#### Sample records for linear quadratic control

1. Optimal control linear quadratic methods

CERN Document Server

Anderson, Brian D O

2007-01-01

This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

2. An example in linear quadratic optimal control

NARCIS (Netherlands)

Weiss, George; Zwart, Heiko J.

1998-01-01

We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme

3. Stochastic Linear Quadratic Optimal Control Problems

International Nuclear Information System (INIS)

Chen, S.; Yong, J.

2001-01-01

This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well

Science.gov (United States)

Okasha, M.; Shah, J.; Fauzi, W.; Hanouf, Z.

2017-12-01

This study exploits the dynamics and control of quadcopters using Linear Quadratic Regulator (LQR) control approach. The quadcopter’s mathematical model is derived using the Newton-Euler method. It is a highly manoeuvrable, nonlinear, coupled with six degrees of freedom (DOF) model, which includes aerodynamics and detailed gyroscopic moments that are often ignored in many literatures. The linearized model is obtained and characterized by the heading angle (i.e. yaw angle) of the quadcopter. The adopted control approach utilizes LQR method to track several reference trajectories including circle and helix curves with significant variation in the yaw angle. The controller is modified to overcome difficulties related to the continuous changes in the operating points and eliminate chattering and discontinuity that is observed in the control input signal. Numerical non-linear simulations are performed using MATLAB and Simulink to illustrate to accuracy and effectiveness of the proposed controller.

5. Resolving Actuator Redundancy - Control Allocation vs. Linear Quadratic Control

OpenAIRE

Härkegård, Ola

2004-01-01

When designing control laws for systems with more inputs than controlled variables, one issue to consider is how to deal with actuator redundancy. Two tools for distributing the control effort among a redundant set of actuators are control allocation and linear quadratic control design. In this paper, we investigate the relationship between these two design tools when a quadratic performance index is used for control allocation. We show that for a particular class of linear systems, they give...

NARCIS (Netherlands)

Napp, D.; Trentelman, H.L.

2011-01-01

This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear-quadratic control problem where the performance functional is the integral of a quadratic differential form. We look

7. Linear Quadratic Controller with Fault Detection in Compact Disk Players

DEFF Research Database (Denmark)

Vidal, Enrique Sanchez; Hansen, K.G.; Andersen, R.S.

2001-01-01

The design of the positioning controllers in Optical Disk Drives are today subjected to a trade off between an acceptable suppression of external disturbances and an acceptable immunity against surfaces defects. In this paper an algorithm is suggested to detect defects of the disk surface combined...... with an observer and a Linear Quadratic Regulator. As a result, the mentioned trade off is minimized and the playability of the tested compact disk player is considerably enhanced....

8. Linear-quadratic model predictions for tumor control probability

International Nuclear Information System (INIS)

Yaes, R.J.

1987-01-01

Sigmoid dose-response curves for tumor control are calculated from the linear-quadratic model parameters α and Β, obtained from human epidermoid carcinoma cell lines, and are much steeper than the clinical dose-response curves for head and neck cancers. One possible explanation is the presence of small radiation-resistant clones arising from mutations in an initially homogeneous tumor. Using the mutation theory of Delbruck and Luria and of Goldie and Coldman, the authors discuss the implications of such radiation-resistant clones for clinical radiation therapy

9. An online re-linearization scheme suited for Model Predictive and Linear Quadratic Control

DEFF Research Database (Denmark)

Henriksen, Lars Christian; Poulsen, Niels Kjølstad

This technical note documents the equations for primal-dual interior-point quadratic programming problem solver used for MPC. The algorithm exploits the special structure of the MPC problem and is able to reduce the computational burden such that the computational burden scales with prediction...... horizon length in a linear way rather than cubic, which would be the case if the structure was not exploited. It is also shown how models used for design of model-based controllers, e.g. linear quadratic and model predictive, can be linearized both at equilibrium and non-equilibrium points, making...

10. Quadratic theory and feedback controllers for linear time delay systems

International Nuclear Information System (INIS)

Lee, E.B.

1976-01-01

Recent research on the design of controllers for systems having time delays is discussed. Results for the ''open loop'' and ''closed loop'' designs will be presented. In both cases results for minimizing a quadratic cost functional are given. The usefulness of these results is not known, but similar results for the non-delay case are being routinely applied. (author)

11. Cost Cumulant-Based Control for a Class of Linear Quadratic Tracking Problems

National Research Council Canada - National Science Library

Pham, Khanh D

2007-01-01

.... For instance, the present paper extends the application of cost-cumulant controller design to control of a wide class of linear-quadratic tracking systems where output measurements of a tracker...

12. Tip-tilt disturbance model identification based on non-linear least squares fitting for Linear Quadratic Gaussian control

Science.gov (United States)

Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing

2018-05-01

We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.

13. Linear quadratic Gaussian controller design for plasma current, position and shape control system in ITER

International Nuclear Information System (INIS)

Belyakov, V.; Kavin, A.; Rumyantsev, E.; Kharitonov, V.; Misenov, B.; Ovsyannikov, A.; Ovsyannikov, D.; Veremei, E.; Zhabko, A.; Mitrishkin, Y.

1999-01-01

This paper is focused on the linear quadratic Gaussian (LQG) controller synthesis methodology for the ITER plasma current, position and shape control system as well as power derivative management system. It has been shown that some poloidal field (PF) coils have less influence on reference plasma-wall gaps control during plasma disturbances and hence they have been used to reduce total control power derivative by means of the additional non-linear feedback. The design has been done on the basis of linear models. Simulation was provided for non-linear model and results are presented and discussed. (orig.)

14. Numerical Methods for Solution of the Extended Linear Quadratic Control Problem

DEFF Research Database (Denmark)

Jørgensen, John Bagterp; Frison, Gianluca; Gade-Nielsen, Nicolai Fog

2012-01-01

In this paper we present the extended linear quadratic control problem, its efficient solution, and a discussion of how it arises in the numerical solution of nonlinear model predictive control problems. The extended linear quadratic control problem is the optimal control problem corresponding...... to the Karush-Kuhn-Tucker system that constitute the majority of computational work in constrained nonlinear and linear model predictive control problems solved by efficient MPC-tailored interior-point and active-set algorithms. We state various methods of solving the extended linear quadratic control problem...... and discuss instances in which it arises. The methods discussed in the paper have been implemented in efficient C code for both CPUs and GPUs for a number of test examples....

15. Delayed Stochastic Linear-Quadratic Control Problem and Related Applications

Directory of Open Access Journals (Sweden)

Li Chen

2012-01-01

stochastic differential equations (FBSDEs with Itô’s stochastic delay equations as forward equations and anticipated backward stochastic differential equations as backward equations. Especially, we present the optimal feedback regulator for the time delay system via a new type of Riccati equations and also apply to a population optimal control problem.

16. Management of linear quadratic regulator optimal control with full-vehicle control case study

Directory of Open Access Journals (Sweden)

Rodrigue Tchamna

2016-09-01

Full Text Available Linear quadratic regulator is a powerful technique for dealing with the control design of any linear and nonlinear system after linearization of the system around an operating point. For small systems, which have fewer state variables, the transformation of the performance index from scalar to matrix form can be straightforward. On the other hand, as the system becomes large with many state variables and controllers, appropriate design and notations should be defined to make it easy to automatically implement the technique for any large system without the need to redesign from scratch every time one requires a new system. The main aim of this article was to deal with this issue. This article shows how to automatically obtain the matrix form of the performance index matrices from the scalar version of the performance index. Control of a full-vehicle in cornering was taken as a case study in this article.

17. Gain-scheduled Linear Quadratic Control of Wind Turbines Operating at High Wind Speed

DEFF Research Database (Denmark)

Østergaard, Kasper Zinck; Stoustrup, Jakob; Brath, Per

2007-01-01

This paper addresses state estimation and linear quadratic (LQ) control of variable speed variable pitch wind turbines. On the basis of a nonlinear model of a wind turbine, a set of operating conditions is identified and a LQ controller is designed for each operating point. The controller gains...... are then interpolated linearly to get a control law for the entire operating envelope. A nonlinear state estimator is designed as a combination of two unscented Kalman filters and a linear disturbance estimator. The gain-scheduling variable (wind speed) is then calculated from the output of these state estimators...

18. A Fast Condensing Method for Solution of Linear-Quadratic Control Problems

DEFF Research Database (Denmark)

Frison, Gianluca; Jørgensen, John Bagterp

2013-01-01

consider a condensing (or state elimination) method to solve an extended version of the LQ control problem, and we show how to exploit the structure of this problem to both factorize the dense Hessian matrix and solve the system. Furthermore, we present two efficient implementations. The first......In both Active-Set (AS) and Interior-Point (IP) algorithms for Model Predictive Control (MPC), sub-problems in the form of linear-quadratic (LQ) control problems need to be solved at each iteration. The solution of these sub-problems is usually the main computational effort. In this paper we...... implementation is formally identical to the Riccati recursion based solver and has a computational complexity that is linear in the control horizon length and cubic in the number of states. The second implementation has a computational complexity that is quadratic in the control horizon length as well...

19. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

Science.gov (United States)

Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

1997-01-01

One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

Directory of Open Access Journals (Sweden)

Tanwiwat Jaikuna

2017-02-01

Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

1. Legendre-tau approximation for functional differential equations. II - The linear quadratic optimal control problem

Science.gov (United States)

Ito, Kazufumi; Teglas, Russell

1987-01-01

The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

2. Legendre-tau approximation for functional differential equations. Part 2: The linear quadratic optimal control problem

Science.gov (United States)

Ito, K.; Teglas, R.

1984-01-01

The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

3. Linear quadratic optimization for positive LTI system

Science.gov (United States)

Muhafzan, Yenti, Syafrida Wirma; Zulakmal

2017-05-01

Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

4. Parallel Implementation of Riccati Recursion for Solving Linear-Quadratic Control Problems

DEFF Research Database (Denmark)

Frison, Gianluca; Jørgensen, John Bagterp

2013-01-01

In both Active-Set (AS) and Interior-Point (IP) algorithms for Model Predictive Control (MPC), sub-problems in the form of linear-quadratic (LQ) control problems need to be solved at each iteration. The solution of these sub-problems is usually the main computational effort. In this paper...... an alternative version of the Riccati recursion solver for LQ control problems is presented. The performance of both the classical and the alternative version is analyzed from a theoretical as well as a numerical point of view, and the alternative version is found to be approximately 50% faster than...

5. Genetic algorithm–based varying parameter linear quadratic regulator control for four-wheel independent steering vehicle

Directory of Open Access Journals (Sweden)

Linlin Gao

2015-11-01

Full Text Available From the perspective of vehicle dynamics, the four-wheel independent steering vehicle dynamics stability control method is studied, and a four-wheel independent steering varying parameter linear quadratic regulator control system is proposed with the help of expert control method. In the article, a four-wheel independent steering linear quadratic regulator controller for model following purpose is designed first. Then, by analyzing the four-wheel independent steering vehicle dynamic characteristics and the influence of linear quadratic regulator control parameters on control performance, a linear quadratic regulator control parameter adjustment strategy based on vehicle steering state is proposed to achieve the adaptive adjustment of linear quadratic regulator control parameters. In addition, to further improve the control performance, the proposed varying parameter linear quadratic regulator control system is optimized by genetic algorithm. Finally, simulation studies have been conducted by applying the proposed control system to the 8-degree-of-freedom four-wheel independent steering vehicle dynamics model. The simulation results indicate that the proposed control system has better performance and robustness and can effectively improve the stability and steering safety of the four-wheel independent steering vehicle.

6. Sensitivity Analysis of Linear Programming and Quadratic Programming Algorithms for Control Allocation

Science.gov (United States)

Frost, Susan A.; Bodson, Marc; Acosta, Diana M.

2009-01-01

The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.

7. ORACLS: A system for linear-quadratic-Gaussian control law design

Science.gov (United States)

Armstrong, E. S.

1978-01-01

A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.

8. Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs

Science.gov (United States)

2017-10-01

This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.

9. Efficient Implementation of the Riccati Recursion for Solving Linear-Quadratic Control Problems

DEFF Research Database (Denmark)

Frison, Gianluca; Jørgensen, John Bagterp

2013-01-01

In both Active-Set (AS) and Interior-Point (IP) algorithms for Model Predictive Control (MPC), sub-problems in the form of linear-quadratic (LQ) control problems need to be solved at each iteration. The solution of these sub-problems is typically the main computational effort at each iteration....... In this paper, we compare a number of solvers for an extended formulation of the LQ control problem: a Riccati recursion based solver can be considered the best choice for the general problem with dense matrices. Furthermore, we present a novel version of the Riccati solver, that makes use of the Cholesky...... factorization of the Pn matrices to reduce the number of flops. When combined with regularization and mixed precision, this algorithm can solve large instances of the LQ control problem up to 3 times faster than the classical Riccati solver....

10. Robust optimal control design using a differential game approach for open-loop linear quadratic descriptor systems

NARCIS (Netherlands)

Musthofa, M.W.; Salmah, S.; Engwerda, Jacob; Suparwanto, A.

This paper studies the robust optimal control problem for descriptor systems. We applied differential game theory to solve the disturbance attenuation problem. The robust control problem was converted into a reduced ordinary zero-sum game. Within a linear quadratic setting, we solved the problem for

11. Optimal Control of Scalar Conservation Laws Using Linear/Quadratic Programming: Application to Transportation Networks

KAUST Repository

Li, Yanning

2014-03-01

This article presents a new optimal control framework for transportation networks in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi (H-J) equation and the commonly used triangular fundamental diagram, we pose the problem of controlling the state of the system on a network link, in a finite horizon, as a Linear Program (LP). We then show that this framework can be extended to an arbitrary transportation network, resulting in an LP or a Quadratic Program. Unlike many previously investigated transportation network control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e., discontinuities in the state of the system). As it leverages the intrinsic properties of the H-J equation used to model the state of the system, it does not require any approximation, unlike classical methods that are based on discretizations of the model. The computational efficiency of the method is illustrated on a transportation network. © 2014 IEEE.

12. Optimal Control of Scalar Conservation Laws Using Linear/Quadratic Programming: Application to Transportation Networks

KAUST Repository

Li, Yanning; Canepa, Edward S.; Claudel, Christian

2014-01-01

This article presents a new optimal control framework for transportation networks in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi (H-J) equation and the commonly used triangular fundamental diagram, we pose the problem of controlling the state of the system on a network link, in a finite horizon, as a Linear Program (LP). We then show that this framework can be extended to an arbitrary transportation network, resulting in an LP or a Quadratic Program. Unlike many previously investigated transportation network control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e., discontinuities in the state of the system). As it leverages the intrinsic properties of the H-J equation used to model the state of the system, it does not require any approximation, unlike classical methods that are based on discretizations of the model. The computational efficiency of the method is illustrated on a transportation network. © 2014 IEEE.

13. Interlink Converter with Linear Quadratic Regulator Based Current Control for Hybrid AC/DC Microgrid

Directory of Open Access Journals (Sweden)

Dwi Riana Aryani

2017-11-01

14. A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems

Science.gov (United States)

Heinkenschloss, Matthias

2005-01-01

We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.

15. The application of LQR synthesis techniques to the turboshaft engine control problem. [Linear Quadratic Regulator

Science.gov (United States)

Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.

1985-01-01

A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.

16. A Quasi-Dynamic Optimal Control Strategy for Non-Linear Multivariable Processes Based upon Non-Quadratic Objective Functions

Directory of Open Access Journals (Sweden)

Jens G. Balchen

1984-10-01

Full Text Available The problem of systematic derivation of a quasi-dynamic optimal control strategy for a non-linear dynamic process based upon a non-quadratic objective function is investigated. The wellknown LQG-control algorithm does not lead to an optimal solution when the process disturbances have non-zero mean. The relationships between the proposed control algorithm and LQG-control are presented. The problem of how to constrain process variables by means of 'penalty' - terms in the objective function is dealt with separately.

17. A smart rotor configuration with linear quadratic control of adaptive trailing edge flaps for active load alleviation

DEFF Research Database (Denmark)

2015-01-01

The paper proposes a smart rotor configuration where adaptive trailing edge flaps (ATEFs) are employed for active alleviation of the aerodynamic loads on the blades of the NREL 5 MW reference turbine. The flaps extend for 20% of the blade length and are controlled by a linear quadratic (LQ....... The effects of active flap control are assessed with aeroelastic simulations of the turbine in normal operation conditions, as prescribed by the International Electrotechnical Commission standard. The turbine lifetime fatigue damage equivalent loads provide a convenient summary of the results achieved...

18. Overlapping quadratic optimal control of linear time-varying commutative systems

Czech Academy of Sciences Publication Activity Database

Bakule, Lubomír; Rodellar, J.; Rossell, J. M.

2002-01-01

Roč. 40, č. 5 (2002), s. 1611-1627 ISSN 0363-0129 R&D Projects: GA AV ČR IAA2075802 Institutional research plan: CEZ:AV0Z1075907 Keywords : overlapping * optimal control * linear time-varying systems Subject RIV: BC - Control Systems Theory Impact factor: 1.441, year: 2002

19. Quantum Optimal Control of Single Harmonic Oscillator under Quadratic Controls together with Linear Dipole Polarizability: A Fluctuation Free Expectation Value Dynamical Perspective

International Nuclear Information System (INIS)

Ayvaz, Muzaffer; Demiralp, Metin

2011-01-01

In this study, the optimal control equations for one dimensional quantum harmonic oscillator under the quadratic control operators together with linear dipole polarizability effects are constructed in the sense of Heisenberg equation of motion. A numerical technique based on the approximation to the non-commuting quantum mechanical operators from the fluctuation free expectation value dynamics perspective in the classical limit is also proposed for the solution of optimal control equations which are ODEs with accompanying boundary conditions. The dipole interaction of the system is considered to be linear, and the observable whose expectation value will be suppressed during the control process is considered to be quadratic in terms of position operator x. The objective term operator is also assumed to be quadratic.

CERN Document Server

Chapman, J Donald

2015-01-01

Understand Quantitative Radiobiology from a Radiation Biophysics PerspectiveIn the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer TreatmentsThe book compil

1. Application of Linear Quadratic Gaussian and Coefficient Diagram Techniques to Distributed Load Frequency Control of Power Systems

Directory of Open Access Journals (Sweden)

Tarek Hassan Mohamed

2015-12-01

Full Text Available This paper presented both the linear quadratic Gaussian technique (LQG and the coefficient diagram method (CDM as load frequency controllers in a multi-area power system to deal with the problem of variations in system parameters and load demand change. The full states of the system including the area frequency deviation have been estimated using the Kalman filter technique. The efficiency of the proposed control method has been checked using a digital simulation. Simulation results indicated that, with the proposed CDM + LQG technique, the system is robust in the face of parameter uncertainties and load disturbances. A comparison between the proposed technique and other schemes is carried out, confirming the superiority of the proposed CDM + LQG technique.

2. Vibration control of large linear quadratic symmetric systems. Ph.D. Thesis

Science.gov (United States)

Jeon, G. J.

1983-01-01

Some unique properties on a class of the second order lambda matrices were found and applied to determine a damping matrix of the decoupled subsystem in such a way that the damped system would have preassigned eigenvalues without disturbing the stiffness matrix. The resulting system was realized as a time invariant velocity only feedback control system with desired poles. Another approach using optimal control theory was also applied to the decoupled system in such a way that the mode spillover problem could be eliminated. The procedures were tested successfully by numerical examples.

3. Design of Linear-Quadratic-Regulator for a CSTR process

Science.gov (United States)

Meghna, P. R.; Saranya, V.; Jaganatha Pandian, B.

2017-11-01

This paper aims at creating a Linear Quadratic Regulator (LQR) for a Continuous Stirred Tank Reactor (CSTR). A CSTR is a common process used in chemical industries. It is a highly non-linear system. Therefore, in order to create the gain feedback controller, the model is linearized. The controller is designed for the linearized model and the concentration and volume of the liquid in the reactor are kept at a constant value as required.

4. Quadratic Interpolation and Linear Lifting Design

Directory of Open Access Journals (Sweden)

Joel Solé

2007-03-01

Full Text Available A quadratic image interpolation method is stated. The formulation is connected to the optimization of lifting steps. This relation triggers the exploration of several interpolation possibilities within the same context, which uses the theory of convex optimization to minimize quadratic functions with linear constraints. The methods consider possible knowledge available from a given application. A set of linear equality constraints that relate wavelet bases and coefficients with the underlying signal is introduced in the formulation. As a consequence, the formulation turns out to be adequate for the design of lifting steps. The resulting steps are related to the prediction minimizing the detail signal energy and to the update minimizing the l2-norm of the approximation signal gradient. Results are reported for the interpolation methods in terms of PSNR and also, coding results are given for the new update lifting steps.

5. LQG/LTR [linear quadratic Gaussian with loop transfer recovery] robust control system design for a low-pressure feedwater heater train

International Nuclear Information System (INIS)

Murphy, G.V.; Bailey, J.M.

1990-01-01

This paper uses the linear quadratic Gaussian with loop transfer recovery (LQG/LTR) control system design method to obtain a level control system for a low-pressure feedwater heater train. The control system performance and stability robustness are evaluated for a given set of system design specifications. The tools for analysis are the return ratio, return difference, and inverse return difference singular-valve plots for a loop break at the plant output. 3 refs., 7 figs., 2 tabs

6. Comparison between linear quadratic and early time dose models

International Nuclear Information System (INIS)

Chougule, A.A.; Supe, S.J.

1993-01-01

During the 70s, much interest was focused on fractionation in radiotherapy with the aim of improving tumor control rate without producing unacceptable normal tissue damage. To compare the radiobiological effectiveness of various fractionation schedules, empirical formulae such as Nominal Standard Dose, Time Dose Factor, Cumulative Radiation Effect and Tumour Significant Dose, were introduced and were used despite many shortcomings. It has been claimed that a recent linear quadratic model is able to predict the radiobiological responses of tumours as well as normal tissues more accurately. We compared Time Dose Factor and Tumour Significant Dose models with the linear quadratic model for tumour regression in patients with carcinomas of the cervix. It was observed that the prediction of tumour regression estimated by the Tumour Significant Dose and Time Dose factor concepts varied by 1.6% from that of the linear quadratic model prediction. In view of the lack of knowledge of the precise values of the parameters of the linear quadratic model, it should be applied with caution. One can continue to use the Time Dose Factor concept which has been in use for more than a decade as its results are within ±2% as compared to that predicted by the linear quadratic model. (author). 11 refs., 3 figs., 4 tabs

7. Linear Quadratic Mean Field Type Control and Mean Field Games with Common Noise, with Application to Production of an Exhaustible Resource

Energy Technology Data Exchange (ETDEWEB)

Graber, P. Jameson, E-mail: jameson-graber@baylor.edu [Baylor University, Department of Mathematics (United States)

2016-12-15

We study a general linear quadratic mean field type control problem and connect it to mean field games of a similar type. The solution is given both in terms of a forward/backward system of stochastic differential equations and by a pair of Riccati equations. In certain cases, the solution to the mean field type control is also the equilibrium strategy for a class of mean field games. We use this fact to study an economic model of production of exhaustible resources.

8. Decentralized linear quadratic power system stabilizers for multi ...

Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...

9. On a linear-quadratic problem with Caputo derivative

Directory of Open Access Journals (Sweden)

Dariusz Idczak

2016-01-01

Full Text Available In this paper, we study a linear-quadratic optimal control problem with a fractional control system containing a Caputo derivative of unknown function. First, we derive the formulas for the differential and gradient of the cost functional under given constraints. Next, we prove an existence result and derive a maximum principle. Finally, we describe the gradient and projection of the gradient methods for the problem under consideration.

10. Staff turnover in hotels : exploring the quadratic and linear relationships.

OpenAIRE

Mohsin, A.; Lengler, J.F.B.; Aguzzoli, R.L.

2015-01-01

The aim of this study is to assess whether the relationship between intention to leave the job and its antecedents is quadratic or linear. To explore those relationships a theoretical model (see Fig. 1) and eight hypotheses are proposed. Each linear hypothesis is followed by an alternative quadratic hypothesis. The alternative hypotheses propose that the relationship between the four antecedent constructs and intention to leave the job might not be linear, as the existing literature suggests....

11. Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems

NARCIS (Netherlands)

Opmeer, MR; Curtain, RF

2004-01-01

In this paper, we study the existence of linear quadratic Gaussian (LQG)-balanced realizations for discrete-time infinite-dimensional systems. LQG-balanced realizations are those for which the smallest nonnegative self-adjoint solutions of the control and filter Riccati equations are equal. We show

12. Burgers' turbulence problem with linear or quadratic external potential

DEFF Research Database (Denmark)

Barndorff-Nielsen, Ole Eiler; Leonenko, N.N.

2005-01-01

We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions.......We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions....

13. Design a software real-time operation platform for wave piercing catamarans motion control using linear quadratic regulator based genetic algorithm.

Science.gov (United States)

Liang, Lihua; Yuan, Jia; Zhang, Songtao; Zhao, Peng

2018-01-01

This work presents optimal linear quadratic regulator (LQR) based on genetic algorithm (GA) to solve the two degrees of freedom (2 DoF) motion control problem in head seas for wave piercing catamarans (WPC). The proposed LQR based GA control strategy is to select optimal weighting matrices (Q and R). The seakeeping performance of WPC based on proposed algorithm is challenged because of multi-input multi-output (MIMO) system of uncertain coefficient problems. Besides the kinematical constraint problems of WPC, the external conditions must be considered, like the sea disturbance and the actuators (a T-foil and two flaps) control. Moreover, this paper describes the MATLAB and LabVIEW software plats to simulate the reduction effects of WPC. Finally, the real-time (RT) NI CompactRIO embedded controller is selected to test the effectiveness of the actuators based on proposed techniques. In conclusion, simulation and experimental results prove the correctness of the proposed algorithm. The percentage of heave and pitch reductions are more than 18% in different high speeds and bad sea conditions. And the results also verify the feasibility of NI CompactRIO embedded controller.

14. Trajectory generation for manipulators using linear quadratic optimal tracking

Directory of Open Access Journals (Sweden)

Olav Egeland

1989-04-01

Full Text Available The reference trajectory is normally known in advance in manipulator control which makes it possible to apply linear quadratic optimal tracking. This gives a control system which rounds corners and generates optimal feedforward. The method may be used for references consisting of straight-line segments as an alternative to the two-step method of using splines to smooth the reference and then applying feedforward. In addition, the method can be used for more complex trajectories. The actual dynamics of the manipulator are taken into account, and this results in smooth and accurate tracking. The method has been applied in combination with the computed torque technique and excellent performance was demonstrated in a simulation study. The method has also been applied experimentally to an industrial spray-painting robot where a saw-tooth reference was tracked. The corner was rounded extremely well, and the steady-state tracking error was eliminated by the optimal feedforward.

15. Feedback nash equilibria for linear quadratic descriptor differential games

NARCIS (Netherlands)

Engwerda, J.C.; Salmah, S.

2012-01-01

In this paper, we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon for descriptor systems of index one. The performance function is assumed to be indefinite. We derive both necessary and sufficient conditions under which this game has a

16. Pareto optimality in infinite horizon linear quadratic differential games

NARCIS (Netherlands)

Reddy, P.V.; Engwerda, J.C.

2013-01-01

In this article we derive conditions for the existence of Pareto optimal solutions for linear quadratic infinite horizon cooperative differential games. First, we present a necessary and sufficient characterization for Pareto optimality which translates to solving a set of constrained optimal

17. On misclassication probabilities of linear and quadratic classiers ...

African Journals Online (AJOL)

We study the theoretical misclassication probability of linear and quadratic classiers and examine the performance of these classiers under distributional variations in theory and using simulation. We derive expression for Bayes errors for some competing distributions from the same family under location shift. Keywords: ...

18. Feedback Nash Equilibria for Linear Quadratic Descriptor Differential Games

NARCIS (Netherlands)

Engwerda, J.C.; Salmah, Y.

2010-01-01

In this note we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon for descriptor systems of index one. The performance function is assumed to be indefinite. We derive both necessary and sufficient conditions under which this game has a

19. Linear and quadratic in temperature resistivity from holography

Energy Technology Data Exchange (ETDEWEB)

Ge, Xian-Hui [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Shanghai Key Lab for Astrophysics,100 Guilin Road, 200234 Shanghai (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing, 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Wu, Shang-Yu [Department of Electrophysics, National Chiao Tung University,Hsinchu 300 (China); Wu, Shao-Feng [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Shanghai Key Lab for Astrophysics,100 Guilin Road, 200234 Shanghai (China)

2016-11-22

We present a new black hole solution in the asymptotic Lifshitz spacetime with a hyperscaling violating factor. A novel computational method is introduced to compute the DC thermoelectric conductivities analytically. We find that both the linear-T and quadratic-T contributions to the resistivity can be realized, indicating that a more detailed comparison with experimental phenomenology can be performed in this scenario.

20. The regular indefinite linear-quadratic problem with linear endpoint constraints

NARCIS (Netherlands)

Soethoudt, J.M.; Trentelman, H.L.

1989-01-01

This paper deals with the infinite horizon linear-quadratic problem with indefinite cost. Given a linear system, a quadratic cost functional and a subspace of the state space, we consider the problem of minimizing the cost functional over all inputs for which the state trajectory converges to that

1. Results of radiotherapy in craniopharyngiomas analysed by the linear quadratic model

Energy Technology Data Exchange (ETDEWEB)

Guerkaynak, M. [Dept. of Radiation Oncology, Hacettepe Univ., Ankara (Turkey); Oezyar, E. [Dept. of Radiation Oncology, Hacettepe Univ., Ankara (Turkey); Zorlu, F. [Dept. of Radiation Oncology, Hacettepe Univ., Ankara (Turkey); Akyol, F.H. [Dept. of Radiation Oncology, Hacettepe Univ., Ankara (Turkey); Lale Atahan, I. [Dept. of Radiation Oncology, Hacettepe Univ., Ankara (Turkey)

1994-12-31

In 23 craniopharyngioma patients treated by limited surgery and external radiotherapy, the results concerning local control were analysed by linear quadratic formula. A biologically effective dose (BED) of 55 Gy, calculated with time factor and an {alpha}/{beta} value of 10 Gy, seemed to be adequate for local control. (orig.).

2. A non-linear programming approach to the computer-aided design of regulators using a linear-quadratic formulation

Science.gov (United States)

Fleming, P.

1985-01-01

A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.

3. Universality of quadratic to linear magnetoresistance crossover in disordered conductors

Science.gov (United States)

Lara, Silvia; Ramakrishnan, Navneeth; Lai, Ying Tong; Adam, Shaffique

Many experiments measuring Magnetoresistance (MR) showed unsaturating linear behavior at high magnetic fields and quadratic behavior at low fields. In the literature, two very different theoretical models have been used to explain this classical MR as a consequence of sample disorder. The phenomenological Random Resistor Network (RRN) model constructs a grid of four-terminal resistors each with a varying random resistance. The Effective Medium Theory (EMT) model imagines a smoothly varying disorder potential that causes a continuous variation of the local conductivity. In this theoretical work, we demonstrate numerically that both the RRN and EMT models belong to the same universality class, and that a single parameter (the ratio of the fluctuations in the carrier density to the average carrier density) completely determines both the magnitude of the MR and the B-field scale for the crossover from quadratic to linear MR. By considering several experimental data sets in the literature, ranging from thin films of InSb to graphene to Weyl semimetals like Na3Bi, we show that this disorder-induced mechanism for MR is in good agreement with the experiments, and that this comparison of MR with theory reveals information about the spatial carrier density inhomogeneity. This work was supported by the National Research Foundation of Singapore (NRF-NRFF2012-01).

4. An application of nonlinear programming to the design of regulators of a linear-quadratic formulation

Science.gov (United States)

Fleming, P.

1983-01-01

A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a nonlinear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer. One concerns helicopter longitudinal dynamics and the other the flight dynamics of an aerodynamically unstable aircraft.

5. Optimal Piecewise-Linear Approximation of the Quadratic Chaotic Dynamics

Directory of Open Access Journals (Sweden)

J. Petrzela

2012-04-01

Full Text Available This paper shows the influence of piecewise-linear approximation on the global dynamics associated with autonomous third-order dynamical systems with the quadratic vector fields. The novel method for optimal nonlinear function approximation preserving the system behavior is proposed and experimentally verified. This approach is based on the calculation of the state attractor metric dimension inside a stochastic optimization routine. The approximated systems are compared to the original by means of the numerical integration. Real electronic circuits representing individual dynamical systems are derived using classical as well as integrator-based synthesis and verified by time-domain analysis in Orcad Pspice simulator. The universality of the proposed method is briefly discussed, especially from the viewpoint of the higher-order dynamical systems. Future topics and perspectives are also provided

6. A Linear Programming Reformulation of the Standard Quadratic Optimization Problem

NARCIS (Netherlands)

de Klerk, E.; Pasechnik, D.V.

2005-01-01

The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO).It is NPhard, and contains the maximum stable set problem in graphs as a special case.In this note we show that the SQO problem may be reformulated as an (exponentially

7. Linear versus quadratic portfolio optimization model with transaction cost

Science.gov (United States)

Razak, Norhidayah Bt Ab; Kamil, Karmila Hanim; Elias, Siti Masitah

2014-06-01

Optimization model is introduced to become one of the decision making tools in investment. Hence, it is always a big challenge for investors to select the best model that could fulfill their goal in investment with respect to risk and return. In this paper we aims to discuss and compare the portfolio allocation and performance generated by quadratic and linear portfolio optimization models namely of Markowitz and Maximin model respectively. The application of these models has been proven to be significant and popular among others. However transaction cost has been debated as one of the important aspects that should be considered for portfolio reallocation as portfolio return could be significantly reduced when transaction cost is taken into consideration. Therefore, recognizing the importance to consider transaction cost value when calculating portfolio' return, we formulate this paper by using data from Shariah compliant securities listed in Bursa Malaysia. It is expected that, results from this paper will effectively justify the advantage of one model to another and shed some lights in quest to find the best decision making tools in investment for individual investors.

8. A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces

Energy Technology Data Exchange (ETDEWEB)

Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at [University of Innsbruck, Department of Mathematics (Austria); Tuffaha, Amjad, E-mail: atufaha@aus.edu [American University of Sharjah, Department of Mathematics (United Arab Emirates)

2017-06-15

We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solution of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.

9. Selective Linear or Quadratic Optomechanical Coupling via Measurement

Directory of Open Access Journals (Sweden)

Michael R. Vanner

2011-11-01

Full Text Available The ability to engineer both linear and nonlinear coupling with a mechanical resonator is an important goal for the preparation and investigation of macroscopic mechanical quantum behavior. In this work, a measurement based scheme is presented where linear or square mechanical-displacement coupling can be achieved using the optomechanical interaction that is linearly proportional to the mechanical position. The resulting square-displacement measurement strength is compared to that attainable in the dispersive case that has a direct interaction with the mechanical-displacement squared. An experimental protocol and parameter set are discussed for the generation and observation of non-Gaussian states of motion of the mechanical element.

10. Decentralized linear quadratic power system stabilizers for multi ...

Introduction. Modern excitation systems considerably enhance the overall transient stability of power systems ..... to the local bus rather than the angle δ measured with respect to the remote bus. ... With this in view, the linear and nonlinear per-.

11. Optimization for decision making linear and quadratic models

CERN Document Server

Murty, Katta G

2010-01-01

While maintaining the rigorous linear programming instruction required, Murty's new book is unique in its focus on developing modeling skills to support valid decision-making for complex real world problems, and includes solutions to brand new algorithms.

12. Synchronising chaotic Chua's circuit using switching feedback control based on piecewise quadratic Lyapunov functions

International Nuclear Information System (INIS)

Hong-Bin, Zhang; Jian-Wei, Xia; Yong-Bin, Yu; Chuang-Yin, Dang

2010-01-01

This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attained based on piecewise quadratic Lyapunov functions. First, we obtain the piecewise linear differential inclusions (pwLDIs) model of synchronisation error dynamics, then we design a switching (piecewise-linear) feedback control law to stabilise it based on the piecewise quadratic Laypunov functions. Then we give some numerical simulations to demonstrate the effectiveness of our theoretical results

13. Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions

Science.gov (United States)

Bick, Christian; Sebek, Michael; Kiss, István Z.

2017-10-01

We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.

14. A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems

Science.gov (United States)

Banks, H. T.; Ito, K.

1991-01-01

A hybrid method for computing the feedback gains in linear quadratic regulator problem is proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantages of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of the efficacy of these ideas is presented.

15. Development Of Linear Quadratic Regulator Design For Small UAV System

Directory of Open Access Journals (Sweden)

Cho Zin Myint

2015-08-01

Full Text Available The aim of this paper is to know the importance role of stability analysis for both unmanned aircraft system and for all control system. The objective of paper is to develop a method for dynamic stability analysis of the design process. These are categorized intoTo design model and stability analysis of UAV based on the forces and moment equations of aircraft dynamic model To choose the suitable controller for desired altitude of a particular UAV model To analyze the stability condition for aircraft using mathematical modeling and MATLAB. In this paper the analytical model of the longitudinal dynamic of flying wing UAV has been developed using aerodynamic data. The stability characteristics of UAV can be achieved from the system transfer function with LQR controller.

16. Slab albedo for linearly and quadratically anisotropic scattering kernel with modified F{sub N} method

Energy Technology Data Exchange (ETDEWEB)

Tuereci, R. Goekhan [Kirikkale Univ. (Turkey). Kirikkale Vocational School; Tuereci, D. [Ministry of Education, Ankara (Turkey). 75th year Anatolia High School

2017-11-15

One speed, time independent and homogeneous medium neutron transport equation is solved with the anisotropic scattering which includes both the linearly and the quadratically anisotropic scattering kernel. Having written Case's eigenfunctions and the orthogonality relations among of these eigenfunctions, slab albedo problem is investigated as numerically by using Modified F{sub N} method. Selected numerical results are presented in tables.

