lett. Inf. Math. Sci. 3, 153-160. Available online at http://www.massey.ac.nz/~wwiims/research/letters/ H. Theil, 1950. A rank-invariant method of linear and polynomial regression analysis. Indicationes Mathematicae, 12, pp.85-91.

  3. Hourly predictive Levenberg-Marquardt ANN and multi linear regression models for predicting of dew point temperature

    Zounemat-Kermani, Mohammad

    2012-08-01

    In this study, the ability of two models of multi linear regression (MLR) and Levenberg-Marquardt (LM) feed-forward neural network was examined to estimate the hourly dew point temperature. Dew point temperature is the temperature at which water vapor in the air condenses into liquid. This temperature can be useful in estimating meteorological variables such as fog, rain, snow, dew, and evapotranspiration and in investigating agronomical issues as stomatal closure in plants. The availability of hourly records of climatic data (air temperature, relative humidity and pressure) which could be used to predict dew point temperature initiated the practice of modeling. Additionally, the wind vector (wind speed magnitude and direction) and conceptual input of weather condition were employed as other input variables. The three quantitative standard statistical performance evaluation measures, i.e. the root mean squared error, mean absolute error, and absolute logarithmic Nash-Sutcliffe efficiency coefficient ( {| {{{Log}}({{NS}})} |} ) were employed to evaluate the performances of the developed models. The results showed that applying wind vector and weather condition as input vectors along with meteorological variables could slightly increase the ANN and MLR predictive accuracy. The results also revealed that LM-NN was superior to MLR model and the best performance was obtained by considering all potential input variables in terms of different evaluation criteria.

  4. An evaluation of regression methods to estimate nutritional condition of canvasbacks and other water birds

    Sparling, D.W.; Barzen, J.A.; Lovvorn, J.R.; Serie, J.R.

    1992-01-01

    Regression equations that use mensural data to estimate body condition have been developed for several water birds. These equations often have been based on data that represent different sexes, age classes, or seasons, without being adequately tested for intergroup differences. We used proximate carcass analysis of 538 adult and juvenile canvasbacks (Aythya valisineria ) collected during fall migration, winter, and spring migrations in 1975-76 and 1982-85 to test regression methods for estimating body condition.

  5. Estimation of operational parameters for a direct injection turbocharged spark ignition engine by using regression analysis and artificial neural network

    Tosun Erdi

    2017-01-01

    Full Text Available This study was aimed at estimating the variation of several engine control parameters within the rotational speed-load map, using regression analysis and artificial neural network techniques. Duration of injection, specific fuel consumption, exhaust gas at turbine inlet, and within the catalytic converter brick were chosen as the output parameters for the models, while engine speed and brake mean effective pressure were selected as independent variables for prediction. Measurements were performed on a turbocharged direct injection spark ignition engine fueled with gasoline. A three-layer feed-forward structure and back-propagation algorithm was used for training the artificial neural network. It was concluded that this technique is capable of predicting engine parameters with better accuracy than linear and non-linear regression techniques.

  6. Bounds and estimates for the linearly perturbed eigenvalue problem

    Raddatz, W.D.

    1983-01-01

    This thesis considers the problem of bounding and estimating the discrete portion of the spectrum of a linearly perturbed self-adjoint operator, M(x). It is supposed that one knows an incomplete set of data consisting in the first few coefficients of the Taylor series expansions of one or more of the eigenvalues of M(x) about x = 0. The foundations of the variational study of eigen-values are first presented. These are then used to construct the best possible upper bounds and estimates using various sets of given information. Lower bounds are obtained by estimating the error in the upper bounds. The extension of these bounds and estimates to the eigenvalues of the doubly-perturbed operator M(x,y) is discussed. The results presented have numerous practical application in the physical sciences, including problems in atomic physics and the theory of vibrations of acoustical and mechanical systems

  7. Improving sensitivity of linear regression-based cell type-specific differential expression deconvolution with per-gene vs. global significance threshold.

    Glass, Edmund R; Dozmorov, Mikhail G

    2016-10-06

    The goal of many human disease-oriented studies is to detect molecular mechanisms different between healthy controls and patients. Yet, commonly used gene expression measurements from blood samples suffer from variability of cell composition. This variability hinders the detection of differentially expressed genes and is often ignored. Combined with cell counts, heterogeneous gene expression may provide deeper insights into the gene expression differences on the cell type-specific level. Published computational methods use linear regression to estimate cell type-specific differential expression, and a global cutoff to judge significance, such as False Discovery Rate (FDR). Yet, they do not consider many artifacts hidden in high-dimensional gene expression data that may negatively affect linear regression. In this paper we quantify the parameter space affecting the performance of linear regression (sensitivity of cell type-specific differential expression detection) on a per-gene basis. We evaluated the effect of sample sizes, cell type-specific proportion variability, and mean squared error on sensitivity of cell type-specific differential expression detection using linear regression. Each parameter affected variability of cell type-specific expression estimates and, subsequently, the sensitivity of differential expression detection. We provide the R package, LRCDE, which performs linear regression-based cell type-specific differential expression (deconvolution) detection on a gene-by-gene basis. Accounting for variability around cell type-specific gene expression estimates, it computes per-gene t-statistics of differential detection, p-values, t-statistic-based sensitivity, group-specific mean squared error, and several gene-specific diagnostic metrics. The sensitivity of linear regression-based cell type-specific differential expression detection differed for each gene as a function of mean squared error, per group sample sizes, and variability of the proportions

  8. Multiple Linear Regression for Reconstruction of Gene Regulatory Networks in Solving Cascade Error Problems

    Faridah Hani Mohamed Salleh

    2017-01-01

    Full Text Available Gene regulatory network (GRN reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C as a direct interaction (A → C. Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.

  9. Correlation of concentration of modified cassava flour for banana fritter flour using simple linear regression

    Herminiati, A.; Rahman, T.; Turmala, E.; Fitriany, C. G.

