WorldWideScience

Sample records for linear phase correction

  1. Long-range correlation in synchronization and syncopation tapping: a linear phase correction model.

    Directory of Open Access Journals (Sweden)

    Didier Delignières

    Full Text Available We propose in this paper a model for accounting for the increase in long-range correlations observed in asynchrony series in syncopation tapping, as compared with synchronization tapping. Our model is an extension of the linear phase correction model for synchronization tapping. We suppose that the timekeeper represents a fractal source in the system, and that a process of estimation of the half-period of the metronome, obeying a random-walk dynamics, combines with the linear phase correction process. Comparing experimental and simulated series, we show that our model allows accounting for the experimentally observed pattern of serial dependence. This model complete previous modeling solutions proposed for self-paced and synchronization tapping, for a unifying framework of event-based timing.

  2. Linear network error correction coding

    CERN Document Server

    Guang, Xuan

    2014-01-01

    There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences?similar to algebraic coding,?and also briefly discuss the main results following the?other approach,?that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances an

  3. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.

  4. Phase correction for a Michelson interferometer with misaligned mirrors

    Science.gov (United States)

    Goorvitch, D.

    1975-01-01

    The phase correction for a Michelson interferometer with misaligned mirrors in converging light is shown to give rise to a quadratic phase shift. In general, the calculation of a spectrum from the measured interferogram needs phase correction. Phase corrections have been well worked out for the cases of a linear phase shift and a phase that is slowly varying. The standard procedures for correcting calculated spectra need to be modified, however, to remove any phase errors resulting from misaligned mirrors.

  5. LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab; Edstrom, D. [Fermilab; Halavanau, A. [Northern Illinois U.

    2017-07-16

    The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.

  6. LINEAR AND NONLINEAR CORRECTIONS IN THE RHIC INTERACTION REGIONS

    International Nuclear Information System (INIS)

    PILAT, F.; CAMERON, P.; PTITSYN, V.; KOUTCHOUK, J.P.

    2002-01-01

    A method has been developed to measure operationally the linear and non-linear effects of the interaction region triplets, that gives access to the multipole content through the action kick, by applying closed orbit bumps and analyzing tune and orbit shifts. This technique has been extensively tested and used during the RHIC operations in 2001. Measurements were taken at 3 different interaction regions and for different focusing at the interaction point. Non-linear effects up to the dodecapole have been measured as well as the effects of linear, sextupolar and octupolar corrections. An analysis package for the data processing has been developed that through a precise fit of the experimental tune shift data (measured by a phase lock loop technique to better than 10 -5 resolution) determines the multipole content of an IR triplet

  7. Passive longitudinal phase space linearizer

    Directory of Open Access Journals (Sweden)

    P. Craievich

    2010-03-01

    Full Text Available We report on the possibility to passively linearize the bunch compression process in electron linacs for the next generation x-ray free electron lasers. This can be done by using the monopole wakefields in a dielectric-lined waveguide. The optimum longitudinal voltage loss over the length of the bunch is calculated in order to compensate both the second-order rf time curvature and the second-order momentum compaction terms. Thus, the longitudinal phase space after the compression process is linearized up to a fourth-order term introduced by the convolution between the bunch and the monopole wake function.

  8. Linearity correction device for a scintillation camera

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Kai

    1978-06-16

    This invention concerns the scintillation cameras still called gamma ray camera. The invention particularly covers the improvement in the resolution and the uniformity of these cameras. Briefly, in the linearity correction device of the invention, the sum is made of the voltage signals of different amplitudes produced by the preamplifiers of all the photomultiplier tubes and the signal obtained is employed to generate bias voltages which represent predetermined percentages of the sum signal. In one design mode, pairs of transistors are blocked when the output signal of the corresponding preamplifier is under a certain point on its gain curve. When the summation of the energies of a given scintillation exceeds this level which corresponds to a first percentage of the total signal, the first transistor of each pair of each line is unblocked, thereby modifying the gain and curve slop. When the total energy of an event exceeds the next preset level, the second transistor is unblocked to alter the shape again, so much so that the curve shows two break points. If needs be, the device can be designed so as to obtain more break points for the increasingly higher levels of energy. Once the signals have been processed as described above, they may be used for calculating the co-ordinates of the scintillation by one of the conventional methods.

  9. Phase estimation for global defocus correction in optical coherence tomography

    DEFF Research Database (Denmark)

    Jensen, Mikkel; Israelsen, Niels Møller; Podoleanu, Adrian

    2017-01-01

    In this work we investigate three techniques for estimation of the non-linear phase present due to defocus in opticalcoherence tomography, and apply them with the angular spectrum method. The techniques are: Least squarestting the of unwrapped phase of the angular spectrum, iterative optimization......, and sub-aperture correlations. The estimated phase of a single en-face image is used to extrapolate the non-linear phase at all depths, whichin the end can be used to correct the entire 3-D tomogram, and any other tomogram from the same system.......In this work we investigate three techniques for estimation of the non-linear phase present due to defocus in opticalcoherence tomography, and apply them with the angular spectrum method. The techniques are: Least squarestting the of unwrapped phase of the angular spectrum, iterative optimization...

  10. Anticipatory phase correction in sensorimotor synchronization.

    Science.gov (United States)

    Repp, Bruno H; Moseley, Gordon P

    2012-10-01

    Studies of phase correction in sensorimotor synchronization often introduce timing perturbations that are unpredictable with regard to direction, magnitude, and position in the stimulus sequence. If participants knew any or all of these parameters in advance, would they be able to anticipate perturbations and thus regain synchrony more quickly? In Experiment 1, we asked musically trained participants to tap in synchrony with short isochronous tone sequences containing a phase shift (PS) of -100, -40, 40, or 100 ms and provided advance information about its direction, position, or both (but not about its magnitude). The first two conditions had little effect, but in the third condition participants shifted their tap in anticipation of the PS, though only by about ±40 ms on average. The phase correction response to the residual PS was also enhanced. In Experiment 2, we provided complete advance information about PSs of various magnitudes either at the time of the immediately preceding tone ("late") or at the time of the tone one position back ("early") while also varying sequence tempo. Anticipatory phase correction was generally conservative and was impeded by fast tempo in the "late" condition. At fast tempi in both conditions, advancing a tap was more difficult than delaying a tap. The results indicate that temporal constraints on anticipatory phase correction resemble those on reactive phase correction. While the latter is usually automatic, this study shows that phase correction can also be controlled consciously for anticipatory purposes. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Implementation of linear bias corrections for calorimeters at Mound

    International Nuclear Information System (INIS)

    Barnett, T.M.

    1993-01-01

    In the past, Mound has generally made relative bias corrections as part of the calibration of individual calorimeters. The correction made was the same over the entire operating range of the calorimeter, regardless of the magnitude of the range. Recently, an investigation was performed to check the relevancy of using linear bias corrections to calibrate the calorimeters. The bias is obtained by measuring calibrated plutonium and/or electrical heat standards over the operating range of the calorimeter. The bias correction is then calculated using a simple least squares fit (y = mx + b) of the bias in milliwatts over the operating range of the calorimeter in watts. The equation used is B i = B 0 + (B w * W m ), where B i is the bias at any given power in milliwatts, B 0 is the intercept (absolute bias in milliwatts), B w is the slope (relative bias in milliwatts per watt), and W m is the measured power in watts. The results of the study showed a decrease in the random error of bias corrected data for most of the calorimeters which are operated over a large wattage range (greater than an order of magnitude). The linear technique for bias correction has been fully implemented at Mound and has been included in the Technical Manual, ''A Measurement Control Program for Radiometric Calorimeters at Mound'' (MD-21900)

  12. Chromaticity correction strategy which improves the linear lattice of the TRISTAN e+-e- collider

    International Nuclear Information System (INIS)

    Chin, Yongho.

    1984-08-01

    Described is a strategy of chromaticity correction for large storage rings. Starting with an optimization of the linear lattice in phase advances, based on the W-correction, the sextupole strengths are calculated by the program HARMON. For the TRISTAN e + -e - collider with the mini-β insertion, the correction results show that motions of particles with an initial transverse amplitude of 10 σsub(x,y) and with a synchrotron oscillation amplitude of up to 8 σsub(epsilon) remain stable. (author)

  13. An adaptive feedback controller for transverse angle and position jitter correction in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1993-01-01

    It is desired to design a position and angle jitter control system for pulsed linear accelerators that will increase the accuracy of correction over that achieved by currently used standard feedback jitter control systems. Interpulse or pulse-to-pulse correction is performed using the average value of each macropulse. The configuration of such a system resembles that of a standard feedback correction system with the addition of an adaptive controller that dynamically adjusts the gain-phase contour of the feedback electronics. The adaptive controller makes changes to the analog feedback system between macropulses. A simulation of such a system using real measured jitter data from the Stanford Linear Collider was shown to decrease the average rms jitter by over two and a half times. The system also increased and stabilized the correction at high frequencies; a typical problem with standard feedback systems

  14. An adaptive feedback controller for transverse angle and position jitter correction in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1992-01-01

    It is desired to design a position and angle jitter control system for pulsed linear accelerators that will increase the accuracy of correction over that achieved by currently used standard feedback jitter control systems. Interpulse or pulse-to-pulse correction is performed using the average value of each macropulse. The configuration of such a system resembles that of a standard feedback correction system with the addition of an adaptive controller that dynamically adjusts the gain-phase contour of the feedback electronics. The adaptive controller makes changes to the analog feedback system between macropulses. A simulation of such a system using real measured jitter data from the Stanford Linear Collider was shown to decrease the average rms jitter by over two and a half times. The system also increased and stabilized the correction at high frequencies; a typical problem with standard feedback systems

  15. A simulation study of linear coupling effects and their correction in RHIC

    International Nuclear Information System (INIS)

    Parzen, G.

    1993-01-01

    This paper describes a possible skew quadrupole correction system for linear coupling effects for the RHIC92 lattice. A simulation study has been done for this correction system. Results are given for the performance of the correction system and the required strength of the skew quadrupole corrections. The location of the correctors is discussed. For RHIC92, it appears possible to use the same 2 family correction system for all the likely choices of β*. The simulation study gives results for the residual tune splitting that remains after correction with a 2 family correction system. It also gives results for the beta functions before and after correction

  16. Correction of spectral and temporal phases for ultra-intense lasers; Correction des phases spectrale et temporelle pour les lasers ultra-intenses

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, E

    2000-12-15

    The discovery of new regimes of interaction between laser and matter requires to produce laser pulses presenting higher luminous flux density. The only solutions that allow us to reach important power (about ten peta-watts) imply the correction of non-linear effects before compressing the laser pulse so that we do not transfer the phase modulation to the amplitude modulation. The aim of this work is the correction of the spectral phase through the modulation of the temporal phase. The first chapter is dedicated to the review of the physical phenomena involved in the interaction of ultra-intense laser pulse with matter. The peta-watt laser operating on the LIL (integrated laser line), the prototype line of the Megajoule Laser, is described in the second chapter. The third chapter presents the method used and optimized for getting an absolute measurement of the spectral phase in our experimental configuration. The fourth chapter details the analogy existing between the spatial domain and the temporal domain particularly between diffraction and dispersion. This analogy has allowed us to benefit from the knowledge cumulated in the spatial domain, particularly the treatment of the aberrations and their impact on the focal spot and to use it in the temporal domain. The principle of the phase correction is exposed in the fifth chapter. We have formalized the correspondence of the phase modulation between temporal domain and the spectral domain for strongly stretched pulses. In this way a modulation of the temporal phase is turned into a modulation of the spectral phase. All the measurements concerning phases and modulation spectral phase correction are presented in the sixth chapter. In the last chapter we propose an extension of the temporal phase correction by correcting non-linear effects directly in the temporal phase. This correction will improve the performances of the peta-watt laser. Numerical simulations show that the temporal phase correction can lead to a

  17. [Study on phase correction method of spatial heterodyne spectrometer].

    Science.gov (United States)

    Wang, Xin-Qiang; Ye, Song; Zhang, Li-Juan; Xiong, Wei

    2013-05-01

    Phase distortion exists in collected interferogram because of a variety of measure reasons when spatial heterodyne spectrometers are used in practice. So an improved phase correction method is presented. The phase curve of interferogram was obtained through Fourier inverse transform to extract single side transform spectrum, based on which, the phase distortions were attained by fitting phase slope, so were the phase correction functions, and the convolution was processed between transform spectrum and phase correction function to implement spectrum phase correction. The method was applied to phase correction of actually measured monochromatic spectrum and emulational water vapor spectrum. Experimental results show that the low-frequency false signals in monochromatic spectrum fringe would be eliminated effectively to increase the periodicity and the symmetry of interferogram, in addition when the continuous spectrum imposed phase error was corrected, the standard deviation between it and the original spectrum would be reduced form 0.47 to 0.20, and thus the accuracy of spectrum could be improved.

  18. Linearization of the longitudinal phase space without higher harmonic field

    Directory of Open Access Journals (Sweden)

    Benno Zeitler

    2015-12-01

    Full Text Available Accelerator applications like free-electron lasers, time-resolved electron diffraction, and advanced accelerator concepts like plasma acceleration desire bunches of ever shorter longitudinal extent. However, apart from space charge repulsion, the internal bunch structure and its development along the beam line can limit the achievable compression due to nonlinear phase space correlations. In order to improve such a limited longitudinal focus, a correction by properly linearizing the phase space is required. At large scale facilities like Flash at Desy or the European Xfel, a higher harmonic cavity is installed for this purpose. In this paper, another method is described and evaluated: Expanding the beam after the electron source enables a higher order correction of the longitudinal focus by a subsequent accelerating cavity which is operated at the same frequency as the electron gun. The elaboration of this idea presented here is based on a ballistic bunching scheme, but can be extended to bunch compression based on magnetic chicanes. The core of this article is an analytic model describing this approach, which is verified by simulations, predicting possible bunch length below 1 fs at low bunch charge. Minimizing the energy spread down to σ_{E}/E<10^{-5} while keeping the bunch long is another interesting possibility, which finds applications, e.g., in time resolved transmission electron microscopy concepts.

  19. Aliasing in the Complex Cepstrum of Linear-Phase Signals

    DEFF Research Database (Denmark)

    Bysted, Tommy Kristensen

    1997-01-01

    Assuming linear-phase of the associated time signal, this paper presents an approximated analytical description of the unavoidable aliasing in practical use of complex cepstrums. The linear-phase assumption covers two major applications of complex cepstrums which are linear- to minimum-phase FIR......-filter transformation and minimum-phase estimation from amplitude specifications. The description is made in the cepstrum domain, the Fourier transform of the complex cepstrum and in the frequency domain. Two examples are given, one for verification of the derived equations and one using the description to reduce...... aliasing in minimum-phase estimation...

  20. Diffusion in the kicked quantum rotator by random corrections to a linear and sine field

    International Nuclear Information System (INIS)

    Hilke, M.; Flores, J.C.

    1992-01-01

    We discuss the diffusion in momentum space, of the kicked quantum rotator, by introducing random corrections to a linear and sine external field. For the linear field we obtain a linear diffusion behavior identical to the case with zero average in the external field. But for the sine field, accelerator modes with quadratic diffusion are found for particular values of the kicking period. (orig.)

  1. Time-dependent phase error correction using digital waveform synthesis

    Science.gov (United States)

    Doerry, Armin W.; Buskirk, Stephen

    2017-10-10

    The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.

  2. Phase and amplitude detection system for the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Fox, J.D.; Schwarz, H.D.

    1983-01-01

    A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  3. Linear entropy in quantum phase space

    International Nuclear Information System (INIS)

    Rosales-Zarate, Laura E. C.; Drummond, P. D.

    2011-01-01

    We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. The preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.

  4. Linear entropy in quantum phase space

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Zarate, Laura E. C.; Drummond, P. D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia)

    2011-10-15

    We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. The preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.

  5. Method and apparatus for optical phase error correction

    Science.gov (United States)

    DeRose, Christopher; Bender, Daniel A.

    2014-09-02

    The phase value of a phase-sensitive optical device, which includes an optical transport region, is modified by laser processing. At least a portion of the optical transport region is exposed to a laser beam such that the phase value is changed from a first phase value to a second phase value, where the second phase value is different from the first phase value. The portion of the optical transport region that is exposed to the laser beam can be a surface of the optical transport region or a portion of the volume of the optical transport region. In an embodiment of the invention, the phase value of the optical device is corrected by laser processing. At least a portion of the optical transport region is exposed to a laser beam until the phase value of the optical device is within a specified tolerance of a target phase value.

  6. Eigenvectors phase correction in inverse modal problem

    Science.gov (United States)

    Qiao, Guandong; Rahmatalla, Salam

    2017-12-01

    The solution of the inverse modal problem for the spatial parameters of mechanical and structural systems is heavily dependent on the quality of the modal parameters obtained from the experiments. While experimental and environmental noises will always exist during modal testing, the resulting modal parameters are expected to be corrupted with different levels of noise. A novel methodology is presented in this work to mitigate the errors in the eigenvectors when solving the inverse modal problem for the spatial parameters. The phases of the eigenvector component were utilized as design variables within an optimization problem that minimizes the difference between the calculated and experimental transfer functions. The equation of motion in terms of the modal and spatial parameters was used as a constraint in the optimization problem. Constraints that reserve the positive and semi-positive definiteness and the inter-connectivity of the spatial matrices were implemented using semi-definite programming. Numerical examples utilizing noisy eigenvectors with augmented Gaussian white noise of 1%, 5%, and 10% were used to demonstrate the efficacy of the proposed method. The results showed that the proposed method is superior when compared with a known method in the literature.

  7. A simulation study of linear coupling effects and their correction in RHIC

    International Nuclear Information System (INIS)

    Parzen, G.

    1992-11-01

    This paper describes a possible skew quadrupole correction system for linear coupling for the RHIC92 lattice. A simulation study has been done for the correction system. Results are given for the performance of the correction system, and the required strength of the skew quadruple correctors. An important effect of linear coupling in RHIC is to shift the tune ν x ν y , sometimes called tune splitting. Most of this tune splitting can be corrected with a two family skew quadrupole correction system. For RHIC92, the same 2 family correction system will work for all likely choices of β*. This was not the case for the RHIC91 lattice where different families of correctors were needed for different β*. The tune splitting described above which is corrected with a 2 family correction system is driven primarily by the ν x - ν y harmonic of the skew quadrupole field given by the field multipole αl. There are several other effects of linear coupling present which are driven primarily by the ν x + ν y harmonics of the skew quadrupole field, αl. These include the following: (1) A higher order residual tune shift that remains after correction with the 2 family correction system. This tune shift is roughly quadratic in αl; (2) Possible large changes in the beta functions; (3) Possible increase in the beam size at injection due to the beta function distortion and the emittance distortion at injection

  8. Linear phase formation by noise simulator

    International Nuclear Information System (INIS)

    Hazi, G.; Por, G.

    1998-01-01

    A new simulation technique is introduced to study noise propagation in nuclear power plants. Noise processes are considered as time functions, and the dynamic behaviour of the reactor core is modelled by ordinary and partial differential equations. The equations are solved by numerical methods and the results (time series) are considered as virtual measurements. The auto power spectral density and the cross power spectral density of these time series are calculated by traditional techniques. The spectrum obtained is compared with the analytical solution to validate the new simulation approach. After validation, the simulator is expanded to investigate some physical phenomena which are unmanageable by analytical calculations. Propagating disturbances are studied, and the effect of non-flat flux shape on phase curves is demonstrated. Numerical problems also are briefly discussed. (author)

  9. Phase correction of MR perfusion/diffusion images

    International Nuclear Information System (INIS)

    Chenevert, T.L.; Pipe, J.G.; Brunberg, J.A.; Yeung, H.N.

    1989-01-01

    Apparent diffusion coefficient (ADC) and perfusion MR sequences are exceptionally sensitive to minute motion and, therefore, are prone to bulk motions that hamper ADC/perfusion quantification. The authors have developed a phase correction algorithm to substantially reduce this error. The algorithm uses a diffusion-insensitive data set to correct data that are diffusion sensitive but phase corrupt. An assumption of the algorithm is that bulk motion phase shifts are uniform in one dimension, although they may be arbitrarily large and variable from acquisition to acquisition. This is facilitated by orthogonal section selection. The correction is applied after one Fourier transform of a two-dimensional Fourier transform reconstruction. Imaging experiments on rat and human brain demonstrate significant artifact reduction in ADC and perfusion measurements

  10. Analysis of a 3-phase tubular permanent magnet linear generator

    Energy Technology Data Exchange (ETDEWEB)

    Nor, K.M.; Arof, H.; Wijono [Malaya Univ., Kuala Lumpur (Malaysia). Faculty of Engineering

    2005-07-01

    A 3-phase tubular permanent linear generator design was described. The generator was designed to be driven by a single or a double 2-stroke combustion linear engine. Combustion took place alternately between 2 opposed chambers. In the single combustion engine, one of the combustion chambers was replaced by a kickback mechanism. The force on the translator generated by the explosion in the combustion chamber was used to compress the air in the kickback chamber. The pressed air was then used to release the stored energy to push back the translator in the opposite direction. The generator was modelled as a 2D object. A parametric simulation was performed to give a series of discrete data required to calculate machine electrical parameters; flux distribution; coil flux linkage; and, cogging force. Fringing flux was evaluated through the application of a magnetic boundary condition. The infinity boundary was used to include the zero electromagnetic potential in the surface boundary. A complete simulation was run for each step of the translator's motion, which was considered as sinusoidal. The simplification was further corrected using the real engine speed curve. The EMF was derived from the flux linkage difference in the coils at every consecutive translator position. Force was calculated in the translator and stator using a virtual work method. Optimization was performed using a subproblem strategy. It was concluded that the generator can be used to supply electric power as a stand-alone system, emergency power supply, or as part of an integrated system. 11 refs., 2 tabs., 10 figs.

  11. The correction of linear lattice gradient errors using an AC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Wang,G.; Bai, M.; Litvinenko, V.N.; Satogata, T.

    2009-05-04

    Precise measurement of optics from coherent betatron oscillations driven by ac dipoles have been demonstrated at RHIC and the Tevatron. For RHIC, the observed rms beta-beat is about 10%. Reduction of beta-beating is an essential component of performance optimization at high energy colliders. A scheme of optics correction was developed and tested in the RHIC 2008 run, using ac dipole optics for measurement and a few adjustable trim quadruples for correction. In this scheme, we first calculate the phase response matrix from the. measured phase advance, and then apply singular value decomposition (SVD) algorithm to the phase response matrix to find correction quadruple strengths. We present both simulation and some preliminary experimental results of this correction.

  12. Thermodynamics, phase transition and quasinormal modes with Weyl corrections

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Subhash [The Institute of Mathematical Sciences,Chennai 600113 (India)

    2016-04-21

    We study charged black holes in D dimensional AdS space, in the presence of four derivative Weyl correction. We obtain the black hole solution perturbatively up to first as well as second order in the Weyl coupling, and show that first law of black hole thermodynamics is satisfied in all dimensions. We study its thermodynamic phase transition and then calculate the quasinormal frequencies of the massless scalar field perturbation. We find that, here too, the quasinormal frequencies capture the essence of black hole phase transition. Few subtleties near the second order critical point are discussed.

  13. Design of Linear - and Minimum-phase FIR-equalizers

    DEFF Research Database (Denmark)

    Bysted, Tommy Kristensen; Jensen, K.J.; Gaunholt, Hans

    1996-01-01

    an error function which is quadratic in the filtercoefficients. The advantage of the quadratic function is the ability to find the optimal coefficients solving a system of linear equations without iterations.The transformation to a minimum-phase equalizer is carried out by homomorphic deconvolution...

  14. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries

    Science.gov (United States)

    Dong, S.; Wang, X.

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909

  15. On the chiral phase transition in the linear sigma model

    International Nuclear Information System (INIS)

    Tran Huu Phat; Nguyen Tuan Anh; Le Viet Hoa

    2003-01-01

    The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)

  16. Magnetic corrections to π -π scattering lengths in the linear sigma model

    Science.gov (United States)

    Loewe, M.; Monje, L.; Zamora, R.

    2018-03-01

    In this article, we consider the magnetic corrections to π -π scattering lengths in the frame of the linear sigma model. For this, we consider all the one-loop corrections in the s , t , and u channels, associated to the insertion of a Schwinger propagator for charged pions, working in the region of small values of the magnetic field. Our calculation relies on an appropriate expansion for the propagator. It turns out that the leading scattering length, l =0 in the S channel, increases for an increasing value of the magnetic field, in the isospin I =2 case, whereas the opposite effect is found for the I =0 case. The isospin symmetry is valid because the insertion of the magnetic field occurs through the absolute value of the electric charges. The channel I =1 does not receive any corrections. These results, for the channels I =0 and I =2 , are opposite with respect to the thermal corrections found previously in the literature.

  17. Estimation of satellite position, clock and phase bias corrections

    Science.gov (United States)

    Henkel, Patrick; Psychas, Dimitrios; Günther, Christoph; Hugentobler, Urs

    2018-05-01

    Precise point positioning with integer ambiguity resolution requires precise knowledge of satellite position, clock and phase bias corrections. In this paper, a method for the estimation of these parameters with a global network of reference stations is presented. The method processes uncombined and undifferenced measurements of an arbitrary number of frequencies such that the obtained satellite position, clock and bias corrections can be used for any type of differenced and/or combined measurements. We perform a clustering of reference stations. The clustering enables a common satellite visibility within each cluster and an efficient fixing of the double difference ambiguities within each cluster. Additionally, the double difference ambiguities between the reference stations of different clusters are fixed. We use an integer decorrelation for ambiguity fixing in dense global networks. The performance of the proposed method is analysed with both simulated Galileo measurements on E1 and E5a and real GPS measurements of the IGS network. We defined 16 clusters and obtained satellite position, clock and phase bias corrections with a precision of better than 2 cm.

  18. Adaptive phase measurements in linear optical quantum computation

    International Nuclear Information System (INIS)

    Ralph, T C; Lund, A P; Wiseman, H M

    2005-01-01

    Photon counting induces an effective non-linear optical phase shift in certain states derived by linear optics from single photons. Although this non-linearity is non-deterministic, it is sufficient in principle to allow scalable linear optics quantum computation (LOQC). The most obvious way to encode a qubit optically is as a superposition of the vacuum and a single photon in one mode-so-called 'single-rail' logic. Until now this approach was thought to be prohibitively expensive (in resources) compared to 'dual-rail' logic where a qubit is stored by a photon across two modes. Here we attack this problem with real-time feedback control, which can realize a quantum-limited phase measurement on a single mode, as has been recently demonstrated experimentally. We show that with this added measurement resource, the resource requirements for single-rail LOQC are not substantially different from those of dual-rail LOQC. In particular, with adaptive phase measurements an arbitrary qubit state α vertical bar 0>+β vertical bar 1> can be prepared deterministically

  19. Prospects for electron beam aberration correction using sculpted phase masks

    Energy Technology Data Exchange (ETDEWEB)

    Shiloh, Roy, E-mail: royshilo@post.tau.ac.il; Remez, Roei; Arie, Ady

    2016-04-15

    Technological advances in fabrication methods allowed the microscopy community to take incremental steps towards perfecting the electron microscope, and magnetic lens design in particular. Still, state of the art aberration-corrected microscopes are yet 20–30 times shy of the theoretical electron diffraction limit. Moreover, these microscopes consume significant physical space and are very expensive. Here, we show how a thin, sculpted membrane is used as a phase-mask to induce specific aberrations into an electron beam probe in a standard high resolution TEM. In particular, we experimentally demonstrate beam splitting, two-fold astigmatism, three-fold astigmatism, and spherical aberration. - Highlights: • Thin membranes can be used as aberration correctors in electron columns. • We demonstrate tilt, twofold-, threefold-astigmatism, and spherical aberrations. • Experimental and physical-optics simulation results are in good agreement. • Advantages in cost, size, nonmagnetism, and nearly-arbitrary correction.

  20. Passive quantum error correction of linear optics networks through error averaging

    Science.gov (United States)

    Marshman, Ryan J.; Lund, Austin P.; Rohde, Peter P.; Ralph, Timothy C.

    2018-02-01

    We propose and investigate a method of error detection and noise correction for bosonic linear networks using a method of unitary averaging. The proposed error averaging does not rely on ancillary photons or control and feedforward correction circuits, remaining entirely passive in its operation. We construct a general mathematical framework for this technique and then give a series of proof of principle examples including numerical analysis. Two methods for the construction of averaging are then compared to determine the most effective manner of implementation and probe the related error thresholds. Finally we discuss some of the potential uses of this scheme.

  1. The Simulation and Correction to the Brain Deformation Based on the Linear Elastic Model in IGS

    Institute of Scientific and Technical Information of China (English)

    MU Xiao-lan; SONG Zhi-jian

    2004-01-01

    @@ The brain deformation is a vital factor affecting the precision of the IGS and it becomes a hotspot to simulate and correct the brain deformation recently.The research organizations, which firstly resolved the brain deformation with the physical models, have the Image Processing and Analysis department of Yale University, Biomedical Modeling Lab of Vanderbilt University and so on. The former uses the linear elastic model; the latter uses the consolidation model.The linear elastic model only needs to drive the model using the surface displacement of exposed brain cortex,which is more convenient to be measured in the clinic.

  2. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  3. Design and Analysis of MEMS Linear Phased Array

    Directory of Open Access Journals (Sweden)

    Guoxiang Fan

    2016-01-01

    Full Text Available A structure of micro-electro-mechanical system (MEMS linear phased array based on “multi-cell” element is designed to increase radiation sound pressure of transducer working in bending vibration mode at high frequency. In order to more accurately predict the resonant frequency of an element, the theoretical analysis of the dynamic equation of a fixed rectangular composite plate and finite element method simulation are adopted. The effects of the parameters both in the lateral and elevation direction on the three-dimensional beam directivity characteristics are comprehensively analyzed. The key parameters in the analysis include the “cell” number of element, “cell” size, “inter-cell” spacing and the number of elements, element width. The simulation results show that optimizing the linear array parameters both in the lateral and elevation direction can greatly improve the three-dimensional beam focusing for MEMS linear phased array, which is obviously different from the traditional linear array.

  4. The linear parameters and the decoupling matrix for linearly coupled motion in 6 dimensional phase space

    International Nuclear Information System (INIS)

    Parzen, G.

    1997-01-01

    It will be shown that starting from a coordinate system where the 6 phase space coordinates are linearly coupled, one can go to a new coordinate system, where the motion is uncoupled, by means of a linear transformation. The original coupled coordinates and the new uncoupled coordinates are related by a 6 x 6 matrix, R. It will be shown that of the 36 elements of the 6 x 6 decoupling matrix R, only 12 elements are independent. A set of equations is given from which the 12 elements of R can be computed form the one period transfer matrix. This set of equations also allows the linear parameters, the β i , α i , i = 1, 3, for the uncoupled coordinates, to be computed from the one period transfer matrix

  5. General rigid motion correction for computed tomography imaging based on locally linear embedding

    Science.gov (United States)

    Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge

    2018-02-01

    The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.

  6. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Laboratory, Upton, Long Island, NY 11973 (United States); Huang, Xiaobiao, E-mail: xiahuang@slac.stanford.edu [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2016-08-21

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  7. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  8. Phase holograms in PMMA with proximity effect correction

    Science.gov (United States)

    Maker, Paul D.; Muller, R. E.

    1993-01-01

    Complex computer generated phase holograms (CGPH's) have been fabricated in PMMA by partial e-beam exposure and subsequent partial development. The CGPH was encoded as a sequence of phase delay pixels and written by the JEOL JBX-5D2 E-beam lithography system, a different dose being assigned to each value of phase delay. Following carefully controlled partial development, the pattern appeared rendered in relief in the PMMA, which then acts as the phase-delay medium. The exposure dose was in the range 20-200 micro-C/sq cm, and very aggressive development in pure acetone led to low contrast. This enabled etch depth control to better than plus or minus lambda(sub vis)/60. That result was obtained by exposing isolated 50 micron square patches and measuring resist removal over the central area where the proximity effect dose was uniform and related only to the local exposure. For complex CGPH's with pixel size of the order of the e-beam proximity effect radius, the patterns must be corrected for the extra exposure caused by electrons scattered back up out of the substrate. This has been accomplished by deconvolving the two-dimensional dose deposition function with the desired dose pattern. The deposition function, which plays much the same role as an instrument response function, was carefully measured under the exact conditions used to expose the samples. The devices fabricated were designed with 16 equal phase steps per retardation cycle, were up to 1 cm square, and consisted of up to 100 million 0.3-2.0 micron square pixels. Data files were up to 500 MB long and exposure times ranged to tens of hours. A Fresnel phase lens was fabricated that had diffraction limited optical performance with better than 85 percent efficiency.