17. Analysis of a monetary union enlargement in the framework of linear-quadratic differential games

NARCIS (Netherlands)

Plasmans, J.E.J.; Engwerda, J.C.; van Aarle, B.; Michalak, T.

2009-01-01

"This paper studies the effects of a monetary union enlargement using the techniques and outcomes from an extensive research project on macroeconomic policy coordination in the EMU. Our approach is characterized by two main pillars: (i) linear-quadratic differential games to capture externalities,

18. Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data

Science.gov (United States)

Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

2015-10-01

In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.

19. Quadratic Blind Linear Unmixing: A Graphical User Interface for Tissue Characterization

OpenAIRE

Gutierrez-Navarro, O.; Campos-Delgado, D.U.; Arce-Santana, E. R.; Jo, Javier A.

2015-01-01

Spectral unmixing is the process of breaking down data from a sample into its basic components and their abundances. Previous work has been focused on blind unmixing of multi-spectral fluorescence lifetime imaging microscopy (m-FLIM) datasets under a linear mixture model and quadratic approximations. This method provides a fast linear decomposition and can work without a limitation in the maximum number of components or end-members. Hence this work presents an interactive software which imple...

20. TUNING PARAMETER LINEAR QUADRATIC TRACKING MENGGUNAKAN ALGORITMA GENETIKA UNTUK PENGENDALIAN GERAK LATERAL QUADCOPTER

Directory of Open Access Journals (Sweden)

Farid Choirul Akbar

2016-04-01

1. Quadratic Stabilization of LPV System by an LTI Controller Based on ILMI Algorithm

Directory of Open Access Journals (Sweden)

Wei Xie

2007-01-01

Full Text Available A linear time-invariant (LTI output feedback controller is designed for a linear parameter-varying (LPV control system to achieve quadratic stability. The LPV system includes immeasurable dependent parameters that are assumed to vary in a polytopic space. To solve this control problem, a heuristic algorithm is proposed in the form of an iterative linear matrix inequality (ILMI formulation. Furthermore, an effective method of setting an initial value of the ILMI algorithm is also proposed to increase the probability of getting an admissible solution for the controller design problem.

2. The Linear Quadratic Gaussian Multistage Game with Nonclassical Information Pattern Using a Direct Solution Method

Science.gov (United States)

Clemens, Joshua William

Game theory has application across multiple fields, spanning from economic strategy to optimal control of an aircraft and missile on an intercept trajectory. The idea of game theory is fascinating in that we can actually mathematically model real-world scenarios and determine optimal decision making. It may not always be easy to mathematically model certain real-world scenarios, nonetheless, game theory gives us an appreciation for the complexity involved in decision making. This complexity is especially apparent when the players involved have access to different information upon which to base their decision making (a nonclassical information pattern). Here we will focus on the class of adversarial two-player games (sometimes referred to as pursuit-evasion games) with nonclassical information pattern. We present a two-sided (simultaneous) optimization solution method for the two-player linear quadratic Gaussian (LQG) multistage game. This direct solution method allows for further interpretation of each player's decision making (strategy) as compared to previously used formal solution methods. In addition to the optimal control strategies, we present a saddle point proof and we derive an expression for the optimal performance index value. We provide some numerical results in order to further interpret the optimal control strategies and to highlight real-world application of this game-theoretic optimal solution.

3. Hyperspectral and multispectral data fusion based on linear-quadratic nonnegative matrix factorization

Science.gov (United States)

Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

2017-04-01

This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.

4. Quadratic Plus Linear Operators which Preserve Pure States of Quantum Systems: Small Dimensions

International Nuclear Information System (INIS)

Saburov, Mansoor

2014-01-01

A mathematical formalism of quantum mechanics says that a pure state of a quantum system corresponds to a vector of norm 1 and an observable is a self-adjoint operator on the space of states. It is of interest to describe all linear or nonlinear operators which preserve the pure states of the system. In the linear case, it is nothing more than isometries of Hilbert spaces. In the nonlinear case, this problem was open. In this paper, in the small dimensional spaces, we shall describe all quadratic plus linear operators which preserve pure states of the quantum system

5. Linear and quadratic exponential modulation of the solutions of the paraxial wave equation

International Nuclear Information System (INIS)

Torre, A

2010-01-01

A review of well-known transformations, which allow us to pass from one solution of the paraxial wave equation (PWE) (in one transverse space variable) to another, is presented. Such transformations are framed within the unifying context of the Lie algebra formalism, being related indeed to symmetries of the PWE. Due to the closure property of the symmetry group of the PWE we are led to consider as not trivial only the linear and the quadratic exponential modulation (accordingly, accompanied by a suitable shift or scaling of the space variables) of the original solutions of the PWE, which are seen to be just conveyed by a linear and a quadratic exponential modulation of the relevant 'source' functions. We will see that recently introduced solutions of the 1D PWE in both rectangular and polar coordinates can be deduced from already known solutions through the resulting symmetry transformation related schemes

6. A linear-quadratic model of cell survival considering both sublethal and potentially lethal radiation damage

International Nuclear Information System (INIS)

Rutz, H.P.; Coucke, P.A.; Mirimanoff, R.O.

1991-01-01

The authors assessed the dose-dependence of repair of potentially lethal damage in Chinese hamster ovary cells x-irradiated in vitro. The recovery ratio (RR) by which survival (SF) of the irradiated cells was enhanced increased exponentially with a linear and a quadratic component namely ζ and ψ: RR=exp(ζD+ψD 2 ). Survival of irradiated cells can thus be expressed by a combined linear-quadratic model considering 4 variables, namely α and β for the capacity of the cells to accumulate sublethal damage, and ζ and ψ for their capacity to repair potentially lethal damage: SF=exp((ζ-α)D+ (ψ-β)D 2 ). author. 26 refs.; 1 fig.; 1 tab

CERN Document Server

Polishchuk, Alexander

2005-01-01

Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.

8. On the Cauchy problem for a Sobolev-type equation with quadratic non-linearity

International Nuclear Information System (INIS)

Aristov, Anatoly I

2011-01-01

We investigate the asymptotic behaviour as t→∞ of the solution of the Cauchy problem for a Sobolev-type equation with quadratic non-linearity and develop ideas used by I. A. Shishmarev and other authors in the study of classical and Sobolev-type equations. Conditions are found under which it is possible to consider the case of an arbitrary dimension of the spatial variable.

9. Linear and Quadratic Interpolators Using Truncated-Matrix Multipliers and Squarers

Directory of Open Access Journals (Sweden)

E. George Walters III

2015-11-01

Full Text Available This paper presents a technique for designing linear and quadratic interpolators for function approximation using truncated multipliers and squarers. Initial coefficient values are found using a Chebyshev-series approximation and then adjusted through exhaustive simulation to minimize the maximum absolute error of the interpolator output. This technique is suitable for any function and any precision up to 24 bits (IEEE single precision. Designs for linear and quadratic interpolators that implement the 1/x, 1/ √ x, log2(1+2x, log2(x and 2x functions are presented and analyzed as examples. Results show that a proposed 24-bit interpolator computing 1/x with a design specification of ±1 unit in the last place of the product (ulp error uses 16.4% less area and 15.3% less power than a comparable standard interpolator with the same error specification. Sixteen-bit linear interpolators for other functions are shown to use up to 17.3% less area and 12.1% less power, and 16-bit quadratic interpolators are shown to use up to 25.8% less area and 24.7% less power.

10. Underprediction of human skin erythema at low doses per fraction by the linear quadratic model

International Nuclear Information System (INIS)

Hamilton, Christopher S.; Denham, James W.; O'Brien, Maree; Ostwald, Patricia; Kron, Tomas; Wright, Suzanne; Doerr, Wolfgang

1996-01-01

Background and purpose. The erythematous response of human skin to radiotherapy has proven useful for testing the predictions of the linear quadratic (LQ) model in terms of fractionation sensitivity and repair half time. No formal investigation of the response of human skin to doses less than 2 Gy per fraction has occurred. This study aims to test the validity of the LQ model for human skin at doses ranging from 0.4 to 5.2 Gy per fraction. Materials and methods. Complete erythema reaction profiles were obtained using reflectance spectrophotometry in two patient populations: 65 patients treated palliatively with 5, 10, 12 and 20 daily treatment fractions (varying thicknesses of bolus, various body sites) and 52 patients undergoing prostatic irradiation for localised carcinoma of the prostate (no bolus, 30-32 fractions). Results and conclusions. Gender, age, site and prior sun exposure influence pre- and post-treatment erythema values independently of dose administered. Out-of-field effects were also noted. The linear quadratic model significantly underpredicted peak erythema values at doses less than 1.5 Gy per fraction. This suggests that either the conventional linear quadratic model does not apply for low doses per fraction in human skin or that erythema is not exclusively initiated by radiation damage to the basal layer. The data are potentially explained by an induced repair model

11. Time-dependent tumour repopulation factors in linear-quadratic equations

International Nuclear Information System (INIS)

Dale, R.G.

1989-01-01

Tumour proliferation effects can be tentatively quantified in the linear-quadratic (LQ) method by the incorporation of a time-dependent factor, the magnitude of which is related both to the value of α in the tumour α/β ratio, and to the tumour doubling time. The method, the principle of which has been suggested by a numbre of other workers for use in fractionated therapy, is here applied to both fractionated and protracted radiotherapy treatments, and examples of its uses are given. By assuming that repopulation of late-responding tissues is significant during normal treatment strategies in terms of the behaviour of the Extrapolated Response Dose (ERD). Although the numerical credibility of the analysis used here depends on the reliability of the LQ model, and on the assumption that the rate of repopulation is constant throughout treatment, the predictions are consistent with other lines of reasoning which point to the advantages of accelerated hyperfractionation. In particular, it is demonstrated that accelerated fractionation represents a relatively 'foregiving' treatment which enables tumours of a variety of sensitivities and clonogenic growth rates to be treated moderately successfully, even though the critical cellular parameters may not be known in individual cases. The analysis also suggests that tumours which combine low intrinsic sensitivity with a very short doubling time might be bettter controlled by low dose-rate continuous therapy than by almost any form of accelerated hyperfractionation. (author). 24 refs.; 5 figs

12. Optimal Operation of Distribution Electronic Power Transformer Using Linear Quadratic Regulator Method

Directory of Open Access Journals (Sweden)

2011-10-01

Full Text Available Transformers perform many functions such as voltage transformation, isolation and noise decoupling. They are indispensable components in electric power distribution system. However, at low frequencies (50 Hz, they are one of the heaviest and the most expensive equipment in an electrical distribution system. Nowadays, electronic power transformers are used instead of conventional power transformers that do voltage transformation and power delivery in power system by power electronic converter. In this paper, the structure of distribution electronic power transformer (DEPT are analized and then paid attention on the design of a linear-quadratic-regulator (LQR with integral action to improve dynamic performance of DEPT with voltage unbalance, voltage sags, voltage harmonics and voltage ﬂicker. The presentation control strategy is simulated by MATLAB/SIMULINK. In addition, the results that are in terms of dc-link reference voltage, input and output voltages clearly show that a better dynamic performance can be achieved by using the LQR method when compared to other techniques.

13. A computer tool for daily application of the linear quadratic model

International Nuclear Information System (INIS)

Macias Jaen, J.; Galan Montenegro, P.; Bodineau Gil, C.; Wals Zurita, A.; Serradilla Gil, A.M.

2001-01-01

The aim of this paper is to indicate the relevance of the criteria A.S.A.R.A. (As Short As Reasonably Achievable) in the optimization of a fractionated radiotherapy schedule and the presentation of a Windows computer program as an easy tool in order to: Evaluate the Biological Equivalent Dose (BED) in a fractionated schedule; Make comparison between different treatments; Compensate a treatment when a delay has been happened with a version of the Linear Quadratic model that has into account the factor of accelerated repopulation. Conclusions: Delays in the normal radiotherapy schedule are items that have to be controlled as much as possible because it is able to be a very important parameter in order to release a good application of treatment, principally when the tumour is fast growing. It is necessary to evaluate them. ASARA criteria is useful to indicate the relevance of this aspect. Also, computer tools like this one could help us in order to achieve this. (author)

14. Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation

International Nuclear Information System (INIS)

Kolesov, Andrei Yu; Rozov, Nikolai Kh

2002-01-01

For the non-linear telegraph equation with homogeneous Dirichlet or Neumann conditions at the end-points of a finite interval the question of the existence and the stability of time-periodic solutions bifurcating from the zero equilibrium state is considered. The dynamics of these solutions under a change of the diffusion coefficient (that is, the coefficient of the second derivative with respect to the space variable) is investigated. For the Dirichlet boundary conditions it is shown that this dynamics substantially depends on the presence - or the absence - of quadratic terms in the non-linearity. More precisely, it is shown that a quadratic non-linearity results in the occurrence, under an unbounded decrease of diffusion, of an infinite sequence of bifurcations of each periodic solution. En route, the related issue of the limits of applicability of Yu.S. Kolesov's method of quasinormal forms to the construction of self-oscillations in singularly perturbed hyperbolic boundary value problems is studied

15. Quadratic blind linear unmixing: A graphical user interface for tissue characterization.

Science.gov (United States)

Gutierrez-Navarro, O; Campos-Delgado, D U; Arce-Santana, E R; Jo, Javier A

2016-02-01

Spectral unmixing is the process of breaking down data from a sample into its basic components and their abundances. Previous work has been focused on blind unmixing of multi-spectral fluorescence lifetime imaging microscopy (m-FLIM) datasets under a linear mixture model and quadratic approximations. This method provides a fast linear decomposition and can work without a limitation in the maximum number of components or end-members. Hence this work presents an interactive software which implements our blind end-member and abundance extraction (BEAE) and quadratic blind linear unmixing (QBLU) algorithms in Matlab. The options and capabilities of our proposed software are described in detail. When the number of components is known, our software can estimate the constitutive end-members and their abundances. When no prior knowledge is available, the software can provide a completely blind solution to estimate the number of components, the end-members and their abundances. The characterization of three case studies validates the performance of the new software: ex-vivo human coronary arteries, human breast cancer cell samples, and in-vivo hamster oral mucosa. The software is freely available in a hosted webpage by one of the developing institutions, and allows the user a quick, easy-to-use and efficient tool for multi/hyper-spectral data decomposition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

16. Stochastic multiresonance for a fractional linear oscillator with time-delayed kernel and quadratic noise

Science.gov (United States)

Guo, Feng; Wang, Xue-Yuan; Zhu, Cheng-Yin; Cheng, Xiao-Feng; Zhang, Zheng-Yu; Huang, Xu-Hui

2017-12-01

The stochastic resonance for a fractional oscillator with time-delayed kernel and quadratic trichotomous noise is investigated. Applying linear system theory and Laplace transform, the system output amplitude (SPA) for the fractional oscillator is obtained. It is found that the SPA is a periodical function of the kernel delayed-time. Stochastic multiplicative phenomenon appears on the SPA versus the driving frequency, versus the noise amplitude, and versus the fractional exponent. The non-monotonous dependence of the SPA on the system parameters is also discussed.

17. Quadratic-linear pattern in cancer fractional radiotherapy. Equations for a computering program

International Nuclear Information System (INIS)

Burgos, D.; Bullejos, J.; Garcia Puche, J.L.; Pedraza, V.

1990-01-01

Knowledge of equivalence between different tratment schemes with the same iso-effect is the essential thing in clinical cancer radiotherapy. For this purpose it is very useful the group of ideas derived from quadratic-linear pattern (Q-L) proposed in order to analyze cell survival curve to radiation. Iso-effect definition caused by several irradiation rules is done by extrapolated tolerance dose (ETD). Because equations for ETD are complex, a computering program have been carried out. In this paper, iso-effect equations for well defined therapeutic situations and flow diagram proposed for resolution, have been studied. (Author)

18. Stability and Linear Quadratic Differential Games of Discrete-Time Markovian Jump Linear Systems with State-Dependent Noise

Directory of Open Access Journals (Sweden)

Huiying Sun

2014-01-01

Full Text Available We mainly consider the stability of discrete-time Markovian jump linear systems with state-dependent noise as well as its linear quadratic (LQ differential games. A necessary and sufficient condition involved with the connection between stochastic Tn-stability of Markovian jump linear systems with state-dependent noise and Lyapunov equation is proposed. And using the theory of stochastic Tn-stability, we give the optimal strategies and the optimal cost values for infinite horizon LQ stochastic differential games. It is demonstrated that the solutions of infinite horizon LQ stochastic differential games are concerned with four coupled generalized algebraic Riccati equations (GAREs. Finally, an iterative algorithm is presented to solve the four coupled GAREs and a simulation example is given to illustrate the effectiveness of it.

19. On using the linear-quadratic model in daily clinical practice

International Nuclear Information System (INIS)

Yaes, R.J.; Patel, P.; Maruyama, Y.

1991-01-01

To facilitate its use in the clinic, Barendsen's formulation of the Linear-Quadratic (LQ) model is modified by expressing isoeffect doses in terms of the Standard Effective Dose, Ds, the isoeffective dose for the standard fractionation schedule of 2 Gy fractions given once per day, 5 days per week. For any arbitrary fractionation schedule, where total dose D is given in N fractions of size d in a total time T, the corresponding Standard Effective Dose, Ds, will be proportional to the total dose D and the proportionality constant will be called the Standard Relative Effectiveness, SRE, to distinguish it from Barendsen's Relative Effectiveness, RE. Thus, Ds = SRE.D. The constant SRE depends on the parameters of the fractionation schedule, and on the tumor or normal tissue being irradiated. For the simple LQ model with no time dependence, which is applicable to late reacting tissue, SRE = [(d + delta)/(2 + delta)], where d is the fraction size and delta = alpha/beta is the alpha/beta ratio for the tissue of interest, with both d and delta expressed in units of Gy. Application of this method to the Linear Quadratic model with a time dependence, the LQ + time model, and to low dose rate brachytherapy will be discussed. To clarify the method of calculation, and to demonstrate its simplicity, examples from the clinical literature will be used

20. Technical report. The application of probability-generating functions to linear-quadratic radiation survival curves.

Science.gov (United States)

Kendal, W S

2000-04-01

To illustrate how probability-generating functions (PGFs) can be employed to derive a simple probabilistic model for clonogenic survival after exposure to ionizing irradiation. Both repairable and irreparable radiation damage to DNA were assumed to occur by independent (Poisson) processes, at intensities proportional to the irradiation dose. Also, repairable damage was assumed to be either repaired or further (lethally) injured according to a third (Bernoulli) process, with the probability of lethal conversion being directly proportional to dose. Using the algebra of PGFs, these three processes were combined to yield a composite PGF that described the distribution of lethal DNA lesions in irradiated cells. The composite PGF characterized a Poisson distribution with mean, chiD+betaD2, where D was dose and alpha and beta were radiobiological constants. This distribution yielded the conventional linear-quadratic survival equation. To test the composite model, the derived distribution was used to predict the frequencies of multiple chromosomal aberrations in irradiated human lymphocytes. The predictions agreed well with observation. This probabilistic model was consistent with single-hit mechanisms, but it was not consistent with binary misrepair mechanisms. A stochastic model for radiation survival has been constructed from elementary PGFs that exactly yields the linear-quadratic relationship. This approach can be used to investigate other simple probabilistic survival models.

1. New hybrid non-linear transformations of divergent perturbation series for quadratic Zeeman effects

International Nuclear Information System (INIS)

Belkic, D.

1989-01-01

The problem of hydrogen atoms in an external uniform magnetic field (quadratic Zeeman effect) is studied by means of perturbation theory. The power series for the ground-state energy in terms of magnetic-field strength B is divergent. Nevertheless, it is possible to induce convergence of this divergent series by applying various non-linear transformations. These transformations of originally divergent perturbation series yield new sequences, which then converge. The induced convergence is, however, quite slow. A new hybrid Shanks-Levin non-linear transform is devised here for accelerating these slowly converging series and sequences. Significant improvement in the convergence rate is obtained. Agreement with the exact results is excellent. (author)

2. Combining support vector machines with linear quadratic regulator adaptation for the online design of an automotive active suspension system

International Nuclear Information System (INIS)

Chiou, J-S; Liu, M-T

2008-01-01

As a powerful machine-learning approach to pattern recognition problems, the support vector machine (SVM) is known to easily allow generalization. More importantly, it works very well in a high-dimensional feature space. This paper presents a nonlinear active suspension controller which achieves a high level performance by compensating for actuator dynamics. We use a linear quadratic regulator (LQR) to ensure optimal control of nonlinear systems. An LQR is used to solve the problem of state feedback and an SVM is used to address the question of the estimation and examination of the state. These two are then combined and designed in a way that outputs feedback control. The real-time simulation demonstrates that an active suspension using the combined SVM-LQR controller provides passengers with a much more comfortable ride and better road handling

3. A nonlinear plate control without linearization

Directory of Open Access Journals (Sweden)

Yildirim Kenan

2017-03-01

Full Text Available In this paper, an optimal vibration control problem for a nonlinear plate is considered. In order to obtain the optimal control function, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the system, to be minimized by minimum level of control, is chosen as the sum of the quadratic 10 functional of the displacement. The velocity of the plate and quadratic functional of the control function is added to the performance index functional as a penalty term. By using a maximum principle, the nonlinear control problem is transformed to solving a system of partial differential equations including state and adjoint variables linked by initial-boundary-terminal conditions. Hence, it is shown that optimal control of the nonlinear systems can be obtained without linearization of the nonlinear term and optimal control function can be obtained analytically for nonlinear systems without linearization.

4. On the analysis of clonogenic survival data: Statistical alternatives to the linear-quadratic model

International Nuclear Information System (INIS)

Unkel, Steffen; Belka, Claus; Lauber, Kirsten

2016-01-01

The most frequently used method to quantitatively describe the response to ionizing irradiation in terms of clonogenic survival is the linear-quadratic (LQ) model. In the LQ model, the logarithm of the surviving fraction is regressed linearly on the radiation dose by means of a second-degree polynomial. The ratio of the estimated parameters for the linear and quadratic term, respectively, represents the dose at which both terms have the same weight in the abrogation of clonogenic survival. This ratio is known as the α/β ratio. However, there are plausible scenarios in which the α/β ratio fails to sufficiently reflect differences between dose-response curves, for example when curves with similar α/β ratio but different overall steepness are being compared. In such situations, the interpretation of the LQ model is severely limited. Colony formation assays were performed in order to measure the clonogenic survival of nine human pancreatic cancer cell lines and immortalized human pancreatic ductal epithelial cells upon irradiation at 0-10 Gy. The resulting dataset was subjected to LQ regression and non-linear log-logistic regression. Dimensionality reduction of the data was performed by cluster analysis and principal component analysis. Both the LQ model and the non-linear log-logistic regression model resulted in accurate approximations of the observed dose-response relationships in the dataset of clonogenic survival. However, in contrast to the LQ model the non-linear regression model allowed the discrimination of curves with different overall steepness but similar α/β ratio and revealed an improved goodness-of-fit. Additionally, the estimated parameters in the non-linear model exhibit a more direct interpretation than the α/β ratio. Dimensionality reduction of clonogenic survival data by means of cluster analysis was shown to be a useful tool for classifying radioresistant and sensitive cell lines. More quantitatively, principal component analysis allowed

5. Quadratic genetic modifications: a streamlined route to cosmological simulations with controlled merger history

Science.gov (United States)

Rey, Martin P.; Pontzen, Andrew

2018-02-01

Recent work has studied the interplay between a galaxy's history and its observable properties using genetically modified' cosmological zoom simulations. The approach systematically generates alternative histories for a halo, while keeping its cosmological environment fixed. Applications to date altered linear properties of the initial conditions, such as the mean overdensity of specified regions; we extend the formulation to include quadratic features, such as local variance, that determines the overall importance of smooth accretion relative to mergers in a galaxy's history. We introduce an efficient algorithm for this new class of modification and demonstrate its ability to control the variance of a region in a one-dimensional toy model. Outcomes of this work are twofold: (i) a clarification of the formulation of genetic modifications and (ii) a proof of concept for quadratic modifications leading the way to a forthcoming implementation in cosmological simulations.

6. A Genetic-Algorithms-Based Approach for Programming Linear and Quadratic Optimization Problems with Uncertainty

Directory of Open Access Journals (Sweden)

Weihua Jin

2013-01-01

Full Text Available This paper proposes a genetic-algorithms-based approach as an all-purpose problem-solving method for operation programming problems under uncertainty. The proposed method was applied for management of a municipal solid waste treatment system. Compared to the traditional interactive binary analysis, this approach has fewer limitations and is able to reduce the complexity in solving the inexact linear programming problems and inexact quadratic programming problems. The implementation of this approach was performed using the Genetic Algorithm Solver of MATLAB (trademark of MathWorks. The paper explains the genetic-algorithms-based method and presents details on the computation procedures for each type of inexact operation programming problems. A comparison of the results generated by the proposed method based on genetic algorithms with those produced by the traditional interactive binary analysis method is also presented.

International Nuclear Information System (INIS)

Wilder, R.B.; DeNardo, G.L.; Sheri, S.; Fowler, J.F.; Wessels, B.W.; DeNardo, S.J.

1996-01-01

8. Quadratic temporal finite element method for linear elastic structural dynamics based on mixed convolved action

International Nuclear Information System (INIS)

Kim, Jin Kyu; Kim, Dong Keon

2016-01-01

A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics

International Nuclear Information System (INIS)

Tucker, S.L.; Travis, E.L.

1990-01-01

The accuracy and interpretation of the 'LQ + time' model are discussed. Evidence is presented, based on data in the literature, that this model does not accurately describe the changes in isoeffect dose occurring with protraction of the overall treatment time during fractionated irradiation of the lung. This lack of fit of the model explains, in part, the surprisingly large values of γ/α that have been derived from experimental lung data. The large apparent time factors for lung suggested by the model are also partly explained by the fact that γT/α, despite having units of dose, actually measures the influence of treatment time on the effect scale, not the dose scale, and is shown to consistently overestimate the change in total dose. The unusually high values of α/β that have been derived for lung using the model are shown to be influenced by the method by which the model was fitted to data. Reanalyses of the data using a more statistically valid regression procedure produce estimates of α/β more typical of those usually cited for lung. Most importantly, published isoeffect data from lung indicate that the true deviation from the linear-quadratic (LQ) model is nonlinear in time, instead of linear, and also depends on other factors such as the effect level and the size of dose per fraction. Thus, the authors do not advocate the use of the 'LQ + time' expression as a general isoeffect model. (author). 32 refs.; 3 figs.; 1 tab

10. Quadratic temporal finite element method for linear elastic structural dynamics based on mixed convolved action

Energy Technology Data Exchange (ETDEWEB)

Kim, Jin Kyu [School of Architecture and Architectural Engineering, Hanyang University, Ansan (Korea, Republic of); Kim, Dong Keon [Dept. of Architectural Engineering, Dong A University, Busan (Korea, Republic of)

2016-09-15

A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics.

11. A Quadratically Convergent O(square root of nL-Iteration Algorithm for Linear Programming

National Research Council Canada - National Science Library

Ye, Y; Gueler, O; Tapia, Richard A; Zhang, Y

1991-01-01

...)-iteration complexity while exhibiting superlinear convergence of the duality gap to zero under the assumption that the iteration sequence converges, and quadratic convergence of the duality gap...

12. Solution of Large Systems of Linear Equations with Quadratic or Non-Quadratic Matrices and Deconvoiution of Spectra

Energy Technology Data Exchange (ETDEWEB)

Nygaard, K

1967-12-15

The numerical deconvolution of spectra is equivalent to the solution of a (large) system of linear equations with a matrix which is not necessarily a square matrix. The demand that the square sum of the residual errors shall be minimum is not in general sufficient to ensure a unique or 'sound' solution. Therefore other demands which may include the demand for minimum square errors are introduced which lead to 'sound' and 'non-oscillatory' solutions irrespective of the shape of the original matrix and of the determinant of the matrix of the normal equations.

13. Biologically effective dose distribution based on the linear quadratic model and its clinical relevance

International Nuclear Information System (INIS)

Lee, Steve P.; Leu, Min Y.; Smathers, James B.; McBride, William H.; Parker, Robert G.; Withers, H. Rodney

1995-01-01

Purpose: Radiotherapy plans based on physical dose distributions do not necessarily entirely reflect the biological effects under various fractionation schemes. Over the past decade, the linear-quadratic (LQ) model has emerged as a convenient tool to quantify biological effects for radiotherapy. In this work, we set out to construct a mechanism to display biologically oriented dose distribution based on the LQ model. Methods and Materials: A computer program that converts a physical dose distribution calculated by a commercially available treatment planning system to a biologically effective dose (BED) distribution has been developed and verified against theoretical calculations. This software accepts a user's input of biological parameters for each structure of interest (linear and quadratic dose-response and repopulation kinetic parameters), as well as treatment scheme factors (number of fractions, fractional dose, and treatment time). It then presents a two-dimensional BED display in conjunction with anatomical structures. Furthermore, to facilitate clinicians' intuitive comparison with conventional fractionation regimen, a conversion of BED to normalized isoeffective dose (NID) is also allowed. Results: Two sample cases serve to illustrate the application of our tool in clinical practice. (a) For an orthogonal wedged pair of x-ray beams treating a maxillary sinus tumor, the biological effect at the ipsilateral mandible can be quantified, thus illustrates the so-called 'double-trouble' effects very well. (b) For a typical four-field, evenly weighted prostate treatment using 10 MV x-rays, physical dosimetry predicts a comparable dose at the femoral necks between an alternate two-fields/day and four-fields/day schups. However, our BED display reveals an approximate 21% higher BED for the two-fields/day scheme. This excessive dose to the femoral necks can be eliminated if the treatment is delivered with a 3:2 (anterio-posterior/posterio-anterior (AP

14. Self-Tuning Linear Quadratic Supervisory Regulation of a Diesel Generator using Large-Signal State Estimation

DEFF Research Database (Denmark)

Knudsen, Jesper Viese; Bendtsen, Jan Dimon; Andersen, Palle

2016-01-01

In this paper, a self-tuning linear quadratic supervisory regulator using a large-signal state estimator for a diesel driven generator set is proposed. The regulator improves operational efficiency, in comparison to current implementations, by (i) automating the initial tuning process and (ii...... throughout the operating range of the diesel generator....

15. Adaptive dynamic programming for discrete-time linear quadratic regulation based on multirate generalised policy iteration

Science.gov (United States)

Chun, Tae Yoon; Lee, Jae Young; Park, Jin Bae; Choi, Yoon Ho

2018-06-01

In this paper, we propose two multirate generalised policy iteration (GPI) algorithms applied to discrete-time linear quadratic regulation problems. The proposed algorithms are extensions of the existing GPI algorithm that consists of the approximate policy evaluation and policy improvement steps. The two proposed schemes, named heuristic dynamic programming (HDP) and dual HDP (DHP), based on multirate GPI, use multi-step estimation (M-step Bellman equation) at the approximate policy evaluation step for estimating the value function and its gradient called costate, respectively. Then, we show that these two methods with the same update horizon can be considered equivalent in the iteration domain. Furthermore, monotonically increasing and decreasing convergences, so called value iteration (VI)-mode and policy iteration (PI)-mode convergences, are proved to hold for the proposed multirate GPIs. Further, general convergence properties in terms of eigenvalues are also studied. The data-driven online implementation methods for the proposed HDP and DHP are demonstrated and finally, we present the results of numerical simulations performed to verify the effectiveness of the proposed methods.

16. Evaluation of uneven fractionation radiotherapy of cervical lymph node-metastases by linear quadratic model

International Nuclear Information System (INIS)

Sasaki, Takehito; Kamata, Rikisaburo; Urahashi, Shingo; Yamaguchi, Tetsuji.

1993-01-01

One hundred and sixty-nine cervical lymph node-metastases from head and neck squamous cell carcinomas treated with either even fractionation or uneven fractionation regimens were analyzed in the present investigation. Logistic multivariate regression analysis indicated that: type of fractionation (even vs uneven), size of metastases, T value of primary tumors, and total dose are independent variables out of 18 variables that significantly influenced the rate of tumor clearance. The data, with statistical bias corrected by the regression equation, indicated that the uneven fractionation scheme significantly improved the rate of tumor clearance for the same size of metastases, total dose, and overall time compared to the even fractionation scheme. Further analysis by a linear-quadratic cell survival model indicated that the clinical improvement by uneven fractionation might not be explained entirely by a larger dose per fraction. It is suggested that tumor cells irradiated with an uneven fractionation regimen might repopulate more slowly, or they might be either less hypoxic or redistributed in a more radiosensitive phase in the cell cycle than those irradiated with even fractionation. This conclusion is clearly not definite, but it is suitable, pending the results of further investigation. (author)

17. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

Science.gov (United States)

Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

2017-02-01

To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

18. Linear and quadratic models of point process systems: contributions of patterned input to output.

Science.gov (United States)

Lindsay, K A; Rosenberg, J R

2012-08-01

In the 1880's Volterra characterised a nonlinear system using a functional series connecting continuous input and continuous output. Norbert Wiener, in the 1940's, circumvented problems associated with the application of Volterra series to physical problems by deriving from it a new series of terms that are mutually uncorrelated with respect to Gaussian processes. Subsequently, Brillinger, in the 1970's, introduced a point-process analogue of Volterra's series connecting point-process inputs to the instantaneous rate of point-process output. We derive here a new series from this analogue in which its terms are mutually uncorrelated with respect to Poisson processes. This new series expresses how patterned input in a spike train, represented by third-order cross-cumulants, is converted into the instantaneous rate of an output point-process. Given experimental records of suitable duration, the contribution of arbitrary patterned input to an output process can, in principle, be determined. Solutions for linear and quadratic point-process models with one and two inputs and a single output are investigated. Our theoretical results are applied to isolated muscle spindle data in which the spike trains from the primary and secondary endings from the same muscle spindle are recorded in response to stimulation of one and then two static fusimotor axons in the absence and presence of a random length change imposed on the parent muscle. For a fixed mean rate of input spikes, the analysis of the experimental data makes explicit which patterns of two input spikes contribute to an output spike. Copyright © 2012 Elsevier Ltd. All rights reserved.

19. Linear-quadratic model underestimates sparing effect of small doses per fraction in rat spinal cord

International Nuclear Information System (INIS)

Shun Wong, C.; Toronto University; Minkin, S.; Hill, R.P.; Toronto University

1993-01-01

The application of the linear-quadratic (LQ) model to describe iso-effective fractionation schedules for dose fraction sizes less than 2 Gy has been controversial. Experiments are described in which the effect of daily fractionated irradiation given with a wide range of fraction sizes was assessed in rat cervical spine cord. The first group of rats was given doses in 1, 2, 4, 8 and 40 fractions/day. The second group received 3 initial 'top-up'doses of 9 Gy given once daily, representing 3/4 tolerance, followed by doses in 1, 2, 10, 20, 30 and 40 fractions/day. The fractionated portion of the irradiation schedule therefore constituted only the final quarter of the tolerance dose. The endpoint of the experiments was paralysis of forelimbs secondary to white matter necrosis. Direct analysis of data from experiments with full course fractionation up to 40 fractions/day (25.0-1.98 Gy/fraction) indicated consistency with the LQ model yielding an α/β value of 2.41 Gy. Analysis of data from experiments in which the 3 'top-up' doses were followed by up to 10 fractions (10.0-1.64 Gy/fraction) gave an α/β value of 3.41 Gy. However, data from 'top-up' experiments with 20, 30 and 40 fractions (1.60-0.55 Gy/fraction) were inconsistent with LQ model and gave a very small α/β of 0.48 Gy. It is concluded that LQ model based on data from large doses/fraction underestimates the sparing effect of small doses/fraction, provided sufficient time is allowed between each fraction for repair of sublethal damage. (author). 28 refs., 5 figs., 1 tab

20. Quadratic obstructions to small-time local controllability for scalar-input systems

Science.gov (United States)

Beauchard, Karine; Marbach, Frédéric

2018-03-01

We consider nonlinear finite-dimensional scalar-input control systems in the vicinity of an equilibrium. When the linearized system is controllable, the nonlinear system is smoothly small-time locally controllable: whatever m > 0 and T > 0, the state can reach a whole neighborhood of the equilibrium at time T with controls arbitrary small in Cm-norm. When the linearized system is not controllable, we prove that: either the state is constrained to live within a smooth strict manifold, up to a cubic residual, or the quadratic order adds a signed drift with respect to it. This drift holds along a Lie bracket of length (2 k + 1), is quantified in terms of an H-k-norm of the control, holds for controls small in W 2 k , ∞-norm and these spaces are optimal. Our proof requires only C3 regularity of the vector field. This work underlines the importance of the norm used in the smallness assumption on the control, even in finite dimension.

1. Approximative analytic eigenvalues for orbital excitations in the case of a coulomb potential plus linear and quadratic radial terms

International Nuclear Information System (INIS)

Rekab, S.; Zenine, N.

2006-01-01

We consider the three dimensional non relativistic eigenvalue problem in the case of a Coulomb potential plus linear and quadratic radial terms. In the framework of the Rayleigh-Schrodinger Perturbation Theory, using a specific choice of the unperturbed Hamiltonian, we obtain approximate analytic expressions for the eigenvalues of orbital excitations. The implications and the range of validity of the obtained analytic expression are discussed

2. Biological equivalence between LDR and PDR in cervical cancer: multifactor analysis using the linear-quadratic model

OpenAIRE

José Guilherme Couto; Isabel Bravo; Rui Pirraco

2011-01-01

Purpose The purpose of this work was the biological comparison between Low Dose Rate (LDR) and Pulsed Dose Rate (PDR) in cervical cancer regarding the discontinuation of the afterloading system used for the LDR treatments at our Institution since December 2009. Material and methods In the first phase we studied the influence of the pulse dose and the pulse time in the biological equivalence between LDR and PDR treatments using the Linear Quadratic Model (LQM). In the second phase, the equival...