    2017-12-01

    The purpose of this study was to determine the correlation of different concentrations of modified cassava flour that was processed for banana fritter flour. The research method consists of two stages: (1) to determine the different types of flour: cassava flour, modified cassava flour-A (using the method of the lactid acid bacteria), and modified cassava flour-B (using the method of the autoclaving cooling cycle), then conducted on organoleptic test and physicochemical analysis; (2) to determine the correlation of concentration of modified cassava flour for banana fritter flour, by design was used simple linear regression. The factors were used different concentrations of modified cassava flour-B (y1) 40%, (y2) 50%, and (y3) 60%. The response in the study includes physical analysis (whiteness of flour, water holding capacity-WHC, oil holding capacity-OHC), chemical analysis (moisture content, ash content, crude fiber content, starch content), and organoleptic (color, aroma, taste, texture). The results showed that the type of flour selected from the organoleptic test was modified cassava flour-B. Analysis results of modified cassava flour-B component containing whiteness of flour 60.42%; WHC 41.17%; OHC 21.15%; moisture content 4.4%; ash content 1.75%; crude fiber content 1.86%; starch content 67.31%. The different concentrations of modified cassava flour-B with the results of the analysis provides correlation to the whiteness of flour, WHC, OHC, moisture content, ash content, crude fiber content, and starch content. The different concentrations of modified cassava flour-B does not affect the color, aroma, taste, and texture.

  10. Multiple Linear Regression and Artificial Neural Network to Predict Blood Glucose in Overweight Patients.

    Wang, J; Wang, F; Liu, Y; Xu, J; Lin, H; Jia, B; Zuo, W; Jiang, Y; Hu, L; Lin, F

    2016-01-01

    Overweight individuals are at higher risk for developing type II diabetes than the general population. We conducted this study to analyze the correlation between blood glucose and biochemical parameters, and developed a blood glucose prediction model tailored to overweight patients. A total of 346 overweight Chinese people patients ages 18-81 years were involved in this study. Their levels of fasting glucose (fs-GLU), blood lipids, and hepatic and renal functions were measured and analyzed by multiple linear regression (MLR). Based the MLR results, we developed a back propagation artificial neural network (BP-ANN) model by selecting tansig as the transfer function of the hidden layers nodes, and purelin for the output layer nodes, with training goal of 0.5×10(-5). There was significant correlation between fs-GLU with age, BMI, and blood biochemical indexes (P<0.05). The results of MLR analysis indicated that age, fasting alanine transaminase (fs-ALT), blood urea nitrogen (fs-BUN), total protein (fs-TP), uric acid (fs-BUN), and BMI are 6 independent variables related to fs-GLU. Based on these parameters, the BP-ANN model was performed well and reached high prediction accuracy when training 1 000 epoch (R=0.9987). The level of fs-GLU was predictable using the proposed BP-ANN model based on 6 related parameters (age, fs-ALT, fs-BUN, fs-TP, fs-UA and BMI) in overweight patients. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Multiple Linear Regression for Reconstruction of Gene Regulatory Networks in Solving Cascade Error Problems.

    Salleh, Faridah Hani Mohamed; Zainudin, Suhaila; Arif, Shereena M

    2017-01-01

    Gene regulatory network (GRN) reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR) to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C) as a direct interaction (A → C). Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.

  12. Reflexion on linear regression trip production modelling method for ensuring good model quality

    Suprayitno, Hitapriya; Ratnasari, Vita

    2017-11-01

    Transport Modelling is important. For certain cases, the conventional model still has to be used, in which having a good trip production model is capital. A good model can only be obtained from a good sample. Two of the basic principles of a good sampling is having a sample capable to represent the population characteristics and capable to produce an acceptable error at a certain confidence level. It seems that this principle is not yet quite understood and used in trip production modeling. Therefore, investigating the Trip Production Modelling practice in Indonesia and try to formulate a better modeling method for ensuring the Model Quality is necessary. This research result is presented as follows. Statistics knows a method to calculate span of prediction value at a certain confidence level for linear regression, which is called Confidence Interval of Predicted Value. The common modeling practice uses R2 as the principal quality measure, the sampling practice varies and not always conform to the sampling principles. An experiment indicates that small sample is already capable to give excellent R2 value and sample composition can significantly change the model. Hence, good R2 value, in fact, does not always mean good model quality. These lead to three basic ideas for ensuring good model quality, i.e. reformulating quality measure, calculation procedure, and sampling method. A quality measure is defined as having a good R2 value and a good Confidence Interval of Predicted Value. Calculation procedure must incorporate statistical calculation method and appropriate statistical tests needed. A good sampling method must incorporate random well distributed stratified sampling with a certain minimum number of samples. These three ideas need to be more developed and tested.

  13. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression.

    Charles K Fisher

    Full Text Available Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is now possible to follow the relative abundance of microbes in a community over time. These microbial communities exhibit rich ecological dynamics and an important goal of microbial ecology is to infer the ecological interactions between species directly from sequence data. Any algorithm for inferring ecological interactions must overcome three major obstacles: 1 a correlation between the abundances of two species does not imply that those species are interacting, 2 the sum constraint on the relative abundances obtained from metagenomic studies makes it difficult to infer the parameters in timeseries models, and 3 errors due to experimental uncertainty, or mis-assignment of sequencing reads into operational taxonomic units, bias inferences of species interactions due to a statistical problem called "errors-in-variables". Here we introduce an approach, Learning Interactions from MIcrobial Time Series (LIMITS, that overcomes these obstacles. LIMITS uses sparse linear regression with boostrap aggregation to infer a discrete-time Lotka-Volterra model for microbial dynamics. We tested LIMITS on synthetic data and showed that it could reliably infer the topology of the inter-species ecological interactions. We then used LIMITS to characterize the species interactions in the gut microbiomes of two individuals and found that the interaction networks varied significantly between individuals. Furthermore, we found that the interaction networks of the two individuals are dominated by distinct "keystone species", Bacteroides fragilis and Bacteroided stercosis, that have a disproportionate influence on the structure of the gut microbiome even though they are only found in moderate abundance. Based on our results, we hypothesize that the abundances of certain keystone species may be responsible for individuality in

  14. Estimation and Inference for Very Large Linear Mixed Effects Models

    Gao, K.; Owen, A. B.

    2016-01-01

    Linear mixed models with large imbalanced crossed random effects structures pose severe computational problems for maximum likelihood estimation and for Bayesian analysis. The costs can grow as fast as $N^{3/2}$ when there are N observations. Such problems arise in any setting where the underlying factors satisfy a many to many relationship (instead of a nested one) and in electronic commerce applications, the N can be quite large. Methods that do not account for the correlation structure can...