  9. X-ray beam hardening correction for measuring density in linear accelerator industrial computed tomography

    International Nuclear Information System (INIS)

    Zhou Rifeng; Wang Jue; Chen Weimin

    2009-01-01

    Due to X-ray attenuation being approximately proportional to material density, it is possible to measure the inner density through Industrial Computed Tomography (ICT) images accurately. In practice, however, a number of factors including the non-linear effects of beam hardening and diffuse scattered radiation complicate the quantitative measurement of density variations in materials. This paper is based on the linearization method of beam hardening correction, and uses polynomial fitting coefficient which is obtained by the curvature of iron polychromatic beam data to fit other materials. Through theoretical deduction, the paper proves that the density measure error is less than 2% if using pre-filters to make the spectrum of linear accelerator range mainly 0.3 MeV to 3 MeV. Experiment had been set up at an ICT system with a 9 MeV electron linear accelerator. The result is satisfactory. This technique makes the beam hardening correction easy and simple, and it is valuable for measuring the ICT density and making use of the CT images to recognize materials. (authors)

  10. Correction of TRMM 3B42V7 Based on Linear Regression Models over China

    Directory of Open Access Journals (Sweden)

    Shaohua Liu

    2016-01-01

    Full Text Available High temporal-spatial precipitation is necessary for hydrological simulation and water resource management, and remotely sensed precipitation products (RSPPs play a key role in supporting high temporal-spatial precipitation, especially in sparse gauge regions. TRMM 3B42V7 data (TRMM precipitation is an essential RSPP outperforming other RSPPs. Yet the utilization of TRMM precipitation is still limited by the inaccuracy and low spatial resolution at regional scale. In this paper, linear regression models (LRMs have been constructed to correct and downscale the TRMM precipitation based on the gauge precipitation at 2257 stations over China from 1998 to 2013. Then, the corrected TRMM precipitation was validated by gauge precipitation at 839 out of 2257 stations in 2014 at station and grid scales. The results show that both monthly and annual LRMs have obviously improved the accuracy of corrected TRMM precipitation with acceptable error, and monthly LRM performs slightly better than annual LRM in Mideastern China. Although the performance of corrected TRMM precipitation from the LRMs has been increased in Northwest China and Tibetan plateau, the error of corrected TRMM precipitation is still significant due to the large deviation between TRMM precipitation and low-density gauge precipitation.

  11. Correction of X-ray diffraction profiles in linear-type PSPC by position factor

    International Nuclear Information System (INIS)

    Takahashi, Toshio

    1992-01-01

    PSPC (Position Sensitive Proportional Counter) makes it possible to obtain one-dimentional diffraction profiles without mechanical scanning. In a linear-type PSPC, the obtained profiles need correcting, because the position factor influences the intensity of the diffracted X-ray beam and the counting rate at each position on PSPC. The distances from the specimen are not the same at the center and at the edge of the detector, and the intensity decreases at the edge because of radiation and absorption. The counting rate varies with the incident angle of the diffracted beam at each position on PSPC. The position factor f i at channel i of the multichannel-analyser is given by f i = cos 4 α i ·exp{-μR(1/cosα i -1)} where R is the distance between the specimen and the center of PSPC, μ is the linear absorption coefficient and α i is the incident angle of the diffracted beam at channel i. The background profiles of silica gel powder were measured with CrKα and CuKα. The parameters of the model function were fitted to the profiles by the non-linear least squares method. The agreement between these parameters and the calculated values shows that the position factor can correct the measured profiles properly. (author)

  12. An active interferometer-stabilization scheme with linear phase control

    DEFF Research Database (Denmark)

    Andresen, Esben Ravn; Krishnamachari, v v; Potma, E O

    2006-01-01

    We report a simple and robust computer-based active interferometer stabilization scheme which does not require modulation of the interfering beams and relies on an error signal which is linearly related to the optical path difference. In this setup, a non-collinearly propagating reference laser...... beam stabilizes the interference output of the laser light propagating collinearly through the interferometer. This stabilization scheme enables adjustable phase control with 20 ms switching times in the range from 0.02π radians to 6π radians at 632.8 nm....

  13. The Systematic Bias of Ingestible Core Temperature Sensors Requires a Correction by Linear Regression.

    Science.gov (United States)

    Hunt, Andrew P; Bach, Aaron J E; Borg, David N; Costello, Joseph T; Stewart, Ian B

    2017-01-01

    An accurate measure of core body temperature is critical for monitoring individuals, groups and teams undertaking physical activity in situations of high heat stress or prolonged cold exposure. This study examined the range in systematic bias of ingestible temperature sensors compared to a certified and traceable reference thermometer. A total of 119 ingestible temperature sensors were immersed in a circulated water bath at five water temperatures (TEMP A: 35.12 ± 0.60°C, TEMP B: 37.33 ± 0.56°C, TEMP C: 39.48 ± 0.73°C, TEMP D: 41.58 ± 0.97°C, and TEMP E: 43.47 ± 1.07°C) along with a certified traceable reference thermometer. Thirteen sensors (10.9%) demonstrated a systematic bias > ±0.1°C, of which 4 (3.3%) were > ± 0.5°C. Limits of agreement (95%) indicated that systematic bias would likely fall in the range of -0.14 to 0.26°C, highlighting that it is possible for temperatures measured between sensors to differ by more than 0.4°C. The proportion of sensors with systematic bias > ±0.1°C (10.9%) confirms that ingestible temperature sensors require correction to ensure their accuracy. An individualized linear correction achieved a mean systematic bias of 0.00°C, and limits of agreement (95%) to 0.00-0.00°C, with 100% of sensors achieving ±0.1°C accuracy. Alternatively, a generalized linear function (Corrected Temperature (°C) = 1.00375 × Sensor Temperature (°C) - 0.205549), produced as the average slope and intercept of a sub-set of 51 sensors and excluding sensors with accuracy outside ±0.5°C, reduced the systematic bias to Correction of sensor temperature to a reference thermometer by linear function eliminates this systematic bias (individualized functions) or ensures systematic bias is within ±0.1°C in 98% of the sensors (generalized function).

  14. The Systematic Bias of Ingestible Core Temperature Sensors Requires a Correction by Linear Regression

    Directory of Open Access Journals (Sweden)

    Andrew P. Hunt

    2017-04-01

    Full Text Available An accurate measure of core body temperature is critical for monitoring individuals, groups and teams undertaking physical activity in situations of high heat stress or prolonged cold exposure. This study examined the range in systematic bias of ingestible temperature sensors compared to a certified and traceable reference thermometer. A total of 119 ingestible temperature sensors were immersed in a circulated water bath at five water temperatures (TEMP A: 35.12 ± 0.60°C, TEMP B: 37.33 ± 0.56°C, TEMP C: 39.48 ± 0.73°C, TEMP D: 41.58 ± 0.97°C, and TEMP E: 43.47 ± 1.07°C along with a certified traceable reference thermometer. Thirteen sensors (10.9% demonstrated a systematic bias > ±0.1°C, of which 4 (3.3% were > ± 0.5°C. Limits of agreement (95% indicated that systematic bias would likely fall in the range of −0.14 to 0.26°C, highlighting that it is possible for temperatures measured between sensors to differ by more than 0.4°C. The proportion of sensors with systematic bias > ±0.1°C (10.9% confirms that ingestible temperature sensors require correction to ensure their accuracy. An individualized linear correction achieved a mean systematic bias of 0.00°C, and limits of agreement (95% to 0.00–0.00°C, with 100% of sensors achieving ±0.1°C accuracy. Alternatively, a generalized linear function (Corrected Temperature (°C = 1.00375 × Sensor Temperature (°C − 0.205549, produced as the average slope and intercept of a sub-set of 51 sensors and excluding sensors with accuracy outside ±0.5°C, reduced the systematic bias to < ±0.1°C in 98.4% of the remaining sensors (n = 64. In conclusion, these data show that using an uncalibrated ingestible temperature sensor may provide inaccurate data that still appears to be statistically, physiologically, and clinically meaningful. Correction of sensor temperature to a reference thermometer by linear function eliminates this systematic bias (individualized functions or ensures

  15. A simple bias correction in linear regression for quantitative trait association under two-tail extreme selection.

    Science.gov (United States)

    Kwan, Johnny S H; Kung, Annie W C; Sham, Pak C

    2011-09-01

    Selective genotyping can increase power in quantitative trait association. One example of selective genotyping is two-tail extreme selection, but simple linear regression analysis gives a biased genetic effect estimate. Here, we present a simple correction for the bias.

  16. Linear programming phase unwrapping for dual-wavelength digital holography.

    Science.gov (United States)

    Wang, Zhaomin; Jiao, Jiannan; Qu, Weijuan; Yang, Fang; Li, Hongru; Tian, Ailing; Asundi, Anand

    2017-01-20

    A linear programming phase unwrapping method in dual-wavelength digital holography is proposed and verified experimentally. The proposed method uses the square of height difference as a convergence standard and theoretically gives the boundary condition in a searching process. A simulation was performed by unwrapping step structures at different levels of Gaussian noise. As a result, our method is capable of recovering the discontinuities accurately. It is robust and straightforward. In the experiment, a microelectromechanical systems sample and a cylindrical lens were measured separately. The testing results were in good agreement with true values. Moreover, the proposed method is applicable not only in digital holography but also in other dual-wavelength interferometric techniques.

  17. Phase unwrapping algorithm using polynomial phase approximation and linear Kalman filter.

    Science.gov (United States)

    Kulkarni, Rishikesh; Rastogi, Pramod

    2018-02-01

    A noise-robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first order polynomial function within a small sized window around each pixel. The estimates of polynomial coefficients provide the measurement of phase and local fringe frequencies. A state space representation of spatial phase evolution and the wrapped phase measurement is considered with the state vector consisting of polynomial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement. The adaptive window width is selected at each pixel based on the local fringe density to strike a balance between the computation time and the noise robustness. In order to retrieve the unwrapped phase, either a line-scanning approach or a quality guided strategy of pixel selection is used depending on the underlying continuous or discontinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the applicability of the proposed method.

  18. RF phase focusing in portable x-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.M.; Schonberg, R.G.; Weaver, J.N.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp = c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  19. RF phase focusing in portable X-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.W.; Schonberg, R.G.; Weaver, J.W.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp=c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  20. Correction

    DEFF Research Database (Denmark)

    Pinkevych, Mykola; Cromer, Deborah; Tolstrup, Martin

    2016-01-01

    [This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.].......[This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.]....

  1. Wake Vortex Detection: Phased Microphone vs. Linear Infrasonic Array

    Science.gov (United States)

    Shams, Qamar A.; Zuckerwar, Allan J.; Sullivan, Nicholas T.; Knight, Howard K.

    2014-01-01

    infrasonic array at the Newport News-Williamsburg International Airport early in the year 2013. A pattern of pressure burst, high-coherence intervals, and diminishing-coherence intervals was observed for all takeoff and landing events without exception. The results of a phased microphone vs. linear infrasonic array comparison will be presented.

  2. Simultaneous use of linear and nonlinear gradients for B1+ inhomogeneity correction.

    Science.gov (United States)

    Ertan, Koray; Atalar, Ergin

    2017-09-01

    The simultaneous use of linear spatial encoding magnetic fields (L-SEMs) and nonlinear spatial encoding magnetic fields (N-SEMs) in B 1 + inhomogeneity problems is formulated and demonstrated with both simulations and experiments. Independent excitation k-space variables for N-SEMs are formulated for the simultaneous use of L-SEMs and N-SEMs by assuming a small tip angle. The formulation shows that, when N-SEMs are considered as an independent excitation k-space variable, numerous different k-space trajectories and frequency weightings differing in dimension, length, and energy can be designed for a given target transverse magnetization distribution. The advantage of simultaneous use of L-SEMs and N-SEMs is demonstrated by B 1 + inhomogeneity correction with spoke excitation. To fully utilize the independent k-space formulations, global optimizations are performed for 1D, 2D RF power limited, and 2D RF power unlimited simulations and experiments. Three different cases are compared: L-SEMs alone, N-SEMs alone, and both used simultaneously. In all cases, the simultaneous use of L-SEMs and N-SEMs leads to a decreased standard deviation in the ROI compared with using only L-SEMs or N-SEMs. The simultaneous use of L-SEMs and N-SEMs results in better B 1 + inhomogeneity correction than using only L-SEMs or N-SEMs due to the increased number of degrees of freedom. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Building a new predictor for multiple linear regression technique-based corrective maintenance turnaround time.

    Science.gov (United States)

    Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa

    2008-01-01

    This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.

  4. 78 FR 8104 - First Phase of the Forest Planning Process for the Bio-Region; Correction

    Science.gov (United States)

    2013-02-05

    ... DEPARTMENT OF AGRICULTURE Forest Service First Phase of the Forest Planning Process for the Bio-Region; Correction AGENCY: USDA, Forest Service. ACTION: Notice; correction. SUMMARY: The Department of... rule entitled First Phase of the Forest Planning Process for the Bio-Region. The document contained...

  5. Impacts of altimeter corrections on local linear sea level trends around Taiwan

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar

    2013-01-01

    .e. the inverted barometer correction, wet tropospheric correction, and sea state bias correction, have significant impacts on the determination of local LSLT. The trend of default corrections contribute more than 1.4 mm year-1 along the coastline of China mainland and 2.1 mm year-1 to local LSLT in the Taiwan...

  6. Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum

    Science.gov (United States)

    Rips, Ilya

    2017-01-01

    Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990), 10.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988), 10.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ /ωbrate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.

  7. Selection and optimization of spectrometric amplifiers for gamma spectrometry: part II - linearity, live time correction factors and software

    International Nuclear Information System (INIS)

    Moraes, Marco Antonio Proenca Vieira de; Pugliesi, Reinaldo

    1996-01-01

    The objective of the present work was to establish simple criteria to choose the best combination of electronic modules to achieve an adequate high resolution gamma spectrometer. Linearity, live time correction factors and softwares of a gamma spectrometric system composed by a Hp Ge detector have been studied by using several kinds of spectrometric amplifiers: Canberra 2021, Canberra 2025, Ortec 673 and Tennelec 244 and the MCA cards Ortec and Nucleus. The results showed low values of integral non-linearity for all spectrometric amplifiers connected to the Ortec and Nucleus boards. The MCA card should be able to correct amplifier dead time for 17 kcps count rates. (author)

  8. Finite temperature susy GUT phase transitions determined by radiative corrections

    International Nuclear Information System (INIS)

    Kripfganz, J.; Perlt, H.

    1983-02-01

    Studying the 2-loop perturbative contribution to the free energy of grand unified theories a sequence of phase transitions is found, with SU(3)xSU(2)xU(1) being the prefered low temperature phase. The transition temperatures are still within the weak coupling regime. (author)

  9. Optimal superadiabatic population transfer and gates by dynamical phase corrections

    Science.gov (United States)

    Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.

    2018-04-01

    In many quantum technologies adiabatic processes are used for coherent quantum state operations, offering inherent robustness to errors in the control parameters. The main limitation is the long operation time resulting from the requirement of adiabaticity. The superadiabatic method allows for faster operation, by applying counterdiabatic driving that corrects for excitations resulting from the violation of the adiabatic condition. In this article we show how to construct the counterdiabatic Hamiltonian in a system with forbidden transitions by using two-photon processes and how to correct for the resulting time-dependent ac-Stark shifts in order to enable population transfer with unit fidelity. We further demonstrate that superadiabatic stimulated Raman passage can realize a robust unitary NOT-gate between the ground state and the second excited state of a three-level system. The results can be readily applied to a three-level transmon with the ladder energy level structure.

  10. Phase and amplitude control system for Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Yoo, S.J.

    1983-01-01

    The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  11. Phase correction and error estimation in InSAR time series analysis

    Science.gov (United States)

    Zhang, Y.; Fattahi, H.; Amelung, F.

    2017-12-01

    During the last decade several InSAR time series approaches have been developed in response to the non-idea acquisition strategy of SAR satellites, such as large spatial and temporal baseline with non-regular acquisitions. The small baseline tubes and regular acquisitions of new SAR satellites such as Sentinel-1 allows us to form fully connected networks of interferograms and simplifies the time series analysis into a weighted least square inversion of an over-determined system. Such robust inversion allows us to focus more on the understanding of different components in InSAR time-series and its uncertainties. We present an open-source python-based package for InSAR time series analysis, called PySAR (https://yunjunz.github.io/PySAR/), with unique functionalities for obtaining unbiased ground displacement time-series, geometrical and atmospheric correction of InSAR data and quantifying the InSAR uncertainty. Our implemented strategy contains several features including: 1) improved spatial coverage using coherence-based network of interferograms, 2) unwrapping error correction using phase closure or bridging, 3) tropospheric delay correction using weather models and empirical approaches, 4) DEM error correction, 5) optimal selection of reference date and automatic outlier detection, 6) InSAR uncertainty due to the residual tropospheric delay, decorrelation and residual DEM error, and 7) variance-covariance matrix of final products for geodetic inversion. We demonstrate the performance using SAR datasets acquired by Cosmo-Skymed and TerraSAR-X, Sentinel-1 and ALOS/ALOS-2, with application on the highly non-linear volcanic deformation in Japan and Ecuador (figure 1). Our result shows precursory deformation before the 2015 eruptions of Cotopaxi volcano, with a maximum uplift of 3.4 cm on the western flank (fig. 1b), with a standard deviation of 0.9 cm (fig. 1a), supporting the finding by Morales-Rivera et al. (2017, GRL); and a post-eruptive subsidence on the same

  12. A simple bias correction in linear regression for quantitative trait association under two-tail extreme selection

    OpenAIRE

    Kwan, Johnny S. H.; Kung, Annie W. C.; Sham, Pak C.

    2011-01-01

    Selective genotyping can increase power in quantitative trait association. One example of selective genotyping is two-tail extreme selection, but simple linear regression analysis gives a biased genetic effect estimate. Here, we present a simple correction for the bias. © The Author(s) 2011.

  13. Decoding linear error-correcting codes up to half the minimum distance with Gröbner bases

    NARCIS (Netherlands)

    Bulygin, S.; Pellikaan, G.R.; Sala, M.; Mora, T.; Perret, L.; Sakata, S.; Traverso, C.

    2009-01-01

    In this short note we show how one can decode linear error-correcting codes up to half the minimum distance via solving a system of polynomial equations over a finite field. We also explicitly present the reduced Gröbner basis for the system considered.

  14. Finite temperature susy GUT phase transitions determined by radiative corrections

    International Nuclear Information System (INIS)

    Kripfganz, J.; Perlt, H.

    1983-01-01

    Studying the 2-loop perturbative contribution to the free energy of supersymmetric grand unified theories, SU(3)xSU(2)xU(1) is found to be the prefered low temperature phase. The transition temperature is still within the weak coupling regime. (author)

  15. Plasma resistance behavior during the linear decay phase of RFPs in ETA BETA II

    International Nuclear Information System (INIS)

    Nalesso, G.F.

    1982-01-01

    In the aided-reversal mode RFP discharges produced in ETA BETA II, the plasma current is characterized by a linear decay phase, which follows an approximately exponential phase. During the same period the measured toroidal voltage is negative and initially increasing in absolute value (exponential phase) and then decreasing to almost zero during the linear phase before the current termination. The same behavior of the current has been observed in the quiescent phase in Zeta where a negative toroidal electric field was also observed. In this note we present a model that can explain the linear decay phase and fits with the experimental parameters and allows us to estimate the plasma resistance behavior during the linear phase of slow reversed field pinch discharges

  16. Comparison of heating deposition patterns for stacked linear phased array and fixed focus ultrasonic hyperthermia applicators

    International Nuclear Information System (INIS)

    Ocheltree, K.B.; Benkeser, P.J.; Frizzell, L.A.; Cain, C.A.

    1985-01-01

    An ultrasonic stacked linear phased array applicator for hyperthermia has been designed to heat tumors at depths from 5 to 10 cm. The power deposition pattern for this applicator is compared to that for a fixed focus applicator for several different scan paths. The power deposition pattern for the stacked linear phased array shows hot spots that are not observed for the mechanically scanned fixed focus applicator. These hot spots are related to the skewed power deposition pattern resulting from scanning the focus off the center of the linear arrays. The overall performance of the stacked linear phased array applicator is compared to that of a fixed focus applicator

  17. Characterising phase variations in MALDI-TOF data and correcting

    Directory of Open Access Journals (Sweden)

    Michael C Fitzgerald

    2005-01-01

    Full Text Available Abstract: The use of MALDI-TOF mass spectrometry as a means of analyzing the proteome has been evaluated extensively in recent years. One of the limitations of this technique that has impeded the development of robust data analysis algorithms is the variability in the location of protein ion signals along the x-axis. We studied technical variations of MALDI-TOF measurements in the context of proteomics profiling. By acquiring a benchmark data set with five replicates, we estimated 76% to 85% of the total variance is due to phase variation. We devised a lobster plot, so named because of the resemblance to a lobster claw, to help detect the phase variation in replicates. We also investigated a peak alignment algorithm to remove the phase variation. This operation is analogous to the normalization step in microarray data analysis. Only after this critical step can features of biological interest be clearly revealed. With the help of principal component analysis, we demonstrated that after peak alignment, the differences among replicates are reduced. We compared this approach to peak alignment with a model-based calibration approach in which there was known information about peaks in common among all spectra. Finally, we examined the potential value at each point in an analysis pipeline of having a set of methods available that includes parametric, semiparametric and nonparametric methods; among such methods are those that benefit from the use of prior information.

  18. Study on linear canonical transformation in a framework of a phase space representation of quantum mechanics

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Ranaivoson, R.T.R.; Rakotoson, H.; Solofoarisina, W.C.

    2015-04-01

    We present a study on linear canonical transformation in the framework of a phase space representation of quantum mechanics that we have introduced in our previous work. We begin with a brief recall about the so called phase space representation. We give the definition of linear canonical transformation with the transformation law of coordinate and momentum operators. We establish successively the transformation laws of mean values, dispersions, basis state and wave functions.Then we introduce the concept of isodispersion linear canonical transformation.

  19. Non-linear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation

    International Nuclear Information System (INIS)

    Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y Y

    2008-01-01

    We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency

  20. Non-linear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation

    Science.gov (United States)

    Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y. Y.

    2008-07-01

    We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency.

  1. Conditions and Linear Stability Analysis at the Transition to Synchronization of Three Coupled Phase Oscillators in a Ring

    Science.gov (United States)

    El-Nashar, Hassan F.

    2017-06-01

    We consider a system of three nonidentical coupled phase oscillators in a ring topology. We explore the conditions that must be satisfied in order to obtain the phases at the transition to a synchrony state. These conditions lead to the correct mathematical expressions of phases that aid to find a simple analytic formula for critical coupling when the oscillators transit to a synchronization state having a common frequency value. The finding of a simple expression for the critical coupling allows us to perform a linear stability analysis at the transition to the synchronization stage. The obtained analytic forms of the eigenvalues show that the three coupled phase oscillators with periodic boundary conditions transit to a synchrony state when a saddle-node bifurcation occurs.

  2. Stepping to phase-perturbed metronome cues: Multisensory advantage in movement synchrony but not correction

    Directory of Open Access Journals (Sweden)

    Rachel L Wright

    2014-09-01

    Full Text Available Humans can synchronise movements with auditory beats or rhythms without apparent effort. This ability to entrain to the beat is considered automatic, such that any perturbations are corrected for, even if the perturbation was not consciously noted. Temporal correction of upper limb (e.g. finger tapping and lower limb (e.g. stepping movements to a phase perturbed auditory beat usually results in individuals being back in phase after just a few beats. When a metronome is presented in more than one sensory modality, a multisensory advantage is observed, with reduced temporal variability in finger tapping movements compared to unimodal conditions. Here, we investigate synchronisation of lower limb movements (stepping in place to auditory, visual and combined auditory-visual metronome cues. In addition, we compare movement corrections to phase advance and phase delay perturbations in the metronome for the three sensory modality conditions. We hypothesised that, as with upper limb movements, there would be a multisensory advantage, with stepping variability being lowest in the bimodal condition. As such, we further expected correction to the phase perturbation to be quickest in the bimodal condition. Our results revealed lower variability in the asynchronies between foot strikes and the metronome beats in the bimodal condition, compared to unimodal conditions. However, while participants corrected substantially quicker to perturbations in auditory compared to visual metronomes, there was no multisensory advantage in the phase correction task – correction under the bimodal condition was almost identical to the auditory-only condition. On the whole, we noted that corrections in the stepping task were smaller than those previously reported for finger tapping studies. We conclude that temporal corrections are not only affected by the reliability of the sensory information, but also the complexity of the movement itself.

  3. Stepping to phase-perturbed metronome cues: multisensory advantage in movement synchrony but not correction.

    Science.gov (United States)

    Wright, Rachel L; Elliott, Mark T

    2014-01-01

    Humans can synchronize movements with auditory beats or rhythms without apparent effort. This ability to entrain to the beat is considered automatic, such that any perturbations are corrected for, even if the perturbation was not consciously noted. Temporal correction of upper limb (e.g., finger tapping) and lower limb (e.g., stepping) movements to a phase perturbed auditory beat usually results in individuals being back in phase after just a few beats. When a metronome is presented in more than one sensory modality, a multisensory advantage is observed, with reduced temporal variability in finger tapping movements compared to unimodal conditions. Here, we investigate synchronization of lower limb movements (stepping in place) to auditory, visual and combined auditory-visual (AV) metronome cues. In addition, we compare movement corrections to phase advance and phase delay perturbations in the metronome for the three sensory modality conditions. We hypothesized that, as with upper limb movements, there would be a multisensory advantage, with stepping variability being lowest in the bimodal condition. As such, we further expected correction to the phase perturbation to be quickest in the bimodal condition. Our results revealed lower variability in the asynchronies between foot strikes and the metronome beats in the bimodal condition, compared to unimodal conditions. However, while participants corrected substantially quicker to perturbations in auditory compared to visual metronomes, there was no multisensory advantage in the phase correction task-correction under the bimodal condition was almost identical to the auditory-only (AO) condition. On the whole, we noted that corrections in the stepping task were smaller than those previously reported for finger tapping studies. We conclude that temporal corrections are not only affected by the reliability of the sensory information, but also the complexity of the movement itself.

  4. Internal friction and linear expansion coefficient in zirconium and cobalt within the range of phase transitions

    International Nuclear Information System (INIS)

    Boyarskij, S.V.

    1986-01-01

    Experimental results are presented for internal friction and linear expansion coefficient at zirconium and cobalt in the temperature range from 440 K to the point of the phase transition of the first kind (1138 K for Zr and 706 for Co). Anomalous changes of the internal friction and linear expansion coefficient in the phase transition region are found. Theoretical considerations are given to explain the sharp decrease of the internal friction as temperature approaches the phase transition point

  5. Practical aspects of phase correction determination for gauge blocks measured by optical interferometry

    International Nuclear Information System (INIS)

    Ramotowski, Zbigniew; Salbut, Leszek

    2012-01-01

    Determination of a phase correction is necessary when making interferometric measurements of gauge blocks with an auxiliary platen. The phase correction compensates for the differences in the reflecting properties of the gauge block and the platen surfaces. Different phase corrections are reported for gauge blocks of different manufacturers, made from different materials and with different surface roughness compared to the platen. In this paper, the process of selection of the best surface roughness parameter and the influence of different complex refractive indices of the same type of material are analysed. The new surface roughness parameter based on the difference between the weighted mean of maximum and minimum asperities of 3D surface roughness measured by a modernized Linnik phase shifting interferometer is introduced. The results of comparison of the phase correction values calculated from the difference between the weighted mean values and calculated from stack method measurements are presented and discussed. The complementary method of phase correction measurement based on the cross-wringing method with the use of the modernized phase shifting Kösters interferometer is proposed. (paper)

  6. Bose-Einstein condensation and chiral phase transition in linear sigma model

    International Nuclear Information System (INIS)

    Shu Song; Li Jiarong

    2005-01-01

    With the linear sigma model, we have studied Bose-Einstein condensation and the chiral phase transition in the chiral limit for an interacting pion system. A μ-T phase diagram including these two phenomena is presented. It is found that the phase plane has been divided into three areas: the Bose-Einstein condensation area, the chiral symmetry broken phase area and the chiral symmetry restored phase area. Bose-Einstein condensation can occur either from the chiral symmetry broken phase or from the restored phase. We show that the onset of the chiral phase transition is restricted in the area where there is no Bose-Einstein condensation

  7. Phase velocity enhancement of linear explosive shock tubes

    Science.gov (United States)

    Loiseau, Jason; Serge, Matthew; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent

    2011-06-01

    Strong, high density shocks can be generated by sequentially detonating a hollow cylinder of explosives surrounding a thin-walled, pressurized tube. Implosion of the tube results in a pinch that travels at the detonation velocity of the explosive and acts like a piston to drive a shock into the gas ahead of it. In order to increase the maximum shock velocities that can be obtained, a phase velocity generator can be used to drag an oblique detonation wave along the gas tube at a velocity much higher than the base detonation velocity of the explosive. Since yielding and failure of the gas tube is the primary limitation of these devices, it is desirable to retain the dynamic confinement effects of a heavy-walled tamper without interfering with operation of the phase velocity generator. This was accomplished by cutting a slit into the tamper and introducing a phased detonation wave such that it asymmetrically wraps around the gas tube. This type of configuration has been previously experimentally verified to produce very strong shocks but the post-shock pressure and shock velocity limits have not been investigated. This study measured the shock trajectory for various fill pressures and phase velocities to ascertain the limiting effects of tube yield, detonation obliquity and pinch aspect ratio.

  8. Mixed model phase evolution for correction of magnetic field inhomogeneity effects in 3D quantitative gradient echo-based MRI

    DEFF Research Database (Denmark)

    Fatnassi, Chemseddine; Boucenna, Rachid; Zaidi, Habib

    2017-01-01

    PURPOSE: In 3D gradient echo magnetic resonance imaging (MRI), strong field gradients B0macro are visually observed at air/tissue interfaces. At low spatial resolution in particular, the respective field gradients lead to an apparent increase in intravoxel dephasing, and subsequently, to signal...... loss or inaccurate R2* estimates. If the strong field gradients are measured, their influence can be removed by postprocessing. METHODS: Conventional corrections usually assume a linear phase evolution with time. For high macroscopic gradient inhomogeneities near the edge of the brain...

  9. Baseline correction of phase-contrast images in congenital cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Lai Wyman W

    2010-03-01

    Full Text Available Abstract Background One potential source of error in phase contrast (PC congenital CMR flow measurements is caused by phase offsets due to local non-compensated eddy currents. Phantom correction of these phase offset errors has been shown to result in more accurate measurements of blood flow in adults with structurally normal hearts. We report the effect of phantom correction on PC flow measurements at a clinical congenital CMR program. Results Flow was measured in the ascending aorta, main pulmonary artery, and right and left pulmonary arteries as clinically indicated, and additional values such as Qp/Qs were derived from these measurements. Phantom correction in our study population of 149 patients resulted in clinically significant changes in 13% to 48% of these phase-contrast measurements in patients with known or suspected heart disease. Overall, 640 measurements or calculated values were analyzed, and clinically significant changes were found in 31%. Larger vessels were associated with greater phase offset errors, with 22% of the changes in PC flow measurements attributed to the size of the vessel measured. In patients with structurally normal hearts, the pulmonary-to-systemic flow ratio after phantom correction was closer to 1.0 than before phantom correction. There was no significant difference in the effect of phantom correction for patients with tetralogy of Fallot as compared to the group as a whole. Conclusions Phantom correction often resulted in clinically significant changes in PC blood flow measurements in patients with known or suspected congenital heart disease. In laboratories performing clinical CMR with suspected phase offset errors of significance, the routine use of phantom correction for PC flow measurements should be considered.

  10. Active cancellation of probing in linear dipole phased array

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2015-01-01

    In this book, a modified improved LMS algorithm is employed for weight adaptation of dipole array for the generation of beam pattern in multiple signal environments. In phased arrays, the generation of adapted pattern according to the signal scenario requires an efficient adaptive algorithm. The antenna array is expected to maintain sufficient gain towards each of the desired source while at the same time suppress the probing sources. This cancels the signal transmission towards each of the hostile probing sources leading to active cancellation. In the book, the performance of dipole phased array is demonstrated in terms of fast convergence, output noise power and output signal-to-interference-and noise ratio. The mutual coupling effect and role of edge elements are taken into account. It is established that dipole array along with an efficient algorithm is able to maintain multilobe beamforming with accurate and deep nulls towards each probing source. This work has application to the active radar cross secti...

  11. Linear model correction: A method for transferring a near-infrared multivariate calibration model without standard samples

    Science.gov (United States)

    Liu, Yan; Cai, Wensheng; Shao, Xueguang

    2016-12-01

    Calibration transfer is essential for practical applications of near infrared (NIR) spectroscopy because the measurements of the spectra may be performed on different instruments and the difference between the instruments must be corrected. For most of calibration transfer methods, standard samples are necessary to construct the transfer model using the spectra of the samples measured on two instruments, named as master and slave instrument, respectively. In this work, a method named as linear model correction (LMC) is proposed for calibration transfer without standard samples. The method is based on the fact that, for the samples with similar physical and chemical properties, the spectra measured on different instruments are linearly correlated. The fact makes the coefficients of the linear models constructed by the spectra measured on different instruments are similar in profile. Therefore, by using the constrained optimization method, the coefficients of the master model can be transferred into that of the slave model with a few spectra measured on slave instrument. Two NIR datasets of corn and plant leaf samples measured with different instruments are used to test the performance of the method. The results show that, for both the datasets, the spectra can be correctly predicted using the transferred partial least squares (PLS) models. Because standard samples are not necessary in the method, it may be more useful in practical uses.

  12. Local linear density estimation for filtered survival data, with bias correction

    DEFF Research Database (Denmark)

    Nielsen, Jens Perch; Tanggaard, Carsten; Jones, M.C.

    2009-01-01

    it comes to exposure robustness, and a simple alternative weighting is to be preferred. Indeed, this weighting has, effectively, to be well chosen in a 'pilot' estimator of the survival function as well as in the main estimator itself. We also investigate multiplicative and additive bias-correction methods...... within our framework. The multiplicative bias-correction method proves to be the best in a simulation study comparing the performance of the considered estimators. An example concerning old-age mortality demonstrates the importance of the improvements provided....