3. A generalized linear-quadratic model incorporating reciprocal time pattern of radiation damage repair

International Nuclear Information System (INIS)

Huang, Zhibin; Mayr, Nina A.; Lo, Simon S.; Wang, Jian Z.; Jia Guang; Yuh, William T. C.; Johnke, Roberta

2012-01-01

Purpose: It has been conventionally assumed that the repair rate for sublethal damage (SLD) remains constant during the entire radiation course. However, increasing evidence from animal studies suggest that this may not the case. Rather, it appears that the repair rate for radiation-induced SLD slows down with increasing time. Such a slowdown in repair would suggest that the exponential repair pattern would not necessarily accurately predict repair process. As a result, the purpose of this study was to investigate a new generalized linear-quadratic (LQ) model incorporating a repair pattern with reciprocal time. The new formulas were tested with published experimental data. Methods: The LQ model has been widely used in radiation therapy, and the parameter G in the surviving fraction represents the repair process of sublethal damage with T r as the repair half-time. When a reciprocal pattern of repair process was adopted, a closed form of G was derived analytically for arbitrary radiation schemes. The published animal data adopted to test the reciprocal formulas. Results: A generalized LQ model to describe the repair process in a reciprocal pattern was obtained. Subsequently, formulas for special cases were derived from this general form. The reciprocal model showed a better fit to the animal data than the exponential model, particularly for the ED50 data (reduced χ 2 min of 2.0 vs 4.3, p = 0.11 vs 0.006), with the following gLQ parameters: α/β = 2.6-4.8 Gy, T r = 3.2-3.9 h for rat feet skin, and α/β = 0.9 Gy, T r = 1.1 h for rat spinal cord. Conclusions: These results of repair process following a reciprocal time suggest that the generalized LQ model incorporating the reciprocal time of sublethal damage repair shows a better fit than the exponential repair model. These formulas can be used to analyze the experimental and clinical data, where a slowing-down repair process appears during the course of radiation therapy.

4. Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems

Directory of Open Access Journals (Sweden)

Bambang Riyanto

2005-11-01

Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.

5. Extensions of linear-quadratic control, optimization and matrix theory

CERN Document Server

Jacobson, David H

1977-01-01

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

6. Controller design approach based on linear programming.

Science.gov (United States)

Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa

2013-11-01

7. Half-space albedo problem with modified F{sub N} method for linear and quadratic anisotropic scattering

Energy Technology Data Exchange (ETDEWEB)

Tuereci, R.G. [Kirikkale Univ., Kirikkale (Turkey). Kirikkale Vocational School; Tuereci, D. [Ministry of Education, Ankara (Turkey). 75th year Anatolia High School

2017-05-15

One speed, time independent and homogeneous medium neutron transport equation can be solved with the anisotropic scattering which includes both the linear anisotropic and the quadratic anisotropic scattering properties. Having solved Case's eigenfunctions and the orthogonality relations among these eigenfunctions, some neutron transport problems such as albedo problem can be calculated as numerically by using numerical or semi-analytic methods. In this study the half-space albedo problem is investigated by using the modified F{sub N} method.

8. The Increase in Animal Mortality Risk following Exposure to Sparsely Ionizing Radiation Is Not Linear Quadratic with Dose.

Directory of Open Access Journals (Sweden)

Benjamin M Haley

Full Text Available The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII, which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREFLSS. It was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and a limited number of animal studies.We argue that the linear-quadratic model does not provide appropriate support to estimate the risk of contemporary exposures. In this work, we re-estimated DDREFLSS using 15 animal studies that were not included in BEIR VII's original analysis. Acute exposure data led to a DDREFLSS estimate from 0.9 to 3.0. By contrast, data that included both acute and protracted exposures led to a DDREFLSS estimate from 4.8 to infinity. These two estimates are significantly different, violating the assumptions of the linear-quadratic model, which predicts that DDREFLSS values calculated in either way should be the same.Therefore, we propose that future estimates of the risk of protracted exposures should be based on direct comparisons of data from acute and protracted exposures, rather than from extrapolations from a linear-quadratic model. The risk of low dose exposures may be extrapolated from these protracted estimates, though we encourage ongoing debate as to whether this is the most valid approach. We also encourage efforts to enlarge the datasets used to estimate the risk of protracted exposures by including both human and animal data, carcinogenesis outcomes, a wider range of exposures, and by making more radiobiology data publicly accessible. We believe that these steps will contribute to better estimates

9. Mechanistic formulation of a lineal-quadratic-linear (LQL) model: Split-dose experiments and exponentially decaying sources

International Nuclear Information System (INIS)

Guerrero, Mariana; Carlone, Marco

2010-01-01

Purpose: In recent years, several models were proposed that modify the standard linear-quadratic (LQ) model to make the predicted survival curve linear at high doses. Most of these models are purely phenomenological and can only be applied in the particular case of acute doses per fraction. The authors consider a mechanistic formulation of a linear-quadratic-linear (LQL) model in the case of split-dose experiments and exponentially decaying sources. This model provides a comprehensive description of radiation response for arbitrary dose rate and fractionation with only one additional parameter. Methods: The authors use a compartmental formulation of the LQL model from the literature. They analytically solve the model's differential equations for the case of a split-dose experiment and for an exponentially decaying source. They compare the solutions of the survival fraction with the standard LQ equations and with the lethal-potentially lethal (LPL) model. Results: In the case of the split-dose experiment, the LQL model predicts a recovery ratio as a function of dose per fraction that deviates from the square law of the standard LQ. The survival fraction as a function of time between fractions follows a similar exponential law as the LQ but adds a multiplicative factor to the LQ parameter β. The LQL solution for the split-dose experiment is very close to the LPL prediction. For the decaying source, the differences between the LQL and the LQ solutions are negligible when the half-life of the source is much larger than the characteristic repair time, which is the clinically relevant case. Conclusions: The compartmental formulation of the LQL model can be used for arbitrary dose rates and provides a comprehensive description of dose response. When the survival fraction for acute doses is linear for high dose, a deviation of the square law formula of the recovery ratio for split doses is also predicted.

CERN Document Server

Dostal, Zdenek

2009-01-01

Quadratic programming (QP) is one technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This title presents various algorithms for solving large QP problems. It is suitable as an introductory text on quadratic programming for graduate students and researchers

11. Study on TVD parameters sensitivity of a crankshaft using multiple scale and state space method considering quadratic and cubic non-linearities

Directory of Open Access Journals (Sweden)

R. Talebitooti

Full Text Available In this paper the effect of quadratic and cubic non-linearities of the system consisting of the crankshaft and torsional vibration damper (TVD is taken into account. TVD consists of non-linear elastomer material used for controlling the torsional vibration of crankshaft. The method of multiple scales is used to solve the governing equations of the system. Meanwhile, the frequency response of the system for both harmonic and sub-harmonic resonances is extracted. In addition, the effects of detuning parameters and other dimensionless parameters for a case of harmonic resonance are investigated. Moreover, the external forces including both inertia and gas forces are simultaneously applied into the model. Finally, in order to study the effectiveness of the parameters, the dimensionless governing equations of the system are solved, considering the state space method. Then, the effects of the torsional damper as well as all corresponding parameters of the system are discussed.

12. H 2 guaranteed cost control of discrete linear systems

Directory of Open Access Journals (Sweden)

Colmenares W.

2000-01-01

Full Text Available This paper presents necessary and sufficient conditions for the existence of a quadratically stabilizing output feedback controller which also assures H 2 guaranteed cost performance on a discrete linear uncertain system where the uncertainty is of the norm bounded type. The conditions are presented as a collection of linear matrix inequalities.The solution, however requires a search over a scalar parameter space.

13. Rainfall induced landslide susceptibility mapping using weight-of-evidence, linear and quadratic discriminant and logistic model tree method

Science.gov (United States)

Hong, H.; Zhu, A. X.

2017-12-01

Climate change is a common phenomenon and it is very serious all over the world. The intensification of rainfall extremes with climate change is of key importance to society and then it may induce a large impact through landslides. This paper presents GIS-based new ensemble data mining techniques that weight-of-evidence, logistic model tree, linear and quadratic discriminant for landslide spatial modelling. This research was applied in Anfu County, which is a landslide-prone area in Jiangxi Province, China. According to a literature review and research the study area, we select the landslide influencing factor and their maps were digitized in a GIS environment. These landslide influencing factors are the altitude, plan curvature, profile curvature, slope degree, slope aspect, topographic wetness index (TWI), Stream Power Index (SPI), Topographic Wetness Index (SPI), distance to faults, distance to rivers, distance to roads, soil, lithology, normalized difference vegetation index and land use. According to historical information of individual landslide events, interpretation of the aerial photographs, and field surveys supported by the government of Jiangxi Meteorological Bureau of China, 367 landslides were identified in the study area. The landslide locations were divided into two subsets, namely, training and validating (70/30), based on a random selection scheme. In this research, Pearson's correlation was used for the evaluation of the relationship between the landslides and influencing factors. In the next step, three data mining techniques combined with the weight-of-evidence, logistic model tree, linear and quadratic discriminant, were used for the landslide spatial modelling and its zonation. Finally, the landslide susceptibility maps produced by the mentioned models were evaluated by the ROC curve. The results showed that the area under the curve (AUC) of all of the models was > 0.80. At the same time, the highest AUC value was for the linear and quadratic

14. Estimation of transition doses for human glioblastoma, neuroblastoma and prostate cell lines using the linear-quadratic formalism

Directory of Open Access Journals (Sweden)

John Akudugu

2015-09-01

Full Text Available Purpose: The introduction of stereotactic radiotherapy has raised concerns regarding the use of the linear-quadratic (LQ model for predicting radiation response for large fractional doses. To partly address this issue, a transition dose D* below which the LQ model retains its predictive strength has been proposed. Estimates of D* which depends on the a, β, and D0 parameters are much lower than fractional doses typically encountered in stereotactic radiotherapy. D0, often referred to as the final slope of the cell survival curve, is thought to be constant. In vitro cell survival curves generally extend over the first few logs of cell killing, where D0-values derived from the multi-target formalism may be overestimated and can lead to low transition doses. Methods:  D0-values were calculated from first principles for each decade of cell killing, using experimentally-determined a and β parameters for 17 human glioblastoma, neuroblastoma, and prostate cell lines, and corresponding transition doses were derived.Results: D0 was found to decrease exponentially with cell killing. Using D0-values at cell surviving fractions of the order of 10-10 yielded transition doses ~3-fold higher than those obtained from D0-values obtained from conventional approaches. D* was found to increase from 7.84 ± 0.56, 8.91 ± 1.20, and 6.55 ± 0.91 Gy to 26.84 ± 2.83, 23.95 ± 2.03, and 22.49 ± 2.31 Gy for the glioblastoma, neuroblastoma, and prostate cell lines, respectively. Conclusion: These findings suggest that the linear-quadratic formalism might be valid for estimating the effect of stereotactic radiotherapy with fractional doses in excess of 20 Gy.

15. Operator approach to linear control systems

CERN Document Server

Cheremensky, A

1996-01-01

Within the framework of the optimization problem for linear control systems with quadratic performance index (LQP), the operator approach allows the construction of a systems theory including a number of particular infinite-dimensional optimization problems with hardly visible concreteness. This approach yields interesting interpretations of these problems and more effective feedback design methods. This book is unique in its emphasis on developing methods for solving a sufficiently general LQP. Although this is complex material, the theory developed here is built on transparent and relatively simple principles, and readers with less experience in the field of operator theory will find enough material to give them a good overview of the current state of LQP theory and its applications. Audience: Graduate students and researchers in the fields of mathematical systems theory, operator theory, cybernetics, and control systems.

16. Linear quadratic regulator design for an unpowered, winged re-entry vehicle

NARCIS (Netherlands)

Mooij, E.

1998-01-01

This report describes the design of an attitude controller for an unpowered, winged re-entry vehicle. The decoupling of the symmetric and asymmetric motion makes it possible to design two separate controllers, one for the pitch mot ion and one for the lateral motion. The design of the controller, a

17. Linear-quadratic dose kinetics or dose-dependent repair/misrepair

International Nuclear Information System (INIS)

Braby, L.A.; Nelson, J.M.

1992-01-01

Models for the response of cells exposed to low (LET) linear energy transfer radiation can be grouped into three general types on the basis of assumptions about the nature of the interaction which results in the shoulder of the survival curve. The three forms of interaction are 1) sublethal damage becoming lethal, 2) potentially lethal damage becoming irreparable, and 3) potentially lethal damage ''saturating'' a repair system. The effects that these three forms of interaction would have on the results of specific types of experiments are investigated. Comparisons with experimental results indicate that only the second type is significant in determining the response of typical cultured mammalian cells. (author)

18. Longitudinal mathematics development of students with learning disabilities and students without disabilities: a comparison of linear, quadratic, and piecewise linear mixed effects models.

Science.gov (United States)

Kohli, Nidhi; Sullivan, Amanda L; Sadeh, Shanna; Zopluoglu, Cengiz

2015-04-01

Effective instructional planning and intervening rely heavily on accurate understanding of students' growth, but relatively few researchers have examined mathematics achievement trajectories, particularly for students with special needs. We applied linear, quadratic, and piecewise linear mixed-effects models to identify the best-fitting model for mathematics development over elementary and middle school and to ascertain differences in growth trajectories of children with learning disabilities relative to their typically developing peers. The analytic sample of 2150 students was drawn from the Early Childhood Longitudinal Study - Kindergarten Cohort, a nationally representative sample of United States children who entered kindergarten in 1998. We first modeled students' mathematics growth via multiple mixed-effects models to determine the best fitting model of 9-year growth and then compared the trajectories of students with and without learning disabilities. Results indicate that the piecewise linear mixed-effects model captured best the functional form of students' mathematics trajectories. In addition, there were substantial achievement gaps between students with learning disabilities and students with no disabilities, and their trajectories differed such that students without disabilities progressed at a higher rate than their peers who had learning disabilities. The results underscore the need for further research to understand how to appropriately model students' mathematics trajectories and the need for attention to mathematics achievement gaps in policy. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

19. On Optimal Feedback Control for Stationary Linear Systems

International Nuclear Information System (INIS)

Russell, David L.

2010-01-01

We study linear-quadratic optimal control problems for finite dimensional stationary linear systems AX+BU=Z with output Y=CX+DU from the viewpoint of linear feedback solution. We interpret solutions in relation to system robustness with respect to disturbances Z and relate them to nonlinear matrix equations of Riccati type and eigenvalue-eigenvector problems for the corresponding Hamiltonian system. Examples are included along with an indication of extensions to continuous, i.e., infinite dimensional, systems, primarily of elliptic type.

20. A new accurate quadratic equation model for isothermal gas chromatography and its comparison with the linear model

Science.gov (United States)

Wu, Liejun; Chen, Maoxue; Chen, Yongli; Li, Qing X.

2013-01-01

The gas holdup time (tM) is a dominant parameter in gas chromatographic retention models. The difference equation (DE) model proposed by Wu et al. (J. Chromatogr. A 2012, http://dx.doi.org/10.1016/j.chroma.2012.07.077) excluded tM. In the present paper, we propose that the relationship between the adjusted retention time tRZ′ and carbon number z of n-alkanes follows a quadratic equation (QE) when an accurate tM is obtained. This QE model is the same as or better than the DE model for an accurate expression of the retention behavior of n-alkanes and model applications. The QE model covers a larger range of n-alkanes with better curve fittings than the linear model. The accuracy of the QE model was approximately 2–6 times better than the DE model and 18–540 times better than the LE model. Standard deviations of the QE model were approximately 2–3 times smaller than those of the DE model. PMID:22989489

1. [The enigma of the biological interpretation of the linear-quadratic model finally resolved? A summary for non-mathematicians].

Science.gov (United States)

Bodgi, L; Canet, A; Granzotto, A; Britel, M; Puisieux, A; Bourguignon, M; Foray, N

2016-06-01

2. Linear feedback controls the essentials

CERN Document Server

Haidekker, Mark A

2013-01-01

The design of control systems is at the very core of engineering. Feedback controls are ubiquitous, ranging from simple room thermostats to airplane engine control. Helping to make sense of this wide-ranging field, this book provides a new approach by keeping a tight focus on the essentials with a limited, yet consistent set of examples. Analysis and design methods are explained in terms of theory and practice. The book covers classical, linear feedback controls, and linear approximations are used when needed. In parallel, the book covers time-discrete (digital) control systems and juxtapos

3. Biological equivalence between LDR and PDR in cervical cancer: multifactor analysis using the linear-quadratic model

Directory of Open Access Journals (Sweden)

José Guilherme Couto

2011-09-01

Full Text Available Purpose: The purpose of this work was the biological comparison between Low Dose Rate (LDR and Pulsed DoseRate (PDR in cervical cancer regarding the discontinuation of the afterloading system used for the LDR treatments atour Institution since December 2009. Material and methods: In the first phase we studied the influence of the pulse dose and the pulse time in the biologicalequivalence between LDR and PDR treatments using the Linear Quadratic Model (LQM. In the second phase,the equivalent dose in 2 Gy/fraction (EQD2 for the tumor, rectum and bladder in treatments performed with both techniqueswas evaluated and statistically compared. All evaluated patients had stage IIB cervical cancer and were treatedwith External Beam Radiotherapy (EBRT plus two Brachytherapy (BT applications. Data were collected from 48 patients(26 patients treated with LDR and 22 patients with PDR. Results: In the analyses of the influence of PDR parameters in the biological equivalence between LDR and PDRtreatments (Phase 1, it was calculated that if the pulse dose in PDR was kept equal to the LDR dose rate, a small therapeuticloss was expected. If the pulse dose was decreased, the therapeutic window became larger, but a correction inthe prescribed dose was necessary. In PDR schemes with 1 hour interval between pulses, the pulse time did not influencesignificantly the equivalent dose. In the comparison between the groups treated with LDR and PDR (Phase 2 weconcluded that they were not equivalent, because in the PDR group the total EQD2 for the tumor, rectum and bladderwas smaller than in the LDR group; the LQM estimated that a correction in the prescribed dose of 6% to 10% was ne -cessary to avoid therapeutic loss. Conclusions: A correction in the prescribed dose was necessary; this correction should be achieved by calculatingthe PDR dose equivalent to the desired LDR total dose.

4. Biological equivalence between LDR and PDR in cervical cancer: multifactor analysis using the linear-quadratic model.

Science.gov (United States)

Couto, José Guilherme; Bravo, Isabel; Pirraco, Rui

2011-09-01

The purpose of this work was the biological comparison between Low Dose Rate (LDR) and Pulsed Dose Rate (PDR) in cervical cancer regarding the discontinuation of the afterloading system used for the LDR treatments at our Institution since December 2009. In the first phase we studied the influence of the pulse dose and the pulse time in the biological equivalence between LDR and PDR treatments using the Linear Quadratic Model (LQM). In the second phase, the equivalent dose in 2 Gy/fraction (EQD(2)) for the tumor, rectum and bladder in treatments performed with both techniques was evaluated and statistically compared. All evaluated patients had stage IIB cervical cancer and were treated with External Beam Radiotherapy (EBRT) plus two Brachytherapy (BT) applications. Data were collected from 48 patients (26 patients treated with LDR and 22 patients with PDR). In the analyses of the influence of PDR parameters in the biological equivalence between LDR and PDR treatments (Phase 1), it was calculated that if the pulse dose in PDR was kept equal to the LDR dose rate, a small the-rapeutic loss was expected. If the pulse dose was decreased, the therapeutic window became larger, but a correction in the prescribed dose was necessary. In PDR schemes with 1 hour interval between pulses, the pulse time did not influence significantly the equivalent dose. In the comparison between the groups treated with LDR and PDR (Phase 2) we concluded that they were not equivalent, because in the PDR group the total EQD(2) for the tumor, rectum and bladder was smaller than in the LDR group; the LQM estimated that a correction in the prescribed dose of 6% to 10% was ne-cessary to avoid therapeutic loss. A correction in the prescribed dose was necessary; this correction should be achieved by calculating the PDR dose equivalent to the desired LDR total dose.

5. Investigation of various growth mechanisms of solid tumour growth within the linear-quadratic model for radiotherapy

International Nuclear Information System (INIS)

McAneney, H; O'Rourke, S F C

2007-01-01

International Nuclear Information System (INIS)

Rozikov, U.A.; Nazir, S.

2009-04-01

We consider quadratic stochastic operators, which are separable as a product of two linear operators. Depending on properties of these linear operators we classify the set of the separable quadratic stochastic operators: first class of constant operators, second class of linear and third class of nonlinear (separable) quadratic stochastic operators. Since the properties of operators from the first and second classes are well known, we mainly study the properties of the operators of the third class. We describe some Lyapunov functions of the operators and apply them to study ω-limit sets of the trajectories generated by the operators. We also compare our results with known results of the theory of quadratic operators and give some open problems. (author)

7. Emittance control in linear colliders

International Nuclear Information System (INIS)

Ruth, R.D.

1991-01-01

Before completing a realistic design of a next-generation linear collider, the authors must first learn the lessons taught by the first generation, the SLC. Given that, they must make designs fault tolerant by including correction and compensation in the basic design. They must also try to eliminate these faults by improved alignment and stability of components. When these two efforts cross, they have a realistic design. The techniques of generation and control of emittance reviewed here provide a foundation for a design which can obtain the necessary luminosity in a next-generation linear collider

8. Tail-constraining stochastic linear–quadratic control: a large deviation and statistical physics approach

International Nuclear Information System (INIS)

Chertkov, Michael; Kolokolov, Igor; Lebedev, Vladimir

2012-01-01

The standard definition of the stochastic risk-sensitive linear–quadratic (RS-LQ) control depends on the risk parameter, which is normally left to be set exogenously. We reconsider the classical approach and suggest two alternatives, resolving the spurious freedom naturally. One approach consists in seeking for the minimum of the tail of the probability distribution function (PDF) of the cost functional at some large fixed value. Another option suggests minimizing the expectation value of the cost functional under a constraint on the value of the PDF tail. Under the assumption of resulting control stability, both problems are reduced to static optimizations over a stationary control matrix. The solutions are illustrated using the examples of scalar and 1D chain (string) systems. The large deviation self-similar asymptotic of the cost functional PDF is analyzed. (paper)

9. Simulation of nonlinear benchmarks and sheet metal forming processes using linear and quadratic solid–shell elements combined with advanced anisotropic behavior models

Directory of Open Access Journals (Sweden)

Wang Peng

2016-01-01

Full Text Available A family of prismatic and hexahedral solid‒shell (SHB elements with their linear and quadratic versions is presented in this paper to model thin 3D structures. Based on reduced integration and special treatments to eliminate locking effects and to control spurious zero-energy modes, the SHB solid‒shell elements are capable of modeling most thin 3D structural problems with only a single element layer, while describing accurately the various through-thickness phenomena. In this paper, the SHB elements are combined with fully 3D behavior models, including orthotropic elastic behavior for composite materials and anisotropic plastic behavior for metallic materials, which allows describing the strain/stress state in the thickness direction, in contrast to traditional shell elements. All SHB elements are implemented into ABAQUS using both standard/quasi-static and explicit/dynamic solvers. Several benchmark tests have been conducted, in order to first assess the performance of the SHB elements in quasi-static and dynamic analyses. Then, deep drawing of a hemispherical cup is performed to demonstrate the capabilities of the SHB elements in handling various types of nonlinearities (large displacements and rotations, anisotropic plasticity, and contact. Compared to classical ABAQUS solid and shell elements, the results given by the SHB elements show good agreement with the reference solutions.

10. Controlling bistability by linear augmentation

International Nuclear Information System (INIS)

2013-01-01

In many bistable oscillating systems only one of the attractors is desired to possessing certain system performance. We present a method to drive a bistable system to a desired target attractor by annihilating the other one. This shift from bistability to monostability is achieved by augmentation of the nonlinear oscillator with a linear control system. For a proper choice of the control function one of the attractors disappears at a critical coupling strength in an control-induced boundary crisis. This transition from bistability to monostability is demonstrated with two paradigmatic examples, the autonomous Chua oscillator and a neuronal system with a periodic input signal.

11. Computational aspects of linear control

CERN Document Server

2002-01-01

Many devices (we say dynamical systems or simply systems) behave like black boxes: they receive an input, this input is transformed following some laws (usually a differential equation) and an output is observed. The problem is to regulate the input in order to control the output, that is for obtaining a desired output. Such a mechanism, where the input is modified according to the output measured, is called feedback. The study and design of such automatic processes is called control theory. As we will see, the term system embraces any device and control theory has a wide variety of applications in the real world. Control theory is an interdisci­ plinary domain at the junction of differential and difference equations, system theory and statistics. Moreover, the solution of a control problem involves many topics of numerical analysis and leads to many interesting computational problems: linear algebra (QR, SVD, projections, Schur complement, structured matrices, localization of eigenvalues, computation of the...

12. Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints

International Nuclear Information System (INIS)

Zhang Yunong; Li Zhan

2009-01-01

In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method.

13. An improved robust model predictive control for linear parameter-varying input-output models

NARCIS (Netherlands)

Abbas, H.S.; Hanema, J.; Tóth, R.; Mohammadpour, J.; Meskin, N.

2018-01-01

This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal

Science.gov (United States)

Fay, Temple H.

2012-01-01

Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

15. A new formalism for modelling parameters α and β of the linear-quadratic model of cell survival for hadron therapy

Science.gov (United States)

Vassiliev, Oleg N.; Grosshans, David R.; Mohan, Radhe

2017-10-01

We propose a new formalism for calculating parameters α and β of the linear-quadratic model of cell survival. This formalism, primarily intended for calculating relative biological effectiveness (RBE) for treatment planning in hadron therapy, is based on a recently proposed microdosimetric revision of the single-target multi-hit model. The main advantage of our formalism is that it reliably produces α and β that have correct general properties with respect to their dependence on physical properties of the beam, including the asymptotic behavior for very low and high linear energy transfer (LET) beams. For example, in the case of monoenergetic beams, our formalism predicts that, as a function of LET, (a) α has a maximum and (b) the α/β ratio increases monotonically with increasing LET. No prior models reviewed in this study predict both properties (a) and (b) correctly, and therefore, these prior models are valid only within a limited LET range. We first present our formalism in a general form, for polyenergetic beams. A significant new result in this general case is that parameter β is represented as an average over the joint distribution of energies E 1 and E 2 of two particles in the beam. This result is consistent with the role of the quadratic term in the linear-quadratic model. It accounts for the two-track mechanism of cell kill, in which two particles, one after another, damage the same site in the cell nucleus. We then present simplified versions of the formalism, and discuss predicted properties of α and β. Finally, to demonstrate consistency of our formalism with experimental data, we apply it to fit two sets of experimental data: (1) α for heavy ions, covering a broad range of LETs, and (2) β for protons. In both cases, good agreement is achieved.

16. Medium-dose-rate brachytherapy of cancer of the cervix: preliminary results of a prospectively designed schedule based on the linear-quadratic model

International Nuclear Information System (INIS)

Leborgne, Felix; Fowler, Jack F.; Leborgne, Jose H.; Zubizarreta, Eduardo; Curochquin, Rene

1999-01-01

Purpose: To compare results and complications of our previous low-dose-rate (LDR) brachytherapy schedule for early-stage cancer of the cervix, with a prospectively designed medium-dose-rate (MDR) schedule, based on the linear-quadratic model (LQ). Methods and Materials: A combination of brachytherapy, external beam pelvic and parametrial irradiation was used in 102 consecutive Stage Ib-IIb LDR treated patients (1986-1990) and 42 equally staged MDR treated patients (1994-1996). The planned MDR schedule consisted of three insertions on three treatment days with six 8-Gy brachytherapy fractions to Point A, two on each treatment day with an interfraction interval of 6 hours, plus 18 Gy external whole pelvic dose, and followed by additional parametrial irradiation. The calculated biologically effective dose (BED) for tumor was 90 Gy 10 and for rectum below 125 Gy 3 . Results: In practice the MDR brachytherapy schedule achieved a tumor BED of 86 Gy 10 and a rectal BED of 101 Gy 3 . The latter was better than originally planned due to a reduction from 85% to 77% in the percentage of the mean dose to the rectum in relation to Point A. The mean overall treatment time was 10 days shorter for MDR in comparison with LDR. The 3-year actuarial central control for LDR and MDR was 97% and 98% (p = NS), respectively. The Grades 2 and 3 late complications (scale 0 to 3) were 1% and 2.4%, respectively for LDR (3-year) and MDR (2-year). Conclusions: LQ is a reliable tool for designing new schedules with altered fractionation and dose rates. The MDR schedule has proven to be an equivalent treatment schedule compared with LDR, with an additional advantage of having a shorter overall treatment time. The mean rectal BED Gy 3 was lower than expected

17. Reference-tracking feedforward control design for linear dynamical systems through signal decomposition

NARCIS (Netherlands)

Kasemsinsup, Y.; Romagnoli, R.; Heertjes, M.F.; Weiland, S.; Butler, H.

2017-01-01

In this work, we study a novel approach towards the reference-tracking feedforward control design for linear dynamical systems. By utilizing the superposition property and exploiting signal decomposition together with a quadratic optimization process, we obtain a feedforward design procedure for

18. High peer popularity longitudinally predicts adolescent health risk behavior, or does it?: an examination of linear and quadratic associations.

Science.gov (United States)

Prinstein, Mitchell J; Choukas-Bradley, Sophia C; Helms, Sarah W; Brechwald, Whitney A; Rancourt, Diana

2011-10-01

In contrast to prior work, recent theory suggests that high, not low, levels of adolescent peer popularity may be associated with health risk behavior. This study examined (a) whether popularity may be uniquely associated with cigarette use, marijuana use, and sexual risk behavior, beyond the predictive effects of aggression; (b) whether the longitudinal association between popularity and health risk behavior may be curvilinear; and (c) gender moderation. A total of 336 adolescents, initially in 10-11th grades, reported cigarette use, marijuana use, and number of sexual intercourse partners at two time points 18 months apart. Sociometric peer nominations were used to examine popularity and aggression. Longitudinal quadratic effects and gender moderation suggest that both high and low levels of popularity predict some, but not all, health risk behaviors. New theoretical models can be useful for understanding the complex manner in which health risk behaviors may be reinforced within the peer context.

19. A Design of a Hybrid Non-Linear Control Algorithm

Directory of Open Access Journals (Sweden)

Farinaz Behrooz

2017-11-01

Full Text Available One of the high energy consuming devices in the buildings is the air-conditioning system. Designing a proper controller to consider the thermal comfort and simultaneously control the energy usage of the device will impact on the system energy efficiency and its performance. The aim of this study was to design a Multiple-Input and Multiple-Output (MIMO, non-linear, and intelligent controller on direct expansion air-conditioning system The control algorithm uses the Fuzzy Cognitive Map method as a main controller and the Generalized Predictive Control method is used for assigning the initial weights of the main controller. The results of the proposed controller shows that the controller was successfully designed and works in set point tracking and under disturbance rejection tests. The obtained results of the Generalized Predictive Control-Fuzzy Cognitive Map controller are compared with the previous MIMO Linear Quadratic Gaussian control design on the same direct expansion air-conditioning system under the same conditions. The comparative results indicate energy savings would be achieved with the proposed controller with long-term usage. Energy efficiency and thermal comfort conditions are achieved by the proposed controller.

20. Frequency of micronuclei in hepatocytes following X and fast-neutron irradiations--an analysis by a linear-quadratic model

International Nuclear Information System (INIS)

Ono, K.; Nagata, Y.; Akuta, K.; Abe, M.; Ando, K.; Koike, S.

1990-01-01

The usefulness of the micronucleus assay for investigating the radiation response of hepatocytes was examined. The frequency was defined as the ratio of the total number of micronuclei to the number of hepatocytes examined. The dose-response curves were curvilinear after X rays and linear after neutrons. These dose-response curves were analyzed by a linear-quadratic model, frequency = aD + bD2 + c. The a/b ratio was 3.03 +/- 1.26 Gy following X irradiation. This value is within the range of the alpha/beta ratios reported by others using the clonogenic assay of hepatocytes. While the a/b value for neutrons was 24.3 +/- 11.7 Gy, the maximum relative biological effectiveness of neutrons was 6.30 +/- 2.53. Since the micronucleus assay is simple and rapid, it may be a good tool for evaluating the radiation response of hepatocytes in vivo

1. Emittance control in linear colliders

International Nuclear Information System (INIS)

Ruth, R.D.

1991-05-01

In this paper, we discuss the generation and control of the emittance in a next-generation linear collider. The beams are extracted from a damping ring and compressed in length by the first bunch compressor. They are then accelerated in a preaccelerator linac up to an energy appropriate for injection into a high gradient linac. In many designs this pre-acceleration is followed by another bunch compression to reach a short bunch. After acceleration in the linac, the bunches are finally focused transversely to a small spot. The proposed vertical beam sizes at the interaction point are the order of a few nanometers while the horizontal sizes are about a factor of 100 larger. This cross-sectional area is about a factor of 10 4 smaller than the SLC. However, the main question is: what are the tolerances to achieve such a small size, and how do they compare to present techniques for alignment and stability? These tolerances are very design dependent. Alignment tolerances in the linac can vary from 1 μm to 100 μm depending upon the basic approach. In this paper we discuss techniques of emittance generation and control which move alignment tolerances to the 100 μm range

2. COMPARISON OF LINEAR CONTROLLERS FOR A

DEFF Research Database (Denmark)

Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik C.

2005-01-01

on comparing different linear controllers, based on both simulation and experimental results, to determine what is obtainable when applying standard linear controllers to a hydraulic SISO servo system. The paper furthermore addresses how the performance may be improved by using internal pressure control......In many hydraulic control applications, classic linear controllers are still employed, although there exist a number of number of nonlinear control methods, which may be better suited for handling the intrensic non-linearities often found in hydraulic systems. The focus of this paper is therefore...... and model based information to include feedforward information. The control strategies considered are all based on measurement of piston position and pressure only....

3. Linear parameter varying representations for nonlinear control design

Science.gov (United States)

Carter, Lance Huntington

Linear parameter varying (LPV) systems are investigated as a framework for gain-scheduled control design and optimal hybrid control. An LPV system is defined as a linear system whose dynamics depend upon an a priori unknown but measurable exogenous parameter. A gain-scheduled autopilot design is presented for a bank-to-turn (BTT) missile. The method is novel in that the gain-scheduled design does not involve linearizations about operating points. Instead, the missile dynamics are brought to LPV form via a state transformation. This idea is applied to the design of a coupled longitudinal/lateral BTT missile autopilot. The pitch and yaw/roll dynamics are separately transformed to LPV form, where the cross axis states are treated as "exogenous" parameters. These are actually endogenous variables, so such a plant is called "quasi-LPV." Once in quasi-LPV form, a family of robust controllers using mu synthesis is designed for both the pitch and yaw/roll channels, using angle-of-attack and roll rate as the scheduling variables. The closed-loop time response is simulated using the original nonlinear model and also using perturbed aerodynamic coefficients. Modeling and control of engine idle speed is investigated using LPV methods. It is shown how generalized discrete nonlinear systems may be transformed into quasi-LPV form. A discrete nonlinear engine model is developed and expressed in quasi-LPV form with engine speed as the scheduling variable. An example control design is presented using linear quadratic methods. Simulations are shown comparing the LPV based controller performance to that using PID control. LPV representations are also shown to provide a setting for hybrid systems. A hybrid system is characterized by control inputs consisting of both analog signals and discrete actions. A solution is derived for the optimal control of hybrid systems with generalized cost functions. This is shown to be computationally intensive, so a suboptimal strategy is proposed that

4. Effects of oxygen on intrinsic radiation sensitivity: A test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parameters

International Nuclear Information System (INIS)

Carlson, David J.; Stewart, Robert D.; Semenenko, Vladimir A.

2006-01-01

The poor treatment prognosis for tumors with high levels of hypoxia is usually attributed to the decreased sensitivity of hypoxic cells to ionizing radiation. Mechanistic considerations suggest that linear quadratic (LQ) survival model radiosensitivity parameters for hypoxic (H) and aerobic (A) cells are related by α H =α A /oxygen enhancement ratio (OER) and (α/β) H =OER(α/β) A . The OER parameter may be interpreted as the ratio of the dose to the hypoxic cells to the dose to the aerobic cells required to produce the same number of DSBs per cell. The validity of these expressions is tested against survival data for mammalian cells irradiated in vitro with low- and high-LET radiation. Estimates of hypoxic and aerobic radiosensitivity parameters are derived from independent and simultaneous least-squares fits to the survival data. An external bootstrap procedure is used to test whether independent fits to the survival data give significantly better predictions than simultaneous fits to the aerobic and hypoxic data. For low-LET radiation, estimates of the OER derived from the in vitro data are between 2.3 and 3.3 for extreme levels of hypoxia. The estimated range for the OER is similar to the oxygen enhancement ratios reported in the literature for the initial yield of DSBs. The half-time for sublethal damage repair was found to be independent of oxygen concentration. Analysis of patient survival data for cervix cancer suggests an average OER less than or equal to 1.5, which corresponds to a pO 2 of 5 mm Hg (0.66%) in the in vitro experiments. Because the OER derived from the cervix cancer data is averaged over cells at all oxygen levels, cells irradiated in vivo under extreme levels of hypoxia (<0.5 mm Hg) may have an OER substantially higher than 1.5. The reported analyses of in vitro data, as well as mechanistic considerations, provide strong support for the expressions relating hypoxic and aerobic radiosensitivity parameters. The formulas are also useful

5. Adaptive Finite Element Method for Optimal Control Problem Governed by Linear Quasiparabolic Integrodifferential Equations

Directory of Open Access Journals (Sweden)

Wanfang Shen

2012-01-01

Full Text Available The mathematical formulation for a quadratic optimal control problem governed by a linear quasiparabolic integrodifferential equation is studied. The control constrains are given in an integral sense: Uad={u∈X;∫ΩUu⩾0, t∈[0,T]}. Then the a posteriori error estimates in L∞(0,T;H1(Ω-norm and L2(0,T;L2(Ω-norm for both the state and the control approximation are given.