  15. Estimating transmitted waves of floating breakwater using support vector regression model

    Mandal, S.; Hegde, A.V.; Kumar, V.; Patil, S.G.

    is first mapped onto an m-dimensional feature space using some fixed (nonlinear) mapping, and then a linear model is constructed in this feature space (Ivanciuc Ovidiu 2007). Using mathematical notation, the linear model in the feature space f(x, w... regressive vector machines, Ocean Engineering Journal, Vol – 36, pp 339 – 347, 2009. 3. Ivanciuc Ovidiu, Applications of support vector machines in chemistry, Review in Computational Chemistry, Eds K. B. Lipkouitz and T. R. Cundari, Vol – 23...

  16. Regression methodology in groundwater composition estimation with composition predictions for Romuvaara borehole KR10

    Luukkonen, A.; Korkealaakso, J.; Pitkaenen, P. [VTT Communities and Infrastructure, Espoo (Finland)

    1997-11-01

    Teollisuuden Voima Oy selected five investigation areas for preliminary site studies (1987Ae1992). The more detailed site investigation project, launched at the beginning of 1993 and presently supervised by Posiva Oy, is concentrated to three investigation areas. Romuvaara at Kuhmo is one of the present target areas, and the geochemical, structural and hydrological data used in this study are extracted from there. The aim of the study is to develop suitable methods for groundwater composition estimation based on a group of known hydrogeological variables. The input variables used are related to the host type of groundwater, hydrological conditions around the host location, mixing potentials between different types of groundwater, and minerals equilibrated with the groundwater. The output variables are electrical conductivity, Ca, Mg, Mn, Na, K, Fe, Cl, S, HS, SO{sub 4}, alkalinity, {sup 3}H, {sup 14}C, {sup 13}C, Al, Sr, F, Br and I concentrations, and pH of the groundwater. The methodology is to associate the known hydrogeological conditions (i.e. input variables), with the known water compositions (output variables), and to evaluate mathematical relations between these groups. Output estimations are done with two separate procedures: partial least squares regressions on the principal components of input variables, and by training neural networks with input-output pairs. Coefficients of linear equations and trained networks are optional methods for actual predictions. The quality of output predictions are monitored with confidence limit estimations, evaluated from input variable covariances and output variances, and with charge balance calculations. Groundwater compositions in Romuvaara borehole KR10 are predicted at 10 metre intervals with both prediction methods. 46 refs.

  17. Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression.

    Ding, A Adam; Wu, Hulin

    2014-10-01

    We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method.

  18. [Evaluation of estimation of prevalence ratio using bayesian log-binomial regression model].

    Gao, W L; Lin, H; Liu, X N; Ren, X W; Li, J S; Shen, X P; Zhu, S L

    2017-03-10

    To evaluate the estimation of prevalence ratio ( PR ) by using bayesian log-binomial regression model and its application, we estimated the PR of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea in their infants by using bayesian log-binomial regression model in Openbugs software. The results showed that caregivers' recognition of infant' s risk signs of diarrhea was associated significantly with a 13% increase of medical care-seeking. Meanwhile, we compared the differences in PR 's point estimation and its interval estimation of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea and convergence of three models (model 1: not adjusting for the covariates; model 2: adjusting for duration of caregivers' education, model 3: adjusting for distance between village and township and child month-age based on model 2) between bayesian log-binomial regression model and conventional log-binomial regression model. The results showed that all three bayesian log-binomial regression models were convergence and the estimated PRs were 1.130(95 %CI : 1.005-1.265), 1.128(95 %CI : 1.001-1.264) and 1.132(95 %CI : 1.004-1.267), respectively. Conventional log-binomial regression model 1 and model 2 were convergence and their PRs were 1.130(95 % CI : 1.055-1.206) and 1.126(95 % CI : 1.051-1.203), respectively, but the model 3 was misconvergence, so COPY method was used to estimate PR , which was 1.125 (95 %CI : 1.051-1.200). In addition, the point estimation and interval estimation of PRs from three bayesian log-binomial regression models differed slightly from those of PRs from conventional log-binomial regression model, but they had a good consistency in estimating PR . Therefore, bayesian log-binomial regression model can effectively estimate PR with less misconvergence and have more advantages in application compared with conventional log-binomial regression model.

  19. A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis.

    Afantitis, Antreas; Melagraki, Georgia; Sarimveis, Haralambos; Koutentis, Panayiotis A; Markopoulos, John; Igglessi-Markopoulou, Olga

    2006-08-01

    A quantitative-structure activity relationship was obtained by applying Multiple Linear Regression Analysis to a series of 80 1-[2-hydroxyethoxy-methyl]-6-(phenylthio) thymine (HEPT) derivatives with significant anti-HIV activity. For the selection of the best among 37 different descriptors, the Elimination Selection Stepwise Regression Method (ES-SWR) was utilized. The resulting QSAR model (R (2) (CV) = 0.8160; S (PRESS) = 0.5680) proved to be very accurate both in training and predictive stages.

  20. Adjusting for overdispersion in piecewise exponential regression models to estimate excess mortality rate in population-based research.

    Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard

    2016-10-01

    In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.

  1. Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables

    Rosenblum, Michael; van der Laan, Mark J.

    2010-01-01

    Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation. PMID:20628636

  2. Simple, efficient estimators of treatment effects in randomized trials using generalized linear models to leverage baseline variables.

    Rosenblum, Michael; van der Laan, Mark J

    2010-04-01

    Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation.

  3. ESTIMATION OF GENETIC PARAMETERS IN TROPICARNE CATTLE WITH RANDOM REGRESSION MODELS USING B-SPLINES

    Joel Domínguez Viveros

    2015-04-01

    Full Text Available The objectives were to estimate variance components, and direct (h2 and maternal (m2 heritability in the growth of Tropicarne cattle based on a random regression model using B-Splines for random effects modeling. Information from 12 890 monthly weightings of 1787 calves, from birth to 24 months old, was analyzed. The pedigree included 2504 animals. The random effects model included genetic and permanent environmental (direct and maternal of cubic order, and residuals. The fixed effects included contemporaneous groups (year – season of weighed, sex and the covariate age of the cow (linear and quadratic. The B-Splines were defined in four knots through the growth period analyzed. Analyses were performed with the software Wombat. The variances (phenotypic and residual presented a similar behavior; of 7 to 12 months of age had a negative trend; from birth to 6 months and 13 to 18 months had positive trend; after 19 months were maintained constant. The m2 were low and near to zero, with an average of 0.06 in an interval of 0.04 to 0.11; the h2 also were close to zero, with an average of 0.10 in an interval of 0.03 to 0.23.