  13. Local Linear Density Estimation for Filtered Survival Data with Bias Correction

    DEFF Research Database (Denmark)

    Tanggaard, Carsten; Nielsen, Jens Perch; Jones, M.C.

    it comes to exposure robustness, and a simple alternative weighting is to be preferred. Indeed, this weighting has, effectively, to be well chosen in a ‘pilot' estimator of the survival function as well as in the main estimator itself. We also investigate multiplicative and additive bias correction methods...... within our framework. The multiplicative bias correction method proves to be best in a simulation study comparing the performance of the considered estimators. An example concerning old age mortality demonstrates the importance of the improvements provided....

  14. ATMOSPHERIC PHASE DELAY CORRECTION OF D-INSAR BASED ON SENTINEL-1A

    Directory of Open Access Journals (Sweden)

    X. Li

    2018-04-01

    Full Text Available In this paper, we used the Generic Atmospheric Correction Online Service for InSAR (GACOS tropospheric delay maps to correct the atmospheric phase delay of the differential interferometric synthetic aperture radar (D-InSAR monitoring, and we improved the accuracy of subsidence monitoring using D-InSAR technology. Atmospheric phase delay, as one of the most important errors that limit the monitoring accuracy of InSAR, would lead to the masking of true phase in subsidence monitoring. For the problem, this paper used the Sentinel-1A images and the tropospheric delay maps got from GACOS to monitor the subsidence of the Yellow River Delta in Shandong Province. The conventional D-InSAR processing was performed using the GAMMA software. The MATLAB codes were used to correct the atmospheric delay of the D-InSAR results. The results before and after the atmospheric phase delay correction were verified and analyzed in the main subsidence area. The experimental results show that atmospheric phase influences the deformation results to a certain extent. After the correction, the measurement error of vertical deformation is reduced by about 18 mm, which proves that the removal of atmospheric effects can improve the accuracy of the D-InSAR monitoring.

  15. Correction

    CERN Multimedia

    2002-01-01

    Tile Calorimeter modules stored at CERN. The larger modules belong to the Barrel, whereas the smaller ones are for the two Extended Barrels. (The article was about the completion of the 64 modules for one of the latter.) The photo on the first page of the Bulletin n°26/2002, from 24 July 2002, illustrating the article «The ATLAS Tile Calorimeter gets into shape» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.

  16. Wormholes in higher dimensions with non-linear curvature terms from quantum gravity corrections

    Energy Technology Data Exchange (ETDEWEB)

    El-Nabulsi, Ahmad Rami [Neijiang Normal University, Neijiang, Sichuan (China)

    2011-11-15

    In this work, we discuss a 7-dimensional universe in the presence of a static traversable wormhole and a decaying cosmological constant and dominated by higher-order curvature effects expected from quantum gravity corrections. We confirmed the existence of wormhole solutions in the form of the Lovelock gravity. Many interesting and attractive features are discussed in some detail.

  17. Multibunch emittance growth and its corrections in S-Band linear collider

    International Nuclear Information System (INIS)

    Gao, J.

    1994-11-01

    Multibunch emittance growths caused by long range wake fields with the misalignments of accelerating structures and quadrupoles in S-Band linear collider are studied. Tolerances for the misalignment errors of accelerating structures and quadrupoles are given corresponding to different detuned+damped structures. At the end of main linac, emittance corrector (EC) is proposed to be used to reduce further the multibunch emittance. Numerical simulations show that the effect of EC is obvious (multibunch emittance can be reduced about one order of magnitude), and it is believed that this kind of EC will be necessary for future linear colliders. (author). 16 refs., 21 figs., 4 tabs

  18. Excited-state lifetime measurements: Linearization of the Foerster equation by the phase-plane method

    International Nuclear Information System (INIS)

    Love, J.C.; Demas, J.N.

    1983-01-01

    The Foerster equation describes excited-state decay curves involving resonance intermolecular energy transfer. A linearized solution based on the phase-plane method has been developed. The new method is quick, insensitive to the fitting region, accurate, and precise

  19. Linearized FUN3D for Rapid Aeroelastic and Aeroservoelastic Design and Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this Phase I project is to develop a hybrid approach in FUN3D, referred herein to as the Linearized FUN3D, for rapid aeroelastic and...

  20. Research on the Phase Aberration Correction with a Deformable Mirror Controlled by a Genetic Algorithm

    International Nuclear Information System (INIS)

    Yang, P; Hu, S J; Chen, S Q; Yang, W; Xu, B; Jiang, W H

    2006-01-01

    In order to improve laser beam quality, a real number encoding genetic algorithm based on adaptive optics technology was presented. This algorithm was applied to control a 19-channel deformable mirror to correct phase aberration in laser beam. It is known that when traditional adaptive optics system is used to correct laser beam wave-front phase aberration, a precondition is to measure the phase aberration information in the laser beam. However, using genetic algorithms, there is no necessary to know the phase aberration information in the laser beam beforehand. The only parameter need to know is the Light intensity behind the pinhole on the focal plane. This parameter was used as the fitness function for the genetic algorithm. Simulation results show that the optimal shape of the 19-channel deformable mirror applied to correct the phase aberration can be ascertained. The peak light intensity was improved by a factor of 21, and the encircled energy strehl ratio was increased to 0.34 from 0.02 as the phase aberration was corrected with this technique

  1. Bounded distance decoding of linear error-correcting codes with Gröbner bases

    NARCIS (Netherlands)

    Bulygin, S.; Pellikaan, G.R.

    2009-01-01

    The problem of bounded distance decoding of arbitrary linear codes using Gröbner bases is addressed. A new method is proposed, which is based on reducing an initial decoding problem to solving a certain system of polynomial equations over a finite field. The peculiarity of this system is that, when

  2. Correction

    Directory of Open Access Journals (Sweden)

    2012-01-01

    Full Text Available Regarding Gorelik, G., & Shackelford, T.K. (2011. Human sexual conflict from molecules to culture. Evolutionary Psychology, 9, 564–587: The authors wish to correct an omission in citation to the existing literature. In the final paragraph on p. 570, we neglected to cite Burch and Gallup (2006 [Burch, R. L., & Gallup, G. G., Jr. (2006. The psychobiology of human semen. In S. M. Platek & T. K. Shackelford (Eds., Female infidelity and paternal uncertainty (pp. 141–172. New York: Cambridge University Press.]. Burch and Gallup (2006 reviewed the relevant literature on FSH and LH discussed in this paragraph, and should have been cited accordingly. In addition, Burch and Gallup (2006 should have been cited as the originators of the hypothesis regarding the role of FSH and LH in the semen of rapists. The authors apologize for this oversight.

  3. Correction

    CERN Multimedia

    2002-01-01

    The photo on the second page of the Bulletin n°48/2002, from 25 November 2002, illustrating the article «Spanish Visit to CERN» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.   The Spanish delegation, accompanied by Spanish scientists at CERN, also visited the LHC superconducting magnet test hall (photo). From left to right: Felix Rodriguez Mateos of CERN LHC Division, Josep Piqué i Camps, Spanish Minister of Science and Technology, César Dopazo, Director-General of CIEMAT (Spanish Research Centre for Energy, Environment and Technology), Juan Antonio Rubio, ETT Division Leader at CERN, Manuel Aguilar-Benitez, Spanish Delegate to Council, Manuel Delfino, IT Division Leader at CERN, and Gonzalo León, Secretary-General of Scientific Policy to the Minister.

  4. Correction

    Directory of Open Access Journals (Sweden)

    2014-01-01

    Full Text Available Regarding Tagler, M. J., and Jeffers, H. M. (2013. Sex differences in attitudes toward partner infidelity. Evolutionary Psychology, 11, 821–832: The authors wish to correct values in the originally published manuscript. Specifically, incorrect 95% confidence intervals around the Cohen's d values were reported on page 826 of the manuscript where we reported the within-sex simple effects for the significant Participant Sex × Infidelity Type interaction (first paragraph, and for attitudes toward partner infidelity (second paragraph. Corrected values are presented in bold below. The authors would like to thank Dr. Bernard Beins at Ithaca College for bringing these errors to our attention. Men rated sexual infidelity significantly more distressing (M = 4.69, SD = 0.74 than they rated emotional infidelity (M = 4.32, SD = 0.92, F(1, 322 = 23.96, p < .001, d = 0.44, 95% CI [0.23, 0.65], but there was little difference between women's ratings of sexual (M = 4.80, SD = 0.48 and emotional infidelity (M = 4.76, SD = 0.57, F(1, 322 = 0.48, p = .29, d = 0.08, 95% CI [−0.10, 0.26]. As expected, men rated sexual infidelity (M = 1.44, SD = 0.70 more negatively than they rated emotional infidelity (M = 2.66, SD = 1.37, F(1, 322 = 120.00, p < .001, d = 1.12, 95% CI [0.85, 1.39]. Although women also rated sexual infidelity (M = 1.40, SD = 0.62 more negatively than they rated emotional infidelity (M = 2.09, SD = 1.10, this difference was not as large and thus in the evolutionary theory supportive direction, F(1, 322 = 72.03, p < .001, d = 0.77, 95% CI [0.60, 0.94].

  5. MD1831: Single Bunch Instabilities with Q" and Non-Linear Corrections

    CERN Document Server

    Carver, Lee Robert; De Maria, Riccardo; Li, Kevin Shing Bruce; Amorim, David; Biancacci, Nicolo; Buffat, Xavier; Maclean, Ewen Hamish; Metral, Elias; Lasocha, Kacper; Lefevre, Thibaut; Levens, Tom; Salvant, Benoit; CERN. Geneva. ATS Department

    2017-01-01

    During MD1751, it was observed that both a full single beam and 964 non-colliding bunches in Beam 1 (B1) and Beam 2 (B2) were both stable at the End of Squeeze (EOS) for 0A in the Landau Octupoles. At ß* = 40cm there is also a significant Q" arising from the lattice, as well as uncorrected non-linearities in the Insertion Regions (IRs). Each of these effects could be capable of fully stabilising the beam. This MD made first use of a Q" knob through variation of the Main Sextupoles (MS) by stabilising a single bunch at Flat Top, before showing at EOS that the non-linearities were the main contributors to the beam stability.

  6. SELECTION OF LINEAR DEMAND FUNCTION PARAMETERS FOR ENSURING THE CORRECT SUBSTITUTION EFFECT CALCULATION

    Directory of Open Access Journals (Sweden)

    V. Popov

    2013-03-01

    Full Text Available In the course of microeconomics it is convenient to use additive functions of requirements in educational purposes, in which the volume of requirements is set by the linear function of the price, revenue and other factors. But in arriving at the substitution effect there is a number of problems in which impossible answers come out. The formula adjustment concluded by the author, which will allow to avoid contradictions, is described in the article.

  7. Experimental dead time corrections for a linear position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Yelon, W.B.; Tompson, C.W.; Mildner, D.F.R.; Berliner, R.; Missouri Univ., Columbia

    1984-01-01

    Two simple counters included in the charge-digitization circuitry of a position-sensitive proportional counter using the charge division method for position encoding have enabled us to determine the dead time losses for the system. An interesting positional dependence of the dead time tau is observed, which agrees with a simple model. The system enables us to correct the experimental data for dead time and to be indifferent to the relatively slow analog-to-digital converters used in the system. (orig.)

  8. Design and Implementation of a linear-phase equalizer in digital audio signal processing

    NARCIS (Netherlands)

    Slump, Cornelis H.; van Asma, C.G.M.; Barels, J.K.P.; Barels, J.K.P.; Brunink, W.J.A; Drenth, F.B.; Pol, J.V.; Schouten, D.S.; Samsom, M.M.; Samsom, M.M.; Herrmann, O.E.

    1992-01-01

    This contribution presents the four phases of a project aiming at the realization in VLSI of a digital audio equalizer with a linear phase characteristic. The first step includes the identification of the system requirements, based on experience and (psycho-acoustical) literature. Secondly, the

  9. Evaluation on correction factor for in-line X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Mingli; Huang, Zhifeng; Zhang, Li; Zhang, Ran [Tsinghua Univ., Beijing (China). Dept. of Engineering Physics; Ministry of Education, Beijing (China). Key Laboratory of Particle and Radiation Imaging; Yin, Hongxia; Liu, Yunfu; Wang, Zhenchang [Capital Medical Univ., Beijing (China). Medical Imaging Center; Xiao, Tiqiao [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics

    2011-07-01

    X-ray in-line phase contrast computed tomography (CT) is an effective nondestructive tool, providing 3D distribution of the refractive index of weakly absorbing low-Z object with high resolution and image contrast, especially with high-brilliance third-generation synchrotron radiation sources. Modified Bronnikov's algorithm (MBA), one of the in-line phase contrast CT reconstruction algorithms, can reconstruct the refractive index distribution of a pure phase object with a single computed tomographic data set. The key idea of the MBA is to use a correction factor in the filter function to stabilize the behavior at low frequencies. In this paper, we evaluate the influences of the correction factor to the final reconstruction results of the absorption-phase-mixed objects with analytical simulation and actual experiments. The limitations of the MBA are discussed finally. (orig.)

  10. Correction of nonlinear distortion in high-transverse-emittance ratio-beam production with linear accelerator

    Directory of Open Access Journals (Sweden)

    Shaoheng Wang

    2008-05-01

    Full Text Available Derbenev proposed producing a high quality flat beam of high-transverse-emittance ratio (HTER with a linear accelerator. Kim also discussed the round-to-flat transformation of angular-momentum-dominated beam. Fermilab/NICADD Photoinjector Laboratory has performed many experiments on HTER beam production. Experiments and simulations, collectively, showed an S-shaped transverse distribution in the flat beam. In this paper, the source of this emittance deterioration in the transformation is identified as the nonlinear rf cavity focusing force; and a solution is proposed.

  11. On the p4-corrections to K → 3π decay amplitudes in nonlinear and linear chiral models

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Bolnn, G.; Lanyov, A.V.; Schaale, A.

    1993-09-01

    The calculations of isotopic amplitudes and their results for the direct CP-violating charge asymmetry in K ± → 3π decays within the nonlinear and linear (σ-model) chiral Lagrangian approach are compared with each other. It is shown, that the latter, taking into account intermediate scalar resonances, does not reproduce the p 4 -corrections of the nonlinear approach introduced by Gasser and Leutwyler, being saturated mainly by vector resonance exchange. The resulting differences concerning the CP violation effect are traced in some detail. (author). 31 refs., 1 tab

  12. Active phase correction of high resolution silicon photonic arrayed waveguide gratings.

    Science.gov (United States)

    Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C

    2017-03-20

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

  13. Blind phase retrieval for aberrated linear shift-invariant imaging systems

    International Nuclear Information System (INIS)

    Yu, Rotha P; Paganin, David M

    2010-01-01

    We develop a means to reconstruct an input complex coherent scalar wavefield, given a through focal series (TFS) of three intensity images output from a two-dimensional (2D) linear shift-invariant optical imaging system with unknown aberrations. This blind phase retrieval technique unites two methods, namely (i) TFS phase retrieval and (ii) iterative blind deconvolution. The efficacy of our blind phase retrieval procedure has been demonstrated using simulated data, for a variety of Poisson noise levels.

  14. In-line phase retarder and polarimeter for conversion of linear to circular polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Smith, N.V.; Denlinger, J.D. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structural (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.

  15. Improved Phase Corrections for Transoceanic Tsunami Data in Spatial and Temporal Source Estimation: Application to the 2011 Tohoku Earthquake

    Science.gov (United States)

    Ho, Tung-Cheng; Satake, Kenji; Watada, Shingo

    2017-12-01

    Systemic travel time delays of up to 15 min relative to the linear long waves for transoceanic tsunamis have been reported. A phase correction method, which converts the linear long waves into dispersive waves, was previously proposed to consider seawater compressibility, the elasticity of the Earth, and gravitational potential change associated with tsunami motion. In the present study, we improved this method by incorporating the effects of ocean density stratification, actual tsunami raypath, and actual bathymetry. The previously considered effects amounted to approximately 74% for correction of the travel time delay, while the ocean density stratification, actual raypath, and actual bathymetry, contributed to approximately 13%, 4%, and 9% on average, respectively. The improved phase correction method accounted for almost all the travel time delay at far-field stations. We performed single and multiple time window inversions for the 2011 Tohoku tsunami using the far-field data (>3 h travel time) to investigate the initial sea surface displacement. The inversion result from only far-field data was similar to but smoother than that from near-field data and all stations, including a large sea surface rise increasing toward the trench followed by a migration northward along the trench. For the forward simulation, our results showed good agreement between the observed and computed waveforms at both near-field and far-field tsunami gauges, as well as with satellite altimeter data. The present study demonstrates that the improved method provides a more accurate estimate for the waveform inversion and forward prediction of far-field data.

  16. First-order corrections to random-phase approximation GW calculations in silicon and diamond

    NARCIS (Netherlands)

    Ummels, R.T.M.; Bobbert, P.A.; van Haeringen, W.

    1998-01-01

    We report on ab initio calculations of the first-order corrections in the screened interaction W to the random-phase approximation polarizability and to the GW self-energy, using a noninteracting Green's function, for silicon and diamond. It is found that the first-order vertex and self-consistency

  17. Chromaticity correction in the TRISTAN phase I main ring version 11

    International Nuclear Information System (INIS)

    Wu, Yingzhi.

    1984-05-01

    This report deals with chromaticity correction in the TRISTAN phase I main ring version 11. The program PATRICIA is used to track the trajectories of test particles over 2000 turns. The results show that particles with transverse initial amplitudes of at least 11 σ in both planes and with a synchrotron oscillation amplitude of 7 σsub(e) remain stable. (author)

  18. Simplified fringe order correction for absolute phase maps recovered with multiple-spatial-frequency fringe projections

    International Nuclear Information System (INIS)

    Ding, Yi; Peng, Kai; Lu, Lei; Zhong, Kai; Zhu, Ziqi

    2017-01-01

    Various kinds of fringe order errors may occur in the absolute phase maps recovered with multi-spatial-frequency fringe projections. In existing methods, multiple successive pixels corrupted by fringe order errors are detected and corrected pixel-by-pixel with repeating searches, which is inefficient for applications. To improve the efficiency of multiple successive fringe order corrections, in this paper we propose a method to simplify the error detection and correction by the stepwise increasing property of fringe order. In the proposed method, the numbers of pixels in each step are estimated to find the possible true fringe order values, repeating the search in detecting multiple successive errors can be avoided for efficient error correction. The effectiveness of our proposed method is validated by experimental results. (paper)

  19. Size-corrected BMD decreases during peak linear growth: implications for fracture incidence during adolescence.

    Science.gov (United States)

    Faulkner, Robert A; Davison, K Shawn; Bailey, Donald A; Mirwald, Robert L; Baxter-Jones, Adam D G

    2006-12-01

    Peak adolescent fracture incidence at the distal end of the radius coincides with a decline in size-corrected BMD in both boys and girls. Peak gains in bone area preceded peak gains in BMC in a longitudinal sample of boys and girls, supporting the theory that the dissociation between skeletal expansion and skeletal mineralization results in a period of relative bone weakness. The high incidence of fracture in adolescence may be related to a period of relative skeletal fragility resulting from dissociation between bone expansion and bone mineralization during the growing years. The aim of this study was to examine the relationship between changes in size-corrected BMD (BMDsc) and peak distal radius fracture incidence in boys and girls. Subjects were 41 boys and 46 girls measured annually (DXA; Hologic 2000) over the adolescent growth period and again in young adulthood. Ages of peak height velocity (PHV), peak BMC velocity (PBMCV), and peak bone area (BA) velocity (PBAV) were determined for each child. To control for maturational differences, subjects were aligned on PHV. BMDsc was calculated by first regressing the natural logarithms of BMC and BA. The power coefficient (pc) values from this analysis were used as follows: BMDsc = BMC/BA(pc). BMDsc decreased significantly before the age of PHV and then increased until 4 years after PHV. The peak rates in radial fractures (reported from previous work) in both boys and girls coincided with the age of negative velocity in BMDsc; the age of peak BA velocity (PBAV) preceded the age of peak BMC velocity (PBMCV) by 0.5 years in both boys and girls. There is a clear dissociation between PBMCV and PBAV in boys and girls. BMDsc declines before age of PHV before rebounding after PHV. The timing of these events coincides directly with reported fracture rates of the distal end of the radius. Thus, the results support the theory that there is a period of relative skeletal weakness during the adolescent growth period caused, in

  20. Plateletpheresis efficiency and mathematical correction of software-derived platelet yield prediction: A linear regression and ROC modeling approach.

    Science.gov (United States)

    Jaime-Pérez, José Carlos; Jiménez-Castillo, Raúl Alberto; Vázquez-Hernández, Karina Elizabeth; Salazar-Riojas, Rosario; Méndez-Ramírez, Nereida; Gómez-Almaguer, David

    2017-10-01

    Advances in automated cell separators have improved the efficiency of plateletpheresis and the possibility of obtaining double products (DP). We assessed cell processor accuracy of predicted platelet (PLT) yields with the goal of a better prediction of DP collections. This retrospective proof-of-concept study included 302 plateletpheresis procedures performed on a Trima Accel v6.0 at the apheresis unit of a hematology department. Donor variables, software predicted yield and actual PLT yield were statistically evaluated. Software prediction was optimized by linear regression analysis and its optimal cut-off to obtain a DP assessed by receiver operating characteristic curve (ROC) modeling. Three hundred and two plateletpheresis procedures were performed; in 271 (89.7%) occasions, donors were men and in 31 (10.3%) women. Pre-donation PLT count had the best direct correlation with actual PLT yield (r = 0.486. P Simple correction derived from linear regression analysis accurately corrected this underestimation and ROC analysis identified a precise cut-off to reliably predict a DP. © 2016 Wiley Periodicals, Inc.

  1. Office of River Protection Integrated Safety Management System Phase 1 Verification Corrective Action Plan; FINAL

    International Nuclear Information System (INIS)

    CLARK, D.L.

    1999-01-01

    The purpose of this Corrective Action Plan is to demonstrate the OW planned and/or completed actions to implement ISMS as well as prepare for the RPP ISMS Phase II Verification scheduled for August, 1999. This Plan collates implied or explicit ORP actions identified in several key ISMS documents and aligns those actions and responsibilities perceived necessary to appropriately disposition all ISM Phase II preparation activities specific to the ORP. The objective will be to complete or disposition the corrective actions prior to the commencement of the ISMS Phase II Verification. Improvement products/tasks not slated for completion prior to the RPP Phase II verification will be incorporated as corrective actions into the Strategic System Execution Plan (SSEP) Gap Analysis. Many of the business and management systems that were reviewed in the ISMS Phase I verification are being modified to support the ORP transition and are being assessed through the SSEP. The actions and processes identified in the SSEP will support the development of the ORP and continued ISMS implementation as committed to be complete by end of FY-2000

  2. Office of River Protection Integrated Safety Management System Phase 1 Verification Corrective Action Plan

    International Nuclear Information System (INIS)

    CLARK, D.L.

    1999-01-01

    The purpose of this Corrective Action Plan is to demonstrate the OW planned and/or completed actions to implement ISMS as well as prepare for the RPP ISMS Phase II Verification scheduled for August, 1999. This Plan collates implied or explicit ORP actions identified in several key ISMS documents and aligns those actions and responsibilities perceived necessary to appropriately disposition all ISM Phase II preparation activities specific to the ORP. The objective will be to complete or disposition the corrective actions prior to the commencement of the ISMS Phase II Verification. Improvement products/tasks not slated for completion prior to the RPP Phase II verification will be incorporated as corrective actions into the Strategic System Execution Plan (SSEP) Gap Analysis. Many of the business and management systems that were reviewed in the ISMS Phase I verification are being modified to support the ORP transition and are being assessed through the SSEP. The actions and processes identified in the SSEP will support the development of the ORP and continued ISMS implementation as committed to be complete by end of FY-2000

  3. A study on two phase flows of linear compressors for the prediction of refrigerant leakage

    International Nuclear Information System (INIS)

    Hwang, Il Sun; Lee, Young Lim; Oh, Won Sik; Park, Kyeong Bae

    2015-01-01

    Usage of linear compressors is on the rise due to their high efficiency. In this paper, leakage of a linear compressor has been studied through numerical analysis and experiments. First, nitrogen leakage for a stagnant piston with fixed cylinder pressure as well as for a moving piston with fixed cylinder pressure was analyzed to verify the validity of the two-phase flow analysis model. Next, refrigerant leakage of a linear compressor in operation was finally predicted through 3-dimensional unsteady, two phase flow CFD (Computational fluid dynamics). According to the research results, the numerical analyses for the fixed cylinder pressure models were in good agreement with the experimental results. The refrigerant leakage of the linear compressor in operation mainly occurred through the oil exit and the leakage became negligible after about 0.4s following operation where the leakage became lower than 2.0x10 -4 kg/s.

  4. Group Lifting Structures For Multirate Filter Banks, II: Linear Phase Filter Banks

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, Christopher M [Los Alamos National Laboratory

    2008-01-01

    The theory of group lifting structures is applied to linear phase lifting factorizations for the two nontrivial classes of two-channel linear phase perfect reconstruction filter banks, the whole-and half-sample symmetric classes. Group lifting structures defined for the reversible and irreversible classes of whole-and half-sample symmetric filter banks are shown to satisfy the hypotheses of the uniqueness theorem for group lifting structures. It follows that linear phase lifting factorizations of whole-and half-sample symmetric filter banks are therefore independent of the factorization methods used to compute them. These results cover the specification of user-defined whole-sample symmetric filter banks in Part 2 of the ISO JPEG 2000 standard.

  5. Non-linear corrections to the time-covariance function derived from a multi-state chemical master equation.

    Science.gov (United States)

    Scott, M

    2012-08-01

    The time-covariance function captures the dynamics of biochemical fluctuations and contains important information about the underlying kinetic rate parameters. Intrinsic fluctuations in biochemical reaction networks are typically modelled using a master equation formalism. In general, the equation cannot be solved exactly and approximation methods are required. For small fluctuations close to equilibrium, a linearisation of the dynamics provides a very good description of the relaxation of the time-covariance function. As the number of molecules in the system decrease, deviations from the linear theory appear. Carrying out a systematic perturbation expansion of the master equation to capture these effects results in formidable algebra; however, symbolic mathematics packages considerably expedite the computation. The authors demonstrate that non-linear effects can reveal features of the underlying dynamics, such as reaction stoichiometry, not available in linearised theory. Furthermore, in models that exhibit noise-induced oscillations, non-linear corrections result in a shift in the base frequency along with the appearance of a secondary harmonic.

  6. Environment-assisted error correction of single-qubit phase damping

    International Nuclear Information System (INIS)

    Trendelkamp-Schroer, Benjamin; Helm, Julius; Strunz, Walter T.

    2011-01-01

    Open quantum system dynamics of random unitary type may in principle be fully undone. Closely following the scheme of environment-assisted error correction proposed by Gregoratti and Werner [J. Mod. Opt. 50, 915 (2003)], we explicitly carry out all steps needed to invert a phase-damping error on a single qubit. Furthermore, we extend the scheme to a mixed-state environment. Surprisingly, we find cases for which the uncorrected state is closer to the desired state than any of the corrected ones.

  7. Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.

    Science.gov (United States)

    Kumar, Dinesh; Kumar, P; Rai, K N

    2017-11-01

    This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Linearly interpolated sub-symbol optical phase noise suppression in CO-OFDM system.

    Science.gov (United States)

    Hong, Xuezhi; Hong, Xiaojian; He, Sailing

    2015-02-23

    An optical phase noise suppression algorithm, LI-SCPEC, based on phase linear interpolation and sub-symbol processing is proposed for CO-OFDM system. By increasing the temporal resolution of carrier phase tracking through dividing one symbol into several sub-blocks, i.e., sub-symbols, inter-carrier-interference (ICI) mitigation is achieved in the proposed algorithm. Linear interpolation is employed to obtain a reliable temporal reference for sub-symbol phase estimation. The new algorithm, with only a few number of sub-symbols (N(B) = 4), can provide a considerably larger laser linewidth tolerance than several other ICI mitigation algorithms as demonstrated by Monte-Carlo simulations. Numerical analysis verifies that the best performance is achieved with an optimal and moderate number of sub-symbols. Complexity analysis shows that the required number of complex-valued multiplications is independent of the number of sub-symbols used in the proposed algorithm.

  9. Self-correction of projector nonlinearity in phase-shifting fringe projection profilometry.

    Science.gov (United States)

    Lü, Fuxing; Xing, Shuo; Guo, Hongwei

    2017-09-01

    In phase-shifting fringe projection profilometry, the luminance nonlinearity of the used projector has been recognized as one of the most crucial factors decreasing the measurement accuracy. To solve this problem, this paper presents a self-correcting technique that allows us to suppress the effect of the projector nonlinearity in the absence of any calibration data regarding the projector intensities or regarding the phase errors. In its first step, the standard phase-shifting algorithm is used to recover the phases, as well as the background intensities and the modulations. Using these results enables normalizing the fringe patterns, for ridding them of the effects of the background and modulations. Second, we smooth the calculated phase map by use of a low-pass filter in order to remove the ripple-like phase errors induced by the projector nonlinearity. Third, we determine a polynomial representing the projector nonlinearity by fitting the curve of the normalized fringe intensities against the cosine values of the smoothed phases. Finally, we correct the phase errors using the curve just obtained. Doing these steps in an iterative way eventually results in a phase map and, further, a 3D shape with their artifacts induced by the projector nonlinearity suppressed significantly. Experimental results demonstrate that this technique offers some advantages over others. It does not require a prior calibration of the projector, thus being suitable for dealing with a time-variant nonlinearity; its pointwise operation protects the edges and details of the measurement results from being blurred; and it works well with very few fringe patterns and is efficient in image capturing.

  10. Quantum criticality of geometric phase in coupled optical cavity arrays under linear quench

    OpenAIRE

    Sarkar, Sujit

    2013-01-01

    The atoms trapped in microcavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We study the dynamics of the geometric phase of this system under the linear quenching process of laser field detuning which shows the XX criticality of the geometric phase in presence of single Rabi frequency oscillation. We also study the quantum criticality for different quenching rate in the presence of single or two Rabi frequencies osci...

  11. RCS estimation of linear and planar dipole phased arrays approximate model

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    In this book, the RCS of a parallel-fed linear and planar dipole array is derived using an approximate method. The signal propagation within the phased array system determines the radar cross section (RCS) of phased array. The reflection and transmission coefficients for a signal at different levels of the phased-in scattering array system depend on the impedance mismatch and the design parameters. Moreover the mutual coupling effect in between the antenna elements is an important factor. A phased array system comprises of radiating elements followed by phase shifters, couplers, and terminating load impedance. These components lead to respective impedances towards the incoming signal that travels through them before reaching receive port of the array system. In this book, the RCS is approximated in terms of array factor, neglecting the phase terms. The mutual coupling effect is taken into account. The dependence of the RCS pattern on the design parameters is analyzed. The approximate model is established as a...

  12. Correction of 157-nm lens based on phase ring aberration extraction method

    Science.gov (United States)

    Meute, Jeff; Rich, Georgia K.; Conley, Will; Smith, Bruce W.; Zavyalova, Lena V.; Cashmore, Julian S.; Ashworth, Dominic; Webb, James E.; Rich, Lisa

    2004-05-01

    Early manufacture and use of 157nm high NA lenses has presented significant challenges including: intrinsic birefringence correction, control of optical surface contamination, and the use of relatively unproven materials, coatings, and metrology. Many of these issues were addressed during the manufacture and use of International SEMATECH"s 0.85NA lens. Most significantly, we were the first to employ 157nm phase measurement interferometry (PMI) and birefringence modeling software for lens optimization. These efforts yielded significant wavefront improvement and produced one of the best wavefront-corrected 157nm lenses to date. After applying the best practices to the manufacture of the lens, we still had to overcome the difficulties of integrating the lens into the tool platform at International SEMATECH instead of at the supplier facility. After lens integration, alignment, and field optimization were complete, conventional lithography and phase ring aberration extraction techniques were used to characterize system performance. These techniques suggested a wavefront error of approximately 0.05 waves RMS--much larger than the 0.03 waves RMS predicted by 157nm PMI. In-situ wavefront correction was planned for in the early stages of this project to mitigate risks introduced by the use of development materials and techniques and field integration of the lens. In this publication, we document the development and use of a phase ring aberration extraction method for characterizing imaging performance and a technique for correcting aberrations with the addition of an optical compensation plate. Imaging results before and after the lens correction are presented and differences between actual and predicted results are discussed.