6. Observer-based linear parameter varying H∞ tracking control for hypersonic vehicles

Directory of Open Access Journals (Sweden)

Yiqing Huang

2016-11-01

Full Text Available This article aims to develop observer-based linear parameter varying output feedback H∞ tracking controller for hypersonic vehicles. Due to the complexity of an original nonlinear model of the hypersonic vehicle dynamics, a slow–fast loop linear parameter varying polytopic model is introduced for system stability analysis and controller design. Then, a state observer is developed by linear parameter varying technique in order to estimate the unmeasured attitude angular for slow loop system. Also, based on the designed linear parameter varying state observer, a kind of attitude tracking controller is presented to reduce tracking errors for all bounded reference attitude angular inputs. The closed-loop linear parameter varying system is proved to be quadratically stable by Lypapunov function technique. Finally, simulation results show that the developed linear parameter varying H∞ controller has good tracking capability for reference commands.

7. Neural Networks for Non-linear Control

DEFF Research Database (Denmark)

Sørensen, O.

1994-01-01

This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

8. Dynamical invariants for variable quadratic Hamiltonians

International Nuclear Information System (INIS)

Suslov, Sergei K

2010-01-01

We consider linear and quadratic integrals of motion for general variable quadratic Hamiltonians. Fundamental relations between the eigenvalue problem for linear dynamical invariants and solutions of the corresponding Cauchy initial value problem for the time-dependent Schroedinger equation are emphasized. An eigenfunction expansion of the solution of the initial value problem is also found. A nonlinear superposition principle for generalized Ermakov systems is established as a result of decomposition of the general quadratic invariant in terms of the linear ones.

9. Experimental determination of the anisotropy function for the Model 200 103Pd 'light seed' and derivation of the anisotropy constant based upon the linear quadratic model

International Nuclear Information System (INIS)

Yue Ning; Nath, Ravinder

2002-01-01

10. The Model and Quadratic Stability Problem of Buck Converter in DCM

Directory of Open Access Journals (Sweden)

Li Xiaojing

2016-01-01

Full Text Available Quadratic stability is an important performance for control systems. At first, the model of Buck Converter in DCM is built based on the theories of hybrid systems and switched linear systems primarily. Then quadratic stability of SLS and hybrid feedback switching rule are introduced. The problem of Buck Converter’s quadratic stability is researched afterwards. In the end, the simulation analysis and verification are provided. Both experimental verification and theoretical analysis results indicate that the output of Buck Converter in DCM has an excellent performance via quadratic stability control and switching rules.

11. Linearizing control of continuous anaerobic fermentation processes

Energy Technology Data Exchange (ETDEWEB)

Babary, J.P. [Centre National dEtudes Spatiales (CNES), 31 - Toulouse (France). Laboratoire dAnalyse et dArchitecture des Systemes; Simeonov, I. [Institute of Microbiology, Bulgarian Academy of Sciences (Bulgaria); Ljubenova, V. [Institute of Control and System Research, BAS (Country unknown/Code not available); Dochain, D. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium)

1997-09-01

Biotechnological processes (BTP) involve living organisms. In the anaerobic fermentation (biogas production process) the organic matter is mineralized by microorganisms into biogas (methane and carbon dioxide) in the absence of oxygen. The biogas is an additional energy source. Generally this process is carried out as a continuous BTP. It has been widely used in life process and has been confirmed as a promising method of solving some energy and ecological problems in the agriculture and industry. Because of the very restrictive on-line information the control of this process in continuous mode is often reduced to control of the biogas production rate or the concentration of the polluting organic matter (de-pollution control) at a desired value in the presence of some perturbations. Investigations show that classical linear controllers have good performances only in the linear zone of the strongly non-linear input-output characteristics. More sophisticated robust and with variable structure (VSC) controllers are studied. Due to the strongly non-linear dynamics of the process the performances of the closed loop system may be degrading in this case. The aim of this paper is to investigate different linearizing algorithms for control of a continuous non-linear methane fermentation process using the dilution rate as a control action and taking into account some practical implementation aspects. (authors) 8 refs.

12. Approximate analytical relationships for linear optimal aeroelastic flight control laws

Science.gov (United States)

Kassem, Ayman Hamdy

1998-09-01

This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.

13. Linearizing feedforward/feedback attitude control

Science.gov (United States)

Paielli, Russell A.; Bach, Ralph E.

1991-01-01

An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.

14. Controlling attribute effect in linear regression

KAUST Repository

Calders, Toon; Karim, Asim A.; Kamiran, Faisal; Ali, Wasif Mohammad; Zhang, Xiangliang

2013-01-01

In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.

15. Controlling attribute effect in linear regression

KAUST Repository

Calders, Toon

2013-12-01

In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.

16. Controllability analysis of decentralised linear controllers for polymeric fuel cells

Energy Technology Data Exchange (ETDEWEB)

Serra, Maria; Aguado, Joaquin; Ansede, Xavier; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya - Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

2005-10-10

This work deals with the control of polymeric fuel cells. It includes a linear analysis of the system at different operating points, the comparison and selection of different control structures, and the validation of the controlled system by simulation. The work is based on a complex non linear model which has been linearised at several operating points. The linear analysis tools used are the Morari resiliency index, the condition number, and the relative gain array. These techniques are employed to compare the controllability of the system with different control structures and at different operating conditions. According to the results, the most promising control structures are selected and their performance with PI based diagonal controllers is evaluated through simulations with the complete non linear model. The range of operability of the examined control structures is compared. Conclusions indicate good performance of several diagonal linear controllers. However, very few have a wide operability range. (author)

17. Radiobiological evaluation of the radiation dose as used in high-precision radiotherapy. Effect of prolonged delivery time and applicability of the linear-quadratic model

International Nuclear Information System (INIS)

Shibamoto, Yuta; Otsuka, Shinya; Iwata, Hiromitsu; Sugie, Chikao; Ogino, Hiroyuki; Tomita, Natsuo

2012-01-01

18. On Active Surge Control of Compression Systems via Characteristic Linearization and Model Nonlinearity Cancellation

Directory of Open Access Journals (Sweden)

Yohannes S.M. Simamora

2014-09-01

Full Text Available A simple approach of active surge control of compression systems is presented. Specifically, nonlinear components of the pressure ratio and rotating speed states of the Moore-Greitzer model are transferred into the input vectors. Subsequently, the compressor characteristic is linearized into two modes, which describe the stable region and the unstable region respectively. As a result, the system’s state and input matrices both appear linear, to which linear realization and analysis are applicable. A linear quadratic regulator plus integrator is then chosen as closed-loop controller. By simulation it was shown that the modified model and characteristics can describe surge behavior, while the closed-loop controller can stabilize the system in the unstable operating region. The last-mentioned was achieved when massflow was 5.38 per cent less than the surge point.

19. Neural Network Based Maximum Power Point Tracking Control with Quadratic Boost Converter for PMSG—Wind Energy Conversion System

Directory of Open Access Journals (Sweden)

Ramji Tiwari

2018-02-01

Full Text Available This paper proposes an artificial neural network (ANN based maximum power point tracking (MPPT control strategy for wind energy conversion system (WECS implemented with a DC/DC converter. The proposed topology utilizes a radial basis function network (RBFN based neural network control strategy to extract the maximum available power from the wind velocity. The results are compared with a classical Perturb and Observe (P&O method and Back propagation network (BPN method. In order to achieve a high voltage rating, the system is implemented with a quadratic boost converter and the performance of the converter is validated with a boost and single ended primary inductance converter (SEPIC. The performance of the MPPT technique along with a DC/DC converter is demonstrated using MATLAB/Simulink.

20. A new two-scroll chaotic attractor with three quadratic nonlinearities, its adaptive control and circuit design

Science.gov (United States)

Lien, C.-H.; Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Sanjaya, W. S. M.; Subiyanto

2018-03-01

A 3-D new two-scroll chaotic attractor with three quadratic nonlinearities is investigated in this paper. First, the qualitative and dynamical properties of the new two-scroll chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new two-scroll dissipative chaotic system has three unstable equilibrium points. As an engineering application, global chaos control of the new two-scroll chaotic system with unknown system parameters is designed via adaptive feedback control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic two-scroll attractor model.

1. Linear Parameter Varying Control of Induction Motors

DEFF Research Database (Denmark)

Trangbæk, Klaus

The subject of this thesis is the development of linear parameter varying (LPV) controllers and observers for control of induction motors. The induction motor is one of the most common machines in industrial applications. Being a highly nonlinear system, it poses challenging control problems...... for high performance applications. This thesis demonstrates how LPV control theory provides a systematic way to achieve good performance for these problems. The main contributions of this thesis are the application of the LPV control theory to induction motor control as well as various contributions...

2. Perturbation analysis of linear control problems

International Nuclear Information System (INIS)

Petkov, Petko; Konstantinov, Mihail

2017-01-01

The paper presents a brief overview of the technique of splitting operators, proposed by the authors and intended for perturbation analysis of control problems involving unitary and orthogonal matrices. Combined with the technique of Lyapunov majorants and the implementation of the Banach and Schauder fixed point principles, it allows to obtain rigorous non-local perturbation bounds for a set of sensitivity analysis problems. Among them are the reduction of linear systems into orthogonal canonical forms, the feedback synthesis problem and pole assignment problem in particular, as well as other important problems in control theory and linear algebra. Key words: perturbation analysis, canonical forms, feedback synthesis

3. Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps

Directory of Open Access Journals (Sweden)

Deep Parikh

2015-08-01

Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM.  Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for  quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.

4. Consys Linear Control System Design Software Package

International Nuclear Information System (INIS)

Diamantidis, Z.

1987-01-01

This package is created in order to help engineers, researchers, students and all who work on linear control systems. The software includes all time and frequency domain analysises, spectral analysises and networks, active filters and regulators design aids. The programmes are written on Hewlett Packard computer in Basic 4.0

5. Study of load change control in PWRs using the methods of linear optimal control

International Nuclear Information System (INIS)

Yang, T.

1983-01-01

This thesis investigates the application of modern control theory to the problem of controlling load changes in PWR power plants. A linear optimal state feedback scheme resulting from linear optimal control theory with a quadratic cost function is reduced to a partially decentralized control system using mode preservation techniques. Minimum information transfer among major components of the plant is investigated to provide an adequate coordination, simple implementation, and a reliable control system. Two control approaches are proposed: servo and model following. Each design considers several information structures for performance comparison. Integrated output error has been included in the control systems to accommodate external and plant parameter disturbances. In addition, the cross limit feature, specific to certain modern reactor control systems, is considered in the study to prevent low pressure reactor trip conditions. An 11th order nonlinear model for the reactor and boiler is derived based on theoretical principles, and simulation tests are performed for 10% load change as an illustration of system performance

6. Linear control theory for gene network modeling.

Science.gov (United States)

Shin, Yong-Jun; Bleris, Leonidas

2010-09-16

Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

7. Convergence Guaranteed Nonlinear Constraint Model Predictive Control via I/O Linearization

Directory of Open Access Journals (Sweden)

Xiaobing Kong

2013-01-01

Full Text Available Constituting reliable optimal solution is a key issue for the nonlinear constrained model predictive control. Input-output feedback linearization is a popular method in nonlinear control. By using an input-output feedback linearizing controller, the original linear input constraints will change to nonlinear constraints and sometimes the constraints are state dependent. This paper presents an iterative quadratic program (IQP routine on the continuous-time system. To guarantee its convergence, another iterative approach is incorporated. The proposed algorithm can reach a feasible solution over the entire prediction horizon. Simulation results on both a numerical example and the continuous stirred tank reactors (CSTR demonstrate the effectiveness of the proposed method.

8. A Finite Continuation Algorithm for Bound Constrained Quadratic Programming

DEFF Research Database (Denmark)

Madsen, Kaj; Nielsen, Hans Bruun; Pinar, Mustafa C.

1999-01-01

The dual of the strictly convex quadratic programming problem with unit bounds is posed as a linear $\\ell_1$ minimization problem with quadratic terms. A smooth approximation to the linear $\\ell_1$ function is used to obtain a parametric family of piecewise-quadratic approximation problems...

9. A method for determining the non-existence of a common quadratic Lyapunov function for switched linear systems based on particle swarm optimisation

Czech Academy of Sciences Publication Activity Database

Duarte-Mermoud, M.A.; Ordonez-Hurtado, R.H.; Zagalak, Petr

2012-01-01

Roč. 43, č. 11 (2012), s. 2015-2029 ISSN 0020-7721 R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Switched linear systems * Lyapunov function * particle swarm optimization Subject RIV: BC - Control Systems Theory Impact factor: 1.305, year: 2012 http://library.utia.cas.cz/separaty/2012/AS/zagalak-0382169.pdf

10. Linear systems optimal and robust control

CERN Document Server

Sinha, Alok

2007-01-01

Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...

11. Quadratic prediction of factor scores

NARCIS (Netherlands)

Wansbeek, T

1999-01-01

Factor scores are naturally predicted by means of their conditional expectation given the indicators y. Under normality this expectation is linear in y but in general it is an unknown function of y. II is discussed that under nonnormality factor scores can be more precisely predicted by a quadratic

12. Linear algebra

CERN Document Server

Shilov, Georgi E

1977-01-01

Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.

13. Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients

Directory of Open Access Journals (Sweden)

Xue-Gang Zhou

2014-01-01

Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.

14. Duality-Based Nonlinear Quadratic Control: Application to Mobile Robot Trajectory-Following

Czech Academy of Sciences Publication Activity Database

Arnesto, L.; Girbés, V.; Sala, A.; Zima, M.; Šmídl, Václav

2015-01-01

Roč. 23, č. 4 (2015), s. 1494-1504 ISSN 1063-6536 R&D Projects: GA ČR(CZ) GAP102/11/0437 Grant - others:GA MŠk(CZ) CZ.1.05/2.1.00/03.0094 Institutional support: RVO:67985556 Keywords : trajectory planning * duality of estimation and control Subject RIV: BC - Control Systems Theory Impact factor: 2.818, year: 2015 http://library.utia.cas.cz/separaty/2015/AS/smidl-0445192.pdf

15. Mean-Variance Portfolio Selection Problem with Stochastic Salary for a Defined Contribution Pension Scheme: A Stochastic Linear-Quadratic-Exponential Framework

Directory of Open Access Journals (Sweden)

Charles Nkeki

2013-11-01

Full Text Available This paper examines a mean-variance portfolio selection problem with stochastic salary and inflation protection strategy in the accumulation phase of a defined contribution (DC pension plan. The utility function is assumed to be quadratic. It was assumed that the flow of contributions made by the PPM are invested into a market that is characterized by a cash account, an inflation-linked bond and a stock. In this paper, inflationlinked bond is traded and used to hedge inflation risks associated with the investment. The aim of this paper is to maximize the expected final wealth and minimize its variance. Efficient frontier for the three classes of assets (under quadratic utility function that will enable pension plan members (PPMs to decide their own wealth and risk in their investment profile at retirement was obtained.

16. Quadratic independence of coordinate functions of certain ...

... are `quadratically independent' in the sense that they do not satisfy any nontrivial homogeneous quadratic relations among them. Using this, it is proved that there is no genuine compact quantum group which can act faithfully on C ( M ) such that the action leaves invariant the linear span of the above coordinate functions.

17. Robust Control Design via Linear Programming

Science.gov (United States)

Keel, L. H.; Bhattacharyya, S. P.

1998-01-01

This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.

18. Relative controllability and null controllability of linear delay systems ...

African Journals Online (AJOL)

Necessary and sufficient conditions are established for the relative, absolute controllability and null controllability of the generalized linear delay system and its discrete prototype. The paper presents illuminating examples on previous controllability results by Manitius and Olbrot [7] and carries over the results of Onwuatu [8] ...

19. Linear control theory for gene network modeling.

Directory of Open Access Journals (Sweden)

Yong-Jun Shin

Full Text Available Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain and linear state-space (time domain can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

20. H∞ control for uncertain linear system over networks with Bernoulli data dropout and actuator saturation.

Science.gov (United States)

Yu, Jimin; Yang, Chenchen; Tang, Xiaoming; Wang, Ping

2018-03-01

This paper investigates the H ∞ control problems for uncertain linear system over networks with random communication data dropout and actuator saturation. The random data dropout process is modeled by a Bernoulli distributed white sequence with a known conditional probability distribution and the actuator saturation is confined in a convex hull by introducing a group of auxiliary matrices. By constructing a quadratic Lyapunov function, effective conditions for the state feedback-based H ∞ controller and the observer-based H ∞ controller are proposed in the form of non-convex matrix inequalities to take the random data dropout and actuator saturation into consideration simultaneously, and the problem of non-convex feasibility is solved by applying cone complementarity linearization (CCL) procedure. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed new design techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

Science.gov (United States)

2012-01-01

We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…

2. Genetic design of interpolated non-linear controllers for linear plants

International Nuclear Information System (INIS)

Ajlouni, N.

2000-01-01

The techniques of genetic algorithms are proposed as a means of designing non-linear PID control systems. It is shown that the use of genetic algorithms for this purpose results in highly effective non-linear PID control systems. These results are illustrated by using genetic algorithms to design a non-linear PID control system and contrasting the results with an optimally tuned linear PID controller. (author)

3. Resonance Control for Future Linear Accelerators

Energy Technology Data Exchange (ETDEWEB)

Schappert, Warren [Fermilab

2017-05-01

Many of the next generation of particle accelerators (LCLS II, PIP II) are designed for relatively low beam loading. Low beam loading requirement means the cavities can operate with narrow bandwidths, minimizing capital and base operational costs of the RF power system. With such narrow bandwidths, however, cavity detuning from microphonics or dynamic Lorentz Force Detuning becomes a significant factor, and in some cases can significantly increase both the acquisition cost and the operational cost of the machine. In addition to the efforts to passive environmental detuning reduction (microphonics) active resonance control for the SRF cavities for next generation linear machine will be required. State of the art in the field of the SRF Cavity active resonance control and the results from the recent efforts at FNAL will be presented in this talk.

4. Optimal Control of Switching Linear Systems

Directory of Open Access Journals (Sweden)

Ali Benmerzouga

2004-06-01

Full Text Available A solution to the control of switching linear systems with input constraints was given in Benmerzouga (1997 for both the conventional enumeration approach and the new approach. The solution given there turned out to be not unique. The main objective in this work is to determine the optimal control sequences {Ui(k ,  i = 1,..., M ;  k = 0, 1, ...,  N -1} which transfer the system from a given initial state  X0  to a specific target state  XT  (or to be as close as possible by using the same discrete time solution obtained in Benmerzouga (1997 and minimizing a running cost-to-go function. By using the dynamic programming technique, the optimal solution is found for both approaches given in Benmerzouga (1997. The computational complexity of the modified algorithm is also given.

5. Well logging system with linearity control

International Nuclear Information System (INIS)

Jones, J.M.

1973-01-01

Apparatus is described for controlling the gain of a nuclear well logging system comprising: (1) means for measuring the energy spectrum of gamma rays produced by earth formation materials surrounding a well borehole; (2) means for measuring the number of counts of a gamma rays having an energy falling within each of at least two predetermined energy band portions of the gamma ray energy spectrum; (3) means for generating a signal proportional to the ratio of the gamma ray counts and for comparing the ratio signal with at least one constant ratio calibration signal; (4) means for generating an error signal representative of the difference of the ratio signal and the constant ratio calibration signal; and (5) means for using the error signal to control the linearity of the well logging system. (author)

6. Designing Camera Networks by Convex Quadratic Programming

KAUST Repository

Ghanem, Bernard; Wonka, Peter; Cao, Yuanhao

2015-01-01

be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution

7. Relative null controllability of linear systems with multiple delays in ...

African Journals Online (AJOL)

varying multiple delays in state and control are developed. If the uncontrolled system is uniformly asymptotically stable, and if the linear system is controllable, then the linear system is null controllable. Journal of the Nigerian Association of ...

8. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.

Science.gov (United States)

Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kutz, J Nathan

2016-01-01

In this wIn this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.ork, we explore finite

9. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control

Science.gov (United States)

Brunton, Steven L.; Brunton, Bingni W.; Proctor, Joshua L.; Kutz, J. Nathan

2016-01-01

In this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control. PMID:26919740

10. Hybrid vehicle optimal control : Linear interpolation and singular control

NARCIS (Netherlands)

Delprat, S.; Hofman, T.

2015-01-01

Hybrid vehicle energy management can be formulated as an optimal control problem. Considering that the fuel consumption is often computed using linear interpolation over lookup table data, a rigorous analysis of the necessary conditions provided by the Pontryagin Minimum Principle is conducted. For

11. A separation theorem for the stochastic sampled-data LQG problem. [control of continuous linear plant disturbed by white noise

Science.gov (United States)

Halyo, N.; Caglayan, A. K.

1976-01-01

This paper considers the control of a continuous linear plant disturbed by white plant noise when the control is constrained to be a piecewise constant function of time; i.e. a stochastic sampled-data system. The cost function is the integral of quadratic error terms in the state and control, thus penalizing errors at every instant of time while the plant noise disturbs the system continuously. The problem is solved by reducing the constrained continuous problem to an unconstrained discrete one. It is shown that the separation principle for estimation and control still holds for this problem when the plant disturbance and measurement noise are Gaussian.

International Nuclear Information System (INIS)

Ananth, Sudarshan; Brink, Lars; Majumdar, Sucheta; Mali, Mahendra; Shah, Nabha

2017-01-01

The light-cone Hamiltonians describing both pure (N=0) Yang-Mills and N=4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N=8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.

Energy Technology Data Exchange (ETDEWEB)

Ananth, Sudarshan [Indian Institute of Science Education and Research,Pune 411008 (India); Brink, Lars [Department of Physics, Chalmers University of Technology,S-41296 Göteborg (Sweden); Institute of Advanced Studies and Department of Physics & Applied Physics,Nanyang Technological University,Singapore 637371 (Singapore); Majumdar, Sucheta [Indian Institute of Science Education and Research,Pune 411008 (India); Mali, Mahendra [School of Physics, Indian Institute of Science Education and Research,Thiruvananthapuram, Trivandrum 695016 (India); Shah, Nabha [Indian Institute of Science Education and Research,Pune 411008 (India)

2017-03-31

The light-cone Hamiltonians describing both pure (N=0) Yang-Mills and N=4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N=8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.

14. Controller for control of pulsed electron linear accelerator

International Nuclear Information System (INIS)

Bryazgin, A.A.; Faktorovich, B.L.

1995-01-01

The controller is based on the K1816VE31 microprocessor and contains 22-channel integrating 10-digital two-wire analog-to-digital converter, 8-channel 12-digit digital-to-analog converter, 24-digit output register, 16-digit input register pulse generator in the range of 0.5 - 50 Hz with the regulation step of 0.05 Hz and delayed pulse generator. The controller is used for pulsed electron linear accelerator control and is reduced to regulation of the electron beam pulse repetition rate and beam energy. 1 ref., 1 fig

15. PWR control system design using advanced linear and non-linear methodologies

International Nuclear Information System (INIS)

Rabindran, N.; Whitmarsh-Everiss, M.J.

2004-01-01

Consideration is here given to the methodology deployed for non-linear heuristic analysis in the time domain supported by multi-variable linear control system design methods for the purposes of operational dynamics and control system analysis. This methodology is illustrated by the application of structural singular value μ analysis to Pressurised Water Reactor control system design. (author)

16. Solitons in quadratic nonlinear photonic crystals

DEFF Research Database (Denmark)

Corney, Joel Frederick; Bang, Ole

2001-01-01

We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....

17. Dose fractionated gamma knife radiosurgery for large arteriovenous malformations on daily or alternate day schedule outside the linear quadratic model: Proof of concept and early results. A substitute to volume fractionation.

Science.gov (United States)

Mukherjee, Kanchan Kumar; Kumar, Narendra; Tripathi, Manjul; Oinam, Arun S; Ahuja, Chirag K; Dhandapani, Sivashanmugam; Kapoor, Rakesh; Ghoshal, Sushmita; Kaur, Rupinder; Bhatt, Sandeep

2017-01-01

18. The application of the linear-quadratic model to fractionated radiotherapy when there is incomplete normal tissue recovery between fractions, and possible implications for treatments involving multiple fractions per day

International Nuclear Information System (INIS)

Dale, R.G.

1986-01-01

By extending a previously developed mathematical model based on the linear-quadratic dose-effect relationship, it is possible to examine the consequences of performing fractionated treatments for which there is insufficient time between fractions to allow complete damage repair. Equations are derived which give the relative effectiveness of such treatments in terms of tissue-repair constants (μ values) and α/β ratios, and these are then applied to some examples of treatments involving multiple fractions per day. The interplay of the various mechanisms involved (including repopulation effects) and their possible influence on treatments involving closely spaced fractions are examined. If current indications of the differences in recovery rates between early- and late-reacting normal tissues are representative, then it is shown that such differences may limit the clinical potential of accelerated fractionation regimes, where several fractions per day are given in a relatively short overall time. (author)

CERN Document Server

Dickmann, M

2015-01-01

In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of T-isometry, where T is a preorder of the given ring, A, or T = A^2. (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in

20. Direct Torque Control With Feedback Linearization for Induction Motor Drives

DEFF Research Database (Denmark)

2017-01-01

This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... in simulations. The sliding controller is compared with a linear DTC scheme with and without feedback linearization. Extensive experimental results for a sensorless IM drive validate the proposed solution....

1. Control of Coherent Instabilities by Linear Coupling

CERN Document Server

Cappi, R; Möhl, D

2001-01-01

One of the main challenges in the design of high-energy colliders is the very high luminosity necessary to provide significant event rates. This imposes strong constraints to achieve and preserve beams of high brightness, i.e. intensity to emittance ratio, all along the injector chain. Amongst the phenomena that can blow up and even destroy the beam are transverse coherent instabilities. Two methods are widely used to damp these instabilities. The first one is Landau damping by non-linearities. The second consists in using an electronic feedback system. However, non-linearities are harmful to single-particle motion due to resonance phenomena, and powerful wideband feedback systems are expensive. It is shown in this paper that linear coupling is a further method that can be used to damp transverse coherent instabilities. The theory of collective motion is outlined, including the coupling of instability rise and damping rates, chromaticity and Landau damping. Experimental results obtained at the CERN PS are rep...

2. Feedback linearizing control of a MIMO power system

Science.gov (United States)

Ilyes, Laszlo

Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.

CERN Document Server

Ellis, John; Sueiro, Maria

2014-01-01

Inflationary models based on a single scalar field $\\phi$ with a quadratic potential $V = \\frac{1}{2} m^2 \\phi^2$ are disfavoured by the recent Planck constraints on the scalar index, $n_s$, and the tensor-to-scalar ratio for cosmological density perturbations, $r_T$. In this paper we study how such a quadratic inflationary model can be rescued by postulating additional fields with quadratic potentials, such as might occur in sneutrino models, which might serve as either curvatons or supplementary inflatons. Introducing a second scalar field reduces but does not remove the pressure on quadratic inflation, but we find a sample of three-field models that are highly compatible with the Planck data on $n_s$ and $r_T$. We exhibit a specific three-sneutrino example that is also compatible with the data on neutrino mass difference and mixing angles.

4. Direct torque control with feedback linearization for induction motor drives

DEFF Research Database (Denmark)

2015-01-01

This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using Variable Structure Control (VSC) with proportional control in the vicinity...... robust stability analysis are presented. The sliding controller is compared with a linear DTC scheme, and experimental results for a sensorless IM drive validate the proposed solution....

5. Design of an Optimal Preview Controller for Linear Discrete-Time Descriptor Noncausal Multirate Systems

Directory of Open Access Journals (Sweden)

Mengjuan Cao

2014-01-01

Full Text Available The linear discrete-time descriptor noncausal multirate system is considered for the presentation of a new design approach for optimal preview control. First, according to the characteristics of causal controllability and causal observability, the descriptor noncausal system is constructed into a descriptor causal closed-loop system. Second, by using the characteristics of the causal system and elementary transformation, the descriptor causal closed-loop system is transformed into a normal system. Then, taking advantage of the discrete lifting technique, the normal multirate system is converted to a single-rate system. By making use of the standard preview control method, we construct the descriptor augmented error system. The quadratic performance index for the multirate system is given, which can be changed into one for the single-rate system. In addition, a new single-rate system is obtained, the optimal control law of which is given. Returning to the original system, the optimal preview controller for linear discrete-time descriptor noncausal multirate systems is derived. The stabilizability and detectability of the lifted single-rate system are discussed in detail. The optimal preview control design techniques are illustrated by simulation results for a simple example.

6. Quadratic reactivity fuel cycle model

International Nuclear Information System (INIS)

Lewins, J.D.

1985-01-01

For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper

7. Quadratic Lagrangians and Legendre transformation

International Nuclear Information System (INIS)

Magnano, G.

1988-01-01

In recent years interest is grown about the so-called non-linear Lagrangians for gravitation. In particular, the quadratic lagrangians are currently believed to play a fundamental role both for quantum gravity and for the super-gravity approach. The higher order and high degree of non-linearity of these theories make very difficult to extract physical information out of them. The author discusses how the Legendre transformation can be applied to a wide class of non-linear theories: it corresponds to a conformal transformation whenever the Lagrangian depends only on the scalar curvature, while it has a more general form if the Lagrangian depends on the full Ricci tensor

8. Compressor Surge Control Design Using Linear Matrix Inequality Approach

OpenAIRE

Uddin, Nur; Gravdahl, Jan Tommy

2017-01-01

A novel design for active compressor surge control system (ASCS) using linear matrix inequality (LMI) approach is presented and including a case study on piston-actuated active compressor surge control system (PAASCS). The non-linear system dynamics of the PAASCS is transformed into linear parameter varying (LPV) system dynamics. The system parameters are varying as a function of the compressor performance curve slope. A compressor surge stabilization problem is then formulated as a LMI probl...

9. An Analysis and Design for Nonlinear Quadratic Systems Subject to Nested Saturation

Directory of Open Access Journals (Sweden)

Minsong Zhang

2013-01-01

Full Text Available This paper considers the stability problem for nonlinear quadratic systems with nested saturation input. The interesting treatment method proposed to nested saturation here is put into use a well-established linear differential control tool. And the new conclusions include the existing conclusion on this issue and have less conservatism than before. Simulation example illustrates the effectiveness of the established methodologies.

10. Input/Output linearizing control of a nuclear reactor

International Nuclear Information System (INIS)

Perez C, V.

1994-01-01

The feedback linearization technique is an approach to nonlinear control design. The basic idea is to transform, by means of algebraic methods, the dynamics of a nonlinear control system into a full or partial linear system. As a result of this linearization process, the well known basic linear control techniques can be used to obtain some desired dynamic characteristics. When full linearization is achieved, the method is referred to as input-state linearization, whereas when partial linearization is achieved, the method is referred to as input-output linearization. We will deal with the latter. By means of input-output linearization, the dynamics of a nonlinear system can be decomposed into an external part (input-output), and an internal part (unobservable). Since the external part consists of a linear relationship among the output of the plant and the auxiliary control input mentioned above, it is easy to design such an auxiliary control input so that we get the output to behave in a predetermined way. Since the internal dynamics of the system is known, we can check its dynamics behavior on order of to ensure that the internal states are bounded. The linearization method described here can be applied to systems with one-input/one-output, as well as to systems with multiple-inputs/multiple-outputs. Typical control problems such as stabilization and reference path tracking can be solved using this technique. In this work, the input/output linearization theory is presented, as well as the problem of getting the output variable to track some desired trayectories. Further, the design of an input/output control system applied to the nonlinear model of a research nuclear reactor is included, along with the results obtained by computer simulation. (Author)

11. Linear System Control Using Stochastic Learning Automata

Science.gov (United States)

Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.

1998-01-01

This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.

12. Euclidean null controllability of linear systems with delays in state ...

African Journals Online (AJOL)

Sufficient conditions are developed for the Euclidean controllability of linear systems with delay in state and in control. Namely, if the uncontrolled system is uniformly asymptotically stable and the control equation proper, then the control system is Euclidean null controllable. Journal of the Nigerian Association of ...

13. High performance computing in linear control

International Nuclear Information System (INIS)

Datta, B.N.

1993-01-01

Remarkable progress has been made in both theory and applications of all important areas of control. The theory is rich and very sophisticated. Some beautiful applications of control theory are presently being made in aerospace, biomedical engineering, industrial engineering, robotics, economics, power systems, etc. Unfortunately, the same assessment of progress does not hold in general for computations in control theory. Control Theory is lagging behind other areas of science and engineering in this respect. Nowadays there is a revolution going on in the world of high performance scientific computing. Many powerful computers with vector and parallel processing have been built and have been available in recent years. These supercomputers offer very high speed in computations. Highly efficient software, based on powerful algorithms, has been developed to use on these advanced computers, and has also contributed to increased performance. While workers in many areas of science and engineering have taken great advantage of these hardware and software developments, control scientists and engineers, unfortunately, have not been able to take much advantage of these developments

14. Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.

Science.gov (United States)

Mazandarani, Mehran; Pariz, Naser

2018-05-01

This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

15. Linear Parameter Varying Versus Linear Time Invariant Reduced Order Controller Design of Turboprop Aircraft Dynamics

Directory of Open Access Journals (Sweden)

Widowati

2012-07-01

Full Text Available The applicability of parameter varying reduced order controllers to aircraft model is proposed. The generalization of the balanced singular perturbation method of linear time invariant (LTI system is used to reduce the order of linear parameter varying (LPV system. Based on the reduced order model the low-order LPV controller is designed by using synthesis technique. The performance of the reduced order controller is examined by applying it to lateral-directional control of aircraft model having 20th order. Furthermore, the time responses of the closed loop system with reduced order LPV controllers and reduced order LTI controller is compared. From the simulation results, the 8th order LPV controller can maintain stability and to provide the same level of closed-loop systems performance as the full-order LPV controller. It is different with the reduced-order LTI controller that cannot maintain stability and performance for all allowable parameter trajectories.

16. Finite element method with quadratic quadrilateral unit for solving two dimensional incompressible N-S equation

International Nuclear Information System (INIS)

Tao Ganqiang; Yu Qing; Xiao Xiao

2011-01-01

Viscous and incompressible fluid flow is important for numerous engineering mechanics problems. Because of high non linear and incompressibility for Navier-Stokes equation, it is very difficult to solve Navier-Stokes equation by numerical method. According to its characters of Navier-Stokes equation, quartic derivation controlling equation of the two dimensional incompressible Navier-Stokes equation is set up firstly. The method solves the problem for dealing with vorticity boundary and automatically meets incompressibility condition. Then Finite Element equation for Navier-Stokes equation is proposed by using quadratic quadrilateral unit with 8 nodes in which the unit function is quadratic and non linear.-Based on it, the Finite Element program of quadratic quadrilateral unit with 8 nodes is developed. Lastly, numerical experiment proves the accuracy and dependability of the method and also shows the method has good application prospect in computational fluid mechanics. (authors)

17. Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.

Science.gov (United States)

Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J

2016-04-01

The objective of this study was to evaluate the ability of linear regression models to decode patterns of muscle coactivation from intramuscular electromyogram (EMG) and provide simultaneous myoelectric control of a virtual 3-DOF wrist/hand system. Performance was compared to the simultaneous control of conventional myoelectric prosthesis methods using intramuscular EMG (parallel dual-site control)-an approach that requires users to independently modulate individual muscles in the residual limb, which can be challenging for amputees. Linear regression control was evaluated in eight able-bodied subjects during a virtual Fitts' law task and was compared to performance of eight subjects using parallel dual-site control. An offline analysis also evaluated how different types of training data affected prediction accuracy of linear regression control. The two control systems demonstrated similar overall performance; however, the linear regression method demonstrated improved performance for targets requiring use of all three DOFs, whereas parallel dual-site control demonstrated improved performance for targets that required use of only one DOF. Subjects using linear regression control could more easily activate multiple DOFs simultaneously, but often experienced unintended movements when trying to isolate individual DOFs. Offline analyses also suggested that the method used to train linear regression systems may influence controllability. Linear regression myoelectric control using intramuscular EMG provided an alternative to parallel dual-site control for 3-DOF simultaneous control at the wrist and hand. The two methods demonstrated different strengths in controllability, highlighting the tradeoff between providing simultaneous control and the ability to isolate individual DOFs when desired.

18. On-line control models for the Stanford Linear Collider

International Nuclear Information System (INIS)

Sheppard, J.C.; Helm, R.H.; Lee, M.J.; Woodley, M.D.

1983-03-01

Models for computer control of the SLAC three-kilometer linear accelerator and damping rings have been developed as part of the control system for the Stanford Linear Collider. Some of these models have been tested experimentally and implemented in the control program for routine linac operations. This paper will describe the development and implementation of these models, as well as some of the operational results

19. Structured Control of Affine Linear Parameter Varying Systems

DEFF Research Database (Denmark)

2011-01-01

This paper presents a new procedure to design structured controllers for discrete-time afﬁne linear parametervarying systems (A LPV). The class of control structures includes decentralized of any order, ﬁxed order output feedback, simultaneous plant-control design, among others. A parametervarying...... non-convex condition for an upper bound on the induced L2-norm performance is solved by an iterative linear matrix inequalities (LMI) optimization algorithm. Numerical examples demostrate the effectiveness of the proposed approach....

20. Analysis, Adaptive Control and Adaptive Synchronization of a Nine-Term Novel 3-D Chaotic System with Four Quadratic Nonlinearities and its Circuit Simulation

Directory of Open Access Journals (Sweden)

S. Vaidyanathan

2014-11-01

Full Text Available This research work describes a nine-term novel 3-D chaotic system with four quadratic nonlinearities and details its qualitative properties. The phase portraits of the 3-D novel chaotic system simulated using MATLAB, depict the strange chaotic attractor of the system. For the parameter values chosen in this work, the Lyapunov exponents of the novel chaotic system are obtained as L1 = 6.8548, L2 = 0 and L3 = −32.8779. Also, the Kaplan-Yorke dimension of the novel chaotic system is obtained as DKY = 2.2085. Next, an adaptive controller is design to achieve global stabilization of the 3-D novel chaotic system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global chaos synchronization of two identical novel chaotic systems with unknown system parameters. Finally, an electronic circuit realization of the novel chaotic system is presented using SPICE to confirm the feasibility of the theoretical model.

