WorldWideScience

Sample records for linear programming simulation

  1. BEAMPATH: a program library for beam dynamics simulation in linear accelerators

    International Nuclear Information System (INIS)

    Batygin, Y.K.

    1992-01-01

    A structured programming technique was used to develop software for space charge dominated beams investigation in linear accelerators. The method includes hierarchical program design using program independent modules and a flexible combination of modules to provide a most effective version of structure for every specific case of simulation. A modular program BEAMPATH was developed for 2D and 3D particle-in-cell simulation of beam dynamics in a structure containing RF gaps, radio-frequency quadrupoles (RFQ), multipole lenses, waveguides, bending magnets and solenoids. (author) 5 refs.; 2 figs

  2. LIAR -- A new program for the modeling and simulation of linear accelerators with high gradients and small emittances

    International Nuclear Information System (INIS)

    Assmann, R.; Adolphsen, C.; Bane, K.; Raubenheimer, T.O.; Siemann, R.; Thompson, K.

    1996-09-01

    Linear accelerators are the central components of the proposed next generation of linear colliders. They need to provide acceleration of up to 750 GeV per beam while maintaining very small normalized emittances. Standard simulation programs, mainly developed for storage rings, do not meet the specific requirements for high energy linear accelerators. The authors present a new program LIAR (LInear Accelerator Research code) that includes wakefield effects, a 4D coupled beam description, specific optimization algorithms and other advanced features. Its modular structure allows to use and to extend it easily for different purposes. They present examples of simulations for SLC and NLC

  3. Optimization Research of Generation Investment Based on Linear Programming Model

    Science.gov (United States)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  4. MODLP program description: A program for solving linear optimal hydraulic control of groundwater contamination based on MODFLOW simulation. Version 1.0

    International Nuclear Information System (INIS)

    Ahlfeld, D.P.; Dougherty, D.E.

    1994-11-01

    MODLP is a computational tool that may help design capture zones for controlling the movement of contaminated groundwater. It creates and solves linear optimization programs that contain constraints on hydraulic head or head differences in a groundwater system. The groundwater domain is represented by USGS MODFLOW groundwater flow simulation model. This document describes the general structure of the computer program, MODLP, the types of constraints that may be imposed, detailed input instructions, interpretation of the output, and the interaction with the MODFLOW simulation kernel

  5. Simulation of a medical linear accelerator for teaching purposes.

    Science.gov (United States)

    Anderson, Rhys; Lamey, Michael; MacPherson, Miller; Carlone, Marco

    2015-05-08

    Simulation software for medical linear accelerators that can be used in a teaching environment was developed. The components of linear accelerators were modeled to first order accuracy using analytical expressions taken from the literature. The expressions used constants that were empirically set such that realistic response could be expected. These expressions were programmed in a MATLAB environment with a graphical user interface in order to produce an environment similar to that of linear accelerator service mode. The program was evaluated in a systematic fashion, where parameters affecting the clinical properties of medical linear accelerator beams were adjusted independently, and the effects on beam energy and dose rate recorded. These results confirmed that beam tuning adjustments could be simulated in a simple environment. Further, adjustment of service parameters over a large range was possible, and this allows the demonstration of linear accelerator physics in an environment accessible to both medical physicists and linear accelerator service engineers. In conclusion, a software tool, named SIMAC, was developed to improve the teaching of linear accelerator physics in a simulated environment. SIMAC performed in a similar manner to medical linear accelerators. The authors hope that this tool will be valuable as a teaching tool for medical physicists and linear accelerator service engineers.

  6. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...... fundamental and second harmonic elds. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II...

  7. The study, design and simulation of a free piston Stirling engine linear alternatorThe study, design and simulation of a free piston Stirling engine linear alternator

    Directory of Open Access Journals (Sweden)

    Teodora Susana Oros

    2014-12-01

    Full Text Available This paper presents a study, design and simulation of a Free Piston Stirling Engine Linear Alternator. There are presented the main steps of the magnetic and electric calculations for a permanent magnet linear alternator of fixed coil and moving magnets type. Finally, a detailed thermal, mechanical and electrical model for a Stirling engine linear alternator have been made in SIMULINK simulation program. The linear alternator simulation model uses a controllable DC voltage which simulates the linear alternator combined with a rectifier, a variable load and a DC-DC converter, which compensates for the variable nature of Stirling engine operation, and ensures a constant voltage output regardless of the load.

  8. Using linear programming to analyze and optimize stochastic flow lines

    DEFF Research Database (Denmark)

    Helber, Stefan; Schimmelpfeng, Katja; Stolletz, Raik

    2011-01-01

    This paper presents a linear programming approach to analyze and optimize flow lines with limited buffer capacities and stochastic processing times. The basic idea is to solve a huge but simple linear program that models an entire simulation run of a multi-stage production process in discrete time...... programming and hence allows us to solve buffer allocation problems. We show under which conditions our method works well by comparing its results to exact values for two-machine models and approximate simulation results for longer lines....

  9. The Computer Program LIAR for Beam Dynamics Calculations in Linear Accelerators

    International Nuclear Information System (INIS)

    Assmann, R.W.; Adolphsen, C.; Bane, K.; Raubenheimer, T.O.; Siemann, R.H.; Thompson, K.

    2011-01-01

    Linear accelerators are the central components of the proposed next generation of linear colliders. They need to provide acceleration of up to 750 GeV per beam while maintaining very small normalized emittances. Standard simulation programs, mainly developed for storage rings, do not meet the specific requirements for high energy linear accelerators. We present a new program LIAR ('LInear Accelerator Research code') that includes wakefield effects, a 6D coupled beam description, specific optimization algorithms and other advanced features. Its modular structure allows to use and to extend it easily for different purposes. The program is available for UNIX workstations and Windows PC's. It can be applied to a broad range of accelerators. We present examples of simulations for SLC and NLC.

  10. Reduction of Linear Programming to Linear Approximation

    OpenAIRE

    Vaserstein, Leonid N.

    2006-01-01

    It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.

  11. Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing.

    Science.gov (United States)

    Yang, Changju; Kim, Hyongsuk

    2016-08-19

    A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model.

  12. Simulator For The Linear Collider (SLIC): A Tool For ILC Detector Simulations

    International Nuclear Information System (INIS)

    Graf, Norman; McCormick, Jeremy

    2006-01-01

    The Simulator for the Linear Collider (SLIC) is a detector simulation program based on the GEANT4 toolkit. It is intended to enable end users to easily model detector concepts by providing the ability to fully describe detectors using plain text files read in by a common executable at runtime. The detector geometry, typically the most complex part of a detector simulation, is described at runtime using the Linear Collider Detector Description (LCDD). This system allows end users to create complex detector geometries in a standard XML format rather than procedural code such as C++. The LCDD system is based on the Geometry Description Markup Language (GDML) from the LHC Applications Group (LCG). The geometry system facilitates the study of different full detector design and their variations. SLIC uses the StdHep format to read input created by event generators and outputs events in the Linear Collider IO (LCIO) format. The SLIC package provides a binding to GEANT4 and many additional commands and features for the end user

  13. Simulator for the Linear Collider (SLIC): a Tool for ILC Detector Simulations

    International Nuclear Information System (INIS)

    Graf, N.; McCormick, J.

    2007-01-01

    The Simulator for the Linear Collider (SLIC) is a detector simulation program based on the GEANT4 toolkit. It is intended to enable end users to easily model detector concepts by providing the ability to fully describe detectors using plain text files read in by a common executable at runtime. The detector geometry, typically the most complex part of a detector simulation, is described at runtime using the Linear Collider Detector Description (LCDD). This system allows end users to create complex detector geometries in a standard XML format rather than procedural code such as C++. The LCDD system is based on the Geometry Description Markup Language (GDML) from the LHC Applications Group (LCG). The geometry system facilitates the study of different full detector design and their variations. SLIC uses the StdHep format to read input created by event generators and outputs events in the Linear Collider IO (LCIO) format. The SLIC package provides a binding to GEANT4 and many additional commands and features for the end user

  14. Evaluating forest management policies by parametric linear programing

    Science.gov (United States)

    Daniel I. Navon; Richard J. McConnen

    1967-01-01

    An analytical and simulation technique, parametric linear programing explores alternative conditions and devises an optimal management plan for each condition. Its application in solving policy-decision problems in the management of forest lands is illustrated in an example.

  15. Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... as the reference. A linear array transducer with 64 active elements is simulated by both Field II and Abersim. The excitation is a 2-cycle sine wave with a frequency of 5 MHz. The second harmonic field in the time domain is simulated using ASA. Pulse inversion is used in the Abersim simulation to remove...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...

  16. Linear Programming (LP)

    International Nuclear Information System (INIS)

    Rogner, H.H.

    1989-01-01

    The submitted sections on linear programming are extracted from 'Theorie und Technik der Planung' (1978) by W. Blaas and P. Henseler and reformulated for presentation at the Workshop. They consider a brief introduction to the theory of linear programming and to some essential aspects of the SIMPLEX solution algorithm for the purposes of economic planning processes. 1 fig

  17. ALPS: A Linear Program Solver

    Science.gov (United States)

    Ferencz, Donald C.; Viterna, Larry A.

    1991-01-01

    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

  18. On the linear programming bound for linear Lee codes.

    Science.gov (United States)

    Astola, Helena; Tabus, Ioan

    2016-01-01

    Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.

  19. Application of linear logic to simulation

    Science.gov (United States)

    Clarke, Thomas L.

    1998-08-01

    Linear logic, since its introduction by Girard in 1987 has proven expressive and powerful. Linear logic has provided natural encodings of Turing machines, Petri nets and other computational models. Linear logic is also capable of naturally modeling resource dependent aspects of reasoning. The distinguishing characteristic of linear logic is that it accounts for resources; two instances of the same variable are considered differently from a single instance. Linear logic thus must obey a form of the linear superposition principle. A proportion can be reasoned with only once, unless a special operator is applied. Informally, linear logic distinguishes two kinds of conjunction, two kinds of disjunction, and also introduces a modal storage operator that explicitly indicates propositions that can be reused. This paper discuses the application of linear logic to simulation. A wide variety of logics have been developed; in addition to classical logic, there are fuzzy logics, affine logics, quantum logics, etc. All of these have found application in simulations of one sort or another. The special characteristics of linear logic and its benefits for simulation will be discussed. Of particular interest is a connection that can be made between linear logic and simulated dynamics by using the concept of Lie algebras and Lie groups. Lie groups provide the connection between the exponential modal storage operators of linear logic and the eigen functions of dynamic differential operators. Particularly suggestive are possible relations between complexity result for linear logic and non-computability results for dynamical systems.

  20. Simulated Analysis of Linear Reversible Enzyme Inhibition with SCILAB

    Science.gov (United States)

    Antuch, Manuel; Ramos, Yaquelin; Álvarez, Rubén

    2014-01-01

    SCILAB is a lesser-known program (than MATLAB) for numeric simulations and has the advantage of being free software. A challenging software-based activity to analyze the most common linear reversible inhibition types with SCILAB is described. Students establish typical values for the concentration of enzyme, substrate, and inhibitor to simulate…

  1. A Linear Programming Model to Optimize Various Objective Functions of a Foundation Type State Support Program.

    Science.gov (United States)

    Matzke, Orville R.

    The purpose of this study was to formulate a linear programming model to simulate a foundation type support program and to apply this model to a state support program for the public elementary and secondary school districts in the State of Iowa. The model was successful in producing optimal solutions to five objective functions proposed for…

  2. A METHOD FOR SOLVING LINEAR PROGRAMMING PROBLEMS WITH FUZZY PARAMETERS BASED ON MULTIOBJECTIVE LINEAR PROGRAMMING TECHNIQUE

    OpenAIRE

    M. ZANGIABADI; H. R. MALEKI

    2007-01-01

    In the real-world optimization problems, coefficients of the objective function are not known precisely and can be interpreted as fuzzy numbers. In this paper we define the concepts of optimality for linear programming problems with fuzzy parameters based on those for multiobjective linear programming problems. Then by using the concept of comparison of fuzzy numbers, we transform a linear programming problem with fuzzy parameters to a multiobjective linear programming problem. To this end, w...

  3. Linear-Algebra Programs

    Science.gov (United States)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  4. Elementary linear programming with applications

    CERN Document Server

    Kolman, Bernard

    1995-01-01

    Linear programming finds the least expensive way to meet given needs with available resources. Its results are used in every area of engineering and commerce: agriculture, oil refining, banking, and air transport. Authors Kolman and Beck present the basic notions of linear programming and illustrate how they are used to solve important common problems. The software on the included disk leads students step-by-step through the calculations. The Second Edition is completely revised and provides additional review material on linear algebra as well as complete coverage of elementary linear program

  5. Simulation of linear Switched Reluctance Motor drives

    OpenAIRE

    Garcia Amoros, Jordi; Blanqué Molina, Balduino; Andrada Gascón, Pedro

    2011-01-01

    This paper presents a simulation model of linear switched reluctance motor drives. A Matlab-Simulink environment coupled with finite element analysis is used to perform the simulations. Experimental and simulation results for a double sided linear switched motor drive prototype are reported and compared to verify the simulation model.

  6. Linear programming

    CERN Document Server

    Solow, Daniel

    2014-01-01

    This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.

  7. Menu-Driven Solver Of Linear-Programming Problems

    Science.gov (United States)

    Viterna, L. A.; Ferencz, D.

    1992-01-01

    Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).

  8. Linear Programming and Network Flows

    CERN Document Server

    Bazaraa, Mokhtar S; Sherali, Hanif D

    2011-01-01

    The authoritative guide to modeling and solving complex problems with linear programming-extensively revised, expanded, and updated The only book to treat both linear programming techniques and network flows under one cover, Linear Programming and Network Flows, Fourth Edition has been completely updated with the latest developments on the topic. This new edition continues to successfully emphasize modeling concepts, the design and analysis of algorithms, and implementation strategies for problems in a variety of fields, including industrial engineering, management science, operations research

  9. Controller design approach based on linear programming.

    Science.gov (United States)

    Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa

    2013-11-01

    This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor. © 2013 ISA. Published by ISA. All rights reserved.

  10. LIAR: A COMPUTER PROGRAM FOR THE SIMULATION AND MODELING OF HIGH PERFORMANCE LINACS

    International Nuclear Information System (INIS)

    Adolphsen, Chris

    2003-01-01

    The computer program LIAR (''LInear Accelerator Research code'') is a numerical simulation and tracking program for linear colliders. The LIAR project was started at SLAC in August 1995 in order to provide a computing and simulation tool that specifically addresses the needs of high energy linear colliders. LIAR is designed to be used for a variety of different linear accelerators. It has been applied for and checked against the existing Stanford Linear Collider (SLC) as well as the linacs of the proposed Next Linear Collider (NLC) and the proposed Linac Coherent Light Source (LCLS). The program includes wakefield effects, a 4D coupled beam description, specific optimization algorithms and other advanced features. We describe the most important concepts and highlights of the program. After having presented the LIAR program at the LINAC96 and the PAC97 conferences, we do now introduce it to the European particle accelerator community

  11. Comparison of open-source linear programming solvers.

    Energy Technology Data Exchange (ETDEWEB)

    Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.; Jones, Katherine A.; Martin, Nathaniel; Detry, Richard Joseph

    2013-10-01

    When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modular In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.

  12. Linear programming foundations and extensions

    CERN Document Server

    Vanderbei, Robert J

    2001-01-01

    Linear Programming: Foundations and Extensions is an introduction to the field of optimization. The book emphasizes constrained optimization, beginning with a substantial treatment of linear programming, and proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. The book is carefully written. Specific examples and concrete algorithms precede more abstract topics. Topics are clearly developed with a large number of numerical examples worked out in detail. Moreover, Linear Programming: Foundations and Extensions underscores the purpose of optimization: to solve practical problems on a computer. Accordingly, the book is coordinated with free efficient C programs that implement the major algorithms studied: -The two-phase simplex method; -The primal-dual simplex method; -The path-following interior-point method; -The homogeneous self-dual methods. In addition, there are online JAVA applets that illustrate various pivot rules and variants of the simplex m...

  13. Ada Linear-Algebra Program

    Science.gov (United States)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  14. A linear programming manual

    Science.gov (United States)

    Tuey, R. C.

    1972-01-01

    Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.

  15. Linear genetic programming

    CERN Document Server

    Brameier, Markus

    2007-01-01

    Presents a variant of Genetic Programming that evolves imperative computer programs as linear sequences of instructions, in contrast to the more traditional functional expressions or syntax trees. This book serves as a reference for researchers, but also contains sufficient introduction for students and those who are new to the field

  16. The linear programming bound for binary linear codes

    NARCIS (Netherlands)

    Brouwer, A.E.

    1993-01-01

    Combining Delsarte's (1973) linear programming bound with the information that certain weights cannot occur, new upper bounds for dmin (n,k), the maximum possible minimum distance of a binary linear code with given word length n and dimension k, are derived.

  17. Linear Programming across the Curriculum

    Science.gov (United States)

    Yoder, S. Elizabeth; Kurz, M. Elizabeth

    2015-01-01

    Linear programming (LP) is taught in different departments across college campuses with engineering and management curricula. Modeling an LP problem is taught in every linear programming class. As faculty teaching in Engineering and Management departments, the depth to which teachers should expect students to master this particular type of…

  18. Linear programming

    CERN Document Server

    Karloff, Howard

    1991-01-01

    To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method…via the Ellipsoid algorithm to Karmarkar’s algorithm. Moreover, its point of view is algorithmic and thus it provides both a history and a case history of work in complexity theory. The presentation is admirable; Karloff's style is informal (even humorous at times) without sacrificing anything necessary for understanding. Diagrams (including horizontal brackets that group terms) aid in providing clarity. The end-of-chapter notes are helpful...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews The reader will be well served by reading the monograph from cover to cover. The author succeeds in providing a concise, readable, understandable introduction to modern linear programming. —Mathematics of Computing This is a textbook intend...

  19. Fuzzy Multi-objective Linear Programming Approach

    Directory of Open Access Journals (Sweden)

    Amna Rehmat

    2007-07-01

    Full Text Available Traveling salesman problem (TSP is one of the challenging real-life problems, attracting researchers of many fields including Artificial Intelligence, Operations Research, and Algorithm Design and Analysis. The problem has been well studied till now under different headings and has been solved with different approaches including genetic algorithms and linear programming. Conventional linear programming is designed to deal with crisp parameters, but information about real life systems is often available in the form of vague descriptions. Fuzzy methods are designed to handle vague terms, and are most suited to finding optimal solutions to problems with vague parameters. Fuzzy multi-objective linear programming, an amalgamation of fuzzy logic and multi-objective linear programming, deals with flexible aspiration levels or goals and fuzzy constraints with acceptable deviations. In this paper, a methodology, for solving a TSP with imprecise parameters, is deployed using fuzzy multi-objective linear programming. An example of TSP with multiple objectives and vague parameters is discussed.

  20. Gstat: a program for geostatistical modelling, prediction and simulation

    Science.gov (United States)

    Pebesma, Edzer J.; Wesseling, Cees G.

    1998-01-01

    Gstat is a computer program for variogram modelling, and geostatistical prediction and simulation. It provides a generic implementation of the multivariable linear model with trends modelled as a linear function of coordinate polynomials or of user-defined base functions, and independent or dependent, geostatistically modelled, residuals. Simulation in gstat comprises conditional or unconditional (multi-) Gaussian sequential simulation of point values or block averages, or (multi-) indicator sequential simulation. Besides many of the popular options found in other geostatistical software packages, gstat offers the unique combination of (i) an interactive user interface for modelling variograms and generalized covariances (residual variograms), that uses the device-independent plotting program gnuplot for graphical display, (ii) support for several ascii and binary data and map file formats for input and output, (iii) a concise, intuitive and flexible command language, (iv) user customization of program defaults, (v) no built-in limits, and (vi) free, portable ANSI-C source code. This paper describes the class of problems gstat can solve, and addresses aspects of efficiency and implementation, managing geostatistical projects, and relevant technical details.

  1. Investigating Integer Restrictions in Linear Programming

    Science.gov (United States)

    Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.

    2015-01-01

    Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…

  2. Linear and integer programming made easy

    CERN Document Server

    Hu, T C

    2016-01-01

    Linear and integer programming are fundamental toolkits for data and information science and technology, particularly in the context of today’s megatrends toward statistical optimization, machine learning, and big data analytics. Drawn from over 30 years of classroom teaching and applied research experience, this textbook provides a crisp and practical introduction to the basics of linear and integer programming. The authors’ approach is accessible to students from all fields of engineering, including operations research, statistics, machine learning, control system design, scheduling, formal verification, and computer vision. Readers will learn to cast hard combinatorial problems as mathematical programming optimizations, understand how to achieve formulations where the objective and constraints are linear, choose appropriate solution methods, and interpret results appropriately. •Provides a concise introduction to linear and integer programming, appropriate for undergraduates, graduates, a short cours...

  3. Nonlinear vs. linear biasing in Trp-cage folding simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spiwok, Vojtěch, E-mail: spiwokv@vscht.cz; Oborský, Pavel; Králová, Blanka [Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28 (Czech Republic); Pazúriková, Jana [Institute of Computer Science, Masaryk University, Botanická 554/68a, 602 00 Brno (Czech Republic); Křenek, Aleš [Institute of Computer Science, Masaryk University, Botanická 554/68a, 602 00 Brno (Czech Republic); Center CERIT-SC, Masaryk Univerzity, Šumavská 416/15, 602 00 Brno (Czech Republic)

    2015-03-21

    Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.

  4. Modeling results for a linear simulator of a divertor

    International Nuclear Information System (INIS)

    Hooper, E.B.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Jackson, M.C.; Kaiser, T.B.; Molvik, A.W.; Nevins, W.M.; Nilson, D.G.; Pearlstein, L.D.; Rognlien, T.D.

    1993-01-01

    A divertor simulator, IDEAL, has been proposed by S. Cohen to study the difficult power-handling requirements of the tokamak program in general and the ITER program in particular. Projections of the power density in the ITER divertor reach ∼ 1 Gw/m 2 along the magnetic fieldlines and > 10 MW/m 2 on a surface inclined at a shallow angle to the fieldlines. These power densities are substantially greater than can be handled reliably on the surface, so new techniques are required to reduce the power density to a reasonable level. Although the divertor physics must be demonstrated in tokamaks, a linear device could contribute to the development because of its flexibility, the easy access to the plasma and to tested components, and long pulse operation (essentially cw). However, a decision to build a simulator requires not just the recognition of its programmatic value, but also confidence that it can meet the required parameters at an affordable cost. Accordingly, as reported here, it was decided to examine the physics of the proposed device, including kinetic effects resulting from the intense heating required to reach the plasma parameters, and to conduct an independent cost estimate. The detailed role of the simulator in a divertor program is not explored in this report

  5. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    International Nuclear Information System (INIS)

    Batygin, Y.

    2004-01-01

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented

  6. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Y.

    2004-10-28

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented.

  7. PCX, Interior-Point Linear Programming Solver

    International Nuclear Information System (INIS)

    Czyzyk, J.

    2004-01-01

    1 - Description of program or function: PCX solves linear programming problems using the Mehrota predictor-corrector interior-point algorithm. PCX can be called as a subroutine or used in stand-alone mode, with data supplied from an MPS file. The software incorporates modules that can be used separately from the linear programming solver, including a pre-solve routine and data structure definitions. 2 - Methods: The Mehrota predictor-corrector method is a primal-dual interior-point method for linear programming. The starting point is determined from a modified least squares heuristic. Linear systems of equations are solved at each interior-point iteration via a sparse Cholesky algorithm native to the code. A pre-solver is incorporated in the code to eliminate inefficiencies in the user's formulation of the problem. 3 - Restriction on the complexity of the problem: There are no size limitations built into the program. The size of problem solved is limited by RAM and swap space on the user's computer

  8. Optimal local dimming for LED-backlit LCD displays via linear programming

    DEFF Research Database (Denmark)

    Shu, Xiao; Wu, Xiaolin; Forchhammer, Søren

    2012-01-01

    and the attenuations of LCD pixels. The objective is to minimize the distortion in luminance reproduction due to the leakage of LCD and the coarse granularity of the LED lights. The optimization problem is formulated as one of linear programming, and both exact and approximate algorithms are proposed. Simulation...

  9. Linear programming using Matlab

    CERN Document Server

    Ploskas, Nikolaos

    2017-01-01

    This book offers a theoretical and computational presentation of a variety of linear programming algorithms and methods with an emphasis on the revised simplex method and its components. A theoretical background and mathematical formulation is included for each algorithm as well as comprehensive numerical examples and corresponding MATLAB® code. The MATLAB® implementations presented in this book  are sophisticated and allow users to find solutions to large-scale benchmark linear programs. Each algorithm is followed by a computational study on benchmark problems that analyze the computational behavior of the presented algorithms. As a solid companion to existing algorithmic-specific literature, this book will be useful to researchers, scientists, mathematical programmers, and students with a basic knowledge of linear algebra and calculus.  The clear presentation enables the reader to understand and utilize all components of simplex-type methods, such as presolve techniques, scaling techniques, pivoting ru...

  10. Analysis of the efficiency of the linearization techniques for solving multi-objective linear fractional programming problems by goal programming

    Directory of Open Access Journals (Sweden)

    Tunjo Perić

    2017-01-01

    Full Text Available This paper presents and analyzes the applicability of three linearization techniques used for solving multi-objective linear fractional programming problems using the goal programming method. The three linearization techniques are: (1 Taylor’s polynomial linearization approximation, (2 the method of variable change, and (3 a modification of the method of variable change proposed in [20]. All three linearization techniques are presented and analyzed in two variants: (a using the optimal value of the objective functions as the decision makers’ aspirations, and (b the decision makers’ aspirations are given by the decision makers. As the criteria for the analysis we use the efficiency of the obtained solutions and the difficulties the analyst comes upon in preparing the linearization models. To analyze the applicability of the linearization techniques incorporated in the linear goal programming method we use an example of a financial structure optimization problem.

  11. Ranking Forestry Investments With Parametric Linear Programming

    Science.gov (United States)

    Paul A. Murphy

    1976-01-01

    Parametric linear programming is introduced as a technique for ranking forestry investments under multiple constraints; it combines the advantages of simple tanking and linear programming as capital budgeting tools.

  12. A Simulation-Based Linear Fractional Programming Model for Adaptable Water Allocation Planning in the Main Stream of The Songhua River Basin, China

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2018-05-01

    Full Text Available The potential influence of natural variations in a climate system on global warming can change the hydrological cycle and threaten current strategies of water management. A simulation-based linear fractional programming (SLFP model, which integrates a runoff simulation model (RSM into a linear fractional programming (LFP framework, is developed for optimal water resource planning. The SLFP model has multiple objectives such as benefit maximization and water supply minimization, balancing water conflicts among various water demand sectors, and addressing complexities of water resource allocation system. Lingo and Excel programming solutions were used to solve the model. Water resources in the main stream basin of the Songhua River are allocated for 4 water demand sectors in 8 regions during two planning periods under different scenarios. Results show that the increase or decrease of water supply to the domestic sector is related to the change in population density at different regions in different target years. In 2030, the water allocation in the industrial sector decreased by 1.03–3.52% compared with that in 2020, while the water allocation in the environmental sector increased by 0.12–1.29%. Agricultural water supply accounts for 54.79–77.68% of total water supply in different regions. These changes in water resource allocation for various sectors were affected by different scenarios in 2020; however, water resource allocation for each sector was relatively stable under different scenarios in 2030. These results suggest that the developed SLFP model can help to improve the adjustment of water use structure and water utilization efficiency.

  13. ALPS - A LINEAR PROGRAM SOLVER

    Science.gov (United States)

    Viterna, L. A.

    1994-01-01

    Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  14. Linear programming mathematics, theory and algorithms

    CERN Document Server

    1996-01-01

    Linear Programming provides an in-depth look at simplex based as well as the more recent interior point techniques for solving linear programming problems. Starting with a review of the mathematical underpinnings of these approaches, the text provides details of the primal and dual simplex methods with the primal-dual, composite, and steepest edge simplex algorithms. This then is followed by a discussion of interior point techniques, including projective and affine potential reduction, primal and dual affine scaling, and path following algorithms. Also covered is the theory and solution of the linear complementarity problem using both the complementary pivot algorithm and interior point routines. A feature of the book is its early and extensive development and use of duality theory. Audience: The book is written for students in the areas of mathematics, economics, engineering and management science, and professionals who need a sound foundation in the important and dynamic discipline of linear programming.

  15. Assembling networks of microbial genomes using linear programming.

    Science.gov (United States)

    Holloway, Catherine; Beiko, Robert G

    2010-11-20

    Microbial genomes exhibit complex sets of genetic affinities due to lateral genetic transfer. Assessing the relative contributions of parent-to-offspring inheritance and gene sharing is a vital step in understanding the evolutionary origins and modern-day function of an organism, but recovering and showing these relationships is a challenging problem. We have developed a new approach that uses linear programming to find between-genome relationships, by treating tables of genetic affinities (here, represented by transformed BLAST e-values) as an optimization problem. Validation trials on simulated data demonstrate the effectiveness of the approach in recovering and representing vertical and lateral relationships among genomes. Application of the technique to a set comprising Aquifex aeolicus and 75 other thermophiles showed an important role for large genomes as 'hubs' in the gene sharing network, and suggested that genes are preferentially shared between organisms with similar optimal growth temperatures. We were also able to discover distinct and common genetic contributors to each sequenced representative of genus Pseudomonas. The linear programming approach we have developed can serve as an effective inference tool in its own right, and can be an efficient first step in a more-intensive phylogenomic analysis.

  16. A New Finite Continuation Algorithm for Linear Programming

    DEFF Research Database (Denmark)

    Madsen, Kaj; Nielsen, Hans Bruun; Pinar, Mustafa

    1996-01-01

    We describe a new finite continuation algorithm for linear programming. The dual of the linear programming problem with unit lower and upper bounds is formulated as an $\\ell_1$ minimization problem augmented with the addition of a linear term. This nondifferentiable problem is approximated...... by a smooth problem. It is shown that the minimizers of the smooth problem define a family of piecewise-linear paths as a function of a smoothing parameter. Based on this property, a finite algorithm that traces these paths to arrive at an optimal solution of the linear program is developed. The smooth...

  17. Interior Point Method for Solving Fuzzy Number Linear Programming Problems Using Linear Ranking Function

    Directory of Open Access Journals (Sweden)

    Yi-hua Zhong

    2013-01-01

    Full Text Available Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.

  18. A program package for solving linear optimization problems

    International Nuclear Information System (INIS)

    Horikami, Kunihiko; Fujimura, Toichiro; Nakahara, Yasuaki

    1980-09-01

    Seven computer programs for the solution of linear, integer and quadratic programming (four programs for linear programming, one for integer programming and two for quadratic programming) have been prepared and tested on FACOM M200 computer, and auxiliary programs have been written to make it easy to use the optimization program package. The characteristics of each program are explained and the detailed input/output descriptions are given in order to let users know how to use them. (author)

  19. EZLP: An Interactive Computer Program for Solving Linear Programming Problems. Final Report.

    Science.gov (United States)

    Jarvis, John J.; And Others

    Designed for student use in solving linear programming problems, the interactive computer program described (EZLP) permits the student to input the linear programming model in exactly the same manner in which it would be written on paper. This report includes a brief review of the development of EZLP; narrative descriptions of program features,…

  20. Sparsity Prevention Pivoting Method for Linear Programming

    DEFF Research Database (Denmark)

    Li, Peiqiang; Li, Qiyuan; Li, Canbing

    2018-01-01

    When the simplex algorithm is used to calculate a linear programming problem, if the matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper....... The principle of this method is avoided choosing the row which the value of the element in the b vector is zero as the row of the pivot element to make the matrix in linear programming density and ensure that most subsequent steps will improve the value of the objective function. One step following...... this principle is inserted to reselect the pivot element in the existing linear programming algorithm. Both the conditions for inserting this step and the maximum number of allowed insertion steps are determined. In the case study, taking several numbers of linear programming problems as examples, the results...

  1. Sparsity Prevention Pivoting Method for Linear Programming

    DEFF Research Database (Denmark)

    Li, Peiqiang; Li, Qiyuan; Li, Canbing

    2018-01-01

    . The principle of this method is avoided choosing the row which the value of the element in the b vector is zero as the row of the pivot element to make the matrix in linear programming density and ensure that most subsequent steps will improve the value of the objective function. One step following......When the simplex algorithm is used to calculate a linear programming problem, if the matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper...... this principle is inserted to reselect the pivot element in the existing linear programming algorithm. Both the conditions for inserting this step and the maximum number of allowed insertion steps are determined. In the case study, taking several numbers of linear programming problems as examples, the results...

  2. A Homogeneous and Self-Dual Interior-Point Linear Programming Algorithm for Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Frison, Gianluca; Skajaa, Anders

    2015-01-01

    We develop an efficient homogeneous and self-dual interior-point method (IPM) for the linear programs arising in economic model predictive control of constrained linear systems with linear objective functions. The algorithm is based on a Riccati iteration procedure, which is adapted to the linear...... system of equations solved in homogeneous and self-dual IPMs. Fast convergence is further achieved using a warm-start strategy. We implement the algorithm in MATLAB and C. Its performance is tested using a conceptual power management case study. Closed loop simulations show that 1) the proposed algorithm...

  3. Timetabling an Academic Department with Linear Programming.

    Science.gov (United States)

    Bezeau, Lawrence M.

    This paper describes an approach to faculty timetabling and course scheduling that uses computerized linear programming. After reviewing the literature on linear programming, the paper discusses the process whereby a timetable was created for a department at the University of New Brunswick. Faculty were surveyed with respect to course offerings…

  4. An Approach for Solving Linear Fractional Programming Problems

    OpenAIRE

    Andrew Oyakhobo Odior

    2012-01-01

    Linear fractional programming problems are useful tools in production planning, financial and corporate planning, health care and hospital planning and as such have attracted considerable research interest. The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebr...

  5. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    Science.gov (United States)

    Yunpeng, Jia; Hongyuan, Su; Rui, Jin; Dongqing, Hu; Yu, Wu

    2016-02-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. Project supported by the National Natural Science Foundation of China (No. 61176071), the Doctoral Fund of Ministry of Education of China (No. 20111103120016), and the Science and Technology Program of State Grid Corporation of China (No. SGRI-WD-71-13-006).

  6. An Instructional Note on Linear Programming--A Pedagogically Sound Approach.

    Science.gov (United States)

    Mitchell, Richard

    1998-01-01

    Discusses the place of linear programming in college curricula and the advantages of using linear-programming software. Lists important characteristics of computer software used in linear programming for more effective teaching and learning. (ASK)

  7. Portfolio optimization using fuzzy linear programming

    Science.gov (United States)

    Pandit, Purnima K.

    2013-09-01

    Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.

  8. Joint shape segmentation with linear programming

    KAUST Repository

    Huang, Qixing; Koltun, Vladlen; Guibas, Leonidas

    2011-01-01

    program is solved via a linear programming relaxation, using a block coordinate descent procedure that makes the optimization feasible for large databases. We evaluate the presented approach on the Princeton segmentation benchmark and show that joint shape

  9. A Primal-Dual Interior Point-Linear Programming Algorithm for MPC

    DEFF Research Database (Denmark)

    Edlund, Kristian; Sokoler, Leo Emil; Jørgensen, John Bagterp

    2009-01-01

    Constrained optimal control problems for linear systems with linear constraints and an objective function consisting of linear and l1-norm terms can be expressed as linear programs. We develop an efficient primal-dual interior point algorithm for solution of such linear programs. The algorithm...

  10. Multiple Linear Regression Model Based on Neural Network and Its Application in the MBR Simulation

    Directory of Open Access Journals (Sweden)

    Chunqing Li

    2012-01-01

    Full Text Available The computer simulation of the membrane bioreactor MBR has become the research focus of the MBR simulation. In order to compensate for the defects, for example, long test period, high cost, invisible equipment seal, and so forth, on the basis of conducting in-depth study of the mathematical model of the MBR, combining with neural network theory, this paper proposed a three-dimensional simulation system for MBR wastewater treatment, with fast speed, high efficiency, and good visualization. The system is researched and developed with the hybrid programming of VC++ programming language and OpenGL, with a multifactor linear regression model of affecting MBR membrane fluxes based on neural network, applying modeling method of integer instead of float and quad tree recursion. The experiments show that the three-dimensional simulation system, using the above models and methods, has the inspiration and reference for the future research and application of the MBR simulation technology.

  11. The computer program LIAR for the simulation and modeling of high performance linacs

    International Nuclear Information System (INIS)

    Assmann, R.; Adolphsen, C.; Bane, K.; Emma, P.; Raubenheimer, T.O.; Siemann, R.; Thompson, K.; Zimmermann, F.

    1997-07-01

    High performance linear accelerators are the central components of the proposed next generation of linear colliders. They must provide acceleration of up to 750 GeV per beam while maintaining small normalized emittances. Standard simulation programs, mainly developed for storage rings, did not meet the specific requirements for high performance linacs with high bunch charges and strong wakefields. The authors present the program. LIAR (LInear Accelerator Research code) that includes single and multi-bunch wakefield effects, a 6D coupled beam description, specific optimization algorithms and other advanced features. LIAR has been applied to and checked against the existing Stanford Linear Collider (SLC), the linacs of the proposed Next Linear Collider (NLC) and the proposed Linac Coherent Light Source (LCLS) at SLAC. Its modular structure allows easy extension for different purposes. The program is available for UNIX workstations and Windows PC's

  12. A Fuzzy Linear Programming Approach for Aggregate Production Planning

    DEFF Research Database (Denmark)

    Iris, Cagatay; Cevikcan, Emre

    2014-01-01

    a mathematical programming framework for aggregate production planning problem under imprecise data environment. After providing background information about APP problem, together with fuzzy linear programming, the fuzzy linear programming model of APP is solved on an illustrative example for different a...

  13. PATH: a lumped-element beam-transport simulation program with space charge

    International Nuclear Information System (INIS)

    Farrell, J.A.

    1983-01-01

    PATH is a group of computer programs for simulating charged-particle beam-transport systems. It was developed for evaluating the effects of some aberrations without a time-consuming integration of trajectories through the system. The beam-transport portion of PATH is derived from the well-known program, DECAY TURTLE. PATH contains all features available in DECAY TURTLE (including the input format) plus additional features such as a more flexible random-ray generator, longitudinal phase space, some additional beamline elements, and space-charge routines. One of the programs also provides a simulation of an Alvarez linear accelerator. The programs, originally written for a CDC 7600 computer system, also are available on a VAX-VMS system. All of the programs are interactive with input prompting for ease of use

  14. Linear Parametric Sensitivity Analysis of the Constraint Coefficient Matrix in Linear Programs

    OpenAIRE

    Zuidwijk, Rob

    2005-01-01

    textabstractSensitivity analysis is used to quantify the impact of changes in the initial data of linear programs on the optimal value. In particular, parametric sensitivity analysis involves a perturbation analysis in which the effects of small changes of some or all of the initial data on an optimal solution are investigated, and the optimal solution is studied on a so-called critical range of the initial data, in which certain properties such as the optimal basis in linear programming are ...

  15. Visualizing measurement for 3D smooth density distributions by means of linear programming

    International Nuclear Information System (INIS)

    Tayama, Norio; Yang, Xue-dong

    1994-01-01

    This paper is concerned with a theoretical possibility of a new visualizing measurement method based on an optimum 3D reconstruction from a few selected projections. A theory of optimum 3D reconstruction by a linear programming is discussed, utilizing a few projections for sampled 3D smooth-density-distribution model which satisfies the condition of the 3D sampling theorem. First by use of the sampling theorem, it is shown that we can set up simultaneous simple equations which corresponds to the case of the parallel beams. Then we solve the simultaneous simple equations by means of linear programming algorithm, and we can get an optimum 3D density distribution images with minimum error in the reconstruction. The results of computer simulation with the algorithm are presented. (author)

  16. A goal programming procedure for solving fuzzy multiobjective fractional linear programming problems

    Directory of Open Access Journals (Sweden)

    Tunjo Perić

    2014-12-01

    Full Text Available This paper presents a modification of Pal, Moitra and Maulik's goal programming procedure for fuzzy multiobjective linear fractional programming problem solving. The proposed modification of the method allows simpler solving of economic multiple objective fractional linear programming (MOFLP problems, enabling the obtained solutions to express the preferences of the decision maker defined by the objective function weights. The proposed method is tested on the production planning example.

  17. PGOPHER: A program for simulating rotational, vibrational and electronic spectra

    International Nuclear Information System (INIS)

    Western, Colin M.