  13. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2013-01-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now

  14. Phase correction of electromagnetic coupling effects in cross-borehole EIT measurements

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2015-01-01

    Borehole EIT measurements in a broad frequency range (mHz to kHz) are used to study subsurface geophysical properties. However, accurate measurements have long been difficult because the required long electric cables introduce undesired inductive and capacitive coupling effects. Recently, it has been shown that such effects can successfully be corrected in the case of single-borehole measurements. The aim of this paper is to extend the previously developed correction procedure for inductive coupling during EIT measurements in a single borehole to cross-borehole EIT measurements with multiple borehole electrode chains. In order to accelerate and simplify the previously developed correction procedure for inductive coupling, a pole–pole matrix of mutual inductances is defined. This consists of the inductances of each individual chain obtained from calibration measurements and the inductances between two chains calculated from the known cable positions using numerical modelling. The new correction procedure is successfully verified with measurements in a water-filled pool under controlled conditions where the errors introduced by capacitive coupling were well-defined and could be estimated by FEM forward modelling. In addition, EIT field measurements demonstrate that the correction methods increase the phase accuracy considerably. Overall, the phase accuracy of cross-hole EIT measurements after correction of inductive and capacitive coupling is improved to better than 1 mrad up to a frequency of 1 kHz, which substantially improves our ability to characterize the frequency-dependent complex electrical resistivity of weakly polarizable soils and sediments in situ. (paper)

  15. Nonlinear Correction Schemes for the Phase 1 LHC Insertion Region Upgrade and Dynamic Aperture Studies

    CERN Document Server

    de Maria, R; Tomás, R

    2009-01-01

    The Phase 1 LHC Interaction Region (IR) upgrade aims at increasing the machine luminosity essentially by reducing the beam size at the Interaction Point (IP). This requires a total redesign of the full IR. A large set of options has been proposed with conceptually different designs. This paper reports on a general approach for the compensation of the multipolar errors of the IR magnets in the design phase. The goal is to use the same correction approach for the different designs. The correction algorithm is based on the minimization of the differences between the IR transfer map with errors and the design IR transfer map. Its performance is tested using the dynamic aperture as figure of merit. The relation between map coefficients and resonance terms is also given as a way to target particular resonances by selecting the right map coefficients. The dynamic aperture is studied versus magnet aperture using recently established relations between magnetic errors and magnet aperture.

  16. Fringe order error in multifrequency fringe projection phase unwrapping: reason and correction.

    Science.gov (United States)

    Zhang, Chunwei; Zhao, Hong; Zhang, Lu

    2015-11-10

    A multifrequency fringe projection phase unwrapping algorithm (MFPPUA) is important to fringe projection profilometry, especially when a discontinuous object is measured. However, a fringe order error (FOE) may occur when MFPPUA is adopted. An FOE will result in error to the unwrapped phase. Although this kind of phase error does not spread, it brings error to the eventual 3D measurement results. Therefore, an FOE or its adverse influence should be obviated. In this paper, reasons for the occurrence of an FOE are theoretically analyzed and experimentally explored. Methods to correct the phase error caused by an FOE are proposed. Experimental results demonstrate that the proposed methods are valid in eliminating the adverse influence of an FOE.

  17. Quantum corrections for the phase diagram of systems with competing order

    Science.gov (United States)

    Silva, N. L., Jr.; Continentino, Mucio A.; Barci, Daniel G.

    2018-06-01

    We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu2Si2. Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.

  18. PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Umetsu, Keiichi; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Proty Wu, Jiun-Huei; Cheng, Tai-An; Fu, Szu-Yuan; Wang, Fu-Cheng [Department of Physics, Institute of Astrophysics, and Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Liu, Guo-Chin [Department of Physics, Tamkang University, 251-37 Tamsui, New Taipei City, Taiwan (China); Molnar, Sandor M. [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Yu-Yen, E-mail: ywliao@asiaa.sinica.edu.tw, E-mail: jhpw@phys.ntu.edu.tw [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2013-05-20

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  19. Quantum corrections for the phase diagram of systems with competing order.

    Science.gov (United States)

    Silva, N L; Continentino, Mucio A; Barci, Daniel G

    2018-06-06

    We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu 2 Si 2 . Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.

  20. PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER

    International Nuclear Information System (INIS)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Umetsu, Keiichi; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter; Proty Wu, Jiun-Huei; Cheng, Tai-An; Fu, Szu-Yuan; Wang, Fu-Cheng; Liu, Guo-Chin; Molnar, Sandor M.; Chang, Yu-Yen

    2013-01-01

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  1. Platform Deformation Phase Correction for the AMiBA-13 Coplanar Interferometer

    Science.gov (United States)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Proty Wu, Jiun-Huei; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Cheng, Tai-An; Fu, Szu-Yuan; Liu, Guo-Chin; Molnar, Sandor M.; Umetsu, Keiichi; Wang, Fu-Cheng; Chang, Yu-Yen; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter

    2013-05-01

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  2. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-09-25

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  3. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali; Choi, Yun Seok

    2012-01-01

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  4. Internal correction of spectral interferences and mass bias for selenium metabolism studies using enriched stable isotopes in combination with multiple linear regression.

    Science.gov (United States)

    Lunøe, Kristoffer; Martínez-Sierra, Justo Giner; Gammelgaard, Bente; Alonso, J Ignacio García

    2012-03-01

    The analytical methodology for the in vivo study of selenium metabolism using two enriched selenium isotopes has been modified, allowing for the internal correction of spectral interferences and mass bias both for total selenium and speciation analysis. The method is based on the combination of an already described dual-isotope procedure with a new data treatment strategy based on multiple linear regression. A metabolic enriched isotope ((77)Se) is given orally to the test subject and a second isotope ((74)Se) is employed for quantification. In our approach, all possible polyatomic interferences occurring in the measurement of the isotope composition of selenium by collision cell quadrupole ICP-MS are taken into account and their relative contribution calculated by multiple linear regression after minimisation of the residuals. As a result, all spectral interferences and mass bias are corrected internally allowing the fast and independent quantification of natural abundance selenium ((nat)Se) and enriched (77)Se. In this sense, the calculation of the tracer/tracee ratio in each sample is straightforward. The method has been applied to study the time-related tissue incorporation of (77)Se in male Wistar rats while maintaining the (nat)Se steady-state conditions. Additionally, metabolically relevant information such as selenoprotein synthesis and selenium elimination in urine could be studied using the proposed methodology. In this case, serum proteins were separated by affinity chromatography while reverse phase was employed for urine metabolites. In both cases, (74)Se was used as a post-column isotope dilution spike. The application of multiple linear regression to the whole chromatogram allowed us to calculate the contribution of bromine hydride, selenium hydride, argon polyatomics and mass bias on the observed selenium isotope patterns. By minimising the square sum of residuals for the whole chromatogram, internal correction of spectral interferences and mass

  5. Real-time axial motion detection and correction for single photon emission computed tomography using a linear prediction filter

    International Nuclear Information System (INIS)

    Saba, V.; Setayeshi, S.; Ghannadi-Maragheh, M.

    2011-01-01

    We have developed an algorithm for real-time detection and complete correction of the patient motion effects during single photon emission computed tomography. The algorithm is based on a linear prediction filter (LPC). The new prediction of projection data algorithm (PPDA) detects most motions-such as those of the head, legs, and hands-using comparison of the predicted and measured frame data. When the data acquisition for a specific frame is completed, the accuracy of the acquired data is evaluated by the PPDA. If patient motion is detected, the scanning procedure is stopped. After the patient rests in his or her true position, data acquisition is repeated only for the corrupted frame and the scanning procedure is continued. Various experimental data were used to validate the motion detection algorithm; on the whole, the proposed method was tested with approximately 100 test cases. The PPDA shows promising results. Using the PPDA enables us to prevent the scanner from collecting disturbed data during the scan and replaces them with motion-free data by real-time rescanning for the corrupted frames. As a result, the effects of patient motion is corrected in real time. (author)

  6. Correction of the significance level when attempting multiple transformations of an explanatory variable in generalized linear models

    Science.gov (United States)

    2013-01-01

    Background In statistical modeling, finding the most favorable coding for an exploratory quantitative variable involves many tests. This process involves multiple testing problems and requires the correction of the significance level. Methods For each coding, a test on the nullity of the coefficient associated with the new coded variable is computed. The selected coding corresponds to that associated with the largest statistical test (or equivalently the smallest pvalue). In the context of the Generalized Linear Model, Liquet and Commenges (Stat Probability Lett,71:33–38,2005) proposed an asymptotic correction of the significance level. This procedure, based on the score test, has been developed for dichotomous and Box-Cox transformations. In this paper, we suggest the use of resampling methods to estimate the significance level for categorical transformations with more than two levels and, by definition those that involve more than one parameter in the model. The categorical transformation is a more flexible way to explore the unknown shape of the effect between an explanatory and a dependent variable. Results The simulations we ran in this study showed good performances of the proposed methods. These methods were illustrated using the data from a study of the relationship between cholesterol and dementia. Conclusion The algorithms were implemented using R, and the associated CPMCGLM R package is available on the CRAN. PMID:23758852

  7. Deconfinement and Phase Diagram of Bosons in a Linear Optical Lattice with a Particle Reservoir

    International Nuclear Information System (INIS)

    Majumdar, Kingshuk; Fertig, H.A.

    2005-01-01

    We investigate the zero-temperature phases of bosons in a one-dimensional optical lattice with an explicit tunnel coupling to a Bose-condensed particle reservoir. Renormalization group analysis of this system is shown to reveal three phases: one in which the linear system is fully phase locked to the reservoir; one in which Josephson vortices between the one-dimensional system and the particle reservoir deconfine due to quantum fluctuations, leading to a decoupled state in which the one-dimensional system is metallic; and one in which the one-dimensional system is in a Mott insulating state

  8. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    Energy Technology Data Exchange (ETDEWEB)

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl [Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Flohr, Thomas [Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Institute of Diagnostic Radiology, Eberhard Karls University, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)

    2013-03-15

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum

  9. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    International Nuclear Information System (INIS)

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl; Flohr, Thomas

    2013-01-01

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phase (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum

  10. Critical linear thermal expansion in the smectic-A phase near the nematic-smectic phase transition.

    Science.gov (United States)

    Anesta, E; Iannacchione, G S; Garland, C W

    2004-10-01

    Recent high-resolution x-ray investigations of the smectic- A (SmA) phase near the nematic-to-SmA transition provide information about the critical behavior of the linear thermal expansion coefficient alpha// parallel to the director. Combining such data with available volume thermal expansion alpha(V) data yields the in-plane linear expansion coefficient alpha(perpendicular) . The critical behaviors of alpha// and alpha(perpendicular) are the same as those for alpha(V) and the heat capacity Cp. However, for any given liquid crystal, alpha//(crit) and alpha(perpendicular)(crit) differ in sign. Furthermore, the quantity alpha// (crit) is positive for SmAd partial bilayer smectics, while it is negative for nonpolar SmAm monomeric smectics. This feature is discussed in terms of the molecular structural aspects of these smectic phases.

  11. Prospects for versatile phase manipulation in the TEM: Beyond aberration correction

    International Nuclear Information System (INIS)

    Guzzinati, Giulio; Clark, Laura; Béché, Armand; Juchtmans, Roeland; Van Boxem, Ruben; Mazilu, Michael; Verbeeck, Jo

    2015-01-01

    In this paper we explore the desirability of a transmission electron microscope in which the phase of the electron wave can be freely controlled. We discuss different existing methods to manipulate the phase of the electron wave and their limitations. We show how with the help of current techniques the electron wave can already be crafted into specific classes of waves each having their own peculiar properties. Assuming a versatile phase modulation device is feasible, we explore possible benefits and methods that could come into existence borrowing from light optics where the so-called spatial light modulators provide programmable phase plates for quite some time now. We demonstrate that a fully controllable phase plate building on Harald Rose's legacy in aberration correction and electron optics in general would open an exciting field of research and applications. - Highlights: • We offer a review of available phase manipulation techniques. • We demonstrate a method for producing Airy waves through aberration manipulation. • We outline hypothetical applications of arbitrary phase manipulation methods

  12. Nonlinear effect of the structured light profilometry in the phase-shifting method and error correction

    International Nuclear Information System (INIS)

    Zhang Wan-Zhen; Chen Zhe-Bo; Xia Bin-Feng; Lin Bin; Cao Xiang-Qun

    2014-01-01

    Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector–camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Note: An improved calibration system with phase correction for electronic transformers with digital output.

    Science.gov (United States)

    Cheng, Han-miao; Li, Hong-bin

    2015-08-01

    The existing electronic transformer calibration systems employing data acquisition cards cannot satisfy some practical applications, because the calibration systems have phase measurement errors when they work in the mode of receiving external synchronization signals. This paper proposes an improved calibration system scheme with phase correction to improve the phase measurement accuracy. We employ NI PCI-4474 to design a calibration system, and the system has the potential to receive external synchronization signals and reach extremely high accuracy classes. Accuracy verification has been carried out in the China Electric Power Research Institute, and results demonstrate that the system surpasses the accuracy class 0.05. Furthermore, this system has been used to test the harmonics measurement accuracy of all-fiber optical current transformers. In the same process, we have used an existing calibration system, and a comparison of the test results is presented. The system after improvement is suitable for the intended applications.

  14. Note: An improved calibration system with phase correction for electronic transformers with digital output

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Han-miao, E-mail: chenghanmiao@hust.edu.cn; Li, Hong-bin, E-mail: lihongbin@hust.edu.cn [CEEE of Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan 430074 (China)

    2015-08-15

    The existing electronic transformer calibration systems employing data acquisition cards cannot satisfy some practical applications, because the calibration systems have phase measurement errors when they work in the mode of receiving external synchronization signals. This paper proposes an improved calibration system scheme with phase correction to improve the phase measurement accuracy. We employ NI PCI-4474 to design a calibration system, and the system has the potential to receive external synchronization signals and reach extremely high accuracy classes. Accuracy verification has been carried out in the China Electric Power Research Institute, and results demonstrate that the system surpasses the accuracy class 0.05. Furthermore, this system has been used to test the harmonics measurement accuracy of all-fiber optical current transformers. In the same process, we have used an existing calibration system, and a comparison of the test results is presented. The system after improvement is suitable for the intended applications.

  15. Correction of phase-shifting error in wavelength scanning digital holographic microscopy

    Science.gov (United States)

    Zhang, Xiaolei; Wang, Jie; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-05-01

    Digital holographic microscopy is a promising method for measuring complex micro-structures with high slopes. A quasi-common path interferometric apparatus is adopted to overcome environmental disturbances, and an acousto-optic tunable filter is used to obtain multi-wavelength holograms. However, the phase shifting error caused by the acousto-optic tunable filter reduces the measurement accuracy and, in turn, the reconstructed topographies are erroneous. In this paper, an accurate reconstruction approach is proposed. It corrects the phase-shifting errors by minimizing the difference between the ideal interferograms and the recorded ones. The restriction on the step number and uniformity of the phase shifting is relaxed in the interferometry, and the measurement accuracy for complex surfaces can also be improved. The universality and superiority of the proposed method are demonstrated by practical experiments and comparison to other measurement methods.

  16. Testing of advanced technique for linear lattice and closed orbit correction by modeling its application for iota ring at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab

    2016-10-09

    Many modern and most future accelerators rely on precise configuration of lattice and trajectory. The Integrable Optics Test Accelerator (IOTA) at Fermilab that is coming to final stages of construction will be used to test advanced approaches of control over particles dynamics. Various experiments planned at IOTA require high flexibility of lattice configuration as well as high precision of lattice and closed orbit control. Dense element placement does not allow to have ideal configuration of diagnostics and correctors for all planned experiments. To overcome this limitations advanced method of lattice an beneficial for other machines. Developed algorithm is based on LOCO approach, extended with various sets of other experimental data, such as dispersion, BPM BPM phase advances, beam shape information from synchrotron light monitors, responses of closed orbit bumps to variations of focusing elements and other. Extensive modeling of corrections for a big number of random seed errors is used to illustrate benefits from developed approach.

  17. Non-linear behaviour of multi-phase MOX fuels: a micro-mechanical approach

    International Nuclear Information System (INIS)

    Rousette, S.; Gatt, J.M.; Michel, J.C.

    2005-01-01

    The modelling of mechanical pellet-clad interaction requires knowledge of the thermo-mechanical behaviour of nuclear fuels. Some nuclear fuels such as MOX are composed of several phases. The mechanical properties of these phases, which are elasto-visco-plastic in-pile, are changing in-pile. The objective is to formulate a mechanical behaviour law taking all the physical phenomena into account in the different phases, which can easily be introduced into a fuel rod modelling code. Consequently, Non-uniform Transformation Field Analysis (NTFA) is used on the one hand, to correctly capture the heterogeneity of the anelastic strain in the different phases and, on the other hand, to provide a simple overall constitutive law for computational codes. This method is a good way to describe the behaviour of MOX fuel. Transformation Field Analysis (TFA), which corresponds to piecewise uniform transformation fields, is used to perform a sensitivity study. (authors)

  18. Local blur analysis and phase error correction method for fringe projection profilometry systems.

    Science.gov (United States)

    Rao, Li; Da, Feipeng

    2018-05-20

    We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.

  19. Correcting Classifiers for Sample Selection Bias in Two-Phase Case-Control Studies

    Science.gov (United States)

    Theis, Fabian J.

    2017-01-01

    Epidemiological studies often utilize stratified data in which rare outcomes or exposures are artificially enriched. This design can increase precision in association tests but distorts predictions when applying classifiers on nonstratified data. Several methods correct for this so-called sample selection bias, but their performance remains unclear especially for machine learning classifiers. With an emphasis on two-phase case-control studies, we aim to assess which corrections to perform in which setting and to obtain methods suitable for machine learning techniques, especially the random forest. We propose two new resampling-based methods to resemble the original data and covariance structure: stochastic inverse-probability oversampling and parametric inverse-probability bagging. We compare all techniques for the random forest and other classifiers, both theoretically and on simulated and real data. Empirical results show that the random forest profits from only the parametric inverse-probability bagging proposed by us. For other classifiers, correction is mostly advantageous, and methods perform uniformly. We discuss consequences of inappropriate distribution assumptions and reason for different behaviors between the random forest and other classifiers. In conclusion, we provide guidance for choosing correction methods when training classifiers on biased samples. For random forests, our method outperforms state-of-the-art procedures if distribution assumptions are roughly fulfilled. We provide our implementation in the R package sambia. PMID:29312464

  20. Fresnel diffraction correction by phase-considered iteration procedure in soft X-ray projection microscopy

    International Nuclear Information System (INIS)

    Shiina, Tatsuo; Suzuki, Tsuyoshi; Honda, Toshio; Ito, Atsushi; Kinjo, Yasuhito; Yoshimura, Hideyuki; Yada, Keiji; Shinohara, Kunio

    2009-01-01

    In soft X-ray projection microscopy, it is easy to alter the magnification by changing the distance between the pinhole and the specimen, while the image is blurred because the soft X-rays are diffracted through the propagation from specimen to CCD detector. We corrected the blurred image by the iteration procedure of Fresnel to inverse Fresnel transformation taking phase distribution of the specimen into account. The experiments were conducted at the BL-11A of the Photon Factory, KEK, Japan for the specimens such as glass-capillaries, latex-particles, dried mammalian cells and human chromosomes. Many of those blurred images were corrected adequately by the iteration procedure, though some images such as those which have high-contrast or are overlapped by small cells still remain to be improved.

  1. Invited Review Article: Measurement uncertainty of linear phase-stepping algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Erwin [EMPA, Laboratory Electronics/Metrology/Reliability, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Burke, Jan [Australian Centre for Precision Optics, CSIRO (Commonwealth Scientific and Industrial Research Organisation) Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia)

    2011-06-15

    Phase retrieval techniques are widely used in optics, imaging and electronics. Originating in signal theory, they were introduced to interferometry around 1970. Over the years, many robust phase-stepping techniques have been developed that minimize specific experimental influence quantities such as phase step errors or higher harmonic components of the signal. However, optimizing a technique for a specific influence quantity can compromise its performance with regard to others. We present a consistent quantitative analysis of phase measurement uncertainty for the generalized linear phase stepping algorithm with nominally equal phase stepping angles thereby reviewing and generalizing several results that have been reported in literature. All influence quantities are treated on equal footing, and correlations between them are described in a consistent way. For the special case of classical N-bucket algorithms, we present analytical formulae that describe the combined variance as a function of the phase angle values. For the general Arctan algorithms, we derive expressions for the measurement uncertainty averaged over the full 2{pi}-range of phase angles. We also give an upper bound for the measurement uncertainty which can be expressed as being proportional to an algorithm specific factor. Tabular compilations help the reader to quickly assess the uncertainties that are involved with his or her technique.

  2. Voltage splay modes and enhanced phase locking in a modified linear Josephson array

    Science.gov (United States)

    Harris, E. B.; Garland, J. C.

    1997-02-01

    We analyze a modified linear Josephson-junction array in which additional unbiased junctions are used to greatly enhance phase locking. This geometry exhibits strong correlated behavior, with an external magnetic field tuning the voltage splay angle between adjacent Josephson oscillators. The array displays a coherent in-phase mode for f=, where f is the magnetic frustration, while for 0tolerant of critical current disorder approaching 100%. The stability of the array has also been studied by computing Floquet exponents. These exponents are found to be negative for all array lengths, with a 1/N2 dependence, N being the number of series-connected junctions.

  3. Microstrip linear phase low pass filter based on defected ground structures for partial response modulation

    DEFF Research Database (Denmark)

    Cimoli, Bruno; Johansen, Tom Keinicke; Olmos, Juan Jose Vegas

    2018-01-01

    We report a high performance linear phase low pass filter (LPF) designed for partial response (PR) modulations. For the implementation, we adopted microstrip technology and a variant of the standard stepped‐impedance technique. Defected ground structures (DGS) are used for increasing the characte......We report a high performance linear phase low pass filter (LPF) designed for partial response (PR) modulations. For the implementation, we adopted microstrip technology and a variant of the standard stepped‐impedance technique. Defected ground structures (DGS) are used for increasing...... the characteristic impedance of transmission lines. Experimental results prove that the proposed filter can successfully modulate a non‐return‐to‐zero (NRZ) signal into a five levels PR one....

  4. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    International Nuclear Information System (INIS)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-01-01

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code

  5. Radiation safety study for conventional facility and siting pre project phase of International Linear Collider

    International Nuclear Information System (INIS)

    Sanami, Toshiya; Ban, Syuichi; Sasaki, Shin-ichi

    2015-01-01

    The International Linear Collider (ILC) is a proposed high-energy collider consisting of two linear accelerators, two dumping rings, electron and positron sources, and a single colliding hall with two detectors. The total length and CMS energy of the ILC will be 31 km and 500 GeV, respectively (and 50 km and 1 TeV after future upgrade). The design of the ILC has entered the pre-project phase, which includes site-dependent design. Radiation safety design for the ILC is on-going as a part of conventional facility and siting activities of the pre-project phase. The thickness of a central wall of normal concrete is designed to be 3.5 m under a pessimistic assumption of beam loss. The beam loss scenario is under discussion. Experience and knowledge relating to shielding design and radiation control operational work at other laboratories are required. (authors)

  6. Micromechanics of transformation fields in ageing linear viscoelastic composites: effects of phase dissolution or precipitation

    Science.gov (United States)

    Honorio, Tulio

    2017-11-01

    Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.

  7. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-03-30

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code.

  8. An automated phase correction algorithm for retrieving permittivity and permeability of electromagnetic metamaterials

    Directory of Open Access Journals (Sweden)

    Z. X. Cao

    2014-06-01

    Full Text Available To retrieve complex-valued effective permittivity and permeability of electromagnetic metamaterials (EMMs based on resonant effect from scattering parameters using a complex logarithmic function is not inevitable. When complex values are expressed in terms of magnitude and phase, an infinite number of permissible phase angles is permissible due to the multi-valued property of complex logarithmic functions. Special attention needs to be paid to ensure continuity of the effective permittivity and permeability of lossy metamaterials as frequency sweeps. In this paper, an automated phase correction (APC algorithm is proposed to properly trace and compensate phase angles of the complex logarithmic function which may experience abrupt phase jumps near the resonant frequency region of the concerned EMMs, and hence the continuity of the effective optical properties of lossy metamaterials is ensured. The algorithm is then verified to extract effective optical properties from the simulated scattering parameters of the four different types of metamaterial media: a cut-wire cell array, a split ring resonator (SRR cell array, an electric-LC (E-LC resonator cell array, and a combined SRR and wire cell array respectively. The results demonstrate that the proposed algorithm is highly accurate and effective.

  9. Gait phase detection from sciatic nerve recordings in functional electrical stimulation systems for foot drop correction

    International Nuclear Information System (INIS)

    Chu, Jun-Uk; Song, Kang-Il; Han, Sungmin; Suh, Jun-Kyo Francis; Choi, Kuiwon; Youn, Inchan; Lee, Soo Hyun; Kang, Ji Yoon; Hwang, Dosik

    2013-01-01

    Cutaneous afferent activities recorded by a nerve cuff electrode have been used to detect the stance phase in a functional electrical stimulation system for foot drop correction. However, the implantation procedure was difficult, as the cuff electrode had to be located on the distal branches of a multi-fascicular nerve to exclude muscle afferent and efferent activities. This paper proposes a new gait phase detection scheme that can be applied to a proximal nerve root that includes cutaneous afferent fibers as well as muscle afferent and efferent fibers. To test the feasibility of this scheme, electroneurogram (ENG) signals were measured from the rat sciatic nerve during treadmill walking at several speeds, and the signal properties of the sciatic nerve were analyzed for a comparison with kinematic data from the ankle joint. On the basis of these experiments, a wavelet packet transform was tested to define a feature vector from the sciatic ENG signals according to the gait phases. We also propose a Gaussian mixture model (GMM) classifier and investigate whether it could be used successfully to discriminate feature vectors into the stance and swing phases. In spite of no significant differences in the rectified bin-integrated values between the stance and swing phases, the sciatic ENG signals could be reliably classified using the proposed wavelet packet transform and GMM classification methods. (paper)

  10. Exact solution to the Coulomb wave using the linearized phase-amplitude method

    Directory of Open Access Journals (Sweden)

    Shuji Kiyokawa

    2015-08-01

    Full Text Available The author shows that the amplitude equation from the phase-amplitude method of calculating continuum wave functions can be linearized into a 3rd-order differential equation. Using this linearized equation, in the case of the Coulomb potential, the author also shows that the amplitude function has an analytically exact solution represented by means of an irregular confluent hypergeometric function. Furthermore, it is shown that the exact solution for the Coulomb potential reproduces the wave function for free space expressed by the spherical Bessel function. The amplitude equation for the large component of the Dirac spinor is also shown to be the linearized 3rd-order differential equation.

  11. Linear and nonlinear optical signals in probability and phase-space representations

    International Nuclear Information System (INIS)

    Man'ko, Margarita A

    2006-01-01

    Review of different representations of signals including the phase-space representations and tomographic representations is presented. The signals under consideration are either linear or nonlinear ones. The linear signals satisfy linear quantumlike Schroedinger and von Neumann equations. Nonlinear signals satisfy nonlinear Schroedinger equations as well as Gross-Pitaevskii equation describing solitons in Bose-Einstein condensate. The Ville-Wigner distributions for solitons are considered in comparison with tomographic-probability densities describing solitons completely. different kinds of tomographies - symplectic tomography, optical tomography and Fresnel tomography are reviewed. New kind of map of the signals onto probability distributions of discrete photon number-like variable is discussed. Mutual relations between different transformations of signal functions are established in explicit form. Such characteristics of the signal-probability distribution as entropy is discussed

  12. High Efficiency Three-phase Power Factor Correction Rectifier using Wide Band-Gap Devices

    DEFF Research Database (Denmark)

    Kouchaki, Alireza

    Improving the conversion efficiency of power factor correction (PFC) rectifiers has become compelling due to their wide applications such as adjustable speed drives, uninterruptible power supplies (UPS), and battery chargers for electric vehicles (EVs). The attention to PFCs has increased even more....... Therefore, current controllers are also important to be investigated in this project. In this PhD research work, a comprehensive design of a two-level three-phase PFC rectifier using silicon-carbide (SiC) switches to achieve high efficiency is presented. The work is divided into two main parts: 1) Optimum...

  13. Lifted linear phase filter banks and the polyphase-with-advance representation

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C. M. (Christopher M.); Wohlberg, B. E. (Brendt E.)

    2004-01-01

    A matrix theory is developed for the noncausal polyphase-with-advance representation that underlies the theory of lifted perfect reconstruction filter banks and wavelet transforms as developed by Sweldens and Daubechies. This theory provides the fundamental lifting methodology employed in the ISO/IEC JPEG-2000 still image coding standard, which the authors helped to develop. Lifting structures for polyphase-with-advance filter banks are depicted in Figure 1. In the analysis bank of Figure 1(a), the first lifting step updates x{sub 0} with a filtered version of x{sub 1} and the second step updates x{sub 1} with a filtered version of x{sub 0}; gain factors 1/K and K normalize the lowpass- and highpass-filtered output subbands. Each of these steps is inverted by the corresponding operations in the synthesis bank shown in Figure 1(b). Lifting steps correspond to upper- or lower-triangular matrices, S{sub i}(z), in a cascade-form decomposition of the polyphase analysis matrix, H{sub a}(z). Lifting structures can also be implemented reversibly (i.e., losslessly in fixed-precision arithmetic) by rounding the lifting updates to integer values. Our treatment of the polyphase-with-advance representation develops an extensive matrix algebra framework that goes far beyond the results of. Specifically, we focus on analyzing and implementing linear phase two-channel filter banks via linear phase lifting cascade schemes. Whole-sample symmetric (WS) and half-sample symmetric (HS) linear phase filter banks are characterized completely in terms of the polyphase-with-advance representation. The theory benefits significantly from a number of new group-theoretic structures arising in the polyphase-with-advance matrix algebra from the lifting factorization of linear phase filter banks.

  14. Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures.

    Science.gov (United States)

    Alexeeff, Stacey E; Carroll, Raymond J; Coull, Brent

    2016-04-01

    Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Analysis of an automated background correction method for cardiovascular MR phase contrast imaging in children and young adults

    Energy Technology Data Exchange (ETDEWEB)

    Rigsby, Cynthia K.; Hilpipre, Nicholas; Boylan, Emma E.; Popescu, Andrada R.; Deng, Jie [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); McNeal, Gary R. [Siemens Medical Solutions USA Inc., Customer Solutions Group, Cardiovascular MR R and D, Chicago, IL (United States); Zhang, Gang [Ann and Robert H. Lurie Children' s Hospital of Chicago Research Center, Biostatistics Research Core, Chicago, IL (United States); Choi, Grace [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Greiser, Andreas [Siemens AG Healthcare Sector, Erlangen (Germany)

    2014-03-15

    Phase contrast magnetic resonance imaging (MRI) is a powerful tool for evaluating vessel blood flow. Inherent errors in acquisition, such as phase offset, eddy currents and gradient field effects, can cause significant inaccuracies in flow parameters. These errors can be rectified with the use of background correction software. To evaluate the performance of an automated phase contrast MRI background phase correction method in children and young adults undergoing cardiac MR imaging. We conducted a retrospective review of patients undergoing routine clinical cardiac MRI including phase contrast MRI for flow quantification in the aorta (Ao) and main pulmonary artery (MPA). When phase contrast MRI of the right and left pulmonary arteries was also performed, these data were included. We excluded patients with known shunts and metallic implants causing visible MRI artifact and those with more than mild to moderate aortic or pulmonary stenosis. Phase contrast MRI of the Ao, mid MPA, proximal right pulmonary artery (RPA) and left pulmonary artery (LPA) using 2-D gradient echo Fast Low Angle SHot (FLASH) imaging was acquired during normal respiration with retrospective cardiac gating. Standard phase image reconstruction and the automatic spatially dependent background-phase-corrected reconstruction were performed on each phase contrast MRI dataset. Non-background-corrected and background-phase-corrected net flow, forward flow, regurgitant volume, regurgitant fraction, and vessel cardiac output were recorded for each vessel. We compared standard non-background-corrected and background-phase-corrected mean flow values for the Ao and MPA. The ratio of pulmonary to systemic blood flow (Qp:Qs) was calculated for the standard non-background and background-phase-corrected data and these values were compared to each other and for proximity to 1. In a subset of patients who also underwent phase contrast MRI of the MPA, RPA, and LPA a comparison was made between standard non-background-corrected

  16. Power Factor Correction Capacitors for Multiple Parallel Three-Phase ASD Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    Today’s three-phase Adjustable Speed Drive (ASD) systems still employ Diode Rectifiers (DRs) and Silicon-Controlled Rectifiers (SCRs) as the front-end converters due to structural and control simplicity, small volume, low cost, and high reliability. However, the uncontrollable DRs and phase......-controllable SCRs bring side-effects by injecting high harmonics to the grid, which will degrade the system performance in terms of lowering the overall efficiency and overheating the system if remain uncontrolled or unattenuated. For multiple ASD systems, certain harmonics in the entire system can be mitigated...... the power factor, passive capacitors can be installed, which yet can trigger the system resonance. Hence, this paper analyzes the resonant issues in multiple ASD systems with power factor correction capacitors. Potential damping solutions are summarized. Simulations are carried out, while laboratory tests...

  17. Challenges Facing Early Phase Trials Sponsored by the National Cancer Institute: An Analysis of Corrective Action Plans to Improve Accrual.