1. Bayesian integration and non-linear feedback control in a full-body motor task.

Science.gov (United States)

Stevenson, Ian H; Fernandes, Hugo L; Vilares, Iris; Wei, Kunlin; Körding, Konrad P

2009-12-01

A large number of experiments have asked to what degree human reaching movements can be understood as being close to optimal in a statistical sense. However, little is known about whether these principles are relevant for other classes of movements. Here we analyzed movement in a task that is similar to surfing or snowboarding. Human subjects stand on a force plate that measures their center of pressure. This center of pressure affects the acceleration of a cursor that is displayed in a noisy fashion (as a cloud of dots) on a projection screen while the subject is incentivized to keep the cursor close to a fixed position. We find that salient aspects of observed behavior are well-described by optimal control models where a Bayesian estimation model (Kalman filter) is combined with an optimal controller (either a Linear-Quadratic-Regulator or Bang-bang controller). We find evidence that subjects integrate information over time taking into account uncertainty. However, behavior in this continuous steering task appears to be a highly non-linear function of the visual feedback. While the nervous system appears to implement Bayes-like mechanisms for a full-body, dynamic task, it may additionally take into account the specific costs and constraints of the task.

2. Bayesian integration and non-linear feedback control in a full-body motor task.

Directory of Open Access Journals (Sweden)

Ian H Stevenson

2009-12-01

Full Text Available A large number of experiments have asked to what degree human reaching movements can be understood as being close to optimal in a statistical sense. However, little is known about whether these principles are relevant for other classes of movements. Here we analyzed movement in a task that is similar to surfing or snowboarding. Human subjects stand on a force plate that measures their center of pressure. This center of pressure affects the acceleration of a cursor that is displayed in a noisy fashion (as a cloud of dots on a projection screen while the subject is incentivized to keep the cursor close to a fixed position. We find that salient aspects of observed behavior are well-described by optimal control models where a Bayesian estimation model (Kalman filter is combined with an optimal controller (either a Linear-Quadratic-Regulator or Bang-bang controller. We find evidence that subjects integrate information over time taking into account uncertainty. However, behavior in this continuous steering task appears to be a highly non-linear function of the visual feedback. While the nervous system appears to implement Bayes-like mechanisms for a full-body, dynamic task, it may additionally take into account the specific costs and constraints of the task.

3. Practical Implementations of Advanced Process Control for Linear Systems

DEFF Research Database (Denmark)

Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

2013-01-01

This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process and a lineari......This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process...... on pilot plant equipment on the department of Chemical Engineering DTU Lyngby....

4. Automatic frequency control system for driving a linear accelerator

International Nuclear Information System (INIS)

Helgesson, A.L.

1976-01-01

An automatic frequency control system is described for maintaining the drive frequency applied to a linear accelerator to produce maximum particle output from the accelerator. The particle output amplitude is measured and the frequency of the radio frequency source powering the linear accelerator is adjusted to maximize particle output amplitude

5. Use of probabilistic weights to enhance linear regression myoelectric control.

Science.gov (United States)

Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J

2015-12-01

Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts' law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p linear regression control. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.

6. SU-F-T-02: Estimation of Radiobiological Doses (BED and EQD2) of Single Fraction Electronic Brachytherapy That Equivalent to I-125 Eye Plaque: By Using Linear-Quadratic and Universal Survival Curve Models

International Nuclear Information System (INIS)

Kim, Y; Waldron, T; Pennington, E

2016-01-01

Purpose: To test the radiobiological impact of hypofractionated choroidal melanoma brachytherapy, we calculated single fraction equivalent doses (SFED) of the tumor that equivalent to 85 Gy of I125-BT for 20 patients. Corresponding organs-at-risks (OARs) doses were estimated. Methods: Twenty patients treated with I125-BT were retrospectively examined. The tumor SFED values were calculated from tumor BED using a conventional linear-quadratic (L-Q) model and an universal survival curve (USC). The opposite retina (α/β = 2.58), macula (2.58), optic disc (1.75), and lens (1.2) were examined. The % doses of OARs over tumor doses were assumed to be the same as for a single fraction delivery. The OAR SFED values were converted into BED and equivalent dose in 2 Gy fraction (EQD2) by using both L-Q and USC models, then compared to I125-BT. Results: The USC-based BED and EQD2 doses of the macula, optic disc, and the lens were on average 118 ± 46% (p 14 Gy). Conclusion: The estimated single fraction doses were feasible to be delivered within 1 hour using a high dose rate source such as electronic brachytherapy (eBT). However, the estimated OAR doses using eBT were 112 ∼ 118% higher than when using the I125-BT technique. Continued exploration of alternative dose rate or fractionation schedules should be followed.

7. ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (DEC VAX VERSION)

Science.gov (United States)

Frisch, H.

1994-01-01

This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following

8. ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (CDC VERSION)

Science.gov (United States)

Armstrong, E. S.

1994-01-01

This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following

9. Implementation of neural network based non-linear predictive control

DEFF Research Database (Denmark)

Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

1999-01-01

This paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems, including open-loop unstable and non-minimum phase systems, but has also been proposed to be extended for the control...... of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...... on an efficient quasi-Newton algorithm. The performance is demonstrated on a pneumatic servo system....

NARCIS (Netherlands)

den Hertog, D.; de Klerk, E.; Roos, J.

2000-01-01

In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

CERN Document Server

Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio

2016-01-01

We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...

Science.gov (United States)

Fay, Temple H.

2010-01-01

Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

13. The graphics software of the Saclay Linear Accelerator control system

International Nuclear Information System (INIS)

Gournay, J.F.

1988-01-01

The graphics software used for the control of the Saclay Linear Accelerator is described. The specific requirements that such a software must have in this environment are outlined and some typical applications are presented. (orig.)

14. Turnpike theory of continuous-time linear optimal control problems

CERN Document Server

Zaslavski, Alexander J

2015-01-01

Individual turnpike results are of great interest due to their numerous applications in engineering and in economic theory; in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems.  The book is intended for engineers as well as for mathematicians interested in the calculus of variations, optimal control, and in applied functional analysis. Two large classes of problems are studied in more depth. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands. Chapters 3-5 consist of linear control problems with autonomous nonconvex and nonsmooth integrands.  Chapter 6 discusses a turnpike property for dynamic zero-sum games with linear constraints. Chapter 7 examines genericity results. In Chapter 8, the description of structure of variational problems with extended-valued integrands is obtained. Chapter 9 ends the exposition with a study of turnpike phenomenon for dynamic games with extended value integran...

15. Modern linear control design a time-domain approach

CERN Document Server

Caravani, Paolo

2013-01-01

This book offers a compact introduction to modern linear control design.  The simplified overview presented of linear time-domain methodology paves the road for the study of more advanced non-linear techniques. Only rudimentary knowledge of linear systems theory is assumed - no use of Laplace transforms or frequency design tools is required. Emphasis is placed on assumptions and logical implications, rather than abstract completeness; on interpretation and physical meaning, rather than theoretical formalism; on results and solutions, rather than derivation or solvability.  The topics covered include transient performance and stabilization via state or output feedback; disturbance attenuation and robust control; regional eigenvalue assignment and constraints on input or output variables; asymptotic regulation and disturbance rejection. Lyapunov theory and Linear Matrix Inequalities (LMI) are discussed as key design methods. All methods are demonstrated with MATLAB to promote practical use and comprehension. ...

NARCIS (Netherlands)

Ben-Tal, A.; den Hertog, D.

The problem of minimizing a quadratic objective function subject to one or two quadratic constraints is known to have a hidden convexity property, even when the quadratic forms are indefinite. The equivalent convex problem is a semidefinite one, and the equivalence is based on the celebrated

Binary classification is posed as a quadratically constrained quadratic problem and solved using the proposed method. Each class in the binary classification problem is modeled as a multidimensional ellipsoid to forma quadratic constraint in the problem. Particle swarms help in determining the optimal hyperplane or ...

18. Linear-constraint wavefront control for exoplanet coronagraphic imaging systems

Science.gov (United States)

Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean

2017-01-01

A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.

19. Linear dynamical quantum systems analysis, synthesis, and control

CERN Document Server

Nurdin, Hendra I

2017-01-01

This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...

20. Computer Based Dose Control System on Linear Accelerator

International Nuclear Information System (INIS)

Taxwim; Djoko-SP; Widi-Setiawan; Agus-Budi Wiyatna

2000-01-01

The accelerator technology has been used for radio therapy. DokterKaryadi Hospital in Semarang use electron or X-ray linear accelerator (Linac)for cancer therapy. One of the control parameter of linear accelerator isdose rate. It is particle current or amount of photon rate to the target. Thecontrol of dose rate in linac have been done by adjusting repetition rate ofanode pulse train of electron source. Presently the control is stillproportional control. To enhance the quality of the control result (minimalstationer error, velocity and stability), the dose control system has beendesigned by using the PID (Proportional Integral Differential) controlalgorithm and the derivation of transfer function of control object.Implementation of PID algorithm control system is done by giving an input ofdose error (the different between output dose and dose rate set point). Theoutput of control system is used for correction of repetition rate set pointfrom pulse train of electron source anode. (author)

CERN Document Server

Andreescu, Titu

2015-01-01

This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.

2. Feedback Linearized Aircraft Control Using Dynamic Cell Structure

Science.gov (United States)

Jorgensen, C. C.

1998-01-01

A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

2008-10-31

Oct 31, 2008 ... We say that (a1,··· ,an) is a zero of the polynomial f if f (a1,··· ,an) = 0. One of the main problems in Mathematics is to determine whether the given polynomial has a (non-trivial) zero or not. For example, let us recall the Fermat's last theorem: V. Suresh University Of Hyderabad Hyderabad. Isotropy of quadratic ...

4. Observability of linear control systems on Lie groups

International Nuclear Information System (INIS)

Ayala, V.; Hacibekiroglu, A.K.

1995-01-01

In this paper, we study the observability problem for a linear control system Σ on a Lie group G. The drift vector field of Σ is an infinitesimal automorphism of G and the control vectors are elements in the Lie algebra of G. We establish algebraic conditions to characterize locally and globally observability for Σ. As in the linear case on R n , these conditions are independent of the control vector. We give an algorithm on the co-tangent bundle of G to calculate the equivalence class of the neutral element. (author). 6 refs

5. Optimal traffic control in highway transportation networks using linear programming

KAUST Repository

Li, Yanning; Canepa, Edward S.; Claudel, Christian G.

2014-01-01

of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can

6. State Space Reduction of Linear Processes using Control Flow Reconstruction

NARCIS (Netherlands)

van de Pol, Jan Cornelis; Timmer, Mark

2009-01-01

We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

7. State Space Reduction of Linear Processes Using Control Flow Reconstruction

NARCIS (Netherlands)

van de Pol, Jan Cornelis; Timmer, Mark; Liu, Zhiming; Ravn, Anders P.

2009-01-01

We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

8. Neural Generalized Predictive Control of a non-linear Process

DEFF Research Database (Denmark)

Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

1998-01-01

The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability qu...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem.......The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

9. Use of probabilistic weights to enhance linear regression myoelectric control

Science.gov (United States)

Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

2015-12-01

Objective. Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Approach. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts’ law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Main results. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p < 0.05) by preventing extraneous movement at additional DOFs. Similar results were seen in experiments with two transradial amputees. Though goodness-of-fit evaluations suggested that the EMG feature distributions showed some deviations from the Gaussian, equal-covariance assumptions used in this experiment, the assumptions were sufficiently met to provide improved performance compared to linear regression control. Significance. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.

10. The Type-2 Fuzzy Logic Controller-Based Maximum Power Point Tracking Algorithm and the Quadratic Boost Converter for Pv System

Science.gov (United States)

Altin, Necmi

2018-05-01

An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.

11. Selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays and impacts of using incorrect weighting factors on curve stability, data quality, and assay performance.

Science.gov (United States)

Gu, Huidong; Liu, Guowen; Wang, Jian; Aubry, Anne-Françoise; Arnold, Mark E

2014-09-16

A simple procedure for selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays is reported. The correct weighting factor is determined by the relationship between the standard deviation of instrument responses (σ) and the concentrations (x). The weighting factor of 1, 1/x, or 1/x(2) should be selected if, over the entire concentration range, σ is a constant, σ(2) is proportional to x, or σ is proportional to x, respectively. For the first time, we demonstrated with detailed scientific reasoning, solid historical data, and convincing justification that 1/x(2) should always be used as the weighting factor for all bioanalytical LC-MS/MS assays. The impacts of using incorrect weighting factors on curve stability, data quality, and assay performance were thoroughly investigated. It was found that the most stable curve could be obtained when the correct weighting factor was used, whereas other curves using incorrect weighting factors were unstable. It was also found that there was a very insignificant impact on the concentrations reported with calibration curves using incorrect weighting factors as the concentrations were always reported with the passing curves which actually overlapped with or were very close to the curves using the correct weighting factor. However, the use of incorrect weighting factors did impact the assay performance significantly. Finally, the difference between the weighting factors of 1/x(2) and 1/y(2) was discussed. All of the findings can be generalized and applied into other quantitative analysis techniques using calibration curves with weighted least-squares regression algorithm.

12. Time-optimal feedback control for linear systems

International Nuclear Information System (INIS)

Mirica, S.

1976-01-01

The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)

13. Introduction to geometric nonlinear control; Linearization, observability, decoupling

Energy Technology Data Exchange (ETDEWEB)

Respondek, W [Laboratoire de Mathematiques, INSA de Rouen (France)

2002-07-15

These notes are devoted to the problems of linearization, observability, and decoupling of nonlinear control systems. Together with notes of Bronislaw Jakubczyk in the same volume, they form an introduction to geometric methods in nonlinear control theory. In the first part we discuss equivalence of control systems. We consider various aspects of the problem: state-space and feedback equivalence, local and global equivalence, equivalence to linear and partially linear systems. In the second part we present the notion of observability and give a geometric rank condition for local observability and an algebraic characterization of local observability. We discuss unm observability, decompositions of non-observable systems, and properties of generic observable systems. In the third part we introduce the notion of invariant distributions and discuss disturbance decoupling and input-output decoupling. Many concepts and results are illustrated with examples. (author)

14. A Trust-region-based Sequential Quadratic Programming Algorithm

DEFF Research Database (Denmark)

Henriksen, Lars Christian; Poulsen, Niels Kjølstad

This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints.......This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints....

15. Digital linear control theory for automatic stepsize control

NARCIS (Netherlands)

Verhoeven, A.; Beelen, T.G.J.; Hautus, M.L.J.; Maten, ter E.J.W.; Anile, A.M.; Ali, G.; Mascali, G.

2006-01-01

In transient analysis of electrical circuits the solution is computed by means of numerical integration methods. Adaptive stepsize control is used to control the local errors of the numerical solution. For optimization purposes smoother stepsize controllers can ensure that the errors and stepsizes

16. Optimal traffic control in highway transportation networks using linear programming

KAUST Repository

Li, Yanning

2014-06-01

This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.

17. Linearized models for a new magnetic control in MAST

Energy Technology Data Exchange (ETDEWEB)

Artaserse, G., E-mail: giovanni.artaserse@enea.it [Associazione Euratom-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Maviglia, F.; Albanese, R. [Associazione Euratom-ENEA-CREATE sulla Fusione, Via Claudio 21, I-80125 Napoli (Italy); McArdle, G.J.; Pangione, L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

2013-10-15

Highlights: ► We applied linearized models for a new magnetic control on MAST tokamak. ► A suite of procedures, conceived to be machine independent, have been used. ► We carried out model-based simulations, taking into account eddy currents effects. ► Comparison with the EFIT flux maps and the experimental magnetic signals are shown. ► A current driven model for the dynamic simulations of the experimental data have been performed. -- Abstract: The aim of this work is to provide reliable linearized models for the design and assessment of a new magnetic control system for MAST (Mega Ampère Spherical Tokamak) using rtEFIT, which can easily be exported to MAST Upgrade. Linearized models for magnetic control have been obtained using the 2D axisymmetric finite element code CREATE L. MAST linearized models include equivalent 2D axisymmetric schematization of poloidal field (PF) coils, vacuum vessel, and other conducting structures. A plasmaless and a double null configuration have been chosen as benchmark cases for the comparison with experimental data and EFIT reconstructions. Good agreement has been found with the EFIT flux map and the experimental signals coming from magnetic probes with only few mismatches probably due to broken sensors. A suite of procedures (equipped with a user friendly interface to be run even remotely) to provide linearized models for magnetic control is now available on the MAST linux machines. A new current driven model has been used to obtain a state space model having the PF coil currents as inputs. Dynamic simulations of experimental data have been carried out using linearized models, including modelling of the effects of the passive structures, showing a fair agreement. The modelling activity has been useful also to reproduce accurately the interaction between plasma current and radial position control loops.

18. Linearized models for a new magnetic control in MAST

International Nuclear Information System (INIS)

Artaserse, G.; Maviglia, F.; Albanese, R.; McArdle, G.J.; Pangione, L.

2013-01-01

Highlights: ► We applied linearized models for a new magnetic control on MAST tokamak. ► A suite of procedures, conceived to be machine independent, have been used. ► We carried out model-based simulations, taking into account eddy currents effects. ► Comparison with the EFIT flux maps and the experimental magnetic signals are shown. ► A current driven model for the dynamic simulations of the experimental data have been performed. -- Abstract: The aim of this work is to provide reliable linearized models for the design and assessment of a new magnetic control system for MAST (Mega Ampère Spherical Tokamak) using rtEFIT, which can easily be exported to MAST Upgrade. Linearized models for magnetic control have been obtained using the 2D axisymmetric finite element code CREATE L. MAST linearized models include equivalent 2D axisymmetric schematization of poloidal field (PF) coils, vacuum vessel, and other conducting structures. A plasmaless and a double null configuration have been chosen as benchmark cases for the comparison with experimental data and EFIT reconstructions. Good agreement has been found with the EFIT flux map and the experimental signals coming from magnetic probes with only few mismatches probably due to broken sensors. A suite of procedures (equipped with a user friendly interface to be run even remotely) to provide linearized models for magnetic control is now available on the MAST linux machines. A new current driven model has been used to obtain a state space model having the PF coil currents as inputs. Dynamic simulations of experimental data have been carried out using linearized models, including modelling of the effects of the passive structures, showing a fair agreement. The modelling activity has been useful also to reproduce accurately the interaction between plasma current and radial position control loops

19. Applied Research of Enterprise Cost Control Based on Linear Programming

Directory of Open Access Journals (Sweden)

Yu Shuo

2015-01-01

This paper researches the enterprise cost control through the linear programming model, and analyzes the restriction factors of the labor of enterprise production, raw materials, processing equipment, sales price, and other factors affecting the enterprise income, so as to obtain an enterprise cost control model based on the linear programming. This model can calculate rational production mode in the case of limited resources, and acquire optimal enterprise income. The production guiding program and scheduling arrangement of the enterprise can be obtained through calculation results, so as to provide scientific and effective guidance for the enterprise production. This paper adds the sensitivity analysis in the linear programming model, so as to learn about the stability of the enterprise cost control model based on linear programming through the sensitivity analysis, and verify the rationality of the model, and indicate the direction for the enterprise cost control. The calculation results of the model can provide a certain reference for the enterprise planning in the market economy environment, which have strong reference and practical significance in terms of the enterprise cost control.

20. Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.

Science.gov (United States)

Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

2018-04-01

This paper develops a near optimal boundary control method for distributed parameter systems governed by uncertain linear 1-D parabolic partial differential equations (PDE) by using approximate dynamic programming. A quadratic surface integral is proposed to express the optimal cost functional for the infinite-dimensional state space. Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite-dimensional domain without using any model reduction. Subsequently, a neural network identifier is developed to estimate the unknown spatially varying coefficient in PDE dynamics. Novel tuning law is proposed to guarantee the boundedness of identifier approximation error in the PDE domain. A radial basis network (RBN) is subsequently proposed to generate an approximate solution for the optimal surface kernel function online. The tuning law for near optimal RBN weights is created, such that the HJB equation error is minimized while the dynamics are identified and closed-loop system remains stable. Ultimate boundedness (UB) of the closed-loop system is verified by using the Lyapunov theory. The performance of the proposed controller is successfully confirmed by simulation on an unstable diffusion-reaction process.

1. Time-varying linear control for tiltrotor aircraft

Directory of Open Access Journals (Sweden)

Jing ZHANG

2018-04-01

Full Text Available Tiltrotor aircraft have three flight modes: helicopter mode, airplane mode, and transition mode. A tiltrotor has characteristics of highly nonlinear, time-varying flight dynamics and inertial/control couplings in its transition mode. It can transit from the helicopter mode to the airplane mode by tilting its nacelles, and an effective controller is crucial to accomplish tilting transition missions. Longitudinal dynamic characteristics of the tiltrotor are described by a nonlinear Lagrange-form model, which takes into account inertial/control couplings and aerodynamic interferences. Reference commands for airspeed velocity and attitude in the transition mode are calculated dynamically by visiting a command library which is founded in advance by analyzing the flight envelope of the tiltrotor. A Time-Varying Linear (TVL model is obtained using a Taylor-expansion based online linearization technique from the nonlinear model. Subsequently, based on an optimal control concept, an online optimization based control method with input constraints considered is proposed. To validate the proposed control method, three typical tilting transition missions are simulated using the nonlinear model of XV-15 tiltrotor aircraft. Simulation results show that the controller can be used to control the tiltrotor throughout its operating envelop which includes a transition flight, and can also deal with vertical gust disturbances. Keywords: Constrained optimal control, Inertia/control couplings, Tiltrotor aircraft, Time-varying control, Transition mode

2. Synchronization and Control of Linearly Coupled Singular Systems

Directory of Open Access Journals (Sweden)

Fang Qingxiang

2013-01-01

Full Text Available The synchronization and control problem of linearly coupled singular systems is investigated. The uncoupled dynamical behavior at each node is general and can be chaotic or, otherwise the coupling matrix is not assumed to be symmetrical. Some sufficient conditions for globally exponential synchronization are derived based on Lyapunov stability theory. These criteria, which are in terms of linear matrix inequality (LMI, indicate that the left and right eigenvectors corresponding to eigenvalue zero of the coupling matrix play key roles in the stability analysis of the synchronization manifold. The controllers are designed for state feedback control and pinning control, respectively. Finally, a numerical example is provided to illustrate the effectiveness of the proposed conditions.

3. A perturbative solution for gravitational waves in quadratic gravity

International Nuclear Information System (INIS)

Neto, Edgard C de Rey; Aguiar, Odylio D; Araujo, Jose C N de

2003-01-01

We find a gravitational wave solution to the linearized version of quadratic gravity by adding successive perturbations to Einstein's linearized field equations. We show that only the Ricci-squared quadratic invariant contributes to give a different solution to those found in Einstein's general relativity. The perturbative solution is written as a power series in the β parameter, the coefficient of the Ricci-squared term in the quadratic gravitational action. We also show that, for monochromatic waves of a given angular frequency ω, the perturbative solution can be summed out to give an exact solution to the linearized version of quadratic gravity, for 0 1/2 . This result may lead to implications for the predictions for gravitational wave backgrounds of cosmological origin

4. Design and performance of the Stanford Linear Collider Control System

International Nuclear Information System (INIS)

Melen, R.E.

1984-10-01

The success of the Stanford Linear Collider (SLC) will be dependent upon the implementation of a very large advanced computer-based instrumentation and control system. This paper describes the architectural design of this system as well as a critique of its performance. This critique is based on experience obtained from its use in the control and monitoring of 1/3 of the SLAC linac and in support of an expensive experimental machine physics experimental program. 11 references, 3 figures

5. Linear Matrix Inequalities in Multirate Control over Networks

Directory of Open Access Journals (Sweden)

Ángel Cuenca

2012-01-01

Full Text Available This paper faces two of the main drawbacks in networked control systems: bandwidth constraints and timevarying delays. The bandwidth limitations are solved by using multirate control techniques. The resultant multirate controller must ensure closed-loop stability in the presence of time-varying delays. Some stability conditions and a state feedback controller design are formulated in terms of linear matrix inequalities. The theoretical proposal is validated in two different experimental environments: a crane-based test-bed over Ethernet, and a maglev based platform over Profibus.

6. Control of Non-linear Marine Cooling System

DEFF Research Database (Denmark)

Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

2011-01-01

We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non-linearitie......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

7. Linear Perturbation Adaptive Control of Hydraulically Driven Manipulators

DEFF Research Database (Denmark)

Andersen, T.O.; Hansen, M.R.; Conrad, Finn

2004-01-01

control.Using the Lyapunov approach, under slowly time-varying assumptions, it is shown that the tracking error and the parameter error remain bounded. This bound is a function of the ideal parameters and a bounded disturbance. The control algorithm decouples and linearizes the manipulator so that each......A method for synthesis of a robust adaptive scheme for a hydraulically driven manipulator, that takes full advantage of any known system dynamics to simplify the adaptive control problem for the unknown portion of the dynamics is presented. The control method is based on adaptive perturbation...

8. Wind turbine power tracking using an improved multimodel quadratic approach.

Science.gov (United States)

2010-07-01

In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

9. Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings

DEFF Research Database (Denmark)

Nicoletti, Rodrigo; Santos, Ilmar

2003-01-01

The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication. For furt......The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication....... For further reduction of shaft vibrations one can count with the active lubrication action, which is based on injecting pressurised oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and non-linear controllers, applied...... vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0 to 80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated...

10. SU-F-T-02: Estimation of Radiobiological Doses (BED and EQD2) of Single Fraction Electronic Brachytherapy That Equivalent to I-125 Eye Plaque: By Using Linear-Quadratic and Universal Survival Curve Models

Energy Technology Data Exchange (ETDEWEB)

Kim, Y; Waldron, T; Pennington, E [University Of Iowa, College of Medicine, Iowa City, IA (United States)

2016-06-15

Purpose: To test the radiobiological impact of hypofractionated choroidal melanoma brachytherapy, we calculated single fraction equivalent doses (SFED) of the tumor that equivalent to 85 Gy of I125-BT for 20 patients. Corresponding organs-at-risks (OARs) doses were estimated. Methods: Twenty patients treated with I125-BT were retrospectively examined. The tumor SFED values were calculated from tumor BED using a conventional linear-quadratic (L-Q) model and an universal survival curve (USC). The opposite retina (α/β = 2.58), macula (2.58), optic disc (1.75), and lens (1.2) were examined. The % doses of OARs over tumor doses were assumed to be the same as for a single fraction delivery. The OAR SFED values were converted into BED and equivalent dose in 2 Gy fraction (EQD2) by using both L-Q and USC models, then compared to I125-BT. Results: The USC-based BED and EQD2 doses of the macula, optic disc, and the lens were on average 118 ± 46% (p < 0.0527), 126 ± 43% (p < 0.0354), and 112 ± 32% (p < 0.0265) higher than those of I125-BT, respectively. The BED and EQD2 doses of the opposite retina were 52 ± 9% lower than I125-BT. The tumor SFED values were 25.2 ± 3.3 Gy and 29.1 ± 2.5 Gy when using USC and LQ models which can be delivered within 1 hour. All BED and EQD2 values using L-Q model were significantly larger when compared to the USC model (p < 0.0274) due to its large single fraction size (> 14 Gy). Conclusion: The estimated single fraction doses were feasible to be delivered within 1 hour using a high dose rate source such as electronic brachytherapy (eBT). However, the estimated OAR doses using eBT were 112 ∼ 118% higher than when using the I125-BT technique. Continued exploration of alternative dose rate or fractionation schedules should be followed.

11. Least Squares Problems with Absolute Quadratic Constraints

Directory of Open Access Journals (Sweden)

R. Schöne

2012-01-01

Full Text Available This paper analyzes linear least squares problems with absolute quadratic constraints. We develop a generalized theory following Bookstein's conic-fitting and Fitzgibbon's direct ellipse-specific fitting. Under simple preconditions, it can be shown that a minimum always exists and can be determined by a generalized eigenvalue problem. This problem is numerically reduced to an eigenvalue problem by multiplications of Givens' rotations. Finally, four applications of this approach are presented.

12. Control system analysis for the perturbed linear accelerator rf system

CERN Document Server

Sung Il Kwon

2002-01-01

This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

13. CONTROL SYSTEM ANALYSIS FOR THE PERTURBED LINEAR ACCELERATOR RF SYSTEM

International Nuclear Information System (INIS)

SUNG-IL KWON; AMY H. REGAN

2002-01-01

This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller

Science.gov (United States)

Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30

15. Guises and disguises of quadratic divergences

Energy Technology Data Exchange (ETDEWEB)

Cherchiglia, A.L., E-mail: adriano@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Vieira, A.R., E-mail: arvieira@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Hiller, Brigitte, E-mail: brigitte@teor.fis.uc.pt [Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Baêta Scarpelli, A.P., E-mail: scarpelli.apbs@dpf.gov.br [Setor Técnico-Científico, Departamento de Polícia Federal, Rua Hugo D’Antola, 95 - Lapa, São Paulo (Brazil); Sampaio, Marcos, E-mail: marcos.sampaio@durham.ac.uk [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Centre for Particle Theory, Department of Mathematical Sciences, Durham University, South Road Durham DH1 3LE (United Kingdom)

2014-12-15

In this contribution, we present a new perspective on the control of quadratic divergences in quantum field theory, in general, and in the Higgs naturalness problem, in particular. Our discussion is essentially based on an approach where UV divergences are parameterized, after being reduced to basic divergent integrals (BDI) in one internal momentum, as functions of a cutoff and a renormalization group scale λ. We illustrate our proposal with well-known examples, such as the gluon vacuum self energy of QCD and the Higgs decay in two photons within this approach. We also discuss frameworks in effective low-energy QCD models, where quadratic divergences are indeed fundamental.

16. Design and control of a linearity-enhanced SMA actuator

International Nuclear Information System (INIS)

Son, Hyung-Min; Tak, Chul-Gon; Lee, Yun-Jung; Kang, Seok-Won; Nam, Tae-Hyun; Kim, Jae-Il

2010-01-01

For the accurate and dexterous operation of mechanical systems, continuous-type actuation, rather than on/off-type actuation, is an indispensable function. However, conventional Ti-Ni alloys present difficulties for continuous positioning control, due to their hysteretic and abruptly changing relationship between strain and temperature. Therefore, this paper proposes a new linearity-enhanced SMA actuator using a temperature-gradient annealed alloy and an inverse hysteresis controller. In comparative experiments, the proposed controller and alloy exhibit superior performance for continuous actuation.

17. Linear and non-linear systems identification for adaptive control in mechanical applications vibration suppression

Science.gov (United States)

Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco

2012-04-01

During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.

Science.gov (United States)

Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai

2003-11-01

The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.

19. All-Pass Filter Based Linear Voltage Controlled Quadrature Oscillator

Directory of Open Access Journals (Sweden)

Koushick Mathur

2017-01-01

Full Text Available A linear voltage controlled quadrature oscillator implemented from a first-order electronically tunable all-pass filter (ETAF is presented. The active element is commercially available current feedback amplifier (AD844 in conjunction with the relatively new Multiplication Mode Current Conveyor (MMCC device. Electronic tunability is obtained by the control node voltage (V of the MMCC. Effects of the device nonidealities, namely, the parasitic capacitors and the roll-off poles of the port-transfer ratios of the device, are shown to be negligible, even though the usable high-frequency ranges are constrained by these imperfections. Subsequently the filter is looped with an electronically tunable integrator (ETI to implement the quadrature oscillator (QO. Experimental responses on the voltage tunable phase of the filter and the linear-tuning law of the quadrature oscillator up to 9.9 MHz at low THD are verified by simulation and hardware tests.

20. Monitoring and control system of the Saclay electron linear accelerator

International Nuclear Information System (INIS)

Lafontaine, Antoine

1974-01-01

A description is given of the automatic monitoring and control system of the 60MeV electron linear accelerator of the Centre d'Etudes Nucleaires de Saclay. The paper is mostly concerned with the programmation of the system. However, in a real time device, there is a very close association between computer and electronics, the latter are therefore described in details and make up most of the paper. [fr

1. The graphics software of the Saclay linear accelerator control system

International Nuclear Information System (INIS)

Gournay, J.F.

1987-06-01

The Control system of the Saclay Linear Accelerator is based upon modern technology hardware. In the graphic software, pictures are created in exactly the same manner for all the graphic devices supported by the system. The informations used to draw a picture are stored in an array called a graphic segment. Three output primitives are used to add graphic material in a segment. Three coordinate systems are defined

2. Neuromuscular Control of Rapid Linear Accelerations in Fish

Science.gov (United States)

2016-06-22

sunfish, Lepomis macrochirus. Animals with flexible bodies, like fishes , face a tradeoff for rapid movements. To produce high forces, they must...2014 30-Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: Neuromuscular Control of Rapid Linear Accelerations in Fish The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 swimming, acceleration, fish , muscle, stiffness REPORT DOCUMENTATION PAGE 11. SPONSOR

3. Generation companies decision-making modeling by linear control theory

International Nuclear Information System (INIS)

Gutierrez-Alcaraz, G.; Sheble, Gerald B.

2010-01-01

This paper proposes four decision-making procedures to be employed by electric generating companies as part of their bidding strategies when competing in an oligopolistic market: naive, forward, adaptive, and moving average expectations. Decision-making is formulated in a dynamic framework by using linear control theory. The results reveal that interactions among all GENCOs affect market dynamics. Several numerical examples are reported, and conclusions are presented. (author)

4. Feedback Linearization Controller for a Wind Energy Power System

Directory of Open Access Journals (Sweden)

Muthana Alrifai

2016-09-01

Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.

5. Cortical Contribution to Linear, Non-linear and Frequency Components of Motor Variability Control during Standing.

Science.gov (United States)

König Ignasiak, Niklas; Habermacher, Lars; Taylor, William R; Singh, Navrag B

2017-01-01

Motor variability is an inherent feature of all human movements and reflects the quality of functional task performance. Depending on the requirements of the motor task, the human sensory-motor system is thought to be able to flexibly govern the appropriate level of variability. However, it remains unclear which neurophysiological structures are responsible for the control of motor variability. In this study, we tested the contribution of cortical cognitive resources on the control of motor variability (in this case postural sway) using a dual-task paradigm and furthermore observed potential changes in control strategy by evaluating Ia-afferent integration (H-reflex). Twenty healthy subjects were instructed to stand relaxed on a force plate with eyes open and closed, as well as while trying to minimize sway magnitude and performing a "subtracting-sevens" cognitive task. In total 25 linear and non-linear parameters were used to evaluate postural sway, which were combined using a Principal Components procedure. Neurophysiological response of Ia-afferent reflex loop was quantified using the Hoffman reflex. In order to assess the contribution of the H-reflex on the sway outcome in the different standing conditions multiple mixed-model ANCOVAs were performed. The results suggest that subjects were unable to further minimize their sway, despite actively focusing to do so. The dual-task had a destabilizing effect on PS, which could partly (by 4%) be counter-balanced by increasing reliance on Ia-afferent information. The effect of the dual-task was larger than the protective mechanism of increasing Ia-afferent information. We, therefore, conclude that cortical structures, as compared to peripheral reflex loops, play a dominant role in the control of motor variability.

6. The new control system of the Saclay linear accelerator

International Nuclear Information System (INIS)

Gournay, J.F.; Gourcy, G.; Garreau, F.; Giraud, A.; Rouault, J.

1985-05-01

A new control system for the Safety Linear Accelerator is now being designed. The computer control architecture is based on 3 dedicated VME crates with MC68000 micro-processors: one crate with a disk-based operating system will run the high level application programs and the data base management facilities, another one will manage the man-machine communications and the third one will interface the system to the linac equipments. Communications between the VME microcomputers will be done through 16 bit parallel links. The software is modular and organized in specific layers, the data base is fully distributed. About 90% of the code is written in Fortran

7. Self-Tuning Control of Linear Systems Followed by Deadzones

Directory of Open Access Journals (Sweden)

K. Kazlauskas

2014-02-01

Full Text Available The aim of the present paper is to increase the efficiency of self-tuning generalized minimum variance (GMV control of linear time-invariant (LTI systems followed by deadzone nonlinearities. An approach, based on reordering of observations to be processed for the reconstruction of an unknown internal signal that acts between LTI system and a static nonlinear block of the closed-loop Wiener system, has been developed. The results of GMV self-tuning control of the second order LTI system with an ordinary deadzone are given.

8. Quadratic brackets from symplectic forms

International Nuclear Information System (INIS)

Alekseev, Anton Yu.; Todorov, Ivan T.

1994-01-01

We give a physicist oriented survey of Poisson-Lie symmetries of classical systems. We consider finite-dimensional geometric actions and the chiral WZNW model as examples for the general construction. An essential point is the appearance of quadratic Poisson brackets for group-like variables. It is believed that upon quantization they lead to quadratic exchange algebras. ((orig.))

9. Students' Understanding of Quadratic Equations

Science.gov (United States)

López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

2016-01-01

Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

10. Fuzzy attitude control of solar sail via linear matrix inequalities

Science.gov (United States)

2017-09-01

This study presents a fuzzy tracking controller based on the Takagi-Sugeno (T-S) fuzzy model of the solar sail. First, the T-S fuzzy model is constructed by linearizing the existing nonlinear equations of motion of the solar sail. Then, the T-S fuzzy model is used to derive the state feedback controller gains for the Twin Parallel Distributed Compensation (TPDC) technique. The TPDC tracks and stabilizes the attitude of the solar sail to any desired state in the presence of parameter uncertainties and external disturbances while satisfying actuator constraints. The performance of the TPDC is compared to a PID controller that is tuned using the Ziegler-Nichols method. Numerical simulation shows the TPDC outperforms the PID controller when stabilizing the solar sail to a desired state.

11. From linear to nonlinear control means: a practical progression.

Science.gov (United States)

Gao, Zhiqiang

2002-04-01

With the rapid advance of digital control hardware, it is time to take the simple but effective proportional-integral-derivative (PID) control technology to the next level of performance and robustness. For this purpose, a nonlinear PID and active disturbance rejection framework are introduced in this paper. It complements the existing theory in that (1) it actively and systematically explores the use of nonlinear control mechanisms for better performance, even for linear plants; (2) it represents a control strategy that is rather independent of mathematical models of the plants, thus achieving inherent robustness and reducing design complexity. Stability analysis, as well as software/hardware test results, are presented. It is evident that the proposed framework lends itself well in seeking innovative solutions to practical problems while maintaining the simplicity and the intuitiveness of the existing technology.