  4. Estimation of Panel Data Regression Models with Two-Sided Censoring or Truncation

    Alan, Sule; Honore, Bo E.; Hu, Luojia

    2014-01-01

    This paper constructs estimators for panel data regression models with individual speci…fic heterogeneity and two–sided censoring and truncation. Following Powell (1986) the estimation strategy is based on moment conditions constructed from re–censored or re–truncated residuals. While these moment...

  5. Semi-parametric estimation of random effects in a logistic regression model using conditional inference

    Petersen, Jørgen Holm

    2016-01-01

    This paper describes a new approach to the estimation in a logistic regression model with two crossed random effects where special interest is in estimating the variance of one of the effects while not making distributional assumptions about the other effect. A composite likelihood is studied...

  6. Asymptotic normality of kernel estimator of $\\psi$-regression function for functional ergodic data

    Laksaci ALI; Benziadi Fatima; Gheriballak Abdelkader

    2016-01-01

    In this paper we consider the problem of the estimation of the $\\psi$-regression function when the covariates take values in an infinite dimensional space. Our main aim is to establish, under a stationary ergodic process assumption, the asymptotic normality of this estimate.

  7. Trend analysis by a piecewise linear regression model applied to surface air temperatures in Southeastern Spain (1973–2014)

    Campra, Pablo; Morales, Maria

    2016-01-01

    The magnitude of the trends of environmental and climatic changes is mostly derived from the slopes of the linear trends using ordinary least-square fitting. An alternative flexible fitting model, piecewise regression, has been applied here to surface air temperature records in southeastern Spain for the recent warming period (1973–2014) to gain accuracy in the description of the inner structure of change, dividing the time series into linear segments with different slopes. Breakpoint y...

  8. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    Mechhoud, Sarra

    2016-01-01

    In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  9. Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood

    Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models

  10. Variance estimation for complex indicators of poverty and inequality using linearization techniques

    Guillaume Osier

    2009-12-01

    Full Text Available The paper presents the Eurostat experience in calculating measures of precision, including standard errors, confidence intervals and design effect coefficients - the ratio of the variance of a statistic with the actual sample design to the variance of that statistic with a simple random sample of same size - for the "Laeken" indicators, that is, a set of complex indicators of poverty and inequality which had been set out in the framework of the EU-SILC project (European Statistics on Income and Living Conditions. The Taylor linearization method (Tepping, 1968; Woodruff, 1971; Wolter, 1985; Tille, 2000 is actually a well-established method to obtain variance estimators for nonlinear statistics such as ratios, correlation or regression coefficients. It consists of approximating a nonlinear statistic with a linear function of the observations by using first-order Taylor Series expansions. Then, an easily found variance estimator of the linear approximation is used as an estimator of the variance of the nonlinear statistic. Although the Taylor linearization method handles all the nonlinear statistics which can be expressed as a smooth function of estimated totals, the approach fails to encompass the "Laeken" indicators since the latter are having more complex mathematical expressions. Consequently, a generalized linearization method (Deville, 1999, which relies on the concept of influence function (Hampel, Ronchetti, Rousseeuw and Stahel, 1986, has been implemented. After presenting the EU-SILC instrument and the main target indicators for which variance estimates are needed, the paper elaborates on the main features of the linearization approach based on influence functions. Ultimately, estimated standard errors, confidence intervals and design effect coefficients obtained from this approach are presented and discussed.

  11. From neurons to circuits: linear estimation of local field potentials

    Rasch, Malte; Logthetis, Nikos K.; Kreiman, Gabriel

    2010-01-01

    Extracellular physiological recordings are typically separated into two frequency bands: local field potentials (LFPs, a circuit property) and spiking multi-unit activity (MUA). There has been increased interest in LFPs due to their correlation with fMRI measurements and the possibility of studying local processing and neuronal synchrony. To further understand the biophysical origin of LFPs, we asked whether it is possible to estimate their time course based on the spiking activity from the same or nearby electrodes. We used Signal Estimation Theory to show that a linear filter operation on the activity of one/few neurons can explain a significant fraction of the LFP time course in the macaque primary visual cortex. The linear filter used to estimate the LFPs had a stereotypical shape characterized by a sharp downstroke at negative time lags and a slower positive upstroke for positve time lags. The filter was similar across neocortical regions and behavioral conditions including spontaneous activity and visual stimulation. The estimations had a spatial resolution of ~1 mm and a temporal resolution of ~200 ms. By considering a causal filter, we observed a temporal asymmetry such that the positive time lags in the filter contributed more to the LFP estimation than negative time lags. Additionally, we showed that spikes occurring within ~10 ms of spikes from nearby neurons yielded better estimation accuracies than nonsynchronous spikes. In sum, our results suggest that at least some circuit-level local properties of the field potentials can be predicted from the activity of one or a few neurons. PMID:19889990

  12. Seasonal Variability of Aragonite Saturation State in the North Pacific Ocean Predicted by Multiple Linear Regression

    Kim, T. W.; Park, G. H.

    2014-12-01

    Seasonal variation of aragonite saturation state (Ωarag) in the North Pacific Ocean (NPO) was investigated, using multiple linear regression (MLR) models produced from the PACIFICA (Pacific Ocean interior carbon) dataset. Data within depth ranges of 50-1200m were used to derive MLR models, and three parameters (potential temperature, nitrate, and apparent oxygen utilization (AOU)) were chosen as predictor variables because these parameters are associated with vertical mixing, DIC (dissolved inorganic carbon) removal and release which all affect Ωarag in water column directly or indirectly. The PACIFICA dataset was divided into 5° × 5° grids, and a MLR model was produced in each grid, giving total 145 independent MLR models over the NPO. Mean RMSE (root mean square error) and r2 (coefficient of determination) of all derived MLR models were approximately 0.09 and 0.96, respectively. Then the obtained MLR coefficients for each of predictor variables and an intercept were interpolated over the study area, thereby making possible to allocate MLR coefficients to data-sparse ocean regions. Predictability from the interpolated coefficients was evaluated using Hawaiian time-series data, and as a result mean residual between measured and predicted Ωarag values was approximately 0.08, which is less than the mean RMSE of our MLR models. The interpolated MLR coefficients were combined with seasonal climatology of World Ocean Atlas 2013 (1° × 1°) to produce seasonal Ωarag distributions over various depths. Large seasonal variability in Ωarag was manifested in the mid-latitude Western NPO (24-40°N, 130-180°E) and low-latitude Eastern NPO (0-12°N, 115-150°W). In the Western NPO, seasonal fluctuations of water column stratification appeared to be responsible for the seasonal variation in Ωarag (~ 0.5 at 50 m) because it closely followed temperature variations in a layer of 0-75 m. In contrast, remineralization of organic matter was the main cause for the seasonal