    Science.gov (United States)

    Massett, Holly A; Mishkin, Grace; Rubinstein, Larry; Ivy, S Percy; Denicoff, Andrea; Godwin, Elizabeth; DiPiazza, Kate; Bolognese, Jennifer; Zwiebel, James A; Abrams, Jeffrey S

    2016-11-15

    Accruing patients in a timely manner represents a significant challenge to early phase cancer clinical trials. The NCI Cancer Therapy Evaluation Program analyzed 19 months of corrective action plans (CAP) received for slow-accruing phase I and II trials to identify slow accrual reasons, evaluate whether proposed corrective actions matched these reasons, and assess the CAP impact on trial accrual, duration, and likelihood of meeting primary scientific objectives. Of the 135 CAPs analyzed, 69 were for phase I trials and 66 for phase II trials. Primary reasons cited for slow accrual were safety/toxicity (phase I: 48%), design/protocol concerns (phase I: 42%, phase II: 33%), and eligibility criteria (phase I: 41%, phase II: 35%). The most commonly proposed corrective actions were adding institutions (phase I: 43%, phase II: 85%) and amending the trial to change eligibility or design (phase I: 55%, phase II: 44%). Only 40% of CAPs provided proposed corrective actions that matched the reasons given for slow accrual. Seventy percent of trials were closed to accrual at time of analysis (phase I = 48; phase II = 46). Of these, 67% of phase I and 70% of phase II trials met their primary objectives, but they were active three times longer than projected. Among closed trials, 24% had an accrual rate increase associated with a greater likelihood of meeting their primary scientific objectives. Ultimately, trials receiving CAPs saw improved accrual rates. Future trials may benefit from implementing CAPs early in trial life cycles, but it may be more beneficial to invest in earlier accrual planning. Clin Cancer Res; 22(22); 5408-16. ©2016 AACRSee related commentary by Mileham and Kim, p. 5397. ©2016 American Association for Cancer Research.

  18. Three-point phase correlations: A new measure of non-linear large-scale structure

    CERN Document Server

    Wolstenhulme, Richard; Obreschkow, Danail

    2015-01-01

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...

  19. Phase-of-flight method for setting the accelerating fields in the ion linear accelerator

    International Nuclear Information System (INIS)

    Dvortsov, S.V.; Lomize, L.G.

    1983-01-01

    For setting amplitudes and phases of accelerating fields in multiresonator ion accelerators presently Δt-procedure is used. The determination and setting of two unknown parameters of RF-field (amplitude and phase) in n-resonator is made according to the two increments of particle time-of-flight, measured experimentally: according to the change of the particle time-of-flight Δt 1 in the n-resonator, during the field switching in the resonator, and according to the change of Δt 2 of the time-of-flight in (n+1) resonator without RF-field with the switching of accelerating field in the n-resonator. When approaching the accelerator exit the particle energy increases, relative energy increment decreases and the accuracy of setting decreases. To enchance the accuracy of accelerating fields setting in a linear ion accelerator a phase-of-flight method is developed, in which for the setting of accelerating fields the measured time-of-flight increment Δt only in one resonator is used (the one in which the change of amplitude and phase is performed). Results of simulation of point bunch motion in the IYaI AN USSR linear accelerator are presented

  20. An analytical inductor design procedure for three-phase PWM converters in power factor correction applications

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Niroumand, Farideh Javidi; Haase, Frerk

    2015-01-01

    This paper presents an analytical method for designing the inductor of three-phase power factor correction converters (PFCs). The complex behavior of the inductor current complicates the inductor design procedure as well as the core loss and copper loss calculations. Therefore, this paper analyze...... to calculate the core loss in the PFC application. To investigate the impact of the dc link voltage level, two inductors for different dc voltage levels are designed and the results are compared.......This paper presents an analytical method for designing the inductor of three-phase power factor correction converters (PFCs). The complex behavior of the inductor current complicates the inductor design procedure as well as the core loss and copper loss calculations. Therefore, this paper analyzes...... circuit is used to provide the inductor current harmonic spectrum. Therefore, using the harmonic spectrum, the low and high frequency copper losses are calculated. The high frequency minor B-H loops in one switching cycle are also analyzed. Then, the loss map provided by the measurement setup is used...

  1. Homogenization of linear viscoelastic three phase media: internal variable formulation versus full-field computation

    International Nuclear Information System (INIS)

    Blanc, V.; Barbie, L.; Masson, R.

    2011-01-01

    Homogenization of linear viscoelastic heterogeneous media is here extended from two phase inclusion-matrix media to three phase inclusion-matrix media. Each phase obeying to a compressible Maxwellian behaviour, this analytic method leads to an equivalent elastic homogenization problem in the Laplace-Carson space. For some particular microstructures, such as the Hashin composite sphere assemblage, an exact solution is obtained. The inversion of the Laplace-Carson transforms of the overall stress-strain behaviour gives in such cases an internal variable formulation. As expected, the number of these internal variables and their evolution laws are modified to take into account the third phase. Moreover, evolution laws of averaged stresses and strains per phase can still be derived for three phase media. Results of this model are compared to full fields computations of representative volume elements using finite element method, for various concentrations and sizes of inclusion. Relaxation and creep test cases are performed in order to compare predictions of the effective response. The internal variable formulation is shown to yield accurate prediction in both cases. (authors)

  2. Fringe order correction for the absolute phase recovered by two selected spatial frequency fringe projections in fringe projection profilometry.

    Science.gov (United States)

    Ding, Yi; Peng, Kai; Yu, Miao; Lu, Lei; Zhao, Kun

    2017-08-01

    The performance of the two selected spatial frequency phase unwrapping methods is limited by a phase error bound beyond which errors will occur in the fringe order leading to a significant error in the recovered absolute phase map. In this paper, we propose a method to detect and correct the wrong fringe orders. Two constraints are introduced during the fringe order determination of two selected spatial frequency phase unwrapping methods. A strategy to detect and correct the wrong fringe orders is also described. Compared with the existing methods, we do not need to estimate the threshold associated with absolute phase values to determine the fringe order error, thus making it more reliable and avoiding the procedure of search in detecting and correcting successive fringe order errors. The effectiveness of the proposed method is validated by the experimental results.

  3. Non-linear temperature-dependent curvature of a phase change composite bimorph beam

    Science.gov (United States)

    Blonder, Greg

    2017-06-01

    Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and  >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.

  4. Experimental and numerical investigation of a phase-only control mechanism in the linear intensity regime.

    Science.gov (United States)

    Brühl, Elisabeth; Buckup, Tiago; Motzkus, Marcus

    2018-06-07

    Mechanisms and optimal experimental conditions in coherent control still intensely stimulate debates. In this work, a phase-only control mechanism in an open quantum system is investigated experimentally and numerically. Several parameterizations for femtosecond pulse shaping (combination of chirp and multipulses) are exploited in transient absorption of a prototype organic molecule to control population and vibrational coherence in ground and excited states. Experimental results are further numerically simulated and corroborated with a four-level density-matrix model, which reveals a phase-only control mechanism based on the interaction between the tailored phase of the excitation pulse and the induced transient absorption. In spite of performing experiment and numerical simulations in the linear regime of excitation, the control effect amplitude depends non-linearly on the excitation energy and is explained as a pump-dump control mechanism. No evidence of single-photon control is observed with the model. Moreover, our results also show that the control effect on the population and vibrational coherence is highly dependent on the spectral detuning of the excitation spectrum. Contrary to the popular belief in coherent control experiments, spectrally resonant tailored excitation will lead to the control of the excited state only for very specific conditions.

  5. Monte Carlo simulation of a medical linear accelerator for generation of phase spaces

    International Nuclear Information System (INIS)

    Oliveira, Alex C.H.; Santana, Marcelo G.; Lima, Fernando R.A.; Vieira, Jose W.

    2013-01-01

    Radiotherapy uses various techniques and equipment for local treatment of cancer. The equipment most often used in radiotherapy to the patient irradiation are linear accelerators (Linacs) which produce beams of X-rays in the range 5-30 MeV. Among the many algorithms developed over recent years for evaluation of dose distributions in radiotherapy planning, the algorithms based on Monte Carlo methods have proven to be very promising in terms of accuracy by providing more realistic results. The MC methods allow simulating the transport of ionizing radiation in complex configurations, such as detectors, Linacs, phantoms, etc. The MC simulations for applications in radiotherapy are divided into two parts. In the first, the simulation of the production of the radiation beam by the Linac is performed and then the phase space is generated. The phase space contains information such as energy, position, direction, etc. og millions of particles (photos, electrons, positrons). In the second part the simulation of the transport of particles (sampled phase space) in certain configurations of irradiation field is performed to assess the dose distribution in the patient (or phantom). The objective of this work is to create a computational model of a 6 MeV Linac using the MC code Geant4 for generation of phase spaces. From the phase space, information was obtained to asses beam quality (photon and electron spectra and two-dimensional distribution of energy) and analyze the physical processes involved in producing the beam. (author)

  6. Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow

    KAUST Repository

    Kou, Jisheng

    2017-12-06

    In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multi-component two-phase compressible flow with a realistic equation of state (e.g. Peng-Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass balance equations. We prove that the methods have the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.

  7. Damping characteristic identification of non-linear soil-structural system interaction by phase resonance

    International Nuclear Information System (INIS)

    Poterasu, V.F.

    1984-01-01

    It is presented a method and the phase resonance for damping characteristic identification of non-linear soil-structural interaction. The algorithm can be applied in case of any, not necessarily, damping characteristic of the system examined. For the identification, the system is harmonically excited and are considered the super-harmonic amplitudes for odd and even powers of the x. The response of shear beam system for different levels of base excitation and for different locations of the load is considered. (Author) [pt

  8. Tuning of External Q And Phase for The Cavities of A Superconducting Linear Accelerator

    CERN Document Server

    Katalev, V V

    2004-01-01

    The RF power required for a certain gradient of a superconducting cavity depends on the beam current and coupling between the cavity and waveguide. The coupling with the cavity may be changed by variation of Qext. Different devices can be used to adjust Qext or phase. In this paper three stub and E-H tuners are compared and their usability for the RF power distribution system for the superconducting accelerator of the European Xray laser and the TESLA linear collider is considered. The tuners were analyzed by using the scattering matrix. Advantages and limitations of the devices are presented.

  9. Linear feature extraction from radar imagery: SBIR (Small Business Innovative Research), phase 2, option 2

    Science.gov (United States)

    Milgram, David L.; Kahn, Philip; Conner, Gary D.; Lawton, Daryl T.

    1988-12-01

    The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze features from Synthetic Aperture Radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of and technology issues involved in the development of an automated linear feature extraction system. This final report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.

  10. Online phase measuring profilometry for rectilinear moving object by image correction

    Science.gov (United States)

    Yuan, Han; Cao, Yi-Ping; Chen, Chen; Wang, Ya-Pin

    2015-11-01

    In phase measuring profilometry (PMP), the object must be static for point-to-point reconstruction with the captured deformed patterns. While the object is rectilinearly moving online, the size and pixel position differences of the object in different captured deformed patterns do not meet the point-to-point requirement. We propose an online PMP based on image correction to measure the three-dimensional shape of the rectilinear moving object. In the proposed method, the deformed patterns captured by a charge-coupled diode camera are reprojected from the oblique view to an aerial view first and then translated based on the feature points of the object. This method makes the object appear stationary in the deformed patterns. Experimental results show the feasibility and efficiency of the proposed method.

  11. Quantification by aberration corrected (S)TEM of boundaries formed by symmetry breaking phase transformations

    Energy Technology Data Exchange (ETDEWEB)

    Schryvers, D., E-mail: nick.schryvers@uantwerpen.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Salje, E.K.H. [Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ (United Kingdom); Nishida, M. [Department of Engineering Sciences for Electronics and Materials, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); De Backer, A. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Idrissi, H. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain, Place Sainte Barbe, 2, B-1348, Louvain-la-Neuve (Belgium); Van Aert, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2017-05-15

    The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials. - Highlights: • Quantification of picometer displacements at ferroelastic twin boundary in CaTiO{sub 3.} • Quantification of kinks in meandering ferroelectric domain wall in LiNbO{sub 3}. • Quantification of column occupation in anti-phase boundary in Co-Pt. • Quantification of atom displacements at twin boundary in Ni-Ti B19′ martensite.

  12. Linear Pursuit Differential Game under Phase Constraint on the State of Evader

    Directory of Open Access Journals (Sweden)

    Askar Rakhmanov

    2016-01-01

    Full Text Available We consider a linear pursuit differential game of one pursuer and one evader. Controls of the pursuer and evader are subjected to integral and geometric constraints, respectively. In addition, phase constraint is imposed on the state of evader, whereas pursuer moves throughout the space. We say that pursuit is completed, if inclusion y(t1-x(t1∈M is satisfied at some t1>0, where x(t and y(t are states of pursuer and evader, respectively, and M is terminal set. Conditions of completion of pursuit in the game from all initial points of players are obtained. Strategy of the pursuer is constructed so that the phase vector of the pursuer first is brought to a given set, and then pursuit is completed.

  13. Linear stability of liquid films with phase change at the interface

    International Nuclear Information System (INIS)

    Spindler, Bertrand

    1980-01-01

    The objective of this research thesis is to study the linear stability of the flow of a liquid film on an inclined plane with a heat flow on the wall and an interfacial phase change, and to highlight the influence of the phase change on the flow stability. In order to do so, the author first proposed a rational simplification of equations by studying the order of magnitude of different terms, and based on some simple hypotheses regarding flow physics. Two stability studies are then addressed, one regarding a flow with a pre-existing film, and the other regarding the flow of a condensation film. In both cases, it is assumed that there is no imposed heat flow, but that the driving effect of vapour by the liquid film is taken into account [fr

  14. An electrostatic 3-phase linear stepper motor fabricated by vertical trench isolation technology

    International Nuclear Information System (INIS)

    Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Fujita, Hiroyuki

    2009-01-01

    We present the design, microfabrication and characterization of an electrostatic 3-phase linear stepper micromotor constructed with vertical trench isolation technology. This suitable technology was used to create a monolithic stepper motor with high-aspect-ratio poles and an integrated 3-phase electrical network in the bulk of a standard single-crystal silicon wafer. The shuttle of the stepper motor is suspended by a flexure to avoid any mechanical contact during operation, enhancing the precision, repeatability and reliability of the stepping motion. The prototype is capable of a maximum travel of +/−26 µm (52 µm) at an actuation voltage of 30 V and a step size of 1.4 µm during a half-stepping sequence

  15. An electrostatic 3-phase linear stepper motor fabricated by vertical trench isolation technology

    Science.gov (United States)

    Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Fujita, Hiroyuki

    2009-07-01

    We present the design, microfabrication and characterization of an electrostatic 3-phase linear stepper micromotor constructed with vertical trench isolation technology. This suitable technology was used to create a monolithic stepper motor with high-aspect-ratio poles and an integrated 3-phase electrical network in the bulk of a standard single-crystal silicon wafer. The shuttle of the stepper motor is suspended by a flexure to avoid any mechanical contact during operation, enhancing the precision, repeatability and reliability of the stepping motion. The prototype is capable of a maximum travel of +/-26 µm (52 µm) at an actuation voltage of 30 V and a step size of 1.4 µm during a half-stepping sequence. This work was presented in part at the 19th MicroMechanics Europe Workshop (MME), 28-30 September 2008, Aachen, Germany.

  16. Voltage splay modes and enhanced phase locking in a modified linear Josephson array

    International Nuclear Information System (INIS)

    Harris, E.B.; Garland, J.C.

    1997-01-01

    We analyze a modified linear Josephson-junction array in which additional unbiased junctions are used to greatly enhance phase locking. This geometry exhibits strong correlated behavior, with an external magnetic field tuning the voltage splay angle between adjacent Josephson oscillators. The array displays a coherent in-phase mode for f=(1)/(2), where f is the magnetic frustration, while for 0 p (f)=2aV dc /Φ 0 (1-2f). The locked splay modes are found to be tolerant of critical current disorder approaching 100%. The stability of the array has also been studied by computing Floquet exponents. These exponents are found to be negative for all array lengths, with a 1/N 2 dependence, N being the number of series-connected junctions. copyright 1996 The American Physical Society

  17. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    Science.gov (United States)

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  18. Determination of the positions and residues of the. delta. /sup + +/ and. delta. /sup 0/ poles. [Phase shifts,coulomb corrections

    Energy Technology Data Exchange (ETDEWEB)

    Vasan, S S [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics

    1976-04-19

    The poles and the associated residues in the ..pi..N P/sub 33/ amplitude corresponding to the resonances ..delta../sup + +/ and ..delta../sup 0/ are determined by fitting the ..pi../sup +/p and ..pi../sup -/p hadronic phase shifts from the Carter 73 analysis. The ..delta../sup + +/ and ..delta../sup 0/ pole positions are determined also from the nuclear phase shifts, these being the phase shifts made up of the hadronic phase shifts plus the Coulomb corrections. The pole positions obtained from the two sets of phase shifts are different, the differences being larger in the case of the ..delta../sup + +/.

  19. Linearity of amplitude and phase in tapping-mode atomic force microscopy

    International Nuclear Information System (INIS)

    Salapaka, M.V.; Chen, D.J.; Cleveland, J.P.

    2000-01-01

    In this article tapping-mode atomic force microscope dynamics is studied. The existence of a periodic orbit at the forcing frequency is shown under unrestrictive conditions. The dynamics is further analyzed using the impact model for the tip-sample interaction and a spring-mass-damper model of the cantilever. Stability of the periodic orbit is established. Closed-form expressions for various variables important in tapping-mode imaging are obtained. The linear relationship of the amplitude and the sine of the phase of the first harmonic of the periodic orbit with respect to cantilever-sample offset is shown. The study reinforces gentleness of the tapping-mode on the sample. Experimental results are in excellent qualitative agreement with the theoretical predictions. The linear relationship of the sine of the phase and the amplitude can be used to infer sample properties. The comparison between the theory and the experiments indicates essential features that are needed in a more refined model

  20. Correction of Non-Linear Propagation Artifact in Contrast-Enhanced Ultrasound Imaging of Carotid Arteries: Methods and in Vitro Evaluation.

    Science.gov (United States)

    Yildiz, Yesna O; Eckersley, Robert J; Senior, Roxy; Lim, Adrian K P; Cosgrove, David; Tang, Meng-Xing

    2015-07-01

    Non-linear propagation of ultrasound creates artifacts in contrast-enhanced ultrasound images that significantly affect both qualitative and quantitative assessments of tissue perfusion. This article describes the development and evaluation of a new algorithm to correct for this artifact. The correction is a post-processing method that estimates and removes non-linear artifact in the contrast-specific image using the simultaneously acquired B-mode image data. The method is evaluated on carotid artery flow phantoms with large and small vessels containing microbubbles of various concentrations at different acoustic pressures. The algorithm significantly reduces non-linear artifacts while maintaining the contrast signal from bubbles to increase the contrast-to-tissue ratio by up to 11 dB. Contrast signal from a small vessel 600 μm in diameter buried in tissue artifacts before correction was recovered after the correction. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Calibration artefacts in radio interferometry - III. Phase-only calibration and primary beam correction

    Science.gov (United States)

    Grobler, T. L.; Stewart, A. J.; Wijnholds, S. J.; Kenyon, J. S.; Smirnov, O. M.

    2016-09-01

    This is the third installment in a series of papers in which we investigate calibration artefacts. Calibration artefacts (also known as ghosts or spurious sources) are created when we calibrate with an incomplete model. In the first two papers of this series, we developed a mathematical framework which enabled us to study the ghosting mechanism itself. An interesting concomitant of the second paper was that ghosts appear in symmetrical pairs. This could possibly account for spurious symmetrization. Spurious symmetrization refers to the appearance of a spurious source (the antighost) symmetrically opposite an unmodelled source around a modelled source. The analysis in the first two papers indicates that the antighost is usually very faint, in particular, when a large number of antennas are used. This suggests that spurious symmetrization will mainly occur at an almost undetectable flux level. In this paper, we show that phase-only calibration produces an antighost that is N-times (where N denotes the number of antennas in the array) as bright as the one produced by phase and amplitude calibration and that this already bright ghost can be further amplified by the primary beam correction.

  2. Difference optimization: Automatic correction of relative frequency and phase for mean non-edited and edited GABA 1H MEGA-PRESS spectra

    Science.gov (United States)

    Cleve, Marianne; Krämer, Martin; Gussew, Alexander; Reichenbach, Jürgen R.

    2017-06-01

    Phase and frequency corrections of magnetic resonance spectroscopic data are of major importance to obtain reliable and unambiguous metabolite estimates as validated in recent research for single-shot scans with the same spectral fingerprint. However, when using the J-difference editing technique 1H MEGA-PRESS, misalignment between mean edited (ON ‾) and non-edited (OFF ‾) spectra that may remain even after correction of the corresponding individual single-shot scans results in subtraction artefacts compromising reliable GABA quantitation. We present a fully automatic routine that iteratively optimizes simultaneously relative frequencies and phases between the mean ON ‾ and OFF ‾ 1H MEGA-PRESS spectra while minimizing the sum of the magnitude of the difference spectrum (L1 norm). The proposed method was applied to simulated spectra at different SNR levels with deliberately preset frequency and phase errors. Difference optimization proved to be more sensitive to small signal fluctuations, as e.g. arising from subtraction artefacts, and outperformed the alternative spectral registration approach, that, in contrast to our proposed linear approach, uses a nonlinear least squares minimization (L2 norm), at all investigated levels of SNR. Moreover, the proposed method was applied to 47 MEGA-PRESS datasets acquired in vivo at 3 T. The results of the alignment between the mean OFF ‾ and ON ‾ spectra were compared by applying (a) no correction, (b) difference optimization or (c) spectral registration. Since the true frequency and phase errors are not known for in vivo data, manually corrected spectra were used as the gold standard reference (d). Automatically corrected data applying both, method (b) or method (c), showed distinct improvements of spectra quality as revealed by the mean Pearson correlation coefficient between corresponding real part mean DIFF ‾ spectra of Rbd = 0.997 ± 0.003 (method (b) vs. (d)), compared to Rad = 0.764 ± 0.220 (method (a) vs

  3. Determination of small field synthetic single-crystal diamond detector correction factors for CyberKnife, Leksell Gamma Knife Perfexion and linear accelerator.

    Science.gov (United States)

    Veselsky, T; Novotny, J; Pastykova, V; Koniarova, I

    2017-12-01

    The aim of this study was to determine small field correction factors for a synthetic single-crystal diamond detector (PTW microDiamond) for routine use in clinical dosimetric measurements. Correction factors following small field Alfonso formalism were calculated by comparison of PTW microDiamond measured ratio M Qclin fclin /M Qmsr fmsr with Monte Carlo (MC) based field output factors Ω Qclin,Qmsr fclin,fmsr determined using Dosimetry Diode E or with MC simulation itself. Diode measurements were used for the CyberKnife and Varian Clinac 2100C/D linear accelerator. PTW microDiamond correction factors for Leksell Gamma Knife (LGK) were derived using MC simulated reference values from the manufacturer. PTW microDiamond correction factors for CyberKnife field sizes 25-5 mm were mostly smaller than 1% (except for 2.9% for 5 mm Iris field and 1.4% for 7.5 mm fixed cone field). The correction of 0.1% and 2.0% for 8 mm and 4 mm collimators, respectively, needed to be applied to PTW microDiamond measurements for LGK Perfexion. Finally, PTW microDiamond M Qclin fclin /M Qmsr fmsr for the linear accelerator varied from MC corrected Dosimetry Diode data by less than 0.5% (except for 1 × 1 cm 2 field size with 1.3% deviation). Regarding low resulting correction factor values, the PTW microDiamond detector may be considered an almost ideal tool for relative small field dosimetry in a large variety of stereotactic and radiosurgery treatment devices. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Phase-I monitoring of standard deviations in multistage linear profiles

    Science.gov (United States)

    Kalaei, Mahdiyeh; Soleimani, Paria; Niaki, Seyed Taghi Akhavan; Atashgar, Karim

    2018-03-01

    In most modern manufacturing systems, products are often the output of some multistage processes. In these processes, the stages are dependent on each other, where the output quality of each stage depends also on the output quality of the previous stages. This property is called the cascade property. Although there are many studies in multistage process monitoring, there are fewer works on profile monitoring in multistage processes, especially on the variability monitoring of a multistage profile in Phase-I for which no research is found in the literature. In this paper, a new methodology is proposed to monitor the standard deviation involved in a simple linear profile designed in Phase I to monitor multistage processes with the cascade property. To this aim, an autoregressive correlation model between the stages is considered first. Then, the effect of the cascade property on the performances of three types of T 2 control charts in Phase I with shifts in standard deviation is investigated. As we show that this effect is significant, a U statistic is next used to remove the cascade effect, based on which the investigated control charts are modified. Simulation studies reveal good performances of the modified control charts.

  5. An exceptional series of phase transitions in hydrophobic amino acids with linear side chains

    Directory of Open Access Journals (Sweden)

    Carl Henrik Görbitz

    2016-09-01

    Full Text Available The solid-state phase transitions and intermediate structures of S-2-aminobutanoic acid (l-2-aminobutyric acid, S-2-aminopentanoic acid (l-norvaline, S-2-aminohexanoic acid (l-norleucine and l-methionine between 100 and 470 K, identified by differential scanning calorimetry, have been characterized in a comprehensive single-crystal X-ray diffraction investigation. Unlike other enantiomeric amino acids investigated until now, this group featuring linear side chains displays up to five distinct phases. The multiple transitions between them involve a number of different processes: alteration of the hydrogen-bond pattern, to our knowledge the first example of this observed for an amino acid, sliding of molecular bilayers, seen previously only for racemates and quasiracemates, concerted side-chain rearrangements and abrupt as well as gradual modifications of the side-chain disorder. Ordering of l-norleucine upon cooling even proceeds via an incommensurately modulated structure. l-Methionine has previously been described as being fully ordered at room temperature. An accurate refinement now reveals extensive disorder for both molecules in the asymmetric unit, while two previously unknown phases occur above room temperature.

  6. Optical colour image watermarking based on phase-truncated linear canonical transform and image decomposition

    Science.gov (United States)

    Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun

    2018-05-01

    This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.

  7. QR code-based non-linear image encryption using Shearlet transform and spiral phase transform

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta; Hennelly, Bryan

    2018-02-01

    In this paper, we propose a new quick response (QR) code-based non-linear technique for image encryption using Shearlet transform (ST) and spiral phase transform. The input image is first converted into a QR code and then scrambled using the Arnold transform. The scrambled image is then decomposed into five coefficients using the ST and the first Shearlet coefficient, C1 is interchanged with a security key before performing the inverse ST. The output after inverse ST is then modulated with a random phase mask and further spiral phase transformed to get the final encrypted image. The first coefficient, C1 is used as a private key for decryption. The sensitivity of the security keys is analysed in terms of correlation coefficient and peak signal-to noise ratio. The robustness of the scheme is also checked against various attacks such as noise, occlusion and special attacks. Numerical simulation results are shown in support of the proposed technique and an optoelectronic set-up for encryption is also proposed.

  8. First and second-order corrections to the eikonal phase shifts for the interactions of two deformed nuclei

    International Nuclear Information System (INIS)

    Metawei, Z.

    2000-01-01

    We present the first and second - order corrections to the eikonal phase shifts for the interactions of two deformed nuclei. The elastic scattering differential cross-section has been calculated for both the interactions of I2 C- 12 C system (at energies 1016, 1449 and 2400 MeV) and 16 O- 12 C system (at energy 1503 MeV). The calculated results corrections seems to improve the agreement with the experimental data.The deflection function, the S-matrix,the near-side and the far-side decompositions of the scattering amplitude has been calculated using the same corrections

  9. Multi-objective optimization for an automated and simultaneous phase and baseline correction of NMR spectral data

    Science.gov (United States)

    Sawall, Mathias; von Harbou, Erik; Moog, Annekathrin; Behrens, Richard; Schröder, Henning; Simoneau, Joël; Steimers, Ellen; Neymeyr, Klaus

    2018-04-01

    Spectral data preprocessing is an integral and sometimes inevitable part of chemometric analyses. For Nuclear Magnetic Resonance (NMR) spectra a possible first preprocessing step is a phase correction which is applied to the Fourier transformed free induction decay (FID) signal. This preprocessing step can be followed by a separate baseline correction step. Especially if series of high-resolution spectra are considered, then automated and computationally fast preprocessing routines are desirable. A new method is suggested that applies the phase and the baseline corrections simultaneously in an automated form without manual input, which distinguishes this work from other approaches. The underlying multi-objective optimization or Pareto optimization provides improved results compared to consecutively applied correction steps. The optimization process uses an objective function which applies strong penalty constraints and weaker regularization conditions. The new method includes an approach for the detection of zero baseline regions. The baseline correction uses a modified Whittaker smoother. The functionality of the new method is demonstrated for experimental NMR spectra. The results are verified against gravimetric data. The method is compared to alternative preprocessing tools. Additionally, the simultaneous correction method is compared to a consecutive application of the two correction steps.

  10. Fast conjugate phase image reconstruction based on a Chebyshev approximation to correct for B0 field inhomogeneity and concomitant gradients.

    Science.gov (United States)

    Chen, Weitian; Sica, Christopher T; Meyer, Craig H

    2008-11-01

    Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method.

  11. Use Residual Correction Method and Monotone Iterative Technique to Calculate the Upper and Lower Approximate Solutions of Singularly Perturbed Non-linear Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Chi-Chang Wang

    2013-09-01

    Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.

  12. Effect of linearization correction on statistical parametric mapping (SPM). A 99mTc-HMPAO brain perfusion SPECT study in mild Alzheimer's disease

    International Nuclear Information System (INIS)

    Ansar, A.B.; Osaki, Yasuhiro; Kazui, Hiroaki

    2006-01-01

    Statistical parametric mapping (SPM) was employed to investigate the regional decline in cerebral blood flow (rCBF) as measured by 99m Tc-hexamethyl propylene amine oxime (HMPAO) single photon emission computed tomography (SPECT) in mild Alzheimer's disease (AD). However, the role of the post reconstruction image processing on the interpretation of SPM, which detects rCBF pattern, has not been precisely studied. We performed 99m Tc-HMPAO SPECT in mild AD patients and analyzed the effect of linearization correction for washout of the tracer on the detectability of abnormal perfusion. Eleven mild AD (National Institute of Neurological and Communicative Disorders and National Institute of Radiological Sciences (NINCDS-ADRDA), male/female, 5/6; mean±SD age, 70.6±6.2 years; mean±SD mini-mental state examination score, 23.9±3.41; clinical dementia rating score, 1) and eleven normal control subjects (male/female, 4/7; mean±SD age, 66.8±8.4 years) were enrolled in this study. 99m Tc-HMPAO SPECT was performed with a four-head rotating gamma camera. We employed linearization uncorrected (LU) and linearization corrected (LC) images for the patients and controls. The pattern of hypoperfusion in mild AD on LU and LC images was detected by SPM99 applying the same image standardization and analytical parameters. A statistical inter image-group analysis (LU vs. LC) was also performed. Clear differences were observed between the interpretation of SPM with LU and LC images. Significant hypoperfusion in mild AD was found on the LU images in the left posterior cingulate gyrus, right precuneus, left hippocampus, left uncus, and left superior temporal gyrus (cluster level, corrected p 99m Tc-HMPAO SPECT with or without linearization correction, which should be carefully evaluated when interpreting the pattern of rCBF changes in mild Alzheimer's disease. (author)

  13. Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics

    International Nuclear Information System (INIS)

    Huo, Pengfei; Miller, Thomas F. III; Coker, David F.

    2013-01-01

    A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime

  14. A novel method to design sparse linear arrays for ultrasonic phased array.

    Science.gov (United States)

    Yang, Ping; Chen, Bin; Shi, Ke-Ren

    2006-12-22

    In ultrasonic phased array testing, a sparse array can increase the resolution by enlarging the aperture without adding system complexity. Designing a sparse array involves choosing the best or a better configuration from a large number of candidate arrays. We firstly designed sparse arrays by using a genetic algorithm, but found that the arrays have poor performance and poor consistency. So, a method based on the Minimum Redundancy Linear Array was then adopted. Some elements are determined by the minimum-redundancy array firstly in order to ensure spatial resolution and then a genetic algorithm is used to optimize the remaining elements. Sparse arrays designed by this method have much better performance and consistency compared to the arrays designed only by a genetic algorithm. Both simulation and experiment confirm the effectiveness.

  15. Siemens experience on linear and nonlinear analyses of out-of-phase BWR instabilities

    International Nuclear Information System (INIS)

    Kreuter, D.; Wehle, F.

    1995-01-01

    The Siemens design code STAIF has been applied extensively for linear analysis of BWR instabilities. The comparison between measurements and STAIF calculations for different plants under various conditions has shown good agreement for core-wide and regional instabilities. Based on the high quality of STAIF, the North German TUeV has decided to replace the licensing requirement of extensive stability measurements by predictive analyses with the code STAIF. Nonlinear stability analysis for beyond design boundary conditions with RAMONA has shown dryout during temporarily reversed flow at core inlet in case of core-wide oscillations. For large out-of-phase oscillations, dryout occurs already for small, still positive channel inlet flow. (orig.)

  16. Linear feature extraction from radar imagery: SBIR (Small Business Innovative Research) phase 2, option 1

    Science.gov (United States)

    Conner, Gary D.; Milgram, David L.; Lawton, Daryl T.; McConnell, Christopher C.

    1988-04-01

    The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze linear features from synthetic aperture radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of the technology issues involved in the development of an automatedlinear feature extraction system. This Option 1 Final Report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.

  17. Accurate and Efficient Parallel Implementation of an Effective Linear-Scaling Direct Random Phase Approximation Method.

    Science.gov (United States)

    Graf, Daniel; Beuerle, Matthias; Schurkus, Henry F; Luenser, Arne; Savasci, Gökcen; Ochsenfeld, Christian

    2018-05-08

    An efficient algorithm for calculating the random phase approximation (RPA) correlation energy is presented that is as accurate as the canonical molecular orbital resolution-of-the-identity RPA (RI-RPA) with the important advantage of an effective linear-scaling behavior (instead of quartic) for large systems due to a formulation in the local atomic orbital space. The high accuracy is achieved by utilizing optimized minimax integration schemes and the local Coulomb metric attenuated by the complementary error function for the RI approximation. The memory bottleneck of former atomic orbital (AO)-RI-RPA implementations ( Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016 , 144 , 031101 and Luenser, A.; Schurkus, H. F.; Ochsenfeld, C. J. Chem. Theory Comput. 2017 , 13 , 1647 - 1655 ) is addressed by precontraction of the large 3-center integral matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of [Formula: see text]. Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems, where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.