    2017-01-01

    The PGOPHER program is a general purpose program for simulating and fitting molecular spectra, particularly the rotational structure. The current version can handle linear molecules, symmetric tops and asymmetric tops and many possible transitions, both allowed and forbidden, including multiphoton and Raman spectra in addition to the common electric dipole absorptions. Many different interactions can be included in the calculation, including those arising from electron and nuclear spin, and external electric and magnetic fields. Multiple states and interactions between them can also be accounted for, limited only by available memory. Fitting of experimental data can be to line positions (in many common formats), intensities or band contours and the parameters determined can be level populations as well as rotational constants. PGOPHER is provided with a powerful and flexible graphical user interface to simplify many of the tasks required in simulating, understanding and fitting molecular spectra, including Fortrat diagrams and energy level plots in addition to overlaying experimental and simulated spectra. The program is open source, and can be compiled with open source tools. This paper provides a formal description of the operation of version 9.1. - Highlights: • Easy-to-use graphical interface for assigning and understanding molecular spectra. • Simulates rotational and vibrational structure of many types of molecular spectra. • Fits molecular properties to line positions or spectral contours. • Handles linear molecules and symmetric and asymmetric tops. • Handles perturbations, nuclear and electron spin, and electric and magnetic fields.

  18. Optimal blood glucose control in diabetes mellitus treatment using dynamic programming based on Ackerman’s linear model

    Science.gov (United States)

    Pradanti, Paskalia; Hartono

    2018-03-01

    Determination of insulin injection dose in diabetes mellitus treatment can be considered as an optimal control problem. This article is aimed to simulate optimal blood glucose control for patient with diabetes mellitus. The blood glucose regulation of diabetic patient is represented by Ackerman’s Linear Model. This problem is then solved using dynamic programming method. The desired blood glucose level is obtained by minimizing the performance index in Lagrange form. The results show that dynamic programming based on Ackerman’s Linear Model is quite good to solve the problem.

  19. Linking linear programming and spatial simulation models to predict landscape effects of forest management alternatives

    Science.gov (United States)

    Eric J. Gustafson; L. Jay Roberts; Larry A. Leefers

    2006-01-01

    Forest management planners require analytical tools to assess the effects of alternative strategies on the sometimes disparate benefits from forests such as timber production and wildlife habitat. We assessed the spatial patterns of alternative management strategies by linking two models that were developed for different purposes. We used a linear programming model (...

  20. Object-Oriented Parallel Particle-in-Cell Code for Beam Dynamics Simulation in Linear Accelerators

    International Nuclear Information System (INIS)

    Qiang, J.; Ryne, R.D.; Habib, S.; Decky, V.

    1999-01-01

    In this paper, we present an object-oriented three-dimensional parallel particle-in-cell code for beam dynamics simulation in linear accelerators. A two-dimensional parallel domain decomposition approach is employed within a message passing programming paradigm along with a dynamic load balancing. Implementing object-oriented software design provides the code with better maintainability, reusability, and extensibility compared with conventional structure based code. This also helps to encapsulate the details of communications syntax. Performance tests on SGI/Cray T3E-900 and SGI Origin 2000 machines show good scalability of the object-oriented code. Some important features of this code also include employing symplectic integration with linear maps of external focusing elements and using z as the independent variable, typical in accelerators. A successful application was done to simulate beam transport through three superconducting sections in the APT linac design

  1. Game Theory and its Relationship with Linear Programming Models ...

    African Journals Online (AJOL)

    Game Theory and its Relationship with Linear Programming Models. ... This paper shows that game theory and linear programming problem are closely related subjects since any computing method devised for ... AJOL African Journals Online.

  2. Evaluation of film dosemeters by linear programming

    International Nuclear Information System (INIS)

    Kragh, P.; Nitschke, J.

    1992-01-01

    An evaluation method for multi-component dosemeters is described which uses linear programming in order to decrease the dependence on energy and direction. The results of this method are more accurate than those obtained with the evaluation methods so far applied in film dosimetry. In addition, systematic errors can be given when evaluating individual measurements. Combined linear programming, as a special case of the presented method, is described taking a film dosemeter of particular type as an example. (orig.) [de

  3. LOADING SIMULATION PROGRAM C

    Science.gov (United States)

    LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality

  4. A recurrent neural network for solving bilevel linear programming problem.

    Science.gov (United States)

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian

    2014-04-01

    In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.

  5. Correction of heterogeneities in the issue compositions in the construction plans optimized in radiotherapy using linear programming

    International Nuclear Information System (INIS)

    Viana, Rodrigo Sartorelo S.; Lima, Ernesto A.B.F.; Florentino, Helenice de Oliveira; Fonseca, Paulo Roberto da; Homem, Thiago Pedro Donadon

    2009-01-01

    Linear programming models are widely found in the literature addressing various aspects involved in the creation of optimized planning for radiotherapy. However, most mathematical formulations does not incorporate certain factors that are of extreme importance for the formulation of a real planning like the attenuation of the beam of radiation and heterogeneity in the composition of tissue irradiated. In this context are proposed in this paper some modifications in the formulation of a linear programming problem with the objective of making the simulation closer to the real planning for radiotherapy and thus enable a more reliable and comprehensive planning requirements. (author)

  6. DESIGN OF AN EDUCATIONAL SIMULATION PROGRAM USING DIGITAL VIDEO PROCESSING TO DETERMINE THE THERMAL EXPANSION OF MATERIALS

    Directory of Open Access Journals (Sweden)

    V. Gökhan BÖCEKÇİ

    2013-01-01

    Full Text Available The present report describes the realization of an educational simulation program to determine the amount of linear thermal expansion in experimental materials. An interferogram signal derived from an interferometric measurement system was modeled as a video signal in a computer environment. A simulation program was designed from the model signal in order to detect the amount of expansion in materials. The simulation program determined the amount of to heat by detecting the number of fringes in interferogram video signals of the material. This simulation program facilitated experimental studies n academic institutions which are deprived of interferometric measurement systems.

  7. 175 Years of Linear Programming

    Indian Academy of Sciences (India)

    polynomial-time solvability of linear programming, that is, testing if a polyhedron Q E ~ ... Q is rational, i.e. all extreme points and rays of Q are ra- tional vectors or ..... rithrll terminates with an interior solution, a post-processing step is usually ...

  8. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    Science.gov (United States)

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  9. A Sawmill Manager Adapts To Change With Linear Programming

    Science.gov (United States)

    George F. Dutrow; James E. Granskog

    1973-01-01

    Linear programming provides guidelines for increasing sawmill capacity and flexibility and for determining stumpagepurchasing strategy. The operator of a medium-sized sawmill implemented improvements suggested by linear programming analysis; results indicate a 45 percent increase in revenue and a 36 percent hike in volume processed.

  10. Linear programming phase unwrapping for dual-wavelength digital holography.

    Science.gov (United States)

    Wang, Zhaomin; Jiao, Jiannan; Qu, Weijuan; Yang, Fang; Li, Hongru; Tian, Ailing; Asundi, Anand

    2017-01-20

    A linear programming phase unwrapping method in dual-wavelength digital holography is proposed and verified experimentally. The proposed method uses the square of height difference as a convergence standard and theoretically gives the boundary condition in a searching process. A simulation was performed by unwrapping step structures at different levels of Gaussian noise. As a result, our method is capable of recovering the discontinuities accurately. It is robust and straightforward. In the experiment, a microelectromechanical systems sample and a cylindrical lens were measured separately. The testing results were in good agreement with true values. Moreover, the proposed method is applicable not only in digital holography but also in other dual-wavelength interferometric techniques.

  11. Head simulation of linear accelerators and spectra considerations using EGS4 Monte Carlo code in a PC

    Energy Technology Data Exchange (ETDEWEB)

    Malatara, G; Kappas, K [Medical Physics Department, Faculty of Medicine, University of Patras, 265 00 Patras (Greece); Sphiris, N [Ethnodata S.A., Athens (Greece)

    1994-12-31

    In this work, a Monte Carlo EGS4 code was used to simulate radiation transport through linear accelerators to produce and score energy spectra and angular distributions of 6, 12, 15 and 25 MeV bremsstrahlung photons exiting from different accelerator treatment heads. The energy spectra was used as input for a convolution method program to calculate the tissue-maximum ratio in water. 100.000 histories are recorded in the scoring plane for each simulation. The validity of the Monte Carlo simulation and the precision to the calculated spectra have been verified experimentally and were in good agreement. We believe that the accurate simulation of the different components of the linear accelerator head is very important for the precision of the results. The results of the Monte Carlo and the Convolution Method can be compared with experimental data for verification and they are powerful and practical tools to generate accurate spectra and dosimetric data. (authors). 10 refs,5 figs, 2 tabs.

  12. Head simulation of linear accelerators and spectra considerations using EGS4 Monte Carlo code in a PC

    International Nuclear Information System (INIS)

    Malatara, G.; Kappas, K.; Sphiris, N.

    1994-01-01

    In this work, a Monte Carlo EGS4 code was used to simulate radiation transport through linear accelerators to produce and score energy spectra and angular distributions of 6, 12, 15 and 25 MeV bremsstrahlung photons exiting from different accelerator treatment heads. The energy spectra was used as input for a convolution method program to calculate the tissue-maximum ratio in water. 100.000 histories are recorded in the scoring plane for each simulation. The validity of the Monte Carlo simulation and the precision to the calculated spectra have been verified experimentally and were in good agreement. We believe that the accurate simulation of the different components of the linear accelerator head is very important for the precision of the results. The results of the Monte Carlo and the Convolution Method can be compared with experimental data for verification and they are powerful and practical tools to generate accurate spectra and dosimetric data. (authors)

  13. 175 Years of Linear Programming

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. 175 Years of Linear Programming - Max Flow = Min Cut. Vijay Chandru M R Rao. Series Article Volume 4 Issue 10 October 1999 pp 22-39. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. 175 Years of Linear Programming

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 5. 175 Years of Linear Programming - Pune's Gift. Vijay Chandru M R Rao. Series Article Volume 4 Issue 5 May ... Computer Science and Automation, IISc Bangalore 560012, India. Director, Indian Institute of Management, Bannerghatta Road, ...

  15. International linear collider simulations using BDSIM

    Indian Academy of Sciences (India)

    BDSIM is a Geant4 [1] extension toolkit for the simulation of particle transport in accelerator beamlines. It is a code that combines accelerator-style particle tracking with traditional Geant-style tracking based on Runga–Kutta techniques. A more detailed description of the code can be found in [2]. In an e+e− linear collider ...

  16. An approach for solving linear fractional programming problems ...

    African Journals Online (AJOL)

    The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebraically using the concept of duality ...

  17. Non-linear simulations of ELMs in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lessig, Alexander; Hoelzl, Matthias; Orain, Francois; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Becoulet, Marina; Huysmans, Guido [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Collaboration: the ASDEX Upgrade Team

    2016-07-01

    Large edge localized modes (ELMs) are a severe concern for the operation of future tokamak devices like ITER or DEMO due to the high transient heat loads induced on divertor targets and wall structures. It is therefore important to study ELMs both theoretically and experimentally in order to obtain a comprehensive understanding of the underlying mechanisms which is necessary for the prediction of ELM properties and the design of ELM mitigation systems. Using the non-linear MHD code JOREK, we have performed first simulations of full ELM crashes in ASDEX Upgrade, taking into account a large number of toroidal Fourier harmonics. The evolution of the toroidal mode spectrum has been investigated. In particular, we confirm the previously observed non-linear drive of linearly sub-dominant low-n components in the early non-linear phase of the ELM crash. Preliminary comparisons of the simulations with experimental observations regarding heat and particle losses, pedestal evolution and heat deposition patterns are shown. On the long run we aim at code validation as well as an improved understanding of the ELM dynamics and possibly a better characterization of different ELM types.

  18. Wavelet-linear genetic programming: A new approach for modeling monthly streamflow

    Science.gov (United States)

    Ravansalar, Masoud; Rajaee, Taher; Kisi, Ozgur

    2017-06-01

    The streamflows are important and effective factors in stream ecosystems and its accurate prediction is an essential and important issue in water resources and environmental engineering systems. A hybrid wavelet-linear genetic programming (WLGP) model, which includes a discrete wavelet transform (DWT) and a linear genetic programming (LGP) to predict the monthly streamflow (Q) in two gauging stations, Pataveh and Shahmokhtar, on the Beshar River at the Yasuj, Iran were used in this study. In the proposed WLGP model, the wavelet analysis was linked to the LGP model where the original time series of streamflow were decomposed into the sub-time series comprising wavelet coefficients. The results were compared with the single LGP, artificial neural network (ANN), a hybrid wavelet-ANN (WANN) and Multi Linear Regression (MLR) models. The comparisons were done by some of the commonly utilized relevant physical statistics. The Nash coefficients (E) were found as 0.877 and 0.817 for the WLGP model, for the Pataveh and Shahmokhtar stations, respectively. The comparison of the results showed that the WLGP model could significantly increase the streamflow prediction accuracy in both stations. Since, the results demonstrate a closer approximation of the peak streamflow values by the WLGP model, this model could be utilized for the simulation of cumulative streamflow data prediction in one month ahead.

  19. Plasma simulation of electron avalanche in a linear thyratron

    International Nuclear Information System (INIS)

    Kushner, M.J.

    1985-01-01

    Thyratrons typically operate at sufficiently small PD (pressure x electrode separation) that holdoff is obtained by operating on the near side of the Paschen curve, and by shielding the slot in the control grid so there is no straight line path for electrons to reach the anode from the cathode. Electron avalanche is initiated by pulsing the control grid to a high voltage. Upon collapse of voltage in the cathode-control grid space, the discharge is sustained by penetration of potential through the control grid slot into the cathode-control grid region. To better understand the electron avalanche process in multi-grid and slotted structures such as thyratrons, a plasma simulation code has been constructed. This effort is in support of a companion program in which a linear thyratron is being electrically and spectroscopically characterized

  20. Non-linear programming method in optimization of fast reactors

    International Nuclear Information System (INIS)

    Pavelesku, M.; Dumitresku, Kh.; Adam, S.

    1975-01-01

    Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)

  1. Analytic central path, sensitivity analysis and parametric linear programming

    NARCIS (Netherlands)

    A.G. Holder; J.F. Sturm; S. Zhang (Shuzhong)

    1998-01-01

    textabstractIn this paper we consider properties of the central path and the analytic center of the optimal face in the context of parametric linear programming. We first show that if the right-hand side vector of a standard linear program is perturbed, then the analytic center of the optimal face

  2. Linear program differentiation for single-channel speech separation

    DEFF Research Database (Denmark)

    Pearlmutter, Barak A.; Olsson, Rasmus Kongsgaard

    2006-01-01

    Many apparently difficult problems can be solved by reduction to linear programming. Such problems are often subproblems within larger systems. When gradient optimisation of the entire larger system is desired, it is necessary to propagate gradients through the internally-invoked LP solver....... For instance, when an intermediate quantity z is the solution to a linear program involving constraint matrix A, a vector of sensitivities dE/dz will induce sensitivities dE/dA. Here we show how these can be efficiently calculated, when they exist. This allows algorithmic differentiation to be applied...... to algorithms that invoke linear programming solvers as subroutines, as is common when using sparse representations in signal processing. Here we apply it to gradient optimisation of over complete dictionaries for maximally sparse representations of a speech corpus. The dictionaries are employed in a single...

  3. Linear combination of forecasts with numerical adjustment via MINIMAX non-linear programming

    Directory of Open Access Journals (Sweden)

    Jairo Marlon Corrêa

    2016-03-01

    Full Text Available This paper proposes a linear combination of forecasts obtained from three forecasting methods (namely, ARIMA, Exponential Smoothing and Artificial Neural Networks whose adaptive weights are determined via a multi-objective non-linear programming problem, which seeks to minimize, simultaneously, the statistics: MAE, MAPE and MSE. The results achieved by the proposed combination are compared with the traditional approach of linear combinations of forecasts, where the optimum adaptive weights are determined only by minimizing the MSE; with the combination method by arithmetic mean; and with individual methods

  4. Very Low-Cost Nutritious Diet Plans Designed by Linear Programming.

    Science.gov (United States)

    Foytik, Jerry

    1981-01-01

    Provides procedural details of Linear Programing, developed by the U.S. Department of Agriculture to devise a dietary guide for consumers that minimizes food costs without sacrificing nutritional quality. Compares Linear Programming with the Thrifty Food Plan, which has been a basis for allocating coupons under the Food Stamp Program. (CS)

  5. Portfolio optimization by using linear programing models based on genetic algorithm

    Science.gov (United States)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  6. Experiences with linear solvers for oil reservoir simulation problems

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, W.; Janardhan, R. [Los Alamos National Lab., NM (United States); Biswas, D.; Carey, G.

    1996-12-31

    This talk will focus on practical experiences with iterative linear solver algorithms used in conjunction with Amoco Production Company`s Falcon oil reservoir simulation code. The goal of this study is to determine the best linear solver algorithms for these types of problems. The results of numerical experiments will be presented.

  7. Reliability modelling and simulation of switched linear system ...

    African Journals Online (AJOL)

    Reliability modelling and simulation of switched linear system control using temporal databases. ... design of fault-tolerant real-time switching systems control and modelling embedded micro-schedulers for complex systems maintenance.

  8. LOADING SIMULATION PROGRAM C

    Data.gov (United States)

    U.S. Environmental Protection Agency — LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for...

  9. An easy way to obtain strong duality results in linear, linear semidefinite and linear semi-infinite programming

    NARCIS (Netherlands)

    Pop, P.C.; Still, Georg J.

    1999-01-01

    In linear programming it is known that an appropriate non-homogeneous Farkas Lemma leads to a short proof of the strong duality results for a pair of primal and dual programs. By using a corresponding generalized Farkas lemma we give a similar proof of the strong duality results for semidefinite

  10. The simplex method of linear programming

    CERN Document Server

    Ficken, Frederick A

    1961-01-01

    This concise but detailed and thorough treatment discusses the rudiments of the well-known simplex method for solving optimization problems in linear programming. Geared toward undergraduate students, the approach offers sufficient material for readers without a strong background in linear algebra. Many different kinds of problems further enrich the presentation. The text begins with examinations of the allocation problem, matrix notation for dual problems, feasibility, and theorems on duality and existence. Subsequent chapters address convex sets and boundedness, the prepared problem and boun

  11. Some Properties of Multiple Parameters Linear Programming

    Directory of Open Access Journals (Sweden)

    Maoqin Li

    2010-01-01

    Full Text Available We consider a linear programming problem in which the right-hand side vector depends on multiple parameters. We study the characters of the optimal value function and the critical regions based on the concept of the optimal partition. We show that the domain of the optimal value function f can be decomposed into finitely many subsets with disjoint relative interiors, which is different from the result based on the concept of the optimal basis. And any directional derivative of f at any point can be computed by solving a linear programming problem when only an optimal solution is available at the point.

  12. Some Properties of Multiple Parameters Linear Programming

    Directory of Open Access Journals (Sweden)

    Yan Hong

    2010-01-01

    Full Text Available Abstract We consider a linear programming problem in which the right-hand side vector depends on multiple parameters. We study the characters of the optimal value function and the critical regions based on the concept of the optimal partition. We show that the domain of the optimal value function can be decomposed into finitely many subsets with disjoint relative interiors, which is different from the result based on the concept of the optimal basis. And any directional derivative of at any point can be computed by solving a linear programming problem when only an optimal solution is available at the point.

  13. A comparison between linear and non-linear analysis of flexible pavements

    Energy Technology Data Exchange (ETDEWEB)

    Soleymani, H.R.; Berthelot, C.F.; Bergan, A.T. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Mechanical Engineering

    1995-12-31

    Computer pavement analysis programs, which are based on mathematical simulation models, were compared. The programs included in the study were: ELSYM5, an Elastic Linear (EL) pavement analysis program, MICH-PAVE, a Finite Element Non-Linear (FENL) and Finite Element Linear (FEL) pavement analysis program. To perform the analysis different tire pressures, pavement material properties and asphalt layer thicknesses were selected. Evaluation criteria used in the analysis were tensile strain in bottom of the asphalt layer, vertical compressive strain at the top of the subgrade and surface displacement. Results showed that FENL methods predicted more strain and surface deflection than the FEL and EL analysis methods. Analyzing pavements with FEL does not offer many advantages over the EL method. Differences in predicted strains between the three methods of analysis in some cases was found to be close to 100% It was suggested that these programs require more calibration and validation both theoretically and empirically to accurately correlate with field observations. 19 refs., 4 tabs., 9 figs.

  14. LIAR -- A computer program for the modeling and simulation of high performance linacs

    International Nuclear Information System (INIS)

    Assmann, R.; Adolphsen, C.; Bane, K.; Emma, P.; Raubenheimer, T.; Siemann, R.; Thompson, K.; Zimmermann, F.

    1997-04-01

    The computer program LIAR (LInear Accelerator Research Code) is a numerical modeling and simulation tool for high performance linacs. Amongst others, it addresses the needs of state-of-the-art linear colliders where low emittance, high-intensity beams must be accelerated to energies in the 0.05-1 TeV range. LIAR is designed to be used for a variety of different projects. LIAR allows the study of single- and multi-particle beam dynamics in linear accelerators. It calculates emittance dilutions due to wakefield deflections, linear and non-linear dispersion and chromatic effects in the presence of multiple accelerator imperfections. Both single-bunch and multi-bunch beams can be simulated. Several basic and advanced optimization schemes are implemented. Present limitations arise from the incomplete treatment of bending magnets and sextupoles. A major objective of the LIAR project is to provide an open programming platform for the accelerator physics community. Due to its design, LIAR allows straight-forward access to its internal FORTRAN data structures. The program can easily be extended and its interactive command language ensures maximum ease of use. Presently, versions of LIAR are compiled for UNIX and MS Windows operating systems. An interface for the graphical visualization of results is provided. Scientific graphs can be saved in the PS and EPS file formats. In addition a Mathematica interface has been developed. LIAR now contains more than 40,000 lines of source code in more than 130 subroutines. This report describes the theoretical basis of the program, provides a reference for existing features and explains how to add further commands. The LIAR home page and the ONLINE version of this manual can be accessed under: http://www.slac.stanford.edu/grp/arb/rwa/liar.htm

  15. Parallel beam dynamics simulation of linear accelerators

    International Nuclear Information System (INIS)

    Qiang, Ji; Ryne, Robert D.

    2002-01-01

    In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies

  16. A LINEAR PROGRAMMING ALGORITHM FOR LEAST-COST SCHEDULING

    Directory of Open Access Journals (Sweden)

    AYMAN H AL-MOMANI

    1999-12-01

    Full Text Available In this research, some concepts of linear programming and critical path method are reviewed to describe recent modeling structures that have been of great value in analyzing extended planning horizon project time-cost trade-offs problems. A simplified representation of a small project and a linear programming model is formulated to represent this system. Procedures to solve these various problems formulations were cited and the final solution is obtained using LINDO program. The model developed represents many restrictions and management considerations of the project. It could be used by construction managers in a planning stage to explore numerous possible opportunities to the contractor and predict the effect of a decision on the construction to facilitate a preferred operating policy given different management objectives. An implementation using this method is shown to outperform several other techniques and a large class of test problems. Linear programming show that the algorithm is very promising in practice on a wide variety of time-cost trade-offs problems. This method is simple, applicable to a large network, and generates a shorter computational time at low cost, along with an increase in robustness.

  17. Applied Research of Enterprise Cost Control Based on Linear Programming

    Directory of Open Access Journals (Sweden)

    Yu Shuo

    2015-01-01

    This paper researches the enterprise cost control through the linear programming model, and analyzes the restriction factors of the labor of enterprise production, raw materials, processing equipment, sales price, and other factors affecting the enterprise income, so as to obtain an enterprise cost control model based on the linear programming. This model can calculate rational production mode in the case of limited resources, and acquire optimal enterprise income. The production guiding program and scheduling arrangement of the enterprise can be obtained through calculation results, so as to provide scientific and effective guidance for the enterprise production. This paper adds the sensitivity analysis in the linear programming model, so as to learn about the stability of the enterprise cost control model based on linear programming through the sensitivity analysis, and verify the rationality of the model, and indicate the direction for the enterprise cost control. The calculation results of the model can provide a certain reference for the enterprise planning in the market economy environment, which have strong reference and practical significance in terms of the enterprise cost control.

  18. Simulation of a programmed frequency shift near extraction from the Fermilab Booster

    International Nuclear Information System (INIS)

    Lucas, P.; Kerns, Q.

    1987-03-01

    The longitudinal phase space program ESME has been used to simulate the effects of a linear shift in RF frequency away from that appropriate for the accelerator guide field. This shift takes place in the new Booster low level RF and is used to position the particle bunches in Main Ring buckets in a reproducible fashion. Shifts in frequency are found to generate synchrotron oscillations; however, the simulations show that these can be reduced to acceptable levels by introduction of jumps in RF phase preceding the programmed frequency changes. Lowering the RF voltage near extraction from the Booster, a desirable operational feature, has also been investigated

  19. Non-Linear Metamodeling Extensions to the Robust Parameter Design of Computer Simulations

    Science.gov (United States)

    2016-09-15

    The combined-array RSM approach has been applied to a piston simulation [11] and an economic order quantity inventory model [12, 13]. A textbook ...are limited when applied to simulations. In the former case, the mean and variance models can be inadequate due to a high level of non-linearity...highly non-linear nature of typical simulations. In the multi-response RPD problem, the objective is to find the optimal control parameter levels

  20. Joint shape segmentation with linear programming

    KAUST Repository

    Huang, Qixing

    2011-01-01

    We present an approach to segmenting shapes in a heterogenous shape database. Our approach segments the shapes jointly, utilizing features from multiple shapes to improve the segmentation of each. The approach is entirely unsupervised and is based on an integer quadratic programming formulation of the joint segmentation problem. The program optimizes over possible segmentations of individual shapes as well as over possible correspondences between segments from multiple shapes. The integer quadratic program is solved via a linear programming relaxation, using a block coordinate descent procedure that makes the optimization feasible for large databases. We evaluate the presented approach on the Princeton segmentation benchmark and show that joint shape segmentation significantly outperforms single-shape segmentation techniques. © 2011 ACM.

  1. Arc-Search Infeasible Interior-Point Algorithm for Linear Programming

    OpenAIRE

    Yang, Yaguang

    2014-01-01

    Mehrotra's algorithm has been the most successful infeasible interior-point algorithm for linear programming since 1990. Most popular interior-point software packages for linear programming are based on Mehrotra's algorithm. This paper proposes an alternative algorithm, arc-search infeasible interior-point algorithm. We will demonstrate, by testing Netlib problems and comparing the test results obtained by arc-search infeasible interior-point algorithm and Mehrotra's algorithm, that the propo...

  2. Linear Programming and Its Application to Pattern Recognition Problems

    Science.gov (United States)

    Omalley, M. J.

    1973-01-01

    Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.

  3. Object matching using a locally affine invariant and linear programming techniques.

    Science.gov (United States)

    Li, Hongsheng; Huang, Xiaolei; He, Lei

    2013-02-01

    In this paper, we introduce a new matching method based on a novel locally affine-invariant geometric constraint and linear programming techniques. To model and solve the matching problem in a linear programming formulation, all geometric constraints should be able to be exactly or approximately reformulated into a linear form. This is a major difficulty for this kind of matching algorithm. We propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot fewer auxiliary variables than other linear programming-based methods do. The key idea behind it is that each point in the template point set can be exactly represented by an affine combination of its neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each matched point using such weights are used to penalize the disagreement of geometric relationships between the template points and the matched points. The resulting overall objective function can be solved efficiently by linear programming techniques. Our experimental results on both rigid and nonrigid object matching show the effectiveness of the proposed algorithm.

  4. Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics

    KAUST Repository

    Bakhsh, Abeer

    2016-03-09

    Numerical simulations and analysis indicate that the Richtmyer-Meshkov instability(RMI) is suppressed in ideal magnetohydrodynamics(MHD) in Cartesian slab geometry. Motivated by the presence of hydrodynamic instabilities in inertial confinement fusion and suppression by means of a magnetic field, we investigate the RMI via linear MHD simulations in cylindrical geometry. The physical setup is that of a Chisnell-type converging shock interacting with a density interface with either axial or azimuthal (2D) perturbations. The linear stability is examined in the context of an initial value problem (with a time-varying base state) wherein the linearized ideal MHD equations are solved with an upwind numerical method. Linear simulations in the absence of a magnetic field indicate that RMI growth rate during the early time period is similar to that observed in Cartesian geometry. However, this RMI phase is short-lived and followed by a Rayleigh-Taylor instability phase with an accompanied exponential increase in the perturbation amplitude. We examine several strengths of the magnetic field (characterized by β=2p/B^2_r) and observe a significant suppression of the instability for β ≤ 4. The suppression of the instability is attributed to the transport of vorticity away from the interface by Alfvén fronts.

  5. PGOPHER: A program for simulating rotational, vibrational and electronic spectra

    Science.gov (United States)

    Western, Colin M.

    2017-01-01

    The PGOPHER program is a general purpose program for simulating and fitting molecular spectra, particularly the rotational structure. The current version can handle linear molecules, symmetric tops and asymmetric tops and many possible transitions, both allowed and forbidden, including multiphoton and Raman spectra in addition to the common electric dipole absorptions. Many different interactions can be included in the calculation, including those arising from electron and nuclear spin, and external electric and magnetic fields. Multiple states and interactions between them can also be accounted for, limited only by available memory. Fitting of experimental data can be to line positions (in many common formats), intensities or band contours and the parameters determined can be level populations as well as rotational constants. PGOPHER is provided with a powerful and flexible graphical user interface to simplify many of the tasks required in simulating, understanding and fitting molecular spectra, including Fortrat diagrams and energy level plots in addition to overlaying experimental and simulated spectra. The program is open source, and can be compiled with open source tools. This paper provides a formal description of the operation of version 9.1.

  6. Application of the simplex method of linear programming model to ...

    African Journals Online (AJOL)

    This work discussed how the simplex method of linear programming could be used to maximize the profit of any business firm using Saclux Paint Company as a case study. It equally elucidated the effect variation in the optimal result obtained from linear programming model, will have on any given firm. It was demonstrated ...

  7. An introduction to fuzzy linear programming problems theory, methods and applications

    CERN Document Server

    Kaur, Jagdeep

    2016-01-01

    The book presents a snapshot of the state of the art in the field of fully fuzzy linear programming. The main focus is on showing current methods for finding the fuzzy optimal solution of fully fuzzy linear programming problems in which all the parameters and decision variables are represented by non-negative fuzzy numbers. It presents new methods developed by the authors, as well as existing methods developed by others, and their application to real-world problems, including fuzzy transportation problems. Moreover, it compares the outcomes of the different methods and discusses their advantages/disadvantages. As the first work to collect at one place the most important methods for solving fuzzy linear programming problems, the book represents a useful reference guide for students and researchers, providing them with the necessary theoretical and practical knowledge to deal with linear programming problems under uncertainty.

  8. An efficient method for generalized linear multiplicative programming problem with multiplicative constraints.

    Science.gov (United States)

    Zhao, Yingfeng; Liu, Sanyang

    2016-01-01

    We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.

  9. A Direct Heuristic Algorithm for Linear Programming

    Indian Academy of Sciences (India)

    Abstract. An (3) mathematically non-iterative heuristic procedure that needs no artificial variable is presented for solving linear programming problems. An optimality test is included. Numerical experiments depict the utility/scope of such a procedure.

  10. Train Repathing in Emergencies Based on Fuzzy Linear Programming

    Directory of Open Access Journals (Sweden)

    Xuelei Meng

    2014-01-01

    Full Text Available Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.

  11. Train repathing in emergencies based on fuzzy linear programming.

    Science.gov (United States)

    Meng, Xuelei; Cui, Bingmou

    2014-01-01

    Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.

  12. Study and program implementation of transient curves' piecewise linearization

    International Nuclear Information System (INIS)

    Shi Yang; Zu Hongbiao

    2014-01-01

    Background: Transient curves are essential for the stress analysis of related equipment in nuclear power plant (NPP). The actually operating data or the design transient data of a NPP usually consist of a large number of data points with very short time intervals. To simplify the analysis, transient curves are generally piecewise linearized in advance. Up to now, the piecewise linearization of transient curves is accomplished manually, Purpose: The aim is to develop a method for the piecewise linearization of transient curves, and to implement it by programming. Methods: First of all, the fitting line of a number of data points was obtained by the least square method. The segment of the fitting line is set while the accumulation error of linearization exceeds the preset limit with the increasing number of points. Then the linearization of subsequent data points was begun from the last point of the preceding curve segment to get the next segment in the same way, and continue until the final data point involved. Finally, averaging of junction points is taken for the segment connection. Results: A computer program named PLTC (Piecewise Linearization for Transient Curves) was implemented and verified by the linearization of the standard sine curve and typical transient curves of a NPP. Conclusion: The method and the PLTC program can be well used to the piecewise linearization of transient curves, with improving efficiency and precision. (authors)

  13. Linear Programming for Vocational Education Planning. Interim Report.

    Science.gov (United States)

    Young, Robert C.; And Others

    The purpose of the paper is to define for potential users of vocational education management information systems a quantitative analysis technique and its utilization to facilitate more effective planning of vocational education programs. Defining linear programming (LP) as a management technique used to solve complex resource allocation problems…

  14. The Use of Linear Programming for Prediction.

    Science.gov (United States)

    Schnittjer, Carl J.

    The purpose of the study was to develop a linear programming model to be used for prediction, test the accuracy of the predictions, and compare the accuracy with that produced by curvilinear multiple regression analysis. (Author)

  15. The RANDOM computer program: A linear congruential random number generator

    Science.gov (United States)

    Miles, R. F., Jr.

    1986-01-01

    The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers.

  16. A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.

    Science.gov (United States)

    Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa

    2018-02-01

    Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.

  17. linear accelerator simulation framework with placet and guinea-pig

    CERN Document Server

    Snuverink, Jochem; CERN. Geneva. ATS Department

    2016-01-01

    Many good tracking tools are available for simulations for linear accelerators. However, several simple tasks need to be performed repeatedly, like lattice definitions, beam setup, output storage, etc. In addition, complex simulations can become unmanageable quite easily. A high level layer would therefore be beneficial. We propose LinSim, a linear accelerator framework with the codes PLACET and GUINEA-PIG. It provides a documented well-debugged high level layer of functionality. Users only need to provide the input settings and essential code and / or use some of the many implemented imperfections and algorithms. It can be especially useful for first-time users. Currently the following accelerators are implemented: ATF2, ILC, CLIC and FACET. This note is the comprehensive manual, discusses the framework design and shows its strength in some condensed examples.

  18. Further development of the V-code for recirculating linear accelerator simulations

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Sylvain; Ackermann, Wolfgang; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt (Germany); Eichhorn, Ralf; Hug, Florian; Kleinmann, Michaela; Platz, Markus [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2011-07-01

    The Superconducting Darmstaedter LINear Accelerator (S-DALINAC) installed at the institute of nuclear physics (IKP) at TU Darmstadt is designed as a recirculating linear accelerator. The beam is first accelerated up to 10 MeV in the injector beam line. Then it is deflected by 180 degrees into the main linac. The linac section with eight superconducting cavities is passed up to three times, providing a maximal energy gain of 40 MeV on each passage. Due to this recirculating layout it is complicated to find an accurate setup for the various beam line elements. Fast online beam dynamics simulations can advantageously assist the operators because they provide a more detailed insight into the actual machine status. In this contribution further developments of the moment based simulation tool V-code which enables to simulate recirculating machines are presented together with simulation results.

  19. Near-Regular Structure Discovery Using Linear Programming

    KAUST Repository

    Huang, Qixing; Guibas, Leonidas J.; Mitra, Niloy J.

    2014-01-01

    as an optimization and efficiently solve it using linear programming techniques. Our optimization has a discrete aspect, that is, the connectivity relationships among the elements, as well as a continuous aspect, namely the locations of the elements of interest. Both

  20. NP-Hardness of optimizing the sum of Rational Linear Functions over an Asymptotic-Linear-Program

    OpenAIRE

    Chermakani, Deepak Ponvel

    2012-01-01

    We convert, within polynomial-time and sequential processing, an NP-Complete Problem into a real-variable problem of minimizing a sum of Rational Linear Functions constrained by an Asymptotic-Linear-Program. The coefficients and constants in the real-variable problem are 0, 1, -1, K, or -K, where K is the time parameter that tends to positive infinity. The number of variables, constraints, and rational linear functions in the objective, of the real-variable problem is bounded by a polynomial ...

  1. Linear Parametric Sensitivity Analysis of the Constraint Coefficient Matrix in Linear Programs

    NARCIS (Netherlands)

    R.A. Zuidwijk (Rob)

    2005-01-01

    textabstractSensitivity analysis is used to quantify the impact of changes in the initial data of linear programs on the optimal value. In particular, parametric sensitivity analysis involves a perturbation analysis in which the effects of small changes of some or all of the initial data on an

  2. Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae

    Science.gov (United States)

    Rosu, Grigore; Havelund, Klaus

    2001-01-01

    The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.

  3. Program LINEAR (version 79-1): linearize data in the evaluated nuclear data file/version B (ENDF/B) format

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1979-01-01

    Program LINEAR converts evaluated cross sections in the ENDF/B format into a tabular form that is subject to linear-linear interpolation in energy and cross section. The code also thins tables of cross sections already in that form (i.e., removes points not needed for linear interpolability). The main advantage of the code is that it allows subsequent codes to consider only linear-linear data. A listing of the source deck is available on request

  4. General guidelines solution for linear programming with fuzzy coefficients

    Directory of Open Access Journals (Sweden)

    Sergio Gerardo de los Cobos Silva

    2013-08-01

    Full Text Available This work introduce to the Possibilistic Programming and the Fuzzy Programming as paradigms that allow to resolve problems of linear programming when the coefficients of the model or the restrictions on the same are presented as fuzzy numbers, rather than exact numbers (crisp. This work presents some examples based on [1].

  5. Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model.

    Science.gov (United States)

    Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan

    2016-03-24

    Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML.

  6. A linear programming approach for placement of applicants to academic programs

    OpenAIRE

    Kassa, Biniyam Asmare

    2013-01-01

    This paper reports a linear programming approach for placement of applicants to study programs developed and implemented at the college of Business & Economics, Bahir Dar University, Bahir Dar, Ethiopia. The approach is estimated to significantly streamline the placement decision process at the college by reducing required man hour as well as the time it takes to announce placement decisions. Compared to the previous manual system where only one or two placement criteria were considered, the ...

  7. Accelerating transient simulation of linear reduced order models.

    Energy Technology Data Exchange (ETDEWEB)

    Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad

    2011-10-01

    Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.

  8. Non-linear nuclear engineering models as genetic programming application

    International Nuclear Information System (INIS)

    Domingos, Roberto P.; Schirru, Roberto; Martinez, Aquilino S.

    1997-01-01

    This work presents a Genetic Programming paradigm and a nuclear application. A field of Artificial Intelligence, based on the concepts of Species Evolution and Natural Selection, can be understood as a self-programming process where the computer is the main agent responsible for the discovery of a program able to solve a given problem. In the present case, the problem was to find a mathematical expression in symbolic form, able to express the existent relation between equivalent ratio of a fuel cell, the enrichment of fuel elements and the multiplication factor. Such expression would avoid repeatedly reactor physics codes execution for core optimization. The results were compared with those obtained by different techniques such as Neural Networks and Linear Multiple Regression. Genetic Programming has shown to present a performance as good as, and under some features superior to Neural Network and Linear Multiple Regression. (author). 10 refs., 8 figs., 1 tabs

  9. Sensitivity analysis of linear programming problem through a recurrent neural network

    Science.gov (United States)

    Das, Raja

    2017-11-01

    In this paper we study the recurrent neural network for solving linear programming problems. To achieve optimality in accuracy and also in computational effort, an algorithm is presented. We investigate the sensitivity analysis of linear programming problem through the neural network. A detailed example is also presented to demonstrate the performance of the recurrent neural network.

  10. Electric-car simulation

    Science.gov (United States)

    Chapman, C. P.; Slusser, R. A.

    1980-01-01

    PARAMET, interactive simulation program for parametric studies of electric vehicles, guides user through simulation by menu and series of prompts for input parameters. Program considers aerodynamic drag, rolling resistance, linear and rotational acceleration, and road gradient as forces acting on vehicle.

  11. Storage and distribution/Linear programming for storage operations

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, D

    1978-07-15

    The techniques of linear programing to solve storage problems as applied in a tank farm tie-in with refinery throughput operation include: (1) the time-phased model which works on storage and refinery operations input parameters, e.g., production, distribution, cracking, etc., and is capable of representing product stockpiling in slack periods to meet future peak demands, and investigating alternative strategies such as exchange deals and purchase and leasing of additional storage, and (2) the Monte Carlo simulation method, which inputs parameters, e.g., arrival of crude products at refinery, tankage size, likely demand for products, etc., as probability distributions rather than single values, and is capable of showing the average utilization of facilities, potential bottlenecks, investment required to achieve an increase in utilization, and to enable the user to predict total investment, cash flow, and profit emanating from the original financing decision. The increasing use of computer techniques to solve refinery and storage problems is attributed to potential savings resulting from more effective planning, reduced computer costs, ease of access and more usable software. Diagrams.