12. Application of a quadratic method of programming to a particular problem of a rational development of a waterflooded field

Energy Technology Data Exchange (ETDEWEB)

Korotkov, S F; Khalitov, N T

1965-01-01

he quadratic method of programming is used to solve the following type of problem. A circular reservoir is subjected to a peripheral waterflood. The reservoir is drained by wells arranged in 3 concentric circles. The objective is to control the operation of producing wells, that a maximum quantity of water-free oil will be produced. The wells are flowed so that bottomhole pressure is above the bubble point. A quadratic equation is used to express the essential features of the problem; a system of linear equations is used to express the boundary conditions. The problem is solved by means of the Wolf algorithm method. The method is demonstrated by an illustrative example.

13. Approximate Controllability for Linear Stochastic Differential Equations in Infinite Dimensions

International Nuclear Information System (INIS)

Goreac, D.

2009-01-01

The objective of the paper is to investigate the approximate controllability property of a linear stochastic control system with values in a separable real Hilbert space. In a first step we prove the existence and uniqueness for the solution of the dual linear backward stochastic differential equation. This equation has the particularity that in addition to an unbounded operator acting on the Y-component of the solution there is still another one acting on the Z-component. With the help of this dual equation we then deduce the duality between approximate controllability and observability. Finally, under the assumption that the unbounded operator acting on the state process of the forward equation is an infinitesimal generator of an exponentially stable semigroup, we show that the generalized Hautus test provides a necessary condition for the approximate controllability. The paper generalizes former results by Buckdahn, Quincampoix and Tessitore (Stochastic Partial Differential Equations and Applications, Series of Lecture Notes in Pure and Appl. Math., vol. 245, pp. 253-260, Chapman and Hall, London, 2006) and Goreac (Applied Analysis and Differential Equations, pp. 153-164, World Scientific, Singapore, 2007) from the finite dimensional to the infinite dimensional case

14. Non Linear Modelling and Control of Hydraulic Actuators

Directory of Open Access Journals (Sweden)

B. Šulc

2002-01-01

Full Text Available This paper deals with non-linear modelling and control of a differential hydraulic actuator. The nonlinear state space equations are derived from basic physical laws. They are more powerful than the transfer function in the case of linear models, and they allow the application of an object oriented approach in simulation programs. The effects of all friction forces (static, Coulomb and viscous have been modelled, and many phenomena that are usually neglected are taken into account, e.g., the static term of friction, the leakage between the two chambers and external space. Proportional Differential (PD and Fuzzy Logic Controllers (FLC have been applied in order to make a comparison by means of simulation. Simulation is performed using Matlab/Simulink, and some of the results are compared graphically. FLC is tuned in a such way that it produces a constant control signal close to its maximum (or minimum, where possible. In the case of PD control the occurrence of peaks cannot be avoided. These peaks produce a very high velocity that oversteps the allowed values.

15. Linear parameter-varying control for engineering applications

CERN Document Server

White, Andrew P; Choi, Jongeun

2013-01-01

The objective of this brief is to carefully illustrate a procedure of applying linear parameter-varying (LPV) control to a class of dynamic systems via a systematic synthesis of gain-scheduling controllers with guaranteed stability and performance. The existing LPV control theories rely on the use of either H-infinity or H2 norm to specify the performance of the LPV system.  The challenge that arises with LPV control for engineers is twofold. First, there is no systematic procedure for applying existing LPV control system theory to solve practical engineering problems from modeling to control design. Second, there exists no LPV control synthesis theory to design LPV controllers with hard constraints. For example, physical systems usually have hard constraints on their required performance outputs along with their sensors and actuators. Furthermore, the H-infinity and H2 performance criteria cannot provide hard constraints on system outputs. As a result, engineers in industry could find it difficult to utiliz...

16. Position Control of Linear Synchronous Motor Drives with Exploitation of Forced Dynamics Control Principles

Directory of Open Access Journals (Sweden)

Jan Vittek

2004-01-01

Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.

17. Control of Linear Parameter Varying Systems with Applications

CERN Document Server

2012-01-01

Control of Linear Parameter Varying Systems with Applications compiles state-of-the-art contributions on novel analytical and computational methods to address system modeling and identification, complexity reduction, performance analysis and control design for time-varying and nonlinear systems in the LPV framework. The book has an interdisciplinary character by emphasizing techniques that can be commonly applied in various engineering fields. It also includes a rich collection of illustrative applications in diverse domains to substantiate the effectiveness of the design methodologies and provide pointers to open research directions. The book is divided into three parts. The first part collects chapters of a more tutorial character on the background of LPV systems modeling and control. The second part gathers chapters devoted to the theoretical advancement of LPV analysis and synthesis methods to cope with the design constraints such as uncertainties and time delay. The third part of the volume showcases con...

18. Beam Trajectory control of the future Compact LInear Collider beam

CERN Document Server

Balik, G; Bolzon, B; Brunetti, L; Caron, B; Deleglise, G; Jeremie, A; Le Breton, R; Lottin, J; Pacquet, L

2011-01-01

The future Compact LInear Collider (CLIC) currently under design at CERN (European Organization for Nuclear Research) would create high-energy particle collisions between electrons and positrons, and provide a tool for scientists to address many of the most compelling questions about the fundamental nature of matter, energy, space and time. In accelerating structure, it is well-established that vibrations generated by the ground motion constitute the main limiting factors for reaching the luminosity of 10^34 cm-2s-1. Several methods have been proposed to counteract this phenomena and active vibration controls based on the integration of mechatronic systems into the machine structure is probably one of the most promising. This paper studies the strategy of the vibration suppression. Active vibration control methods, such as optimized parameter of a numerical compensator, adaptive algorithm with real time control are investigated and implemented in the simulation layout. The requirement couldn’t be achieved w...

19. An active interferometer-stabilization scheme with linear phase control

DEFF Research Database (Denmark)

Andresen, Esben Ravn; Krishnamachari, v v; Potma, E O

2006-01-01

We report a simple and robust computer-based active interferometer stabilization scheme which does not require modulation of the interfering beams and relies on an error signal which is linearly related to the optical path difference. In this setup, a non-collinearly propagating reference laser...... beam stabilizes the interference output of the laser light propagating collinearly through the interferometer. This stabilization scheme enables adjustable phase control with 20 ms switching times in the range from 0.02π radians to 6π radians at 632.8 nm....

International Nuclear Information System (INIS)

Jian Jinbao; Hu Qingjie; Tang Chunming; Zheng Haiyan

2007-01-01

In this paper, a sequential quadratically constrained quadratic programming method of feasible directions is proposed for the optimization problems with nonlinear inequality constraints. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving only one subproblem which consist of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the functions of the discussed problems, and such a subproblem can be formulated as a second-order cone programming which can be solved by interior point methods. To overcome the Maratos effect, an efficient higher-order correction direction is obtained by only one explicit computation formula. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions without the strict complementarity. Finally, some preliminary numerical results are reported

1. Digital linear control theory applied to automatic stepsize control in electrical circuit simulation

NARCIS (Netherlands)

Verhoeven, A.; Beelen, T.G.J.; Hautus, M.L.J.; Maten, ter E.J.W.; Di Bucchianico, A.; Mattheij, R.M.M.; Peletier, M.A.

2006-01-01

Adaptive stepsize control is used to control the local errors of the numerical solution. For optimization purposes smoother stepsize controllers are wanted, such that the errors and stepsizes also behave smoothly. We consider approaches from digital linear control theory applied to multistep

2. Digital linear control theory applied to automatic stepsize control in electrical circuit simulation

NARCIS (Netherlands)

Verhoeven, A.; Beelen, T.G.J.; Hautus, M.L.J.; Maten, ter E.J.W.

2005-01-01

Adaptive stepsize control is used to control the local errors of the numerical solution. For optimization purposes smoother stepsize controllers are wanted, such that the errors and stepsizes also behave smoothly. We consider approaches from digital linear control theory applied to multistep

3. On Characterization of Quadratic Splines

DEFF Research Database (Denmark)

Chen, B. T.; Madsen, Kaj; Zhang, Shuzhong

2005-01-01

that the representation can be refined in a neighborhood of a non-degenerate point and a set of non-degenerate minimizers. Based on these characterizations, many existing algorithms for specific convex quadratic splines are also finite convergent for a general convex quadratic spline. Finally, we study the relationship...... between the convexity of a quadratic spline function and the monotonicity of the corresponding LCP problem. It is shown that, although both conditions lead to easy solvability of the problem, they are different in general....

4. Controllability of linear vector fields on Lie groups

International Nuclear Information System (INIS)

Ayala, V.; Tirao, J.

1994-11-01

In this paper, we shall deal with a linear control system Σ defined on a Lie group G with Lie algebra g. The dynamic of Σ is determined by the drift vector field which is an element in the normalizer of g in the Lie algebra of all smooth vector field on G and by the control vectors which are elements in g considered as left-invariant vector fields. We characterize the normalizer of g identifying vector fields on G with C ∞ -functions defined on G into g. For this class of control systems we study algebraic conditions for the controllability problem. Indeed, we prove that if the drift vector field has a singularity then the Lie algebra rank condition is necessary for the controllability property, but in general this condition does not determine this property. On the other hand, we show that the rank (ad-rank) condition is sufficient for the controllability of Σ. In particular, we extend the fundamental Kalman's theorem when G is an Abelian connected Lie group. Our work is related with a paper of L. Markus and we also improve his results. (author). 7 refs

5. A revisit to quadratic programming with fuzzy parameters

International Nuclear Information System (INIS)

Liu, S.-T.

2009-01-01

Quadratic programming has been widely applied to solving real-world problems. Recently, Liu describes a solution method for solving a class of fuzzy quadratic programming problems, where the cost coefficients of the linear terms in objective function, constraint coefficients, and right-hand sides are fuzzy numbers [Liu ST. Quadratic programming with fuzzy parameters: a membership function approach. Chaos, Solitons and Fractals 2009;40:237-45]. In this paper, we generalize Liu's method to a more general fuzzy quadratic programming problem, where the cost coefficients in objective function, constraint coefficients, and right-hand sides are all fuzzy numbers. A pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. With the ability of calculating the fuzzy objective value developed in this paper, it might help initiate wider applications.

6. Robust Control Design of Wheeled Inverted Pendulum Assistant Robot

Institute of Scientific and Technical Information of China (English)

2017-01-01

This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR（inverted pendulum type assistant robot）. The motion equation is derived considering the non-holonomic constraint of the twowheeled mobile robot. Different optimal control approaches are applied to a linearized model of I-PENTAR. These include linear quadratic regulator（LQR）, linear quadratic Gaussian control（LQG）, H2 control and H∞ control. Simulation is performed for all the approaches yielding good performance results.

7. The new control system of the Saclay linear accelerator

International Nuclear Information System (INIS)

Gournay, J.F.

1985-10-01

A new control system for the Saclay Linear Accelerator designed during the two past years is now in operation. The computer control architecture is based on 3 dedicated VME crates: one crate with a disk-based operating system runs the high level application programs and the database management facilities, another one manages the man-machine communications and the third one interfaces the system to the linac equipments. At the present time, communications between the VME micro-computers are done through 16 bit parallel links. The software is modular and organized in specific layers, the database is fully distributed. About 90% of the code is written in Fortran. The present status of the system is discussed and the hardware and software developments are described

8. Quadratic tracer dynamical models tobacco growth

International Nuclear Information System (INIS)

Qiang Jiyi; Hua Cuncai; Wang Shaohua

2011-01-01

In order to study the non-uniformly transferring process of some tracer dosages, we assume that the absorption of some tracer by tobacco is a quadratic function of the tracer quantity of the tracer in the case of fast absorption, whereas the exclusion of the tracer from tobacco is a linear function of the tracer quantity in the case of slow exclusion, after the tracer is introduced into tobacco once at zero time. A single-compartment quadratic dynamical model of Logistic type is established for the leaves of tobacco. Then, a two-compartment quadratic dynamical model is established for leaves and calms of the tobacco. Qualitative analysis of the models shows that the tracer applied to the leaves of the tobacco is excluded finally; however, the tracer stays at the tobacco for finite time. Two methods are also given for computing the parameters in the models. Finally, the results of the models are verified by the 32 P experiment for the absorption of tobacco. (authors)

9. Satellite Formation Control Using Atmospheric Drag

National Research Council Canada - National Science Library

Hajovsky, Blake B

2007-01-01

This study investigates the use of a linear quadratic terminal controller to reconfigure satellite formations using atmospheric drag actuated control while minimizing the loss of energy of the formation...

10. Dynamic optimal control of groundwater remediation with management periods: Linearized and quasi-Newton approaches

International Nuclear Information System (INIS)

Culver, T.B.

1991-01-01

Several modifications of the linear-quadratic regulator (LQR) optimization algorithm are developed, and the computational efficiency of each algorithm with respect to groundwater remediation is evaluated. In each case, the optimization model is combined with a finite element groundwater flow and transport simulation model to determine the optimal time-varying pump-and-treat policy. The first modification of the LQR algorithm incorporated management periods, which are groups of simulation time steps during which the pumping policy remains constant. Management periods reduced the total computational demand, as measured by the CPU time, by as much as 85% compared to the time needed for the LQR solution without management periods. Complexity analysis revealed that computational savings of equal or greater magnitude can be expected in general for groundwater remediation applications and for many other applications of dynamic control. The LQR algorithm with management periods was further modified by assuming steady-state hydraulics within a management period (SSLQR), which simplifies the derivatives of the transition equation. A quasi-Newton differential dynamic programming (QNDDP) was formulated by approximating the complicated second derivatives of the transition equation using a Broyden rank-one approximation. QNDDP converged to the optimal policy for the test problem significantly faster than the LQR algorithm, requiring approximately half the computational time. With the test problem expanded to include the capacity of the treatment facility as a state variable, QNDDP with management periods can determine the optimal treatment facility capacity. With many management periods, the addition of the capital costs of the treatment facility changed the optimal policy so that the required treatment facility capacity was reduced

11. Stability and linearity control of spectrometric channels of the Cherenkov counters using controllable units

International Nuclear Information System (INIS)

Kollar, D.; Kollarova, L.; Khorvat, P.

1976-01-01

A system is elaborated to control stability and linearity of the Cherenkov counter spectrometric channels in an experiment on a magnetic monopole search. Linearity of a light characteristic of a photoelectric multiplier is checked with the help of the calibrated light-strikings of light emitting diodes with flare intensity adjusted by controlling generator voltage across the mercury body. A program algorithm is presented for checking stability and linearity of the Cherenkov counter spectrometric channels which helps to consider the fatigue effects of the photoelectric multiplier resulting from the considerable loads

12. Controlling multibunch beam breakup in TeV linear colliders

International Nuclear Information System (INIS)

Thompson, K.A.; Ruth, R.D.

1989-01-01

To obtain luminosities near 10 34 cm/sup /minus/2/sec/sup /minus/1/ in a TeV linear collider, it will probably be essential to accelerate many bunches per RF fill in order to increase the energy transfer efficiency. In this paper we study the transverse dynamics of multiple bunches in a linac, and we examine the effects of several methods of controlling the beam blow-up that would otherwise be induced by transverse dipole wake fields. The methods we study are: damping the transverse modes, adjusting the frequency of the dominant transverse modes so that bunches may be placed near zero-crossings of the transverse wake, and bunch-to-bunch variation of the transverse focusing. We study the utility of these cures in the main linacs of an example of a TeV collider. 16 refs., 4 figs., 2 tabs

13. Predictive IP controller for robust position control of linear servo system.

Science.gov (United States)

Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

2016-07-01

Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

14. Adaptive Control for Linear Uncertain Systems with Unmodeled Dynamics Revisited via Optimal Control Modification

Science.gov (United States)

Nguyen, Nhan

2013-01-01

This paper presents the optimal control modification for linear uncertain plants. The Lyapunov analysis shows that the modification parameter has a limiting value depending on the nature of the uncertainty. The optimal control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear time invariant framework for linear uncertain plants. The linear asymptotic property shows that the closed-loop plants in the limit possess a scaled input-output mapping. Using this property, we can derive an analytical closed-loop transfer function in the limit as the adaptive gain tends to infinity. The paper revisits the Rohrs counterexample problem that illustrates the nature of non-robustness of model-reference adaptive control in the presence of unmodeled dynamics. An analytical approach is developed to compute exactly the modification parameter for the optimal control modification that stabilizes the plant in the Rohrs counterexample. The linear asymptotic property is also used to address output feedback adaptive control for non-minimum phase plants with a relative degree 1.

15. Direct torque control via feedback linearization for permanent magnet synchronous motor drives

DEFF Research Database (Denmark)

Lascu, Cristian; Boldea, Ion; Blaabjerg, Frede

2012-01-01

The paper describes a direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drive that employs feedback linearization and uses sliding-mode and linear controllers. We introduce a new feedback linearization approach that yields a decoupled linear PMSM model with two state...

16. Enhancing Linearity of Voltage Controlled Oscillator Thermistor Signal Conditioning Circuit Using Linear Search

Science.gov (United States)

Rana, K. P. S.; Kumar, Vineet; Prasad, Tapan

2018-02-01

Temperature to Frequency Converters (TFCs) are potential signal conditioning circuits (SCCs) usually employed in temperature measurements using thermistors. A NE/SE-566 based SCC has been recently used in several reported works as TFC. Application of NE/SE-566 based SCC requires a mechanism for finding the optimal values of SCC parameters yielding the optimal linearity and desired sensitivity performances. Two classical methods, namely, inflection point and three point have been employed for this task. In this work, the application of these two methods, on NE/SE-566 based SCC in TFC, is investigated in detail and the conditions for its effective usage are developed. Further, since these classical methods offer an approximate linearization of temperature and frequency relationship an application of a linear search based technique is proposed to further enhance the linearity. The implemented linear search method used results obtained from the above mentioned classical methods. The presented simulation studies, for three different industrial grade thermistors, revealed that the linearity enhancements of 21.7, 18.3 and 17.8% can be achieved over the inflection point method and 4.9, 4.7 and 4.7% over the three point method, for an input temperature range of 0-100 °C.

17. Quantum optimal control theory in the linear response formalism

International Nuclear Information System (INIS)

Castro, Alberto; Tokatly, I. V.

2011-01-01

Quantum optimal control theory (QOCT) aims at finding an external field that drives a quantum system in such a way that optimally achieves some predefined target. In practice, this normally means optimizing the value of some observable, a so-called merit function. In consequence, a key part of the theory is a set of equations, which provides the gradient of the merit function with respect to parameters that control the shape of the driving field. We show that these equations can be straightforwardly derived using the standard linear response theory, only requiring a minor generalization: the unperturbed Hamiltonian is allowed to be time dependent. As a result, the aforementioned gradients are identified with certain response functions. This identification leads to a natural reformulation of QOCT in terms of the Keldysh contour formalism of the quantum many-body theory. In particular, the gradients of the merit function can be calculated using the diagrammatic technique for nonequilibrium Green's functions, which should be helpful in the application of QOCT to computationally difficult many-electron problems.

18. The bounds of feasible space on constrained nonconvex quadratic programming

Science.gov (United States)

Zhu, Jinghao

2008-03-01

This paper presents a method to estimate the bounds of the radius of the feasible space for a class of constrained nonconvex quadratic programmingsE Results show that one may compute a bound of the radius of the feasible space by a linear programming which is known to be a P-problem [N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373-395]. It is proposed that one applies this method for using the canonical dual transformation [D.Y. Gao, Canonical duality theory and solutions to constrained nonconvex quadratic programming, J. Global Optimization 29 (2004) 377-399] for solving a standard quadratic programming problem.

19. Stability in quadratic torsion theories

Energy Technology Data Exchange (ETDEWEB)

2017-11-15

We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)

20. Stability in quadratic torsion theories

International Nuclear Information System (INIS)

Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado

2017-01-01

We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)

1. A ''quadratized'' augmented plane wave method

International Nuclear Information System (INIS)

Smrcka, L.

1982-02-01

The exact radial solution inside the muffin-tin sphere is replaced by its Taylor expansion with respect to the energy, truncated after the quadratic term. Making use of it the energy independent augmented plane waves are formed which lead to the secular equations linear in energy. The method resembles the currently used linearized APW method but yields higher accuracy. The analysis of solution inside one muffin-tin sphere shows that the eigenvalue error is proportional to (E-E 0 ) 6 as compared with (E-E 0 ) 4 for LAPW. The error of eigenfunctions is (E-E 0 ) 3 ((E-E 0 ) 2 for LAPW). These conclusions are confirmed by direct numerical calculation of band structure of Cu and Al. (author)

2. Mixed H∞ and passive control for linear switched systems via hybrid control approach

Science.gov (United States)

Zheng, Qunxian; Ling, Youzhu; Wei, Lisheng; Zhang, Hongbin

2018-03-01

This paper investigates the mixed H∞ and passive control problem for linear switched systems based on a hybrid control strategy. To solve this problem, first, a new performance index is proposed. This performance index can be viewed as the mixed weighted H∞ and passivity performance. Then, the hybrid controllers are used to stabilise the switched systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. The design of state updating controllers not only depends on the pre-switching subsystem and the post-switching subsystem, but also depends on the measurable output signal. The hybrid controllers proposed in this paper can include some existing ones as special cases. Combine the multiple Lyapunov functions approach with the average dwell time technique, new sufficient conditions are obtained. Under the new conditions, the closed-loop linear switched systems are globally uniformly asymptotically stable with a mixed H∞ and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities. Finally, a numerical example and a practical example are given.

3. Calculus of variations mechanics, control and other applications

CERN Document Server

MacCluer, Charles R

2012-01-01

First truly up-to-date treatment offers a simple introduction to optimal control, linear-quadratic control design, and more. Broad perspective features numerous exercises, hints, outlines, and appendixes, including a practical discussion of MATLAB. 2005 edition.

4. Quadratic algebras in the noncommutative integration method of wave equation

International Nuclear Information System (INIS)

Varaksin, O.L.

1995-01-01

The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras

5. Disturbance attenuation of nonlinear control systems using an observer-based fuzzy feedback linearization control

International Nuclear Information System (INIS)

Chen, C.-C.; Hsu, C.-H.; Chen, Y.-J.; Lin, Y.-F.

2007-01-01

The almost disturbance decoupling and trajectory tracking of nonlinear control systems using an observer-based fuzzy feedback linearization control (FLC) is developed. Because not all of the state variables of the nonlinear dynamic equations are available, a nonlinear state observer is employed to estimate the state variables. The feedback linearization control guarantees the almost disturbance decoupling performance and the uniform ultimate bounded stability of the tracking error system. Once the tracking errors are driven to touch the global final attractor with the desired radius, the fuzzy logic control is immediately applied via human expert's knowledge to improve the convergence rate. One example, which cannot be solved by the first paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the tracking and the almost disturbance decoupling performances are easily achieved by our proposed approach. In order to demonstrate the practical applicability, the study has investigated a pendulum control system

6. Performance of Globally Linearized Controller and Two Region Fuzzy Logic Controller on a Nonlinear Process

Directory of Open Access Journals (Sweden)

N. Jaya

2008-10-01

Full Text Available In this work, a design and implementation of a Conventional PI controller, single region fuzzy logic controller, two region fuzzy logic controller and Globally Linearized Controller (GLC for a two capacity interacting nonlinear process is carried out. The performance of this process using single region FLC, two region FLC and GLC are compared with the performance of conventional PI controller about an operating point of 50 %. It has been observed that GLC and two region FLC provides better performance. Further, this procedure is also validated by real time experimentation using dSPACE.

7. Incremental Adaptive Fuzzy Control for Sensorless Stroke Control of A Halbach-type Linear Oscillatory Motor

Science.gov (United States)

Lei, Meizhen; Wang, Liqiang

2018-01-01

The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.

8. On quadratic variation of martingales

On quadratic variation of martingales. 459. The proof relied on the theory of stochastic integration. Subsequently, in Karandikar. [4], the formula was derived using only Doob's maximal inequality. Thus this could be the starting point for the development of stochastic calculus for continuous semimartingales without bringing in ...

9. Impurity solitons with quadratic nonlinearities

DEFF Research Database (Denmark)

Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis

1998-01-01

We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...

10. Quadratic divergences and dimensional regularisation

International Nuclear Information System (INIS)

Jack, I.; Jones, D.R.T.

1990-01-01

We present a detailed analysis of quadratic and quartic divergences in dimensionally regulated renormalisable theories. We perform explicit three-loop calculations for a general theory of scalars and fermions. We find that the higher-order quartic divergences are related to the lower-order ones by the renormalisation group β-functions. (orig.)

11. Popov–Belevitch–Hautus type tests for the controllability of linear complementarity systems

NARCIS (Netherlands)

Camlibel, M. Kanat

2007-01-01

It is well-known that checking certain controllability properties of very simple piecewise linear systems are undecidable problems. This paper deals with the controllability problem of a class of piecewise linear systems, known as linear complementarity systems. By exploiting the underlying

12. Feedback Linearization Control of a Shunt Active Power Filter Using a Fuzzy Controller

Directory of Open Access Journals (Sweden)

Tianhua Li

2013-09-01

Full Text Available In this paper, a novel feedback linearization based sliding mode controlled parallel active power filter using a fuzzy controller is presented in a three-phase three-wire grid. A feedback linearization control with fuzzy parameter self-tuning is used to implement the DC side voltage regulation while a novel integral sliding mode controller is applied to reduce the total harmonic distortion of the supply current. Since traditional unit synchronous sinusoidal signal calculation methods are not applicable when the supply voltage contains harmonics, a novel unit synchronous sinusoidal signal computing method based on synchronous frame transforming theory is presented to overcome this disadvantage. The simulation results verify that the DC side voltage is very stable for the given value and responds quickly to the external disturbance. A comparison is also made to show the advantages of the novel unit sinusoidal signal calculating method and the super harmonic treatment property of the designed active power filter.

13. Dhage Iteration Method for Generalized Quadratic Functional Integral Equations

Directory of Open Access Journals (Sweden)

Bapurao C. Dhage

2015-01-01

Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.

14. Smoothing optimization of supporting quadratic surfaces with Zernike polynomials

Science.gov (United States)

Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu

2018-03-01

A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.

15. Controlling chaos and synchronization for new chaotic system using linear feedback control

International Nuclear Information System (INIS)

Yassen, M.T.

2005-01-01

This paper is devoted to study the problem of controlling chaos for new chaotic dynamical system (four-scroll dynamical system). Linear feedback control is used to suppress chaos to unstable equilibria and to achieve chaos synchronization of two identical four-scroll systems. Routh-Hurwitz criteria is used to study the conditions of the asymptotic stability of the equilibrium points of the controlled system. The sufficient conditions for achieving synchronization of two identical four-scroll systems are derived by using Lyapunov stability theorem. Numerical simulations are presented to demonstrate the effectiveness of the proposed chaos control and synchronization schemes

16. Dynamics and control of quadcopter using linear model predictive control approach

Science.gov (United States)

Islam, M.; Okasha, M.; Idres, M. M.

2017-12-01

This paper investigates the dynamics and control of a quadcopter using the Model Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with six degrees of freedom that include disturbances and model uncertainties. The control approach is developed based on MPC to track different reference trajectories ranging from simple ones such as circular to complex helical trajectories. In this control technique, a linearized model is derived and the receding horizon method is applied to generate the optimal control sequence. Although MPC is computer expensive, it is highly effective to deal with the different types of nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC parameters (control and prediction horizons) are selected by trial-and-error approach. Several simulation scenarios are performed to examine and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. Simulation results show that this control approach is highly effective to track a given reference trajectory.

17. Linear signal noise summer accurately determines and controls S/N ratio

Science.gov (United States)

Sundry, J. L.

1966-01-01

Linear signal noise summer precisely controls the relative power levels of signal and noise, and mixes them linearly in accurately known ratios. The S/N ratio accuracy and stability are greatly improved by this technique and are attained simultaneously.

Directory of Open Access Journals (Sweden)

Lixing Yang

2014-05-01

Full Text Available Quadratically constrained quadratic programs (QQPs problems play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Semidenite programming (SDP relaxations often provide good approximate solutions to these hard problems. For several special cases of QQP, e.g., convex programs and trust region subproblems, SDP relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective.In this paper, we consider a certain QQP where the variable is neither vector nor matrix but a third-order tensor. This problem can be viewed as a generalization of the ordinary QQP with vector or matrix as it's variant. Under some mild conditions, we rst show that SDP relaxation provides exact optimal solutions for the original problem. Then we focus on two classes of homogeneous quadratic tensor programming problems which have no requirements on the constraints number. For one, we provide an easily implemental polynomial time algorithm to approximately solve the problem and discuss the approximation ratio. For the other, we show there is no gap between the SDP relaxation and itself.

19. Robust intelligent backstepping tracking control for uncertain non-linear chaotic systems using H∞ control technique

International Nuclear Information System (INIS)

Peng, Y.-F.

2009-01-01

The cerebellar model articulation controller (CMAC) is a non-linear adaptive system with built-in simple computation, good generalization capability and fast learning property. In this paper, a robust intelligent backstepping tracking control (RIBTC) system combined with adaptive CMAC and H ∞ control technique is proposed for a class of chaotic systems with unknown system dynamics and external disturbance. In the proposed control system, an adaptive backstepping cerebellar model articulation controller (ABCMAC) is used to mimic an ideal backstepping control (IBC), and a robust H ∞ controller is designed to attenuate the effect of the residual approximation errors and external disturbances with desired attenuation level. Moreover, the all adaptation laws of the RIBTC system are derived based on the Lyapunov stability analysis, the Taylor linearization technique and H ∞ control theory, so that the stability of the closed-loop system and H ∞ tracking performance can be guaranteed. Finally, three application examples, including a Duffing-Holmes chaotic system, a Genesio chaotic system and a Sprott circuit system, are used to demonstrate the effectiveness and performance of proposed robust control technique.

20. Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System

DEFF Research Database (Denmark)

Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

2005-01-01

Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...

1. Linear and Non-linear Multi-Input Multi-Output Model Predictive Control of Continuous Stirred Tank Reactor

Directory of Open Access Journals (Sweden)

2015-02-01

Full Text Available In this article, multi-input multi-output (MIMO linear model predictive controller (LMPC based on state space model and nonlinear model predictive controller based on neural network (NNMPC are applied on a continuous stirred tank reactor (CSTR. The idea is to have a good control system that will be able to give optimal performance, reject high load disturbance, and track set point change. In order to study the performance of the two model predictive controllers, MIMO Proportional-Integral-Derivative controller (PID strategy is used as benchmark. The LMPC, NNMPC, and PID strategies are used for controlling the residual concentration (CA and reactor temperature (T. NNMPC control shows a superior performance over the LMPC and PID controllers by presenting a smaller overshoot and shorter settling time.

2. Exact solutions to quadratic gravity

Czech Academy of Sciences Publication Activity Database

Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

2017-01-01

Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084025

3. On Quadratic Variation of Martingales

where D ( [ 0 , ∞ ) , R ) denotes the class of real valued r.c.l.l. functions on [ 0 , ∞ ) such that for a locally square integrable martingale ( M t ) with r.c.l.l. paths,. Ψ ( M . ( ) ) = A . ( ). gives the quadratic variation process (written usually as [ M , M ] t ) of ( M t ) . We also show that this process ( A t ) is the unique increasing ...

4. Exact solutions to quadratic gravity

Czech Academy of Sciences Publication Activity Database

Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

2017-01-01

Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.95.084025

5. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

Science.gov (United States)

Jamison, J. W.

1994-01-01

CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

6. Switching control of linear systems for generating chaos

International Nuclear Information System (INIS)

Liu Xinzhi; Teo, Kok-Lay; Zhang Hongtao; Chen Guanrong

2006-01-01

In this paper, a new switching method is developed, which can be applied to generating different types of chaos or chaos-like dynamics from two or more linear systems. A numerical simulation is given to illustrate the generated chaotic dynamic behavior of the systems with some variable parameters. Finally, a circuit is built to realize various chaotic dynamical behaviors

7. Orthogonality preserving infinite dimensional quadratic stochastic operators

International Nuclear Information System (INIS)

Akın, Hasan; Mukhamedov, Farrukh

2015-01-01

In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators

8. Extending the Scope of Robust Quadratic Optimization

NARCIS (Netherlands)

Marandi, Ahmadreza; Ben-Tal, A.; den Hertog, Dick; Melenberg, Bertrand

In this paper, we derive tractable reformulations of the robust counterparts of convex quadratic and conic quadratic constraints with concave uncertainties for a broad range of uncertainty sets. For quadratic constraints with convex uncertainty, it is well-known that the robust counterpart is, in

9. A Linear Active Disturbance Rejection Control for a Ball and Rigid Triangle System

Directory of Open Access Journals (Sweden)

Carlos Aguilar-Ibanez

2016-01-01

Full Text Available This paper proposes an application of linear flatness control along with active disturbance rejection control (ADRC for the local stabilization and trajectory tracking problems in the underactuated ball and rigid triangle system. To this end, an observer-based linear controller of the ADRC type is designed based on the flat tangent linearization of the system around its corresponding unstable equilibrium rest position. It was accomplished through two decoupled linear extended observers and a single linear output feedback controller, with disturbance cancelation features. The controller guarantees locally exponentially asymptotic stability for the stabilization problem and practical local stability in the solution of the tracking error. An advantage of combining the flatness and the ADRC methods is that it possible to perform online estimates and cancels the undesirable effects of the higher-order nonlinearities discarded by the linearization approximation. Simulation indicates that the proposed controller behaves remarkably well, having an acceptable domain of attraction.

10. Integrated vehicle dynamics control using State Dependent Riccati Equations

NARCIS (Netherlands)

Bonsen, B.; Mansvelders, R.; Vermeer, E.

2010-01-01

In this paper we discuss a State Dependent Riccati Equations (SDRE) solution for Integrated Vehicle Dynamics Control (IVDC). The SDRE approach is a nonlinear variant of the well known Linear Quadratic Regulator (LQR) and implements a quadratic cost function optimization. A modified version of this

11. Nonautonomous linear Hamiltonian systems oscillation, spectral theory and control

CERN Document Server

Johnson, Russell; Novo, Sylvia; Núñez, Carmen; Fabbri, Roberta

2016-01-01

This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hami...

12. Linear Matrix Inequalities for Analysis and Control of Linear Vector Second-Order Systems

DEFF Research Database (Denmark)

2015-01-01

the Lyapunov matrix and the system matrices by introducing matrix multipliers, which potentially reduce conservativeness in hard control problems. Multipliers facilitate the usage of parameter-dependent Lyapunov functions as certificates of stability of uncertain and time-varying vector second-order systems......SUMMARY Many dynamical systems are modeled as vector second-order differential equations. This paper presents analysis and synthesis conditions in terms of LMI with explicit dependence in the coefficient matrices of vector second-order systems. These conditions benefit from the separation between....... The conditions introduced in this work have the potential to increase the practice of analyzing and controlling systems directly in vector second-order form. Copyright © 2014 John Wiley & Sons, Ltd....

13. Nonlinearity measure and internal model control based linearization in anti-windup design

Energy Technology Data Exchange (ETDEWEB)

Perev, Kamen [Systems and Control Department, Technical University of Sofia, 8 Cl. Ohridski Blvd., 1756 Sofia (Bulgaria)

2013-12-18

This paper considers the problem of internal model control based linearization in anti-windup design. The nonlinearity measure concept is used for quantifying the control system degree of nonlinearity. The linearizing effect of a modified internal model control structure is presented by comparing the nonlinearity measures of the open-loop and closed-loop systems. It is shown that the linearization properties are improved by increasing the control system local feedback gain. However, it is emphasized that at the same time the stability of the system deteriorates. The conflicting goals of stability and linearization are resolved by solving the design problem in different frequency ranges.

14. Decay constants for pulsed monoenergetic neutron systems with quadratically anisotropic scattering

International Nuclear Information System (INIS)

Sjoestrand, N.G.

1977-06-01

The eigenvalues of the time-dependent transport equation for monoenergetic neutrons have been studied numerically for various combinations of linearly and quadratically anisotropic scattering assuming a space dependence of e β . The results, presented in the form of tables and graphs, show that quadratic anisotropy leads to a more complicated eigenvalue spectrum. However, no drastic changes occur in comparison to purely linear anistropy.(author)

15. Distributed Cooperative Secondary Control of Microgrids Using Feedback Linearization

DEFF Research Database (Denmark)

Bidram, Ali; Davoudi, Ali; Lewis, Frank

2013-01-01

This paper proposes a secondary voltage control of microgrids based on the distributed cooperative control of multi-agent systems. The proposed secondary control is fully distributed; each distributed generator (DG) only requires its own information and the information of some neighbors. The dist......This paper proposes a secondary voltage control of microgrids based on the distributed cooperative control of multi-agent systems. The proposed secondary control is fully distributed; each distributed generator (DG) only requires its own information and the information of some neighbors...... parameters can be tuned to obtain a desired response speed. The effectiveness of the proposed control methodology is verified by the simulation of a microgrid test system....

16. A quasi-linear control theory analysis of timesharing skills

Science.gov (United States)

Agarwal, G. C.; Gottlieb, G. L.

1977-01-01

The compliance of the human ankle joint is measured by applying 0 to 50 Hz band-limited gaussian random torques to the foot of a seated human subject. These torques rotate the foot in a plantar-dorsal direction about a horizontal axis at a medial moleolus of the ankle. The applied torques and the resulting angular rotation of the foot are measured, digitized and recorded for off-line processing. Using such a best-fit, second-order model, the effective moment of inertia of the ankle joint, the angular viscosity and the stiffness are calculated. The ankle joint stiffness is shown to be a linear function of the level of tonic muscle contraction, increasing at a rate of 20 to 40 Nm/rad/Kg.m. of active torque. In terms of the muscle physiology, the more muscle fibers that are active, the greater the muscle stiffness. Joint viscosity also increases with activation. Joint stiffness is also a linear function of the joint angle, increasing at a rate of about 0.7 to 1.1 Nm/rad/deg from plantar flexion to dorsiflexion rotation.