  13. The importance of the chosen technique to estimate diffuse solar radiation by means of regression

    Arslan, Talha; Altyn Yavuz, Arzu [Department of Statistics. Science and Literature Faculty. Eskisehir Osmangazi University (Turkey)], email: mtarslan@ogu.edu.tr, email: aaltin@ogu.edu.tr; Acikkalp, Emin [Department of Mechanical and Manufacturing Engineering. Engineering Faculty. Bilecik University (Turkey)], email: acikkalp@gmail.com

    2011-07-01

    The Ordinary Least Squares (OLS) method is one of the most frequently used for estimation of diffuse solar radiation. The data set must provide certain assumptions for the OLS method to work. The most important is that the regression equation offered by OLS error terms must fit within the normal distribution. Utilizing an alternative robust estimator to get parameter estimations is highly effective in solving problems where there is a lack of normal distribution due to the presence of outliers or some other factor. The purpose of this study is to investigate the value of the chosen technique for the estimation of diffuse radiation. This study described alternative robust methods frequently used in applications and compared them with the OLS method. Making a comparison of the data set analysis of the OLS and that of the M Regression (Huber, Andrews and Tukey) techniques, it was study found that robust regression techniques are preferable to OLS because of the smoother explanation values.

  14. A Comparison of Alternative Estimators of Linearly Aggregated Macro Models

    Fikri Akdeniz

    2012-07-01

    Full Text Available Normal 0 false false false TR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman","serif"; mso-ansi-language:TR; mso-fareast-language:TR;} This paper deals with the linear aggregation problem. For the true underlying micro relations, which explain the micro behavior of the individuals, no restrictive rank conditions are assumed. Thus the analysis is presented in a framework utilizing generalized inverses of singular matrices. We investigate several estimators for certain linear transformations of the systematic part of the corresponding macro relations. Homogeneity of micro parameters is discussed. Best linear unbiased estimation for micro parameters is described.

  15. Robust linear discriminant analysis with distance based estimators

    Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina

    2017-11-01

    Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.

  16. Isolating and Examining Sources of Suppression and Multicollinearity in Multiple Linear Regression

    Beckstead, Jason W.

    2012-01-01

    The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic…

  17. Robust estimation for homoscedastic regression in the secondary analysis of case-control data

    Wei, Jiawei

    2012-12-04

    Primary analysis of case-control studies focuses on the relationship between disease D and a set of covariates of interest (Y, X). A secondary application of the case-control study, which is often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated owing to the case-control sampling, where the regression of Y on X is different from what it is in the population. Previous work has assumed a parametric distribution for Y given X and derived semiparametric efficient estimation and inference without any distributional assumptions about X. We take up the issue of estimation of a regression function when Y given X follows a homoscedastic regression model, but otherwise the distribution of Y is unspecified. The semiparametric efficient approaches can be used to construct semiparametric efficient estimates, but they suffer from a lack of robustness to the assumed model for Y given X. We take an entirely different approach. We show how to estimate the regression parameters consistently even if the assumed model for Y given X is incorrect, and thus the estimates are model robust. For this we make the assumption that the disease rate is known or well estimated. The assumption can be dropped when the disease is rare, which is typically so for most case-control studies, and the estimation algorithm simplifies. Simulations and empirical examples are used to illustrate the approach.

  18. Robust estimation for homoscedastic regression in the secondary analysis of case-control data

    Wei, Jiawei; Carroll, Raymond J.; Mü ller, Ursula U.; Keilegom, Ingrid Van; Chatterjee, Nilanjan

    2012-01-01

    Primary analysis of case-control studies focuses on the relationship between disease D and a set of covariates of interest (Y, X). A secondary application of the case-control study, which is often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated owing to the case-control sampling, where the regression of Y on X is different from what it is in the population. Previous work has assumed a parametric distribution for Y given X and derived semiparametric efficient estimation and inference without any distributional assumptions about X. We take up the issue of estimation of a regression function when Y given X follows a homoscedastic regression model, but otherwise the distribution of Y is unspecified. The semiparametric efficient approaches can be used to construct semiparametric efficient estimates, but they suffer from a lack of robustness to the assumed model for Y given X. We take an entirely different approach. We show how to estimate the regression parameters consistently even if the assumed model for Y given X is incorrect, and thus the estimates are model robust. For this we make the assumption that the disease rate is known or well estimated. The assumption can be dropped when the disease is rare, which is typically so for most case-control studies, and the estimation algorithm simplifies. Simulations and empirical examples are used to illustrate the approach.

  19. QSAR models for prediction study of HIV protease inhibitors using support vector machines, neural networks and multiple linear regression

    Rachid Darnag

    2017-02-01

    Full Text Available Support vector machines (SVM represent one of the most promising Machine Learning (ML tools that can be applied to develop a predictive quantitative structure–activity relationship (QSAR models using molecular descriptors. Multiple linear regression (MLR and artificial neural networks (ANNs were also utilized to construct quantitative linear and non linear models to compare with the results obtained by SVM. The prediction results are in good agreement with the experimental value of HIV activity; also, the results reveal the superiority of the SVM over MLR and ANN model. The contribution of each descriptor to the structure–activity relationships was evaluated.

  20. Regression estimators for generic health-related quality of life and quality-adjusted life years.

    Basu, Anirban; Manca, Andrea

    2012-01-01

    To develop regression models for outcomes with truncated supports, such as health-related quality of life (HRQoL) data, and account for features typical of such data such as a skewed distribution, spikes at 1 or 0, and heteroskedasticity. Regression estimators based on features of the Beta distribution. First, both a single equation and a 2-part model are presented, along with estimation algorithms based on maximum-likelihood, quasi-likelihood, and Bayesian Markov-chain Monte Carlo methods. A novel Bayesian quasi-likelihood estimator is proposed. Second, a simulation exercise is presented to assess the performance of the proposed estimators against ordinary least squares (OLS) regression for a variety of HRQoL distributions that are encountered in practice. Finally, the performance of the proposed estimators is assessed by using them to quantify the treatment effect on QALYs in the EVALUATE hysterectomy trial. Overall model fit is studied using several goodness-of-fit tests such as Pearson's correlation test, link and reset tests, and a modified Hosmer-Lemeshow test. The simulation results indicate that the proposed methods are more robust in estimating covariate effects than OLS, especially when the effects are large or the HRQoL distribution has a large spike at 1. Quasi-likelihood techniques are more robust than maximum likelihood estimators. When applied to the EVALUATE trial, all but the maximum likelihood estimators produce unbiased estimates of the treatment effect. One and 2-part Beta regression models provide flexible approaches to regress the outcomes with truncated supports, such as HRQoL, on covariates, after accounting for many idiosyncratic features of the outcomes distribution. This work will provide applied researchers with a practical set of tools to model outcomes in cost-effectiveness analysis.