  12. Performance of uncertainty quantification methodologies and linear solvers in cardiovascular simulations

    Science.gov (United States)

    Seo, Jongmin; Schiavazzi, Daniele; Marsden, Alison

    2017-11-01

    Cardiovascular simulations are increasingly used in clinical decision making, surgical planning, and disease diagnostics. Patient-specific modeling and simulation typically proceeds through a pipeline from anatomic model construction using medical image data to blood flow simulation and analysis. To provide confidence intervals on simulation predictions, we use an uncertainty quantification (UQ) framework to analyze the effects of numerous uncertainties that stem from clinical data acquisition, modeling, material properties, and boundary condition selection. However, UQ poses a computational challenge requiring multiple evaluations of the Navier-Stokes equations in complex 3-D models. To achieve efficiency in UQ problems with many function evaluations, we implement and compare a range of iterative linear solver and preconditioning techniques in our flow solver. We then discuss applications to patient-specific cardiovascular simulation and how the problem/boundary condition formulation in the solver affects the selection of the most efficient linear solver. Finally, we discuss performance improvements in the context of uncertainty propagation. Support from National Institute of Health (R01 EB018302) is greatly appreciated.

  13. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.

    Science.gov (United States)

    Li, Pu; Chen, Bing

    2011-04-01

    Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. FAST modularization framework for wind turbine simulation: full-system linearization

    Science.gov (United States)

    Jonkman, J. M.; Jonkman, B. J.

    2016-09-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well- established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  15. Generalised Assignment Matrix Methodology in Linear Programming

    Science.gov (United States)

    Jerome, Lawrence

    2012-01-01

    Discrete Mathematics instructors and students have long been struggling with various labelling and scanning algorithms for solving many important problems. This paper shows how to solve a wide variety of Discrete Mathematics and OR problems using assignment matrices and linear programming, specifically using Excel Solvers although the same…

  16. WHIZARD 2.2 for linear colliders

    International Nuclear Information System (INIS)

    Kilian, W.; Ohl, T.

    2014-03-01

    We review the current status of the WHIZARD event generator. We discuss, in particular, recent improvements and features that are relevant for simulating the physics program at a future Linear Collider.

  17. Program For Parallel Discrete-Event Simulation

    Science.gov (United States)

    Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.

    1991-01-01

    User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.

  18. Fuzzy linear programming approach for solving transportation

    Indian Academy of Sciences (India)

    Transportation problem (TP) is an important network structured linear programming problem that arises in several contexts and has deservedly received a great deal of attention in the literature. The central concept in this problem is to find the least total transportation cost of a commodity in order to satisfy demands at ...

  19. Large-scale linear programs in planning and prediction.

    Science.gov (United States)

    2017-06-01

    Large-scale linear programs are at the core of many traffic-related optimization problems in both planning and prediction. Moreover, many of these involve significant uncertainty, and hence are modeled using either chance constraints, or robust optim...

  20. Linear decomposition approach for a class of nonconvex programming problems.

    Science.gov (United States)

    Shen, Peiping; Wang, Chunfeng

    2017-01-01

    This paper presents a linear decomposition approach for a class of nonconvex programming problems by dividing the input space into polynomially many grids. It shows that under certain assumptions the original problem can be transformed and decomposed into a polynomial number of equivalent linear programming subproblems. Based on solving a series of liner programming subproblems corresponding to those grid points we can obtain the near-optimal solution of the original problem. Compared to existing results in the literature, the proposed algorithm does not require the assumptions of quasi-concavity and differentiability of the objective function, and it differs significantly giving an interesting approach to solving the problem with a reduced running time.

  1. International program on linear electric motors

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, G.E.; Eastham, A.R.; Parker, J.H.

    1992-05-01

    The International Program on Linear Electric Motors (LEM) was initiated for the purposes of commumication and coordination between various centers of expertise in LEM technology in Germany, Japan and Canada. Furthermore, it was intended to provide assessment and support of the planning of technological developments and for dissemination of information to researchers, service operators and policy makers, and to ensure that full advantage can be taken if opportunities for technology transfer occur. In the process, the program was able to provide closer contacts between researchers, to enhance and encourage collaborative research and development, and to facilitate joint ventures in advanced transportation technologies. Work done under the program is documented, and seminar materials presented by Canadian researchers in Italy, and by Italian researchers at Queen's University in Canada are presented. Five separate abstracts have been prepared for the main body of the report and the seminar materials.

  2. Quality of computerized blast load simulation for non-linear dynamic ...

    African Journals Online (AJOL)

    Quality of computerized blast load simulation for non-linear dynamic response ... commercial software system and a special-purpose, blast-specific software product to ... depend both on the analysis model of choice and the stand-off distances.

  3. C-program LINOP for the evaluation of film dosemeters by linear optimization. User manual

    International Nuclear Information System (INIS)

    Kragh, P.

    1995-11-01

    Linear programming results in an optimal measuring value for film dosemeters. The Linop program was developed to be used for linear programming. The program permits the evaluation and control of film dosemeters and of all other multi-component dosemeters. This user manual for the Linop program contains the source program, a description of the program and installation and use instructions. The data sets with programs and examples are available upon request. (orig.) [de

  4. Optimized remedial groundwater extraction using linear programming

    International Nuclear Information System (INIS)

    Quinn, J.J.

    1995-01-01

    Groundwater extraction systems are typically installed to remediate contaminant plumes or prevent further spread of contamination. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield uses a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, the optimal locations and pump rates of extraction wells are difficult to determine when objectives related to the site hydrogeology and potential pumping scheme are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. The objectives of the pumping scheme were to contain contaminant migration and reduce contaminant concentrations while minimizing the total amount of water pumped and treated. Past site activities at the area under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input budget as groundwater discharge from the pits. Optimization of the containment pumping scheme was intended to meet three goals: (1) prevent discharge of contaminated groundwater to the wetland, (2) minimize the total water pumped and treated (cost benefit), and (3) avoid dewatering of the wetland (cost and ecological benefits). Possible well locations were placed at known source areas. To constrain the problem, the optimization program was instructed to prevent any flow toward the wetland along a user-specified border. In this manner, the optimization routine selects well locations and pump rates so that a groundwater divide is produced along this boundary

  5. A property of assignment type mixed integer linear programming problems

    NARCIS (Netherlands)

    Benders, J.F.; van Nunen, J.A.E.E.

    1982-01-01

    In this paper we will proof that rather tight upper bounds can be given for the number of non-unique assignments that are achieved after solving the linear programming relaxation of some types of mixed integer linear assignment problems. Since in these cases the number of splitted assignments is

  6. Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Jørgen Arendt

    2013-01-01

    A fast non-linear pulsed ultrasound field simulation is presented. It is implemented based on an angular spectrum approach (ASA), which analytically solves the non-linear wave equation. The ASA solution to the Westervelt equation is derived in detail. The calculation speed is significantly...... increased compared to a numerical solution using an operator splitting method (OSM). The ASA has been modified and extended to pulsed non-linear ultrasound fields in combination with Field II, where any array transducer with arbitrary geometry, excitation, focusing and apodization can be simulated...... with a center frequency of 5 MHz. The speed is increased approximately by a factor of 140 and the calculation time is 12 min with a standard PC, when simulating the second harmonic pulse at the focal point. For the second harmonic point spread function the full width error is 1.5% at 6 dB and 6.4% at 12 d...

  7. Simulation of non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.

    2002-01-01

    -linear propagation. The speed of sound is calculated from the instantaneous pressure of the pulse and the nonlinearity B/A parameter of the medium. The harmonic field is found by introducing a number of virtual planes in front of the aperture and then propagating the pulse using Burgers' solution between the planes....... Simulations on the acoustical axis of an array transducer were performed and compared to measurements made in a water tank. A 3 MHz convex array transducer with a pitch of 0.53 mm and a height of 13 mm was used. The electronic focus was at 45 mm and 16 elements were used for emission. The emitted pressure...... was 1.4 MPa measured 6 mm from the aperture by a Force Institute MH25-5 needle hydrophone in a water bath. The build-up of higher harmonics can here be predicted accurately up to the 5th harmonic. The second harmonic is simulated with an accuracy of ±2.6 dB and the third harmonic with ±2 dB compared...

  8. Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...

  9. Fundamental solution of the problem of linear programming and method of its determination

    Science.gov (United States)

    Petrunin, S. V.

    1978-01-01

    The idea of a fundamental solution to a problem in linear programming is introduced. A method of determining the fundamental solution and of applying this method to the solution of a problem in linear programming is proposed. Numerical examples are cited.

  10. Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics

    KAUST Repository

    Bakhsh, Abeer; Gao, Song; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    fusion and suppression by means of a magnetic field, we investigate the RMI via linear MHD simulations in cylindrical geometry. The physical setup is that of a Chisnell-type converging shock interacting with a density interface with either axial

  11. Programming for a nuclear reactor instrument simulator

    International Nuclear Information System (INIS)

    Cohn, C.E.

    1989-01-01

    A new computerized control system for a transient test reactor incorporates a simulator for pre-operational testing of control programs. The part of the simulator pertinent to the discussion here consists of two microprocessors. An 8086/8087 reactor simulator calculates simulated reactor power by solving the reactor kinetics equations. An 8086 instrument simulator takes the most recent power value developed by the reactor simulator and simulates the appropriate reading on each of the eleven reactor instruments. Since the system is required to run on a one millisecond cycle, careful programming was required to take care of all eleven instruments in that short time. This note describes the special programming techniques used to attain the needed performance

  12. A Spreadsheet-Based, Matrix Formulation Linear Programming Lesson

    DEFF Research Database (Denmark)

    Harrod, Steven

    2009-01-01

    The article focuses on the spreadsheet-based, matrix formulation linear programming lesson. According to the article, it makes a higher level of theoretical mathematics approachable by a wide spectrum of students wherein many may not be decision sciences or quantitative methods majors. Moreover...

  13. Neurosurgery simulation using non-linear finite element modeling and haptic interaction

    Science.gov (United States)

    Lee, Huai-Ping; Audette, Michel; Joldes, Grand R.; Enquobahrie, Andinet

    2012-02-01

    Real-time surgical simulation is becoming an important component of surgical training. To meet the realtime requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.

  14. Sensitivity Analysis of Linear Programming and Quadratic Programming Algorithms for Control Allocation

    Science.gov (United States)

    Frost, Susan A.; Bodson, Marc; Acosta, Diana M.

    2009-01-01

    The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.

  15. Spline smoothing of histograms by linear programming

    Science.gov (United States)

    Bennett, J. O.

    1972-01-01

    An algorithm for an approximating function to the frequency distribution is obtained from a sample of size n. To obtain the approximating function a histogram is made from the data. Next, Euclidean space approximations to the graph of the histogram using central B-splines as basis elements are obtained by linear programming. The approximating function has area one and is nonnegative.

  16. Noiseless Vlasov–Poisson simulations with linearly transformed particles

    Energy Technology Data Exchange (ETDEWEB)

    Campos Pinto, Martin, E-mail: campos@ann.jussieu.fr [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris (France); UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris (France); Sonnendrücker, Eric, E-mail: sonnen@math.unistra.fr [IRMA, UMR 7501, Université de Strasbourg and CNRS, 7 rue René Descartes, F-67084 Strasbourg Cedex (France); Project-team CALVI, INRIA Nancy Grand Est, 7 rue René Descartes, F-67084 Strasbourg Cedex (France); Friedman, Alex, E-mail: af@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Grote, David P., E-mail: grote1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lund, Steve M., E-mail: smlund@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-10-15

    We introduce a deterministic discrete-particle simulation approach, the Linearly-Transformed Particle-In-Cell (LTPIC) method, that employs linear deformations of the particles to reduce the noise traditionally associated with particle schemes. Formally, transforming the particles is justified by local first order expansions of the characteristic flow in phase space. In practice the method amounts of using deformation matrices within the particle shape functions; these matrices are updated via local evaluations of the forward numerical flow. Because it is necessary to periodically remap the particles on a regular grid to avoid excessively deforming their shapes, the method can be seen as a development of Denavit's Forward Semi-Lagrangian (FSL) scheme (Denavit, 1972 [8]). However, it has recently been established (Campos Pinto, 2012 [20]) that the underlying Linearly-Transformed Particle scheme converges for abstract transport problems, with no need to remap the particles; deforming the particles can thus be seen as a way to significantly lower the remapping frequency needed in the FSL schemes, and hence the associated numerical diffusion. To couple the method with electrostatic field solvers, two specific charge deposition schemes are examined, and their performance compared with that of the standard deposition method. Finally, numerical 1d1v simulations involving benchmark test cases and halo formation in an initially mismatched thermal sheet beam demonstrate some advantages of our LTPIC scheme over the classical PIC and FSL methods. Benchmarked test cases also indicate that, for numerical choices involving similar computational effort, the LTPIC method is capable of accuracy comparable to or exceeding that of state-of-the-art, high-resolution Vlasov schemes.

  17. A NOESY-HSQC simulation program, SPIRIT

    International Nuclear Information System (INIS)

    Zhu Leiming; Dyson, H. Jane; Wright, Peter E.

    1998-01-01

    A program SPIRIT (Simulation Program considering Incomplete Recovery of z magnetization and INEPT Transfer efficiency) has been developed to simulate three-dimensional NOESY-HSQC spectra. This program takes into account (1) different transfer efficiency during INEPT and reverse INEPT durations due to differential relaxation rates and 1 J coupling constants; (2) the different effect of the sensitivity-enhancement scheme on CH, CH 2 and CH 3 systems; and (3) incomplete recovery of longitudinal magnetization between scans. The simulation program incorporates anisotropic tumbling mode for symmetric tops, and allows for differential external relaxation rates for protons. Some well-defined internal motions, such as the fast rotation of methyl groups, are taken into account. The simulation program also allows for input of multiple conformations and their relative populations to calculate the average relaxation matrix to account for slow internal motions. With the SPIRIT program, the sensitivity-enhanced NOESY-HSQC experiment can be used directly in the evaluation of the accuracy of structures, which can potentially be improved by direct refinement against the primary data. Abbreviations: NOESY, nuclear Overhauser enhancement spectroscopy; HSQC, heteronuclear single quantum correlation; INEPT, insensitive nuclei enhanced by polarization transfer

  18. Formulated linear programming problems from game theory and its ...

    African Journals Online (AJOL)

    Formulated linear programming problems from game theory and its computer implementation using Tora package. ... Game theory, a branch of operations research examines the various concepts of decision ... AJOL African Journals Online.

  19. FAST Modularization Framework for Wind Turbine Simulation: Full-System Linearization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, Jason; Jonkman, Bonnie

    2016-11-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well-established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  20. Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.

    Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically-numerical tec......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...

  1. Numerical simulation of electro-osmotic consolidation coupling non-linear variation of soil parameters

    Science.gov (United States)

    Wu, Hui; Hu, Liming; Wen, Qingbo

    2017-06-01

    Electro-osmotic consolidation is an effective method for soft ground improvement. A main limitation of previous numerical models on this technique is the ignorance of the non-linear variation of soil parameters. In the present study, a multi-field numerical model is developed with the consideration of the non-linear variation of soil parameters during electro-osmotic consolidation process. The numerical simulations on an axisymmetric model indicated that the non-linear variation of soil parameters showed remarkable impact on the development of the excess pore water pressure and degree of consolidation. A field experiment with complex geometry, boundary conditions, electrode configuration and voltage application was further simulated with the developed numerical model. The comparison between field and numerical data indicated that the numerical model coupling of the non-linear variation of soil parameters gave more reasonable results. The developed numerical model is capable to analyze engineering cases with complex operating conditions.

  2. An algorithm for the solution of dynamic linear programs

    Science.gov (United States)

    Psiaki, Mark L.

    1989-01-01

    The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation

  3. MAGDM linear-programming models with distinct uncertain preference structures.

    Science.gov (United States)

    Xu, Zeshui S; Chen, Jian

    2008-10-01

    Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.

  4. A simulation model of a coordinated decentralized linear supply chain

    NARCIS (Netherlands)

    Ashayeri, Jalal; Cannella, S.; Lopez Campos, M.; Miranda, P.A.

    2015-01-01

    This paper presents a simulation-based study of a coordinated, decentralized linear supply chain (SC) system. In the proposed model, any supply tier considers its successors as part of its inventory system and generates replenishment orders on the basis of its partners’ operational information. We

  5. An overview of solution methods for multi-objective mixed integer linear programming programs

    DEFF Research Database (Denmark)

    Andersen, Kim Allan; Stidsen, Thomas Riis

    Multiple objective mixed integer linear programming (MOMIP) problems are notoriously hard to solve to optimality, i.e. finding the complete set of non-dominated solutions. We will give an overview of existing methods. Among those are interactive methods, the two phases method and enumeration...... methods. In particular we will discuss the existing branch and bound approaches for solving multiple objective integer programming problems. Despite the fact that branch and bound methods has been applied successfully to integer programming problems with one criterion only a few attempts has been made...

  6. Simulation and linear stability of traffic jams; Kotsu jutai no senkei anteisei to simulation

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, M. [Shizuoka University, Shizuoka (Japan); Nagatani, T. [Shizuoka University, Shizuoka (Japan). Faculty of Engineering

    1999-05-25

    A traffic jam induced by slowing down is investigated using simulation techniques of molecular dynamics. When cars are decelerated by the presence of hindrance, two typical traffic jams occur behind the hindrance: one is an oscillating jam and the other is a homogeneous jam. When the slowing down is small, the oscillating jam occurs. If the slowing down is large, the jam is homogeneous over space and time. Also, a backward propagating soliton-like jam is observed. The linear stability theory is applied to the traffic flow. The phase boundary between the oscillating and homogeneous jams is compared with the neutral stability line obtained by the linear stability theory. (author)

  7. Accommodation of practical constraints by a linear programming jet select. [for Space Shuttle

    Science.gov (United States)

    Bergmann, E.; Weiler, P.

    1983-01-01

    An experimental spacecraft control system will be incorporated into the Space Shuttle flight software and exercised during a forthcoming mission to evaluate its performance and handling qualities. The control system incorporates a 'phase space' control law to generate rate change requests and a linear programming jet select to compute jet firings. Posed as a linear programming problem, jet selection must represent the rate change request as a linear combination of jet acceleration vectors where the coefficients are the jet firing times, while minimizing the fuel expended in satisfying that request. This problem is solved in real time using a revised Simplex algorithm. In order to implement the jet selection algorithm in the Shuttle flight control computer, it was modified to accommodate certain practical features of the Shuttle such as limited computer throughput, lengthy firing times, and a large number of control jets. To the authors' knowledge, this is the first such application of linear programming. It was made possible by careful consideration of the jet selection problem in terms of the properties of linear programming and the Simplex algorithm. These modifications to the jet select algorithm may by useful for the design of reaction controlled spacecraft.

  8. Robust Adaptive Dynamic Programming of Two-Player Zero-Sum Games for Continuous-Time Linear Systems.

    Science.gov (United States)

    Fu, Yue; Fu, Jun; Chai, Tianyou

    2015-12-01

    In this brief, an online robust adaptive dynamic programming algorithm is proposed for two-player zero-sum games of continuous-time unknown linear systems with matched uncertainties, which are functions of system outputs and states of a completely unknown exosystem. The online algorithm is developed using the policy iteration (PI) scheme with only one iteration loop. A new analytical method is proposed for convergence proof of the PI scheme. The sufficient conditions are given to guarantee globally asymptotic stability and suboptimal property of the closed-loop system. Simulation studies are conducted to illustrate the effectiveness of the proposed method.

  9. DESIGN OF EDUCATIONAL PROBLEMS ON LINEAR PROGRAMMING USING SYSTEMS OF COMPUTER MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Volodymyr M. Mykhalevych

    2013-11-01

    Full Text Available From a perspective of the theory of educational problems a problem of substitution in the conditions of ICT use of one discipline by an educational problem of another discipline is represented. Through the example of mathematical problems of linear programming it is showed that a student’s method of operation in the course of an educational problem solving is determinant in the identification of an educational problem in relation to a specific discipline: linear programming, informatics, mathematical modeling, methods of optimization, automatic control theory, calculus etc. It is substantiated the necessity of linear programming educational problems renovation with the purpose of making students free of bulky similar arithmetic calculations and notes which often becomes a barrier to a deeper understanding of key ideas taken as a basis of algorithms used by them.

  10. Current status of endoscopic simulation in gastroenterology fellowship training programs.

    Science.gov (United States)

    Jirapinyo, Pichamol; Thompson, Christopher C

    2015-07-01

    Recent guidelines have encouraged gastroenterology and surgical training programs to integrate simulation into their core endoscopic curricula. However, the role that simulation currently has within training programs is unknown. This study aims to assess the current status of simulation among gastroenterology fellowship programs. This questionnaire study consisted of 38 fields divided into two sections. The first section queried program directors' experience on simulation and assessed the current status of simulation at their institution. The second portion surveyed their opinion on the potential role of simulation on the training curriculum. The study was conducted at the 2013 American Gastroenterological Association Training Directors' Workshop in Phoenix, Arizona. The participants were program directors from Accreditation Council for Graduate Medical Education accredited gastroenterology training programs, who attended the workshop. The questionnaire was returned by 69 of 97 program directors (response rate of 71%). 42% of programs had an endoscopic simulator. Computerized simulators (61.5%) were the most common, followed by mechanical (30.8%) and animal tissue (7.7%) simulators, respectively. Eleven programs (15%) required fellows to use simulation prior to clinical cases. Only one program has a minimum number of hours fellows have to participate in simulation training. Current simulators are deemed as easy to use (76%) and good educational tools (65%). Problems are cost (72%) and accessibility (69%). The majority of program directors believe that there is a need for endoscopic simulator training, with only 8% disagreeing. Additionally, a majority believe there is a role for simulation prior to initiation of clinical cases with 15% disagreeing. Gastroenterology fellowship program directors widely recognize the importance of simulation. Nevertheless, simulation is used by only 42% of programs and only 15% of programs require that trainees use simulation prior to

  11. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    Science.gov (United States)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  12. International program on linear electric motors. CIGGT report No. 92-1

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, G.E.; Eastham, A.R.; Parker, J.H.

    1992-12-31

    The International Program for Linear Electric Motors (LEM) was begun in April 1989 to communicate and coordinate activities with centers of expertise in Germany, Canada, and Japan; to provide for the assessment and support of the planning of technological developments and for dissemination of information to researchers, service operators, and policy makers; and to ensure that full advantage can be taken if opportunities for technology transfer occur. This report documents the work done under the program, including standardizing linear induction motor (LIM) design characteristics; test procedures and measurement methods; rating; database for design data; criteria for evaluation of designs; computer programs for modelling performance; and a design study for an agreed application.

  13. Indirect synthesis of multi-degree of freedom transient systems. [linear programming for a kinematically linear system

    Science.gov (United States)

    Pilkey, W. D.; Chen, Y. H.

    1974-01-01

    An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.

  14. LCPT: a program for finding linear canonical transformations

    International Nuclear Information System (INIS)

    Char, B.W.; McNamara, B.

    1979-01-01

    This article describes a MACSYMA program to compute symbolically a canonical linear transformation between coordinate systems. The difficulties in implementation of this canonical small physics problem are also discussed, along with the implications that may be drawn from such difficulties about widespread MACSYMA usage by the community of computational/theoretical physicists

  15. Interior-Point Methods for Linear Programming: A Review

    Science.gov (United States)

    Singh, J. N.; Singh, D.

    2002-01-01

    The paper reviews some recent advances in interior-point methods for linear programming and indicates directions in which future progress can be made. Most of the interior-point methods belong to any of three categories: affine-scaling methods, potential reduction methods and central path methods. These methods are discussed together with…

  16. Parallel linear solvers for simulations of reactor thermal hydraulics

    International Nuclear Information System (INIS)

    Yan, Y.; Antal, S.P.; Edge, B.; Keyes, D.E.; Shaver, D.; Bolotnov, I.A.; Podowski, M.Z.

    2011-01-01

    The state-of-the-art multiphase fluid dynamics code, NPHASE-CMFD, performs multiphase flow simulations in complex domains using implicit nonlinear treatment of the governing equations and in parallel, which is a very challenging environment for the linear solver. The present work illustrates how the Portable, Extensible Toolkit for Scientific Computation (PETSc) and scalable Algebraic Multigrid (AMG) preconditioner from Hypre can be utilized to construct robust and scalable linear solvers for the Newton correction equation obtained from the discretized system of governing conservation equations in NPHASE-CMFD. The overall long-tem objective of this work is to extend the NPHASE-CMFD code into a fully-scalable solver of multiphase flow and heat transfer problems, applicable to both steady-state and stiff time-dependent phenomena in complete fuel assemblies of nuclear reactors and, eventually, the entire reactor core (such as the Virtual Reactor concept envisioned by CASL). This campaign appropriately begins with the linear algebraic equation solver, which is traditionally a bottleneck to scalability in PDE-based codes. The computational complexity of the solver is usually superlinear in problem size, whereas the rest of the code, the “physics” portion, usually has its complexity linear in the problem size. (author)

  17. High Speed Simulation Framework for Reliable Logic Programs

    International Nuclear Information System (INIS)

    Lee, Wan-Bok; Kim, Seog-Ju

    2006-01-01

    This paper shows a case study of designing a PLC logic simulator that was developed to simulate and verify PLC control programs for nuclear plant systems. The nuclear control system requires strict restrictions rather than normal process control system does, since it works with nuclear power plants requiring high reliability under severe environment. One restriction is the safeness of the control programs which can be assured by exploiting severe testing. Another restriction is the simulation speed of the control programs, that should be fast enough to control multi devices concurrently in real-time. To cope with these restrictions, we devised a logic compiler which generates C-code programs from given PLC logic programs. Once the logic program was translated into C-code, the program could be analyzed by conventional software analysis tools and could be used to construct a fast logic simulator after cross-compiling, in fact, that is a kind of compiled-code simulation

  18. Clinical training: a simulation program for phlebotomy

    Directory of Open Access Journals (Sweden)

    Araki Toshitaka

    2008-01-01

    Full Text Available Abstract Background Basic clinical skills training in the Japanese medical education system has traditionally incorporated on-the-job training with patients. Recently, the complementary use of simulation techniques as part of this training has gained popularity. It is not known, however, whether the participants view this new type of education program favorably; nor is the impact of this program known. In this study we developed a new simulation-based training program in phlebotomy for new medical residents and assessed their satisfaction with the program Methods The education program comprised two main components: simulator exercise sessions and the actual drawing of blood from other trainees. At the end of the session, we surveyed participant sentiment regarding the program. Results There were 43 participants in total. In general, they were highly satisfied with the education program, with all survey questions receiving scores of 3 or more on a scale of 1–5 (mean range: 4.3 – 4.8, with 5 indicating the highest level of satisfaction. Additionally, their participation as a 'patient' for their co-trainees was undertaken willingly and was deemed to be a valuable experience. Conclusion We developed and tested an education program using a simulator for blood collection. We demonstrated a high satisfaction level among the participants for this unique educational program and expect that it will improve medical training, patient safety, and quality of care. The development and dissemination of similar educational programs involving simulation for other basic clinical skills will be undertaken in the future.

  19. Simulation of dynamics of a permanent magnet linear actuator

    DEFF Research Database (Denmark)

    Yatchev, Ivan; Ritchie, Ewen

    2010-01-01

    Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first...... flexibility when the actuator response is required to be estimated for different external conditions, e.g. external circuit parameters or mechanical loads....

  20. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    International Nuclear Information System (INIS)

    Jia Yunpeng; Su Hongyuan; Hu Dongqing; Wu Yu; Jin Rui

    2016-01-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. (paper)

  1. A symbiotic approach to fluid equations and non-linear flux-driven simulations of plasma dynamics

    Science.gov (United States)

    Halpern, Federico

    2017-10-01

    The fluid framework is ubiquitous in studies of plasma transport and stability. Typical forms of the fluid equations are motivated by analytical work dating several decades ago, before computer simulations were indispensable, and can be, therefore, not optimal for numerical computation. We demonstrate a new first-principles approach to obtaining manifestly consistent, skew-symmetric fluid models, ensuring internal consistency and conservation properties even in discrete form. Mass, kinetic, and internal energy become quadratic (and always positive) invariants of the system. The model lends itself to a robust, straightforward discretization scheme with inherent non-linear stability. A simpler, drift-ordered form of the equations is obtained, and first results of their numerical implementation as a binary framework for bulk-fluid global plasma simulations are demonstrated. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, Theory Program, under Award No. DE-FG02-95ER54309.

  2. An Improved Method for Solving Multiobjective Integer Linear Fractional Programming Problem

    Directory of Open Access Journals (Sweden)

    Meriem Ait Mehdi

    2014-01-01

    Full Text Available We describe an improvement of Chergui and Moulaï’s method (2008 that generates the whole efficient set of a multiobjective integer linear fractional program based on the branch and cut concept. The general step of this method consists in optimizing (maximizing without loss of generality one of the fractional objective functions over a subset of the original continuous feasible set; then if necessary, a branching process is carried out until obtaining an integer feasible solution. At this stage, an efficient cut is built from the criteria’s growth directions in order to discard a part of the feasible domain containing only nonefficient solutions. Our contribution concerns firstly the optimization process where a linear program that we define later will be solved at each step rather than a fractional linear program. Secondly, local ideal and nadir points will be used as bounds to prune some branches leading to nonefficient solutions. The computational experiments show that the new method outperforms the old one in all the treated instances.

  3. G4Beamline Program for Radiation Simulations

    International Nuclear Information System (INIS)

    Beard, Kevin; Roberts, Thomas J.; Degtiarenko, Pavel

    2008-01-01

    G4beamline, a program that is an interface to the Geant4 toolkit that we have developed to simulate accelerator beamlines, is being extended with a graphical user interface to quickly and efficiently model experimental equipment and its shielding in experimental halls. The program is flexible, user friendly, and requires no programming by users, so that even complex systems can be simulated quickly. This improved user interface is of much wider application than just the shielding simulations that are the focus of this project. As an initial application, G4beamline is being extended to provide the simulations that are needed to determine the radiation sources for the proposed experiments at Jefferson Laboratory so that shielding issues can be evaluated. Since the program already has the capabilities needed to simulate the transport of all known particles, including scattering, attenuation, interactions, and decays, the extension involves implementing a user-friendly graphical user inter

  4. A Comparison of Traditional Worksheet and Linear Programming Methods for Teaching Manure Application Planning.

    Science.gov (United States)

    Schmitt, M. A.; And Others

    1994-01-01

    Compares traditional manure application planning techniques calculated to meet agronomic nutrient needs on a field-by-field basis with plans developed using computer-assisted linear programming optimization methods. Linear programming provided the most economical and environmentally sound manure application strategy. (Contains 15 references.) (MDH)

  5. MO-DE-BRA-02: SIMAC: A Simulation Tool for Teaching Linear Accelerator Physics

    International Nuclear Information System (INIS)

    Carlone, M; Harnett, N; Harris, W; Norrlinger, B; MacPherson, M; Lamey, M; Oldham, M; Anderson, R

    2016-01-01

    Purpose: The first goal of this work is to develop software that can simulate the physics of linear accelerators (linac). The second goal is to show that this simulation tool is effective in teaching linac physics to medical physicists and linac service engineers. Methods: Linacs were modeled using analytical expressions that can correctly describe the physical response of a linac to parameter changes in real time. These expressions were programmed with a graphical user interface in order to produce an environment similar to that of linac service mode. The software, “SIMAC”, has been used as a learning aid in a professional development course 3 times (2014 – 2016) as well as in a physics graduate program. Exercises were developed to supplement the didactic components of the courses consisting of activites designed to reinforce the concepts of beam loading; the effect of steering coil currents on beam symmetry; and the relationship between beam energy and flatness. Results: SIMAC was used to teach 35 professionals (medical physicists; regulators; service engineers; 1 week course) as well as 20 graduate students (1 month project). In the student evaluations, 85% of the students rated the effectiveness of SIMAC as very good or outstanding, and 70% rated the software as the most effective part of the courses. Exercise results were collected showing that 100% of the students were able to use the software correctly. In exercises involving gross changes to linac operating points (i.e. energy changes) the majority of students were able to correctly perform these beam adjustments. Conclusion: Software simulation(SIMAC), can be used to effectively teach linac physics. In short courses, students were able to correctly make gross parameter adjustments that typically require much longer training times using conventional training methods.

  6. MO-DE-BRA-02: SIMAC: A Simulation Tool for Teaching Linear Accelerator Physics

    Energy Technology Data Exchange (ETDEWEB)

    Carlone, M; Harnett, N [Princess Margaret Hospital, Toronto, ON (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Harris, W [Duke University Medical Physics Graduate Program, Durham NC (United States); Norrlinger, B [Princess Margaret Hospital, Toronto, ON (Canada); MacPherson, M [The Ottawa Hospital, Ottawa, Ontario (Canada); Lamey, M [Trillium Health Partners, Mississauga, Ontario (Canada); Oldham, M [Duke University Medical Medical Center, Durham NC (United States); Duke University Medical Physics Graduate Program, Durham NC (United States); Anderson, R

    2016-06-15

    Purpose: The first goal of this work is to develop software that can simulate the physics of linear accelerators (linac). The second goal is to show that this simulation tool is effective in teaching linac physics to medical physicists and linac service engineers. Methods: Linacs were modeled using analytical expressions that can correctly describe the physical response of a linac to parameter changes in real time. These expressions were programmed with a graphical user interface in order to produce an environment similar to that of linac service mode. The software, “SIMAC”, has been used as a learning aid in a professional development course 3 times (2014 – 2016) as well as in a physics graduate program. Exercises were developed to supplement the didactic components of the courses consisting of activites designed to reinforce the concepts of beam loading; the effect of steering coil currents on beam symmetry; and the relationship between beam energy and flatness. Results: SIMAC was used to teach 35 professionals (medical physicists; regulators; service engineers; 1 week course) as well as 20 graduate students (1 month project). In the student evaluations, 85% of the students rated the effectiveness of SIMAC as very good or outstanding, and 70% rated the software as the most effective part of the courses. Exercise results were collected showing that 100% of the students were able to use the software correctly. In exercises involving gross changes to linac operating points (i.e. energy changes) the majority of students were able to correctly perform these beam adjustments. Conclusion: Software simulation(SIMAC), can be used to effectively teach linac physics. In short courses, students were able to correctly make gross parameter adjustments that typically require much longer training times using conventional training methods.

  7. Planning Student Flow with Linear Programming: A Tunisian Case Study.

    Science.gov (United States)

    Bezeau, Lawrence

    A student flow model in linear programming format, designed to plan the movement of students into secondary and university programs in Tunisia, is described. The purpose of the plan is to determine a sufficient number of graduating students that would flow back into the system as teachers or move into the labor market to meet fixed manpower…

  8. Properties of Confined Star-Branched and Linear Chains. A Monte Carlo Simulation Study

    International Nuclear Information System (INIS)

    Romiszowski, P.; Sikorski, A.

    2004-01-01

    A model of linear and star-branched polymer chains confined between two parallel and impenetrable surfaces was built. The polymer chains were restricted to a simple cubic lattice. Two macromolecular architectures of the chain: linear and star branched (consisted of f = 3 branches of equal length) were studied. The excluded volume was the only potential introduced into the model (the athermal system). Monte Carlo simulations were carried out using a sampling algorithm based on chain's local changes of conformation. The simulations were carried out at different confinement conditions: from light to high chain's compression. The scaling of chain's size with the chain length was studied and discussed. The influence of the confinement and the macromolecular architecture on the shape of a chain was studied. The differences in the shape of linear and star-branched chains were pointed out. (author)

  9. Application of linear programming and perturbation theory in optimization of fuel utilization in a nuclear reactor

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1985-01-01

    Proposed optimization procedure is fast due to application of linear programming. Non-linear constraints which demand iterative application of linear programming are slowing down the calculation. Linearization can be done by different procedures starting from simple empirical rules for fuel in-core management to complicated general perturbation theory with higher order of corrections. A mathematical model was formulated for optimization of improved fuel cycle. A detailed algorithm for determining minimum of fresh fuel at the beginning of each fuel cycle is shown and the problem is linearized by first order perturbation theory and it is optimized by linear programming. Numerical illustration of the proposed method was done for the experimental reactor mostly for saving computer time

  10. Beam dynamics simulation of a double pass proton linear accelerator

    Directory of Open Access Journals (Sweden)

    Kilean Hwang

    2017-04-01

    Full Text Available A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015NIMAER0168-900210.1016/j.nima.2015.05.056] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  11. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    Science.gov (United States)

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  12. Programming for a nuclear reactor instrument simulation

    International Nuclear Information System (INIS)

    Cohn, C.

    1988-01-01

    This note discusses 8086/8087 machine-language programming for simulation of nuclear reactor instrument current inputs by means of a digital-analog converter (DAC) feeding a bank of series input resistors. It also shows FORTRAN programming for generating the parameter tales used in the simulation. These techniques would be generally useful for high-speed simulation of quantities varying over many orders of magnitude

  13. A Nutritional Analysis of the Food Basket in BIH: A Linear Programming Approach

    Directory of Open Access Journals (Sweden)

    Arnaut-Berilo Almira

    2017-04-01

    Full Text Available This paper presents linear and goal programming optimization models for determining and analyzing the food basket in Bosnia and Herzegovina (BiH in terms of adequate nutritional needs according to World Health Organization (WHO standards and World Bank (WB recommendations. A linear programming (LP model and goal linear programming model (GLP are adequate since price and nutrient contents are linearly related to food weight. The LP model provides information about the minimal value and the structure of the food basket for an average person in BiH based on nutrient needs. GLP models are designed to give us information on minimal deviations from nutrient needs if the budget is fixed. Based on these results, poverty analysis can be performed. The data used for the models consisted of 158 food items from the general consumption of the population of BiH according to COICOP classifications, with average prices in 2015 for these products.

  14. Identification of an Equivalent Linear Model for a Non-Linear Time-Variant RC-Structure

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune

    are investigated and compared with ARMAX models used on a running window. The techniques are evaluated using simulated data generated by the non-linear finite element program SARCOF modeling a 10-storey 3-bay concrete structure subjected to amplitude modulated Gaussian white noise filtered through a Kanai......This paper considers estimation of the maximum softening for a RC-structure subjected to earthquake excitation. The so-called Maximum Softening damage indicator relates the global damage state of the RC-structure to the relative decrease of the fundamental eigenfrequency in an equivalent linear...

  15. Planning under uncertainty solving large-scale stochastic linear programs

    Energy Technology Data Exchange (ETDEWEB)

    Infanger, G. [Stanford Univ., CA (United States). Dept. of Operations Research]|[Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft

    1992-12-01

    For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.

  16. No-signaling quantum key distribution: solution by linear programming

    Science.gov (United States)

    Hwang, Won-Young; Bae, Joonwoo; Killoran, Nathan

    2015-02-01

    We outline a straightforward approach for obtaining a secret key rate using only no-signaling constraints and linear programming. Assuming an individual attack, we consider all possible joint probabilities. Initially, we study only the case where Eve has binary outcomes, and we impose constraints due to the no-signaling principle and given measurement outcomes. Within the remaining space of joint probabilities, by using linear programming, we get bound on the probability of Eve correctly guessing Bob's bit. We then make use of an inequality that relates this guessing probability to the mutual information between Bob and a more general Eve, who is not binary-restricted. Putting our computed bound together with the Csiszár-Körner formula, we obtain a positive key generation rate. The optimal value of this rate agrees with known results, but was calculated in a more straightforward way, offering the potential of generalization to different scenarios.

  17. Optimal selection for shielding materials by fuzzy linear programming

    International Nuclear Information System (INIS)

    Kanai, Y.; Miura, N.; Sugasawa, S.

    1996-01-01

    An application of fuzzy linear programming methods to optimization of a radiation shield is presented. The main purpose of the present study is the choice of materials and the search of the ratio of mixture-component as the first stage of the methodology on optimum shielding design according to individual requirements of nuclear reactor, reprocessing facility, shipping cask installing spent fuel, ect. The characteristic values for the shield optimization may be considered their cost, spatial space, weight and some shielding qualities such as activation rate and total dose rate for neutron and gamma ray (includes secondary gamma ray). This new approach can reduce huge combination calculations for conventional two-valued logic approaches to representative single shielding calculation by group-wised optimization parameters determined in advance. Using the fuzzy linear programming method, possibilities for reducing radiation effects attainable in optimal compositions hydrated, lead- and boron-contained materials are investigated

  18. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, P E [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Avgeropoulos, A [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Universidad Nacional de Educacion a Distancia, Facultad de Ciencias, Senda del Rey 9, 28040 Madrid (Spain); Kosmas, M [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Vlahos, C [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2007-11-21

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  19. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Science.gov (United States)

    Theodorakis, P. E.; Avgeropoulos, A.; Freire, J. J.; Kosmas, M.; Vlahos, C.

    2007-11-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  20. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    International Nuclear Information System (INIS)

    Theodorakis, P E; Avgeropoulos, A; Freire, J J; Kosmas, M; Vlahos, C

    2007-01-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results

  1. A links manipulator simulation program interim report

    International Nuclear Information System (INIS)

    Noble, R.A.