17. Coherent states for quadratic Hamiltonians

International Nuclear Information System (INIS)

Contreras-Astorga, Alonso; Fernandez C, David J; Velazquez, Mercedes

2011-01-01

The coherent states for a set of quadratic Hamiltonians in the trap regime are constructed. A matrix technique which allows us to directly identify the creation and annihilation operators will be presented. Then, the coherent states as simultaneous eigenstates of the annihilation operators will be derived, and will be compared with those attained through the displacement operator method. The corresponding wavefunction will be found, and a general procedure for obtaining several mean values involving the canonical operators in these states will be described. The results will be illustrated through the asymmetric Penning trap.

18. Quadratic Variation by Markov Chains

DEFF Research Database (Denmark)

Hansen, Peter Reinhard; Horel, Guillaume

We introduce a novel estimator of the quadratic variation that is based on the the- ory of Markov chains. The estimator is motivated by some general results concerning filtering contaminated semimartingales. Specifically, we show that filtering can in prin- ciple remove the effects of market...... microstructure noise in a general framework where little is assumed about the noise. For the practical implementation, we adopt the dis- crete Markov chain model that is well suited for the analysis of financial high-frequency prices. The Markov chain framework facilitates simple expressions and elegant analyti...

19. Factorization method of quadratic template

Science.gov (United States)

Kotyrba, Martin

2017-07-01

Multiplication of two numbers is a one-way function in mathematics. Any attempt to distribute the outcome to its roots is called factorization. There are many methods such as Fermat's factorization, Dixońs method or quadratic sieve and GNFS, which use sophisticated techniques fast factorization. All the above methods use the same basic formula differing only in its use. This article discusses a newly designed factorization method. Effective implementation of this method in programs is not important, it only represents and clearly defines its properties.

20. Structured Linear Parameter Varying Control of Wind Turbines

DEFF Research Database (Denmark)

Adegas, Fabiano Daher; Sloth, Christoffer; Stoustrup, Jakob

2012-01-01

High performance and reliability are required for wind turbines to be competitive within the energy market. To capture their nonlinear behavior, wind turbines are often modeled using parameter-varying models. In this chapter, a framework for modelling and controller design of wind turbines is pre...... in the controller synthesis are solved by an iterative LMI-based algorithm. The resulting controllers can also be easily implemented in practice due to low data storage and simple math operations. The performance of the LPV controllers is assessed by nonlinear simulations results....

1. Fitness analysis method for magnesium in drinking water with atomic absorption using quadratic curve calibration

Directory of Open Access Journals (Sweden)

Esteban Pérez-López

2014-11-01

Full Text Available Because of the importance of quantitative chemical analysis in research, quality control, sales of services and other areas of interest , and the limiting of some instrumental analysis methods for quantification with linear calibration curve, sometimes because the short linear dynamic ranges of the analyte, and sometimes by limiting the technique itself, is that there is a need to investigate a little more about the convenience of using quadratic curves for analytical quantification, which seeks demonstrate that it is a valid calculation model for chemical analysis instruments. To this was taken as an analysis method based on the technique and atomic absorption spectroscopy in particular a determination of magnesium in a sample of drinking water Tacares sector Northern Grecia, employing a nonlinear calibration curve and a curve specific quadratic behavior, which was compared with the test results obtained for the same analysis with a linear calibration curve. The results show that the methodology is valid for the determination referred to, with all confidence, since the concentrations are very similar, and as used hypothesis testing can be considered equal.

2. A new linearized equation for servo valve in hydraulic control systems

International Nuclear Information System (INIS)

Kim, Tae Hyung; Lee, Ill Yeong

2002-01-01

In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. And, as of now, there are no general standards on how to determine the operating point of a servo valve in the process of applying the linearized equation. So, in this study, a new linearized equation for valve characteristics is proposed as a modified form of the existing linearized equation. And, a method for selecting an optimal operating point is proposed for the new linearized equation. The effectiveness of the new linearized equation is confirmed through numerical simulations and experiments for a model hydraulic control system

3. Non-linear and adaptive control of a refrigeration system

DEFF Research Database (Denmark)

Rasmussen, Henrik; Larsen, Lars F. S.

2011-01-01

are capable of adapting to variety of systems. This paper proposes a novel method for superheat and capacity control of refrigeration systems; namely by controlling the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed......In a refrigeration process heat is absorbed in an evaporator by evaporating a flow of liquid refrigerant at low pressure and temperature. Controlling the evaporator inlet valve and the compressor in such a way that a high degree of liquid filling in the evaporator is obtained at all compressor...... capacities ensures a high energy efficiency. The level of liquid filling is indirectly measured by the superheat. Introduction of variable speed compressors and electronic expansion valves enables the use of more sophisticated control algorithms, giving a higher degree of performance and just as important...

4. Boundary Control of Linear Evolution PDEs - Continuous and Discrete

DEFF Research Database (Denmark)

Rasmussen, Jan Marthedal

2004-01-01

Consider a partial di erential equation (PDE) of evolution type, such as the wave equation or the heat equation. Assume now that you can influence the behavior of the solution by setting the boundary conditions as you please. This is boundary control in a broad sense. A substantial amount...... of literature exists in the area of theoretical results concerning control of partial differential equations. The results have included existence and uniqueness of controls, minimum time requirements, regularity of domains, and many others. Another huge research field is that of control theory for ordinary di...... erential equations. This field has mostly concerned engineers and others with practical applications in mind. This thesis makes an attempt to bridge the two research areas. More specifically, we make finite dimensional approximations to certain evolution PDEs, and analyze how properties of the discrete...

5. Robust tracking control for linear vibrating mechanical systems

Directory of Open Access Journals (Sweden)

Francisco Beltrán-Carbajal

2015-01-01

Full Text Available Se propone un enfoque de control novedoso para seguimiento por realimentación de la salida para sistemas mecánicos vibratorios del tipo masa-resorte-amortiguador lineales sub-actuados. La metodología de diseño de control que se presenta considera robustez con respecto de dinámicas no modeladas y fuerzas externas. El esquema de control propuesto solamente requiere mediciones de la variable de la salida de posición. Se utiliza compensación integral del error de seguimiento de manera apropiada para evitar la estimación en tiempo real de las perturbaciones. Resultado analíticos y numéricos muestran la efectividad del esquema de control activo de vibración para atenuación de vibraciones resonantes y caóticas afectando la respuesta de la variable de salida.

6. Adaptive Non-linear Control of Hydraulic Actuator Systems

DEFF Research Database (Denmark)

1998-01-01

Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

7. Estimation and Control for Linear Systems with Additive Cauchy Noise

Science.gov (United States)

2013-12-17

man & Hall, New York, 1994. [11] J. L. Speyer and W. H. Chung, Stochastic Processes, Estimation, and Control, SIAM, 2008. [12] Nassim N. Taleb ...Gaussian control algorithms. 18 4 References [1] N. N. Taleb . The Black Swan: The Impact of the Highly Improbable...the multivariable system. The estimator was then evaluated numerically for a third-order example. REFERENCES [1] N. N. Taleb , The Black Swan: The

8. Speed Sensorless mixed sensitivity linear parameter variant H_inf control of the induction motor

NARCIS (Netherlands)

Toth, R.; Fodor, D.

2004-01-01

The paper shows the design of a robust control structure for the speed sensorless vector control of the IM, based on the mixed sensitivity (MS) linear parameter variant (LPV) H8 control theory. The controller makes possible the direct control of the flux and speed of the motor with torque adaptation

9. Linear motion device and method for inserting and withdrawing control rods

International Nuclear Information System (INIS)

Smith, J. E.

1984-01-01

A linear motion device, more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core, is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism

10. Robustness-tracking control based on sliding mode and H∞ theory for linear servo system

Institute of Scientific and Technical Information of China (English)

TIAN Yan-feng; GUO Qing-ding

2005-01-01

A robustness-tracking control scheme based on combining H∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H∞ robustness controller suppresses the disturbances well within the close loop( including the load and the end effect force of linear motor etc. ) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.

11. Phase and amplitude control system for Stanford Linear Accelerator

International Nuclear Information System (INIS)

Yoo, S.J.

1983-01-01

The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

12. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

Science.gov (United States)

Acikmese, Ahmet Behcet; Corless, Martin

2004-01-01

We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

13. A Note on 5-bit Quadratic Permutations’ Classification

OpenAIRE

Božilov, Dušan; Bilgin, Begül; Sahin, Hacı Ali

2017-01-01

Classification of vectorial Boolean functions up to affine equivalence is used widely to analyze various cryptographic and implementation properties of symmetric-key algorithms. We show that there exist 75 affine equivalence classes of 5-bit quadratic permutations. Furthermore, we explore important cryptographic properties of these classes, such as linear and differential properties and degrees of their inverses, together with multiplicative complexity and existence of uniform threshold reali...

14. Complex eigenvalues for neutron transport equation with quadratically anisotropic scattering

International Nuclear Information System (INIS)

Sjoestrand, N.G.

1981-01-01

Complex eigenvalues for the monoenergetic neutron transport equation in the buckling approximation have been calculated for various combinations of linearly and quadratically anisotropic scattering. The results are discussed in terms of the time-dependent case. Tables are given of complex bucklings for real decay constants and of complex decay constants for real bucklings. The results fit nicely into the pattern of real and purely imaginary eigenvalues obtained earlier. (author)

15. Robust Comparison of the Linear Model Structures in Self-tuning Adaptive Control

DEFF Research Database (Denmark)

1989-01-01

The Generalized Predictive Controller (GPC) is extended to the systems with a generalized linear model structure which contains a number of choices of linear model structures. The Recursive Prediction Error Method (RPEM) is used to estimate the unknown parameters of the linear model structures...... to constitute a GPC self-tuner. Different linear model structures commonly used are compared and evaluated by applying them to the extended GPC self-tuner as well as to the special cases of the GPC, the GMV and MV self-tuners. The simulation results show how the choice of model structure affects the input......-output behaviour of self-tuning controllers....

16. Robust output feedback H-infinity control and filtering for uncertain linear systems

CERN Document Server

Chang, Xiao-Heng

2014-01-01

"Robust Output Feedback H-infinity Control and Filtering for Uncertain Linear Systems" discusses new and meaningful findings on robust output feedback H-infinity control and filtering for uncertain linear systems, presenting a number of useful and less conservative design results based on the linear matrix inequality (LMI) technique. Though primarily intended for graduate students in control and filtering, the book can also serve as a valuable reference work for researchers wishing to explore the area of robust H-infinity control and filtering of uncertain systems. Dr. Xiao-Heng Chang is a Professor at the College of Engineering, Bohai University, China.

17. New robust chaotic system with exponential quadratic term

International Nuclear Information System (INIS)

Bao Bocheng; Li Chunbiao; Liu Zhong; Xu Jianping

2008-01-01

This paper proposes a new robust chaotic system of three-dimensional quadratic autonomous ordinary differential equations by introducing an exponential quadratic term. This system can display a double-scroll chaotic attractor with only two equilibria, and can be found to be robust chaotic in a very wide parameter domain with positive maximum Lyapunov exponent. Some basic dynamical properties and chaotic behaviour of novel attractor are studied. By numerical simulation, this paper verifies that the three-dimensional system can also evolve into periodic and chaotic behaviours by a constant controller. (general)

18. Design of power controller in CDMA system with power and SIR error minimization

Institute of Scientific and Technical Information of China (English)

Shulan KONG; Huanshui ZHANG; Zhaosheng ZHANG; Hongxia WANG

2007-01-01

In this paper, an uplink power control problem is considered for code division multiple access (CDMA) systems. A distributed algorithm is proposed based on linear quadratic optimal control theory. The proposed scheme minimizes the sum of the power and the error of signal-to-interference ratio (SIR). A power controller is designed by constructing an optimization problem of a stochastic linear quadratic type in Krein space and solving a Kalman filter problem.

19. Quadratically convergent MCSCF scheme using Fock operators

International Nuclear Information System (INIS)

Das, G.

1981-01-01

A quadratically convergent formulation of the MCSCF method using Fock operators is presented. Among its advantages the present formulation is quadratically convergent unlike the earlier ones based on Fock operators. In contrast to other quadratically convergent schemes as well as the one based on generalized Brillouin's theorem, this method leads easily to a hybrid scheme where the weakly coupled orbitals (such as the core) are handled purely by Fock equations, while the rest of the orbitals are treated by a quadratically convergent approach with a truncated virtual space obtained by the use of the corresponding Fock equations

20. Geometrical and Graphical Solutions of Quadratic Equations.

Science.gov (United States)

Hornsby, E. John, Jr.

1990-01-01

Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)

1. Global stabilization of linear continuous time-varying systems with bounded controls

International Nuclear Information System (INIS)

Phat, V.N.

2004-08-01

This paper deals with the problem of global stabilization of a class of linear continuous time-varying systems with bounded controls. Based on the controllability of the nominal system, a sufficient condition for the global stabilizability is proposed without solving any Riccati differential equation. Moreover, we give sufficient conditions for the robust stabilizability of perturbation/uncertain linear time-varying systems with bounded controls. (author)

2. Multiobjective Optimization Involving Quadratic Functions

Directory of Open Access Journals (Sweden)

Oscar Brito Augusto

2014-01-01

Full Text Available Multiobjective optimization is nowadays a word of order in engineering projects. Although the idea involved is simple, the implementation of any procedure to solve a general problem is not an easy task. Evolutionary algorithms are widespread as a satisfactory technique to find a candidate set for the solution. Usually they supply a discrete picture of the Pareto front even if this front is continuous. In this paper we propose three methods for solving unconstrained multiobjective optimization problems involving quadratic functions. In the first, for biobjective optimization defined in the bidimensional space, a continuous Pareto set is found analytically. In the second, applicable to multiobjective optimization, a condition test is proposed to check if a point in the decision space is Pareto optimum or not and, in the third, with functions defined in n-dimensional space, a direct noniterative algorithm is proposed to find the Pareto set. Simple problems highlight the suitability of the proposed methods.

3. Wheel slip control with torque blending using linear and nonlinear model predictive control

Science.gov (United States)

Basrah, M. Sofian; Siampis, Efstathios; Velenis, Efstathios; Cao, Dongpu; Longo, Stefano

2017-11-01

Modern hybrid electric vehicles employ electric braking to recuperate energy during deceleration. However, currently anti-lock braking system (ABS) functionality is delivered solely by friction brakes. Hence regenerative braking is typically deactivated at a low deceleration threshold in case high slip develops at the wheels and ABS activation is required. If blending of friction and electric braking can be achieved during ABS events, there would be no need to impose conservative thresholds for deactivation of regenerative braking and the recuperation capacity of the vehicle would increase significantly. In addition, electric actuators are typically significantly faster responding and would deliver better control of wheel slip than friction brakes. In this work we present a control strategy for ABS on a fully electric vehicle with each wheel independently driven by an electric machine and friction brake independently applied at each wheel. In particular we develop linear and nonlinear model predictive control strategies for optimal performance and enforcement of critical control and state constraints. The capability for real-time implementation of these controllers is assessed and their performance is validated in high fidelity simulation.

4. Two-Link Flexible Manipulator Control Using Sliding Mode Control Based Linear Matrix Inequality

Science.gov (United States)

Zulfatman; Marzuki, Mohammad; Alif Mardiyah, Nur

2017-04-01

Two-link flexible manipulator is a manipulator robot which at least one of its arms is made of lightweight material and not rigid. Flexible robot manipulator has some advantages over the rigid robot manipulator, such as lighter, requires less power and costs, and to result greater payload. However, suitable control algorithm to maintain the two-link flexible robot manipulator in accurate positioning is very challenging. In this study, sliding mode control (SMC) was employed as robust control algorithm due to its insensitivity on the system parameter variations and the presence of disturbances when the system states are sliding on a sliding surface. SMC algorithm was combined with linear matrix inequality (LMI), which aims to reduce the effects of chattering coming from the oscillation of the state during sliding on the sliding surface. Stability of the control algorithm is guaranteed by Lyapunov function candidate. Based on simulation works, SMC based LMI resulted in better performance improvements despite the disturbances with significant chattering reduction. This was evident from the decline of the sum of squared tracking error (SSTE) and the sum of squared of control input (SSCI) indexes respectively 25.4% and 19.4%.

5. Non linear predictive control of a LEGO mobile robot

Science.gov (United States)

Merabti, H.; Bouchemal, B.; Belarbi, K.; Boucherma, D.; Amouri, A.

2014-10-01

Metaheuristics are general purpose heuristics which have shown a great potential for the solution of difficult optimization problems. In this work, we apply the meta heuristic, namely particle swarm optimization, PSO, for the solution of the optimization problem arising in NLMPC. This algorithm is easy to code and may be considered as alternatives for the more classical solution procedures. The PSO- NLMPC is applied to control a mobile robot for the tracking trajectory and obstacles avoidance. Experimental results show the strength of this approach.

6. Moving Horizon Estimation and Control

DEFF Research Database (Denmark)

Jørgensen, John Bagterp

successful and applied methodology beyond PID-control for control of industrial processes. The main contribution of this thesis is introduction and definition of the extended linear quadratic optimal control problem for solution of numerical problems arising in moving horizon estimation and control...... problems. Chapter 1 motivates moving horizon estimation and control as a paradigm for control of industrial processes. It introduces the extended linear quadratic control problem and discusses its central role in moving horizon estimation and control. Introduction, application and efficient solution....... It provides an algorithm for computation of the maximal output admissible set for linear model predictive control. Appendix D provides results concerning linear regression. Appendix E discuss prediction error methods for identification of linear models tailored for model predictive control....

7. Synchronizing chaos in an experimental chaotic pendulum using methods from linear control theory

NARCIS (Netherlands)

Kaart, S.; Schouten, J.C.; Bleek, van den C.M.

1999-01-01

Linear feedback control, specifically model predictive control (MPC), was used successfully to synchronize an experimental chaotic pendulum both on unstable periodic and aperiodic orbits. MPC enables tuning of the controller to give an optimal controller performance. That is, both the fluctuations

8. Tracking control of concentration profiles in a fed-batch bioreactor using a linear algebra methodology.

Science.gov (United States)

Rómoli, Santiago; Serrano, Mario Emanuel; Ortiz, Oscar Alberto; Vega, Jorge Rubén; Eduardo Scaglia, Gustavo Juan

2015-07-01

Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined in the literature. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Randomized Algorithm in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature. Finally, a Monte Carlo Randomized Algorithm is conducted to assess the performance of the proposed controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

9. Development of linear flow rate control system for eccentric butter-fly valve

International Nuclear Information System (INIS)

Kwak, K. K.; Cho, S. W.; Park, J. S.; Cho, J. H.; Song, I. T.; Kim, J. G.; Kwon, S. J.; Kim, I. J.; Park, W. K.

1999-12-01

Butter-fly valves are advantageous over gate, globe, plug, and ball valves in a variety of installations, particularly in the large sizes. The purpose of this project development of linear flow rate control system for eccentric butter-fly valve (intelligent butter-fly valve system). The intelligent butter-fly valve system consist of a valve body, micro controller. The micro controller consist of torque control system, pressure censor, worm and worm gear and communication line etc. The characteristics of intelligent butter-fly valve system as follows: Linear flow rate control function. Digital remote control function. guard function. Self-checking function. (author)

10. Beam control in the ETA-II linear induction accelerator

International Nuclear Information System (INIS)

Chen, Y.J.

1992-01-01

Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-II induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system's cyclotron wavelength and the corkscrew motion caused by a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 2π. (Author) 5 figs., 11 refs

11. Design of Linear Control System for Wind Turbine Blade Fatigue Testing

DEFF Research Database (Denmark)

Toft, Anders; Roe-Poulsen, Bjarke Nørskov; Christiansen, Rasmus

2016-01-01

This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based...... difficult to control. To make a linear controller, a different approach has been chosen, namely making a controller which is not regulating on the input frequency, but on the input amplitude. A non-linear mechanical model for the blade and the motor has been constructed. This model has been simplified based...... on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods.\\\\ The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model...

12. Decentralised stabilising controllers for a class of large-scale linear ...

subsystems resulting from a new aggregation-decomposition technique. The method has been illustrated through a numerical example of a large-scale linear system consisting of three subsystems each of the fourth order. Keywords. Decentralised stabilisation; large-scale linear systems; optimal feedback control; algebraic ...

13. Input-constrained model predictive control via the alternating direction method of multipliers

DEFF Research Database (Denmark)

Sokoler, Leo Emil; Frison, Gianluca; Andersen, Martin S.

2014-01-01

This paper presents an algorithm, based on the alternating direction method of multipliers, for the convex optimal control problem arising in input-constrained model predictive control. We develop an efficient implementation of the algorithm for the extended linear quadratic control problem (LQCP......) with input and input-rate limits. The algorithm alternates between solving an extended LQCP and a highly structured quadratic program. These quadratic programs are solved using a Riccati iteration procedure, and a structure-exploiting interior-point method, respectively. The computational cost per iteration...... is quadratic in the dimensions of the controlled system, and linear in the length of the prediction horizon. Simulations show that the approach proposed in this paper is more than an order of magnitude faster than several state-of-the-art quadratic programming algorithms, and that the difference in computation...

14. Advances in the control of markov jump linear systems with no mode observation

CERN Document Server

Vargas, Alessandro N; do Val, João B R

2016-01-01

This brief broadens readers’ understanding of stochastic control by highlighting recent advances in the design of optimal control for Markov jump linear systems (MJLS). It also presents an algorithm that attempts to solve this open stochastic control problem, and provides a real-time application for controlling the speed of direct current motors, illustrating the practical usefulness of MJLS. Particularly, it offers novel insights into the control of systems when the controller does not have access to the Markovian mode.

15. Linear–Quadratic Mean-Field-Type Games: A Direct Method

Directory of Open Access Journals (Sweden)

Tyrone E. Duncan

2018-02-01

Full Text Available In this work, a multi-person mean-field-type game is formulated and solved that is described by a linear jump-diffusion system of mean-field type and a quadratic cost functional involving the second moments, the square of the expected value of the state, and the control actions of all decision-makers. We propose a direct method to solve the game, team, and bargaining problems. This solution approach does not require solving the Bellman–Kolmogorov equations or backward–forward stochastic differential equations of Pontryagin’s type. The proposed method can be easily implemented by beginners and engineers who are new to the emerging field of mean-field-type game theory. The optimal strategies for decision-makers are shown to be in a state-and-mean-field feedback form. The optimal strategies are given explicitly as a sum of the well-known linear state-feedback strategy for the associated deterministic linear–quadratic game problem and a mean-field feedback term. The equilibrium cost of the decision-makers are explicitly derived using a simple direct method. Moreover, the equilibrium cost is a weighted sum of the initial variance and an integral of a weighted variance of the diffusion and the jump process. Finally, the method is used to compute global optimum strategies as well as saddle point strategies and Nash bargaining solution in state-and-mean-field feedback form.

16. Memristance controlling approach based on modification of linear M—q curve

International Nuclear Information System (INIS)

Liu Hai-Jun; Li Zhi-Wei; Yu Hong-Qi; Sun Zhao-Lin; Nie Hong-Shan

2014-01-01

The memristor has broad application prospects in many fields, while in many cases, those fields require accurate impedance control. The nonlinear model is of great importance for realizing memristance control accurately, but the implementing complexity caused by iteration has limited the actual application of this model. Considering the approximate linear characteristics at the middle region of the memristance-charge (M—q) curve of the nonlinear model, this paper proposes a memristance controlling approach, which is achieved by linearizing the middle region of the M—q curve of the nonlinear memristor, and establishes the linear relationship between memristances M and input excitations so that it can realize impedance control precisely by only adjusting input signals briefly. First, it analyzes the feasibility for linearizing the middle part of the M—q curve of the memristor with a nonlinear model from the qualitative perspective. Then, the linearization equations of the middle region of the M—q curve is constructed by using the shift method, and under a sinusoidal excitation case, the analytical relation between the memristance M and the charge time t is derived through the Taylor series expansions. At last, the performance of the proposed approach is demonstrated, including the linearizing capability for the middle part of the M—q curve of the nonlinear model memristor, the controlling ability for memristance M, and the influence of input excitation on linearization errors. (interdisciplinary physics and related areas of science and technology)

17. Periodic feedback stabilization for linear periodic evolution equations

CERN Document Server

Wang, Gengsheng

2016-01-01

This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equations. Secondly, it identifies several criteria for the periodic feedback stabilization from the perspective of geometry, algebra and analyses respectively. Next, it describes several ways to design periodic feedback laws. Lastly, the book introduces readers to key methods for designing the control machines. Given its coverage and scope, it offers a helpful guide for graduate students and researchers in the areas of control theory and applied mathematics.

18. Sibling curves of quadratic polynomials | Wiggins | Quaestiones ...

African Journals Online (AJOL)

Sibling curves were demonstrated in [1, 2] as a novel way to visualize the zeroes of real valued functions. In [3] it was shown that a polynomial of degree n has n sibling curves. This paper focuses on the algebraic and geometric properites of the sibling curves of real and complex quadratic polynomials. Key words: Quadratic ...

19. Quadratic Boost A-Source Impedance Network

DEFF Research Database (Denmark)

Siwakoti, Yam Prasad; Blaabjerg, Frede; Chub, Andrii

2016-01-01

A novel quadratic boost A-source impedance network is proposed to realize converters that demand very high voltage gain. To satisfy the requirement, the network uses an autotransformer where the obtained gain is quadratically dependent on the duty ratio and is unmatched by any existing impedance...

20. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

DEFF Research Database (Denmark)

Thomsen, Jesper Sandberg

2005-01-01

a linear system to be controlled by linear state feedback control. The advantage of using a nonlinear approach as feedback linearization is the ability of this method to cope with nonlinearities and different operating points. However, the model describing the GMAW process is not exact, and therefore......In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only......, the cancellation of nonlinear terms might give rise to problems with respect to robustness. Robustness of the closed loop system is therefore nvestigated by simulation....

1. Controllability of non-linear systems: generic singularities and their stability

International Nuclear Information System (INIS)

Davydov, Alexey A; Zakalyukin, Vladimir M

2012-01-01

This paper presents an overview of the state of the art in applications of singularity theory to the analysis of generic singularities of controllability of non-linear systems on manifolds. Bibliography: 40 titles.

2. Control of the Thermal Evaporation of Organic Semiconductors via Exact Linearization

OpenAIRE

Martin Steinberger; Martin Horn

2011-01-01

In this article, a high vacuum system for the evaporation of organic semiconductors is introduced and a mathematical model is given. Based on the exact input output linearization a deposition rate controller is designed and tested with different evaporation materials.

3. Decentralized control of discrete-time linear time invariant systems with input saturation

NARCIS (Netherlands)

Deliu, Ciprian; Deliu, C.; Malek, Babak; Roy, Sandip; Saberi, Ali; Stoorvogel, Antonie Arij

2009-01-01

We study decentralized stabilization of discrete time linear time invariant (LTI) systems subject to actuator saturation, using LTI controllers. The requirement of stabilization under both saturation constraints and decentralization impose obvious necessary conditions on the open-loop plant, namely

4. Piecewise quadratic Lyapunov functions for stability verification of approximate explicit MPC

Directory of Open Access Journals (Sweden)

Morten Hovd

2010-04-01

Full Text Available Explicit MPC of constrained linear systems is known to result in a piecewise affine controller and therefore also piecewise affine closed loop dynamics. The complexity of such analytic formulations of the control law can grow exponentially with the prediction horizon. The suboptimal solutions offer a trade-off in terms of complexity and several approaches can be found in the literature for the construction of approximate MPC laws. In the present paper a piecewise quadratic (PWQ Lyapunov function is used for the stability verification of an of approximate explicit Model Predictive Control (MPC. A novel relaxation method is proposed for the LMI criteria on the Lyapunov function design. This relaxation is applicable to the design of PWQ Lyapunov functions for discrete-time piecewise affine systems in general.

5. Spectral analysis of the SN approximations in a slab with quadratically anisotropic scattering

International Nuclear Information System (INIS)

Ourique, L.E.; Pazos, R.P.; Vilhena, M.T.; Barros, R.C.

2003-01-01

The spectral analysis of the S N approximations to the one-dimensional transport equation began with 3 and 4, following the studies of 1 and 2 about the discrete eigenvalues of the transport equation. In previous work about the influence of a parameter in the solutions of S N approximations, it was considered the total macroscopic cross section as a control parameter and was analyzed how its variation changes the nature of the eigenvalues of the S N transport matrix, in problems with linearly anisotropic scattering. It was showed the existence of bifurcations points, i.e., there exist some values of control parameters for which the S N transport matrix has only real eigenvalues while for other values the S N relation between the eigenvalues of S N transport matrix and control parameter, supposing quadratically anisotropic scattering. Numerical results are reported. (author)

6. Spectral analysis of the S{sub N} approximations in a slab with quadratically anisotropic scattering

Energy Technology Data Exchange (ETDEWEB)

Ourique, L.E.; Pazos, R.P. [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil)]. E-mail: ourique@pucrs.br; rpp@pucrs.br; Vilhena, M.T. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Escola de Engenharia); vilhena@cesup.ufrgs.br; Barros, R.C. [Universidade do Estado, Nova Friburgo, RJ (Brazil). Instituto Politecnico]. E-mail: dickbarros@uol.com.br

2003-07-01

The spectral analysis of the S{sub N} approximations to the one-dimensional transport equation began with 3 and 4, following the studies of 1 and 2 about the discrete eigenvalues of the transport equation. In previous work about the influence of a parameter in the solutions of S{sub N} approximations, it was considered the total macroscopic cross section as a control parameter and was analyzed how its variation changes the nature of the eigenvalues of the S{sub N} transport matrix, in problems with linearly anisotropic scattering. It was showed the existence of bifurcations points, i.e., there exist some values of control parameters for which the S{sub N} transport matrix has only real eigenvalues while for other values the S{sub N} relation between the eigenvalues of S{sub N} transport matrix and control parameter, supposing quadratically anisotropic scattering. Numerical results are reported. (author)

7. Iterated non-linear model predictive control based on tubes and contractive constraints.

Science.gov (United States)

Murillo, M; Sánchez, G; Giovanini, L

2016-05-01

8. Electron laser acceleration in vacuum by a quadratically chirped laser pulse

International Nuclear Information System (INIS)

Salamin, Yousef I; Jisrawi, Najeh M

2014-01-01

Single MeV electrons in vacuum subjected to single high-intensity quadratically chirped laser pulses are shown to gain multi-GeV energies. The laser pulses are modelled by finite-duration trapezoidal and cos  2 pulse-shapes and the equations of motion are solved numerically. It is found that, typically, the maximum energy gain from interaction with a quadratic chirp is about half of what would be gained from a linear chirp. (paper)

9. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

Energy Technology Data Exchange (ETDEWEB)

Szederkenyi, Gabor; Hangos, Katalin M

2004-04-26

We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

10. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

Science.gov (United States)

Szederkényi, Gábor; Hangos, Katalin M.

2004-04-01

We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

11. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

International Nuclear Information System (INIS)

Szederkenyi, Gabor; Hangos, Katalin M.

2004-01-01

We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities

12. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

International Nuclear Information System (INIS)

Fox, J.D.; Linstadt, E.; Melen, R.

1983-03-01

The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations

13. Electric field control methods for foil coils in high-voltage linear actuators

NARCIS (Netherlands)

Beek, van T.A.; Jansen, J.W.; Lomonova, E.A.

2015-01-01

This paper describes multiple electric field control methods for foil coils in high-voltage coreless linear actuators. The field control methods are evaluated using 2-D and 3-D boundary element methods. A comparison is presented between the field control methods and their ability to mitigate

14. Vector-valued measure and the necessary conditions for the optimal control problems of linear systems

International Nuclear Information System (INIS)

Xunjing, L.

1981-12-01

The vector-valued measure defined by the well-posed linear boundary value problems is discussed. The maximum principle of the optimal control problem with non-convex constraint is proved by using the vector-valued measure. Especially, the necessary conditions of the optimal control of elliptic systems is derived without the convexity of the control domain and the cost function. (author)

15. Storage functions for dissipative linear systems are quadratic state functions

NARCIS (Netherlands)

Trentelman, Harry L.; Willems, Jan C.

1997-01-01

This paper deals with dissipative dynamical systems. Dissipative dynamical systems can be used as models for physical phenomena in which energy exchange with their environment plays a role. In a dissipative dynamical system, the book-keeping of energy is done via the supply rate and a storage

16. Pre-Service Teachers' Linear and Quadratic Inequalities Understandings

Science.gov (United States)

Bicer, Ali; Capraro, Robert M.; Capraro, Mary M.

2014-01-01

The National Council of Teachers of Mathematics [NCTM] noted that middle and high school students are expected to be able to both explain inequalities by using mathematical symbols and understand meanings by interpreting the solutions of inequalities. Unfortunately, research has revealed that not only do middle and high school students hold…

17. Parameter estimation of linear and quadratic chirps by employing ...

Almeida (1994) has defined the Fractional Fourier Transform (FrFT) by means of the transfor- .... From Eqs. (5–11), we see that x(t) can be expressed in terms of the ortho-normal basis formed .... In other words, during the binary search, we are taking slices of the |ZFα (u)| surface ... LFM chirp is calculated from Eq. (25).

18. Designing Camera Networks by Convex Quadratic Programming

KAUST Repository

Ghanem, Bernard

2015-05-04

​In this paper, we study the problem of automatic camera placement for computer graphics and computer vision applications. We extend the problem formulations of previous work by proposing a novel way to incorporate visibility constraints and camera-to-camera relationships. For example, the placement solution can be encouraged to have cameras that image the same important locations from different viewing directions, which can enable reconstruction and surveillance tasks to perform better. We show that the general camera placement problem can be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution is almost as fast as a greedy treatment of the problem, but the quality is significantly higher, so much so that it is comparable to exact solutions that take orders of magnitude more computation time. Because it is computationally attractive, our method also allows users to explore the space of solutions for variations in input parameters. To evaluate its effectiveness, we show a range of 3D results on real-world floorplans (garage, hotel, mall, and airport). ​

19. Optimal Control Strategies in a Two Dimensional Differential Game Using Linear Equation under a Perturbed System

Directory of Open Access Journals (Sweden)

Musa Danjuma SHEHU

2008-06-01

Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.

20. Linear motion device and method for inserting and withdrawing control rods

Science.gov (United States)

Smith, J.E.

Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

1. Linear switched reluctance motor control with PIC18F452 microcontroller

OpenAIRE

DURSUN, Mahir; KOÇ, Fatmagül

2014-01-01

This paper presents the simulation, control, and experimental results of the velocity of a double-sided, 6/4-poled, 3-phased, 8 A, 24 V, 250 W, and 250 N pull force linear switched reluctance motor (LSRM). In the simulation and experimental study, the reference velocity is constant depending on the position and time. The velocity versus the position of the translator was controlled with fuzzy logic control (FLC) and proportional-integral (PI) control techniques. The motor was control...

2. An introduction to linear algebra

CERN Document Server

Mirsky, L

2003-01-01

Rigorous, self-contained coverage of determinants, vectors, matrices and linear equations, quadratic forms, more. Elementary, easily readable account with numerous examples and problems at the end of each chapter.

3. Quadratic Hedging of Basis Risk

Directory of Open Access Journals (Sweden)

Hardy Hulley

2015-02-01

Full Text Available This paper examines a simple basis risk model based on correlated geometric Brownian motions. We apply quadratic criteria to minimize basis risk and hedge in an optimal manner. Initially, we derive the Föllmer–Schweizer decomposition for a European claim. This allows pricing and hedging under the minimal martingale measure, corresponding to the local risk-minimizing strategy. Furthermore, since the mean-variance tradeoff process is deterministic in our setup, the minimal martingale- and variance-optimal martingale measures coincide. Consequently, the mean-variance optimal strategy is easily constructed. Simple pricing and hedging formulae for put and call options are derived in terms of the Black–Scholes formula. Due to market incompleteness, these formulae depend on the drift parameters of the processes. By making a further equilibrium assumption, we derive an approximate hedging formula, which does not require knowledge of these parameters. The hedging strategies are tested using Monte Carlo experiments, and are compared with results achieved using a utility maximization approach.

4. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

Science.gov (United States)

Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

2008-07-01

Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

5. Intelligent control of non-linear dynamical system based on the adaptive neurocontroller

Science.gov (United States)

Engel, E.; Kovalev, I. V.; Kobezhicov, V.

2015-10-01

This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.

6. Minimal representation of matrix valued white stochastic processes and U–D factorisation of algorithms for optimal control

NARCIS (Netherlands)

Willigenburg, van L.G.; Koning, de W.L.

2013-01-01

Two different descriptions are used in the literature to formulate the optimal dynamic output feedback control problem for linear dynamical systems with white stochastic parameters and quadratic criteria, called the optimal compensation problem. One describes the matrix valued white stochastic

7. Poor glycemic control impacts linear and non-linear dynamics of heart rate in DM type 2

Directory of Open Access Journals (Sweden)

Daniela Bassi

2015-08-01

Full Text Available INTRODUCTION: It is well known that type 2 diabetes mellitus (T2DM produces cardiovascular autonomic neuropathy (CAN, which may affect the cardiac autonomic modulation. However, it is unclear whether the lack of glycemic control in T2DM without CAN could impact negatively on cardiac autonomic modulation. Objective: To evaluate the relationship between glycemic control and cardiac autonomic modulation in individuals with T2DM without CAN. Descriptive, prospective and cross sectional study.METHODS: Forty-nine patients with T2DM (51±7 years were divided into two groups according to glycosylated hemoglobin (HbA1c: G1≤7% and G2>7.0%. Resting heart rate (HR and RR interval (RRi were obtained and calculated by linear (Mean iRR; Mean HR; rMSSD; STD RR; LF; HF; LF/HF, TINN and RR Tri, and non-linear (SD1; SD2; DFα1; DFα2, Shannon entropy; ApEn; SampEn and CD methods of heart rate variability (HRV. Insulin, HOMA-IR, fasting glucose and HbA1c were obtained by blood tests.RESULTS: G2 (HbA1c≤7% showed lower values for the mean of iRR; STD RR; RR Tri, TINN, SD2, CD and higher mean HR when compared with G1 (HbA1c > 7%. Additionally, HbA1c correlated negatively with mean RRi (r=0.28, p=0.044; STD RR (r=0.33, p=0.017; RR Tri (r=-0.35, p=0.013, SD2 (r=-0.39, p=0.004 and positively with mean HR (r=0.28, p=0.045. Finally, fasting glucose correlated negatively with STD RR (r=-0.36, p=0.010; RR Tri (r=-0.36, p=0.010; TINN (r=-0.33, p=0.019 and SD2 (r=-0.42, p=0.002.CONCLUSION: We concluded that poor glycemic control is related to cardiac autonomic modulation indices in individuals with T2DM even if they do not present cardiovascular autonomic neuropathy.