  1. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.

    Karabatsos, George

    2017-02-01

    Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected

  2. A STATISTICAL ANALYSIS OF GDP AND FINAL CONSUMPTION USING SIMPLE LINEAR REGRESSION. THE CASE OF ROMANIA 1990–2010

    Aniela Balacescu; Marian Zaharia

    2011-01-01

    This paper aims to examine the causal relationship between GDP and final consumption. The authors used linear regression model in which GDP is considered variable results, and final consumption variable factor. In drafting article we used Excel software application that is a modern computing and statistical data analysis.

  3. Taming Chaos by Linear Regulation with Bound Estimation

    Jiqiang Wang

    2015-01-01

    Full Text Available Chaos control has become an important area of research and consequently many approaches have been proposed to control chaos. This paper proposes a linear regulation method. Different from the existing approaches is that it can provide region of attraction while estimating the bounding behaviour of the norm of the states. The proposed method also possesses design flexibility and can be easily used to cater for special requirement such that control signal should be generated via single input, single state, static feedback and so forth. The applications to the Tigan system, the Genesio chaotic system, the novel chaotic system, and the Lorenz chaotic system justify the above claims.

  4. Minimum variance linear unbiased estimators of loss and inventory

    Stewart, K.B.

    1977-01-01

    The article illustrates a number of approaches for estimating the material balance inventory and a constant loss amount from the accountability data from a sequence of accountability periods. The approaches all lead to linear estimates that have minimum variance. Techniques are shown whereby ordinary least squares, weighted least squares and generalized least squares computer programs can be used. Two approaches are recursive in nature and lend themselves to small specialized computer programs. Another approach is developed that is easy to program; could be used with a desk calculator and can be used in a recursive way from accountability period to accountability period. Some previous results are also reviewed that are very similar in approach to the present ones and vary only in the way net throughput measurements are statistically modeled. 5 refs

  5. The Prediction Properties of Inverse and Reverse Regression for the Simple Linear Calibration Problem

    Parker, Peter A.; Geoffrey, Vining G.; Wilson, Sara R.; Szarka, John L., III; Johnson, Nels G.

    2010-01-01

    The calibration of measurement systems is a fundamental but under-studied problem within industrial statistics. The origins of this problem go back to basic chemical analysis based on NIST standards. In today's world these issues extend to mechanical, electrical, and materials engineering. Often, these new scenarios do not provide "gold standards" such as the standard weights provided by NIST. This paper considers the classic "forward regression followed by inverse regression" approach. In this approach the initial experiment treats the "standards" as the regressor and the observed values as the response to calibrate the instrument. The analyst then must invert the resulting regression model in order to use the instrument to make actual measurements in practice. This paper compares this classical approach to "reverse regression," which treats the standards as the response and the observed measurements as the regressor in the calibration experiment. Such an approach is intuitively appealing because it avoids the need for the inverse regression. However, it also violates some of the basic regression assumptions.

  6. Engineering estimates versus impact evaluation of energy efficiency projects: Regression discontinuity evidence from a case study

    Lang, Corey; Siler, Matthew

    2013-01-01

    Energy efficiency upgrades have been gaining widespread attention across global channels as a cost-effective approach to addressing energy challenges. The cost-effectiveness of these projects is generally predicted using engineering estimates pre-implementation, often with little ex post analysis of project success. In this paper, for a suite of energy efficiency projects, we directly compare ex ante engineering estimates of energy savings to ex post econometric estimates that use 15-min interval, building-level energy consumption data. In contrast to most prior literature, our econometric results confirm the engineering estimates, even suggesting the engineering estimates were too modest. Further, we find heterogeneous efficiency impacts by time of day, suggesting select efficiency projects can be useful in reducing peak load. - Highlights: • Regression discontinuity used to estimate energy savings from efficiency projects. • Ex post econometric estimates validate ex ante engineering estimates of energy savings. • Select efficiency projects shown to reduce peak load

  7. Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression

    Islamiyati, A.; Fatmawati; Chamidah, N.

    2018-03-01

    The correlation assumption of the longitudinal data with bi-response occurs on the measurement between the subjects of observation and the response. It causes the auto-correlation of error, and this can be overcome by using a covariance matrix. In this article, we estimate the covariance matrix based on the penalized spline regression model. Penalized spline involves knot points and smoothing parameters simultaneously in controlling the smoothness of the curve. Based on our simulation study, the estimated regression model of the weighted penalized spline with covariance matrix gives a smaller error value compared to the error of the model without covariance matrix.

  8. Generalized allometric regression to estimate biomass of Populus in short-rotation coppice

    Ben Brahim, Mohammed; Gavaland, Andre; Cabanettes, Alain [INRA Centre de Toulouse, Castanet-Tolosane Cedex (France). Unite Agroforesterie et Foret Paysanne

    2000-07-01

    Data from four different stands were combined to establish a single generalized allometric equation to estimate above-ground biomass of individual Populus trees grown on short-rotation coppice. The generalized model was performed using diameter at breast height, the mean diameter and the mean height of each site as dependent variables and then compared with the stand-specific regressions using F-test. Results showed that this single regression estimates tree biomass well at each stand and does not introduce bias with increasing diameter.

  9. Bounded Perturbation Regularization for Linear Least Squares Estimation

    Ballal, Tarig

    2017-10-18

    This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded norm is allowed into the linear transformation matrix to improve the singular-value structure. Following this, the problem is formulated as a min-max optimization problem. Next, the min-max problem is converted to an equivalent minimization problem to estimate the unknown vector quantity. The solution of the minimization problem is shown to converge to that of the ℓ2 -regularized least squares problem, with the unknown regularizer related to the norm bound of the introduced perturbation through a nonlinear constraint. A procedure is proposed that combines the constraint equation with the mean squared error (MSE) criterion to develop an approximately optimal regularization parameter selection algorithm. Both direct and indirect applications of the proposed method are considered. Comparisons with different Tikhonov regularization parameter selection methods, as well as with other relevant methods, are carried out. Numerical results demonstrate that the proposed method provides significant improvement over state-of-the-art methods.