    1987-04-01

    A computer program to simulate the performance of the Heysham II rail-following manipulator has been developed. The program is being used to develop and test the rail-following control algorithms which will be used to control movements of the manipulator when it is operating below the gas baffle dome. The simulation includes the dynamic responses of the manipulator joint drives, excluding friction, backlash and compliance. It also includes full details of the manipulator's geometry. A method is given whereby the actual manipulator dynamics can be written into the program once these have been established by measurement. The program is written in FORTRAN and runs on a Perkin-Elmer 3220 mini-computer. The simulation program responds to velocity demands on the individual joints. These will normally come from the control program, in which they will be manually controlled by a joystick. A sigma 5664 colour graphics generator is programmed to display the current position of the manipulator. (UK)

  2. A MICROCOMPUTER LINEAR PROGRAMMING PACKAGE: AN ALTERNATIVE TO MAINFRAMES

    OpenAIRE

    Laughlin, David H.

    1984-01-01

    This paper presents the capabilities and limitations of a microcomputer linear programming package. The solution algorithm is a version of the revised simplex. Rapid problem entry, user ease of operation, sensitivity analyses on objective function and right hand sides are advantages. A problem size of 150 activities and 64 constraints can be solved in present form. Due to problem size, limitations and lack of parametric and integer programming routines, this package is thought to have the mos...

  3. HASP: human acts simulation program

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Kambayashi, Shaw; Higuchi, Kenji; Kume, Etsuo; Otani, Takayuki; Fujii, Minoru; Uenaka, Junji; Fujisaki, Masahide.

    1990-01-01

    The Human Acts Simulation Program (HASP) aims computer simulations of mechanized human acts in a nuclear plant by a human shaped intelligent robot. The HASP has started as a ten-year program at Japan Atomic Energy Research Institute since 1987. The purposes of HASP are threefold as follows; development of basic and generalized design technologies for intelligent robots, development of basic technologies for an advanced intelligent and automatic nuclear power plant, and provision of artificial intelligence techniques for researchers in the nuclear field. In this paper, the contents of the HASP are described. (author)

  4. PAPR reduction in FBMC using an ACE-based linear programming optimization

    Science.gov (United States)

    van der Neut, Nuan; Maharaj, Bodhaswar TJ; de Lange, Frederick; González, Gustavo J.; Gregorio, Fernando; Cousseau, Juan

    2014-12-01

    This paper presents four novel techniques for peak-to-average power ratio (PAPR) reduction in filter bank multicarrier (FBMC) modulation systems. The approach extends on current PAPR reduction active constellation extension (ACE) methods, as used in orthogonal frequency division multiplexing (OFDM), to an FBMC implementation as the main contribution. The four techniques introduced can be split up into two: linear programming optimization ACE-based techniques and smart gradient-project (SGP) ACE techniques. The linear programming (LP)-based techniques compensate for the symbol overlaps by utilizing a frame-based approach and provide a theoretical upper bound on achievable performance for the overlapping ACE techniques. The overlapping ACE techniques on the other hand can handle symbol by symbol processing. Furthermore, as a result of FBMC properties, the proposed techniques do not require side information transmission. The PAPR performance of the techniques is shown to match, or in some cases improve, on current PAPR techniques for FBMC. Initial analysis of the computational complexity of the SGP techniques indicates that the complexity issues with PAPR reduction in FBMC implementations can be addressed. The out-of-band interference introduced by the techniques is investigated. As a result, it is shown that the interference can be compensated for, whilst still maintaining decent PAPR performance. Additional results are also provided by means of a study of the PAPR reduction of the proposed techniques at a fixed clipping probability. The bit error rate (BER) degradation is investigated to ensure that the trade-off in terms of BER degradation is not too severe. As illustrated by exhaustive simulations, the SGP ACE-based technique proposed are ideal candidates for practical implementation in systems employing the low-complexity polyphase implementation of FBMC modulators. The methods are shown to offer significant PAPR reduction and increase the feasibility of FBMC as

  5. Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints

    International Nuclear Information System (INIS)

    Zhang Yunong; Li Zhan

    2009-01-01

    In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method.

  6. Simulations of linear and Hamming codes using SageMath

    Science.gov (United States)

    Timur, Tahta D.; Adzkiya, Dieky; Soleha

    2018-03-01

    Digital data transmission over a noisy channel could distort the message being transmitted. The goal of coding theory is to ensure data integrity, that is, to find out if and where this noise has distorted the message and what the original message was. Data transmission consists of three stages: encoding, transmission, and decoding. Linear and Hamming codes are codes that we discussed in this work, where encoding algorithms are parity check and generator matrix, and decoding algorithms are nearest neighbor and syndrome. We aim to show that we can simulate these processes using SageMath software, which has built-in class of coding theory in general and linear codes in particular. First we consider the message as a binary vector of size k. This message then will be encoded to a vector with size n using given algorithms. And then a noisy channel with particular value of error probability will be created where the transmission will took place. The last task would be decoding, which will correct and revert the received message back to the original message whenever possible, that is, if the number of error occurred is smaller or equal to the correcting radius of the code. In this paper we will use two types of data for simulations, namely vector and text data.

  7. Fusion Simulation Program

    International Nuclear Information System (INIS)

    Greenwald, Martin

    2011-01-01

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. (1). Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical

  8. Plasma Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, Martin

    2011-10-04

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a

  9. Micosoft Excel Sensitivity Analysis for Linear and Stochastic Program Feed Formulation

    Science.gov (United States)

    Sensitivity analysis is a part of mathematical programming solutions and is used in making nutritional and economic decisions for a given feed formulation problem. The terms, shadow price and reduced cost, are familiar linear program (LP) terms to feed formulators. Because of the nonlinear nature of...

  10. Linear Programming, the Simplex Algorithm and Simple Polytopes

    Directory of Open Access Journals (Sweden)

    Das Bhusan

    2010-09-01

    Full Text Available In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.

  11. Non-linear punctual kinetics applied to PWR reactors simulation

    International Nuclear Information System (INIS)

    Cysne, F.S.

    1978-11-01

    In order to study some kinds of nuclear reactor accidents, a simulation is made using the punctual kinetics model for the reactor core. The following integration methods are used: Hansen's method in which a linearization is made and CSMP using a variable interval fourth-order Runge Kutta method. The results were good and were compared with those obtained by the code Dinamica I which uses a finite difference integration method of backward kind. (Author) [pt

  12. Stability of multi-objective bi-level linear programming problems under fuzziness

    Directory of Open Access Journals (Sweden)

    Abo-Sinna Mahmoud A.

    2013-01-01

    Full Text Available This paper deals with multi-objective bi-level linear programming problems under fuzzy environment. In the proposed method, tentative solutions are obtained and evaluated by using the partial information on preference of the decision-makers at each level. The existing results concerning the qualitative analysis of some basic notions in parametric linear programming problems are reformulated to study the stability of multi-objective bi-level linear programming problems. An algorithm for obtaining any subset of the parametric space, which has the same corresponding Pareto optimal solution, is presented. Also, this paper established the model for the supply-demand interaction in the age of electronic commerce (EC. First of all, the study uses the individual objectives of both parties as the foundation of the supply-demand interaction. Subsequently, it divides the interaction, in the age of electronic commerce, into the following two classifications: (i Market transactions, with the primary focus on the supply demand relationship in the marketplace; and (ii Information service, with the primary focus on the provider and the user of information service. By applying the bi-level programming technique of interaction process, the study will develop an analytical process to explain how supply-demand interaction achieves a compromise or why the process fails. Finally, a numerical example of information service is provided for the sake of illustration.

  13. 175 Years of Linear Programming - Minimax and Cake Topography

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. 175 Years of Linear Programming - Minimax and Cake Topography. Vijay Chandru M R Rao. Series Article Volume 4 Issue 7 July 1999 pp 4-13. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Angular Spectrum Simulation of Pulsed Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2009-01-01

    frequencies must be performed. Combining it with Field II, the generation of non-linear simulation for any geometry with any excitation array transducer becomes feasible. The purpose of this paper is to make a general pulsed simulation software using the modified ASA. Linear and phased array transducers......The optimization of non-linear ultrasound imaging should in a first step be based on simulation, as this makes parameter studies considerably easier than making transducer prototypes. Such a simulation program should be capable of simulating non-linear pulsed fields for arbitrary transducer...... geometries for any kind of focusing and apodization. The Angular Spectrum Approach (ASA) is capable of simulating monochromatic non-linear acoustic wave propagation. However, for ultrasound imaging the time response of each specific point in space is required, and a pulsed ASA simulation with multi temporal...

  15. Use of Simulation in Canadian Neonatal-Perinatal Medicine Training Programs.

    Science.gov (United States)

    Wong, Jonathan; Finan, Emer; Campbell, Douglas

    2017-07-08

    Introduction Simulation is used for the delivery of education and on occasion assessment. Before such a tool is used routinely in neonatal training programs across Canada, a need assessment is required to determine its current usage by accredited training programs. Our aim was to characterize the type of simulation modalities used and the perceived simulation-based training needs in Canadian neonatal-perinatal medicine (NPM) training programs. Methods A 22-item and 13-item online descriptive survey was sent to all NPM program directors and fellows in Canada, respectively. The survey was modeled on a previously validated tool by Johnston, et al. and responses were collected over 30 days. Results In total, eight (63%) program directors and 24 (28%) fellows completed the survey, with all respondents indicating that simulation is being used. Both lab-based and in situ simulations are occurring, with a range of simulation modalities employed to primarily teach resuscitation, procedural and communication skills. Fellows indicated that simulation should also be used to also teach other important topics, including disease-specific management, crisis resource management, and prevention of medical error. Five (63%) programs have faculty with formal simulation training and four (50%) programs have at least one faculty involved in simulation research. Conclusion Simulation is widely used in Canadian NPM training programs, with program directors and fellows identifying this as an important tool. Simulation can be used to teach a range of skills, but programs need to align their curriculum with both training objectives and learner needs. There is an opportunity for faculty development and increased simulation research.

  16. Evaluation of mathematical methods and linear programming for optimization of the planning in radiotherapy

    International Nuclear Information System (INIS)

    Fernandes, Marco A.R.; Fernandes, David M.; Florentino, Helenice O.

    2010-01-01

    The work detaches the importance of the use of mathematical tools and computer systems for optimization of the planning in radiotherapy, seeking to the distribution of dose of appropriate radiation in the white volume that provides an ideal therapeutic rate between the tumor cells and the adjacent healthy tissues, extolled in the radiotherapy protocols. Examples of target volumes mathematically modeled are analyzed with the technique of linear programming, comparing the obtained results using the Simplex algorithm with those using the algorithm of Interior Points. The System Genesis II was used for obtaining of the isodose curves for the outline and geometry of fields idealized in the computer simulations, considering the parameters of a 10 MV photons beams. Both programming methods (Simplex and Interior Points) they resulted in a distribution of integral dose in the tumor volume and allow the adaptation of the dose in the critical organs inside of the restriction limits extolled. The choice of an or other method should take into account the facility and the need of limiting the programming time. The isodose curves, obtained with the Genesis II System, illustrate that the adjacent healthy tissues to the tumor receives larger doses than those reached in the computer simulations. More coincident values can be obtained altering the weights and some factors of minimization of the objective function. The prohibitive costs of the computer planning systems, at present available for radiotherapy, it motivates the researches to look for the implementation of simpler and so effective methods for optimization of the treatment plan. (author)

  17. A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data

    Directory of Open Access Journals (Sweden)

    Chandra Nagasuma R

    2009-02-01

    Full Text Available Abstract Background A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN from transcript profiling data. Results The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting problem and solved finally by formulating a Linear Program (LP. A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known

  18. Module-based Simulation System for efficient development of nuclear simulation programs

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Wakabayashi, Jiro

    1990-01-01

    Module-based Simulation System (MSS) has been developed to realize a new software environment enabling versatile dynamic simulation of a complex nuclear power plant system flexibly. Described in the paper are (i) fundamental methods utilized in MMS and its software systemization, (ii) development of human interface system to help users in generating integrated simulation programs automatically, and (iii) development of an intelligent user support system for helping users in the two phases of automatical semantic diagnosis and consultation to automatic input data setup for the MSS-generated programs. (author)

  19. Algorithmic Trading with Developmental and Linear Genetic Programming

    Science.gov (United States)

    Wilson, Garnett; Banzhaf, Wolfgang

    A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.

  20. A novel recurrent neural network with finite-time convergence for linear programming.

    Science.gov (United States)

    Liu, Qingshan; Cao, Jinde; Chen, Guanrong

    2010-11-01

    In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.

  1. Development and adjustment of programs for solving systems of linear equations

    International Nuclear Information System (INIS)

    Fujimura, Toichiro

    1978-03-01

    Programs for solving the systems of linear equations have been adjusted and developed in expanding the scientific subroutine library SSL. The principal programs adjusted are based on the congruent method, method of product form of the inverse, orthogonal method, Crout's method for sparse system, and acceleration of iterative methods. The programs developed are based on the escalator method, direct parallel residue method and block tridiagonal method for band system. Described are usage of the programs developed and their future improvement. FORTRAN lists with simple examples in tests of the programs are also given. (auth.)

  2. Simulation of Second Harmonic Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2010-01-01

    A non-linear ultrasound imaging simulation software should be capable of simulating the non-linear fields for any kind of transducer, focusing, apodization, and attenuation. At present, a major issue is the overlong simulation time of the non-linear software. An Angular Spectrum Approach (ASA......) using a quasi-linear approximation for solving the Westervelt equation can simulate the second harmonic pressure at any distance. Therefore, it shortens the execution time compared with the operator splitting method. The purpose of this paper is to implement the monochromatic solution for the second...... harmonic component based on ASA and Field II, and to compare with results from the simulation program Abersim. A linear array transducer with a center frequency of 4 MHz and 64 active elements is used as the transmitting source. The initial plane is 5 mm away from the transducer surface...

  3. Non-linear nuclear engineering models as genetic programming application; Modelos nao-lineares de engenharia nuclear como aplicacao de programacao genetica

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Roberto P.; Schirru, Roberto; Martinez, Aquilino S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1997-12-01

    This work presents a Genetic Programming paradigm and a nuclear application. A field of Artificial Intelligence, based on the concepts of Species Evolution and Natural Selection, can be understood as a self-programming process where the computer is the main agent responsible for the discovery of a program able to solve a given problem. In the present case, the problem was to find a mathematical expression in symbolic form, able to express the existent relation between equivalent ratio of a fuel cell, the enrichment of fuel elements and the multiplication factor. Such expression would avoid repeatedly reactor physics codes execution for core optimization. The results were compared with those obtained by different techniques such as Neural Networks and Linear Multiple Regression. Genetic Programming has shown to present a performance as good as, and under some features superior to Neural Network and Linear Multiple Regression. (author). 10 refs., 8 figs., 1 tabs.

  4. Modification of the RTMTRACE program for numerical simulation of particle dynamics at racetrack microtrons with account of space charge forces

    International Nuclear Information System (INIS)

    Surma, I.V.; Shvedunov, V.I.

    1993-01-01

    The paper presents modification results of the program for simulation of particle dynamics in cyclic accelerators with RTMTRACE linear gap. The program was modified with regard for the effect of space charge effect on particle dynamics. Calculation results of particle dynamics in 1 MeV energy continuous-duty accelerator with 10 kw beam were used to develop continuous powerful commercial accelerator. 3 refs., 2 figs

  5. A non-linear programming approach to the computer-aided design of regulators using a linear-quadratic formulation

    Science.gov (United States)

    Fleming, P.

    1985-01-01

    A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.

  6. Monte Carlo simulation of a clinical linear accelerator

    International Nuclear Information System (INIS)

    Lin, S.-Y.; Chu, T.-C.; Lin, J.-P.

    2001-01-01

    The effects of the physical parameters of an electron beam from a Siemens PRIMUS clinical linear accelerator (linac) on the dose distribution in water were investigated by Monte Carlo simulation. The EGS4 user code, OMEGA/BEAM, was used in this study. Various incident electron beams, for example, with different energies, spot sizes and distances from the point source, were simulated using the detailed linac head structure in the 6 MV photon mode. Approximately 10 million particles were collected in the scored plane, which was set under the reticle to form the so-called phase space file. The phase space file served as a source for simulating the dose distribution in water using DOSXYZ. Dose profiles at D max (1.5 cm) and PDD curves were calculated following simulating about 1 billion histories for dose profiles and 500 million histories for percent depth dose (PDD) curves in a 30x30x30 cm 3 water phantom. The simulation results were compared with the data measured by a CEA film and an ion chamber. The results show that the dose profiles are influenced by the energy and the spot size, while PDD curves are primarily influenced by the energy of the incident beam. The effect of the distance from the point source on the dose profile is not significant and is recommended to be set at infinity. We also recommend adjusting the beam energy by using PDD curves and, then, adjusting the spot size by using the dose profile to maintain the consistency of the Monte Carlo results and measured data

  7. Genetic programming over context-free languages with linear constraints for the knapsack problem: first results.

    Science.gov (United States)

    Bruhn, Peter; Geyer-Schulz, Andreas

    2002-01-01

    In this paper, we introduce genetic programming over context-free languages with linear constraints for combinatorial optimization, apply this method to several variants of the multidimensional knapsack problem, and discuss its performance relative to Michalewicz's genetic algorithm with penalty functions. With respect to Michalewicz's approach, we demonstrate that genetic programming over context-free languages with linear constraints improves convergence. A final result is that genetic programming over context-free languages with linear constraints is ideally suited to modeling complementarities between items in a knapsack problem: The more complementarities in the problem, the stronger the performance in comparison to its competitors.

  8. Stochastic linear programming models, theory, and computation

    CERN Document Server

    Kall, Peter

    2011-01-01

    This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...

  9. SLFP: a stochastic linear fractional programming approach for sustainable waste management.

    Science.gov (United States)

    Zhu, H; Huang, G H

    2011-12-01

    A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Fitting program for linear regressions according to Mahon (1996)

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-09

    This program takes the users' Input data and fits a linear regression to it using the prescription presented by Mahon (1996). Compared to the commonly used York fit, this method has the correct prescription for measurement error propagation. This software should facilitate the proper fitting of measurements with a simple Interface.

  11. Analysis of Students' Errors on Linear Programming at Secondary ...

    African Journals Online (AJOL)

    The purpose of this study was to identify secondary school students' errors on linear programming at 'O' level. It is based on the fact that students' errors inform teaching hence an essential tool for any serious mathematics teacher who intends to improve mathematics teaching. The study was guided by a descriptive survey ...

  12. Life cycle cost optimization of biofuel supply chains under uncertainties based on interval linear programming

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Dong, Liang; Sun, Lu

    2015-01-01

    in this model, and the price of the resources, the yield of grain and the market demands were regarded as interval numbers instead of constants. An interval linear programming was developed, and a method for solving interval linear programming was presented. An illustrative case was studied by the proposed...

  13. Discounted semi-Markov decision processes : linear programming and policy iteration

    NARCIS (Netherlands)

    Wessels, J.; van Nunen, J.A.E.E.

    1975-01-01

    For semi-Markov decision processes with discounted rewards we derive the well known results regarding the structure of optimal strategies (nonrandomized, stationary Markov strategies) and the standard algorithms (linear programming, policy iteration). Our analysis is completely based on a primal

  14. Discounted semi-Markov decision processes : linear programming and policy iteration

    NARCIS (Netherlands)

    Wessels, J.; van Nunen, J.A.E.E.

    1974-01-01

    For semi-Markov decision processes with discounted rewards we derive the well known results regarding the structure of optimal strategies (nonrandomized, stationary Markov strategies) and the standard algorithms (linear programming, policy iteration). Our analysis is completely based on a primal

  15. Monte Carlo simulation of medical linear accelerator using primo code

    International Nuclear Information System (INIS)

    Omer, Mohamed Osman Mohamed Elhasan

    2014-12-01

    The use of monte Carlo simulation has become very important in the medical field and especially in calculation in radiotherapy. Various Monte Carlo codes were developed simulating interactions of particles and photons with matter. One of these codes is PRIMO that performs simulation of radiation transport from the primary electron source of a linac to estimate the absorbed dose in a water phantom or computerized tomography (CT). PRIMO is based on Penelope Monte Carlo code. Measurements of 6 MV photon beam PDD and profile were done for Elekta precise linear accelerator at Radiation and Isotopes Center Khartoum using computerized Blue water phantom and CC13 Ionization Chamber. accept Software was used to control the phantom to measure and verify dose distribution. Elektalinac from the list of available linacs in PRIMO was tuned to model Elekta precise linear accelerator. Beam parameter of 6.0 MeV initial electron energy, 0.20 MeV FWHM, and 0.20 cm focal spot FWHM were used, and an error of 4% between calculated and measured curves was found. The buildup region Z max was 1.40 cm and homogenous profile in cross line and in line were acquired. A number of studies were done to verily the model usability one of them is the effect of the number of histories on accuracy of the simulation and the resulted profile for the same beam parameters. The effect was noticeable and inaccuracies in the profile were reduced by increasing the number of histories. Another study was the effect of Side-step errors on the calculated dose which was compared with the measured dose for the same setting.It was in range of 2% for 5 cm shift, but it was higher in the calculated dose because of the small difference between the tuned model and measured dose curves. Future developments include simulating asymmetrical fields, calculating the dose distribution in computerized tomographic (CT) volume, studying the effect of beam modifiers on beam profile for both electron and photon beams.(Author)

  16. Non-linear gyrokinetic simulations of microturbulence in TCV electron internal transport barriers

    Science.gov (United States)

    Lapillonne, X.; Brunner, S.; Sauter, O.; Villard, L.; Fable, E.; Görler, T.; Jenko, F.; Merz, F.

    2011-05-01

    Using the local (flux-tube) version of the Eulerian code GENE (Jenko et al 2000 Phys. Plasmas 7 1904), gyrokinetic simulations of microturbulence were carried out considering parameters relevant to electron-internal transport barriers (e-ITBs) in the TCV tokamak (Sauter et al 2005 Phys. Rev. Lett. 94 105002), generated under conditions of low or negative shear. For typical density and temperature gradients measured in such barriers, the corresponding simulated fluctuation spectra appears to simultaneously contain longer wavelength trapped electron modes (TEMs, for typically k⊥ρi 0.5). The contributions to the electron particle flux from these two types of modes are, respectively, outward/inward and may cancel each other for experimentally realistic gradients. This mechanism may partly explain the feasibility of e-ITBs. The non-linear simulation results confirm the predictions of a previously developed quasi-linear model (Fable et al 2010 Plasma Phys. Control. Fusion 52 015007), namely that the stationary condition of zero particle flux is obtained through the competitive contributions of ITG and TEM. A quantitative comparison of the electron heat flux with experimental estimates is presented as well.

  17. Relaxation Methods for Strictly Convex Regularizations of Piecewise Linear Programs

    International Nuclear Information System (INIS)

    Kiwiel, K. C.

    1998-01-01

    We give an algorithm for minimizing the sum of a strictly convex function and a convex piecewise linear function. It extends several dual coordinate ascent methods for large-scale linearly constrained problems that occur in entropy maximization, quadratic programming, and network flows. In particular, it may solve exact penalty versions of such (possibly inconsistent) problems, and subproblems of bundle methods for nondifferentiable optimization. It is simple, can exploit sparsity, and in certain cases is highly parallelizable. Its global convergence is established in the recent framework of B -functions (generalized Bregman functions)

  18. Faster Simulation Methods for the Nonstationary Random Vibrations of Non-linear MDOF Systems

    DEFF Research Database (Denmark)

    Askar, A.; Köylüo, U.; Nielsen, Søren R.K.

    1996-01-01

    subject to nonstationary Gaussian white noise excitation, as an alternative to conventional direct simulation methods. These alternative simulation procedures rely on an assumption of local Gaussianity during each time step. This assumption is tantamount to various linearizations of the equations....... Such a treatment offers higher rates of convergence, faster speed and higher accuracy. These procedures are compared to the direct Monte Carlo simulation procedure, which uses a fourth order Runge-Kutta scheme with the white noise process approximated by a broad band Ruiz-Penzien broken line process...

  19. A Partitioning and Bounded Variable Algorithm for Linear Programming

    Science.gov (United States)

    Sheskin, Theodore J.

    2006-01-01

    An interesting new partitioning and bounded variable algorithm (PBVA) is proposed for solving linear programming problems. The PBVA is a variant of the simplex algorithm which uses a modified form of the simplex method followed by the dual simplex method for bounded variables. In contrast to the two-phase method and the big M method, the PBVA does…

  20. Nuclear Application Programs Development and Integration for a Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun-Joon; Lee, Tae-Woo [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)

    2016-10-15

    KEPCO E and C participated in the NAPS (Nuclear Application Programs) development project for BNPP (Barakah Nuclear Power Plant) simulator. The 3KEY MASTER™ was adopted for this project, which is comprehensive simulation platform software developed by WSC (Western Services Corporation) for the development, and control of simulation software. The NAPS based on actual BNPP project was modified in order to meet specific requirements for nuclear power plant simulators. Considerations regarding software design for BNPP simulator and interfaces between the 3KM platform and application programs are discussed. The repeatability is one of functional requirements for nuclear power plant simulators. In order to migrate software from actual plants to simulators, software functions for storing and retrieving plant conditions and program variables should be implemented. In addition, software structures need to be redesigned to meet the repeatability, and source codes developed for actual plants would have to be optimized to reflect simulator’s characteristics as well. The synchronization is an important consideration to integrate external application programs into the 3KM simulator.

  1. Some computer simulations based on the linear relative risk model

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1991-10-01

    This report presents the results of computer simulations designed to evaluate and compare the performance of the likelihood ratio statistic and the score statistic for making inferences about the linear relative risk mode. The work was motivated by data on workers exposed to low doses of radiation, and the report includes illustration of several procedures for obtaining confidence limits for the excess relative risk coefficient based on data from three studies of nuclear workers. The computer simulations indicate that with small sample sizes and highly skewed dose distributions, asymptotic approximations to the score statistic or to the likelihood ratio statistic may not be adequate. For testing the null hypothesis that the excess relative risk is equal to zero, the asymptotic approximation to the likelihood ratio statistic was adequate, but use of the asymptotic approximation to the score statistic rejected the null hypothesis too often. Frequently the likelihood was maximized at the lower constraint, and when this occurred, the asymptotic approximations for the likelihood ratio and score statistics did not perform well in obtaining upper confidence limits. The score statistic and likelihood ratio statistics were found to perform comparably in terms of power and width of the confidence limits. It is recommended that with modest sample sizes, confidence limits be obtained using computer simulations based on the score statistic. Although nuclear worker studies are emphasized in this report, its results are relevant for any study investigating linear dose-response functions with highly skewed exposure distributions. 22 refs., 14 tabs

  2. Linear and non-linear simulation of joints contact surface using ...

    African Journals Online (AJOL)

    The joint modelling including non-linear effects needs accurate and precise study of their behaviors. When joints are under the dynamic loading, micro, macro- slip happens in contact surface which is non-linear reason of the joint contact surface. The non-linear effects of joint contact surface on total behavior of structure are ...

  3. Field: A Program for Simulating Ultrasound Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1997-01-01

    A program for the simulation of ultrasound systems is presented.It is based on the Tupholme-Stepanishen method, and is fastbecause of the use of a far-field approximation. Any kind oftransducer geometry and excitation can be simulated, and bothpulse-echo and continuous wave fields can be calculated...... for bothtransmit and pulse-echo. Dynamic apodization and focusing arehandled through time lines, and different focusingschemes can be simulated. The versatility of the program isensured by interfacing it to Matlab. All routines are calleddirectly from Matlab, and all Matlab features can be used. Thismakes...

  4. Optimal traffic control in highway transportation networks using linear programming

    KAUST Repository

    Li, Yanning; Canepa, Edward S.; Claudel, Christian G.

    2014-01-01

    of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can

  5. Linear Programming Approaches for Power Savings in Software-defined Networks

    NARCIS (Netherlands)

    Moghaddam, F.A.; Grosso, P.

    2016-01-01

    Software-defined networks have been proposed as a viable solution to decrease the power consumption of the networking component in data center networks. Still the question remains on which scheduling algorithms are most suited to achieve this goal. We propose 4 different linear programming

  6. Development of a safety and regulation systems simulation program II

    International Nuclear Information System (INIS)

    1985-05-01

    This report describes the development of a safety and regulation systems simulation program under contract to the Atomic Energy Control Board of Canada. A systems logic interaction simulation (SLISIM) program was developed for the AECB's HP-1000 computer which operates in the interactive simulation (INSIM) program environment. The SLISIM program simulates the spatial neutron dynamics, the regulation of the reactor power and in this version the CANDU-PHW 600 MW(e) computerized shutdown systems' trip parameters. The modular concept and interactive capability of the INSIM environment provides the user with considerable flexibility of the setup and control of the simulation

  7. Method for solving fully fuzzy linear programming problems using deviation degree measure

    Institute of Scientific and Technical Information of China (English)

    Haifang Cheng; Weilai Huang; Jianhu Cai

    2013-01-01

    A new ful y fuzzy linear programming (FFLP) prob-lem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crispδ-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the δ-fuzzy optimal so-lution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the va-lues of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to il ustrate the proposed method.

  8. Application of Nuclear Application Programs to APR1400 Simulator

    International Nuclear Information System (INIS)

    Hwang, Do Hyun; Lee, Myeong Soo; Hong, Jin Hyuk

    2012-01-01

    Advanced Power Reactor 1400MWe (APR1400) simulator has been developed and installed at Kori Training Center for operators of ShinKori no.3, 4 nuclear power plant by Korea Hydro and Nuclear Power,s Central Research Institute (KHNP CRI). NAPS (Nuclear Application Programs) is a computerbased system which provides operators with past and real-time information for monitoring and controlling NSSS (Nuclear Steam Supply System), BOP (Balance Of Plant) and Electric system. NAPS consists of several programs such as COLSS (Core Operating Limit Supervisory System), SPADES+ (Safety Parameter Display and Evaluation System), CEA (Control Element Assembly) Application Program, and so on. Each program makes calculations based on its own algorithm and provides information available for operation. In order to use NAPS programs with a simulator even though they are being used in a real plant, they should be modified to add several simulation functions such as reset, snap, run/freeze and backtrack required by ANSI/ANS-3.5 to the original NAPS functionality. On top of that, interfacing programs should be developed for the data communication between respective NAPS programs and simulator sever. The purpose of this paper is to provide the overall architecture of the communication system between NAPS and simulator model, and to describe the method to apply NAPS to APR1400 simulator

  9. Nutrient density score of typical Indonesian foods and dietary formulation using linear programming.

    Science.gov (United States)

    Jati, Ignasius Radix A P; Vadivel, Vellingiri; Nöhr, Donatus; Biesalski, Hans Konrad

    2012-12-01

    The present research aimed to analyse the nutrient density (ND), nutrient adequacy score (NAS) and energy density (ED) of Indonesian foods and to formulate a balanced diet using linear programming. Data on typical Indonesian diets were obtained from the Indonesian Socio-Economic Survey 2008. ND was investigated for 122 Indonesian foods. NAS was calculated for single nutrients such as Fe, Zn and vitamin A. Correlation analysis was performed between ND and ED, as well as between monthly expenditure class and food consumption pattern in Indonesia. Linear programming calculations were performed using the software POM-QM for Windows version 3. Republic of Indonesia, 2008. Public households (n 68 800). Vegetables had the highest ND of the food groups, followed by animal-based foods, fruits and staple foods. Based on NAS, the top ten food items for each food group were identified. Most of the staple foods had high ED and contributed towards daily energy fulfillment, followed by animal-based foods, vegetables and fruits. Commodities with high ND tended to have low ED. Linear programming could be used to formulate a balanced diet. In contrast to staple foods, purchases of fruit, vegetables and animal-based foods increased with the rise of monthly expenditure. People should select food items based on ND and NAS to alleviate micronutrient deficiencies in Indonesia. Dietary formulation calculated using linear programming to achieve RDA levels for micronutrients could be recommended for different age groups of the Indonesian population.

  10. Simulation of non-linear coaxial line using ferrite beads

    International Nuclear Information System (INIS)

    Furuya, S.; Matsumoto, H.; Tachi, K.; Takano, S.; Irisawa, J.

    2002-01-01

    A ferrite sharpener is a non-linear coaxial line using ferrite beads, which produces high-voltage, high-dV/dt pulses. We have been examining the characteristics of ferrite sharpeners experimentally, varying various parameters. Also we have made the simulation of the ferrite sharpener and compared the predictions with the experimental results in detail to analyze the characteristics of the sharpener. In this report, calculating the magnetization M of the ferrite bead, we divide the bead into n sections radially instead of adopting M at the average radius in the previous report. (author)

  11. Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation

    Science.gov (United States)

    Shang, Yu; Li, Ting; Chen, Lei; Lin, Yu; Toborek, Michal; Yu, Guoqiang

    2014-05-01

    Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αDB) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αDB. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo stroke model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αDB (errors values of errors in extracting αDB were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αDB using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.

  12. A simulated Linear Mixture Model to Improve Classification Accuracy of Satellite Data Utilizing Degradation of Atmospheric Effect

    Directory of Open Access Journals (Sweden)

    WIDAD Elmahboub

    2005-02-01

    Full Text Available Researchers in remote sensing have attempted to increase the accuracy of land cover information extracted from remotely sensed imagery. Factors that influence the supervised and unsupervised classification accuracy are the presence of atmospheric effect and mixed pixel information. A linear mixture simulated model experiment is generated to simulate real world data with known end member spectral sets and class cover proportions (CCP. The CCP were initially generated by a random number generator and normalized to make the sum of the class proportions equal to 1.0 using MATLAB program. Random noise was intentionally added to pixel values using different combinations of noise levels to simulate a real world data set. The atmospheric scattering error is computed for each pixel value for three generated images with SPOT data. Accuracy can either be classified or misclassified. Results portrayed great improvement in classified accuracy, for example, in image 1, misclassified pixels due to atmospheric noise is 41 %. Subsequent to the degradation of atmospheric effect, the misclassified pixels were reduced to 4 %. We can conclude that accuracy of classification can be improved by degradation of atmospheric noise.

  13. A linear programming model to optimize diets in environmental policy scenarios.

    Science.gov (United States)

    Moraes, L E; Wilen, J E; Robinson, P H; Fadel, J G

    2012-03-01

    The objective was to develop a linear programming model to formulate diets for dairy cattle when environmental policies are present and to examine effects of these policies on diet formulation and dairy cattle nitrogen and mineral excretions as well as methane emissions. The model was developed as a minimum cost diet model. Two types of environmental policies were examined: a tax and a constraint on methane emissions. A tax was incorporated to simulate a greenhouse gas emissions tax policy, and prices of carbon credits in the current carbon markets were attributed to the methane production variable. Three independent runs were made, using carbon dioxide equivalent prices of $5, $17, and $250/t. A constraint was incorporated into the model to simulate the second type of environmental policy, reducing methane emissions by predetermined amounts. The linear programming formulation of this second alternative enabled the calculation of marginal costs of reducing methane emissions. Methane emission and manure production by dairy cows were calculated according to published equations, and nitrogen and mineral excretions were calculated by mass conservation laws. Results were compared with respect to the values generated by a base least-cost model. Current prices of the carbon credit market did not appear onerous enough to have a substantive incentive effect in reducing methane emissions and altering diet costs of our hypothetical dairy herd. However, when emissions of methane were assumed to be reduced by 5, 10, and 13.5% from the base model, total diet costs increased by 5, 19.1, and 48.5%, respectively. Either these increased costs would be passed onto the consumer or dairy producers would go out of business. Nitrogen and potassium excretions were increased by 16.5 and 16.7% with a 13.5% reduction in methane emissions from the base model. Imposing methane restrictions would further increase the demand for grains and other human-edible crops, which is not a progressive

  14. Finite element analyses of a linear-accelerator electron gun

    Science.gov (United States)

    Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  15. Finite element analyses of a linear-accelerator electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wasy, A. [Department of Mechanical Engineering, Changwon National University, Changwon 641773 (Korea, Republic of); Islam, G. U. [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan); Zhou, Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-02-15

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  16. Finite element analyses of a linear-accelerator electron gun

    International Nuclear Information System (INIS)

    Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-01-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator

  17. Linear programming algorithms and applications

    CERN Document Server

    Vajda, S

    1981-01-01

    This text is based on a course of about 16 hours lectures to students of mathematics, statistics, and/or operational research. It is intended to introduce readers to the very wide range of applicability of linear programming, covering problems of manage­ ment, administration, transportation and a number of other uses which are mentioned in their context. The emphasis is on numerical algorithms, which are illustrated by examples of such modest size that the solutions can be obtained using pen and paper. It is clear that these methods, if applied to larger problems, can also be carried out on automatic (electronic) computers. Commercially available computer packages are, in fact, mainly based on algorithms explained in this book. The author is convinced that the user of these algorithms ought to be knowledgeable about the underlying theory. Therefore this volume is not merely addressed to the practitioner, but also to the mathematician who is interested in relatively new developments in algebraic theory and in...

  18. Off-line programming and simulation in handling nuclear components

    International Nuclear Information System (INIS)

    Baker, C.P.

    1993-10-01

    IGRIP was used to create a simulation of the robotic workcell design for handling components at the PANTEX nuclear arms facility. This initial simulation identified problems with the customer's proposed worker layout, and allowed a correction to be proposed. Refinement of the IGRIP simulation allowed the design and construction of a workcell mock-up and accurate off-line programming of the system. IGRIP's off-line programming capabilities are being used to develop the motion control code for the workcell. PNLs success in this area suggests that simulation and off-line programming may be valuable tools for developing robotics in some automation resistant industries

  19. A mixed integer linear program for an integrated fishery | Hasan ...

    African Journals Online (AJOL)

    ... and labour allocation of quota based integrated fisheries. We demonstrate the workability of our model with a numerical example and sensitivity analysis based on data obtained from one of the major fisheries in New Zealand. Keywords: mixed integer linear program, fishing, trawler scheduling, processing, quotas ORiON: ...

  20. A linear programming approach for placement of applicants to academic programs.

    Science.gov (United States)

    Kassa, Biniyam Asmare

    2013-01-01

    This paper reports a linear programming approach for placement of applicants to study programs developed and implemented at the college of Business & Economics, Bahir Dar University, Bahir Dar, Ethiopia. The approach is estimated to significantly streamline the placement decision process at the college by reducing required man hour as well as the time it takes to announce placement decisions. Compared to the previous manual system where only one or two placement criteria were considered, the new approach allows the college's management to easily incorporate additional placement criteria, if needed. Comparison of our approach against manually constructed placement decisions based on actual data for the 2012/13 academic year suggested that about 93 percent of the placements from our model concur with the actual placement decisions. For the remaining 7 percent of placements, however, the actual placements made by the manual system display inconsistencies of decisions judged against the very criteria intended to guide placement decisions by the college's program management office. Overall, the new approach proves to be a significant improvement over the manual system in terms of efficiency of the placement process and the quality of placement decisions.

  1. adapta~k>n -11 of the surrogate memods for linear programming ...

    African Journals Online (AJOL)

    2005-08-02

    Aug 2, 2005 ... inequality problem is made uj~ of the primal and dual optimal solutions for the given primal ... KEYWORDS: Linear Programming, Duality Theory, Surrogate Methods. ..... replaces x and the process IS repeated with the new x.

  2. Simulation experiment on total ionization dose effects of linear CCD

    International Nuclear Information System (INIS)

    Tang Benqi; Zhang Yong; Xiao Zhigang; Wang Zujun; Huang Shaoyan

    2004-01-01

    We carry out the ionization radiation experiment of linear CCDs operated in unbiased, biased, biased and driven mode respectively by Co-60 γ source with our self-designed test system, and offline test the Dark signal and Saturation voltage and SNR varied with total dose for TCD132D, and get some valuable results. On the basis of above work, we set forth a primary experiment approaches to simulate the total dose radiation effects of charge coupled devices. (authors)

  3. How to use body tilt for the simulation of linear self motion

    NARCIS (Netherlands)

    Groen, E.L.; Bles, W.

    2004-01-01

    We examined to what extent body tilt may augment the perception of visually simulated linear self acceleration. Fourteen subjects judged visual motion profiles of fore-aft motion at four different frequencies between 0.04-0.33 Hz, and at three different acceleration amplitudes (0.44, 0.88 and 1.76

  4. Quench Simulation Studies: Program documentation of SPQR

    CERN Document Server

    Sonnemann, F

    2001-01-01

    Quench experiments are being performed on prototypes of the superconducting magnets and busbars to determine the adequate design and protection. Many tests can only be understood correctly with the help of quench simulations that model the thermo-hydraulic and electrodynamic processes during a quench. In some cases simulations are the only method to scale the experimental results of prototype measurements to match the situation of quenching superconducting elements in the LHC. This note introduces the theoretical quench model and the use of the simulation program SPQR (Simulation Program for Quench Research), which has been developed to compute the quench process in superconducting magnets and busbars. The model approximates the heat balance equation with the finite difference method including the temperature dependence of the material parameters. SPQR allows the simulation of longitudinal quench propagation along a superconducting cable, the transverse propagation between adjacent conductors, heat transfer i...