  18. Linear-scaling implementation of the direct random-phase approximation

    International Nuclear Information System (INIS)

    Kállay, Mihály

    2015-01-01

    We report the linear-scaling implementation of the direct random-phase approximation (dRPA) for closed-shell molecular systems. As a bonus, linear-scaling algorithms are also presented for the second-order screened exchange extension of dRPA as well as for the second-order Møller–Plesset (MP2) method and its spin-scaled variants. Our approach is based on an incremental scheme which is an extension of our previous local correlation method [Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The approach extensively uses local natural orbitals to reduce the size of the molecular orbital basis of local correlation domains. In addition, we also demonstrate that using natural auxiliary functions [M. Kállay, J. Chem. Phys. 141, 244113 (2014)], the size of the auxiliary basis of the domains and thus that of the three-center Coulomb integral lists can be reduced by an order of magnitude, which results in significant savings in computation time. The new approach is validated by extensive test calculations for energies and energy differences. Our benchmark calculations also demonstrate that the new method enables dRPA calculations for molecules with more than 1000 atoms and 10 000 basis functions on a single processor

  19. Liquid Phase Micro-Extraction of Linear Alkylbenzene Sulfonate Anionic Surfactants in Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Jan Åke Jönsson

    2011-10-01

    Full Text Available Hollow fiber liquid phase micro-extraction (LPME of linear alkylbenzene sulfonates (LAS from aqueous samples was studied. Ion pair extraction of C10, C11, C12 and C13 homologues was facilitated with trihexylamine as ion-pairing agent, using di-n-hexylether as solvent for the supported liquid membrane (SLM. Effects of extraction time, acceptor buffer concentration, stirring speed, sample volume, NaCl and humic acids were studied. At 10–50 µg L−1 linear R2-coefficients were 0.99 for C10 and C11 and 0.96 for C12. RSD was typically ~15%. Three observations were especially made. Firstly, LPME for these analytes was unusually slow with maximum enrichment observed after 15–24 h (depending on sample volume. Secondly, the enrichment depended on LAS sample concentration with 35–150 times enrichment below ~150 µg L−1 and 1850–4400 times enrichment at 1 mg L−1. Thirdly, lower homologues were enriched more than higher homologues at low sample concentrations, with reversed conditions at higher concentrations. These observations may be due to the fact that LAS and the amine counter ion themselves influence the mass transfer at the water-SLM interface. The observations on LPME of LAS may aid in LPME application to other compounds with surfactant properties or in surfactant enhanced membrane extraction of other compounds.

  20. APPLYING ROBUST RANKING METHOD IN TWO PHASE FUZZY OPTIMIZATION LINEAR PROGRAMMING PROBLEMS (FOLPP

    Directory of Open Access Journals (Sweden)

    Monalisha Pattnaik

    2014-12-01

    Full Text Available Background: This paper explores the solutions to the fuzzy optimization linear program problems (FOLPP where some parameters are fuzzy numbers. In practice, there are many problems in which all decision parameters are fuzzy numbers, and such problems are usually solved by either probabilistic programming or multi-objective programming methods. Methods: In this paper, using the concept of comparison of fuzzy numbers, a very effective method is introduced for solving these problems. This paper extends linear programming based problem in fuzzy environment. With the problem assumptions, the optimal solution can still be theoretically solved using the two phase simplex based method in fuzzy environment. To handle the fuzzy decision variables can be initially generated and then solved and improved sequentially using the fuzzy decision approach by introducing robust ranking technique. Results and conclusions: The model is illustrated with an application and a post optimal analysis approach is obtained. The proposed procedure was programmed with MATLAB (R2009a version software for plotting the four dimensional slice diagram to the application. Finally, numerical example is presented to illustrate the effectiveness of the theoretical results, and to gain additional managerial insights. 

  1. Design studies of heavy ion linear accelerators constructed of independently phased spiral resonators

    International Nuclear Information System (INIS)

    Stokes, R.H.; Armstrong, D.D.

    1975-01-01

    Preliminary design studies are reported for two linear accelerators for heavy ions. One accelerator is a high-intensity machine which would operate with 100 percent duty factor and would produce tin ions with 6.1 MeV/A. Alternatively, it could be operated under pulsed conditions with 25 percent duty factor and would then accelerate uranium ions to 8.1 MeV/A, tin ions to 10.5 MeV/A, and all lighter ions to higher velocities. It would be injected with a positive multicharge ion source and a 4-MV single-ended dc generator. Also, design studies are reported for small postaccelerator injected by a model FN tandem. Both accelerators use three-drift-tube spiral resonators operating at room temperature. Magnetic quadrupole singlets are placed between all resonators to provide radial focussing. Each resonator is independently phased according to the velocity of the ion to be accelerated. The ability to adjust the phase of each resonator permits variations in final energy and other beam properties with great flexibility. (U.S.)

  2. NTCP modelling of lung toxicity after SBRT comparing the universal survival curve and the linear quadratic model for fractionation correction

    International Nuclear Information System (INIS)

    Wennberg, Berit M.; Baumann, Pia; Gagliardi, Giovanna

    2011-01-01

    Background. In SBRT of lung tumours no established relationship between dose-volume parameters and the incidence of lung toxicity is found. The aim of this study is to compare the LQ model and the universal survival curve (USC) to calculate biologically equivalent doses in SBRT to see if this will improve knowledge on this relationship. Material and methods. Toxicity data on radiation pneumonitis grade 2 or more (RP2+) from 57 patients were used, 10.5% were diagnosed with RP2+. The lung DVHs were corrected for fractionation (LQ and USC) and analysed with the Lyman- Kutcher-Burman (LKB) model. In the LQ-correction α/β = 3 Gy was used and the USC parameters used were: α/β = 3 Gy, D 0 = 1.0 Gy, n = 10, α 0.206 Gy-1 and d T = 5.8 Gy. In order to understand the relative contribution of different dose levels to the calculated NTCP the concept of fractional NTCP was used. This might give an insight to the questions of whether 'high doses to small volumes' or 'low doses to large volumes' are most important for lung toxicity. Results and Discussion. NTCP analysis with the LKB-model using parameters m = 0.4, D50 = 30 Gy resulted for the volume dependence parameter (n) with LQ correction n = 0.87 and with USC correction n = 0.71. Using parameters m = 0.3, D 50 = 20 Gy n = 0.93 with LQ correction and n 0.83 with USC correction. In SBRT of lung tumours, NTCP modelling of lung toxicity comparing models (LQ,USC) for fractionation correction, shows that low dose contribute less and high dose more to the NTCP when using the USC-model. Comparing NTCP modelling of SBRT data and data from breast cancer, lung cancer and whole lung irradiation implies that the response of the lung is treatment specific. More data are however needed in order to have a more reliable modelling

  3. Analytical Design of Passive LCL Filter for Three-phase Two-level Power Factor Correction Rectifiers

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2017-01-01

    This paper proposes a comprehensive analytical LCL filter design method for three-phase two-level power factor correction rectifiers (PFCs). The high frequency converter current ripple generates the high frequency current harmonics that need to be attenuated with respect to the grid standards...

  4. Correction of heterogeneities in the issue compositions in the construction plans optimized in radiotherapy using linear programming

    International Nuclear Information System (INIS)

    Viana, Rodrigo Sartorelo S.; Lima, Ernesto A.B.F.; Florentino, Helenice de Oliveira; Fonseca, Paulo Roberto da; Homem, Thiago Pedro Donadon

    2009-01-01

    Linear programming models are widely found in the literature addressing various aspects involved in the creation of optimized planning for radiotherapy. However, most mathematical formulations does not incorporate certain factors that are of extreme importance for the formulation of a real planning like the attenuation of the beam of radiation and heterogeneity in the composition of tissue irradiated. In this context are proposed in this paper some modifications in the formulation of a linear programming problem with the objective of making the simulation closer to the real planning for radiotherapy and thus enable a more reliable and comprehensive planning requirements. (author)

  5. Phase-correcting non-local means filtering for diffusion-weighted imaging of the spinal cord.

    Science.gov (United States)

    Kafali, Sevgi Gokce; Çukur, Tolga; Saritas, Emine Ulku

    2018-02-09

    DWI suffers from low SNR when compared to anatomical MRI. To maintain reasonable SNR at relatively high spatial resolution, multiple acquisitions must be averaged. However, subject motion or involuntary physiological motion during diffusion-sensitizing gradients cause phase offsets among acquisitions. When the motion is localized to a small region, these phase offsets become particularly problematic. Complex averaging of acquisitions lead to cancellations from these phase offsets, whereas magnitude averaging results in noise amplification. Here, we propose an improved reconstruction for multi-acquisition DWI that effectively corrects for phase offsets while reducing noise. Each acquisition is processed with a refocusing reconstruction for global phase correction and a partial k-space reconstruction via projection-onto-convex-sets (POCS). The proposed reconstruction then embodies a new phase-correcting non-local means (PC-NLM) filter. PC-NLM is performed on the complex-valued outputs of the POCS algorithm aggregated across acquisitions. The PC-NLM filter leverages the shared structure among multiple acquisitions to simultaneously alleviate nuisance factors including phase offsets and noise. Extensive simulations and in vivo DWI experiments of the cervical spinal cord are presented. The results demonstrate that the proposed reconstruction improves image quality by mitigating signal loss because of phase offsets and reducing noise. Importantly, these improvements are achieved while preserving the accuracy of apparent diffusion coefficient maps. An improved reconstruction incorporating a PC-NLM filter for multi-acquisition DWI is presented. This reconstruction can be particularly beneficial for high-resolution or high-b-value DWI acquisitions that suffer from low SNR and phase offsets from local motion. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Evolution of the optical vortex density in phase corrected speckle fields

    CSIR Research Space (South Africa)

    Roux, FS

    2010-09-01

    Full Text Available In an attempt to understand the process whereby the phase modulation due to atmospheric turbulance causes phase singularities (also called optical vortices), the authors investigated the effect of phase perturbations in speckle beams. They perturb...

  7. A GENERALIZED NON-LINEAR METHOD FOR DISTORTION CORRECTION AND TOP-DOWN VIEW CONVERSION OF FISH EYE IMAGES

    Directory of Open Access Journals (Sweden)

    Vivek Singh Bawa

    2017-06-01

    Full Text Available Advanced driver assistance systems (ADAS have been developed to automate and modify vehicles for safety and better driving experience. Among all computer vision modules in ADAS, 360-degree surround view generation of immediate surroundings of the vehicle is very important, due to application in on-road traffic assistance, parking assistance etc. This paper presents a novel algorithm for fast and computationally efficient transformation of input fisheye images into required top down view. This paper also presents a generalized framework for generating top down view of images captured by cameras with fish-eye lenses mounted on vehicles, irrespective of pitch or tilt angle. The proposed approach comprises of two major steps, viz. correcting the fish-eye lens images to rectilinear images, and generating top-view perspective of the corrected images. The images captured by the fish-eye lens possess barrel distortion, for which a nonlinear and non-iterative method is used. Thereafter, homography is used to obtain top-down view of corrected images. This paper also targets to develop surroundings of the vehicle for wider distortion less field of view and camera perspective independent top down view, with minimum computation cost which is essential due to limited computation power on vehicles.

  8. Linear Modeling of the Three-Phase Diode Front-Ends with Reduced Capacitance Considering the Continuous Conduction Mode

    DEFF Research Database (Denmark)

    Máthé, Lászlo; Yang, Feng; Wang, Dong

    2016-01-01

    for the entire drive systems have to be designed. A linearization and simplification to single phase model can be performed; however, when inductance is present at the grid side its performance is not satisfactory. The problem is mainly caused by neglecting the continuous conduction mode of the rectifier......Reducing the DC-link capacitance considerably is a new trend in many applications, such as: motor drives, electrolysers etc.. A straight forward method for modelling the diode front-end is to build a non-linear diode based model. This non-linear model gives difficulties when the controllers...... in the simplified model. This article proposes a simplified linear model where the continuous conduction mode is also considered. The DC-link voltage and current waveforms obtained through the proposed simplified model matches very well the waveforms obtained with the three phase diode based model and also...

  9. A novel single-phase flux-switching permanent magnet linear generator used for free-piston Stirling engine

    Science.gov (United States)

    Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei

    2014-05-01

    This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.

  10. Inertial piezoelectric linear motor driven by a single-phase harmonic wave with automatic clamping mechanism

    Science.gov (United States)

    He, Liangguo; Chu, Yuheng; Hao, Sai; Zhao, Xiaoyong; Dong, Yuge; Wang, Yong

    2018-05-01

    A novel, single-phase, harmonic-driven, inertial piezoelectric linear motor using an automatic clamping mechanism was designed, fabricated, and tested to reduce the sliding friction and simplify the drive mechanism and power supply control of the inertial motor. A piezoelectric bimorph and a flexible hinge were connected in series to form the automatic clamping mechanism. The automatic clamping mechanism was used as the driving and clamping elements. A dynamic simulation by Simulink was performed to prove the feasibility of the motor. The finite element method software COMSOL was used to design the structure of the motor. An experimental setup was built to validate the working principle and evaluate the performance of the motor. The prototype motor outputted a no-load velocity of 3.178 mm/s at a voltage of 220 Vp-p and a maximum traction force of 4.25 N under a preload force of 8 N. The minimum resolution of 1.14 μm was achieved at a driving frequency of 74 Hz, a driving voltage of 50 Vp-p, and a preload force of 0 N.

  11. A Novel Strategy of Ambiguity Correction for the Improved Faraday Rotation Estimator in Linearly Full-Polarimetric SAR Data

    Directory of Open Access Journals (Sweden)

    Jinhui Li

    2018-04-01

    Full Text Available Spaceborne synthetic aperture radar (SAR missions operating at low frequencies, such as L-band or P-band, are significantly influenced by the ionosphere. As one of the serious ionosphere effects, Faraday rotation (FR is a remarkable distortion source for the polarimetric SAR (PolSAR application. Various published FR estimators along with an improved one have been introduced to solve this issue, all of which are implemented by processing a set of PolSAR real data. The improved estimator exhibits optimal robustness based on performance analysis, especially in term of the system noise. However, all published estimators, including the improved estimator, suffer from a potential FR angle (FRA ambiguity. A novel strategy of the ambiguity correction for those FR estimators is proposed and shown as a flow process, which is divided into pixel-level and image-level correction. The former is not yet recognized and thus is considered in particular. Finally, the validation experiments show a prominent performance of the proposed strategy.

  12. A Novel Strategy of Ambiguity Correction for the Improved Faraday Rotation Estimator in Linearly Full-Polarimetric SAR Data.

    Science.gov (United States)

    Li, Jinhui; Ji, Yifei; Zhang, Yongsheng; Zhang, Qilei; Huang, Haifeng; Dong, Zhen

    2018-04-10

    Spaceborne synthetic aperture radar (SAR) missions operating at low frequencies, such as L-band or P-band, are significantly influenced by the ionosphere. As one of the serious ionosphere effects, Faraday rotation (FR) is a remarkable distortion source for the polarimetric SAR (PolSAR) application. Various published FR estimators along with an improved one have been introduced to solve this issue, all of which are implemented by processing a set of PolSAR real data. The improved estimator exhibits optimal robustness based on performance analysis, especially in term of the system noise. However, all published estimators, including the improved estimator, suffer from a potential FR angle (FRA) ambiguity. A novel strategy of the ambiguity correction for those FR estimators is proposed and shown as a flow process, which is divided into pixel-level and image-level correction. The former is not yet recognized and thus is considered in particular. Finally, the validation experiments show a prominent performance of the proposed strategy.

  13. Continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics

    International Nuclear Information System (INIS)

    Chen, Haixia; Zhang, Jing

    2007-01-01

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning

  14. Chromaticity correction in the TRISTAN phase I main ring with two types of insertion

    International Nuclear Information System (INIS)

    Wu, Yingzhi; Egawa, Kazumi.

    1984-07-01

    The TRISTAN main ring now under construction has four insertions. Besides the normal modes in which the four insertions have the same optics, the TRISTAN main ring will be operated in somewhat more complicated configurations with insertions having different optics. This report will consider chromaticity corrections using six families of sextupoles for the TRISTAN main ring with two different insertion types; opposite insertions have the same optics. The strength of correcting sextupoles is determined mainly using the W-correction method. The program PATRICIA is used to track the trajectories of test particles over 800 turns. The results show that the correction scheme adopted allows adequately large amplitudes of betatron and synchrotron oscillations. (author)

  15. Phase mixing of transverse oscillations in the linear and nonlinear regimes for IFR relativistic electron beam propagation

    International Nuclear Information System (INIS)

    Shokair, I.R.

    1991-01-01

    Phase mixing of transverse oscillations changes the nature of the ion hose instability from an absolute to a convective instability. The stronger the phase mixing, the faster an electron beam reaches equilibrium with the guiding ion channel. This is important for long distance propagation of relativistic electron beams where it is desired that transverse oscillations phase mix within a few betatron wavelengths of injection and subsequently an equilibrium is reached with no further beam emittance growth. In the linear regime phase mixing is well understood and results in asymptotic decay of transverse oscillations as 1/Z 2 for a Gaussian beam and channel system, Z being the axial distance measured in betatron wavelengths. In the nonlinear regime (which is likely mode of propagation for long pulse beams) results of the spread mass model indicate that phase mixing is considerably weaker than in the regime. In this paper we consider this problem of phase mixing in the nonlinear regime. Results of the spread mass model will be shown along with a simple analysis of phase mixing for multiple oscillator models. Particle simulations also indicate that phase mixing is weaker in nonlinear regime than in the linear regime. These results will also be shown. 3 refs., 4 figs

  16. Qubits in phase space: Wigner-function approach to quantum-error correction and the mean-king problem

    International Nuclear Information System (INIS)

    Paz, Juan Pablo; Roncaglia, Augusto Jose; Saraceno, Marcos

    2005-01-01

    We analyze and further develop a method to represent the quantum state of a system of n qubits in a phase-space grid of NxN points (where N=2 n ). The method, which was recently proposed by Wootters and co-workers (Gibbons et al., Phys. Rev. A 70, 062101 (2004).), is based on the use of the elements of the finite field GF(2 n ) to label the phase-space axes. We present a self-contained overview of the method, we give insights into some of its features, and we apply it to investigate problems which are of interest for quantum-information theory: We analyze the phase-space representation of stabilizer states and quantum error-correction codes and present a phase-space solution to the so-called mean king problem

  17. Phase II Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    DeNovio, Nicole M.; Bryant, Nathan; King, Chrissi B.; Bhark, Eric; Drellack, Sigmund L.; Pickens, John F.; Farnham, Irene; Brooks, Keely M.; Reimus, Paul; Aly, Alaa

    2005-04-01

    This report documents pertinent transport data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU) 98. The purpose of this data compilation and related analyses is to provide the primary reference to support parameterization of the Phase II FF CAU transport model.

  18. Phase II Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2004-12-01

    This report documents pertinent hydrologic data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU): CAU 98. The purpose of this data compilation and related analyses is to provide the primary reference to support the development of the Phase II FF CAU groundwater flow model.

  19. Shear-Induced Phase Separation in Aqueous Polymer Solutions: Temperature-Sensitive Microgels and Linear Polymer Chains

    NARCIS (Netherlands)

    Stieger, M.A.; Richtering, W.

    2003-01-01

    The influence of shear flow on the phase separation of aqueous poly(N-isopropylacrylamide) (PNiPAM) microgel suspensions was investigated by means of rheo-turbidity and rheo-small angle neutron scattering (rheo-SANS) and compared to the behavior of linear PNiPAM macromolecules. The rheological

  20. Numerical implementation of magneto-acousto-electrical tomography (MAET) using a linear phased array transducer

    Science.gov (United States)

    Soner Gözü, Mehmet; Zengin, Reyhan; Güneri Gençer, Nevzat

    2018-02-01

    In this study, the performance and implementation of magneto-acousto-electrical tomography (MAET) is investigated using a linear phased array (LPA) transducer. The goal of MAET is to image the conductivity distribution in biological bodies. It uses the interaction between ultrasound and a static magnetic field to generate velocity current density distribution inside the body. The resultant voltage due to velocity current density is sensed by surface electrodes attached on the body. In this study, the theory of MAET is reviewed. A 16-element LPA transducer with 1 MHz excitation frequency is used to provide beam directivity and steerability of acoustic waves. Different two-dimensional numerical models of breast and tumour are formed to analyze the multiphysics problem coupled with acoustics and electromagnetic fields. In these models, velocity current density distributions are obtained for pulse type ultrasound excitations. The static magnetic field is assumed as 1 T. To sense the resultant voltage caused by the velocity current density, it is assumed that two electrodes are attached on the surface of the body. The performance of MAET is shown through sensitivity matrix analysis. The sensitivity matrix is obtained for two transducer positions with 13 steering angles between -30\\circ to 30\\circ with 5\\circ angular intervals. For the reconstruction of the images, truncated singular value decomposition method is used with different signal-to-noise ratio (SNR) values (20 dB, 40 dB, 60 dB and 80 dB). The resultant images show that the perturbation (5 mm  ×  5 mm) placed 35 mm depth can be detected even if the SNR is 20 dB.

  1. Unreliable Gut Feelings Can Lead to Correct Decisions: The Somatic Marker Hypothesis in Non-Linear Decision Chains

    Science.gov (United States)

    Bedia, Manuel G.; Di Paolo, Ezequiel

    2012-01-01

    Dual-process approaches of decision-making examine the interaction between affective/intuitive and deliberative processes underlying value judgment. From this perspective, decisions are supported by a combination of relatively explicit capabilities for abstract reasoning and relatively implicit evolved domain-general as well as learned domain-specific affective responses. One such approach, the somatic markers hypothesis (SMH), expresses these implicit processes as a system of evolved primary emotions supplemented by associations between affect and experience that accrue over lifetime, or somatic markers. In this view, somatic markers are useful only if their local capability to predict the value of an action is above a baseline equal to the predictive capability of the combined rational and primary emotional subsystems. We argue that decision-making has often been conceived of as a linear process: the effect of decision sequences is additive, local utility is cumulative, and there is no strong environmental feedback. This widespread assumption can have consequences for answering questions regarding the relative weight between the systems and their interaction within a cognitive architecture. We introduce a mathematical formalization of the SMH and study it in situations of dynamic, non-linear decision chains using a discrete-time stochastic model. We find, contrary to expectations, that decision-making events can interact non-additively with the environment in apparently paradoxical ways. We find that in non-lethal situations, primary emotions are represented globally over and above their local weight, showing a tendency for overcautiousness in situated decision chains. We also show that because they tend to counteract this trend, poorly attuned somatic markers that by themselves do not locally enhance decision-making, can still produce an overall positive effect. This result has developmental and evolutionary implications since, by promoting exploratory behavior

  2. Unreliable gut feelings can lead to correct decisions: the somatic marker hypothesis in non-linear decision chains.

    Science.gov (United States)

    Bedia, Manuel G; Di Paolo, Ezequiel

    2012-01-01

    Dual-process approaches of decision-making examine the interaction between affective/intuitive and deliberative processes underlying value judgment. From this perspective, decisions are supported by a combination of relatively explicit capabilities for abstract reasoning and relatively implicit evolved domain-general as well as learned domain-specific affective responses. One such approach, the somatic markers hypothesis (SMH), expresses these implicit processes as a system of evolved primary emotions supplemented by associations between affect and experience that accrue over lifetime, or somatic markers. In this view, somatic markers are useful only if their local capability to predict the value of an action is above a baseline equal to the predictive capability of the combined rational and primary emotional subsystems. We argue that decision-making has often been conceived of as a linear process: the effect of decision sequences is additive, local utility is cumulative, and there is no strong environmental feedback. This widespread assumption can have consequences for answering questions regarding the relative weight between the systems and their interaction within a cognitive architecture. We introduce a mathematical formalization of the SMH and study it in situations of dynamic, non-linear decision chains using a discrete-time stochastic model. We find, contrary to expectations, that decision-making events can interact non-additively with the environment in apparently paradoxical ways. We find that in non-lethal situations, primary emotions are represented globally over and above their local weight, showing a tendency for overcautiousness in situated decision chains. We also show that because they tend to counteract this trend, poorly attuned somatic markers that by themselves do not locally enhance decision-making, can still produce an overall positive effect. This result has developmental and evolutionary implications since, by promoting exploratory behavior

  3. Why the Heyd-Scuseria-Ernzerhof hybrid functional description of VO2 phases is not correct

    KAUST Repository

    Grau-Crespo, Ricardo; Schwingenschlö gl, Udo; Wang, Hao

    2012-01-01

    In contrast with recent claims that the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional can provide a good description of the electronic and magnetic structures of VO2 phases, we show here that the HSE lowest-energy solutions for both the low-temperature monoclinic (M1) phase and the high-temperature rutile (R) phase, which are obtained upon inclusion of spin polarization, are at odds with experimental observations. For the M1 phase the ground state is (but should not be) magnetic, while the ground state of the R phase, which is also spin polarized, is not (but should be) metallic. The energy difference between the low-temperature and high-temperature phases has strong discrepancies with the experimental latent heat.

  4. Why the Heyd-Scuseria-Ernzerhof hybrid functional description of VO2 phases is not correct

    KAUST Repository

    Grau-Crespo, Ricardo

    2012-08-06

    In contrast with recent claims that the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional can provide a good description of the electronic and magnetic structures of VO2 phases, we show here that the HSE lowest-energy solutions for both the low-temperature monoclinic (M1) phase and the high-temperature rutile (R) phase, which are obtained upon inclusion of spin polarization, are at odds with experimental observations. For the M1 phase the ground state is (but should not be) magnetic, while the ground state of the R phase, which is also spin polarized, is not (but should be) metallic. The energy difference between the low-temperature and high-temperature phases has strong discrepancies with the experimental latent heat.

  5. Quantitative MR thermometry based on phase-drift correction PRF shift method at 0.35 T.

    Science.gov (United States)

    Chen, Yuping; Ge, Mengke; Ali, Rizwan; Jiang, Hejun; Huang, Xiaoyan; Qiu, Bensheng

    2018-04-10

    Noninvasive magnetic resonance thermometry (MRT) at low-field using proton resonance frequency shift (PRFS) is a promising technique for monitoring ablation temperature, since low-field MR scanners with open-configuration are more suitable for interventional procedures than closed systems. In this study, phase-drift correction PRFS with first-order polynomial fitting method was proposed to investigate the feasibility and accuracy of quantitative MR thermography during hyperthermia procedures in a 0.35 T open MR scanner. Unheated phantom and ex vivo porcine liver experiments were performed to evaluate the optimal polynomial order for phase-drift correction PRFS. The temperature estimation approach was tested in brain temperature experiments of three healthy volunteers at room temperature, and in ex vivo porcine liver microwave ablation experiments. The output power of the microwave generator was set at 40 W for 330 s. In the unheated experiments, the temperature root mean square error (RMSE) in the inner region of interest was calculated to assess the best-fitting order for polynomial fit. For ablation experiments, relative temperature difference profile measured by the phase-drift correction PRFS was compared with the temperature changes recorded by fiber optic temperature probe around the microwave ablation antenna within the target thermal region. The phase-drift correction PRFS using first-order polynomial fitting could achieve the smallest temperature RMSE in unheated phantom, ex vivo porcine liver and in vivo human brain experiments. In the ex vivo porcine liver microwave ablation procedure, the temperature error between MRT and fiber optic probe of all but six temperature points were less than 2 °C. Overall, the RMSE of all temperature points was 1.49 °C. Both in vivo and ex vivo experiments showed that MR thermometry based on the phase-drift correction PRFS with first-order polynomial fitting could be applied to monitor temperature changes during

  6. Unreliable gut feelings can lead to correct decisions: The somatic marker hypothesis in non-linear decision chains

    Directory of Open Access Journals (Sweden)

    Manuel eBedia

    2012-10-01

    Full Text Available Dual system approaches of decision making examine the interaction between affective/intuitive and deliberative processes underlying value judgment. Decisions are arise from a combination of relatively explicit capabilities for abstract reasoning and relatively implicit evolved domain-general as well as learned domain-specific affective responses. One such approach, the somatic markers hypothesis (SMH, expresses these processes as a system of evolved primary emotions supplemented by associations between affect and experience that accrue over lifetime, or somatic markers (SMs. In this view, SMs are useful only if their local capability to predict the value of an action is above a baseline equal to the predictive capability of the combined rational and primary emotional subsystems. We argue that decision making has often been conceived of as a linear process: the effect of decision sequences is additive, local utility is cumulative, and there is no strong environmental feedback. This widespread assumption has consequences for answering questions regarding the relative weight between the systems and their interaction within a cognitive architecture. We introduce a mathematical formalization of the SMH and study it in situations of dynamic, nonlinear decision chains using a discrete-time stochastic model. We find, contrary to expectations, that decision making events can interact non-additively with the environment in apparently paradoxical ways. We find that primary emotions are represented globally over and above their local weight, showing a tendency for overcaution in situated decision chains. We also show that because they tend to counteract this trend, poorly attuned somatic markers that by themselves do not locally enhance decision making, can still produce an overall positive effect. This result has developmental and evolutionary implications since, by promoting exploratory behavior, SMs are beneficial even at early stages when experiential

  7. Linear versus Nonlinear Filtering with Scale-Selective Corrections for Balanced Dynamics in a Simple Atmospheric Model

    KAUST Repository

    Subramanian, Aneesh C.

    2012-11-01

    This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.

  8. Linear versus Nonlinear Filtering with Scale-Selective Corrections for Balanced Dynamics in a Simple Atmospheric Model

    KAUST Repository

    Subramanian, Aneesh C.; Hoteit, Ibrahim; Cornuelle, Bruce; Miller, Arthur J.; Song, Hajoon

    2012-01-01

    This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.

  9. The time course of phase correction: A kinematic investigation of motor adjustment to timing perturbations during sensorimotor synchronization

    Science.gov (United States)

    Hove, Michael J.; Balasubramaniam, Ramesh; Keller, Peter E.

    2014-01-01

    Synchronizing movements with a beat requires rapid compensation for timing errors. The phase-correction response (PCR) has been studied extensively in finger tapping by shifting a metronome onset and measuring the adjustment of the following tap time. How the response unfolds during the subsequent tap cycle remains unknown. Using motion capture, we examined finger kinematics during the PCR. Participants tapped with a metronome containing phase perturbations. They tapped in ‘legato’ and ‘staccato’ style at various tempi, which altered the timing of the constituent movement stages (dwell at the surface, extension, flexion). After a phase perturbation, tapping kinematics changed compared to baseline, and the PCR was distributed differently across movement stages. In staccato tapping, the PCR trajectory changed primarily during finger extension across tempi. In legato tapping, at fast tempi the PCR occurred primarily during extension, whereas at slow tempi most phase correction was already completed during dwell. Across conditions, timing adjustments occurred primarily 100-250 ms into the following tap cycle. The change in movement around 100 ms represents the time to integrate information into an already planned movement and the rapidity suggests a subcortical route. PMID:25151103

  10. Movement correction of the kidney in dynamic MRI scans using FFT phase difference movement detection

    NARCIS (Netherlands)

    Giele, ELW; de Priester, JA; Blom, JA; den Boer, JA; van Engelshoven, JMA; Hasman, A; Geerlings, M

    2001-01-01

    To measure cortical and medullary MR renograms, regions of interest (ROIs) are placed on the kidney in images acquired using dynamic MRI. Since native kidneys move with breathing, and breath-holding techniques are not feasible, movement correction is necessary. In this contribution we compare three

  11. High efficiency three-phase power factor correction rectifier using SiC switches

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2017-01-01

    This paper presents designing procedure of a high efficiency 5 kW silicon-carbide (SiC) based threephase power factor correction (PFC). SiC switches present low capacitive switching loss compared to the alternative Si switches. Therefore, the switching frequency can be increased and hence the siz...

  12. Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for Single-Shell Tank (SST) Waste Management Areas

    International Nuclear Information System (INIS)

    MCCARTHY, M.M.

    1999-01-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly

  13. Phase 1 RCRA Facility Investigation & Corrective Measures Study Work Plan for Single Shell Tank (SST) Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    MCCARTHY, M.M.

    1999-08-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly.

  14. Correction of aberrations in beams filling elliptical phase-space areas

    International Nuclear Information System (INIS)

    Wollnik, H.

    1988-01-01

    For the optimization of an optical system it is advantageous to amend the system by a virtual object lens so that the calculation always starts from an upright phase-space distribution. Furthermore, in case of a beam filling an elliptical phase-space volume, the most extreme rays of a beam, filling a parallelogram-like phase-space volume, do not exist, so that the corresponding sum of aberrations is smaller. For an optimization thus corresponding attenuation factors should be taken into accout

  15. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Science.gov (United States)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  16. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Directory of Open Access Journals (Sweden)

    Jeong-Man Kim

    2017-05-01

    Full Text Available This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE systems. In order to implement the design of linear oscillatory generator (LOG for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  17. Iterative Phase Optimization of Elementary Quantum Error Correcting Codes (Open Access, Publisher’s Version)

    Science.gov (United States)

    2016-08-24

    to the seven-qubit Steane code [29] and also represents the smallest instance of a 2D topological color code [30]. Since the realized quantum error...Quantum Computations on a Topologically Encoded Qubit, Science 345, 302 (2014). [17] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D...Memory, J. Math . Phys. (N.Y.) 43, 4452 (2002). [20] B. M. Terhal, Quantum Error Correction for Quantum Memories, Rev. Mod. Phys. 87, 307 (2015). [21] D

  18. Feasibility Demonstration of a Multi-Cylinder Stirling Convertor with a Duplex Linear Alternator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Stirling Technology Company (STC) proposes to integrate an existing Multi-Cylinder Free-Piston Stirling Engine (MPFPSE) with innovative compact linear alternators....