  10. Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system

    Fang, Tingting; Lahdelma, Risto

    2016-01-01

    Highlights: • Social factor is considered for the linear regression models besides weather file. • Simultaneously optimize all the coefficients for linear regression models. • SARIMA combined with linear regression is used to forecast the heat demand. • The accuracy for both linear regression and time series models are evaluated. - Abstract: Forecasting heat demand is necessary for production and operation planning of district heating (DH) systems. In this study we first propose a simple regression model where the hourly outdoor temperature and wind speed forecast the heat demand. Weekly rhythm of heat consumption as a social component is added to the model to significantly improve the accuracy. The other type of model is the seasonal autoregressive integrated moving average (SARIMA) model with exogenous variables as a combination to take weather factors, and the historical heat consumption data as depending variables. One outstanding advantage of the model is that it peruses the high accuracy for both long-term and short-term forecast by considering both exogenous factors and time series. The forecasting performance of both linear regression models and time series model are evaluated based on real-life heat demand data for the city of Espoo in Finland by out-of-sample tests for the last 20 full weeks of the year. The results indicate that the proposed linear regression model (T168h) using 168-h demand pattern with midweek holidays classified as Saturdays or Sundays gives the highest accuracy and strong robustness among all the tested models based on the tested forecasting horizon and corresponding data. Considering the parsimony of the input, the ease of use and the high accuracy, the proposed T168h model is the best in practice. The heat demand forecasting model can also be developed for individual buildings if automated meter reading customer measurements are available. This would allow forecasting the heat demand based on more accurate heat consumption

  11. An iteratively reweighted least-squares approach to adaptive robust adjustment of parameters in linear regression models with autoregressive and t-distributed deviations

    Kargoll, Boris; Omidalizarandi, Mohammad; Loth, Ina; Paffenholz, Jens-André; Alkhatib, Hamza

    2018-03-01

    In this paper, we investigate a linear regression time series model of possibly outlier-afflicted observations and autocorrelated random deviations. This colored noise is represented by a covariance-stationary autoregressive (AR) process, in which the independent error components follow a scaled (Student's) t-distribution. This error model allows for the stochastic modeling of multiple outliers and for an adaptive robust maximum likelihood (ML) estimation of the unknown regression and AR coefficients, the scale parameter, and the degree of freedom of the t-distribution. This approach is meant to be an extension of known estimators, which tend to focus only on the regression model, or on the AR error model, or on normally distributed errors. For the purpose of ML estimation, we derive an expectation conditional maximization either algorithm, which leads to an easy-to-implement version of iteratively reweighted least squares. The estimation performance of the algorithm is evaluated via Monte Carlo simulations for a Fourier as well as a spline model in connection with AR colored noise models of different orders and with three different sampling distributions generating the white noise components. We apply the algorithm to a vibration dataset recorded by a high-accuracy, single-axis accelerometer, focusing on the evaluation of the estimated AR colored noise model.

  12. An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran

    Azadeh, A; Seraj, O [Department of Industrial Engineering and Research Institute of Energy Management and Planning, Center of Excellence for Intelligent-Based Experimental Mechanics, College of Engineering, University of Tehran, P.O. Box 11365-4563 (Iran); Saberi, M [Department of Industrial Engineering, University of Tafresh (Iran); Institute for Digital Ecosystems and Business Intelligence, Curtin University of Technology, Perth (Australia)

    2010-06-15

    This study presents an integrated fuzzy regression and time series framework to estimate and predict electricity demand for seasonal and monthly changes in electricity consumption especially in developing countries such as China and Iran with non-stationary data. Furthermore, it is difficult to model uncertain behavior of energy consumption with only conventional fuzzy regression (FR) or time series and the integrated algorithm could be an ideal substitute for such cases. At First, preferred Time series model is selected from linear or nonlinear models. For this, after selecting preferred Auto Regression Moving Average (ARMA) model, Mcleod-Li test is applied to determine nonlinearity condition. When, nonlinearity condition is satisfied, the preferred nonlinear model is selected and defined as preferred time series model. At last, the preferred model from fuzzy regression and time series model is selected by the Granger-Newbold. Also, the impact of data preprocessing on the fuzzy regression performance is considered. Monthly electricity consumption of Iran from March 1994 to January 2005 is considered as the case of this study. The superiority of the proposed algorithm is shown by comparing its results with other intelligent tools such as Genetic Algorithm (GA) and Artificial Neural Network (ANN). (author)

  13. On the degrees of freedom of reduced-rank estimators in multivariate regression.

    Mukherjee, A; Chen, K; Wang, N; Zhu, J

    We study the effective degrees of freedom of a general class of reduced-rank estimators for multivariate regression in the framework of Stein's unbiased risk estimation. A finite-sample exact unbiased estimator is derived that admits a closed-form expression in terms of the thresholded singular values of the least-squares solution and hence is readily computable. The results continue to hold in the high-dimensional setting where both the predictor and the response dimensions may be larger than the sample size. The derived analytical form facilitates the investigation of theoretical properties and provides new insights into the empirical behaviour of the degrees of freedom. In particular, we examine the differences and connections between the proposed estimator and a commonly-used naive estimator. The use of the proposed estimator leads to efficient and accurate prediction risk estimation and model selection, as demonstrated by simulation studies and a data example.

  14. A Model for Shovel Capital Cost Estimation, Using a Hybrid Model of Multivariate Regression and Neural Networks

    Abdolreza Yazdani-Chamzini

    2017-12-01

    Full Text Available Cost estimation is an essential issue in feasibility studies in civil engineering. Many different methods can be applied to modelling costs. These methods can be divided into several main groups: (1 artificial intelligence, (2 statistical methods, and (3 analytical methods. In this paper, the multivariate regression (MVR method, which is one of the most popular linear models, and the artificial neural network (ANN method, which is widely applied to solving different prediction problems with a high degree of accuracy, have been combined to provide a cost estimate model for a shovel machine. This hybrid methodology is proposed, taking the advantages of MVR and ANN models in linear and nonlinear modelling, respectively. In the proposed model, the unique advantages of the MVR model in linear modelling are used first to recognize the existing linear structure in data, and, then, the ANN for determining nonlinear patterns in preprocessed data is applied. The results with three indices indicate that the proposed model is efficient and capable of increasing the prediction accuracy.