  5. The use of linear programming in optimization of HDR implant dose distributions

    International Nuclear Information System (INIS)

    Jozsef, Gabor; Streeter, Oscar E.; Astrahan, Melvin A.

    2003-01-01

    The introduction of high dose rate brachytherapy enabled optimization of dose distributions to be used on a routine basis. The objective of optimization is to homogenize the dose distribution within the implant while simultaneously satisfying dose constraints on certain points. This is accomplished by varying the time the source dwells at different locations. As the dose at any point is a linear function of the dwell times, a linear programming approach seems to be a natural choice. The dose constraints are inherently linear inequalities. Homogeneity requirements are linearized by minimizing the maximum deviation of the doses at points inside the implant from a prescribed dose. The revised simplex method was applied for the solution of this linear programming problem. In the homogenization process the possible source locations were chosen as optimization points. To avoid the problem of the singular value of the dose at a source location from the source itself we define the 'self-contribution' as the dose at a small distance from the source. The effect of varying this distance is discussed. Test cases were optimized for planar, biplanar and cylindrical implants. A semi-irregular, fan-like implant with diverging needles was also investigated. Mean central dose calculation based on 3D Delaunay-triangulation of the source locations was used to evaluate the dose distributions. The optimization method resulted in homogeneous distributions (for brachytherapy). Additional dose constraints--when applied--were satisfied. The method is flexible enough to include other linear constraints such as the inclusion of the centroids of the Delaunay-triangulation for homogenization, or limiting the maximum allowable dwell time

  6. Solving a mixed-integer linear programming model for a multi-skilled project scheduling problem by simulated annealing

    Directory of Open Access Journals (Sweden)

    H Kazemipoor

    2012-04-01

    Full Text Available A multi-skilled project scheduling problem (MSPSP has been generally presented to schedule a project with staff members as resources. Each activity in project network requires different skills and also staff members have different skills, too. This causes the MSPSP becomes a special type of a multi-mode resource-constrained project scheduling problem (MM-RCPSP with a huge number of modes. Given the importance of this issue, in this paper, a mixed integer linear programming for the MSPSP is presented. Due to the complexity of the problem, a meta-heuristic algorithm is proposed in order to find near optimal solutions. To validate performance of the algorithm, results are compared against exact solutions solved by the LINGO solver. The results are promising and show that optimal or near-optimal solutions are derived for small instances and good solutions for larger instances in reasonable time.

  7. Reduced-Size Integer Linear Programming Models for String Selection Problems: Application to the Farthest String Problem.

    Science.gov (United States)

    Zörnig, Peter

    2015-08-01

    We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.

  8. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers.

    Science.gov (United States)

    Li, Jing; Wu, Xiaoping

    2011-10-10

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.

  9. User's Guide to the Weighted-Multiple-Linear Regression Program (WREG version 1.0)

    Science.gov (United States)

    Eng, Ken; Chen, Yin-Yu; Kiang, Julie.E.

    2009-01-01

    Streamflow is not measured at every location in a stream network. Yet hydrologists, State and local agencies, and the general public still seek to know streamflow characteristics, such as mean annual flow or flood flows with different exceedance probabilities, at ungaged basins. The goals of this guide are to introduce and familiarize the user with the weighted multiple-linear regression (WREG) program, and to also provide the theoretical background for program features. The program is intended to be used to develop a regional estimation equation for streamflow characteristics that can be applied at an ungaged basin, or to improve the corresponding estimate at continuous-record streamflow gages with short records. The regional estimation equation results from a multiple-linear regression that relates the observable basin characteristics, such as drainage area, to streamflow characteristics.

  10. Faster Simulation Methods for the Non-Stationary Random Vibrations of Non-Linear MDOF Systems

    DEFF Research Database (Denmark)

    Askar, A.; Köylüoglu, H. U.; Nielsen, Søren R. K.

    subject to nonstationary Gaussian white noise excitation, as an alternative to conventional direct simulation methods. These alternative simulation procedures rely on an assumption of local Gaussianity during each time step. This assumption is tantamount to various linearizations of the equations....... Such a treatment offers higher rates of convergence, faster speed and higher accuracy. These procedures are compared to the direct Monte Carlo simulation procedure, which uses a fourth order Runge-Kutta scheme with the white noise process approximated by a broad band Ruiz-Penzien broken line process...

  11. A Comparison of Linear and Systems Thinking Approaches for Program Evaluation Illustrated Using the Indiana Interdisciplinary GK-12

    Science.gov (United States)

    Dyehouse, Melissa; Bennett, Deborah; Harbor, Jon; Childress, Amy; Dark, Melissa

    2009-01-01

    Logic models are based on linear relationships between program resources, activities, and outcomes, and have been used widely to support both program development and evaluation. While useful in describing some programs, the linear nature of the logic model makes it difficult to capture the complex relationships within larger, multifaceted…

  12. Operation planning for a pondage power station chain by means of linear programming and genetic optimisation; Einsatzplanung fuer eine Flusskraftwerkskette im Schwellbetrieb mittels LP und genetischer Optimierung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.; Huelsemann, M.

    1997-12-31

    This paper presents a system package which serves as a simulation and optimisation tool for daily operation planning for a hydroelectric cascade. The purpose of the planning is to maximise (the differentially weighted) production of electrical energy given a certain set of specifications and secondary conditions. Optimal operation management is achieved using a two-stage approach: first pre-optimisation by means of linear programming, followed by detail optimisation using a Genetic Algorithm based on a non-linear, dynamic model of the power station and reservoir chain. [Deutsch] Im Beitrag wird ein Systempaket als Simulations- und Optimierungswerkzeug zur taeglichen Betriebsplanung einer Wasserkraftwerkskaskade vorgestellt. Ziel der Wasserbewirtschaftung ist es, unter den gegebenen Vorgaben und Randbedingungen die (bewertete) Erzeugung elektrischer Energie zu maximieren. Das optimale Fahrplanmanagement wird durch einen zweistufigen Loesungsansatz realisiert: Mit einer Vor-Optimierung mittels Linearer Programmierung (LP), gefolgt von einer detaillierten Optimierung mit einem Genetischen Algorithmus, der auf ein nichtlineares, dynamisches Simulationsmodell fuer die Kette aus Kraftwerken und Stauraeumen zugreift. (orig./RHM)

  13. Linear programming based on neural networks for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Xingen Wu; Limin Luo

    2000-01-01

    In this paper, we propose a neural network model for linear programming that is designed to optimize radiotherapy treatment planning (RTP). This kind of neural network can be easily implemented by using a kind of 'neural' electronic system in order to obtain an optimization solution in real time. We first give an introduction to the RTP problem and construct a non-constraint objective function for the neural network model. We adopt a gradient algorithm to minimize the objective function and design the structure of the neural network for RTP. Compared to traditional linear programming methods, this neural network model can reduce the time needed for convergence, the size of problems (i.e., the number of variables to be searched) and the number of extra slack and surplus variables needed. We obtained a set of optimized beam weights that result in a better dose distribution as compared to that obtained using the simplex algorithm under the same initial condition. The example presented in this paper shows that this model is feasible in three-dimensional RTP. (author)

  14. Conducting Simulation Studies in the R Programming Environment.

    Science.gov (United States)

    Hallgren, Kevin A

    2013-10-12

    Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.

  15. A survey of electric and hybrid vehicle simulation programs

    Science.gov (United States)

    Bevan, J.; Heimburger, D. A.; Metcalfe, M. A.

    1978-01-01

    Results of a survey conducted within the United States to determine the extent of development and capabilities of automotive performance simulation programs suitable for electric and hybrid vehicle studies are summarized. Altogether, 111 programs were identified as being in a usable state. The complexity of the existing programs spans a range from a page of simple desktop calculator instructions to 300,000 lines of a high-level programming language. The capability to simulate electric vehicles was most common, heat-engines second, and hybrid vehicles least common. Batch-operated programs are slightly more common than interactive ones, and one-third can be operated in either mode. The most commonly used language was FORTRAN, the language typically used by engineers. The higher-level simulation languages (e.g. SIMSCRIPT, GPSS, SIMULA) used by "model builders" were conspicuously lacking.

  16. The TAO Accelerator Simulation Program

    CERN Document Server

    Sagan, David

    2005-01-01

    A new accelerator design and analysis simulation environment based on the BMAD relativistic charged particle dynamics library is in development at Cornell University. Called TAO (Tool for Accelerator Optimization), it is a machine independent program that implements the essential ingredients needed to solve simulation problems. This includes the ability to: 1. Design lattices subject to constraints, 2. Simulate errors and changes in machine parameters, and 3. Simulate machine commissioning including simulating data measurement and correction. TAO is designed to be easily customizable so that extending it to solve new and different problems is straight forward. The capability to simultaneously model multiple accelerator lattices, both linacs and storage rings, and injection from one lattice to another allows for the design and commissioning of large multi stage accelerators. It can also simultaneously model multiple configurations of a single lattice. Single particle, particle beam and macroparticle tracking i...

  17. A Model Stitching Architecture for Continuous Full Flight-Envelope Simulation of Fixed-Wing Aircraft and Rotorcraft from Discrete Point Linear Models

    Science.gov (United States)

    2016-04-01

    AND ROTORCRAFT FROM DISCRETE -POINT LINEAR MODELS Eric L. Tobias and Mark B. Tischler Aviation Development Directorate Aviation and Missile...Stitching Architecture for Continuous Full Flight-Envelope Simulation of Fixed-Wing Aircraft and Rotorcraft from Discrete -Point Linear Models 5...of discrete -point linear models and trim data. The model stitching simulation architecture is applicable to any aircraft configuration readily

  18. Non-linear gyrokinetic simulations of microturbulence in TCV electron internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Lapillonne, X; Brunner, S; Sauter, O; Villard, L [Centre de Recherches en Physique des Plasmas, Association EURATOM-Confederation Suisse, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Fable, E; Goerler, T; Jenko, F; Merz, F, E-mail: stephan.brunner@epfl.ch [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2011-05-15

    Using the local (flux-tube) version of the Eulerian code GENE (Jenko et al 2000 Phys. Plasmas 7 1904), gyrokinetic simulations of microturbulence were carried out considering parameters relevant to electron-internal transport barriers (e-ITBs) in the TCV tokamak (Sauter et al 2005 Phys. Rev. Lett. 94 105002), generated under conditions of low or negative shear. For typical density and temperature gradients measured in such barriers, the corresponding simulated fluctuation spectra appears to simultaneously contain longer wavelength trapped electron modes (TEMs, for typically k{sub p}erpendicular{rho}{sub i} < 0.5, k{sub p}erpendicular being the characteristic perpendicular wavenumber and {rho}{sub i} the ion Larmor radius) and shorter wavelength ion temperature gradient modes (ITG, k{sub p}erpendicular{rho}{sub i} > 0.5). The contributions to the electron particle flux from these two types of modes are, respectively, outward/inward and may cancel each other for experimentally realistic gradients. This mechanism may partly explain the feasibility of e-ITBs. The non-linear simulation results confirm the predictions of a previously developed quasi-linear model (Fable et al 2010 Plasma Phys. Control. Fusion 52 015007), namely that the stationary condition of zero particle flux is obtained through the competitive contributions of ITG and TEM. A quantitative comparison of the electron heat flux with experimental estimates is presented as well.

  19. Design and numerical simulation of the electromagnetic field of linear anode layer ion source

    International Nuclear Information System (INIS)

    Wang Lisheng; Tang Deli; Cheng Changming

    2006-01-01

    The principle of anode layer ion source for etching, pre-cleaning and ion beam assisted deposition was described. The influence of the magnetic field on the performance of anode layer ion source was analyzed. Design of the magnetic loop for the linear anode layer ion source was given. The electromagnetic field distribution of the ion source was simulated by means of ANSYS code and the simulation results were in agreement with experimental ones. The numerical simulation results of the electromagnetic field are useful for improving the anode layer ion source. (authors)

  20. The classical Pierce diode: Using particle simulations on linear and nonlinear behavior and final states

    International Nuclear Information System (INIS)

    Crystal, T.L.; Kuhn, S.; Birdsall, C.K.

    1984-01-01

    The classical Pierce diode is a simple 1-d system of two shorted metal plates, a cold beam of electrons injected from one side and a neutralizing background of rigid ions. While the plasma medium is technically stable, the finiteness of the Pierce system allows stable and unstable operation. It is usefully studied as an archetypical bounded plasma system, related e.g., to Q-machines, particle accelerators, thermionic converters. New particle simulations of the Pierce diode have successfully recovered many novel linear phenomena including the dominant linear eigenmodes (seen in the internal electrostatic fields), and the dominant and subdominant eigenfrequencies, (seen both in the internal electrostatics and in the external circuit current, J/sub ext/(t)). These simulation results conform very well to detailed predictions of a new linear analysis. The final (nonlinear) state recovered can show critical dependence on initial (linear perturbation) conditions, and can be made steady-state (d.c.) or periodic-oscillatory by simply changing the initial conditions by a factor of 10/sup -4/ or less. A third class of final state is also possible which has oscillations which seem to be nonperiodic

  1. Robust Control Design via Linear Programming

    Science.gov (United States)

    Keel, L. H.; Bhattacharyya, S. P.

    1998-01-01

    This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.

  2. A quality assurance program of simulators in radiotherapy. Pt. 2. Extent and results of long-term quality assurance tests on a therapy simulator

    International Nuclear Information System (INIS)

    Mueller-Sievers, K.; Kober, B.

    1997-01-01

    Background: Since 1990 we follow a quality assurance program with periodical tests of functional performance values of a 16-year-old simulator. Material and Method: For this purpose we adopted and modified German standards for quality assurance on linear accelerators and international standards elaborated for simulators (International Electrotechnical Commission). The tests are subdivided into daily visual checks (light field indication, optical distance indicator, isocentre-indicating devices, indication of gantry and collimator angles) and monthly and annually tests of relevant simulator parameters. Some important examples demonstrate the small variation of parameters over 6 years: Position of the light field centre when rotating the collimator, diameter of the isocentre circle when rotating the gantry, accuracy of the isocentre indication device, and coincidence of light field and simulated radiation field. Results: As an important result we can state, that by these rigid periodic tests it was possible to detect and compensate deteriorations of simulators quality rapidly. Conclusions: Technical improvements and specific calling-in of maintenance personnel whenever felt appropriate provided performance characteristics of our old simulator which are required by international recommendations as a basis for modern radiotherapy. (orig.) [de

  3. Linear-algebraic bath transformation for simulating complex open quantum systems

    International Nuclear Information System (INIS)

    Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; Aspuru-Guzik, Alán; Yung, Man-Hong

    2014-01-01

    In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallel chains. The transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics. (paper)

  4. A linear programming model of diet choice of free-living beavers

    NARCIS (Netherlands)

    Nolet, BA; VanderVeer, PJ; Evers, EGJ; Ottenheim, MM

    1995-01-01

    Linear programming has been remarkably successful in predicting the diet choice of generalist herbivores. We used this technique to test the diet choice of free-living beavers (Castor fiber) in the Biesbosch (The Netherlands) under different Foraging goals, i.e. maximization of intake of energy,

  5. Conducting Simulation Studies in the R Programming Environment

    Directory of Open Access Journals (Sweden)

    Kevin A. Hallgren

    2013-10-01

    Full Text Available Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtainingaccurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted toresearchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulationstudies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a the use of simulations to answer a novel question about statistical analysis, (b the use of simulations to estimate statistical power, and (c the use of simulations to obtain confidence intervals of parameter estimates throughbootstrapping. Results and fully annotated syntax from these examples are provided.

  6. Waste management under multiple complexities: Inexact piecewise-linearization-based fuzzy flexible programming

    International Nuclear Information System (INIS)

    Sun Wei; Huang, Guo H.; Lv Ying; Li Gongchen

    2012-01-01

    Highlights: ► Inexact piecewise-linearization-based fuzzy flexible programming is proposed. ► It’s the first application to waste management under multiple complexities. ► It tackles nonlinear economies-of-scale effects in interval-parameter constraints. ► It estimates costs more accurately than the linear-regression-based model. ► Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP’s advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP’s solutions demonstrate

  7. Introduction to linear programming: Coalitional game experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, W.

    1994-12-31

    Many solution notions in the multiperson cooperative games (in characteristic function form) make use of linear programming (LP). The popular concept of the {open_quotes}core{close_quotes} of a coalitional game is a special type of LP. It can be introduced in a very simple and quite exciting manner by means of a group experiment. A total of fifty dollars will be given to three randomly selected attendees who will take part in an experiment during this talk, presuming they behave in a Pareto optimal manner. Furthermore, the dual of the particular LP for the core gives rise to the idea of {open_quotes}balanced sets{close_quotes} which is an interesting combinatorial structure in its own right.

  8. Simulator: A Pilot Interactive Simulation Program for Use in Teaching Public Relations.

    Science.gov (United States)

    Pavlik, John V.

    An interactive simulation program was developed for use in teaching students how to handle public relations problems. The program user is placed in the role of assistant newsletter editor, facing a series of decision-making situations. Each choice the user makes affects the subsequent reality created by the program, which is designed to provide…

  9. The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.

    Science.gov (United States)

    Pang, Haotian; Liu, Han; Vanderbei, Robert

    2014-02-01

    We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.

  10. SimZones: An Organizational Innovation for Simulation Programs and Centers.

    Science.gov (United States)

    Roussin, Christopher J; Weinstock, Peter

    2017-08-01

    The complexity and volume of simulation-based learning programs have increased dramatically over the last decade, presenting several major challenges for those who lead and manage simulation programs and centers. The authors present five major issues affecting the organization of simulation programs: (1) supporting both single- and double-loop learning experiences; (2) managing the training of simulation teaching faculty; (3) optimizing the participant mix, including individuals, professional groups, teams, and other role-players, to ensure learning; (4) balancing in situ, node-based, and center-based simulation delivery; and (5) organizing simulation research and measuring value. They then introduce the SimZones innovation, a system of organization for simulation-based learning, and explain how it can alleviate the problems associated with these five issues.Simulations are divided into four zones (Zones 0-3). Zone 0 simulations include autofeedback exercises typically practiced by solitary learners, often using virtual simulation technology. Zone 1 simulations include hands-on instruction of foundational clinical skills. Zone 2 simulations include acute situational instruction, such as clinical mock codes. Zone 3 simulations involve authentic, native teams of participants and facilitate team and system development.The authors also discuss the translation of debriefing methods from Zone 3 simulations to real patient care settings (Zone 4), and they illustrate how the SimZones approach can enable the development of longitudinal learning systems in both teaching and nonteaching hospitals. The SimZones approach was initially developed in the context of the Boston Children's Hospital Simulator Program, which the authors use to illustrate this innovation in action.

  11. Computer Program For Linear Algebra

    Science.gov (United States)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  12. Water Quality Analysis Simulation Program (WASP)

    Science.gov (United States)

    The Water Quality Analysis Simulation Program (WASP) model helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions.

  13. Intelligent Flight Control Simulation Research Program

    National Research Council Canada - National Science Library

    Stolarik, Brian

    2007-01-01

    ...). Under the program, entitled "Intelligent Flight Control Simulation Research Laboratory," a variety of technologies were investigated or developed during the course of the research for AFRL/VAC...

  14. Linear programming to build food-based dietary guidelines: Romanian food baskets

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Robertson, Aileen; Hondru, Gabriela

    approach using linear programming methodology to design national dietary recommendations which aim to prevent both NCDs and micronutrient deficiencies and still be affordable by low income groups. This new approach is applied within the context of food availability in Romania in 2014. Eating the same food...... every day is unrealistic and too monotonous to be maintained, so this novel approach is used to select a wide range of diverse foods that can be recommended for a period of up to, for example, one month. The following are the key findings of this report. • The simplest version of the Romanian food.......65 lei (~€ 4.46) for a day. • Key nutrients, primarily vitamin D, calcium, potassium and iron, were found to control the overall price. • The least expensive basket (one day’s rations) is monotonous and the linear programming approach is used to select a wide range of foods that can be recommended...

  15. Fuzzy linear programming based optimal fuel scheduling incorporating blending/transloading facilities

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.; Babic, B.; Milosevic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [EPRI, Palo Alto, CA (United States). Power System Control; Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)

    1996-05-01

    In this paper the blending/transloading facilities are modeled using an interactive fuzzy linear programming (FLP), in order to allow the decision-maker to solve the problem of uncertainty of input information within the fuel scheduling optimization. An interactive decision-making process is formulated in which decision-maker can learn to recognize good solutions by considering all possibilities of fuzziness. The application of the fuzzy formulation is accompanied by a careful examination of the definition of fuzziness, appropriateness of the membership function and interpretation of results. The proposed concept provides a decision support system with integration-oriented features, whereby the decision-maker can learn to recognize the relative importance of factors in the specific domain of optimal fuel scheduling (OFS) problem. The formulation of a fuzzy linear programming problem to obtain a reasonable nonfuzzy solution under consideration of the ambiguity of parameters, represented by fuzzy numbers, is introduced. An additional advantage of the FLP formulation is its ability to deal with multi-objective problems.

  16. Polymorphic Uncertain Linear Programming for Generalized Production Planning Problems

    Directory of Open Access Journals (Sweden)

    Xinbo Zhang

    2014-01-01

    Full Text Available A polymorphic uncertain linear programming (PULP model is constructed to formulate a class of generalized production planning problems. In accordance with the practical environment, some factors such as the consumption of raw material, the limitation of resource and the demand of product are incorporated into the model as parameters of interval and fuzzy subsets, respectively. Based on the theory of fuzzy interval program and the modified possibility degree for the order of interval numbers, a deterministic equivalent formulation for this model is derived such that a robust solution for the uncertain optimization problem is obtained. Case study indicates that the constructed model and the proposed solution are useful to search for an optimal production plan for the polymorphic uncertain generalized production planning problems.

  17. Estimating linear temporal trends from aggregated environmental monitoring data

    Science.gov (United States)

    Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.

    2017-01-01

    Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.

  18. Optimasi Operasi Pembangkit Listrik Tenaga Air (PLTA Menggunakan Linear Programming Dengan Batasan Ketersediaan Air

    Directory of Open Access Journals (Sweden)

    Winasis Winasis

    2013-06-01

    Full Text Available One of hydro power plant operational problem is how to maximize available water resouces to gather optimal electric power generation. Water availability which is limited and can be stored in a reservoir will influence electrical energy generated by the plant. This paper present a new approach of short term optimization of hydro power plant operation. The objective function is to maximize energy which is produced by power plant on scheduling operation period, with consider water resource availability in reservoir as operational constraint. The optimization problem is formulated in Linear Programming Method, in which this method is a commonly used to solve optimization problem in hydro power plant. Based on simulation results on Ketenger Hydro Power Plant using water flow data on June 1st 2013 shows that this method can be used to solve hydro power plant operation optimization problem well. Electrical energy as main objective function is maximized and all prevailing constrain is satisfied. On this short term operation (24 hour simulation, total energy can be produced is 96121,55 kWh, or 1427 kWh (1,51% greater comparing with real generation condition with 96694 kWh.

  19. APPLYING ROBUST RANKING METHOD IN TWO PHASE FUZZY OPTIMIZATION LINEAR PROGRAMMING PROBLEMS (FOLPP

    Directory of Open Access Journals (Sweden)

    Monalisha Pattnaik

    2014-12-01

    Full Text Available Background: This paper explores the solutions to the fuzzy optimization linear program problems (FOLPP where some parameters are fuzzy numbers. In practice, there are many problems in which all decision parameters are fuzzy numbers, and such problems are usually solved by either probabilistic programming or multi-objective programming methods. Methods: In this paper, using the concept of comparison of fuzzy numbers, a very effective method is introduced for solving these problems. This paper extends linear programming based problem in fuzzy environment. With the problem assumptions, the optimal solution can still be theoretically solved using the two phase simplex based method in fuzzy environment. To handle the fuzzy decision variables can be initially generated and then solved and improved sequentially using the fuzzy decision approach by introducing robust ranking technique. Results and conclusions: The model is illustrated with an application and a post optimal analysis approach is obtained. The proposed procedure was programmed with MATLAB (R2009a version software for plotting the four dimensional slice diagram to the application. Finally, numerical example is presented to illustrate the effectiveness of the theoretical results, and to gain additional managerial insights. 

  20. A Fast Monte Carlo Simulation for the International Linear Collider Detector

    International Nuclear Information System (INIS)

    Furse, D.

    2005-01-01

    The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included in the SLAC ILC group's org.lcsim package, reads in standard model or SUSY events in STDHEP file format, stochastically simulates the blurring in physics measurements caused by intrinsic detector error, and writes out an LCIO format file containing a set of final particles statistically similar to those that would have found by a full Monte Carlo simulation. In addition to the reconstructed particles themselves, descriptions of the calorimeter hit clusters and tracks that these particles would have produced are also included in the LCIO output. These output files can then be put through various analysis codes in order to characterize the effectiveness of a hypothetical detector at extracting relevant physical information about an event. Such a tool is extremely useful in preliminary detector research and development, as full simulations are extremely cumbersome and taxing on processor resources; a fast, efficient Monte Carlo can facilitate and even make possible detector physics studies that would be very impractical with the full simulation by sacrificing what is in many cases inappropriate attention to detail for valuable gains in time required for results

  1. Updating Linear Schedules with Lowest Cost: a Linear Programming Model

    Science.gov (United States)

    Biruk, Sławomir; Jaśkowski, Piotr; Czarnigowska, Agata

    2017-10-01

    Many civil engineering projects involve sets of tasks repeated in a predefined sequence in a number of work areas along a particular route. A useful graphical representation of schedules of such projects is time-distance diagrams that clearly show what process is conducted at a particular point of time and in particular location. With repetitive tasks, the quality of project performance is conditioned by the ability of the planner to optimize workflow by synchronizing the works and resources, which usually means that resources are planned to be continuously utilized. However, construction processes are prone to risks, and a fully synchronized schedule may expire if a disturbance (bad weather, machine failure etc.) affects even one task. In such cases, works need to be rescheduled, and another optimal schedule should be built for the changed circumstances. This typically means that, to meet the fixed completion date, durations of operations have to be reduced. A number of measures are possible to achieve such reduction: working overtime, employing more resources or relocating resources from less to more critical tasks, but they all come at a considerable cost and affect the whole project. The paper investigates the problem of selecting the measures that reduce durations of tasks of a linear project so that the cost of these measures is kept to the minimum and proposes an algorithm that could be applied to find optimal solutions as the need to reschedule arises. Considering that civil engineering projects, such as road building, usually involve less process types than construction projects, the complexity of scheduling problems is lower, and precise optimization algorithms can be applied. Therefore, the authors put forward a linear programming model of the problem and illustrate its principle of operation with an example.

  2. A new methodological development for solving linear bilevel integer programming problems in hybrid fuzzy environment

    Directory of Open Access Journals (Sweden)

    Animesh Biswas

    2016-04-01

    Full Text Available This paper deals with fuzzy goal programming approach to solve fuzzy linear bilevel integer programming problems with fuzzy probabilistic constraints following Pareto distribution and Frechet distribution. In the proposed approach a new chance constrained programming methodology is developed from the view point of managing those probabilistic constraints in a hybrid fuzzy environment. A method of defuzzification of fuzzy numbers using ?-cut has been adopted to reduce the problem into a linear bilevel integer programming problem. The individual optimal value of the objective of each DM is found in isolation to construct the fuzzy membership goals. Finally, fuzzy goal programming approach is used to achieve maximum degree of each of the membership goals by minimizing under deviational variables in the decision making environment. To demonstrate the efficiency of the proposed approach, a numerical example is provided.

  3. LINEAR2007, Linear-Linear Interpolation of ENDF Format Cross-Sections

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: LINEAR converts evaluated cross sections in the ENDF/B format into a tabular form that is subject to linear-linear interpolation in energy and cross section. The code also thins tables of cross sections already in that form. Codes used subsequently need thus to consider only linear-linear data. IAEA1311/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: - Linear VERS. 2007-1 (JAN. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 600,000 points 2 - Method of solution: Each section of data is considered separately. Each section of File 3, 23, and 27 data consists of a table of cross section versus energy with any of five interpolation laws. LINEAR will replace each section with a new table of energy versus cross section data in which the interpolation law is always linear in energy and cross section. The histogram (constant cross section between two energies) interpolation law is converted to linear-linear by substituting two points for each initial point. The linear-linear is not altered. For the log-linear, linear-log and log- log laws, the cross section data are converted to linear by an interval halving algorithm. Each interval is divided in half until the value at the middle of the interval can be approximated by linear-linear interpolation to within a given accuracy. The LINEAR program uses a multipoint fractional error thinning algorithm to minimize the size of each cross section table

  4. Multi-coupling dynamic model and 3d simulation program for in-situ leaching of uranium mining

    International Nuclear Information System (INIS)

    Tan Kaixuan; Zeng Sheng; Sang Xiao; Sun Bing

    2010-01-01

    The in-situ leaching of uranium mining is a very complicated non-linear dynamic system, which involves couplings and positive/negative feedback among many factors and processes. A comprehensive, coupled multi-factors and processes dynamic model and simulation method was established to study the in-situ leaching of uranium mining. The model accounts for most coupling among various processes as following: (1) rock texture mechanics and its evolution, (2)the incremental stress rheology of rock deformation, (3) 3-D viscoelastic/ plastic multi-deformation processes, (4) hydrofracturing, (5) tensorial (anisotropic) fracture and rock permeability, (6) water-rock interactions and mass-transport (both advective and diffusive), (7) dissolution-induced chemical compaction, (8) multi-phase fluid flow. A 3-D simulation program was compiled based on Fortran and C++. An example illustrating the application of this model to simulating acidification, production and terminal stage of in situ leaching of uranium mining is presented for the some mine in Xinjiang, China. This model and program can be used for theoretical study, mine design, production management, the study of contaminant transport and restoration in groundwater of in-situ leaching of uranium mining. (authors)

  5. Secret Message Decryption: Group Consulting Projects Using Matrices and Linear Programming

    Science.gov (United States)

    Gurski, Katharine F.

    2009-01-01

    We describe two short group projects for finite mathematics students that incorporate matrices and linear programming into fictional consulting requests presented as a letter to the students. The students are required to use mathematics to decrypt secret messages in one project involving matrix multiplication and inversion. The second project…

  6. Optimization of production planning in Czech agricultural co-operative via linear programming

    Directory of Open Access Journals (Sweden)

    Jitka Janová

    2009-01-01

    Full Text Available The production planning is one of the key managerial decisions in agricultural business, which must be done periodically every year. Correct decision must cover the agriculture demands of planting the crops such as crop rotation restrictions or water resource scarcity, while the decision maker aims to plan the crop design in most profitable way in sense of maximizing the total profit from the crop yield. This decision problem represents the optimization of crop design and can be treated by the me­thods of linear programming which begun to be extensively used in agriculture production planning in USA during 50’s. There is ongoing research of mathematical programming applications in agriculture worldwide, but the results are not easily transferable to other localities due to the specific local restrictions in each country. In Czech Republic the farmers use for production planning mainly their expert knowledge and past experience. However, the mathematical programming approach enables find the true optimal solution of the problem, which especially in the problems with a great number of constraints is not easy to find intuitively. One of the possible barriers for using the general decision support systems (which are based on mathematical programming methods for agriculture production planning in Czech Republic is its expensiveness. The small farmer can not afford to buy the expensive software or to employ a mathematical programming specialist. The aim of this paper is to present a user friendly linear programming model of the typical agricultural production planning problem in Czech Republic which can be solved via software tools commonly available in any farm (e.g. EXCEL. The linear programming model covering the restrictions on total costs, crop rotation, thresholds for the total area sowed by particular crops, total amount of manure and the need of feed crops is developed. The model is applied in real-world problem of Czech agriculture

  7. A simulation study of linear coupling effects and their correction in RHIC

    International Nuclear Information System (INIS)

    Parzen, G.

    1993-01-01

    This paper describes a possible skew quadrupole correction system for linear coupling effects for the RHIC92 lattice. A simulation study has been done for this correction system. Results are given for the performance of the correction system and the required strength of the skew quadrupole corrections. The location of the correctors is discussed. For RHIC92, it appears possible to use the same 2 family correction system for all the likely choices of β*. The simulation study gives results for the residual tune splitting that remains after correction with a 2 family correction system. It also gives results for the beta functions before and after correction

  8. The Linear Programming to evaluate the performance of Oral Health in Primary Care.

    Science.gov (United States)

    Colussi, Claudia Flemming; Calvo, Maria Cristina Marino; Freitas, Sergio Fernando Torres de

    2013-01-01

    To show the use of Linear Programming to evaluate the performance of Oral Health in Primary Care. This study used data from 19 municipalities of Santa Catarina city that participated of the state evaluation in 2009 and have more than 50,000 habitants. A total of 40 indicators were evaluated, calculated using the Microsoft Excel 2007, and converted to the interval [0, 1] in ascending order (one indicating the best situation and zero indicating the worst situation). Applying the Linear Programming technique municipalities were assessed and compared among them according to performance curve named "quality estimated frontier". Municipalities included in the frontier were classified as excellent. Indicators were gathered, and became synthetic indicators. The majority of municipalities not included in the quality frontier (values different of 1.0) had lower values than 0.5, indicating poor performance. The model applied to the municipalities of Santa Catarina city assessed municipal management and local priorities rather than the goals imposed by pre-defined parameters. In the final analysis three municipalities were included in the "perceived quality frontier". The Linear Programming technique allowed to identify gaps that must be addressed by city managers to enhance actions taken. It also enabled to observe each municipal performance and compare results among similar municipalities.

  9. Parallel programming with Easy Java Simulations

    Science.gov (United States)

    Esquembre, F.; Christian, W.; Belloni, M.

    2018-01-01

    Nearly all of today's processors are multicore, and ideally programming and algorithm development utilizing the entire processor should be introduced early in the computational physics curriculum. Parallel programming is often not introduced because it requires a new programming environment and uses constructs that are unfamiliar to many teachers. We describe how we decrease the barrier to parallel programming by using a java-based programming environment to treat problems in the usual undergraduate curriculum. We use the easy java simulations programming and authoring tool to create the program's graphical user interface together with objects based on those developed by Kaminsky [Building Parallel Programs (Course Technology, Boston, 2010)] to handle common parallel programming tasks. Shared-memory parallel implementations of physics problems, such as time evolution of the Schrödinger equation, are available as source code and as ready-to-run programs from the AAPT-ComPADRE digital library.

  10. AN APPLICATION FOR EFFICIENT TELECOMMUNICATION NETWORKS PROVISIONING USING LINEAR PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Maria Augusta Soares Machado

    2015-03-01

    Full Text Available This paper presents a practical proposition for the application of the Linear Programming quantitative method in order to assist planning and control of customer circuit delivery activities in telecommunications companies working with the corporative market. Based upon data provided for by a telecom company operating in Brazil, the Linear Programming method was employed for one of the classical problems of determining the optimum mix of production quantities for a set of five products of that company: Private Telephone Network, Internet Network, Intranet Network, Low Speed Data Network, and High Speed Data Network, in face of several limitations of the productive resources, seeking to maximize the company’s monthly revenue. By fitting the production data available into a primary model, observation was made as to what number of monthly activations for each product would be mostly optimized in order to achieve maximum revenues in the company. The final delivery of a complete network was not observed but the delivery of the circuits that make it up, and this was a limiting factor for the study herein, which, however, brings an innovative proposition for the planning of private telecommunications network provisioning.

  11. A Study of Joint Cost Inclusion in Linear Programming Optimization

    Directory of Open Access Journals (Sweden)

    P. Armaos

    2013-08-01

    Full Text Available The concept of Structural Optimization has been a topic or research over the past century. Linear Programming Optimization has proved being the most reliable method of structural optimization. Global advances in linear programming optimization have been recently powered by University of Sheffield researchers, to include joint cost, self-weight and buckling considerations. A joint cost inclusion scopes to reduce the number of joints existing in an optimized structural solution, transforming it to a practically viable solution. The topic of the current paper is to investigate the effects of joint cost inclusion, as this is currently implemented in the optimization code. An extended literature review on this subject was conducted prior to familiarization with small scale optimization software. Using IntelliFORM software, a structured series of problems were set and analyzed. The joint cost tests examined benchmark problems and their consequent changes in the member topology, as the design domain was expanding. The findings of the analyses were remarkable and are being commented further on. The distinct topologies of solutions created by optimization processes are also recognized. Finally an alternative strategy of penalizing joints is presented.

  12. Solving non-linear Horn clauses using a linear Horn clause solver

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick; Ganty, Pierre

    2016-01-01

    In this paper we show that checking satisfiability of a set of non-linear Horn clauses (also called a non-linear Horn clause program) can be achieved using a solver for linear Horn clauses. We achieve this by interleaving a program transformation with a satisfiability checker for linear Horn...... clauses (also called a solver for linear Horn clauses). The program transformation is based on the notion of tree dimension, which we apply to a set of non-linear clauses, yielding a set whose derivation trees have bounded dimension. Such a set of clauses can be linearised. The main algorithm...... dimension. We constructed a prototype implementation of this approach and performed some experiments on a set of verification problems, which shows some promise....

  13. Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems.

    Science.gov (United States)

    Shama, Gilli; Dreyfus, Tommy

    1994-01-01

    Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)…

  14. Comparison of two biomass-electricity generation technologies in Peninsular Malaysia using linear programming method

    International Nuclear Information System (INIS)

    Kumaran, P.; Hari, Z.; Boosroh, M.H.

    2006-01-01

    Two technologies have been considered to generate electricity using palm oil mill waste, the Empty Fruit Bunch (EFB) as power plant fuel. One technology is to build new 100% EFB fired power plants, located in the vicinity of the palm oil mill, in which the produced electricity would be connected to the national electricity grid system. The other technology is to transport all the available EFB fuel to an existing coal power station in which the EFB fuel would be blended with coal and co-fired in conventional coal power plant to produce electricity. A study intended to compare the difference between these two technologies, to obtain the same electricity generation, has been done. Linear programming software was used simulate the two technologies to generate 5% of Peninsular Malaysia's electricity demand in the year 2005. The study indicated that the co firing technology total cost is 43.7% cheaper than EFB technology and the fuel coat is competitive until transport cost reaches 78 RM/tone

  15. Fuzzy Multi Objective Linear Programming Problem with Imprecise Aspiration Level and Parameters

    Directory of Open Access Journals (Sweden)

    Zahra Shahraki

    2015-07-01

    Full Text Available This paper considers the multi-objective linear programming problems with fuzzygoal for each of the objective functions and constraints. Most existing works deal withlinear membership functions for fuzzy goals. In this paper, exponential membershipfunction is used.

  16. Broadband demonstrations of true-time delay using linear sideband chirped programming and optical coherent transients

    International Nuclear Information System (INIS)

    Reibel, R.R.; Barber, Z.W.; Fischer, J.A.; Tian, M.; Babbitt, W.R.

    2004-01-01

    Linear sideband chirped (LSC) programming is introduced as a means of configuring spatial-spectral holographic gratings for optical coherent transient processors. Similar to linear frequency chirped programming, LSC programming allows the use of broadband integrated electro-optic phase modulators to produce chirps instead of using elaborate broadband chirped lasers. This approach has several advantages including the ability to use a stabilized laser for the optical carrier as well as stable, reproducible chirped optical signals when the modulator is driven digitally. Using LSC programming, we experimentally demonstrate broadband true-time delay as a proof of principle for the optical control of phased array radars. Here both cw phase modulated and binary phase shift keyed probe signals are true-time delayed with bandwidths of 1 GHz and delay resolutions better than 60 ps

  17. Linear programming models and methods of matrix games with payoffs of triangular fuzzy numbers

    CERN Document Server

    Li, Deng-Feng

    2016-01-01

    This book addresses two-person zero-sum finite games in which the payoffs in any situation are expressed with fuzzy numbers. The purpose of this book is to develop a suite of effective and efficient linear programming models and methods for solving matrix games with payoffs in fuzzy numbers. Divided into six chapters, it discusses the concepts of solutions of matrix games with payoffs of intervals, along with their linear programming models and methods. Furthermore, it is directly relevant to the research field of matrix games under uncertain economic management. The book offers a valuable resource for readers involved in theoretical research and practical applications from a range of different fields including game theory, operational research, management science, fuzzy mathematical programming, fuzzy mathematics, industrial engineering, business and social economics. .