  19. Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu; Wang, Xiuhua

    2017-01-01

    involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass

  20. Novel Supercomputing Approaches for High Performance Linear Algebra Using FPGAs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop novel FPGA-based algorithmic technology that will enable unprecedented computational power for the solution of large sparse linear equation...

  1. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles

    Energy Technology Data Exchange (ETDEWEB)

    Speck, Thomas [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz (Germany); Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut [Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf (Germany)

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.

  2. Regularized iterative integration combined with non-linear diffusion filtering for phase-contrast x-ray computed tomography.

    Science.gov (United States)

    Burger, Karin; Koehler, Thomas; Chabior, Michael; Allner, Sebastian; Marschner, Mathias; Fehringer, Andreas; Willner, Marian; Pfeiffer, Franz; Noël, Peter

    2014-12-29

    Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.

  3. Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram

    International Nuclear Information System (INIS)

    Moretto, L.G.; Elliott, J.B.; Phair, L.

    2003-01-01

    In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A ∼ 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)

  4. Tapping in synchrony with a perturbed metronome: the phase correction response to small and large phase shifts as a function of tempo.

    Science.gov (United States)

    Repp, Bruno H

    2011-01-01

    When tapping is paced by an auditory sequence containing small phase shift (PS) perturbations, the phase correction response (PCR) of the tap following a PS increases with the baseline interonset interval (IOI), leading eventually to overcorrection (B. H. Repp, 2008). Experiment 1 shows that this holds even for fixed-size PSs that become imperceptible as the IOI increases (here, from 400 to 1200 ms). Earlier research has also shown (but only for IOI=500 ms) that the PCR is proportionally smaller for large than for small PSs (B. H. Repp, 2002a, 2002b). Experiment 2 introduced large PSs and found smaller PCRs than in Experiment 1, at all of the same IOIs. In Experiments 3A and 3B, the author investigated whether the change in slope of the sigmoid function relating PCR and PS magnitudes occurs at a fixed absolute or relative PS magnitude across different IOIs (600, 1000, 1400 ms). The results suggest no clear answer; the exact shape of the function may depend on the range of PSs used in an experiment. Experiment 4 examined the PCR in the IOI range from 1000 to 2000 ms and found overcorrection throughout, but with the PCR increasing much more gradually than in Experiment 1. These results provide important new information about the phase correction process and pose challenges for models of sensorimotor synchronization, which presently cannot explain nonlinear PCR functions and overcorrection. Copyright © Taylor & Francis Group, LLC

  5. Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.

    Science.gov (United States)

    Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H

    2015-02-23

    The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other.

  6. Nectar sugar production across floral phases in the Gynodioecious Protandrous Plant Geranium sylvaticum [corrected].

    Science.gov (United States)

    Varga, Sandra; Nuortila, Carolin; Kytöviita, Minna-Maarit

    2013-01-01

    Many zoophilous plants attract their pollinators by offering nectar as a reward. In gynodioecious plants (i.e. populations are composed of female and hermaphrodite individuals) nectar production has been repeatedly reported to be larger in hermaphrodite compared to female flowers even though nectar production across the different floral phases in dichogamous plants (i.e. plants with time separation of pollen dispersal and stigma receptivity) has rarely been examined. In this study, sugar production in nectar standing crop and secretion rate were investigated in Geranium sylvaticum, a gynodioecious plant species with protandry (i.e. with hermaphrodite flowers releasing their pollen before the stigma is receptive). We found that flowers from hermaphrodites produced more nectar than female flowers in terms of total nectar sugar content. In addition, differences in nectar production among floral phases were found in hermaphrodite flowers but not in female flowers. In hermaphrodite flowers, maximum sugar content coincided with pollen presentation and declined slightly towards the female phase, indicating nectar reabsorption, whereas in female flowers sugar content did not differ between the floral phases. These differences in floral reward are discussed in relation to visitation patterns by pollinators and seed production in this species.

  7. Transitions from phase-locked dynamics to chaos in a piecewise-linear map

    DEFF Research Database (Denmark)

    Zhusubaliyev, Z.T.; Mosekilde, Erik; De, S.

    2008-01-01

    place via border-collision fold bifurcations. We examine the transition to chaos through torus destruction in such maps. Considering a piecewise-linear normal-form map we show that this transition, by virtue of the interplay of border-collision bifurcations with period-doubling and homoclinic...

  8. Linearized FUN3D for Rapid Aeroelastic and Aeroservoelastic Design and Analysis, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I, a prototypical FUN3D-based ZONA Euler Unsteady Solver (FunZEUS) was developed to generate the Generalized Aerodynamic Forces (GAFs) due to structural...

  9. An exceptional series of phase transitions in hydrophobic amino acids with linear side chains

    Czech Academy of Sciences Publication Activity Database

    Görbitz, C.H.; Karen, P.; Dušek, Michal; Petříček, Václav

    2016-01-01

    Roč. 3, Sep (2016), s. 341-353 ISSN 2052-2525 R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : amino acids * disorder * hydrogen bonding * modulated phases * phase transitions * side-chain stacking * polymorphism * molecular crystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.793, year: 2016

  10. Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gregg Ruskuaff

    2010-01-01

    This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the “Corrective Action Strategy” in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

  11. Phase diagram of the Blume-Emery-Griffiths model on the simple cubic lattice calculated by the linear chain approximation

    International Nuclear Information System (INIS)

    Albayrak, Erhan; Keskin, Mustafa

    2000-01-01

    The linear chain approximation is used to study the temperature dependence of the order parameters and the phase diagrams of the Blume-Emery-Griffiths model on the simple cubic lattice with dipole-dipole, quadrupole-quadrupole coupling strengths and a crystal-field interaction. The problem is approached introducing first a trial one-dimensional Hamiltonian whose free energy can be calculated exactly by the transfer matrix method. Then using the Bogoliubov variational principle, the free energy of the model is determined. It is assumed that the dipolar and quadrupolar intrachain coupling constants are much stronger than the corresponding interchain constants and confined the attention to the case of nearest-neighbor interactions. The phase transitions are examined and the phase diagrams are obtained for several values of the coupling strengths in the three different planes. A comparison with other approximate techniques is also made

  12. Phase diagram of the Blume-Emery-Griffiths model on the simple cubic lattice calculated by the linear chain approximation

    CERN Document Server

    Albayrak, E

    2000-01-01

    The linear chain approximation is used to study the temperature dependence of the order parameters and the phase diagrams of the Blume-Emery-Griffiths model on the simple cubic lattice with dipole-dipole, quadrupole-quadrupole coupling strengths and a crystal-field interaction. The problem is approached introducing first a trial one-dimensional Hamiltonian whose free energy can be calculated exactly by the transfer matrix method. Then using the Bogoliubov variational principle, the free energy of the model is determined. It is assumed that the dipolar and quadrupolar intrachain coupling constants are much stronger than the corresponding interchain constants and confined the attention to the case of nearest-neighbor interactions. The phase transitions are examined and the phase diagrams are obtained for several values of the coupling strengths in the three different planes. A comparison with other approximate techniques is also made.

  13. Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential: Two-loop corrections

    Science.gov (United States)

    Maelger, J.; Reinosa, U.; Serreau, J.

    2018-04-01

    We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.

  14. Linear ray and wave optics in phase space bridging ray and wave optics via the Wigner phase-space picture

    CERN Document Server

    Torre, Amalia

    2005-01-01

    Ray, wave and quantum concepts are central to diverse and seemingly incompatible models of light. Each model particularizes a specific ''manifestation'' of light, and then corresponds to adequate physical assumptions and formal approximations, whose domains of applicability are well-established. Accordingly each model comprises its own set of geometric and dynamic postulates with the pertinent mathematical means.At a basic level, the book is a complete introduction to the Wigner optics, which bridges between ray and wave optics, offering the optical phase space as the ambience and the Wigner f

  15. Main corrective measures in an early phase of nuclear power plants’ preparation for safe long term operation

    Energy Technology Data Exchange (ETDEWEB)

    Krivanek, Robert, E-mail: r.krivanek@iaea.org [International Atomic Energy Agency (IAEA), Department of Nuclear Safety and Security, Operational Safety Section, Vienna 1400 (Austria); Fiedler, Jan, E-mail: fiedler@fme.vutbr.cz [University of Technology Brno, Faculty of Mechanical Engineering, Energy Institute, Technická 2896/2, 616 69 Brno (Czech Republic)

    2017-05-15

    Highlights: • Results of SALTO missions provide the most important issues for safe long term operation (LTO) of nuclear power plants. • The most important technical corrective measures in an early phase of preparation for safe LTO are described. • Their satisfactory resolution creates a basis for further activities to demonstrate preparedness for safe LTO. - Abstract: This paper presents the analysis of main technical deficiencies of nuclear power plants (NPPs) in preparedness for safe long term operation (LTO) and the main corrective measures in an early phase of preparation for safe LTO of NPPs. It focuses on technical aspects connected with management of physical ageing of NPP structures, systems and components (SSCs). It uses as a basis results of IAEA SALTO missions performed between 2005 and 2016 (see also paper NED8805 in Nuclear Engineering and Design in May 2016) and the personal experiences of the authors with preparation of NPPs for safe LTO. This paper does not discuss other important aspects of safe LTO of NPPs, e.g. national nuclear energy policies, compliance of NPPs with the latest international requirements on design, obsolescence, environmental impact and economic aspects of LTO. Chapter 1 provides a brief introduction of the current status of the NPP’ fleet in connection with LTO. Chapter 2 provides an overview of SALTO peer review service results with a focus on deficiencies related to physical ageing of safety SSCs and a demonstration that SSCs will perform their safety function during the intended period of LTO. Chapter 3 discusses the main corrective measures which NPPs typically face during the preparation for demonstration of safe LTO. Chapter 4 summarizes the current status of the NPP’ fleet in connection with LTO and outlines further steps needed in preparation for safe LTO.

  16. Structure and dynamics of ion clusters in linear octupole traps: Phase diagrams, chirality, and melting mechanisms

    International Nuclear Information System (INIS)

    Yurtsever, E.; Onal, E. D.; Calvo, F.

    2011-01-01

    The stable structures and melting dynamics of clusters of identical ions bound by linear octupole radiofrequency traps are theoretically investigated by global optimization methods and molecular dynamics simulations. By varying the cluster sizes in the range of 10-1000 ions and the extent of trap anisotropy by more than one order of magnitude, we find a broad variety of stable structures based on multiple rings at small sizes evolving into tubular geometries at large sizes. The binding energy of these clusters is well represented by two contributions arising from isotropic linear and octupolar traps. The structures generally exhibit strong size effects, and chiral arrangements spontaneously emerge in many crystals. Sufficiently large clusters form nested, coaxial tubes with different thermal stabilities. As in isotropic octupolar clusters, the inner tubes melt at temperatures that are lower than the overall melting point.

  17. Phase-space description of plasma waves. Linear and nonlinear theory

    International Nuclear Information System (INIS)

    Biro, T.

    1992-11-01

    We develop an (r,k) phase space description of waves in plasmas by introducing Gaussian window functions to separate short scale oscillations from long scale modulations of the wave fields and variations in the plasma parameters. To obtain a wave equation that unambiguously separates conservative dynamics from dissipation also in an inhomogeneous and time varying background plasma, we first discuss the proper form of the current response function. On the analogy of the particle distribution function f(v,r,t), we introduce a wave density N(k,r,t) on phase space. This function is proven to satisfy a simple continuity equation. Dissipation is also included, and this allows us to describe the damping or growth of wave density' along rays. Problems involving geometric optics of continuous media often appear simpler when viewed in phase space, since the flow of N in phase space is incompressible. Within the phase space representation, we obtain a very general formula for the second order nonlinear current in terms of the vector potential. This formula is a convenient starting point for studies of coherent as well as turbulent nonlinear processes. We derive kinetic equations for weakly inhomogeneous and turbulent plasma, including the effects of inhomogeneous turbulence, wave convection and refraction. (author)

  18. Modeling Single-Phase Inverter and Its Decentralized Coordinated Control by Using Feedback Linearization

    Directory of Open Access Journals (Sweden)

    Renke Han

    2014-01-01

    Full Text Available It is a very crucial problem to make a microgrid operated reasonably and stably. Considering the nonlinear mathematics model of inverter established in this paper, the input-output feedback linearization method is used to transform the nonlinear mathematics model of inverters to a linear tracking synchronization and consensus regulation control problem. Based on the linear mathematics model and multiagent consensus algorithm, a decentralized coordinated controller is proposed to make amplitudes and angles of voltages from inverters be consensus and active and reactive power shared in the desired ratio. The proposed control is totally distributed because each inverter only requires local and one neighbor’s information with sparse communication structure based on multiagent system. The hybrid consensus algorithm is used to keep the amplitude of the output voltages following the leader and the angles of output voltage as consensus. Then the microgrid can be operated more efficiently and the circulating current between DGs can be effectively suppressed. The effectiveness of the proposed method is proved through simulation results of a typical microgrid system.

  19. Linear and non-linear carrier-envelope phase difference effects in interactions of ultra-short laser pulses with a metal nano-layer

    International Nuclear Information System (INIS)

    Varro, S.

    2006-01-01

    Complete test of publication follows. On the basis of classical electrodynamics the reflection and transmission of an ultra-short laser pulse impinging on a metal nano-layer have been analysed. The thickness of the layer was assumed to be of the order of 2-10 nm, and the metallic electrons were represented by a surface current density at the plane boundary of a dielectric substrate. It has been shown that in the scattered fields a non-oscillatory wake-field appears following the main pulse with an exponential decay and with a definite sign of the electric and magnetic fields. The characteristic time of these wake-fields is inversely proportional to the square of the plasma frequency and to the thickness of the metal nano-layer, and can be of order or larger then the original pulse duration. The magnitude of these wake-fields is proportional with the incoming field strength - so this is a linear effect - and the definite sign of them is governed by the cosine of the carrier-envelope phase difference of the incoming ultrashort laser pulse. As a consequence, when we let such a wake-field excite the electrons of a secondary target - say a plasma, a metal surface or a gas - we obtain 100 percent modulation depth in the electron signal in a given direction. This scheme can perhaps serve as a basis for the construction of a robust linear carrier-envelope phase difference mater. At relativistic laser intensities the target becomes a plasma layer generated, e.g. by the rising part of the incoming laser pulse. An approximate analytic solution has been given for the system of the coupled Maxwell-Lorentz equations describing the dynamics of the surface current (representing the plasma electrons) and the composite radiation field. With the help of these solutions the Fourier components of the reflected and transmitted radiation have been calculated. The nonlinearities stemming from the relativistic kinematics lead to the appearance of higher-order harmonics in the scattered

  20. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)

    KAUST Repository

    Guo, Yang

    2018-01-04

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  1. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)

    KAUST Repository

    Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G.; Minenkov, Yury; Cavallo, Luigi; Neese, Frank

    2018-01-01

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  2. Linear analytical solution to the phase diversity problem for extended objects based on the Born approximation

    NARCIS (Netherlands)

    Andrei, R.M.; Smith, C.S.; Fraanje, P.R.; Verhaegen, M.; Korkiakoski, V.A.; Keller, C.U.; Doelman, N.J.

    2012-01-01

    In this paper we give a new wavefront estimation technique that overcomes the main disadvantages of the phase diversity (PD) algorithms, namely the large computational complexity and the fact that the solutions can get stuck in a local minima. Our approach gives a good starting point for an

  3. Ultrafast all-optical clock recovery based on phase-only linear optical filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael

    2014-01-01

    We report on a novel technique for all-optical clock recovery from RZ OOK data based on phase-only filtering, significantly enhancing the recovered clock quality and energy-efficiency compared to the use of a Fabry-Perot filter....

  4. Insight into organic reactions from the direct random phase approximation and its corrections

    Energy Technology Data Exchange (ETDEWEB)

    Ruzsinszky, Adrienn [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Zhang, Igor Ying; Scheffler, Matthias [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

    2015-10-14

    The performance of the random phase approximation (RPA) and beyond-RPA approximations for the treatment of electron correlation is benchmarked on three different molecular test sets. The test sets are chosen to represent three typical sources of error which can contribute to the failure of most density functional approximations in chemical reactions. The first test set (atomization and n-homodesmotic reactions) offers a gradually increasing balance of error from the chemical environment. The second test set (Diels-Alder reaction cycloaddition = DARC) reflects more the effect of weak dispersion interactions in chemical reactions. Finally, the third test set (self-interaction error 11 = SIE11) represents reactions which are exposed to noticeable self-interaction errors. This work seeks to answer whether any one of the many-body approximations considered here successfully addresses all these challenges.

  5. Insight into organic reactions from the direct random phase approximation and its corrections

    International Nuclear Information System (INIS)

    Ruzsinszky, Adrienn; Zhang, Igor Ying; Scheffler, Matthias

    2015-01-01

    The performance of the random phase approximation (RPA) and beyond-RPA approximations for the treatment of electron correlation is benchmarked on three different molecular test sets. The test sets are chosen to represent three typical sources of error which can contribute to the failure of most density functional approximations in chemical reactions. The first test set (atomization and n-homodesmotic reactions) offers a gradually increasing balance of error from the chemical environment. The second test set (Diels-Alder reaction cycloaddition = DARC) reflects more the effect of weak dispersion interactions in chemical reactions. Finally, the third test set (self-interaction error 11 = SIE11) represents reactions which are exposed to noticeable self-interaction errors. This work seeks to answer whether any one of the many-body approximations considered here successfully addresses all these challenges

  6. Linearized Optically Phase-Modulated Fiber Optic Links for Microwave Signal Transport

    Science.gov (United States)

    2009-03-03

    detectors (with internal 50- Ohm resistors) capable of 40-mA dc current per detector. With this link, the linearized SFDR would improve to 133 dB/Hz4/5...the IF) limitation on the signal. All calculations consider the 3dB power loss from the hybrid combiner and 6dB loss from parallel 50- Ohm resistors...283. [25] M. Nazarathy, J. Berger, A. Ley , I. Levi, and Y. Kagan, “Externally Modulated 80 Channel Am Catv Fiber-to-feeder Distribution System Over

  7. Study on radial-phase motion of a beam in the 3 cm electron linear accelerator

    International Nuclear Information System (INIS)

    Polyakov, V.A.; Shchedrin, I.S.

    1982-01-01

    Longitudinal and transverse dynamics of particles in a 3 cm electron linear accelerator (ELA) are. considered. Electron motion in the source and in the section before inlet onto the accelerating section, effect of the wave type input transformer as well as the effect of deviations of parameters of ELA supply system on oUtput characteristics of the beam have been taken into account. The results obtained permitted to explain a comparatively small value of accelerated current at the output of the LAEU-31M (38 m A). Recommendations on improvement of beam passogein the accelerating section are developed based on computerized calculations

  8. Implementation of Four-Phase Interleaved Balance Charger for Series-Connected Batteries with Power Factor Correction

    Science.gov (United States)

    Juan, Y. L.; Lee, Y. T.; Lee, Y. L.; Chen, L. L.; Huang, M. L.

    2017-11-01

    A four-phase interleaved balance charger for series-connected batteries with power factor correction is proposed in this dissertation. In the two phases of two buckboost converters, the rectified ac power is firstly converted to a dc link capacitor. In the other two phases of two flyback converters, the rectified ac power is directly converted to charge the corresponding batteries. Additionally, the energy on the leakage inductance of flyback converter is bypassed to the dc link capacitor. Then, a dual-output balance charging circuit is connected to the dc link to deliver the dc link power to charge two batteries in the series-connected batteries module. The constant-current/constant-voltage charging strategy is adopted. Finally, a prototype of the proposed charger with rated power 500 W is constructed. From the experimental results, the performance and validity of the proposed topology are verified. Compared to the conventional topology with passive RCD snubber, the efficiency of the proposed topology is improved about 3% and the voltage spike on the active switch is also reduced. The efficiency of the proposed charger is at least 83.6 % within the CC/CV charging progress.

  9. Numerical Modal Analysis of Vibrations in a Three-Phase Linear Switched Reluctance Actuator

    Directory of Open Access Journals (Sweden)

    José Salvado

    2017-01-01

    Full Text Available This paper addresses the problem of vibrations produced by switched reluctance actuators, focusing on the linear configuration of this type of machines, aiming at its characterization regarding the structural vibrations. The complexity of the mechanical system and the number of parts used put serious restrictions on the effectiveness of analytical approaches. We build the 3D model of the actuator and use finite element method (FEM to find its natural frequencies. The focus is on frequencies within the range up to nearly 1.2 kHz which is considered relevant, based on preliminary simulations and experiments. Spectral analysis results of audio signals from experimental modal excitation are also shown and discussed. The obtained data support the characterization of the linear actuator regarding the excited modes, its vibration frequencies, and mode shapes, with high potential of excitation due to the regular operation regimes of the machine. The results reveal abundant modes and harmonics and the symmetry characteristics of the actuator, showing that the vibration modes can be excited for different configurations of the actuator. The identification of the most critical modes is of great significance for the actuator’s control strategies. This analysis also provides significant information to adopt solutions to reduce the vibrations at the design.

  10. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \\& in the Technical Design Phase

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  11. Synthesis of Phase-Only Reconfigurable Linear Arrays Using Multiobjective Invasive Weed Optimization Based on Decomposition

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2014-01-01

    Full Text Available Synthesis of phase-only reconfigurable array aims at finding a common amplitude distribution and different phase distributions for the array to form different patterns. In this paper, the synthesis problem is formulated as a multiobjective optimization problem and solved by a new proposed algorithm MOEA/D-IWO. First, novel strategies are introduced in invasive weed optimization (IWO to make original IWO fit for solving multiobjective optimization problems; then, the modified IWO is integrated into the framework of the recently well proved competitive multiobjective optimization algorithm MOEA/D to form a new competitive MOEA/D-IWO algorithm. At last, two sets of experiments are carried out to illustrate the effectiveness of MOEA/D-IWO. In addition, MOEA/D-IWO is compared with MOEA/D-DE, a new version of MOEA/D. The comparing results show the superiority of MOEA/D-IWO and indicate its potential for solving the antenna array synthesis problems.

  12. Integral model of linear momentum for one-dimensional two-phase flows

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.A.; Sabaev, E.F.

    1976-01-01

    ''An integrated momentum model'' obtained by Meyer-Rose and widely applicable in calculations of dynamics of the thermal power systems is generalized for a case of flow of a vapour-liquid mixture with phase creep and pressure variation in the heated channel. Pressure distribution along the channel length is shown for a number of cases to be negligible. The obtained equations are found as well applicable in case pressure greatly though slowly varies in the system

  13. Linear and nonlinear magnetic error measurements using action and phase jump analysis

    Directory of Open Access Journals (Sweden)

    Javier F. Cardona

    2009-01-01

    Full Text Available “Action and phase jump” analysis is presented—a beam based method that uses amplitude and phase knowledge of a particle trajectory to locate and measure magnetic errors in an accelerator lattice. The expected performance of the method is first tested using single-particle simulations in the optical lattice of the Relativistic Heavy Ion Collider (RHIC. Such simulations predict that under ideal conditions typical quadrupole errors can be estimated within an uncertainty of 0.04%. Other simulations suggest that sextupole errors can be estimated within a 3% uncertainty. Then the action and phase jump analysis is applied to real RHIC orbits with known quadrupole errors, and to real Super Proton Synchrotron (SPS orbits with known sextupole errors. It is possible to estimate the strength of a skew quadrupole error from measured RHIC orbits within a 1.2% uncertainty, and to estimate the strength of a strong sextupole component from the measured SPS orbits within a 7% uncertainty.

  14. Thermally tunable dispersion compensator in 40-Gb/s system using FBG fabricated with linearly chirped phase mask.

    Science.gov (United States)

    Sun, Jie; Dai, Yitang; Chen, Xiangfei; Zhang, Yejin; Xie, Shizhong

    2006-01-09

    An improved design and fabrication method of nonlinearly chirped fiber Bragg gratings is demonstrated. Based on reconstruction-equivalent- chirp method, the nonlinearly chirped fiber Bragg grating is realized with a linearly chirped phase mask instead of a uniform one, which improves the performance of the device. Coated with uniform thin metal film, the obtained grating works as a tunable dispersion compensator with a tuning range ~200ps/nm, peak-to-peak group delay ripple fiber using carrier suppressed return-to-zero format is less than 0.7dB at a BER=10-10.

  15. Bateman's dual system revisited: quantization, geometric phase and relation with the ground-state energy of the linear harmonic oscillator

    International Nuclear Information System (INIS)

    Blasone, Massimo; Jizba, Petr

    2004-01-01

    By using the Feynman-Hibbs prescription for the evolution amplitude, we quantize the system of a damped harmonic oscillator coupled to its time-reversed image, known as Bateman's dual system. The time-dependent quantum states of such a system are constructed and discussed entirely in the framework of the classical theory. The corresponding geometric (Pancharatnam) phase is calculated and found to be directly related to the ground-state energy of the 1D linear harmonic oscillator to which the 2D system reduces under appropriate constraint

  16. [Corrected Title: Solid-Phase Extraction of Polar Compounds from Water] Automated Electrostatics Environmental Chamber

    Science.gov (United States)

    Sauer, Richard; Rutz, Jeffrey; Schultz, John

    2005-01-01

    A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.

  17. Age dependence of spleen- and muscle-corrected hepatic signal enhancement on hepatobiliary phase gadoxetate MRI

    Energy Technology Data Exchange (ETDEWEB)

    Matoori, Simon [Paracelsus Medical University Salzburg, Department of Radiology, Salzburg (Austria); Hirslanden Clinic St. Anna, Clinical Research Group, Lucerne (Switzerland); Froehlich, Johannes M. [Hirslanden Clinic St. Anna, Clinical Research Group, Lucerne (Switzerland); ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich (Switzerland); Cantonal Hospital Winterthur, Department of Radiology, Winterthur (Switzerland); Breitenstein, Stefan [Cantonal Hospital Winterthur, Department of Surgery, Clinic for Visceral and Thoracic Surgery, Winterthur (Switzerland); Doert, Aleksis [Cantonal Hospital Winterthur, Department of Radiology, Winterthur (Switzerland); Pozdniakova, Viktoria [Stavanger University Hospital, Department of Radiology, Stavanger (Norway); Koh, Dow-Mu [Royal Marsden Hospital, Department of Radiology, Surrey, England (United Kingdom); Gutzeit, Andreas [Paracelsus Medical University Salzburg, Department of Radiology, Salzburg (Austria); Hirslanden Clinic St. Anna, Clinical Research Group, Lucerne (Switzerland); Cantonal Hospital Winterthur, Department of Radiology, Winterthur (Switzerland)

    2016-06-15

    To identify correlations of signal enhancements (SE) and SE normalized to reference tissues of the spleen, kidney, liver, musculus erector spinae (MES) and ductus hepatocholedochus (DHC) on hepatobiliary phase gadoxetate-enhanced MRI with patient age in non-cirrhotic patients. A heterogeneous cohort of 131 patients with different clinical backgrounds underwent a standardized 3.0-T gadoxetate-enhanced liver MRI between November 2008 and June 2013. After exclusion of cirrhotic patients, a cohort of 75 patients with no diagnosed diffuse liver disease was selected. The ratio of signal intensity 20 min post- to pre-contrast administration (SE) in the spleen, kidney, liver, MES and DHC, and the SE of the kidney, liver and DHC normalized to the reference tissues spleen or MES were compared to patient age. Patient age was inversely correlated with the liver SE normalized to the spleen and MES SE (both p < 0.001) and proportionally with the SE of the spleen (p = 0.043), the MES (p = 0.030) and the kidney (p = 0.022). No significant correlations were observed for the DHC (p = 0.347) and liver SE (p = 0.606). The age dependence of hepatic SE normalized to the enhancement in the spleen and MES calls for a cautious interpretation of these quantification methods. (orig.)

  18. Age dependence of spleen- and muscle-corrected hepatic signal enhancement on hepatobiliary phase gadoxetate MRI

    International Nuclear Information System (INIS)

    Matoori, Simon; Froehlich, Johannes M.; Breitenstein, Stefan; Doert, Aleksis; Pozdniakova, Viktoria; Koh, Dow-Mu; Gutzeit, Andreas

    2016-01-01

    To identify correlations of signal enhancements (SE) and SE normalized to reference tissues of the spleen, kidney, liver, musculus erector spinae (MES) and ductus hepatocholedochus (DHC) on hepatobiliary phase gadoxetate-enhanced MRI with patient age in non-cirrhotic patients. A heterogeneous cohort of 131 patients with different clinical backgrounds underwent a standardized 3.0-T gadoxetate-enhanced liver MRI between November 2008 and June 2013. After exclusion of cirrhotic patients, a cohort of 75 patients with no diagnosed diffuse liver disease was selected. The ratio of signal intensity 20 min post- to pre-contrast administration (SE) in the spleen, kidney, liver, MES and DHC, and the SE of the kidney, liver and DHC normalized to the reference tissues spleen or MES were compared to patient age. Patient age was inversely correlated with the liver SE normalized to the spleen and MES SE (both p < 0.001) and proportionally with the SE of the spleen (p = 0.043), the MES (p = 0.030) and the kidney (p = 0.022). No significant correlations were observed for the DHC (p = 0.347) and liver SE (p = 0.606). The age dependence of hepatic SE normalized to the enhancement in the spleen and MES calls for a cautious interpretation of these quantification methods. (orig.)

  19. Formation of nanocrystalline phases during decomposition of amorphous Ni-P alloys by continuous linear heating

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, A.; Lendvai, J. [Eoetvoes Lorand Tudomanyegyeten, Budapest (Hungary). Dept. for General Physics; Cziraki, A. [Eoetvoes Univ. (Hungary). Dept. of Solid State Physics; Liebermann, H.H. [Honeywell Amorphous Metals, Morristown, NJ (United States); Bakonyi, I. [Hungarian Academy of Sciences (Hungary). Research Inst. for Solid State Physics and Optics

    2001-05-01

    Differential scanning calorimetry (DSC), powder diffraction and high-resolution X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations have been performed on melt-quenched amorphous Ni-P alloys with compositions of 18 to 22 at.% P. The calorimetric results revealed different crystallization routes during linear heating below, at and above the eutectic point (19 at.% P) but with the same general transformation scheme as reported previously for electrodeposited and electroless Ni-P amorphous alloys. The composition dependence of the activation energy of the crystallization and the heats evolved during the structural transformations were determined from DSC measurements. The average grain size was derived from XRD line broadening and important information on the crystallization products and their microstructure could be revealed also from the TEM studies. All these findings will have special significance when analysing the results of isothermal annealing experiments to be described in a forthcoming paper. (orig.)

  20. LCL filter design for three-phase two-level power factor correction using line impedance stabilization network

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2016-01-01

    This paper presents LCL filter design method for three-phase two-level power factor correction (PFC) using line impedance stabilization network (LISN). A straightforward LCL filter design along with variation in grid impedance is not simply achievable and inevitably lead to an iterative solution...... for filter. By introducing of fast power switches for PFC applications such as silicon-carbide, major current harmonics around the switching frequency drops in the region that LISN can actively provide well-defined impedance for measuring the harmonics (i.e. 9 kHz- 30MHz). Therefore, LISN can be replaced...... is derived using the current ripple behavior of converter-side inductor. The grid-side inductor is achieved as a function of LISN impedance to fulfill the grid regulation. To verify the analyses, an LCL filter is designed for a 5 kW SiC-based PFC. The simulation and experimental results support the validity...

  1. Randomized phase III trial of regorafenib in metastatic colorectal cancer: analysis of the CORRECT Japanese and non-Japanese subpopulations.

    Science.gov (United States)

    Yoshino, Takayuki; Komatsu, Yoshito; Yamada, Yasuhide; Yamazaki, Kentaro; Tsuji, Akihito; Ura, Takashi; Grothey, Axel; Van Cutsem, Eric; Wagner, Andrea; Cihon, Frank; Hamada, Yoko; Ohtsu, Atsushi

    2015-06-01

    In the international, phase III, randomized, double-blind CORRECT trial, regorafenib significantly prolonged overall survival (OS) versus placebo in patients with metastatic colorectal cancer (mCRC) that had progressed on all standard therapies. This post hoc analysis evaluated the efficacy and safety of regorafenib in Japanese and non-Japanese subpopulations in the CORRECT trial. Patients were randomized 2 : 1 to regorafenib 160 mg once daily or placebo for weeks 1-3 of each 4-week cycle. The primary endpoint was OS. Outcomes were assessed using descriptive statistics. One hundred Japanese and 660 non-Japanese patients were randomized to regorafenib (n = 67 and n = 438) or placebo (n = 33 and n = 222). Regorafenib had a consistent OS benefit in the Japanese and non-Japanese subpopulations, with hazard ratios of 0.81 (95 % confidence interval [CI] 0.43-1.51) and 0.77 (95 % CI 0.62-0.94), respectively. Regorafenib-associated hand-foot skin reaction, hypertension, proteinuria, thrombocytopenia, and lipase elevations occurred more frequently in the Japanese subpopulation than in the non-Japanese subpopulation, but were generally manageable. Regorafenib appears to have comparable efficacy in Japanese and non-Japanese subpopulations, with a manageable adverse-event profile, suggesting that this agent could potentially become a standard of care in patients with mCRC.