8. Bifurcation analysis and linear control of the Newton-Leipnik system

International Nuclear Information System (INIS)

Wang Xuedi; Tian Lixin

2006-01-01

In this paper, we study a sort of chaotic system-Newton-Leipnik system which possesses two strange attractors. The static and dynamic bifurcations of the system are studied. The chaos controlling is performed by a simpler linear controller, and numerical simulation of the control is supplied. At the same time, Lyapunov exponents of the system show that the result of the chaos controlling is right

9. Efficiency Improvement of a High Dynamic BLDC Linear Motor by Multiphase Control

OpenAIRE

Lemmens, Joris; Vanvlasselaer, Kris; Mulier, Kristof; Goossens, Stijn; Symens, Wim; Driesen, Johan

2013-01-01

This paper proposes a multiphase control strategy for a high dynamic brushless DC linear motor as an alternative for conventional three-phase field-oriented control. Analysis of the magnetic field waveforms shows that three-phase control is not optimal for the 6-slot 7-pole motor topology. Therefore, a multiphase control strategy is elaborated which injects currents proportional to the electromotive force into each of the nine stator coil groups. This results in a maximal alignment force ...

10. Real-time Non-linear Target Tracking Control of Wheeled Mobile Robots

Institute of Scientific and Technical Information of China (English)

YU Wenyong

2006-01-01

A control strategy for real-time target tracking for wheeled mobile robots is presented. Using a modified Kalman filter for environment perception, a novel tracking control law derived from Lyapunov stability theory is introduced. Tuning of linear velocity and angular velocity with mechanical constraints is applied. The proposed control system can simultaneously solve the target trajectory prediction, real-time tracking, and posture regulation problems of a wheeled mobile robot. Experimental results illustrate the effectiveness of the proposed tracking control laws.

11. Adaptive H∞ synchronization of chaotic systems via linear and nonlinear feedback control

International Nuclear Information System (INIS)

Fu Shi-Hui; Lu Qi-Shao; Du Ying

2012-01-01

Adaptive H ∞ synchronization of chaotic systems via linear and nonlinear feedback control is investigated. The chaotic systems are redesigned by using the generalized Hamiltonian systems and observer approach. Based on Lyapunov's stability theory, linear and nonlinear feedback control of adaptive H ∞ synchronization is established in order to not only guarantee stable synchronization of both master and slave systems but also reduce the effect of external disturbance on an H ∞ -norm constraint. Adaptive H ∞ synchronization of chaotic systems via three kinds of control is investigated with applications to Lorenz and Chen systems. Numerical simulations are also given to identify the effectiveness of the theoretical analysis. (general)

12. Application of Dynamic Systems Family for Synthesis of Fuzzy Control with Account of Non-linearities

Directory of Open Access Journals (Sweden)

Andriy Lozynskyy

2016-01-01

Full Text Available Dynamic system with nonlinearities has been considered. This system has been divided into a set of linear subsystems. A fuzzy controller of the considered system has been synthesized. It takes into account nonlinearities of the system and provides smooth switching between controllers of the linear subsystems. An unstable subsystem has been utilized, which provides better dynamic characteristics of the considered system. Comparison with traditional controller has been conducted. Corresponding qualitative and quantitative estimates have been provided. They testify the expediency of the proposed approach.

13. Robust Stability and H∞ Control of Uncertain Piecewise Linear Switched Systems with Filippov Solutions

DEFF Research Database (Denmark)

2012-01-01

This paper addresses the robust stability and control problem of uncertain piecewise linear switched systems where, instead of the conventional Carathe ́odory solutions, we allow for Filippov solutions. In other words, in contrast to the previous studies, solutions with infinite switching in fini...... algorithm is proposed to surmount the aforementioned matrix inequality conditions....... time along the facets and on faces of arbitrary dimensions are also taken into account. Firstly, based on earlier results, the stability problem of piecewise linear systems with Filippov solutions is translated into a number of linear matrix inequality feasibility tests. Subsequently, a set of matrix...... inequalities are brought forward, which determines the asymptotic stability of the Filippov solutions of a given uncertain piecewise linear system. Afterwards, bilinear matrix inequality conditions for synthesizing a robust controller with a guaranteed H∞ per- formance are formulated. Finally, a V-K iteration...

14. Linear and nonlinear schemes applied to pitch control of wind turbines.

Science.gov (United States)

Geng, Hua; Yang, Geng

2014-01-01

Linear controllers have been employed in industrial applications for many years, but sometimes they are noneffective on the system with nonlinear characteristics. This paper discusses the structure, performance, implementation cost, advantages, and disadvantages of different linear and nonlinear schemes applied to the pitch control of the wind energy conversion systems (WECSs). The linear controller has the simplest structure and is easily understood by the engineers and thus is widely accepted by the industry. In contrast, nonlinear schemes are more complicated, but they can provide better performance. Although nonlinear algorithms can be implemented in a powerful digital processor nowadays, they need time to be accepted by the industry and their reliability needs to be verified in the commercial products. More information about the system nonlinear feature is helpful to simplify the controller design. However, nonlinear schemes independent of the system model are more robust to the uncertainties or deviations of the system parameters.

15. LMI-based gain scheduled controller synthesis for a class of linear parameter varying systems

DEFF Research Database (Denmark)

Bendtsen, Jan Dimon; Anderson, Brian; Lanzon, Alexander

2006-01-01

This paper presents a novel method for constructing controllers for a class of single-input multiple-output (SIMO) linear parameter varying (LPV) systems. This class of systems encompasses many physical systems, in particular systems where individual components vary with time, and is therefore...... of significant practical relevance to control designers. The control design presented in this paper has the properties that the system matrix of the closed loop is multi-affine in the various scalar parameters, and that the resulting controller ensures a certain degree of stability for the closed loop even when...... as a standard linear time-invariant (LTI) design combined with a set of linear matrix inequalities, which can be solved efficiently with software tools. The design procedure is illustrated by a numerical example....

16. Risk adjusted receding horizon control of constrained linear parameter varying systems

NARCIS (Netherlands)

Sznaier, M.; Lagoa, C.; Stoorvogel, Antonie Arij; Li, X.

2005-01-01

In the past few years, control of Linear Parameter Varying Systems (LPV) has been the object of considerable attention, as a way of formalizing the intuitively appealing idea of gain scheduling control for nonlinear systems. However, currently available LPV techniques are both computationally

17. Linear Dynamics and Control of a Kinematic Wobble–Yoke Stirling Engine

NARCIS (Netherlands)

Alvarez–Aguirre, Alejandro; García–Canseco, Eloísa; Scherpen, Jacquelien M.A.

2010-01-01

This paper presents a control systems approach for the modeling and control of a kinematic wobble–yoke Stirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by these authors. We show that the Stirling engine can be viewed as a

18. Linear dynamics and control of a kinematic wobble-yoke Stirling engine

NARCIS (Netherlands)

Alvarez Aguirre, A.; Garcia Canseco, E.; Scherpen, J.M.A.

2010-01-01

This paper presents a control systems approachfor the modeling and control of a kinematic wobbleyokeStirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by the authors in [1]. We show that the Stirling engine can be viewed as

19. A new criterion for chaos and hyperchaos synchronization using linear feedback control

International Nuclear Information System (INIS)

Wang Faqiang; Liu Chongxin

2006-01-01

Based on the characteristic of the chaotic or hyperchaotic system and linear feedback control method, synchronization of the two identical chaotic or hyperchaotic systems with different initial conditions is studied. The range of the control parameter for synchronization is derived. Simulation results are provided to show the effectiveness of the proposed synchronization method

20. Controllability of a Class of Bimodal Discrete-Time Piecewise Linear Systems

NARCIS (Netherlands)

Yurtseven, E.; Camlibel, M.K.; Heemels, W.P.M.H.

2013-01-01

In this paper we will provide algebraic necessary and sufficient conditions for the controllability/reachability/null controllability of a class of bimodal discrete-time piecewise linear systems including several instances of interest that are not covered by existing works which focus primarily on

1. Feedback-linearization and feedback-feedforward decentralized control for multimachine power system

Energy Technology Data Exchange (ETDEWEB)

De Tuglie, Enrico [Dipartimento di Ingegneria dell' Ambiente, e per lo Sviluppo Sostenibile - DIASS, Politecnico di Bari, Viale del Turismo 8, 74100 Taranto (Italy); Iannone, Silvio Marcello; Torelli, Francesco [Dipartimento di Elettrotecnica, ed Elettronica - DEE, Politecnico di Bari, Via Re David 200, 70125 Bari (Italy)

2008-03-15

In this paper a decentralized nonlinear controller for large-scale power systems is investigated. The proposed controller design is based on the input-output feedback linearization methodology. In order to overcome computational difficulties in adopting such methodology, the overall interconnected nonlinear system, given as n-order, is analyzed as a cascade connection of an n{sub 1}-order nonlinear subsystem and an n{sub 2}-order linear subsystem. The controller design is obtained by applying input-output feedback linearization to the nonlinear subsystem and adopting a tracking control scheme, based on feedback-feedforward technique, for the linear subsystem. In the assumed system model, which is characterised by an interconnected structure between generating units, a decentralised adaptive controller is implemented by decentralizing these constraints. The use of a totally decentralised controller implies a system performance decay with respect to performance when the system is equipped with a centralised controller. Fortunately, the robustness of the proposed controller, based on input-output feedback procedure, guarantees good performance in terms of disturbance even when disturbances are caused by decentralization of interconnection constraints. Test results, provided on the IEEE 30 bus test system, demonstrate the effectiveness and practical applicability of proposed methodology. (author)

2. A Decomposition Algorithm for Mean-Variance Economic Model Predictive Control of Stochastic Linear Systems

DEFF Research Database (Denmark)

Sokoler, Leo Emil; Dammann, Bernd; Madsen, Henrik

2014-01-01

This paper presents a decomposition algorithm for solving the optimal control problem (OCP) that arises in Mean-Variance Economic Model Predictive Control of stochastic linear systems. The algorithm applies the alternating direction method of multipliers to a reformulation of the OCP...

3. Interpolation of polytopic control Lyapunov functions for discrete–time linear systems

NARCIS (Netherlands)

Nguyen, T.T.; Lazar, M.; Spinu, V.; Boje, E.; Xia, X.

2014-01-01

This paper proposes a method for interpolating two (or more) polytopic control Lyapunov functions (CLFs) for discrete--time linear systems subject to polytopic constraints, thereby combining different control objectives. The corresponding interpolated CLF is used for synthesis of a stabilizing

4. Linearity of bulk-controlled inverter ring VCO in weak and strong inversion

DEFF Research Database (Denmark)

Wismar, Ulrik Sørensen; Wisland, D.; Andreani, Pietro

2007-01-01

In this paper linearity of frequency modulation in voltage controlled inverter ring oscillators for non feedback sigma delta converter applications is studied. The linearity is studied through theoretical models of the oscillator operating at supply voltages above and below the threshold voltage......, process variations and temperature variations have also been simulated to indicate the advantages of having the soft rail bias transistor in the VCO....

5. The design of programme-controlled gain and linear pulse amplifier

International Nuclear Information System (INIS)

Guan Xuemei; Chen Chunkai; Northeast Normal Univ., Changchun; Qiao Shuang; Zhou Chuansheng

2006-01-01

The authors have designed a kind of new-style programme-controlled gain and linear pulse amplifier with accurate gausses of CR-RC-CR shaping circuit structure. The use of non-volatile digital electric potential device and accurate operational amplifier makes the circuit structure simple greatly, makes the ability stronger that resists assault. It can realize multistage gain in succession and make the drift of temperature low and make the linearity of pulse well. (authors)

6. Utility of low-order linear nuclear-power-plant models in plant diagnostics and control

International Nuclear Information System (INIS)

Tylee, J.L.

1981-01-01

A low-order, linear model of a pressurized water reactor (PWR) plant is described and evaluated. The model consists of 23 linear, first-order difference equations and simulates all subsystems of both the primary and secondary sides of the plant. Comparisons between the calculated model response and available test data show the model to be an adequate representation of the actual plant dynamics. Suggested use for the model in an on-line digital plant diagnostics and control system are presented

7. Linear feedback control, adaptive feedback control and their combination for chaos (lag) synchronization of LC chaotic systems

International Nuclear Information System (INIS)

Yan Zhenya; Yu Pei

2007-01-01

In this paper, we study chaos (lag) synchronization of a new LC chaotic system, which can exhibit not only a two-scroll attractor but also two double-scroll attractors for different parameter values, via three types of state feedback controls: (i) linear feedback control; (ii) adaptive feedback control; and (iii) a combination of linear feedback and adaptive feedback controls. As a consequence, ten families of new feedback control laws are designed to obtain global chaos lag synchronization for τ < 0 and global chaos synchronization for τ = 0 of the LC system. Numerical simulations are used to illustrate these theoretical results. Each family of these obtained feedback control laws, including two linear (adaptive) functions or one linear function and one adaptive function, is added to two equations of the LC system. This is simpler than the known synchronization controllers, which apply controllers to all equations of the LC system. Moreover, based on the obtained results of the LC system, we also derive the control laws for chaos (lag) synchronization of another new type of chaotic system

8. A feedback linearization approach to spacecraft control using momentum exchange devices. Ph.D. Thesis

Science.gov (United States)

Dzielski, John Edward

1988-01-01

Recent developments in the area of nonlinear control theory have shown how coordiante changes in the state and input spaces can be used with nonlinear feedback to transform certain nonlinear ordinary differential equations into equivalent linear equations. These feedback linearization techniques are applied to resolve two problems arising in the control of spacecraft equipped with control moment gyroscopes (CMGs). The first application involves the computation of rate commands for the gimbals that rotate the individual gyroscopes to produce commanded torques on the spacecraft. The second application is to the long-term management of stored momentum in the system of control moment gyroscopes using environmental torques acting on the vehicle. An approach to distributing control effort among a group of redundant actuators is described that uses feedback linearization techniques to parameterize sets of controls which influence a specified subsystem in a desired way. The approach is adapted for use in spacecraft control with double-gimballed gyroscopes to produce an algorithm that avoids problematic gimbal configurations by approximating sets of gimbal rates that drive CMG rotors into desirable configurations. The momentum management problem is stated as a trajectory optimization problem with a nonlinear dynamical constraint. Feedback linearization and collocation are used to transform this problem into an unconstrainted nonlinear program. The approach to trajectory optimization is fast and robust. A number of examples are presented showing applications to the proposed NASA space station.

9. Schur Stability Regions for Complex Quadratic Polynomials

Science.gov (United States)

Cheng, Sui Sun; Huang, Shao Yuan

2010-01-01

Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)

10. Quadratic Functionals with General Boundary Conditions

International Nuclear Information System (INIS)

Dosla, Z.; Dosly, O.

1997-01-01

The purpose of this paper is to give the Reid 'Roundabout Theorem' for quadratic functionals with general boundary conditions. In particular, we describe the so-called coupled point and regularity condition introduced in terms of Riccati equation solutions

11. Model Predictive Controller Combined with LQG Controller and Velocity Feedback to Control the Stewart Platform

DEFF Research Database (Denmark)

2006-01-01

The main objective of this paper is to investigate the erformance and applicability of two GPC (generalized predictive control) based control methods on a complete benchmark model of the Stewart platform made in MATLAB V6.5. The first method involves an LQG controller (Linear Quadratic Gaussian...

12. Enhancing damping of gas bearings using linear parameter-varying control

DEFF Research Database (Denmark)

Theisen, Lukas Roy Svane; Niemann, Hans Henrik; Galeazzi, Roberto

2017-01-01

systems to regulate the injection pressure of the fluid. Due to the strong dependencies of system performance on system parameters, the sought controller should be robust over a large range of operational conditions. This paper addresses the damping enhancement of controllable gas bearings through robust...... control approaches. Through an extensive experimental campaign the paper evaluates two robust controllers, a linear parametervarying (LPV) controller and ∞ controller, on their capability to guarantee stability and performance of a gas bearing across the large operational envelopes in rotational speed...

13. Measurement of quadratic electrogyration effect in castor oil

Science.gov (United States)

Izdebski, Marek; Ledzion, Rafał; Górski, Piotr

2015-07-01

This work presents a detailed analysis of electrogyration measurement in liquids with the usage of an optical polarimetric technique. Theoretical analysis of the optical response to an applied electric field is illustrated by experimental data for castor oil which exhibits natural optical activity, quadratic electro-optic effect and quadratic electrogyration effect. Moreover, the experimental data show that interaction of the oil with a pair of flat electrodes induces a significant dichroism and natural linear birefringence. The combination of these effects occurring at the same time complicates the procedure of measurements. It has been found that a single measurement is insufficient to separate the contribution of the electrogyration effect, but it is possible on the basis of several measurements performed with various orientations of the polarizer and the analyser. The obtained average values of the quadratic electrogyration coefficient β13 in castor oil at room temperature are from - 0.92 ×10-22 to - 1.44 ×10-22m2V-2 depending on the origin of the oil. Although this study is focused on measurements in castor oil, the presented analysis is much more general.

14. Feedback Linearization approach for Standard and Fault Tolerant control: Application to a Quadrotor UAV Testbed

International Nuclear Information System (INIS)

Ghandour, J; Aberkane, S; Ponsart, J-C

2014-01-01

In this paper the control problem of a quadrotor vehicle experiencing a rotor failure is investigated. We develop a Feedback linearization approach to design a controller whose task is to make the vehicle performs trajectory following. Then we use the same approach to design a controller whose task is to make the vehicle enter a stable spin around its vertical axis, while retaining zero angular velocities around the other axis when a rotor failure is present. These conditions can be exploited to design a second control loop, which is used to perform trajectory following. The proposed double control loop architecture allows the vehicle to perform both trajectory and roll/pitch control. At last, to test the robustness of the feedback linearization technique, we applied wind to the quadrotor in mid flight

15. Output feedback control of linear fractional transformation systems subject to actuator saturation

Science.gov (United States)

Ban, Xiaojun; Wu, Fen

2016-11-01

In this paper, the control problem for a class of linear parameter varying (LPV) plant subject to actuator saturation is investigated. For the saturated LPV plant depending on the scheduling parameters in linear fractional transformation (LFT) fashion, a gain-scheduled output feedback controller in the LFT form is designed to guarantee the stability of the closed-loop LPV system and provide optimised disturbance/error attenuation performance. By using the congruent transformation, the synthesis condition is formulated as a convex optimisation problem in terms of a finite number of LMIs for which efficient optimisation techniques are available. The nonlinear inverted pendulum problem is employed to demonstrate the effectiveness of the proposed approach. Moreover, the comparison between our LPV saturated approach with an existing linear saturated method reveals the advantage of the LPV controller when handling nonlinear plants.

16. A Dantzig-Wolfe decomposition algorithm for linear economic model predictive control of dynamically decoupled subsystems

DEFF Research Database (Denmark)

Sokoler, Leo Emil; Standardi, Laura; Edlund, Kristian

2014-01-01

This paper presents a warm-started Dantzig–Wolfe decomposition algorithm tailored to economic model predictive control of dynamically decoupled subsystems. We formulate the constrained optimal control problem solved at each sampling instant as a linear program with state space constraints, input...... limits, input rate limits, and soft output limits. The objective function of the linear program is related directly to the cost of operating the subsystems, and the cost of violating the soft output constraints. Simulations for large-scale economic power dispatch problems show that the proposed algorithm...... is significantly faster than both state-of-the-art linear programming solvers, and a structure exploiting implementation of the alternating direction method of multipliers. It is also demonstrated that the control strategy presented in this paper can be tuned using a weighted ℓ1-regularization term...

17. CPG-Based Locomotion Control of a Robotic Fish : Using Linear Oscillators and Reducing Control Parameters via PSO

NARCIS (Netherlands)

Wang, Chen; Xie, G.; Wang, L.; Cao, M.

The aim of the present study is to investigate the locomotion control of a robotic fish. To achieve this goal, we design a control architecture based on a novel central pattern generator (CPG) and implement it as a system of coupled linear oscillators. This design differs significantly from the

18. On the internal stability of non-linear dynamic inversion: application to flight control

Czech Academy of Sciences Publication Activity Database

Alam, M.; Čelikovský, Sergej

2017-01-01

Roč. 11, č. 12 (2017), s. 1849-1861 ISSN 1751-8644 R&D Projects: GA ČR(CZ) GA17-04682S Institutional support: RVO:67985556 Keywords : flight control * non-linear dynamic inversion * stability Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 2.536, year: 2016 http://library.utia.cas.cz/separaty/2017/TR/celikovsky-0476150.pdf

19. A Novel Method of Robust Trajectory Linearization Control Based on Disturbance Rejection

Directory of Open Access Journals (Sweden)

Xingling Shao

2014-01-01

Full Text Available A novel method of robust trajectory linearization control for a class of nonlinear systems with uncertainties based on disturbance rejection is proposed. Firstly, on the basis of trajectory linearization control (TLC method, a feedback linearization based control law is designed to transform the original tracking error dynamics to the canonical integral-chain form. To address the issue of reducing the influence made by uncertainties, with tracking error as input, linear extended state observer (LESO is constructed to estimate the tracking error vector, as well as the uncertainties in an integrated manner. Meanwhile, the boundedness of the estimated error is investigated by theoretical analysis. In addition, decoupled controller (which has the characteristic of well-tuning and simple form based on LESO is synthesized to realize the output tracking for closed-loop system. The closed-loop stability of the system under the proposed LESO-based control structure is established. Also, simulation results are presented to illustrate the effectiveness of the control strategy.

20. Globally linearized control on diabatic continuous stirred tank reactor: a case study.

Science.gov (United States)

Jana, Amiya Kumar; Samanta, Amar Nath; Ganguly, Saibal

2005-07-01

This paper focuses on the promise of globally linearized control (GLC) structure in the realm of strongly nonlinear reactor system control. The proposed nonlinear control strategy is comprised of: (i) an input-output linearizing state feedback law (transformer), (ii) a state observer, and (iii) an external linear controller. The synthesis of discrete-time GLC controller for single-input single-output diabatic continuous stirred tank reactor (DCSTR) has been studied first, followed by the synthesis of feedforward/feedback controller for the same reactor having dead time in process as well as in disturbance. Subsequently, the multivariable GLC structure has been designed and then applied on multi-input multi-output DCSTR system. The simulation study shows high quality performance of the derived nonlinear controllers. The better-performed GLC in conjunction with reduced-order observer has been compared with the conventional proportional integral controller on the example reactor and superior performance has been achieved by the proposed GLC control scheme.

1. Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties.

Science.gov (United States)

Shao, Xingling; Wang, Honglun

2015-01-01

This paper investigates a novel compound control scheme combined with the advantages of trajectory linearization control (TLC) and alternative active disturbance rejection control (ADRC) for hypersonic reentry vehicle (HRV) attitude tracking system with bounded uncertainties. Firstly, in order to overcome actuator saturation problem, nonlinear tracking differentiator (TD) is applied in the attitude loop to achieve fewer control consumption. Then, linear extended state observers (LESO) are constructed to estimate the uncertainties acting on the LTV system in the attitude and angular rate loop. In addition, feedback linearization (FL) based controllers are designed using estimates of uncertainties generated by LESO in each loop, which enable the tracking error for closed-loop system in the presence of large uncertainties to converge to the residual set of the origin asymptotically. Finally, the compound controllers are derived by integrating with the nominal controller for open-loop nonlinear system and FL based controller. Also, comparisons and simulation results are presented to illustrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

2. Modulation linearization of a frequency-modulated voltage controlled oscillator, part 3

Science.gov (United States)

Honnell, M. A.

1975-01-01

An analysis is presented for the voltage versus frequency characteristics of a varactor modulated VHF voltage controlled oscillator in which the frequency deviation is linearized by using the nonlinear characteristics of a field effect transistor as a signal amplifier. The equations developed are used to calculate the oscillator output frequency in terms of pertinent circuit parameters. It is shown that the nonlinearity exponent of the FET has a pronounced influence on frequency deviation linearity, whereas the junction exponent of the varactor controls total frequency deviation for a given input signal. A design example for a 250 MHz frequency modulated oscillator is presented.

3. Projective Synchronization of Chaotic Discrete Dynamical Systems via Linear State Error Feedback Control

Directory of Open Access Journals (Sweden)

Baogui Xin

2015-04-01

Full Text Available A projective synchronization scheme for a kind of n-dimensional discrete dynamical system is proposed by means of a linear feedback control technique. The scheme consists of master and slave discrete dynamical systems coupled by linear state error variables. A kind of novel 3-D chaotic discrete system is constructed, to which the test for chaos is applied. By using the stability principles of an upper or lower triangular matrix, two controllers for achieving projective synchronization are designed and illustrated with the novel systems. Lastly some numerical simulations are employed to validate the effectiveness of the proposed projective synchronization scheme.

4. Implementation of a controller for linear positioners applicable in optical fiber stretching

International Nuclear Information System (INIS)

Castrillo Piedra, Andres Rodolfo

2014-01-01

A low cost controller is implemented for linear positioners applicable in optic fiber stretching. The possibility of using a donated equipment is evaluated by the Escuela de Ingenieria Mecanica. The equipment is required by the non-linear photonic research laboratory (NLPR-LAB) for stretching of micro structured fiber. The process has required a slow and precise stretching, so the controllers must be precisely programmed to rotate the motors at different speeds. Donated equipment is evaluated to see if it is possible to use for fiber stretching [es

5. DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers

Science.gov (United States)

Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro

2016-10-01

6. Learning quadratic receptive fields from neural responses to natural stimuli.

Science.gov (United States)

Rajan, Kanaka; Marre, Olivier; Tkačik, Gašper

2013-07-01

Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron is sensitive to the local covariance structure of the signal preceding the spike. To infer this quadratic dependence in the presence of arbitrary (e.g., naturalistic) stimulus distribution, we review several inference methods, focusing in particular on two information theory-based approaches (maximization of stimulus energy and of noise entropy) and two likelihood-based approaches (Bayesian spike-triggered covariance and extensions of generalized linear models). We analyze the formal relationship between the likelihood-based and information-based approaches to demonstrate how they lead to consistent inference. We demonstrate the practical feasibility of these procedures by using model neurons responding to a flickering variance stimulus.

7. Neural Network Control for the Linear Motion of a Spherical Mobile Robot

Directory of Open Access Journals (Sweden)

Yao Cai

2011-09-01

Full Text Available This paper discussed the stabilization and position tracking control of the linear motion of an underactuated spherical robot. By considering the actuator dynamics, a complete dynamic model of the robot is deduced, which is a complex third order, two variables nonlinear differential system and those two variables have strong coupling due to the mechanical structure of the robot. Different from traditional treatments, no linearization is applied to this system but a single‐input multiple‐output PID (SIMO_PID controller is designed by adopting a six‐input single‐ output CMAC_GBF (Cerebellar Model Articulation Controller with General Basis Function neural network to compensate the actuator nonlinearity and the credit assignment (CA learning method to obtain faster convergence of CMAC_GBF. The proposed controller is generalizable to other single‐input multiple‐output system with good real‐time capability. Simulations in Matlab are used to validate the control effects.

8. Non-linear hybrid control oriented modelling of a digital displacement machine

DEFF Research Database (Denmark)

Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

2017-01-01

Proper feedback control of digital fluid power machines (Pressure, flow, torque or speed control) requires a control oriented model, from where the system dynamics can be analyzed, stability can be proven and design criteria can be specified. The development of control oriented models for hydraulic...... Digital Displacement Machines (DDM) is complicated due to non-smooth machine behavior, where the dynamics comprises both analog, digital and non-linear elements. For a full stroke operated DDM the power throughput is altered in discrete levels based on the ratio of activated pressure chambers....... In this paper, a control oriented hybrid model is established, which combines the continuous non-linear pressure chamber dynamics and the discrete shaft position dependent activation of the pressure chambers. The hybrid machine model is further extended to describe the dynamics of a Digital Fluid Power...

9. Non-linear multivariable predictive control of an alcoholic fermentation process using functional link networks

Directory of Open Access Journals (Sweden)

Luiz Augusto da Cruz Meleiro

2005-06-01

10. Nonlinear discrete-time multirate adaptive control of non-linear vibrations of smart beams

Science.gov (United States)

Georgiou, Georgios; Foutsitzi, Georgia A.; Stavroulakis, Georgios E.

2018-06-01

The nonlinear adaptive digital control of a smart piezoelectric beam is considered. It is shown that in the case of a sampled-data context, a multirate control strategy provides an appropriate framework in order to achieve vibration regulation, ensuring the stability of the whole control system. Under parametric uncertainties in the model parameters (damping ratios, frequencies, levels of non linearities and cross coupling, control input parameters), the scheme is completed with an adaptation law deduced from hyperstability concepts. This results in the asymptotic satisfaction of the control objectives at the sampling instants. Simulation results are presented.

11. A general digital computer procedure for synthesizing linear automatic control systems

International Nuclear Information System (INIS)

Cummins, J.D.

1961-10-01

The fundamental concepts required for synthesizing a linear automatic control system are considered. A generalized procedure for synthesizing automatic control systems is demonstrated. This procedure has been programmed for the Ferranti Mercury and the IBM 7090 computers. Details of the programmes are given. The procedure uses the linearized set of equations which describe the plant to be controlled as the starting point. Subsequent computations determine the transfer functions between any desired variables. The programmes also compute the root and phase loci for any linear (and some non-linear) configurations in the complex plane, the open loop and closed loop frequency responses of a system, the residues of a function of the complex variable 's' and the time response corresponding to these residues. With these general programmes available the design of 'one point' automatic control systems becomes a routine scientific procedure. Also dynamic assessments of plant may be carried out. Certain classes of multipoint automatic control problems may also be solved with these procedures. Autonomous systems, invariant systems and orthogonal systems may also be studied. (author)

12. Linear active disturbance rejection-based load frequency control concerning high penetration of wind energy

International Nuclear Information System (INIS)

Tang, Yanmei; Bai, Yan; Huang, Congzhi; Du, Bin

2015-01-01

Highlights: • A disturbance rejection solution to the load frequency control issue is proposed. • Several power systems with wind energy conversation system have been tested. • A tuning algorithm of the controller parameters was proposed. • The performance of the proposed approach is better than traditional controllers. - Abstract: A new grid load frequency control approach is proposed for the doubly fed induction generator based wind power plants. The load frequency control issue in a power system is undergoing fundamental changes due to the rapidly growing amount of wind energy conversation system, and concentrating on maintaining generation-load balance and disturbance rejection. The prominent feature of the linear active disturbance rejection control approach is that the total disturbance can be estimated and then eliminated in real time. And thus, it is a feasible solution to deal with the load frequency control issue. In this paper, the application of the linear active disturbance rejection control approach in the load frequency control issue for a complex power system with wind energy conversation system based on doubly fed induction generator is investigated. The load frequency control issue is formulated as a decentralized multi-objective optimization control problem, the solution to which is solved by the hybrid particle swarm optimization technique. To show the effectiveness of the proposed control scheme, the robust performance testing based on Monte-Carlo approach is carried out. The performance superiority of the system with the proposed linear active disturbance rejection control approach over that with the traditional proportional integral and fuzzy-proportional integral-based controllers is validated by the simulation results

13. Introduction to optimal control theory

International Nuclear Information System (INIS)

Agrachev, A.A.

2002-01-01

These are lecture notes of the introductory course in Optimal Control theory treated from the geometric point of view. Optimal Control Problem is reduced to the study of controls (and corresponding trajectories) leading to the boundary of attainable sets. We discuss Pontryagin Maximum Principle, basic existence results, and apply these tools to concrete simple optimal control problems. Special sections are devoted to the general theory of linear time-optimal problems and linear-quadratic problems. (author)

14. Real time computer control of a nonlinear Multivariable System via Linearization and Stability Analysis

International Nuclear Information System (INIS)

Raza, K.S.M.

2004-01-01

This paper demonstrates that if a complicated nonlinear, non-square, state-coupled multi variable system is smartly linearized and subjected to a thorough stability analysis then we can achieve our design objectives via a controller which will be quite simple (in term of resource usage and execution time) and very efficient (in terms of robustness). Further the aim is to implement this controller via computer in a real time environment. Therefore first a nonlinear mathematical model of the system is achieved. An intelligent work is done to decouple the multivariable system. Linearization and stability analysis techniques are employed for the development of a linearized and mathematically sound control law. Nonlinearities like the saturation in actuators are also been catered. The controller is then discretized using Runge-Kutta integration. Finally the discretized control law is programmed in a computer in a real time environment. The programme is done in RT -Linux using GNU C for the real time realization of the control scheme. The real time processes, like sampling and controlled actuation, and the non real time processes, like graphical user interface and display, are programmed as different tasks. The issue of inter process communication, between real time and non real time task is addressed quite carefully. The results of this research pursuit are presented graphically. (author)

15. A unified approach to fixed-order controller design via linear matrix inequalities

Directory of Open Access Journals (Sweden)

Iwasaki T.

1995-01-01

Full Text Available We consider the design of fixed-order (or low-order linear controllers which meet certain performance and/or robustness specifications. The following three problems are considered; covariance control as a nominal performance problem, 𝒬 -stabilization as a robust stabilization problem, and robust L ∞ control problem as a robust performance problem. All three control problems are converted to a single linear algebra problem of solving a linear matrix inequality (LMI of the type B G C + ( B G C T + Q < 0 for the unknown matrix G . Thus this paper addresses the fixed-order controller design problem in a unified way. Necessary and sufficient conditions for the existence of a fixed-order controller which satisfies the design specifications for each problem are derived, and an explicit controller formula is given. In any case, the resulting problem is shown to be a search for a (structured positive definite matrix X such that X ∈ 𝒞 1 and X − 1 ∈ 𝒞 2 where 𝒞 1 and 𝒞 2 are convex sets defined by LMIs. Computational aspects of the nonconvex LMI problem are discussed.

16. A unified approach to fixed-order controller design via linear matrix inequalities

Directory of Open Access Journals (Sweden)

T. Iwasaki

1995-01-01

Full Text Available We consider the design of fixed-order (or low-order linear controllers which meet certain performance and/or robustness specifications. The following three problems are considered; covariance control as a nominal performance problem,-stabilization as a robust stabilization problem, and robust L∞ control problem as a robust performance problem. All three control problems are converted to a single linear algebra problem of solving a linear matrix inequality (LMI of the type BGC+(BGCT+Q<0 for the unknown matrix G. Thus this paper addresses the fixed-order controller design problem in a unified way. Necessary and sufficient conditions for the existence of a fixed-order controller which satisfies the design specifications for each problem are derived, and an explicit controller formula is given. In any case, the resulting problem is shown to be a search for a (structured positive definite matrix X such that X∈1 and X−1∈2 where 1 and 2 are convex sets defined by LMIs. Computational aspects of the nonconvex LMI problem are discussed.

17. Global control of reaction wheel pendulum through energy regulation and extended linearization of the state variables

Directory of Open Access Journals (Sweden)

Oscar D. Montoya-Giraldo

2014-01-01

Full Text Available This paper presents the design and simulation of a global controller for the Reaction Wheel Pendulum system using energy regulation and extended linearization methods for the state feedback. The proposed energy regulation is based on the gradual reduction of the energy of the system to reach the unstable equilibrium point. The signal input for this task is obtained from the Lyapunov stability theory. The extended state feedback controller design is used to get a smooth nonlinear function that extends the region of operation to a bigger range, in contrast with the static linear state feedback obtained through the method of approximate linearization around an operating point. The general designed controller operates with a switching between the two control signals depending upon the region of operation; perturbations are applied in the control signal and the (simulated measured variables to verify the robustness and efficiency of the controller. Finally, simulations and tests using the model of the reaction wheel pendulum system, allow to observe the versatility and functionality of the proposed controller in the entire operation region of the pendulum.

18. Experimental implementation of optimal linear-optical controlled-unitary gates

Czech Academy of Sciences Publication Activity Database

Lemr, K.; Bartkiewicz, K.; Černoch, Antonín; Dušek, M.; Soubusta, Jan

2015-01-01

Roč. 114, č. 15 (2015), "153602-1"-"153602-5" ISSN 0031-9007 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : two-qubit gates * optimal linear-optical controlled-unitary gates * quantum computing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.645, year: 2015

19. Torque decomposition and control in an iron core linear permanent magnet motor.

NARCIS (Netherlands)

Overboom, T.T.; Smeets, J.P.C.; Stassen, J.M.; Jansen, J.W.; Lomonova, E.

2012-01-01

Abstract—This paper concerns the decomposition and control of the torque produced by an iron core linear permanent magnet motor. The proposed method is based on the dq0-decomposition of the three-phase currents using Park’s transformation. The torque is decomposed into a reluctance component and two

20. H-infinity Control of Linear Systems with Almost Periodic Inputs

DEFF Research Database (Denmark)

Larsen, Mikael

1996-01-01

In this paper we consider the class of linear, infinitedimensional systems with bounded input and output operators. Wederive and QTR H-infinity type result, formulated for thecase where the input signals are almost periodic in a generalizedsense. Control probelms, for which this result is relevant...