  18. A versatile program for the calculation of linear accelerator room shielding.

    Science.gov (United States)

    Hassan, Zeinab El-Taher; Farag, Nehad M; Elshemey, Wael M

    2018-03-22

    This work aims at designing a computer program to calculate the necessary amount of shielding for a given or proposed linear accelerator room design in radiotherapy. The program (Shield Calculation in Radiotherapy, SCR) has been developed using Microsoft Visual Basic. It applies the treatment room shielding calculations of NCRP report no. 151 to calculate proper shielding thicknesses for a given linear accelerator treatment room design. The program is composed of six main user-friendly interfaces. The first enables the user to upload their choice of treatment room design and to measure the distances required for shielding calculations. The second interface enables the user to calculate the primary barrier thickness in case of three-dimensional conventional radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT) and total body irradiation (TBI). The third interface calculates the required secondary barrier thickness due to both scattered and leakage radiation. The fourth and fifth interfaces provide a means to calculate the photon dose equivalent for low and high energy radiation, respectively, in door and maze areas. The sixth interface enables the user to calculate the skyshine radiation for photons and neutrons. The SCR program has been successfully validated, precisely reproducing all of the calculated examples presented in NCRP report no. 151 in a simple and fast manner. Moreover, it easily performed the same calculations for a test design that was also calculated manually, and produced the same results. The program includes a new and important feature that is the ability to calculate required treatment room thickness in case of IMRT and TBI. It is characterised by simplicity, precision, data saving, printing and retrieval, in addition to providing a means for uploading and testing any proposed treatment room shielding design. The SCR program provides comprehensive, simple, fast and accurate room shielding calculations in radiotherapy.

  19. Radar micro-Doppler of wind turbines : Simulation and analysis using rotating linear wire structures

    NARCIS (Netherlands)

    Krasnov, O.A.; Yarovoy, A.

    2015-01-01

    A simple electromagnetic model of wind-turbine's main structural elements as the linear wired structures is developed to simulate the temporal patterns of observed radar return Doppler spectra (micro-Doppler). Using the model, the micro-Doppler for different combinations of the turbines rotation

  20. Survey of outcomes in a faculty development program on simulation pedagogy.

    Science.gov (United States)

    Roh, Young Sook; Kim, Mi Kang; Tangkawanich, Thitiarpha

    2016-06-01

    Although many nursing programs use simulation as a teaching-learning modality, there are few systematic approaches to help nursing educators learn this pedagogy. This study evaluates the effects of a simulation pedagogy nursing faculty development program on participants' learning perceptions using a retrospective pre-course and post-course design. Sixteen Thai participants completed a two-day nursing faculty development program on simulation pedagogy. Thirteen questionnaires were used in the final analysis. The participants' self-perceived learning about simulation teaching showed significant post-course improvement. On a five-point Likert scale, the composite mean attitude, subjective norm, and perceived behavioral control scores, as well as intention to use a simulator, showed a significant post-course increase. A faculty development program on simulation pedagogy induced favorable learning and attitudes. Further studies must test how faculty performance affects the cognitive, emotional, and social dimensions of learning in a simulation-based learning domain. © 2015 Wiley Publishing Asia Pty Ltd.

  1. Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets

    Energy Technology Data Exchange (ETDEWEB)

    Olazabal-Loume, M; Breil, J; Hallo, L; Ribeyre, X [CELIA, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 351 cours de la Liberation, 33405 Talence (France); Sanz, J, E-mail: olazabal@celia.u-bordeaux1.f [ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

    2011-01-15

    The linear and non-linear sensitivity of the 180 kJ baseline HiPER target to high-mode perturbations, i.e. surface roughness, is addressed using two-dimensional simulations and a complementary analysis by linear and non-linear ablative Rayleigh-Taylor models. Simulations provide an assessment of an early non-linear stage leading to a significant deformation of the ablation surface for modes of maximum linear growth factor. A design using a picket prepulse evidences an improvement in the target stability inducing a delay of the non-linear behavior. Perturbation evolution and shape, evidenced by simulations of the non-linear stage, are analyzed with existing self-consistent non-linear theory.

  2. Development of demand functions and their inclusion in linear programming forecasting models

    International Nuclear Information System (INIS)

    Chamberlin, J.H.

    1976-05-01

    The purpose of the paper is to present a method for including demand directly within a linear programming model, and to use this method to analyze the effect of the Liquid Metal Fast Breeder Reactor upon the nuclear energy system

  3. The development of fast simulation program for marine reactor parameters

    International Nuclear Information System (INIS)

    Chen Zhiyun; Hao Jianli; Chen Wenzhen

    2012-01-01

    Highlights: ► The simplified physical and mathematical models are proposed for a marine reactor system. ► A program is developed with Simulink module and Matlab file. ► The program developed has the merit of easy input preparation, output processing and fast running. ► The program can be used for the fast simulation of marine reactor parameters on the operating field. - Abstract: The fast simulation program for marine reactor parameters is developed based on the Simulink simulating software according to the characteristics of marine reactor with requirement of maneuverability and acute and fast response. The simplified core physical and thermal model, pressurizer model, steam generator model, control rod model, reactivity model and the corresponding Simulink modules are established. The whole program is developed by coupling all the Simulink modules. Two typical transient processes of marine reactor with fast load increase at low power level and load rejection at high power level are adopted to verify the program. The results are compared with those of Relap5/Mod3.2 with good consistency, and the program runs very fast. It is shown that the program is correct and suitable for the fast and accurate simulation of marine reactor parameters on the operating field, which is significant to the marine reactor safe operation.

  4. The application of the fall-vector method in decomposition schemes for the solution of integer linear programming problems

    International Nuclear Information System (INIS)

    Sergienko, I.V.; Golodnikov, A.N.

    1984-01-01

    This article applies the methods of decompositions, which are used to solve continuous linear problems, to integer and partially integer problems. The fall-vector method is used to solve the obtained coordinate problems. An algorithm of the fall-vector is described. The Kornai-Liptak decomposition principle is used to reduce the integer linear programming problem to integer linear programming problems of a smaller dimension and to a discrete coordinate problem with simple constraints

  5. lpNet: a linear programming approach to reconstruct signal transduction networks.

    Science.gov (United States)

    Matos, Marta R A; Knapp, Bettina; Kaderali, Lars

    2015-10-01

    With the widespread availability of high-throughput experimental technologies it has become possible to study hundreds to thousands of cellular factors simultaneously, such as coding- or non-coding mRNA or protein concentrations. Still, extracting information about the underlying regulatory or signaling interactions from these data remains a difficult challenge. We present a flexible approach towards network inference based on linear programming. Our method reconstructs the interactions of factors from a combination of perturbation/non-perturbation and steady-state/time-series data. We show both on simulated and real data that our methods are able to reconstruct the underlying networks fast and efficiently, thus shedding new light on biological processes and, in particular, into disease's mechanisms of action. We have implemented the approach as an R package available through bioconductor. This R package is freely available under the Gnu Public License (GPL-3) from bioconductor.org (http://bioconductor.org/packages/release/bioc/html/lpNet.html) and is compatible with most operating systems (Windows, Linux, Mac OS) and hardware architectures. bettina.knapp@helmholtz-muenchen.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Multi-dimensional scavenging analysis of a free-piston linear alternator based on numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jinlong; Zuo, Zhengxing; Li, Wen; Feng, Huihua [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2011-04-15

    A free-piston linear alternator (FPLA) is being developed by the Beijing Institute of Technology to improve the thermal efficiency relative to conventional crank-driven engines. A two-stroke scavenging process recharges the engine and is crucial to realizing the continuous operation of a free-piston engine. In order to study the FPLA scavenging process, the scavenging system was configured using computational fluid dynamics. As the piston dynamics of the FPLA are different to conventional crank-driven two-stroke engines, a time-based numerical simulation program was built using Matlab to define the piston's motion profiles. A wide range of design and operating options were investigated including effective stroke length, valve overlapping distance, operating frequency and charging pressure to find out their effects on the scavenging performance. The results indicate that a combination of high effective stroke length to bore ratio and long valve overlapping distance with a low supercharging pressure has the potential to achieve high scavenging and trapping efficiencies with low short-circuiting losses. (author)

  7. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludig–Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)

    2015-11-14

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.

  8. Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.

    Science.gov (United States)

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2018-04-01

    This paper develops a near optimal boundary control method for distributed parameter systems governed by uncertain linear 1-D parabolic partial differential equations (PDE) by using approximate dynamic programming. A quadratic surface integral is proposed to express the optimal cost functional for the infinite-dimensional state space. Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite-dimensional domain without using any model reduction. Subsequently, a neural network identifier is developed to estimate the unknown spatially varying coefficient in PDE dynamics. Novel tuning law is proposed to guarantee the boundedness of identifier approximation error in the PDE domain. A radial basis network (RBN) is subsequently proposed to generate an approximate solution for the optimal surface kernel function online. The tuning law for near optimal RBN weights is created, such that the HJB equation error is minimized while the dynamics are identified and closed-loop system remains stable. Ultimate boundedness (UB) of the closed-loop system is verified by using the Lyapunov theory. The performance of the proposed controller is successfully confirmed by simulation on an unstable diffusion-reaction process.

  9. Research and evaluation of the effectiveness of e-learning in the case of linear programming

    Directory of Open Access Journals (Sweden)

    Ljiljana Miletić

    2016-04-01

    Full Text Available The paper evaluates the effectiveness of the e-learning approach to linear programming. The goal was to investigate how proper use of information and communication technologies (ICT and interactive learning helps to improve high school students’ understanding, learning and retention of advanced non-curriculum material. The hypothesis was that ICT and e-learning is helpful in teaching linear programming methods. In the first phase of the research, a module of lessons for linear programming (LP was created using the software package Loomen Moodle and other interactive software packages such as Geogebra. In the second phase, the LP module was taught as a short course to two groups of high school students. These two groups of students were second-grade students in a Croatian high school. In Class 1, the module was taught using ICT and e-learning, while the module was taught using classical methods in Class 2. The action research methodology was an integral part in delivering the course to both student groups. The sample student groups were carefully selected to ensure that differences in background knowledge and learning potential were statistically negligible. Relevant data was collected while delivering the course. Statistical analysis of the collected data showed that the student group using the e-learning method produced better results than the group using a classical learning method. These findings support previous results on the effectiveness of e-learning, and also establish a specific approach to e-learning in linear programming.

  10. Program BETA for simulation of particle decays and reactions

    International Nuclear Information System (INIS)

    Takhtamyshev, G.G.; Merkulova, T.A.

    1997-01-01

    Program BETA is designed for simulation of particle decays and reactions. The program also produces integration over the phase space and decay rate or the reaction cross section are calculated as a result of such integration. At the simulation process the adaptive random number generator SMART may be used, what is found to be useful for some difficult cases

  11. Effect of Process Parameters on Friction Model in Computer Simulation of Linear Friction Welding

    Directory of Open Access Journals (Sweden)

    A. Yamileva

    2014-07-01

    Full Text Available The friction model is important part of a numerical model of linear friction welding. Its selection determines the accuracy of the results. Existing models employ the classical law of Amonton-Coulomb where the friction coefficient is either constant or linearly dependent on a single parameter. Determination of the coefficient of friction is a time consuming process that requires a lot of experiments. So the feasibility of determinating the complex dependence should be assessing by analysis of effect of approximating law for friction model on simulation results.

  12. A study of operating parameters on the linear spark ignition engine

    International Nuclear Information System (INIS)

    Lim, Ocktaeck; Hung, Nguyen Ba; Oh, Seokyoung; Kim, Gangchul; Song, Hanho; Iida, Norimasa

    2015-01-01

    mathematical models are combined and solved by a program written in Fortran. Besides, the effects of key parameters such as reciprocating mass, spark timing and spring stiffness on the piston dynamics and electric power output of the linear engine are also investigated. The simulation results show that the simulation and experimental data are nearly similar at the same initial conditions. In addition, a highest generating power of the linear engine can be easily found by optimizing the key parameters.

  13. Optimization of radioactive waste management system by application of multiobjective linear programming

    International Nuclear Information System (INIS)

    Shimizu, Yoshiaki

    1981-01-01

    A mathematical procedure is proposed to make a radioactive waste management plan comprehensively. Since such planning is relevant to some different goals in management, decision making has to be formulated as a multiobjective optimization problem. A mathematical programming method was introduced to make a decision through an interactive manner which enables us to assess the preference of decision maker step by step among the conflicting objectives. The reference system taken as an example is the radioactive waste management system at the Research Reactor Institute of Kyoto University (KUR). Its linear model was built based on the experience in the actual management at KUR. The best-compromise model was then formulated as a multiobjective linear programming by the aid of the computational analysis through a conventional optimization. It was shown from the numerical results that the proposed approach could provide some useful informations to make an actual management plan. (author)

  14. Mixed integer linear programming model for dynamic supplier selection problem considering discounts

    Directory of Open Access Journals (Sweden)

    Adi Wicaksono Purnawan

    2018-01-01

    Full Text Available Supplier selection is one of the most important elements in supply chain management. This function involves evaluation of many factors such as, material costs, transportation costs, quality, delays, supplier capacity, storage capacity and others. Each of these factors varies with time, therefore, supplier identified for one period is not necessarily be same for the next period to supply the same product. So, mixed integer linear programming (MILP was developed to overcome the dynamic supplier selection problem (DSSP. In this paper, a mixed integer linear programming model is built to solve the lot-sizing problem with multiple suppliers, multiple periods, multiple products and quantity discounts. The buyer has to make a decision for some products which will be supplied by some suppliers for some periods cosidering by discount. To validate the MILP model with randomly generated data. The model is solved by Lingo 16.

  15. Refining and end use study of coal liquids II - linear programming analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, C.; Tam, S.

    1995-12-31

    A DOE-funded study is underway to determine the optimum refinery processing schemes for producing transportation fuels that will meet CAAA regulations from direct and indirect coal liquids. The study consists of three major parts: pilot plant testing of critical upgrading processes, linear programming analysis of different processing schemes, and engine emission testing of final products. Currently, fractions of a direct coal liquid produced form bituminous coal are being tested in sequence of pilot plant upgrading processes. This work is discussed in a separate paper. The linear programming model, which is the subject of this paper, has been completed for the petroleum refinery and is being modified to handle coal liquids based on the pilot plant test results. Preliminary coal liquid evaluation studies indicate that, if a refinery expansion scenario is adopted, then the marginal value of the coal liquid (over the base petroleum crude) is $3-4/bbl.

  16. Mehar Methods for Fuzzy Optimal Solution and Sensitivity Analysis of Fuzzy Linear Programming with Symmetric Trapezoidal Fuzzy Numbers

    Directory of Open Access Journals (Sweden)

    Sukhpreet Kaur Sidhu

    2014-01-01

    Full Text Available The drawbacks of the existing methods to obtain the fuzzy optimal solution of such linear programming problems, in which coefficients of the constraints are represented by real numbers and all the other parameters as well as variables are represented by symmetric trapezoidal fuzzy numbers, are pointed out, and to resolve these drawbacks, a new method (named as Mehar method is proposed for the same linear programming problems. Also, with the help of proposed Mehar method, a new method, much easy as compared to the existing methods, is proposed to deal with the sensitivity analysis of the same type of linear programming problems.

  17. Simulation program for multiple expansion Stirling machines

    International Nuclear Information System (INIS)

    Walker, G.; Weiss, M.; Fauvel, R.; Reader, G.; Bingham, E.R.

    1992-01-01

    Multiple expansion Stirling machines have been a topic of interest at the University of Calgary for some years. Recently a second-order computer simulation program with integral graphics package for Stirling cryocoolers with up to four stages of expansion were developed and made available to the Stirling community. Adaptation of the program to multiple expansion Stirling power systems is anticipated. This paper briefly introduces the program and presents a specimen result

  18. Sub-regional linear programming models in land use analysis: a case study of the Neguev settlement, Costa Rica.

    NARCIS (Netherlands)

    Schipper, R.A.; Stoorvogel, J.J.; Jansen, D.M.

    1995-01-01

    The paper deals with linear programming as a tool for land use analysis at the sub-regional level. A linear programming model of a case study area, the Neguev settlement in the Atlantic zone of Costa Rica, is presented. The matrix of the model includes five submatrices each encompassing a different

  19. Molecular Dynamics Simulations of a Linear Nanomotor Driven by Thermophoretic Forces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    Molecular Dynamics of a Linear Nanomotor Driven by Thermophoresis Harvey A. Zambrano1, Jens H. Walther1,2 and Richard L. Jaffe3 1Department of Mechanical Engineering, Fluid Mechanics, Technical University of Denmark, DK-2800 Lyngby, Denmark; 2Computational Science and Engineering Laboratory, ETH...... future molecular machines a complete understanding of the friction forces involved on the transport process at the molecular level have to be addressed.18 In this work we perform Molecular Dynamics (MD) simulations using the MD package FASTTUBE19 to study a molecular linear motor consisting of coaxial...... the valence forces within the CNT using Morse, harmonic angle and torsion potentials.19We include a nonbonded carbon-carbon Lennard-Jones potential to describe the vdW interaction between the carbon atoms within the double wall portion of the system. We equilibrate the system at 300K for 0.1 ns, by coupling...

  20. Towards lexicographic multi-objective linear programming using grossone methodology

    Science.gov (United States)

    Cococcioni, Marco; Pappalardo, Massimo; Sergeyev, Yaroslav D.

    2016-10-01

    Lexicographic Multi-Objective Linear Programming (LMOLP) problems can be solved in two ways: preemptive and nonpreemptive. The preemptive approach requires the solution of a series of LP problems, with changing constraints (each time the next objective is added, a new constraint appears). The nonpreemptive approach is based on a scalarization of the multiple objectives into a single-objective linear function by a weighted combination of the given objectives. It requires the specification of a set of weights, which is not straightforward and can be time consuming. In this work we present both mathematical and software ingredients necessary to solve LMOLP problems using a recently introduced computational methodology (allowing one to work numerically with infinities and infinitesimals) based on the concept of grossone. The ultimate goal of such an attempt is an implementation of a simplex-like algorithm, able to solve the original LMOLP problem by solving only one single-objective problem and without the need to specify finite weights. The expected advantages are therefore obvious.

  1. Simulating the performance of a distance-3 surface code in a linear ion trap

    Science.gov (United States)

    Trout, Colin J.; Li, Muyuan; Gutiérrez, Mauricio; Wu, Yukai; Wang, Sheng-Tao; Duan, Luming; Brown, Kenneth R.

    2018-04-01

    We explore the feasibility of implementing a small surface code with 9 data qubits and 8 ancilla qubits, commonly referred to as surface-17, using a linear chain of 171Yb+ ions. Two-qubit gates can be performed between any two ions in the chain with gate time increasing linearly with ion distance. Measurement of the ion state by fluorescence requires that the ancilla qubits be physically separated from the data qubits to avoid errors on the data due to scattered photons. We minimize the time required to measure one round of stabilizers by optimizing the mapping of the two-dimensional surface code to the linear chain of ions. We develop a physically motivated Pauli error model that allows for fast simulation and captures the key sources of noise in an ion trap quantum computer including gate imperfections and ion heating. Our simulations showed a consistent requirement of a two-qubit gate fidelity of ≥99.9% for the logical memory to have a better fidelity than physical two-qubit operations. Finally, we perform an analysis of the error subsets from the importance sampling method used to bound the logical error rates to gain insight into which error sources are particularly detrimental to error correction.

  2. Topics in computational linear optimization

    DEFF Research Database (Denmark)

    Hultberg, Tim Helge

    2000-01-01

    Linear optimization has been an active area of research ever since the pioneering work of G. Dantzig more than 50 years ago. This research has produced a long sequence of practical as well as theoretical improvements of the solution techniques avilable for solving linear optimization problems...... of high quality solvers and the use of algebraic modelling systems to handle the communication between the modeller and the solver. This dissertation features four topics in computational linear optimization: A) automatic reformulation of mixed 0/1 linear programs, B) direct solution of sparse unsymmetric...... systems of linear equations, C) reduction of linear programs and D) integration of algebraic modelling of linear optimization problems in C++. Each of these topics is treated in a separate paper included in this dissertation. The efficiency of solving mixed 0-1 linear programs by linear programming based...

  3. The effect of workload constraints in linear programming models for production planning

    NARCIS (Netherlands)

    Jansen, M.M.; Kok, de A.G.; Adan, I.J.B.F.

    2011-01-01

    Linear programming (LP) models for production planning incorporate a model of the manufacturing system that is necessarily deterministic. Although these deterministic models are the current state-of-the-art, it should be recognized that they are used in an environment that is inherently stochastic.

  4. Apparent diffusion coefficient measurement in a moving phantom simulating linear respiratory motion.

    Science.gov (United States)

    Kwee, Thomas C; Takahara, Taro; Muro, Isao; Van Cauteren, Marc; Imai, Yutaka; Nievelstein, Rutger A J; Mali, Willem P T M; Luijten, Peter R

    2010-10-01

    The aim of this study was to examine the effect of simulated linear respiratory motion on apparent diffusion coefficient (ADC) measurements. Six rectangular test tubes (14 × 92 mm) filled with either water, tomato ketchup, or mayonnaise were positioned in a box containing agarose gel. This box was connected to a double-acting pneumatic cylinder, capable of inducing periodic linear motion in the long-axis direction of the magnetic bore (23-mm stroke). Diffusion-weighted magnetic resonance imaging was performed for both the static and moving phantoms, and ADC measurements were made in the six test tubes in both situations. In the three test tubes whose long axes were parallel to the direction of motion, ADCs agreed well between the moving and static phantom situations. However, in two test tubes that were filled with fluids that had a considerably lower diffusion coefficient than the surrounding agarose gel, and whose long axes were perpendicular to the direction of motion, the ADCs agreed poorly between the moving and static phantom situations. ADC measurements of large homogeneous structures are not affected by linear respiratory motion. However, ADC measurements of inhomogeneous or small structures are affected by linear respiratory motion due to partial volume effects.

  5. Apparent diffusion coefficient measurement in a moving phantom simulating linear respiratory motion

    International Nuclear Information System (INIS)

    Kwee, T.C.; Takahara, Taro; Nievelstein, R.A.J.; Mali, W.P.T.M.; Luijten, P.R.; Muro, Isao; Imai, Yutaka; Cauteren, M. Van

    2010-01-01

    The aim of this study was to examine the effect of simulated linear respiratory motion on apparent diffusion coefficient (ADC) measurements. Six rectangular test tubes (14 x 92 mm) filled with either water, tomato ketchup, or mayonnaise were positioned in a box containing agarose gel. This box was connected to a double-acting pneumatic cylinder, capable of inducing periodic linear motion in the long-axis direction of the magnetic bore (23-mm stroke). Diffusion-weighted magnetic resonance imaging was performed for both the static and moving phantoms, and ADC measurements were made in the six test tubes in both situations. In the three test tubes whose long axes were parallel to the direction of motion, ADCs agreed well between the moving and static phantom situations. However, in two test tubes that were filled with fluids that had a considerably lower diffusion coefficient than the surrounding agarose gel, and whose long axes were perpendicular to the direction of motion, the ADCs agreed poorly between the moving and static phantom situations. ADC measurements of large homogeneous structures are not affected by linear respiratory motion. However, ADC measurements of inhomogeneous or small structures are affected by linear respiratory motion due to partial volume effects. (author)

  6. Linear response to long wavelength fluctuations using curvature simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baldauf, Tobias; Zaldarriaga, Matias [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ (United States); Seljak, Uroš [Physics Department, Astronomy Department and Lawrence Berkeley National Laboratory, University of California, Berkeley, CA (United States); Senatore, Leonardo, E-mail: baldauf@ias.edu, E-mail: useljak@berkeley.edu, E-mail: senatore@stanford.edu, E-mail: matiasz@ias.edu [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA (United States)

    2016-09-01

    We study the local response to long wavelength fluctuations in cosmological N -body simulations, focusing on the matter and halo power spectra, halo abundance and non-linear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, more direct, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the response of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naïve derivation assuming a universal mass function by approximately 8–20%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix.

  7. Calibration of a micro simulation program for a Chinese city

    NARCIS (Netherlands)

    Jie, L.; Fangfang, Z.; Van Zuylen, H.J.; Shoufeng, L.

    2011-01-01

    Micro simulation programs are often used to assess the quality of traffic conditions. They are especially suited to evaluate possible control scenarios in advance, so that the scenarios can be selected and optimized before implementation. Of course, the simulation programs should be valid for the

  8. Non-linear 3D simulations of current-driven instabilities in jets

    International Nuclear Information System (INIS)

    Ivanovski, S.; Bonanno, A.

    2009-01-01

    We present global 3D nonlinear simulations of the Taylor instability in the presence of vertical fields. The initial configuration is in equilibrium, which is achieved by a pressure gradient or an external potential force. The non linear evolution of the system leads to a stable equilibrium with a current free toroidal field. We find the that presence of a vertical poloidal field stabilize the system if B φ ∼B z . The implication of our findings for the physics of astrophysical jets are discussed.

  9. A scalable parallel algorithm for multiple objective linear programs

    Science.gov (United States)

    Wiecek, Malgorzata M.; Zhang, Hong

    1994-01-01

    This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLP's). Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm. Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up the process of solving MOLP's, which is understood as generating all or some efficient extreme points and unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation and justification for solving such large MOLP's are also included.

  10. Stimulation of a turbofan engine for evaluation of multivariable optimal control concepts. [(computerized simulation)

    Science.gov (United States)

    Seldner, K.

    1976-01-01

    The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.

  11. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

    Science.gov (United States)

    Fogle, F. R.

    1994-01-01

    IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

  12. Linear Simulations of the Cylindrical Richtmyer-Meshkov Instability in Hydrodynamics and MHD

    KAUST Repository

    Gao, Song

    2013-05-01

    The Richtmyer-Meshkov instability occurs when density-stratified interfaces are impulsively accelerated, typically by a shock wave. We present a numerical method to simulate the Richtmyer-Meshkov instability in cylindrical geometry. The ideal MHD equations are linearized about a time-dependent base state to yield linear partial differential equations governing the perturbed quantities. Convergence tests demonstrate that second order accuracy is achieved for smooth flows, and the order of accuracy is between first and second order for flows with discontinuities. Numerical results are presented for cases of interfaces with positive Atwood number and purely azimuthal perturbations. In hydrodynamics, the Richtmyer-Meshkov instability growth of perturbations is followed by a Rayleigh-Taylor growth phase. In MHD, numerical results indicate that the perturbations can be suppressed for sufficiently large perturbation wavenumbers and magnetic fields.

  13. A simulation model of IT risk on program trading

    Science.gov (United States)

    Xia, Bingying; Jiang, Wenbao; Luo, Guangxuan

    2015-12-01

    The biggest difficulty for Program trading IT risk measures lies in the loss of data, in view of this situation, the current scholars approach is collecting court, network and other public media such as all kinds of accident of IT both at home and abroad for data collection, and the loss of IT risk quantitative analysis based on this database. However, the IT risk loss database established by this method can only fuzzy reflect the real situation and not for real to make fundamental explanation. In this paper, based on the study of the concept and steps of the MC simulation, we use computer simulation method, by using the MC simulation method in the "Program trading simulation system" developed by team to simulate the real programming trading and get the IT risk loss of data through its IT failure experiment, at the end of the article, on the effectiveness of the experimental data is verified. In this way, better overcome the deficiency of the traditional research method and solves the problem of lack of IT risk data in quantitative research. More empirically provides researchers with a set of simulation method are used to study the ideas and the process template.

  14. Experimental validation of neutron activation simulation of a varian medical linear accelerator.

    Science.gov (United States)

    Morato, S; Juste, B; Miro, R; Verdu, G; Diez, S

    2016-08-01

    This work presents a Monte Carlo simulation using the last version of MCNP, v. 6.1.1, of a Varian CLinAc emitting a 15MeV photon beam. The main objective of the work is to estimate the photoneutron production and activated products inside the medical linear accelerator head. To that, the Varian LinAc head was modelled in detail using the manufacturer information, and the model was generated with a CAD software and exported as a mesh to be included in the particle transport simulation. The model includes the transport of photoneutrons generated by primary photons and the (n, γ) reactions which can result in activation products. The validation of this study was done using experimental measures. Activation products have been identified by in situ gamma spectroscopy placed at the jaws exit of the LinAc shortly after termination of a high energy photon beam irradiation. Comparison between experimental and simulation results shows good agreement.

  15. Specs: Simulation Program for Electronic Circuits and Systems

    Science.gov (United States)

    de Geus, Aart Jan

    Simulation tools are central to the development and verification of very large scale integrated circuits. Circuit simulation has been used for over two decades to verify the behavior of designs. Recently the introduction of switch-level simulators which model MOS transistors in terms of switches has helped to overcome the long runtimes associated with full circuit simulation. Used strictly for functional verification and fault simulation, switch -level simulation can only give very rough estimates of the timing of a circuit. In this dissertation an approach is presented which adds a timing capability to switch-level simulators at relatively little extra CPU cost. A new logic state concept is introduced which consists of a set of discrete voltage steps. Signals are known only in terms of these states thus allowing all current computations to be table driven. State changes are scheduled in the same fashion as in the case of gate-level simulators, making the simulator event-driven. The simulator is of mixed-mode nature in that it can model portions of a design at either the gate or transistor level. In order to represent the "unknown" state, a signal consists of both an upper and a lower bound defining a signal envelope. Both bounds are expressed in terms of states. In order to speed up the simulation, MOS networks are subdivided in small pull-up and pull-down transistor configurations that can be preanalysed and prepared for fast evaluation during the simulation. These concepts have been implemented in the program SPECS (Simulation Program For Electronic Circuits and Systems) and examples of simulations are given.

  16. Building Interactive Simulations in Web Pages without Programming.

    Science.gov (United States)

    Mailen Kootsey, J; McAuley, Grant; Bernal, Julie

    2005-01-01

    A software system is described for building interactive simulations and other numerical calculations in Web pages. The system is based on a new Java-based software architecture named NumberLinX (NLX) that isolates each function required to build the simulation so that a library of reusable objects could be assembled. The NLX objects are integrated into a commercial Web design program for coding-free page construction. The model description is entered through a wizard-like utility program that also functions as a model editor. The complete system permits very rapid construction of interactive simulations without coding. A wide range of applications are possible with the system beyond interactive calculations, including remote data collection and processing and collaboration over a network.

  17. PSSGP : Program for Simulation of Stationary Gaussian Processes

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    This report describes the computer program PSSGP. PSSGP can be used to simulate realizations of stationary Gaussian stochastic processes. The simulation algorithm can be coupled with some applications. One possibility is to use PSSGP to estimate the first-passage density function of a given system...

  18. Contrasting the capabilities of building energy performance simulation programs

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, Drury B. [US Department of Energy, Washington, DC (United States); Hand, Jon W. [University of Strathclyde, Glasgow, Scotland (United Kingdom). Energy Systems Research Unit; Kummert, Michael [University of Wisconsin-Madison (United States). Solar Energy Laboratory; Griffith, Brent T. [National Renewable Energy Laboratory, Golden, CO (United States)

    2008-04-15

    For the past 50 years, a wide variety of building energy simulation programs have been developed, enhanced and are in use throughout the building energy community. This paper is an overview of a report, which provides up-to-date comparison of the features and capabilities of twenty major building energy simulation programs. The comparison is based on information provided by the program developers in the following categories: general modeling features; zone loads; building envelope and daylighting and solar; infiltration, ventilation and multizone airflow; renewable energy systems; electrical systems and equipment; HVAC systems; HVAC equipment; environmental emissions; economic evaluation; climate data availability, results reporting; validation; and user interface, links to other programs, and availability. (author)

  19. A Linear Programming Approach to the Development of Contrail Reduction Strategies Satisfying Operationally Feasible Constraints

    Science.gov (United States)

    Wei, Peng; Sridhar, Banavar; Chen, Neil Yi-Nan; Sun, Dengfent

    2012-01-01

    A class of strategies has been proposed to reduce contrail formation in the United States airspace. A 3D grid based on weather data and the cruising altitude level of aircraft is adjusted to avoid the persistent contrail potential area with the consideration to fuel-efficiency. In this paper, the authors introduce a contrail avoidance strategy on 3D grid by considering additional operationally feasible constraints from an air traffic controller's aspect. First, shifting too many aircraft to the same cruising level will make the miles-in-trail at this level smaller than the safety separation threshold. Furthermore, the high density of aircraft at one cruising level may exceed the workload for the traffic controller. Therefore, in our new model we restrict the number of total aircraft at each level. Second, the aircraft count variation for successive intervals cannot be too drastic since the workload to manage climbing/descending aircraft is much larger than managing cruising aircraft. The contrail reduction is formulated as an integer-programming problem and the problem is shown to have the property of total unimodularity. Solving the corresponding relaxed linear programming with the simplex method provides an optimal and integral solution to the problem. Simulation results are provided to illustrate the methodology.

  20. Agent Programming Languages and Logics in Agent-Based Simulation

    DEFF Research Database (Denmark)

    Larsen, John

    2018-01-01

    and social behavior, and work on verification. Agent-based simulation is an approach for simulation that also uses the notion of agents. Although agent programming languages and logics are much less used in agent-based simulation, there are successful examples with agents designed according to the BDI...

  1. Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution

    Energy Technology Data Exchange (ETDEWEB)

    Hamadameen, Abdulqader Othman [Optimization, Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia); Zainuddin, Zaitul Marlizawati [Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia)

    2014-06-19

    This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.

  2. STEM image simulation with hybrid CPU/GPU programming

    International Nuclear Information System (INIS)

    Yao, Y.; Ge, B.H.; Shen, X.; Wang, Y.G.; Yu, R.C.

    2016-01-01

    STEM image simulation is achieved via hybrid CPU/GPU programming under parallel algorithm architecture to speed up calculation on a personal computer (PC). To utilize the calculation power of a PC fully, the simulation is performed using the GPU core and multi-CPU cores at the same time to significantly improve efficiency. GaSb and an artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. - Highlights: • STEM image simulation is achieved by hybrid CPU/GPU programming under parallel algorithm architecture to speed up the calculation in the personal computer (PC). • In order to fully utilize the calculation power of the PC, the simulation is performed by GPU core and multi-CPU cores at the same time so efficiency is improved significantly. • GaSb and artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. The results reveal some unintuitive phenomena about the contrast variation with the atom numbers.

  3. STEM image simulation with hybrid CPU/GPU programming

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Y., E-mail: yaoyuan@iphy.ac.cn; Ge, B.H.; Shen, X.; Wang, Y.G.; Yu, R.C.

    2016-07-15

    STEM image simulation is achieved via hybrid CPU/GPU programming under parallel algorithm architecture to speed up calculation on a personal computer (PC). To utilize the calculation power of a PC fully, the simulation is performed using the GPU core and multi-CPU cores at the same time to significantly improve efficiency. GaSb and an artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. - Highlights: • STEM image simulation is achieved by hybrid CPU/GPU programming under parallel algorithm architecture to speed up the calculation in the personal computer (PC). • In order to fully utilize the calculation power of the PC, the simulation is performed by GPU core and multi-CPU cores at the same time so efficiency is improved significantly. • GaSb and artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. The results reveal some unintuitive phenomena about the contrast variation with the atom numbers.

  4. Non Linear Modelling and Control of Hydraulic Actuators

    Directory of Open Access Journals (Sweden)

    B. Šulc

    2002-01-01

    Full Text Available This paper deals with non-linear modelling and control of a differential hydraulic actuator. The nonlinear state space equations are derived from basic physical laws. They are more powerful than the transfer function in the case of linear models, and they allow the application of an object oriented approach in simulation programs. The effects of all friction forces (static, Coulomb and viscous have been modelled, and many phenomena that are usually neglected are taken into account, e.g., the static term of friction, the leakage between the two chambers and external space. Proportional Differential (PD and Fuzzy Logic Controllers (FLC have been applied in order to make a comparison by means of simulation. Simulation is performed using Matlab/Simulink, and some of the results are compared graphically. FLC is tuned in a such way that it produces a constant control signal close to its maximum (or minimum, where possible. In the case of PD control the occurrence of peaks cannot be avoided. These peaks produce a very high velocity that oversteps the allowed values.

  5. Numerical simulation of linear fiction welding (LFW) processes

    Science.gov (United States)

    Fratini, L.; La Spisa, D.

    2011-05-01

    Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining "unweldable" materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries. LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.

  6. Numerical simulation of linear fiction welding (LFW) processes

    International Nuclear Information System (INIS)

    Fratini, L.; La Spisa, D.

    2011-01-01

    Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining ''unweldable'' materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries.LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.

  7. Development of Simulator Maintenance Engineer Qualification Program Draft

    International Nuclear Information System (INIS)

    Chung, Kyung Hun

    2010-01-01

    As of 2009, KHNP has currently seven full scope simulators that are used for training of Nuclear Power Plant (NPP) Operators. Well-trained Simulator Maintenance Engineers (SME) are required to support these simulators. These SMEs will maintain and address any issues identified or any changes required for keep up the simulator with their respective plant sites. These issues will be identified as Simulator Discrepancy Reports (DR) or Work Order (WO) by the simulator operation personnel in KHNP. The simulator maintenance is a very complex. The simulator consists of many areas of process and requires experts in software modeling for different processes such as Neutronics, thermohydraulics, Logics, control, Electrical systems and computer systems as well as hardware subjects such as I and C, I/O, computers, etc. All these areas need experts the subject expertise need to be divided among SME's. In other word the SME's need to be trained for different expertise as well as having different level of SME's. KHNP has seen the need to outsource the maintenance work for these complex simulators. To have one company concentrating on this work will have many benefits such as: · Provides proper and well trained experts · Maintains consistent support personnel · Maintains the maintenance history for the simulator · Coordinates and Maintains the knowledge in house · The simulator maintenance will be consistent In order to accomplish the goals, KEPCO RI has recognized that there is a need for a program to adequately train and qualify the SME's. KEPCO RI and GSE, which has provided 6 simulators among 7 NPP simulators in Korea, have jointly developed this Simulator Maintenance Engineer Qualification Program (SMEQP). After issue of this plan, KEPCO RI will maintain and modify as needed periodically to meet the goals and purpose of the plan

  8. SIMUL - a program for the simulation of interactions in the streamer chamber RISK

    International Nuclear Information System (INIS)

    Friebel, W.; Gajewski, J.; Halm, I.

    1976-08-01

    A program for the simulation of interactions in the streamer chamber RISK is described. This program allows first investigations and tests for planning and preparing experiments. In the program the trajectories of all particles taking part in the interaction are computed. Selected points are projected onto film planes serving as measurement points for the use in the geometrical reconstruction. The program is used for testing a geometry program. But it also seems to be very helpful in investigating counter and trigger constellations and in the calculation of counting rates and trigger effectivities. (author)

  9. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.

    Science.gov (United States)

    Lyubetsky, Vassily; Gershgorin, Roman; Gorbunov, Konstantin

    2017-12-06

    Chromosome structure is a very limited model of the genome including the information about its chromosomes such as their linear or circular organization, the order of genes on them, and the DNA strand encoding a gene. Gene lengths, nucleotide composition, and intergenic regions are ignored. Although highly incomplete, such structure can be used in many cases, e.g., to reconstruct phylogeny and evolutionary events, to identify gene synteny, regulatory elements and promoters (considering highly conserved elements), etc. Three problems are considered; all assume unequal gene content and the presence of gene paralogs. The distance problem is to determine the minimum number of operations required to transform one chromosome structure into another and the corresponding transformation itself including the identification of paralogs in two structures. We use the DCJ model which is one of the most studied combinatorial rearrangement models. Double-, sesqui-, and single-operations as well as deletion and insertion of a chromosome region are considered in the model; the single ones comprise cut and join. In the reconstruction problem, a phylogenetic tree with chromosome structures in the leaves is given. It is necessary to assign the structures to inner nodes of the tree to minimize the sum of distances between terminal structures of each edge and to identify the mutual paralogs in a fairly large set of structures. A linear algorithm is known for the distance problem without paralogs, while the presence of paralogs makes it NP-hard. If paralogs are allowed but the insertion and deletion operations are missing (and special constraints are imposed), the reduction of the distance problem to integer linear programming is known. Apparently, the reconstruction problem is NP-hard even in the absence of paralogs. The problem of contigs is to find the optimal arrangements for each given set of contigs, which also includes the mutual identification of paralogs. We proved that these

  10. Optimization of refinery product blending by using linear programming

    International Nuclear Information System (INIS)

    Ristikj, Julija; Tripcheva-Trajkovska, Loreta; Rikaloski, Ice; Markovska, Liljana

    1999-01-01

    The product slate of a simple refinery consists mainly of liquefied petroleum gas, leaded and unleaded gasoline, jet fuel, diesel fuel, extra light heating oil and fuel oil. The quality of the oil products (fuels) for sale has to comply with the adopted standards for liquid fuels, and the produced quantities have to be comply with the market needs. The oil products are manufactured by blending two or more different fractions which quantities and physical-chemical properties depend on the crude oil type, the way and conditions of processing, and at the same time the fractions are used to blend one or more products. It is in producer's interest to do the blending in an optimal way, namely, to satisfy the requirements for the oil products quality and quantity with a maximal usage of the available fractions and, of course, with a maximal profit out of the sold products. This could be accomplished by applying linear programming, that is by using a linear model for oil products blending optimization. (Author)

  11. How to Use Linear Programming for Information System Performances Optimization

    Directory of Open Access Journals (Sweden)

    Hell Marko

    2014-09-01

    Full Text Available Background: Organisations nowadays operate in a very dynamic environment, and therefore, their ability of continuously adjusting the strategic plan to the new conditions is a must for achieving their strategic objectives. BSC is a well-known methodology for measuring performances enabling organizations to learn how well they are doing. In this paper, “BSC for IS” will be proposed in order to measure the IS impact on the achievement of organizations’ business goals. Objectives: The objective of this paper is to present the original procedure which is used to enhance the BSC methodology in planning the optimal targets of IS performances value in order to maximize the organization's effectiveness. Methods/Approach: The method used in this paper is the quantitative methodology - linear programming. In the case study, linear programming is used for optimizing organization’s strategic performance. Results: Results are shown on the example of a case study national park. An optimal performance value for the strategic objective has been calculated, as well as an optimal performance value for each DO (derived objective. Results are calculated in Excel, using Solver Add-in. Conclusions: The presentation of methodology through the case study of a national park shows that this methodology, though it requires a high level of formalisation, provides a very transparent performance calculation.