  15. Trend Estimation and Regression Analysis in Climatological Time Series: An Application of Structural Time Series Models and the Kalman Filter.

    Visser, H.; Molenaar, J.

    1995-05-01

    The detection of trends in climatological data has become central to the discussion on climate change due to the enhanced greenhouse effect. To prove detection, a method is needed (i) to make inferences on significant rises or declines in trends, (ii) to take into account natural variability in climate series, and (iii) to compare output from GCMs with the trends in observed climate data. To meet these requirements, flexible mathematical tools are needed. A structural time series model is proposed with which a stochastic trend, a deterministic trend, and regression coefficients can be estimated simultaneously. The stochastic trend component is described using the class of ARIMA models. The regression component is assumed to be linear. However, the regression coefficients corresponding with the explanatory variables may be time dependent to validate this assumption. The mathematical technique used to estimate this trend-regression model is the Kaiman filter. The main features of the filter are discussed.Examples of trend estimation are given using annual mean temperatures at a single station in the Netherlands (1706-1990) and annual mean temperatures at Northern Hemisphere land stations (1851-1990). The inclusion of explanatory variables is shown by regressing the latter temperature series on four variables: Southern Oscillation index (SOI), volcanic dust index (VDI), sunspot numbers (SSN), and a simulated temperature signal, induced by increasing greenhouse gases (GHG). In all analyses, the influence of SSN on global temperatures is found to be negligible. The correlations between temperatures and SOI and VDI appear to be negative. For SOI, this correlation is significant, but for VDI it is not, probably because of a lack of volcanic eruptions during the sample period. The relation between temperatures and GHG is positive, which is in agreement with the hypothesis of a warming climate because of increasing levels of greenhouse gases. The prediction performance of

  16. Straight line fitting and predictions: On a marginal likelihood approach to linear regression and errors-in-variables models

    Christiansen, Bo

    2015-04-01

    Linear regression methods are without doubt the most used approaches to describe and predict data in the physical sciences. They are often good first order approximations and they are in general easier to apply and interpret than more advanced methods. However, even the properties of univariate regression can lead to debate over the appropriateness of various models as witnessed by the recent discussion about climate reconstruction methods. Before linear regression is applied important choices have to be made regarding the origins of the noise terms and regarding which of the two variables under consideration that should be treated as the independent variable. These decisions are often not easy to make but they may have a considerable impact on the results. We seek to give a unified probabilistic - Bayesian with flat priors - treatment of univariate linear regression and prediction by taking, as starting point, the general errors-in-variables model (Christiansen, J. Clim., 27, 2014-2031, 2014). Other versions of linear regression can be obtained as limits of this model. We derive the likelihood of the model parameters and predictands of the general errors-in-variables model by marginalizing over the nuisance parameters. The resulting likelihood is relatively simple and easy to analyze and calculate. The well known unidentifiability of the errors-in-variables model is manifested as the absence of a well-defined maximum in the likelihood. However, this does not mean that probabilistic inference can not be made; the marginal likelihoods of model parameters and the predictands have, in general, well-defined maxima. We also include a probabilistic version of classical calibration and show how it is related to the errors-in-variables model. The results are illustrated by an example from the coupling between the lower stratosphere and the troposphere in the Northern Hemisphere winter.

  17. Estimating the prevalence of 26 health-related indicators at neighbourhood level in the Netherlands using structured additive regression.

    van de Kassteele, Jan; Zwakhals, Laurens; Breugelmans, Oscar; Ameling, Caroline; van den Brink, Carolien

    2017-07-01

    Local policy makers increasingly need information on health-related indicators at smaller geographic levels like districts or neighbourhoods. Although more large data sources have become available, direct estimates of the prevalence of a health-related indicator cannot be produced for neighbourhoods for which only small samples or no samples are available. Small area estimation provides a solution, but unit-level models for binary-valued outcomes that can handle both non-linear effects of the predictors and spatially correlated random effects in a unified framework are rarely encountered. We used data on 26 binary-valued health-related indicators collected on 387,195 persons in the Netherlands. We associated the health-related indicators at the individual level with a set of 12 predictors obtained from national registry data. We formulated a structured additive regression model for small area estimation. The model captured potential non-linear relations between the predictors and the outcome through additive terms in a functional form using penalized splines and included a term that accounted for spatially correlated heterogeneity between neighbourhoods. The registry data were used to predict individual outcomes which in turn are aggregated into higher geographical levels, i.e. neighbourhoods. We validated our method by comparing the estimated prevalences with observed prevalences at the individual level and by comparing the estimated prevalences with direct estimates obtained by weighting methods at municipality level. We estimated the prevalence of the 26 health-related indicators for 415 municipalities, 2599 districts and 11,432 neighbourhoods in the Netherlands. We illustrate our method on overweight data and show that there are distinct geographic patterns in the overweight prevalence. Calibration plots show that the estimated prevalences agree very well with observed prevalences at the individual level. The estimated prevalences agree reasonably well with the

  18. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-06-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  19. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-03-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  20. Estimation of Geographically Weighted Regression Case Study on Wet Land Paddy Productivities in Tulungagung Regency

    Danang Ariyanto

    2017-11-01

    Full Text Available Regression is a method connected independent variable and dependent variable with estimation parameter as an output. Principal problem in this method is its application in spatial data. Geographically Weighted Regression (GWR method used to solve the problem. GWR  is a regression technique that extends the traditional regression framework by allowing the estimation of local rather than global parameters. In other words, GWR runs a regression for each location, instead of a sole regression for the entire study area. The purpose of this research is to analyze the factors influencing wet land paddy productivities in Tulungagung Regency. The methods used in this research is  GWR using cross validation  bandwidth and weighted by adaptive Gaussian kernel fungtion.This research using  4 variables which are presumed affecting the wet land paddy productivities such as:  the rate of rainfall(X1, the average cost of fertilizer per hectare(X2, the average cost of pestisides per hectare(X3 and Allocation of subsidized NPK fertilizer of food crops sub-sector(X4. Based on the result, X1, X2, X3 and X4  has a different effect on each Distric. So, to improve the productivity of wet land paddy in Tulungagung Regency required a special policy based on the GWR model in each distric.