  12. Effects of a System Thinking-Based Simulation Program for Congestive Heart Failure.

    Science.gov (United States)

    Kim, Hyeon-Young; Yun, Eun Kyoung

    2018-03-01

    This study evaluated a system thinking-based simulation program for the care of patients with congestive heart failure. Participants were 67 undergraduate nursing students from a nursing college in Seoul, South Korea. The experimental group was given a 4-hour system-thinking program and a 2-hour simulation program, whereas the control group had a 4-hour case study and a 2-hour simulation program. There were significant improvements in critical thinking in both groups, but no significant group differences between educational methods (F = 3.26, P = .076). Problem-solving ability in the experimental group was significantly higher than in the control group (F = 5.04, P = .028). Clinical competency skills in the experimental group were higher than in the control group (t = 2.12, P = .038). A system thinking-based simulation program is a more effective learning method in terms of problem-solving ability and clinical competency skills compared to the existing simulation program. Further research using a longitudinal study is needed to test the long-term effect of the intervention and apply it to the nursing curriculum.

  13. Fault detection and initial state verification by linear programming for a class of Petri nets

    Science.gov (United States)

    Rachell, Traxon; Meyer, David G.

    1992-01-01

    The authors present an algorithmic approach to determining when the marking of a LSMG (live safe marked graph) or a LSFC (live safe free choice) net is in the set of live safe markings M. Hence, once the marking of a net is determined to be in M, then if at some time thereafter the marking of this net is determined not to be in M, this indicates a fault. It is shown how linear programming can be used to determine if m is an element of M. The worst-case computational complexity of each algorithm is bounded by the number of linear programs necessary to compute.

  14. Graphical programming: On-line robot simulation for telerobotic control

    International Nuclear Information System (INIS)

    McDonald, M.J.; Palmquist, R.D.

    1993-01-01

    Sandia has developed an advanced operational control system approach, caged Graphical Programming, to design and operate robotic waste cleanup and other hazardous duty robotic systems. The Graphical Programming approach produces robot systems that are faster to develop and use, safer in operation, and cheaper overall than altemative teleoperation or autonomous robot control systems. The Graphical Programming approach uses 3-D visualization and simulation software with intuitive operator interfaces for the programming and control of complex robotic systems. Graphical Programming Supervisor software modules allow an operator to command and simulate complex tasks in a graphic preview mode and, when acceptable, command the actual robots and monitor their motions with the graphic system. Graphical Progranuning Supervisors maintain registration with the real world and allow the robot to perform tasks that cannot be accurately represented with models alone by using a combination of model and sensor-based control. This paper describes the Graphical Programming approach, several example control systems that use Graphical Programming, and key features necessary for implementing successful Graphical Programming systems

  15. Optimal traffic control in highway transportation networks using linear programming

    KAUST Repository

    Li, Yanning

    2014-06-01

    This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.

  16. Solving the Fully Fuzzy Bilevel Linear Programming Problem through Deviation Degree Measures and a Ranking Function Method

    OpenAIRE

    Aihong Ren

    2016-01-01

    This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solut...

  17. SIMPSON: A general simulation program for solid-state NMR spectroscopy

    Science.gov (United States)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2011-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tel scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple ID experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  18. Military nuclear activities. The simulation program

    International Nuclear Information System (INIS)

    Delpuech, A.

    2000-01-01

    The durability of the French nuclear weapon dissuasion has to integrate two kind of problems: the geopolitical situation with the comprehensive nuclear test ban treaty (CTBT) and the aging of weapons. The replacement of decayed weapons requires a complete safety and reliability validation of the new weapons which is performed using simulation. This paper gives a brief presentation of the simulation program and of the technical means developed by the military division of the French atomic energy commission (CEA-DAM): the Airix X-ray radiography installation and the 'megajoule' laser facility. (J.S.)

  19. GNU polyxmass: a software framework for mass spectrometric simulations of linear (bio-polymeric analytes

    Directory of Open Access Journals (Sweden)

    Rusconi Filippo

    2006-04-01

    Full Text Available Abstract Background Nowadays, a variety of (bio-polymers can be analyzed by mass spectrometry. The detailed interpretation of the spectra requires a huge number of "hypothesis cycles", comprising the following three actions 1 put forth a structural hypothesis, 2 test it, 3 (invalidate it. This time-consuming and painstaking data scrutiny is alleviated by using specialized software tools. However, all the software tools available to date are polymer chemistry-specific. This imposes a heavy overhead to researchers who do mass spectrometry on a variety of (bio-polymers, as each polymer type will require a different software tool to perform data simulations and analyses. We developed a software to address the lack of an integrated software framework able to deal with different polymer chemistries. Results The GNU polyxmass software framework performs common (bio-chemical simulations–along with simultaneous mass spectrometric calculations–for any kind of linear bio-polymeric analyte (DNA, RNA, saccharides or proteins. The framework is organized into three modules, all accessible from one single binary program. The modules let the user to 1 define brand new polymer chemistries, 2 perform quick mass calculations using a desktop calculator paradigm, 3 graphically edit polymer sequences and perform (bio-chemical/mass spectrometric simulations. Any aspect of the mass calculations, polymer chemistry reactions or graphical polymer sequence editing is configurable. Conclusion The scientist who uses mass spectrometry to characterize (bio-polymeric analytes of different chemistries is provided with a single software framework for his data prediction/analysis needs, whatever the polymer chemistry being involved.

  20. Fusion Simulation Program Execution Plan

    International Nuclear Information System (INIS)

    Brooks, Jeffrey

    2011-01-01

    . It will address the origins and structure of the plasma electric field, rotation, the L-H transition, and the wide variety of pedestal relaxation mechanisms. The Whole Device Model will predict the entire discharge evolution given external actuators (i.e., magnets, power supplies, heating, current drive and fueling systems) and control strategies. Based on components operating over a range of physics fidelity, the WDM will model the plasma equilibrium, plasma sources, profile evolution, linear stability and nonlinear evolution toward a disruption (but not the full disruption dynamics). The plan assumes that, as the FSP matures and demonstrates success, the program will evolve and grow, enabling additional science problems to be addressed. The next set of integration opportunities could include: 1) Simulation of disruption dynamics and their effects; 2) Prediction of core profile including 3D effects, mesoscale dynamics and integration with the edge plasma; 3) Computation of non-thermal particle distributions, self-consistent with fusion, radio frequency (RF) and neutral beam injection (NBI) sources, magnetohydrodynamics (MHD) and short-wavelength turbulence.

  1. A Dantzig-Wolfe decomposition algorithm for linear economic model predictive control of dynamically decoupled subsystems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Standardi, Laura; Edlund, Kristian

    2014-01-01

    This paper presents a warm-started Dantzig–Wolfe decomposition algorithm tailored to economic model predictive control of dynamically decoupled subsystems. We formulate the constrained optimal control problem solved at each sampling instant as a linear program with state space constraints, input...... limits, input rate limits, and soft output limits. The objective function of the linear program is related directly to the cost of operating the subsystems, and the cost of violating the soft output constraints. Simulations for large-scale economic power dispatch problems show that the proposed algorithm...... is significantly faster than both state-of-the-art linear programming solvers, and a structure exploiting implementation of the alternating direction method of multipliers. It is also demonstrated that the control strategy presented in this paper can be tuned using a weighted ℓ1-regularization term...

  2. Fusion Simulation Program Definition. Final report

    International Nuclear Information System (INIS)

    Cary, John R.

    2012-01-01

    We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents

  3. The implementation of full ATLAS detector simulation program

    International Nuclear Information System (INIS)

    Rimoldi, A.; Dell'Acqua, A.; Stavrianakou, M.; Amako, K.; Kanzaki, J.; Morita, Y.; Murakami, K.; Sasaki, T.; Saeki, T.; Ueda, I.; Tanaka, S.; Yoshida, H.

    2001-01-01

    The ATLAS detector is one of the most sophisticated and huge detectors ever designed up to now. A detailed, flexible and complete simulation program is needed in order to study the characteristics and possible problems of such a challenging apparatus and to answer to all raising questions in terms of physics, design optimization, etc. To cope with these needs the authors are implementing an application based on the simulation framework FADS/Goofy (Framework for ATLAS Detector Simulation /Geant4-based Object-Oriented Folly) in the Geant4 environment. The user's specific code implementation is presented in details for the different applications implemented until now, from the various components of the ATLAS spectrometer to some particular testbeam facilities. Particular emphasis is put in describing the simulation of the Muon Spectrometer and its subsystems as a test case for the implementation of the whole detector simulation program: the intrinsic complexity in the geometry description of the Muon System is one of the more demanding problems that are faced. The magnetic field handling, the physics impact in the event processing in presence of backgrounds from different sources and the implementation of different possible generators (including Pythia) are also discussed

  4. Solving a class of generalized fractional programming problems using the feasibility of linear programs.

    Science.gov (United States)

    Shen, Peiping; Zhang, Tongli; Wang, Chunfeng

    2017-01-01

    This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm.

  5. Combined Simulation of a Micro Permanent Magnetic Linear Contactless Displacement Sensor

    Directory of Open Access Journals (Sweden)

    Jing Gao

    2010-09-01

    Full Text Available The permanent magnetic linear contactless displacement (PLCD sensor is a new type of displacement sensor operating on the magnetic inductive principle. It has many excellent properties and has already been used for many applications. In this article a Micro-PLCD sensor which can be used for microelectromechanical system (MEMS measurements is designed and simulated with the CST EM STUDIO® software, including building a virtual model, magnetostatic calculations, low frequency calculations, steady current calculations and thermal calculations. The influence of some important parameters such as air gap dimension, working frequency, coil current and eddy currents etc. is studied in depth.

  6. Dynamical simulation of a linear sigma model near the critical point

    Energy Technology Data Exchange (ETDEWEB)

    Wesp, Christian; Meistrenko, Alex; Greiner, Carsten [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt, Max-von-Laue-Strasse 1, D-60438 Frankfurt (Germany); Hees, Hendrik van [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, D-60438 Frankfurt (Germany)

    2014-07-01

    The intention of this study is the search for signatures of the chiral phase transition. To investigate the impact of fluctuations, e.g. of the baryon number, on the transition or a critical point, the linear sigma model is treated in a dynamical 3+1D numerical simulation. Chiral fields are approximated as classical fields, quarks are described by quasi particles in a Vlasov equation. Additional dynamic is implemented by quark-quark and quark-sigma-field interaction. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.

  7. A linear program for assessing the assignment and scheduling of radioactive wastes for disposal to sea

    International Nuclear Information System (INIS)

    Hutchinson, W.

    1983-04-01

    The report takes the form of a user guide to a computer program using linear programming techniques to aid the assignment and scheduling of radioactive wastes for disposal to sea. The program is aimed at the identification of 'optimum' amounts of each waste stream for disposal to sea without violating specific constraints values and/or fairness parameters. (author)

  8. An Interval-Parameter Fuzzy Linear Programming with Stochastic Vertices Model for Water Resources Management under Uncertainty

    Directory of Open Access Journals (Sweden)

    Yan Han

    2013-01-01

    Full Text Available An interval-parameter fuzzy linear programming with stochastic vertices (IFLPSV method is developed for water resources management under uncertainty by coupling interval-parameter fuzzy linear programming (IFLP with stochastic programming (SP. As an extension of existing interval parameter fuzzy linear programming, the developed IFLPSV approach has advantages in dealing with dual uncertainty optimization problems, which uncertainty presents as interval parameter with stochastic vertices in both of the objective functions and constraints. The developed IFLPSV method improves upon the IFLP method by allowing dual uncertainty parameters to be incorporated into the optimization processes. A hybrid intelligent algorithm based on genetic algorithm and artificial neural network is used to solve the developed model. The developed method is then applied to water resources allocation in Beijing city of China in 2020, where water resources shortage is a challenging issue. The results indicate that reasonable solutions have been obtained, which are helpful and useful for decision makers. Although the amount of water supply from Guanting and Miyun reservoirs is declining with rainfall reduction, water supply from the South-to-North Water Transfer project will have important impact on water supply structure of Beijing city, particularly in dry year and extraordinary dry year.

  9. A Unique Technique to get Kaprekar Iteration in Linear Programming Problem

    Science.gov (United States)

    Sumathi, P.; Preethy, V.

    2018-04-01

    This paper explores about a frivolous number popularly known as Kaprekar constant and Kaprekar numbers. A large number of courses and the different classroom capacities with difference in study periods make the assignment between classrooms and courses complicated. An approach of getting the minimum value of number of iterations to reach the Kaprekar constant for four digit numbers and maximum value is also obtained through linear programming techniques.

  10. Object oriented programming in simulation of ions transport

    International Nuclear Information System (INIS)

    Zhang Wenyong; Wang Tongquan; Xiao Yabin; Dai Hongyi; Chen Yuzhong

    2001-01-01

    Using Object Oriented Programming (OOP) method can make our program more reliable and easier to read, debug, maintain and upgrade. This paper compared FORTRAN90-the language widely used in science computing with C ++ --An Object Oriented Language, and the conclusion was made that although FORTRAN90 have many deficiencies, it can be used in Object Oriented programming. Then OOP method was used in programming of Monte Carlo simulation of ions transport and the general process of OOP was given

  11. A computer program for scanning transmission ion microscopy simulation

    International Nuclear Information System (INIS)

    Wu, R.; Shen, H.; Mi, Y.; Sun, M.D.; Yang, M.J.

    2005-01-01

    With the installation of the Scanning Proton Microprobe system at Fudan University, we are in the process of developing a three-dimension reconstruction technique based on scanning transmission ion microscopy-computed tomography (STIM-CT). As the first step, a related computer program of STIM simulation has been established. This program is written in the Visual C++[reg], using the technique of OOP (Object Oriented Programming) and it is a standard multiple-document Windows[reg] program. It can be run with all MS Windows[reg] operating systems. The operating mode is the menu mode, using a multiple process technique. The stopping power theory is based on the Bethe-Bloch formula. In order to simplify the calculation, the improved cylindrical coordinate model was introduced in the program instead of a usual spherical or cylindrical coordinate model. The simulated results of a sample at several rotation angles are presented

  12. LPmerge: an R package for merging genetic maps by linear programming.

    Science.gov (United States)

    Endelman, Jeffrey B; Plomion, Christophe

    2014-06-01

    Consensus genetic maps constructed from multiple populations are an important resource for both basic and applied research, including genome-wide association analysis, genome sequence assembly and studies of evolution. The LPmerge software uses linear programming to efficiently minimize the mean absolute error between the consensus map and the linkage maps from each population. This minimization is performed subject to linear inequality constraints that ensure the ordering of the markers in the linkage maps is preserved. When marker order is inconsistent between linkage maps, a minimum set of ordinal constraints is deleted to resolve the conflicts. LPmerge is on CRAN at http://cran.r-project.org/web/packages/LPmerge. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. The MARX Modulator Development Program for the International Linear Collider

    International Nuclear Information System (INIS)

    Leyh, G.E.

    2006-01-01

    The International Linear Collider (ILC) Marx Modulator Development Program at SLAC is working towards developing a full-scale ILC Marx ''Reference Design'' modulator prototype, with the goal of significantly reducing the size and cost of the ILC modulator while improving overall modulator efficiency and availability. The ILC Reference Design prototype will provide a proof-of-concept model to industry in advance of Phase II SBIR funding, and also allow operation of the new 10MW L-Band Klystron prototypes immediately upon their arrival at SLAC

  14. Marginal cost of electricity conservation: an application of linear program

    International Nuclear Information System (INIS)

    Silveira, A.M. da; Hollanda, J.B. de

    1987-01-01

    This paper is addressed ti the planning of electricity industry when the use of energetically efficient appliances (conservation) is financed by the utilities. It is based on the Linear Programming Model proposed by Masse and Boiteaux for planning of conventional energy sources, where one unity of electricity (Kw/Kw h) saved is treated as if it were a generator of equivalent size. In spite of the formal simplicity of the models it can support interesting concessions on the subject of a electrical energy conservation policy. (author)

  15. Optimization of boiling water reactor control rod patterns using linear search

    International Nuclear Information System (INIS)

    Kiguchi, T.; Doi, K.; Fikuzaki, T.; Frogner, B.; Lin, C.; Long, A.B.

    1984-01-01

    A computer program for searching the optimal control rod pattern has been developed. The program is able to find a control rod pattern where the resulting power distribution is optimal in the sense that it is the closest to the desired power distribution, and it satisfies all operational constraints. The search procedure consists of iterative uses of two steps: sensitivity analyses of local power and thermal margins using a three-dimensional reactor simulator for a simplified prediction model; linear search for the optimal control rod pattern with the simplified model. The optimal control rod pattern is found along the direction where the performance index gradient is the steepest. This program has been verified to find the optimal control rod pattern through simulations using operational data from the Oyster Creek Reactor

  16. Life cycle cost optimization of biofuel supply chains under uncertainties based on interval linear programming.

    Science.gov (United States)

    Ren, Jingzheng; Dong, Liang; Sun, Lu; Goodsite, Michael Evan; Tan, Shiyu; Dong, Lichun

    2015-01-01

    The aim of this work was to develop a model for optimizing the life cycle cost of biofuel supply chain under uncertainties. Multiple agriculture zones, multiple transportation modes for the transport of grain and biofuel, multiple biofuel plants, and multiple market centers were considered in this model, and the price of the resources, the yield of grain and the market demands were regarded as interval numbers instead of constants. An interval linear programming was developed, and a method for solving interval linear programming was presented. An illustrative case was studied by the proposed model, and the results showed that the proposed model is feasible for designing biofuel supply chain under uncertainties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A primal-dual exterior point algorithm for linear programming problems

    Directory of Open Access Journals (Sweden)

    Samaras Nikolaos

    2009-01-01

    Full Text Available The aim of this paper is to present a new simplex type algorithm for the Linear Programming Problem. The Primal - Dual method is a Simplex - type pivoting algorithm that generates two paths in order to converge to the optimal solution. The first path is primal feasible while the second one is dual feasible for the original problem. Specifically, we use a three-phase-implementation. The first two phases construct the required primal and dual feasible solutions, using the Primal Simplex algorithm. Finally, in the third phase the Primal - Dual algorithm is applied. Moreover, a computational study has been carried out, using randomly generated sparse optimal linear problems, to compare its computational efficiency with the Primal Simplex algorithm and also with MATLAB's Interior Point Method implementation. The algorithm appears to be very promising since it clearly shows its superiority to the Primal Simplex algorithm as well as its robustness over the IPM algorithm.

  18. Portfolio selection problem: a comparison of fuzzy goal programming and linear physical programming

    Directory of Open Access Journals (Sweden)

    Fusun Kucukbay

    2016-04-01

    Full Text Available Investors have limited budget and they try to maximize their return with minimum risk. Therefore this study aims to deal with the portfolio selection problem. In the study two criteria are considered which are expected return, and risk. In this respect, linear physical programming (LPP technique is applied on Bist 100 stocks to be able to find out the optimum portfolio. The analysis covers the period April 2009- March 2015. This period is divided into two; April 2009-March 2014 and April 2014 – March 2015. April 2009-March 2014 period is used as data to find an optimal solution. April 2014-March 2015 period is used to test the real performance of portfolios. The performance of the obtained portfolio is compared with that obtained from fuzzy goal programming (FGP. Then the performances of both method, LPP and FGP are compared with BIST 100 in terms of their Sharpe Indexes. The findings reveal that LPP for portfolio selection problem is a good alternative to FGP.

  19. Experiment study and FEM simulation on erythrocytes under linear stretching of optical micromanipulation

    Science.gov (United States)

    Liu, Ying; Song, Huadong; Zhu, Panpan; Lu, Hao; Tang, Qi

    2017-08-01

    The elasticity of erythrocytes is an important criterion to evaluate the quality of blood. This paper presents a novel research on erythrocytes' elasticity with the application of optical tweezers and the finite element method (FEM) during blood storage. In this work, the erythrocytes with different in vitro times were linearly stretched by trapping force using optical tweezers and the time dependent elasticity of erythrocytes was investigated. The experimental results indicate that the membrane shear moduli of erythrocytes increased with the increasing in vitro time, namely the elasticity was decreasing. Simultaneously, an erythrocyte shell model with two parameters (membrane thickness h and membrane shear modulus H) was built to simulate the linear stretching states of erythrocytes by the FEM, and the simulations conform to the results obtained in the experiment. The evolution process was found that the erythrocytes membrane thicknesses were decreasing. The analysis assumes that the partial proteins and lipid bilayer of erythrocyte membrane were decomposed during the in vitro preservation of blood, which results in thin thickness, weak bending resistance, and losing elasticity of erythrocyte membrane. This study implies that the FEM can be employed to investigate the inward mechanical property changes of erythrocyte in different environments, which also can be a guideline for studying the erythrocyte mechanical state suffered from different diseases.

  20. Validation of Multibody Program to Optimize Simulated Trajectories II Parachute Simulation with Interacting Forces

    Science.gov (United States)

    Raiszadeh, Behzad; Queen, Eric M.; Hotchko, Nathaniel J.

    2009-01-01

    A capability to simulate trajectories of multiple interacting rigid bodies has been developed, tested and validated. This capability uses the Program to Optimize Simulated Trajectories II (POST 2). The standard version of POST 2 allows trajectory simulation of multiple bodies without force interaction. In the current implementation, the force interaction between the parachute and the suspended bodies has been modeled using flexible lines, allowing accurate trajectory simulation of the individual bodies in flight. The POST 2 multibody capability is intended to be general purpose and applicable to any parachute entry trajectory simulation. This research paper explains the motivation for multibody parachute simulation, discusses implementation methods, and presents validation of this capability.

  1. Optimal placement of capacitors in a radial network using conic and mixed integer linear programming

    Energy Technology Data Exchange (ETDEWEB)

    Jabr, R.A. [Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box: 72, Zouk Mikhael, Zouk Mosbeh (Lebanon)

    2008-06-15

    This paper considers the problem of optimally placing fixed and switched type capacitors in a radial distribution network. The aim of this problem is to minimize the costs associated with capacitor banks, peak power, and energy losses whilst satisfying a pre-specified set of physical and technical constraints. The proposed solution is obtained using a two-phase approach. In phase-I, the problem is formulated as a conic program in which all nodes are candidates for placement of capacitor banks whose sizes are considered as continuous variables. A global solution of the phase-I problem is obtained using an interior-point based conic programming solver. Phase-II seeks a practical optimal solution by considering capacitor sizes as discrete variables. The problem in this phase is formulated as a mixed integer linear program based on minimizing the L1-norm of deviations from the phase-I state variable values. The solution to the phase-II problem is obtained using a mixed integer linear programming solver. The proposed method is validated via extensive comparisons with previously published results. (author)

  2. Neoclassical viscous stress tensor for non-linear MHD simulations with XTOR-2F

    International Nuclear Information System (INIS)

    Mellet, N.; Maget, P.; Meshcheriakov, D.; Lütjens, H.

    2013-01-01

    The neoclassical viscous stress tensor is implemented in the non-linear MHD code XTOR-2F (Lütjens and Luciani 2010 J. Comput. Phys. 229 8130–43), allowing consistent bi-fluid simulations of MHD modes, including the metastable branch of neoclassical tearing modes (NTMs) (Carrera et al 1986 Phys. Fluids 29 899–902). Equilibrium flows and bootstrap current from the neoclassical theory are formally recovered in this Chew–Goldberger–Low formulation. The non-linear behaviour of the new model is verified on a test case coming from a Tore Supra non-inductive discharge. A NTM threshold that is larger than with the previous model is obtained. This is due to the fact that the velocity is now part of the bootstrap current and that it differs from the theoretical neoclassical value. (paper)

  3. Convergence Guaranteed Nonlinear Constraint Model Predictive Control via I/O Linearization

    Directory of Open Access Journals (Sweden)

    Xiaobing Kong

    2013-01-01

    Full Text Available Constituting reliable optimal solution is a key issue for the nonlinear constrained model predictive control. Input-output feedback linearization is a popular method in nonlinear control. By using an input-output feedback linearizing controller, the original linear input constraints will change to nonlinear constraints and sometimes the constraints are state dependent. This paper presents an iterative quadratic program (IQP routine on the continuous-time system. To guarantee its convergence, another iterative approach is incorporated. The proposed algorithm can reach a feasible solution over the entire prediction horizon. Simulation results on both a numerical example and the continuous stirred tank reactors (CSTR demonstrate the effectiveness of the proposed method.

  4. Fuzzy chance constrained linear programming model for scrap charge optimization in steel production

    DEFF Research Database (Denmark)

    Rong, Aiying; Lahdelma, Risto

    2008-01-01

    the uncertainty based on fuzzy set theory and constrain the failure risk based on a possibility measure. Consequently, the scrap charge optimization problem is modeled as a fuzzy chance constrained linear programming problem. Since the constraints of the model mainly address the specification of the product...

  5. A new neural network model for solving random interval linear programming problems.

    Science.gov (United States)

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy

    Science.gov (United States)

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-01

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP

  7. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy.

    Science.gov (United States)

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-05

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP

  8. Tabulated square-shaped source model for linear accelerator electron beam simulation.

    Science.gov (United States)

    Khaledi, Navid; Aghamiri, Mahmood Reza; Aslian, Hossein; Ameri, Ahmad

    2017-01-01

    Using this source model, the Monte Carlo (MC) computation becomes much faster for electron beams. The aim of this study was to present a source model that makes linear accelerator (LINAC) electron beam geometry simulation less complex. In this study, a tabulated square-shaped source with transversal and axial distribution biasing and semi-Gaussian spectrum was investigated. A low energy photon spectrum was added to the semi-Gaussian beam to correct the bremsstrahlung X-ray contamination. After running the MC code multiple times and optimizing all spectrums for four electron energies in three different medical LINACs (Elekta, Siemens, and Varian), the characteristics of a beam passing through a 10 cm × 10 cm applicator were obtained. The percentage depth dose and dose profiles at two different depths were measured and simulated. The maximum difference between simulated and measured percentage of depth doses and dose profiles was 1.8% and 4%, respectively. The low energy electron and photon spectrum and the Gaussian spectrum peak energy and associated full width at half of maximum and transversal distribution weightings were obtained for each electron beam. The proposed method yielded a maximum computation time 702 times faster than a complete head simulation. Our study demonstrates that there was an excellent agreement between the results of our proposed model and measured data; furthermore, an optimum calculation speed was achieved because there was no need to define geometry and materials in the LINAC head.

  9. A simulation-based goodness-of-fit test for random effects in generalized linear mixed models

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus

    2006-01-01

    The goodness-of-fit of the distribution of random effects in a generalized linear mixed model is assessed using a conditional simulation of the random effects conditional on the observations. Provided that the specified joint model for random effects and observations is correct, the marginal...... distribution of the simulated random effects coincides with the assumed random effects distribution. In practice, the specified model depends on some unknown parameter which is replaced by an estimate. We obtain a correction for this by deriving the asymptotic distribution of the empirical distribution...

  10. A simulation-based goodness-of-fit test for random effects in generalized linear mixed models

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus Plenge

    The goodness-of-fit of the distribution of random effects in a generalized linear mixed model is assessed using a conditional simulation of the random effects conditional on the observations. Provided that the specified joint model for random effects and observations is correct, the marginal...... distribution of the simulated random effects coincides with the assumed random effects distribution. In practice the specified model depends on some unknown parameter which is replaced by an estimate. We obtain a correction for this by deriving the asymptotic distribution of the empirical distribution function...

  11. Solving the Fully Fuzzy Bilevel Linear Programming Problem through Deviation Degree Measures and a Ranking Function Method

    Directory of Open Access Journals (Sweden)

    Aihong Ren

    2016-01-01

    Full Text Available This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solution of the problem, we apply deviation degree measures to deal with the fuzzy constraints and use a ranking function method of fuzzy numbers to rank the upper and lower level fuzzy objective functions. Then the fully fuzzy bilevel linear programming problem can be transformed into a deterministic bilevel programming problem. Considering the overall balance between improving objective function values and decreasing allowed deviation degrees, the computational procedure for finding a fuzzy optimal solution is proposed. Finally, a numerical example is provided to illustrate the proposed approach. The results indicate that the proposed approach gives a better optimal solution in comparison with the existing method.

  12. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    Science.gov (United States)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  13. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  14. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    format suitable for exporting to spreadsheets and post-processing programs; or in Hierarchical Data Format (HDF), which is a compressed binary format. Data in the HDF file can be visualized on Windows computers with the program Model Viewer and extracted with the utility program PHASTHDF; both programs are distributed with PHAST. Operator splitting of the flow, transport, and geochemical equations is used to separate the three processes into three sequential calculations. No iterations between transport and reaction calculations are implemented. A three-dimensional Cartesian coordinate system and finite-difference techniques are used for the spatial and temporal discretization of the flow and transport equations. The non-linear chemical equilibrium equations are solved by a Newton-Raphson method, and the kinetic reaction equations are solved by a Runge-Kutta or an implicit method for integrating ordinary differential equations. The PHAST simulator may require large amounts of memory and long Central Processing Unit (CPU) times. To reduce the long CPU times, a parallel version of PHAST has been developed that runs on a multiprocessor computer or on a collection of computers that are networked. The parallel version requires Message Passing Interface, which is currently (2004) freely available. The parallel version is effective in reducing simulation times. This report documents the use of the PHAST simulator, including running the simulator, preparing the input files, selecting the output files, and visualizing the results. It also presents four examples that verify the numerical method and demonstrate the capabilities of the simulator. PHAST requires three input files. Only the flow and transport file is described in detail in this report. The other two files, the chemistry data file and the database file, are identical to PHREEQC files and the detailed description of these files is found in the PHREEQC documentation.

  15. Stable Operation and Electricity Generating Characteristics of a Single-Cylinder Free Piston Engine Linear Generator: Simulation and Experiments

    Directory of Open Access Journals (Sweden)

    Huihua Feng

    2015-01-01

    Full Text Available We present a novel design of a single-cylinder free piston engine linear generator (FPELG incorporating a linear motor as a rebound device. A systematic simulation model of this FPELG system was built containing a kinematic and dynamic model of the piston and mover, a magneto-electric model of the linear generator, a thermodynamic model of the single-cylinder engine, and a friction model between the piston ring and cylinder liner. Simulations were performed to understand the relationships between pre-set motor parameters and the running performance of the FPELG. From the simulation results, it was found that a motor rebound force with a parabolic profile had clear advantages over a force with a triangular profile, such as a higher running frequency and peak cylinder pressure, faster piston motion, etc. The rebound position and the amplitude of rebound force were also determined by simulations. The energy conversion characteristics of the generator were obtained from our FPELG test rig. The parameters of intake pressure, motor frequency, and load resistance were varied over certain ranges, and relationships among these three parameters were obtained. The electricity-generating characteristic parameters include output power and system efficiency, which can measure the quality of matching the controllable parameters. The output power can reach 25.9 W and the system efficiency can reach 13.7%. The results in terms of matching parameters and electricity-generating characteristics should be useful to future research in adapting these engines to various operating modes.

  16. Skinfold creep under load of caliper. Linear visco- and poroelastic model simulations.

    Science.gov (United States)

    Nowak, Joanna; Nowak, Bartosz; Kaczmarek, Mariusz

    2015-01-01

    This paper addresses the diagnostic idea proposed in [11] to measure the parameter called rate of creep of axillary fold of tissue using modified Harpenden skinfold caliper in order to distinguish normal and edematous tissue. Our simulations are intended to help understanding the creep phenomenon and creep rate parameter as a sensitive indicator of edema existence. The parametric analysis shows the tissue behavior under the external load as well as its sensitivity to changes of crucial hydro-mechanical tissue parameters, e.g., permeability or stiffness. The linear viscoelastic and poroelastic models of normal (single phase) and oedematous tissue (twophase: swelled tissue with excess of interstitial fluid) implemented in COMSOL Multiphysics environment are used. Simulations are performed within the range of small strains for a simplified fold geometry, material characterization and boundary conditions. The predicted creep is the result of viscosity (viscoelastic model) or pore fluid displacement (poroelastic model) in tissue. The tissue deformations, interstitial fluid pressure as well as interstitial fluid velocity are discussed in parametric analysis with respect to elasticity modulus, relaxation time or permeability of tissue. The creep rate determined within the models of tissue is compared and referred to the diagnostic idea in [11]. The results obtained from the two linear models of subcutaneous tissue indicate that the form of creep curve and the creep rate are sensitive to material parameters which characterize the tissue. However, the adopted modelling assumptions point to a limited applicability of the creep rate as the discriminant of oedema.

  17. Numerical simulation of particle dynamics in storage rings using BETACOOL program

    International Nuclear Information System (INIS)

    Meshkov, I.N.; Pivin, R.V.; Sidorin, A.O.; Smirnov, A.V.; Trubnikov, G.V.

    2006-01-01

    BETACOOL program developed by JINR electron cooling group is a kit of algorithms based on common format of input and output files. The program is oriented to simulation of the ion beam dynamics in a storage ring in the presence of cooling and heating effects. The version presented in this report includes three basic algorithms: simulation of rms parameters of the ion distribution function evolution in time, simulation of the distribution function evolution using Monte-Carlo method and tracking algorithm based on molecular dynamics technique. General processes to be investigated with the program are intrabeam scattering in the ion beam, electron cooling, interaction with residual gas and internal target

  18. A penalization approach to linear programming duality with application to capacity constrained transport

    OpenAIRE

    Korman, Jonathan; McCann, Robert J.; Seis, Christian

    2013-01-01

    A new approach to linear programming duality is proposed which relies on quadratic penalization, so that the relation between solutions to the penalized primal and dual problems becomes affine. This yields a new proof of Levin's duality theorem for capacity-constrained optimal transport as an infinite-dimensional application.

  19. An Interactive Method to Solve Infeasibility in Linear Programming Test Assembling Models

    Science.gov (United States)

    Huitzing, Hiddo A.

    2004-01-01

    In optimal assembly of tests from item banks, linear programming (LP) models have proved to be very useful. Assembly by hand has become nearly impossible, but these LP techniques are able to find the best solutions, given the demands and needs of the test to be assembled and the specifics of the item bank from which it is assembled. However,…

  20. Apollo experience report: Guidance and control systems. Engineering simulation program

    Science.gov (United States)

    Gilbert, D. W.

    1973-01-01

    The Apollo Program experience from early 1962 to July 1969 with respect to the engineering-simulation support and the problems encountered is summarized in this report. Engineering simulation in support of the Apollo guidance and control system is discussed in terms of design analysis and verification, certification of hardware in closed-loop operation, verification of hardware/software compatibility, and verification of both software and procedures for each mission. The magnitude, time, and cost of the engineering simulations are described with respect to hardware availability, NASA and contractor facilities (for verification of the command module, the lunar module, and the primary guidance, navigation, and control system), and scheduling and planning considerations. Recommendations are made regarding implementation of similar, large-scale simulations for future programs.

  1. Adaptive dynamic programming for discrete-time linear quadratic regulation based on multirate generalised policy iteration

    Science.gov (United States)

    Chun, Tae Yoon; Lee, Jae Young; Park, Jin Bae; Choi, Yoon Ho

    2018-06-01

    In this paper, we propose two multirate generalised policy iteration (GPI) algorithms applied to discrete-time linear quadratic regulation problems. The proposed algorithms are extensions of the existing GPI algorithm that consists of the approximate policy evaluation and policy improvement steps. The two proposed schemes, named heuristic dynamic programming (HDP) and dual HDP (DHP), based on multirate GPI, use multi-step estimation (M-step Bellman equation) at the approximate policy evaluation step for estimating the value function and its gradient called costate, respectively. Then, we show that these two methods with the same update horizon can be considered equivalent in the iteration domain. Furthermore, monotonically increasing and decreasing convergences, so called value iteration (VI)-mode and policy iteration (PI)-mode convergences, are proved to hold for the proposed multirate GPIs. Further, general convergence properties in terms of eigenvalues are also studied. The data-driven online implementation methods for the proposed HDP and DHP are demonstrated and finally, we present the results of numerical simulations performed to verify the effectiveness of the proposed methods.

  2. A novel approach based on preference-based index for interval bilevel linear programming problem

    OpenAIRE

    Aihong Ren; Yuping Wang; Xingsi Xue

    2017-01-01

    This paper proposes a new methodology for solving the interval bilevel linear programming problem in which all coefficients of both objective functions and constraints are considered as interval numbers. In order to keep as much uncertainty of the original constraint region as possible, the original problem is first converted into an interval bilevel programming problem with interval coefficients in both objective functions only through normal variation of interval number and chance-constrain...

  3. A simulation program for the VIRGO experiment

    International Nuclear Information System (INIS)

    Caron, B.; Dominjon, A.; Flaminio, R.; Marion, F.; Massonet, L.; Morand, R.; Mours, B.; Verkindt, D.; Yvert, M.

    1994-07-01

    Within the VIRGO experiment a simulation program is developed providing an accurate description of the interferometric antenna behaviour, taking into account all sources of noise. Besides its future use as a tool for data analysis and for the commissioning of the apparatus, the simulation helps finalizing the design of the detector. Emphasis is put at the present time on the study of the stability of optical components implied in the global feedback control system of the interferometer. (author). 5 refs., 4 figs

  4. Averaging and Linear Programming in Some Singularly Perturbed Problems of Optimal Control

    Energy Technology Data Exchange (ETDEWEB)

    Gaitsgory, Vladimir, E-mail: vladimir.gaitsgory@mq.edu.au [Macquarie University, Department of Mathematics (Australia); Rossomakhine, Sergey, E-mail: serguei.rossomakhine@flinders.edu.au [Flinders University, Flinders Mathematical Sciences Laboratory, School of Computer Science, Engineering and Mathematics (Australia)

    2015-04-15

    The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem of optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.

  5. Massive parallel electromagnetic field simulation program JEMS-FDTD design and implementation on jasmin

    International Nuclear Information System (INIS)

    Li Hanyu; Zhou Haijing; Dong Zhiwei; Liao Cheng; Chang Lei; Cao Xiaolin; Xiao Li

    2010-01-01

    A large-scale parallel electromagnetic field simulation program JEMS-FDTD(J Electromagnetic Solver-Finite Difference Time Domain) is designed and implemented on JASMIN (J parallel Adaptive Structured Mesh applications INfrastructure). This program can simulate propagation, radiation, couple of electromagnetic field by solving Maxwell equations on structured mesh explicitly with FDTD method. JEMS-FDTD is able to simulate billion-mesh-scale problems on thousands of processors. In this article, the program is verified by simulating the radiation of an electric dipole. A beam waveguide is simulated to demonstrate the capability of large scale parallel computation. A parallel performance test indicates that a high parallel efficiency is obtained. (authors)

  6. Output-Feedback Control of Unknown Linear Discrete-Time Systems With Stochastic Measurement and Process Noise via Approximate Dynamic Programming.

    Science.gov (United States)

    Wang, Jun-Sheng; Yang, Guang-Hong

    2017-07-25

    This paper studies the optimal output-feedback control problem for unknown linear discrete-time systems with stochastic measurement and process noise. A dithered Bellman equation with the innovation covariance matrix is constructed via the expectation operator given in the form of a finite summation. On this basis, an output-feedback-based approximate dynamic programming method is developed, where the terms depending on the innovation covariance matrix are available with the aid of the innovation covariance matrix identified beforehand. Therefore, by iterating the Bellman equation, the resulting value function can converge to the optimal one in the presence of the aforementioned noise, and the nearly optimal control laws are delivered. To show the effectiveness and the advantages of the proposed approach, a simulation example and a velocity control experiment on a dc machine are employed.

  7. Anomalous electron transport in Hall-effect thrusters: Comparison between quasi-linear kinetic theory and particle-in-cell simulations

    Science.gov (United States)

    Lafleur, T.; Martorelli, R.; Chabert, P.; Bourdon, A.

    2018-06-01

    Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E × B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to "anomalous" electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasi-linear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 2-4 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed.

  8. Modelling and simulating the transitory regimes in NPP using the MMS package programs

    International Nuclear Information System (INIS)

    Prisecaru, I.; Dupleac, Daniel; Constantinescu, Adrian Cornel

    2003-01-01

    This paper introduces a brief presentation of the preoccupation of modelling and simulating group at the Nuclear Power Plant Department of the Faculty of Power Plant Engineering in 'Politehnica' University of Bucharest in using the Modular Modeling System, MMS, package programs for the simulation of NPP transitory regimes. Nuclear power plants are large, non-linear systems with numerous interactions between its components. In the analysis of such complex systems, dynamic simulation is recognized as a powerful method of keeping track of the myriad of interactions. The MMS is a simulation tool that has built in models for plant components using a modular approach to dynamic simulation. The MMS software modules were developed to correspond to plant components that are familiar to power plant engineers. The interface specifications of the modules were defined so that the modules can be interconnected analogously to components in the actual plant. For some components, several modules of differing complexity are available. These alternative modules allow the user to choose the module appropriate to his application, i.e. a detailed model or a more economical model with less detail. The modular nature of the MMS allows the user to tailor the goal of his simulation to the complexity of the application and allows the user to develop independent subsystems that can be integrated into a larger simulation. The MMS module library contains modules for components for fossil and nuclear power plants. Each module is a mathematical model of a type of plant component formulated from first principles. The MMS uses a simulation language that provides features to simplify the development of simulations. Features important to the development of the MMS are the macro capability, automatic sorting of modeling equations, and integration algorithms. The macro capability is used to express the modeling equations for an MMS module. Since modules may be used more than once in the same simulation

  9. Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways.

    Science.gov (United States)

    Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G

    2012-01-01

    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.

  10. Non Linear Programming (NLP formulation for quantitative modeling of protein signal transduction pathways.

    Directory of Open Access Journals (Sweden)

    Alexander Mitsos

    Full Text Available Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i excessive CPU time requirements and ii loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.

  11. Developments in the electron gun simulation program, EGUN

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1994-11-01

    This paper discusses the developments in the electron gun simulation programs that are based on EGUN with its derivatives and supporting programs. Much of the code development has been inspired by technology changes in computer hardware; the implications of this evolution on EGN2 are discussed. Some examples and a review of the capabilities of the EGUN family are described

  12. Developments in the electron gun simulation program, EGUN

    Science.gov (United States)

    Herrmannsfeldt, W. B.

    1995-07-01

    This paper discusses the developments in the electron gun simulation programs that are based on EGUN with its derivatives and supporting programs. Much of the code development has been inspired by technology changes in computer hardware; the implications of this evolution on EGN2 are discussed. Some examples and a review of the capabilities of the EGUN family are described.

  13. A Linear Programming Approach to Routing Control in Networks of Constrained Nonlinear Positive Systems with Concave Flow Rates

    Science.gov (United States)

    Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric

    2014-01-01

    We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.

  14. GENOMEPOP: A program to simulate genomes in populations

    Directory of Open Access Journals (Sweden)

    Carvajal-Rodríguez Antonio

    2008-04-01

    Full Text Available Abstract Background There are several situations in population biology research where simulating DNA sequences is useful. Simulation of biological populations under different evolutionary genetic models can be undertaken using backward or forward strategies. Backward simulations, also called coalescent-based simulations, are computationally efficient. The reason is that they are based on the history of lineages with surviving offspring in the current population. On the contrary, forward simulations are less efficient because the entire population is simulated from past to present. However, the coalescent framework imposes some limitations that forward simulation does not. Hence, there is an increasing interest in forward population genetic simulation and efficient new tools have been developed recently. Software tools that allow efficient simulation of large DNA fragments under complex evolutionary models will be very helpful when trying to better understand the trace left on the DNA by the different interacting evolutionary forces. Here I will introduce GenomePop, a forward simulation program that fulfills the above requirements. The use of the program is demonstrated by studying the impact of intracodon recombination on global and site-specific dN/dS estimation. Results I have developed algorithms and written software to efficiently simulate, forward in time, different Markovian nucleotide or codon models of DNA mutation. Such models can be combined with recombination, at inter and intra codon levels, fitness-based selection and complex demographic scenarios. Conclusion GenomePop has many interesting characteristics for simulating SNPs or DNA sequences under complex evolutionary and demographic models. These features make it unique with respect to other simulation tools. Namely, the possibility of forward simulation under General Time Reversible (GTR mutation or GTR×MG94 codon models with intra-codon recombination, arbitrary, user

  15. Nutrient profiling can help identify foods of good nutritional quality for their price: a validation study with linear programming.

    Science.gov (United States)

    Maillot, Matthieu; Ferguson, Elaine L; Drewnowski, Adam; Darmon, Nicole

    2008-06-01

    Nutrient profiling ranks foods based on their nutrient content. They may help identify foods with a good nutritional quality for their price. This hypothesis was tested using diet modeling with linear programming. Analyses were undertaken using food intake data from the nationally representative French INCA (enquête Individuelle et Nationale sur les Consommations Alimentaires) survey and its associated food composition and price database. For each food, a nutrient profile score was defined as the ratio between the previously published nutrient density score (NDS) and the limited nutrient score (LIM); a nutritional quality for price indicator was developed and calculated from the relationship between its NDS:LIM and energy cost (in euro/100 kcal). We developed linear programming models to design diets that fulfilled increasing levels of nutritional constraints at a minimal cost. The median NDS:LIM values of foods selected in modeled diets increased as the levels of nutritional constraints increased (P = 0.005). In addition, the proportion of foods with a good nutritional quality for price indicator was higher (P linear programming and the nutrient profiling approaches indicates that nutrient profiling can help identify foods of good nutritional quality for their price. Linear programming is a useful tool for testing nutrient profiling systems and validating the concept of nutrient profiling.

  16. MC/DC and Toggle Coverage Measurement Tool for FBD Program Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Sub; Jung, Se Jin; Kim, Jae Yeob; Yoo, Jun Beom [Konkuk University, Seoul (Korea, Republic of)

    2016-05-15

    The functional verification of FBD program can be implemented with various techniques such as testing and simulation. Simulation is preferable to verify FBD program, because it replicates operation of the PLC as well. The PLC is executed repeatedly as long as the controlled system is running based on scan time. Likewise, the simulation technique operates continuously and sequentially. Although engineers try to verify the functionality wholly, it is difficult to find residual errors in the design. Even if 100% functional coverage is accomplished, code coverage have 50%, which might indicate that the scenario is missing some key features of the design. Unfortunately, errors and bugs are often found in the missing points. To assure a high quality of functional verification, code coverage is important as well as functional coverage. We developed a pair tool 'FBDSim' and 'FBDCover' for FBD simulation and coverage measurement. The 'FBDSim' automatically simulates a set of FBD simulation scenarios. While the 'FBDSim' simulates the FBD program, it calculates the MC/DC and Toggle coverage and identifies unstimulated points. After FBD simulation is done, the 'FBDCover' reads the coverage results and shows the coverage with graphical feature and uncovered points with tree feature. The coverages and uncovered points can help engineers to improve the quality of simulation. We slightly dealt with the both coverages, but the coverage is dealt with more concrete and rigorous manner.

  17. An application of object-oriented programming to process simulation

    International Nuclear Information System (INIS)

    Robinson, J.T.; Otaduy, P.J.

    1988-01-01

    This paper discusses the application of object-oriented programming to dynamic simulation of continuous processes. Processes may be modeled using this technique as a collection of objects which communicate with each other via message passing. Arriving messages invoke methods that describe the state and/or dynamic behavior of the receiving object. The objects fall into four broad categories actual plant components such as pumps, pipes, and tanks, abstract objects such as heat sources and conductors, plant systems such as flow loops, and simulation control and interface objects. This technique differs from traditional approaches to process simulation, in which the process is represented by either a system of differential equations or a block diagram of mathematical operators. The use of objects minimizes the representational gap between the model and actual process. From the users point of view, construction of a simulation model becomes equivalent to drawing a plant schematic. As an example application, a package developed for the simulation of nuclear power plants is described. The package allows users to build simulation models by selecting iconic representations of plant components from a menu and connecting them with a mouse. Objects for generating a mathematical model of the system and for controlling the simulation are automatically generated, freeing the user to concentrate on describing his process. This example illustrates the use of object-oriented programming to create a highly interactive and automated simulation environment. 2 figs

  18. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.; Faí sca, N.P.; Panos, C.; Pistikopoulos, E.N.

    2011-01-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques

  19. A study of the use of linear programming techniques to improve the performance in design optimization problems

    Science.gov (United States)

    Young, Katherine C.; Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    This project has two objectives. The first is to determine whether linear programming techniques can improve performance when handling design optimization problems with a large number of design variables and constraints relative to the feasible directions algorithm. The second purpose is to determine whether using the Kreisselmeier-Steinhauser (KS) function to replace the constraints with one constraint will reduce the cost of total optimization. Comparisons are made using solutions obtained with linear and non-linear methods. The results indicate that there is no cost saving using the linear method or in using the KS function to replace constraints.

  20. Near-Regular Structure Discovery Using Linear Programming

    KAUST Repository

    Huang, Qixing

    2014-06-02

    Near-regular structures are common in manmade and natural objects. Algorithmic detection of such regularity greatly facilitates our understanding of shape structures, leads to compact encoding of input geometries, and enables efficient generation and manipulation of complex patterns on both acquired and synthesized objects. Such regularity manifests itself both in the repetition of certain geometric elements, as well as in the structured arrangement of the elements. We cast the regularity detection problem as an optimization and efficiently solve it using linear programming techniques. Our optimization has a discrete aspect, that is, the connectivity relationships among the elements, as well as a continuous aspect, namely the locations of the elements of interest. Both these aspects are captured by our near-regular structure extraction framework, which alternates between discrete and continuous optimizations. We demonstrate the effectiveness of our framework on a variety of problems including near-regular structure extraction, structure-preserving pattern manipulation, and markerless correspondence detection. Robustness results with respect to geometric and topological noise are presented on synthesized, real-world, and also benchmark datasets. © 2014 ACM.

  1. Translation of PLC Programs to x86 for Simulation and Verification

    CERN Document Server

    Sallai, Gyula

    2017-01-01

    PLC programs are written in special languages, variants of the languages defined in the IEC 61131 standard. These programs cannot be directly executed on personal computers (on x86 architecture). To perform simulation of the PLC program or diagnostics during development, either a real PLC or a PLC simulator has to be used. However, these solutions are often inflexible and they do not provide appropriate performance. By generating x86-representations (semantically equivalent programs which can be executed on PCs, e.g. written in C, C++ or Java) of the PLC programs, some of these challenges could be met. PLCverif is a PLC program verification tool developed at CERN which includes a parser for Siemens PLC programs. In this work, we describe a code generator based on this parser of PLCverif. This work explores the possibilities and challenges of generating programs in widely-used general purpose languages from PLC programs, and provides a proof-of-concept code generation implementation. The presented solution dem...

  2. Developments in the electron gun simulation program, EGUN

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1995-01-01

    This paper discusses the developments in the electron gun simulation programs that are based on EGUN with its derivatives and supporting programs. Much of the code development has been inspired by technology changes in computer hardware; the implications of this evolution on EGN2 are discussed. Some examples and a review of the capabilities of the EGUN family are described. copyright 1995 American Institute of Physics

  3. A linear programming approach to characterizing norm bounded uncertainty from experimental data

    Science.gov (United States)

    Scheid, R. E.; Bayard, D. S.; Yam, Y.

    1991-01-01

    The linear programming spectral overbounding and factorization (LPSOF) algorithm, an algorithm for finding a minimum phase transfer function of specified order whose magnitude tightly overbounds a specified nonparametric function of frequency, is introduced. This method has direct application to transforming nonparametric uncertainty bounds (available from system identification experiments) into parametric representations required for modern robust control design software (i.e., a minimum-phase transfer function multiplied by a norm-bounded perturbation).

  4. The Simulation and Correction to the Brain Deformation Based on the Linear Elastic Model in IGS

    Institute of Scientific and Technical Information of China (English)

    MU Xiao-lan; SONG Zhi-jian

    2004-01-01

    @@ The brain deformation is a vital factor affecting the precision of the IGS and it becomes a hotspot to simulate and correct the brain deformation recently.The research organizations, which firstly resolved the brain deformation with the physical models, have the Image Processing and Analysis department of Yale University, Biomedical Modeling Lab of Vanderbilt University and so on. The former uses the linear elastic model; the latter uses the consolidation model.The linear elastic model only needs to drive the model using the surface displacement of exposed brain cortex,which is more convenient to be measured in the clinic.

  5. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.

    Science.gov (United States)

    Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B

    2012-09-11

    In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.

  6. Mass Optimization of Battery/Supercapacitors Hybrid Systems Based on a Linear Programming Approach

    Science.gov (United States)

    Fleury, Benoit; Labbe, Julien

    2014-08-01

    The objective of this paper is to show that, on a specific launcher-type mission profile, a 40% gain of mass is expected using a battery/supercapacitors active hybridization instead of a single battery solution. This result is based on the use of a linear programming optimization approach to perform the mass optimization of the hybrid power supply solution.

  7. Linear time algorithms to construct populations fitting multiple constraint distributions at genomic scales.

    Science.gov (United States)

    Siragusa, Enrico; Haiminen, Niina; Utro, Filippo; Parida, Laxmi

    2017-10-09

    Computer simulations can be used to study population genetic methods, models and parameters, as well as to predict potential outcomes. For example, in plant populations, predicting the outcome of breeding operations can be studied using simulations. In-silico construction of populations with pre-specified characteristics is an important task in breeding optimization and other population genetic studies. We present two linear time Simulation using Best-fit Algorithms (SimBA) for two classes of problems where each co-fits two distributions: SimBA-LD fits linkage disequilibrium and minimum allele frequency distributions, while SimBA-hap fits founder-haplotype and polyploid allele dosage distributions. An incremental gap-filling version of previously introduced SimBA-LD is here demonstrated to accurately fit the target distributions, allowing efficient large scale simulations. SimBA-hap accuracy and efficiency is demonstrated by simulating tetraploid populations with varying numbers of founder haplotypes, we evaluate both a linear time greedy algoritm and an optimal solution based on mixed-integer programming. SimBA is available on http://researcher.watson.ibm.com/project/5669.

  8. Knowledge-based simulation using object-oriented programming

    Science.gov (United States)

    Sidoran, Karen M.

    1993-01-01

    Simulations have become a powerful mechanism for understanding and modeling complex phenomena. Their results have had substantial impact on a broad range of decisions in the military, government, and industry. Because of this, new techniques are continually being explored and developed to make them even more useful, understandable, extendable, and efficient. One such area of research is the application of the knowledge-based methods of artificial intelligence (AI) to the computer simulation field. The goal of knowledge-based simulation is to facilitate building simulations of greatly increased power and comprehensibility by making use of deeper knowledge about the behavior of the simulated world. One technique for representing and manipulating knowledge that has been enhanced by the AI community is object-oriented programming. Using this technique, the entities of a discrete-event simulation can be viewed as objects in an object-oriented formulation. Knowledge can be factual (i.e., attributes of an entity) or behavioral (i.e., how the entity is to behave in certain circumstances). Rome Laboratory's Advanced Simulation Environment (RASE) was developed as a research vehicle to provide an enhanced simulation development environment for building more intelligent, interactive, flexible, and realistic simulations. This capability will support current and future battle management research and provide a test of the object-oriented paradigm for use in large scale military applications.

  9. Automated design and optimization of flexible booster autopilots via linear programming, volume 1

    Science.gov (United States)

    Hauser, F. D.

    1972-01-01

    A nonlinear programming technique was developed for the automated design and optimization of autopilots for large flexible launch vehicles. This technique, which resulted in the COEBRA program, uses the iterative application of linear programming. The method deals directly with the three main requirements of booster autopilot design: to provide (1) good response to guidance commands; (2) response to external disturbances (e.g. wind) to minimize structural bending moment loads and trajectory dispersions; and (3) stability with specified tolerances on the vehicle and flight control system parameters. The method is applicable to very high order systems (30th and greater per flight condition). Examples are provided that demonstrate the successful application of the employed algorithm to the design of autopilots for both single and multiple flight conditions.

  10. Mixed Integer Linear Programming model for Crude Palm Oil Supply Chain Planning

    Science.gov (United States)

    Sembiring, Pasukat; Mawengkang, Herman; Sadyadharma, Hendaru; Bu'ulolo, F.; Fajriana

    2018-01-01

    The production process of crude palm oil (CPO) can be defined as the milling process of raw materials, called fresh fruit bunch (FFB) into end products palm oil. The process usually through a series of steps producing and consuming intermediate products. The CPO milling industry considered in this paper does not have oil palm plantation, therefore the FFB are supplied by several public oil palm plantations. Due to the limited availability of FFB, then it is necessary to choose from which plantations would be appropriate. This paper proposes a mixed integer linear programming model the supply chain integrated problem, which include waste processing. The mathematical programming model is solved using neighborhood search approach.

  11. Linear-constraint wavefront control for exoplanet coronagraphic imaging systems

    Science.gov (United States)

    Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean

    2017-01-01

    A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.

  12. Development and Integration of an Advanced Stirling Convertor Linear Alternator Model for a Tool Simulating Convertor Performance and Creating Phasor Diagrams

    Science.gov (United States)

    Metscher, Jonathan F.; Lewandowski, Edward J.

    2013-01-01

    A simple model of the Advanced Stirling Convertors (ASC) linear alternator and an AC bus controller has been developed and combined with a previously developed thermodynamic model of the convertor for a more complete simulation and analysis of the system performance. The model was developed using Sage, a 1-D thermodynamic modeling program that now includes electro-magnetic components. The convertor, consisting of a free-piston Stirling engine combined with a linear alternator, has sufficiently sinusoidal steady-state behavior to allow for phasor analysis of the forces and voltages acting in the system. A MATLAB graphical user interface (GUI) has been developed to interface with the Sage software for simplified use of the ASC model, calculation of forces, and automated creation of phasor diagrams. The GUI allows the user to vary convertor parameters while fixing different input or output parameters and observe the effect on the phasor diagrams or system performance. The new ASC model and GUI help create a better understanding of the relationship between the electrical component voltages and mechanical forces. This allows better insight into the overall convertor dynamics and performance.

  13. Tecnomatix Plant Simulation modeling and programming by means of examples

    CERN Document Server

    Bangsow, Steffen

    2015-01-01

    This book systematically introduces the development of simulation models as well as the implementation and evaluation of simulation experiments with Tecnomatix Plant Simulation. It deals with all users of Plant Simulation, who have more complex tasks to handle. It also looks for an easy entry into the program. Particular attention has been paid to introduce the simulation flow language SimTalk and its use in various areas of the simulation. The author demonstrates with over 200 examples how to combine the blocks for simulation models and how to deal with SimTalk for complex control and analys

  14. Fatigue damage estimation in non-linear systems using a combination of Monte Carlo simulation and the First Order Reliability Method

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2015-01-01

    For non-linear systems the estimation of fatigue damage under stochastic loadings can be rather time-consuming. Usually Monte Carlo simulation (MCS) is applied, but the coefficient-of-variation (COV) can be large if only a small set of simulations can be done due to otherwise excessive CPU time...

  15. An improved multiple linear regression and data analysis computer program package

    Science.gov (United States)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  16. ADAM: A computer program to simulate selective-breeding schemes for animals

    DEFF Research Database (Denmark)

    Pedersen, L D; Sørensen, A C; Henryon, M

    2009-01-01

    ADAM is a computer program that models selective breeding schemes for animals using stochastic simulation. The program simulates a population of animals and traces the genetic changes in the population under different selective breeding scenarios. It caters to different population structures......, genetic models, selection strategies, and mating designs. ADAM can be used to evaluate breeding schemes and generate genetic data to test statistical tools...

  17. Purdue Contribution of Fusion Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Brooks

    2011-09-30

    . It will address the origins and structure of the plasma electric field, rotation, the L-H transition, and the wide variety of pedestal relaxation mechanisms. The Whole Device Model will predict the entire discharge evolution given external actuators (i.e., magnets, power supplies, heating, current drive and fueling systems) and control strategies. Based on components operating over a range of physics fidelity, the WDM will model the plasma equilibrium, plasma sources, profile evolution, linear stability and nonlinear evolution toward a disruption (but not the full disruption dynamics). The plan assumes that, as the FSP matures and demonstrates success, the program will evolve and grow, enabling additional science problems to be addressed. The next set of integration opportunities could include: 1) Simulation of disruption dynamics and their effects; 2) Prediction of core profile including 3D effects, mesoscale dynamics and integration with the edge plasma; 3) Computation of non-thermal particle distributions, self-consistent with fusion, radio frequency (RF) and neutral beam injection (NBI) sources, magnetohydrodynamics (MHD) and short-wavelength turbulence.

  18. Validation studies of the DOE-2 Building Energy Simulation Program. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.; Winkelmann, F.

    1998-06-01

    This report documents many of the validation studies (Table 1) of the DOE-2 building energy analysis simulation program that have taken place since 1981. Results for several versions of the program are presented with the most recent study conducted in 1996 on version DOE-2.1E and the most distant study conducted in 1981 on version DOE-1.3. This work is part of an effort related to continued development of DOE-2, particularly in its use as a simulation engine for new specialized versions of the program such as the recently released RESFEN 3.1. RESFEN 3.1 is a program specifically dealing with analyzing the energy performance of windows in residential buildings. The intent in providing the results of these validation studies is to give potential users of the program a high degree of confidence in the calculated results. Validation studies in which calculated simulation data is compared to measured data have been conducted throughout the development of the DOE-2 program. Discrepancies discovered during the course of such work has resulted in improvements in the simulation algorithms. Table 2 provides a listing of additions and modifications that have been made to various versions of the program since version DOE-2.1A. One of the most significant recent changes in the program occurred with version DOE-2.1E. An improved algorithm for calculating the outside surface film coefficient was implemented. In addition, integration of the WINDOW 4 program was accomplished resulting in improved ability in analyzing window energy performance. Validation and verification of a program as sophisticated as DOE-2 must necessarily be limited because of the approximations inherent in the program. For example, the most accurate model of the heat transfer processes in a building would include a three-dimensional analysis. To justify such detailed algorithmic procedures would correspondingly require detailed information describing the building and/or HVAC system and energy plant parameters

  19. Trace contaminant control simulation computer program, version 8.1

    Science.gov (United States)

    Perry, J. L.

    1994-01-01

    The Trace Contaminant Control Simulation computer program is a tool for assessing the performance of various process technologies for removing trace chemical contamination from a spacecraft cabin atmosphere. Included in the simulation are chemical and physical adsorption by activated charcoal, chemical adsorption by lithium hydroxide, absorption by humidity condensate, and low- and high-temperature catalytic oxidation. Means are provided for simulating regenerable as well as nonregenerable systems. The program provides an overall mass balance of chemical contaminants in a spacecraft cabin given specified generation rates. Removal rates are based on device flow rates specified by the user and calculated removal efficiencies based on cabin concentration and removal technology experimental data. Versions 1.0 through 8.0 are documented in NASA TM-108409. TM-108409 also contains a source file listing for version 8.0. Changes to version 8.0 are documented in this technical memorandum and a source file listing for the modified version, version 8.1, is provided. Detailed descriptions for the computer program subprograms are extracted from TM-108409 and modified as necessary to reflect version 8.1. Version 8.1 supersedes version 8.0. Information on a separate user's guide is available from the author.

  20. Simulations of the Static Tuning for the TESLA Linear Collider

    CERN Document Server

    Schulte, Daniel

    2003-01-01

    At the heart of the TESLA linear collider are the two 10 km long superconducting linacs. A linac is constructed from 858 cryomodules each containing 12 nine-cell 1.3 GHz superconducting cavities. 355 quadrupoles provide the necessary beam focusing. The advantages of low-frequency superconducting RF in terms of wakefield behaviour are well known, and the TESLA alignment tolerances are relatively loose. However, the effects of cavity tilts and their impact of the linac beam-based alignment algorithms have until recently not been fully investigated. In addition, the strong sensitivity to correlated emittance growth due to the high beam-beam disruption parameter makes it desirable to control the linac emittance down to a few percent. In this report we discuss various static tuning algorithms and present new simulation results. Discussions of the relative merits and applicability of the methods is also discussed.

  1. Output-only modal analysis of linear time-periodic systems with application to wind turbine simulation data

    DEFF Research Database (Denmark)

    Allen, Matthew S.; Sracic, Michael W.; Chauhan, Shashank

    2011-01-01

    to interrogate simulated measurements from a rotating wind turbine. The measurements were simulated for a 5 MW turbine modeled in the HAWC2 simulation code, which includes both structural dynamic and aerodynamic effects. This simulated system identification provides insights into the test and measurement......Many important systems, such as wind turbines, helicopters and turbomachinery, must be modeled with linear time-periodic equations of motion to correctly predict resonance phenomena. Time periodic effects in wind turbines might arise due to blade-to-blade manufacturing variations, stratification...... in the velocity of the wind with height and changes in the aerodynamics of the blades as they pass the tower. These effects may cause parametric resonance or other unexpected phenomena, so it is important to properly characterize them so that these machines can be designed to achieve high reliability, safety...

  2. Mixed-Integer-Linear-Programming-Based Energy Management System for Hybrid PV-Wind-Battery Microgrids

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2017-01-01

    -side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data...

  3. specsim: A Fortran-77 program for conditional spectral simulation in 3D

    Science.gov (United States)

    Yao, Tingting

    1998-12-01

    A Fortran 77 program, specsim, is presented for conditional spectral simulation in 3D domains. The traditional Fourier integral method allows generating random fields with a given covariance spectrum. Conditioning to local data is achieved by an iterative identification of the conditional phase information. A flowchart of the program is given to illustrate the implementation procedures of the program. A 3D case study is presented to demonstrate application of the program. A comparison with the traditional sequential Gaussian simulation algorithm emphasizes the advantages and drawbacks of the proposed algorithm.

  4. Comparison of acrylamide intake from Western and guideline based diets using probabilistic techniques and linear programming.

    Science.gov (United States)

    Katz, Josh M; Winter, Carl K; Buttrey, Samuel E; Fadel, James G

    2012-03-01

    Western and guideline based diets were compared to determine if dietary improvements resulting from following dietary guidelines reduce acrylamide intake. Acrylamide forms in heat treated foods and is a human neurotoxin and animal carcinogen. Acrylamide intake from the Western diet was estimated with probabilistic techniques using teenage (13-19 years) National Health and Nutrition Examination Survey (NHANES) food consumption estimates combined with FDA data on the levels of acrylamide in a large number of foods. Guideline based diets were derived from NHANES data using linear programming techniques to comport to recommendations from the Dietary Guidelines for Americans, 2005. Whereas the guideline based diets were more properly balanced and rich in consumption of fruits, vegetables, and other dietary components than the Western diets, acrylamide intake (mean±SE) was significantly greater (Plinear programming and results demonstrate that linear programming techniques can be used to model specific diets for the assessment of toxicological and nutritional dietary components. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Simulation of inelastic hadron collisions below 5 GeV

    International Nuclear Information System (INIS)

    Pedroni, P.

    1988-01-01

    To evaluate the detector characteristics in an experiment designed to study photoproduction and photodisintegration at energies above pion production threshold at the Saclay linear accelerator (ALS), a Monte Carlo simulation program has been written. The CEREN FORTRAN package GEANT3 which has been modified to correctly generate hadronic interactions of particle with momenta below a few GeV has been used. In this note is described a simulation program in which GEANT3 has been corrected with the addition of a new hadronic library. Some comparisons between simulated and experimental data for detector has been provided

  6. Minimising negative externalities cost using 0-1 mixed integer linear programming model in e-commerce environment

    Directory of Open Access Journals (Sweden)

    Akyene Tetteh

    2017-04-01

    Full Text Available Background: Although the Internet boosts business profitability, without certain activities like efficient transportation, scheduling, products ordered via the Internet may reach their destination very late. The environmental problems (vehicle part disposal, carbon monoxide [CO], nitrogen oxide [NOx] and hydrocarbons [HC] associated with transportation are mostly not accounted for by industries. Objectives: The main objective of this article is to minimising negative externalities cost in e-commerce environments. Method: The 0-1 mixed integer linear programming (0-1 MILP model was used to model the problem statement. The result was further analysed using the externality percentage impact factor (EPIF. Results: The simulation results suggest that (1 The mode of ordering refined petroleum products does not impact on the cost of distribution, (2 an increase in private cost is directly proportional to the externality cost, (3 externality cost is largely controlled by the government and number of vehicles used in the distribution and this is in no way influenced by the mode of request (i.e. Internet or otherwise and (4 externality cost may be reduce by using more ecofriendly fuel system.

  7. Learning Bayesian network structure: towards the essential graph by integer linear programming tools

    Czech Academy of Sciences Publication Activity Database

    Studený, Milan; Haws, D.

    2014-01-01

    Roč. 55, č. 4 (2014), s. 1043-1071 ISSN 0888-613X R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : learning Bayesian network structure * integer linear programming * characteristic imset * essential graph Subject RIV: BA - General Mathematics Impact factor: 2.451, year: 2014 http://library.utia.cas.cz/separaty/2014/MTR/studeny-0427002.pdf

  8. Investigations and Simulations of All optical Switches in linear state Based on Photonic Crystal Directional Coupler

    Directory of Open Access Journals (Sweden)

    S. Maktoobi

    2014-10-01

    Full Text Available Switching is a principle process in digital computers and signal processing systems. The growth of optical signal processing systems, draws particular attention to design of ultra-fast optical switches. In this paper, All Optical Switches in linear state Based On photonic crystal Directional coupler is analyzed and simulated. Among different methods, the finite difference time domain method (FDTD is a preferable method and is used. We have studied the application of photonic crystal lattices, the physics of optical switching and photonic crystal Directional coupler. In this paper, Electric field intensity and the power output that are two factors to improve the switching performance and the device efficiency are investigated and simulated. All simulations are performed by COMSOL software.

  9. Simulations of the TESLA Linear Collider with a Fast Feedback System

    CERN Document Server

    Schulte, Daniel; White, G

    2003-01-01

    The tolerances on the beams as they collide at the interaction point of the TESLA linear collider are very tight due to the nano-metre scale final vertical bunch spot sizes. Ground motion causes the beams to increase in emittance and drift out of collision leading to dramatic degradation of luminosity performance. To combat this, both slow orbit and fast intra-train feedback systems will be used. The design of these feedback systems depends critically on how component misalignment effects the beam throughout the whole accelerator. A simulation has been set up to study in detail the accelerator performance under such conditions by merging the codes of PLACET, MERLIN and GUINEA-PIG together with Simulink code to model feedback systems, all under a Matlab environment.

  10. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  11. Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator

    Institute of Scientific and Technical Information of China (English)

    Gopi RAM; Durbadal MANDAL; Sakti Prasad GHOSHAL; Rajib KAR

    2017-01-01

    In this paper, an optimal design of linear antenna arrays having microstrip patch antenna elements has been carried out. Cat swarm optimization (CSO) has been applied for the optimization of the control parameters of radiation pattern of an antenna array. The optimal radiation patterns of isotropic antenna elements are obtained by optimizing the current excitation weight of each element and the inter-element spacing. The antenna arrays of 12, 16, and 20 elements are taken as examples. The arrays are de-signed by using MATLAB computation and are validated through Computer Simulation Technology-Microwave Studio (CST-MWS). From the simulation results it is evident that CSO is able to yield the optimal design of linear antenna arrays of patch antenna elements.

  12. A simulation study of linear coupling effects and their correction in RHIC

    International Nuclear Information System (INIS)

    Parzen, G.

    1992-11-01

    This paper describes a possible skew quadrupole correction system for linear coupling for the RHIC92 lattice. A simulation study has been done for the correction system. Results are given for the performance of the correction system, and the required strength of the skew quadruple correctors. An important effect of linear coupling in RHIC is to shift the tune ν x ν y , sometimes called tune splitting. Most of this tune splitting can be corrected with a two family skew quadrupole correction system. For RHIC92, the same 2 family correction system will work for all likely choices of β*. This was not the case for the RHIC91 lattice where different families of correctors were needed for different β*. The tune splitting described above which is corrected with a 2 family correction system is driven primarily by the ν x - ν y harmonic of the skew quadrupole field given by the field multipole αl. There are several other effects of linear coupling present which are driven primarily by the ν x + ν y harmonics of the skew quadrupole field, αl. These include the following: (1) A higher order residual tune shift that remains after correction with the 2 family correction system. This tune shift is roughly quadratic in αl; (2) Possible large changes in the beta functions; (3) Possible increase in the beam size at injection due to the beta function distortion and the emittance distortion at injection

  13. A Method of Determination of an Acquisition Program in Order to Maximize the Total Utility Using Linear Programming in Integer Numbers

    Directory of Open Access Journals (Sweden)

    Alin Cristian Ioan

    2010-03-01

    Full Text Available This paper solves in a different way the problem of maximization of the total utility using the linear programming in integer numbers. The author uses the diofantic equations (equations in integers numbers and after a decomposing in different cases, he obtains the maximal utility.

  14. Particle simulation of a two-dimensional electrostatic plasma

    International Nuclear Information System (INIS)

    Patel, K.

    1989-01-01

    Computer simulation is a growing field of research and plasma physics is one of the important areas where it is being applied today. This report describes the particle method of simulating a two-dimensional electrostatic plasma. The methods used to discretise the plasma equations and integrate the equations of motion are outlined. The algorithm used in building a simulation program is described. The program is applied to simulating the Two-stream Instability occurring within an infinite plasma. The results of the simulation are presented. The growth rate of the instability as simulated is in excellent agreement with the growth rate as calculated using linear theory. Diagnostic techniques used in interpreting the data generated by the simulation program are discussed. A comparison of the computing environment of the ND and PC from a user's viewpoint is presented. It is observed that the PC is an acceptable computing tool for certain (non-trivial) physics problems, and that more extensive use of its computing power should be made. (author). 5 figs

  15. Structure formation by a fifth force: N-body versus linear simulations

    International Nuclear Information System (INIS)

    Li Baojiu; Zhao Hongsheng

    2009-01-01

    We lay out the frameworks to numerically study the structure formation in both linear and nonlinear regimes in general dark-matter-coupled scalar field models, and give an explicit example where the scalar field serves as a dynamical dark energy. Adopting parameters of the scalar field which yield a realistic cosmic microwave background (CMB) spectrum, we generate the initial conditions for our N-body simulations, which follow the spatial distributions of the dark matter and the scalar field by solving their equations of motion using the multilevel adaptive grid technique. We show that the spatial configuration of the scalar field tracks well the voids and clusters of dark matter. Indeed, the propagation of scalar degree of freedom effectively acts as a fifth force on dark matter particles, whose range and magnitude are determined by the two model parameters (μ,γ), local dark matter density as well as the background value for the scalar field. The model behaves like the ΛCDM paradigm on scales relevant to the CMB spectrum, which are well beyond the probe of the local fifth force and thus not significantly affected by the matter-scalar coupling. On scales comparable or shorter than the range of the local fifth force, the fifth force is perfectly parallel to gravity and their strengths have a fixed ratio 2γ 2 determined by the matter-scalar coupling, provided that the chameleon effect is weak; if on the other hand there is a strong chameleon effect (i.e., the scalar field almost resides at its effective potential minimum everywhere in the space), the fifth force indeed has suppressed effects in high density regions and shows no obvious correlation with gravity, which means that the dark-matter-scalar-field coupling is not simply equivalent to a rescaling of the gravitational constant or the mass of the dark matter particles. We show these spatial distributions and (lack of) correlations at typical redshifts (z=0,1,5.5) in our multigrid million

  16. Structure formation by a fifth force: N-body versus linear simulations

    Science.gov (United States)

    Li, Baojiu; Zhao, Hongsheng

    2009-08-01

    We lay out the frameworks to numerically study the structure formation in both linear and nonlinear regimes in general dark-matter-coupled scalar field models, and give an explicit example where the scalar field serves as a dynamical dark energy. Adopting parameters of the scalar field which yield a realistic cosmic microwave background (CMB) spectrum, we generate the initial conditions for our N-body simulations, which follow the spatial distributions of the dark matter and the scalar field by solving their equations of motion using the multilevel adaptive grid technique. We show that the spatial configuration of the scalar field tracks well the voids and clusters of dark matter. Indeed, the propagation of scalar degree of freedom effectively acts as a fifth force on dark matter particles, whose range and magnitude are determined by the two model parameters (μ,γ), local dark matter density as well as the background value for the scalar field. The model behaves like the ΛCDM paradigm on scales relevant to the CMB spectrum, which are well beyond the probe of the local fifth force and thus not significantly affected by the matter-scalar coupling. On scales comparable or shorter than the range of the local fifth force, the fifth force is perfectly parallel to gravity and their strengths have a fixed ratio 2γ2 determined by the matter-scalar coupling, provided that the chameleon effect is weak; if on the other hand there is a strong chameleon effect (i.e., the scalar field almost resides at its effective potential minimum everywhere in the space), the fifth force indeed has suppressed effects in high density regions and shows no obvious correlation with gravity, which means that the dark-matter-scalar-field coupling is not simply equivalent to a rescaling of the gravitational constant or the mass of the dark matter particles. We show these spatial distributions and (lack of) correlations at typical redshifts (z=0,1,5.5) in our multigrid million-particle simulations

  17. A Novel Linear Programming Formulation of Maximum Lifetime Routing Problem in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Cetin, Bilge Kartal; Prasad, Neeli R.; Prasad, Ramjee

    2011-01-01

    In wireless sensor networks, one of the key challenge is to achieve minimum energy consumption in order to maximize network lifetime. In fact, lifetime depends on many parameters: the topology of the sensor network, the data aggregation regime in the network, the channel access schemes, the routing...... protocols, and the energy model for transmission. In this paper, we tackle the routing challenge for maximum lifetime of the sensor network. We introduce a novel linear programming approach to the maximum lifetime routing problem. To the best of our knowledge, this is the first mathematical programming...

  18. Experience and development program for the I.V. Kurchatov Atomic Energy Institute electron linear accelerator

    International Nuclear Information System (INIS)

    Aref'ev, A.V.; Blokhov, M.V.; Gerasimov, V.F.

    1981-01-01

    A program of physical investigations and the corresponding requirements to accelerated beam parameters are discussed in brief. The state and working capacity of separate units and the accelerator as a whole for the 8-year operating period are analyzed. The aim and principal program points of linear electron accelerator modernization are defined. The program of accelerator modernization assumes: electron beam energy increase up to 100-120 MeV; mounting of three additional accelerating sections; clystron efficiency increase; development of a highly reliable modulator; stabilized power supply sources; a system of synchronous start-up; a focusing system; a beam separation system and etc [ru

  19. Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment

    International Nuclear Information System (INIS)

    Carlone, Marco; Harnett, Nicole; Jaffray, David; Norrlinger, Bern; Prooijen, Monique van; Milne, Emily

    2014-01-01

    Medical linear accelerator education is usually restricted to use of academic textbooks and supervised access to accelerators. To facilitate the learning process, simulation software was developed to reproduce the effect of medical linear accelerator beam adjustments on resulting clinical photon beams. The purpose of this report is to briefly describe the method of operation of the software as well as the initial experience with it in a teaching environment. To first and higher orders, all components of medical linear accelerators can be described by analytical solutions. When appropriate calibrations are applied, these analytical solutions can accurately simulate the performance of all linear accelerator sub-components. Grouped together, an overall medical linear accelerator model can be constructed. Fifteen expressions in total were coded using MATLAB v 7.14. The program was called SIMAC. The SIMAC program was used in an accelerator technology course offered at our institution; 14 delegates attended the course. The professional breakdown of the participants was: 5 physics residents, 3 accelerator technologists, 4 regulators and 1 physics associate. The course consisted of didactic lectures supported by labs using SIMAC. At the conclusion of the course, eight of thirteen delegates were able to successfully perform advanced beam adjustments after two days of theory and use of the linac simulator program. We suggest that this demonstrates good proficiency in understanding of the accelerator physics, which we hope will translate to a better ability to understand real world beam adjustments on a functioning medical linear accelerator

  20. Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlone, Marco; Harnett, Nicole; Jaffray, David [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON (Canada); Department of Radiation Oncology, University of Toronto, Toronto, ON (Canada); Norrlinger, Bern; Prooijen, Monique van; Milne, Emily [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON (Canada)

    2014-08-15

    Medical linear accelerator education is usually restricted to use of academic textbooks and supervised access to accelerators. To facilitate the learning process, simulation software was developed to reproduce the effect of medical linear accelerator beam adjustments on resulting clinical photon beams. The purpose of this report is to briefly describe the method of operation of the software as well as the initial experience with it in a teaching environment. To first and higher orders, all components of medical linear accelerators can be described by analytical solutions. When appropriate calibrations are applied, these analytical solutions can accurately simulate the performance of all linear accelerator sub-components. Grouped together, an overall medical linear accelerator model can be constructed. Fifteen expressions in total were coded using MATLAB v 7.14. The program was called SIMAC. The SIMAC program was used in an accelerator technology course offered at our institution; 14 delegates attended the course. The professional breakdown of the participants was: 5 physics residents, 3 accelerator technologists, 4 regulators and 1 physics associate. The course consisted of didactic lectures supported by labs using SIMAC. At the conclusion of the course, eight of thirteen delegates were able to successfully perform advanced beam adjustments after two days of theory and use of the linac simulator program. We suggest that this demonstrates good proficiency in understanding of the accelerator physics, which we hope will translate to a better ability to understand real world beam adjustments on a functioning medical linear accelerator.