  2. Linear information retrieval method in X-ray grating-based phase contrast imaging and its interchangeability with tomographic reconstruction

    Science.gov (United States)

    Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.

    2017-06-01

    In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.

  3. Quasi-closed phase forward-backward linear prediction analysis of speech for accurate formant detection and estimation.

    Science.gov (United States)

    Gowda, Dhananjaya; Airaksinen, Manu; Alku, Paavo

    2017-09-01

    Recently, a quasi-closed phase (QCP) analysis of speech signals for accurate glottal inverse filtering was proposed. However, the QCP analysis which belongs to the family of temporally weighted linear prediction (WLP) methods uses the conventional forward type of sample prediction. This may not be the best choice especially in computing WLP models with a hard-limiting weighting function. A sample selective minimization of the prediction error in WLP reduces the effective number of samples available within a given window frame. To counter this problem, a modified quasi-closed phase forward-backward (QCP-FB) analysis is proposed, wherein each sample is predicted based on its past as well as future samples thereby utilizing the available number of samples more effectively. Formant detection and estimation experiments on synthetic vowels generated using a physical modeling approach as well as natural speech utterances show that the proposed QCP-FB method yields statistically significant improvements over the conventional linear prediction and QCP methods.

  4. Multivariate Linear Regression and CART Regression Analysis of TBM Performance at Abu Hamour Phase-I Tunnel

    Science.gov (United States)

    Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.

    2017-12-01

    The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.

  5. THE CARMA PAIRED ANTENNA CALIBRATION SYSTEM: ATMOSPHERIC PHASE CORRECTION FOR MILLIMETER WAVE INTERFEROMETRY AND ITS APPLICATION TO MAPPING THE ULTRALUMINOUS GALAXY ARP 193

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B. Ashley; Bolatto, Alberto D.; Vogel, Stuart N.; Curley, Roger; Pound, Marc W.; Mundy, Lee G.; Teng, Stacy H.; Teuben, Peter J. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Carpenter, John M. [California Institute of Technology, Department of Astronomy, MC 249-17, Pasadena, CA 91125 (United States); Peréz, Laura M. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Lamb, James W.; Woody, David P.; Leitch, Erik M.; Muchovej, Stephen J.; Volgenau, Nikolaus H. [California Institute of Technology, Owens Valley Radio Observatory, Big Pine, CA 93513 (United States); Bock, Douglas C.-J. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW 1710 (Australia); Carlstrom, John E.; Culverhouse, Thomas L. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Plambeck, Richard L. [Radio Astronomy Laboratory, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Marrone, Daniel P. [Department of Astronomy, Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); and others

    2016-01-15

    Phase fluctuations introduced by the atmosphere are the main limiting factor in attaining diffraction limited performance in extended interferometric arrays at millimeter and submillimeter wavelengths. We report the results of C-PACS, the Combined Array for Research in Millimeter-Wave Astronomy Paired Antenna Calibration System. We present a systematic study of several hundred test observations taken during the 2009–2010 winter observing season where we utilize CARMA's eight 3.5 m antennas to monitor an atmospheric calibrator while simultaneously acquiring science observations with 6.1 and 10.4 m antennas on baselines ranging from a few hundred meters to ∼2 km. We find that C-PACS is systematically successful at improving coherence on long baselines under a variety of atmospheric conditions. We find that the angular separation between the atmospheric calibrator and target source is the most important consideration, with consistently successful phase correction at CARMA requiring a suitable calibrator located ≲6° away from the science target. We show that cloud cover does not affect the success of C-PACS. We demonstrate C-PACS in typical use by applying it to the observations of the nearby very luminous infrared galaxy Arp 193 in {sup 12}CO(2-1) at a linear resolution of ≈70 pc (0.″12 × 0.″18), 3 times better than previously published molecular maps of this galaxy. We resolve the molecular disk rotation kinematics and the molecular gas distribution and measure the gas surface densities and masses on 90 pc scales. We find that molecular gas constitutes ∼30% of the dynamical mass in the inner 700 pc of this object with a surface density ∼10{sup 4} M{sub ⊙} pc{sup −2}; we compare these properties to those of the starburst region of NGC 253.

  6. ECG denoising and fiducial point extraction using an extended Kalman filtering framework with linear and nonlinear phase observations.

    Science.gov (United States)

    Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Armoundas, Antonis A; Sayadi, Omid

    2016-02-01

    In this paper we propose an efficient method for denoising and extracting fiducial point (FP) of ECG signals. The method is based on a nonlinear dynamic model which uses Gaussian functions to model ECG waveforms. For estimating the model parameters, we use an extended Kalman filter (EKF). In this framework called EKF25, all the parameters of Gaussian functions as well as the ECG waveforms (P-wave, QRS complex and T-wave) in the ECG dynamical model, are considered as state variables. In this paper, the dynamic time warping method is used to estimate the nonlinear ECG phase observation. We compare this new approach with linear phase observation models. Using linear and nonlinear EKF25 for ECG denoising and nonlinear EKF25 for fiducial point extraction and ECG interval analysis are the main contributions of this paper. Performance comparison with other EKF-based techniques shows that the proposed method results in higher output SNR with an average SNR improvement of 12 dB for an input SNR of -8 dB. To evaluate the FP extraction performance, we compare the proposed method with a method based on partially collapsed Gibbs sampler and an established EKF-based method. The mean absolute error and the root mean square error of all FPs, across all databases are 14 ms and 22 ms, respectively, for our proposed method, with an advantage when using a nonlinear phase observation. These errors are significantly smaller than errors obtained with other methods. For ECG interval analysis, with an absolute mean error and a root mean square error of about 22 ms and 29 ms, the proposed method achieves better accuracy and smaller variability with respect to other methods.

  7. gsSKAT: Rapid gene set analysis and multiple testing correction for rare-variant association studies using weighted linear kernels.

    Science.gov (United States)

    Larson, Nicholas B; McDonnell, Shannon; Cannon Albright, Lisa; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan; Schleutker, Johanna; Carpten, John D; Powell, Isaac; Bailey-Wilson, Joan E; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Whittemore, Alice S; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote-Jarai, Zsofia; Ackerman, Michael J; Olson, Timothy M; Klein, Christopher J; Thibodeau, Stephen N; Schaid, Daniel J

    2017-05-01

    Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results. © 2017 WILEY PERIODICALS, INC.

  8. Diagnostic performance of Tc-99m HMPAO SPECT for early and late onset Alzheimer's disease. A clinical evaluation of linearization correction

    International Nuclear Information System (INIS)

    Mitsumoto, Tatsuya; Sakaguchi, Yuichi; Morishita, Junji; Sasaki, Masayuki; Ohya, Nobuyoshi; Abe, Koichiro; Ichimiya, Atsushi; Kiyota, Aya

    2009-01-01

    This study examined the influence of linearization correction (LC) on brain perfusion single-photon emission computed tomography (SPECT) for the diagnosis of Alzheimer's disease (AD). The early onset group (<65 years old) consisted of 10 patients with AD, and the late onset group (≥65 years old) of 13 patients with AD. Age-matched controls included seven younger and seven older normal volunteers. Tc-99m hexamethyl propyleneamine oxine (HMPAO) SPECT images were reconstructed with or without LC [LC (+) or LC (-)] and a statistical analysis was performed using a three-dimensional stereotactic surface projection (3D-SSP). In addition, a fully automatic diagnostic system was developed, which calculated the proportion of the number of abnormal pixels in the superior and inferior parietal lobule, as well as in the precuneus and posterior cingulate gyrus. The areas under the receiver-operating characteristic curve (AUCs) of the early onset group for conventional axial SPECT images, SPECT+3D-SSP images and the fully automatic diagnostic system were 0.71, 0.88, and 0.92 in LC (-) and 0.67, 0.85, and 0.91 in LC (+), respectively. The AUCs of the late onset group were 0.50, 0.61, and 0.79 in LC (-) and 0.49, 0.67, and 0.85 in LC (+), respectively. LC on Tc-99m HMPAO SPECT did not significantly influence the diagnostic performance for differentiating between AD and normal controls in either early or late onset AD. Further examination with individuals suffering from very mild dementia is, therefore, expected to elucidate the effect of LC on minimally hypoperfused areas. (author)

  9. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    Science.gov (United States)

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  10. A bandwidth independent linear method for detection of carrier envelope phase drift

    International Nuclear Information System (INIS)

    Goerbe, M.

    2006-01-01

    Complete test of publication follows. Most of the femtosecond-scale physical phenomena can be experimentally investigated by using carrier-envelope phase (CEP) stabilized laser pulses only. The usual method of CEP stabilization requires laser pulses with a bandwidth of one octave broad at least. If the spectrum of the fundamental pulse itself is not sufficiently broad, then its bandwidth has to be broadened by use of any nonlinear method. Spectrally and spatially resolved interferometry (SSRI) has been proven to be a powerful technique for dispersion measurement of various materials and optical elements. It typically consists of a two-beam interferometer equipped with an imaging spectrograph. The interference pattern is imaged onto the input slit of the spectrograph, so that spatially (along the slit) and spectrally resolved interference fringes are formed on the 2D detector (CCD camera) inserted at the output plane of the spectrograph. In this paper we show that the visibility of the spectrally and spatially resolved interference fringes depends strongly on the CEP drift of subsequent pulses from a pulse train. When the pulses are CEP stabilized then the visibility has a definite extremum. To introduce the operation principle, let's assume a black box in the sample are of the interferometer illuminated by train of CEP-stabilized laser pulses. This imaginary black box would change only the CEP of the subsequent pulses by Δ ψ but leaves their dispersion relative to the reference pulse, i.e. the pulse propagating in the other arm of the interferometer, unchanged. The spatial position of the interference fringes depends on Δ ψ . If the subsequent fringes are formed by pulses with different CEP, the spatial position of each interference fringe changes. The detector, i.e. the CCD chip of the imaging spectrograph is slow, so that it actually captures many subsequent interference patterns, on top of each other. As a result, the visibility of the resulted and captured

  11. Vanishing-Overhead Linear-Scaling Random Phase Approximation by Cholesky Decomposition and an Attenuated Coulomb-Metric.

    Science.gov (United States)

    Luenser, Arne; Schurkus, Henry F; Ochsenfeld, Christian

    2017-04-11

    A reformulation of the random phase approximation within the resolution-of-the-identity (RI) scheme is presented, that is competitive to canonical molecular orbital RI-RPA already for small- to medium-sized molecules. For electronically sparse systems drastic speedups due to the reduced scaling behavior compared to the molecular orbital formulation are demonstrated. Our reformulation is based on two ideas, which are independently useful: First, a Cholesky decomposition of density matrices that reduces the scaling with basis set size for a fixed-size molecule by one order, leading to massive performance improvements. Second, replacement of the overlap RI metric used in the original AO-RPA by an attenuated Coulomb metric. Accuracy is significantly improved compared to the overlap metric, while locality and sparsity of the integrals are retained, as is the effective linear scaling behavior.

  12. A study of cooperative Jahn-Teller phase transitions in rare-earth vanadates by linear birefringence

    International Nuclear Information System (INIS)

    Gehring, G.A.; Harley, R.T.; Macfarlane, R.M.

    1980-01-01

    Changes in linear birefringence (Δn) associated with the cooperative Jahn-Teller phase transition of DyV04 near 14K as as a function of temperature and magnetic fields, B, between 0.024 and 0.095T have been measured. Theoretical arguments show that Δn is directly proportional to the order parameter of the transition and that B(2) is equivalent to the conjugate ordering field. By extrapolation to zero field the temperature dependence of the order parameter and the susceptibility were obtained. The data are compared with calculations based on a mean-field 'compressible' Ising model. For a reasonable choice of adjustable parameters this classical description gives a good fit to the data close to Tsub(D) consistent with general theoretical arguments and more detailed calculations, but it deviates progressively away from Tsub(D) presumably because of the known importance of short-range interactions in the system. (author)

  13. A new linearized theory of laminar film condensation of two phase annular flow in a capillary pumped loop

    Science.gov (United States)

    Hsu, Y. K.; Swanson, T.; Mcintosh, R.

    1988-01-01

    Future large space based facilities, such as Space Station, will require energy management systems capable of transporting tens of kilowatts of heat over a hundred meters or more. This represents better than an order of magnitude improvement over current technology. Two-phase thermal systems are currently being developed to meet this challenge. Condensation heat transfer plays a very important role in this system. The present study attempts an analytic solution to the set of linearized partial differential equations. The axial velocity and temperature functions were found to be Bessel functions which have oscillatory behavior. This result agrees qualitatively with the experimental evidence from tests at both NASA Goddard Space Flight Center and elsewhere.

  14. FPGA-based electrocardiography (ECG signal analysis system using least-square linear phase finite impulse response (FIR filter

    Directory of Open Access Journals (Sweden)

    Mohamed G. Egila

    2016-12-01

    Full Text Available This paper presents a proposed design for analyzing electrocardiography (ECG signals. This methodology employs highpass least-square linear phase Finite Impulse Response (FIR filtering technique to filter out the baseline wander noise embedded in the input ECG signal to the system. Discrete Wavelet Transform (DWT was utilized as a feature extraction methodology to extract the reduced feature set from the input ECG signal. The design uses back propagation neural network classifier to classify the input ECG signal. The system is implemented on Xilinx 3AN-XC3S700AN Field Programming Gate Array (FPGA board. A system simulation has been done. The design is compared with some other designs achieving total accuracy of 97.8%, and achieving reduction in utilizing resources on FPGA implementation.

  15. Isotropic resolution diffusion tensor imaging of lumbosacral and sciatic nerves using a phase-corrected diffusion-prepared 3D turbo spin echo.

    Science.gov (United States)

    Cervantes, Barbara; Van, Anh T; Weidlich, Dominik; Kooijman, Hendrick; Hock, Andreas; Rummeny, Ernst J; Gersing, Alexandra; Kirschke, Jan S; Karampinos, Dimitrios C

    2018-08-01

    To perform in vivo isotropic-resolution diffusion tensor imaging (DTI) of lumbosacral and sciatic nerves with a phase-navigated diffusion-prepared (DP) 3D turbo spin echo (TSE) acquisition and modified reconstruction incorporating intershot phase-error correction and to investigate the improvement on image quality and diffusion quantification with the proposed phase correction. Phase-navigated DP 3D TSE included magnitude stabilizers to minimize motion and eddy-current effects on the signal magnitude. Phase navigation of motion-induced phase errors was introduced before readout in 3D TSE. DTI of lower back nerves was performed in vivo using 3D TSE and single-shot echo planar imaging (ss-EPI) in 13 subjects. Diffusion data were phase-corrected per k z plane with respect to T 2 -weighted data. The effects of motion-induced phase errors on DTI quantification was assessed for 3D TSE and compared with ss-EPI. Non-phase-corrected 3D TSE resulted in artifacts in diffusion-weighted images and overestimated DTI parameters in the sciatic nerve (mean diffusivity [MD] = 2.06 ± 0.45). Phase correction of 3D TSE DTI data resulted in reductions in all DTI parameters (MD = 1.73 ± 0.26) of statistical significance (P ≤ 0.001) and in closer agreement with ss-EPI DTI parameters (MD = 1.62 ± 0.21). DP 3D TSE with phase correction allows distortion-free isotropic diffusion imaging of lower back nerves with robustness to motion-induced artifacts and DTI quantification errors. Magn Reson Med 80:609-618, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2018 The Authors Magnetic Resonance

  16. Simulation of co-phase error correction of optical multi-aperture imaging system based on stochastic parallel gradient decent algorithm

    Science.gov (United States)

    He, Xiaojun; Ma, Haotong; Luo, Chuanxin

    2016-10-01

    The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.

  17. Chromaticity correction for the SSC collider rings

    International Nuclear Information System (INIS)

    Sen, T.; Nosochkov, Y.; Pilat, F.; Stiening, R.; Ritson, D.M.

    1993-01-01

    The authors address the issue of correcting higher order chromaticities of the collider with one or more low β insertions. The chromaticity contributed by the interaction regions (IRs) depends crucially on the maximum value of β in the two IRs in a cluster, the phase advance between adjacent interaction points (IPs), and the choice of global tune. They propose a correction scheme in which the linear chromaticity is corrected by a global distribution of sextupoles and the second order chromaticity of each IR is corrected by a more local set of sextupoles. Compared to the case where only the linear chromaticity is corrected, this configuration increases the momentum aperture more than three times and also reduces the β beat by this factor. With this scheme, the tune can be chosen to satisfy other constraints and the two IRs in a cluster can be operated independently at different luminosities without affecting the chromatic properties of the ring

  18. Chromaticity correction for the SSC Collider Rings

    International Nuclear Information System (INIS)

    Sen, T.; Nosochkov, Y.; Pilat, F.; Stiening, R.; Ritson, D.M.

    1993-05-01

    We address the issue of correcting higher order chromaticities of the collider with one or more low β insertions. The chromaticity contributed by the interaction regions (IRS) depends crucially on the maximum value of β in the two IRs in a cluster, the phase advance between adjacent interaction points (IPs), and the choice of global tune. We propose a correction scheme in which the linear chromaticity is corrected by a global distribution of sextupoles and the second order chromaticity of each IR is corrected by a more local set of sextupoles. Compared to the case where only the linear chromaticity is corrected, this configuration increases the momentum aperture more than three times and also reduces the β beat by this factor. With this scheme, the tune can be chosen to satisfy other constraints and the two IRs in a cluster can be operated independently at different luminosities without affecting the chromatic properties of the ring

  19. Aberration corrected STEM of defects in epitaxial n=4 Ruddlesden-Popper phase Can+1MnnO3n+1

    International Nuclear Information System (INIS)

    Wang, P; Bleloch, A L; Goodhew, P J; Yan, L; Niu, H J; Rosseinsky, M J; Chalker, P R

    2008-01-01

    Defects in Ruddlesden-Popper phase CaO·[(CaMnO 3 )] 4 epitaxial films grown on SrTiO 3 (001) by pulsed laser deposition have been investigated using high angle annular dark field imaging in an aberration-corrected STEM. The stacking faults perpendicular and parallel to the substrate formed during the growth are discussed in detail. The desired n = 4 RP phase is imaged and chemically analyzed at the atomic scale using electron energy loss spectroscopy.

  20. Phase II Corrective Action Investigation Plan for Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nye County, Nevada, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Wurtz

    2009-07-01

    This Phase II CAIP describes new work needed to potentially reduce uncertainty and achieve increased confidence in modeling results. This work includes data collection and data analysis to refine model assumptions, improve conceptual models of flow and transport in a complex hydrogeologic setting, and reduce parametric and structural uncertainty. The work was prioritized based on the potential to reduce model uncertainty and achieve an acceptable level of confidence in the model predictions for flow and transport, leading to model acceptance by NDEP and completion of the Phase II CAI stage of the UGTA strategy.

  1. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    International Nuclear Information System (INIS)

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus

    2012-01-01

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption

  2. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    Energy Technology Data Exchange (ETDEWEB)

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Aslund, Magnus [Research and Development, Philips Women' s Healthcare, Smidesvaegen 5, SE-171 41 Solna, Sweden and Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering and Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Research and Development, Philips Women' s Healthcare, Smidesvaegen 5, SE-171 41 Solna (Sweden)

    2012-09-15

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption

  3. Application of phase correction to improve the interpretation of crude oil spectra obtained using 7 T Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Cho, Yunju; Qi, Yulin; O'Connor, Peter B; Barrow, Mark P; Kim, Sunghwan

    2014-01-01

    In this study, a phase-correction technique was applied to the study of crude oil spectra obtained using a 7 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). 7 T FT-ICR MS had not been widely used for oil analysis due to the lower resolving power compared with high field FT-ICR MS. For low field instruments, usage of data that has not been phase-corrected results in an inability to resolve critical mass splits of C3 and SH4 (3.4 mDa), and (13)C and CH (4.5 mDa). This results in incorrect assignments of molecular formulae, and discontinuous double bond equivalents (DBE) and carbon number distributions of S1, S2, and hydrocarbon classes are obtained. Application of phase correction to the same data, however, improves the reliability of assignments and produces continuous DBE and carbon number distributions. Therefore, this study clearly demonstrates that phase correction improves data analysis and the reliability of assignments of molecular formulae in crude oil anlayses.

  4. QCD corrections to $e^{+} e^{-} \\to u \\overline {d} s \\overline {c}$ at LEP 2 and the Next Linear Collider CC11 at O $\\alpha_{s}$

    CERN Document Server

    Maina, E; Pizzio, M

    1998-01-01

    QCD one-loop corrections to the full gauge invariant set of electroweak diagrams describing the hadronic process $e^+ e^- \\to u~\\bar d~s~\\bar c$ are computed. Four-jet shape variables for $WW$ events are studied at next-to-leading order and the effects of QCD corrections on the determination of the $W$--mass in the hadronic channel at Lep 2 and NLC is discussed. We compare the exact calculation with a ``naive''approach to strong radiative corrections which has been widely used in the literature.

  5. Combine TV-L1 model with guided image filtering for wide and faint ring artifacts correction of in-line x-ray phase contrast computed tomography.

    Science.gov (United States)

    Ji, Dongjiang; Qu, Gangrong; Hu, Chunhong; Zhao, Yuqing; Chen, Xiaodong

    2018-01-01

    In practice, mis-calibrated detector pixels give rise to wide and faint ring artifacts in the reconstruction image of the In-line phase-contrast computed tomography (IL-PC-CT). Ring artifacts correction is essential in IL-PC-CT. In this study, a novel method of wide and faint ring artifacts correction was presented based on combining TV-L1 model with guided image filtering (GIF) in the reconstruction image domain. The new correction method includes two main steps namely, the GIF step and the TV-L1 step. To validate the performance of this method, simulation data and real experimental synchrotron data are provided. The results demonstrate that TV-L1 model with GIF step can effectively correct the wide and faint ring artifacts for IL-PC-CT.

  6. Full one-loop electroweak corrections to h0(H0,A0)H±W± associated productions at e+e- linear colliders

    International Nuclear Information System (INIS)

    Liu Jing; Ma Wengan; Zhang Renyu; Guo Lei; Jiang Yi; Han Liang

    2007-01-01

    We study the complete one-loop electroweak (EW) corrections to the processes of single charged Higgs boson production associated with a neutral Higgs boson (h 0 ,H 0 ,A 0 ) and a gauge boson W ± in the framework of the minimal supersymmetric standard model (MSSM). Numerical results at the SPS1a ' benchmark point as proposed in the SPA project, are presented for demonstration. We find that for the process e + e - →h 0 H ± W ± the EW relative correction can be either positive or negative and in the range of -15%∼20% in our chosen parameter space. While for the processes e + e - →H 0 (A 0 )H ± W ± the corrections generally reduce the Born cross sections and the EW relative corrections are typically of order -10%∼-20%

  7. Analysis of spinodal decomposition in Fe-32 and 40 at.% Cr alloys using phase field method based on linear and nonlinear Cahn-Hilliard equations

    Directory of Open Access Journals (Sweden)

    Orlando Soriano-Vargas

    2016-12-01

    Full Text Available Spinodal decomposition was studied during aging of Fe-Cr alloys by means of the numerical solution of the linear and nonlinear Cahn-Hilliard differential partial equations using the explicit finite difference method. Results of the numerical simulation permitted to describe appropriately the mechanism, morphology and kinetics of phase decomposition during the isothermal aging of these alloys. The growth kinetics of phase decomposition was observed to occur very slowly during the early stages of aging and it increased considerably as the aging progressed. The nonlinear equation was observed to be more suitable for describing the early stages of spinodal decomposition than the linear one.

  8. Geometric phase effects in low-energy dynamics near conical intersections: A study of the multidimensional linear vibronic coupling model

    International Nuclear Information System (INIS)

    Joubert-Doriol, Loïc; Ryabinkin, Ilya G.; Izmaylov, Artur F.

    2013-01-01

    In molecular systems containing conical intersections (CIs), a nontrivial geometric phase (GP) appears in the nuclear and electronic wave functions in the adiabatic representation. We study GP effects in nuclear dynamics of an N-dimensional linear vibronic coupling (LVC) model. The main impact of GP on low-energy nuclear dynamics is reduction of population transfer between the local minima of the LVC lower energy surface. For the LVC model, we proposed an isometric coordinate transformation that confines non-adiabatic effects within a two-dimensional subsystem interacting with an N − 2 dimensional environment. Since environmental modes do not couple electronic states, all GP effects originate from nuclear dynamics within the subsystem. We explored when the GP affects nuclear dynamics of the isolated subsystem, and how the subsystem-environment interaction can interfere with GP effects. Comparing quantum dynamics with and without GP allowed us to devise simple rules to determine significance of the GP for nuclear dynamics in this model

  9. Steady State Simulation of Two-Gas Phase Fluidized Bed Reactors in Series for Producing Linear Low Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Ali Farhangiyan Kashani

    2012-12-01

    Full Text Available A linear low density polyethylene (LLDPE production process, including two- fuidized bed reactors in series (FBRS and other process equipment, was completely simulated by Aspen Polymer Plus software. Fluidized bed reactors were considered as continuous stirred tank reactors (CSTR consisted of polymer and gas phases. POLY-SRK and NRTL-RK equations of state were used to describe polymer and non-polymer streams, respectively. In this simulation, a kinetic model, based on a double active site heterogeneous Ziegler-Natta catalyst was used for simulation of LLDPE process consisting of two FBRS. Simulator using this model has the capability to  predict a number of  principal characteristics of LLDPE such as melt fow index (MFI, density, polydispersity index, numerical and weight average molecular weights (Mn,Mw and copolymer molar fraction (SFRAC. The results of the simulation were compared with industrial plant data and a good agreement was observed between the predicted model and plant data. The simulation results show the relative error of about 0.59% for prediction of polymer mass fow and 2.67% and 0.04% for prediction of product MFI and density, respectively.

  10. Coherent Transport in a Linear Triple Quantum Dot Made from a Pure-Phase InAs Nanowire.

    Science.gov (United States)

    Wang, Ji-Yin; Huang, Shaoyun; Huang, Guang-Yao; Pan, Dong; Zhao, Jianhua; Xu, H Q

    2017-07-12

    A highly tunable linear triple quantum dot (TQD) device is realized in a single-crystalline pure-phase InAs nanowire using a local finger gate technique. The electrical measurements show that the charge stability diagram of the TQD can be represented by three kinds of current lines of different slopes and a simulation performed based on a capacitance matrix model confirms the experiment. We show that each current line observable in the charge stability diagram is associated with a case where a QD is on resonance with the Fermi level of the source and drain reservoirs. At a triple point where two current lines of different slopes move together but show anticrossing, two QDs are on resonance with the Fermi level of the reservoirs. We demonstrate that an energetically degenerated quadruple point at which all three QDs are on resonance with the Fermi level of the reservoirs can be built by moving two separated triple points together via sophistically tuning of energy levels in the three QDs. We also demonstrate the achievement of direct coherent electron transfer between the two remote QDs in the TQD, realizing a long-distance coherent quantum bus operation. Such a long-distance coherent coupling could be used to investigate coherent spin teleportation and superexchange effects and to construct a spin qubit with an improved long coherent time and with spin state detection solely by sensing the charge states.

  11. Bio-inspired piezoelectric linear motor driven by a single-phase harmonic wave with an asymmetric stator.

    Science.gov (United States)

    Pan, Qiaosheng; Miao, Enming; Wu, Bingxuan; Chen, Weikang; Lei, Xiujun; He, Liangguo

    2017-07-01

    A novel, bio-inspired, single-phase driven piezoelectric linear motor (PLM) using an asymmetric stator was designed, fabricated, and tested to avoid mode degeneracy and to simplify the drive mechanism of a piezoelectric motor. A piezoelectric transducer composed of two piezoelectric stacks and a displacement amplifier was used as the driving element of the PLM. Two simple and specially designed claws performed elliptical motion. A numerical simulation was performed to design the stator and determine the feasibility of the design mechanism of the PLM. Moreover, an experimental setup was built to validate the working principles, as well as to evaluate the performance, of the PLM. The prototype motor outputs a no-load speed of 233.7 mm/s at a voltage of 180 V p-p and a maximum thrust force of 2.3 N under a preload of 10 N. This study verified the feasibility of the proposed design and provided a method to simplify the driving harmonic signal and structure of PLMs.

  12. Selectivity of calixarene-bonded silica phases in HPLC: Description of special characteristics with a multiple term linear equation at different methanol concentrations.

    Science.gov (United States)

    Schneider, Christian; Jira, Thomas

    2010-10-01

    Retention and selectivity characteristics of different calixarene-, resorcinarene- and alkyl-bonded stationary phases are examined by analyzing a set of test solutes covering the main interactions (hydrophobic, steric, ionic, polar) that apply in HPLC. Therefore Dolan and Snyder's multiple term linear equation has been adapted to fit the properties of calixarene-bonded columns. The obtained parameters are used to describe retention and selectivity of the novel Caltrex(®) phases and to elucidate underlying mechanisms of retention. Here, differences of stationary phase characteristics at different methanol concentrations in the mobile phases are examined. Both selectivity and retention were found to depend on the methanol content. Differences of these dependencies were found for different stationary phases and interactions. The differences between common alkyl-bonded and novel calixarene-bonded phases increase with increasing methanol content.

  13. Phase correction for three-dimensional (3D) diffusion-weighted interleaved EPI using 3D multiplexed sensitivity encoding and reconstruction (3D-MUSER).

    Science.gov (United States)

    Chang, Hing-Chiu; Hui, Edward S; Chiu, Pui-Wai; Liu, Xiaoxi; Chen, Nan-Kuei

    2018-05-01

    Three-dimensional (3D) multiplexed sensitivity encoding and reconstruction (3D-MUSER) algorithm is proposed to reduce aliasing artifacts and signal corruption caused by inter-shot 3D phase variations in 3D diffusion-weighted echo planar imaging (DW-EPI). 3D-MUSER extends the original framework of multiplexed sensitivity encoding (MUSE) to a hybrid k-space-based reconstruction, thereby enabling the correction of inter-shot 3D phase variations. A 3D single-shot EPI navigator echo was used to measure inter-shot 3D phase variations. The performance of 3D-MUSER was evaluated by analyses of point-spread function (PSF), signal-to-noise ratio (SNR), and artifact levels. The efficacy of phase correction using 3D-MUSER for different slab thicknesses and b-values were investigated. Simulations showed that 3D-MUSER could eliminate artifacts because of through-slab phase variation and reduce noise amplification because of SENSE reconstruction. All aliasing artifacts and signal corruption in 3D interleaved DW-EPI acquired with different slab thicknesses and b-values were reduced by our new algorithm. A near-whole brain single-slab 3D DTI with 1.3-mm isotropic voxel acquired at 1.5T was successfully demonstrated. 3D phase correction for 3D interleaved DW-EPI data is made possible by 3D-MUSER, thereby improving feasible slab thickness and maximum feasible b-value. Magn Reson Med 79:2702-2712, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. LINEAR SOLVATION ENERGY RELATIONSHIPS FOR CHARACTERIZATION OF MLC SYSTEMS WITH SODIUM DODECYL SULPHATE MOBILE PHASES MODIFIED BY ALIPHATIC ALCOHOLS OR CARBOXYLIC ACIDS

    NARCIS (Netherlands)

    Markov, Vadym V.; Boichenko, Alexander P.; Loginova, Lidia P.

    2012-01-01

    The Linear Solvation Energy Relationships (LSER) have been successfully used for the modeling of partition and retention of the set of test compounds in different systems. The properties of micellar chromatographic systems with the mobile phases on the basis of sodium dodecylsulphate modified (ODS)

  15. Freely dissolved concentrations of anionic surfactants in seawater solutions: optimization of the non-depletive solid-phase microextraction method and application to linear alkylbenzene sulfonates.

    NARCIS (Netherlands)

    Rico Rico, A.; Droge, S.T.J.; Widmer, D.; Hermens, J.L.M.

    2009-01-01

    A solid-phase microextraction method (SPME) has been optimized for the analysis of freely dissolved anionic surfactants, namely linear alkylbenzene sulfonates (LAS), in seawater. An effect of the thermal conditioning treatment on the polyacrylate fiber coating was demonstrated for both uptake

  16. 640 Gbit/s return-to-zero to non-return-to-zero format conversion based on optical linear spectral phase filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael

    2016-01-01

    We propose a novel approach for all-optical return-to-zero (RZ) to non-return-to-zero (NRZ) telecommunication data format conversion based on linear spectral phase manipulation of an RZ data signal. The operation principle is numerically analyzed and experimentally validated through successful fo...

  17. The investigation of the phase-locking stability in linear arrays of Josephson junctions and arrays closed into a superconducting loop

    International Nuclear Information System (INIS)

    Darula, M.; Seidel, P.; Misanik, B.; Busse, F.; Heinz, E.; Benacka, S.

    1994-01-01

    The phase-locking stability is investigated theoretically in two structures: linear arrays of Josephson junctions shunted by resistive load and arrays closed into superconducting loop. In both cases the quasi-identical junctions are supposed to be in arrays. The stability as a function of spread in Josephson junction parameters as well as a function of other circuit parameters is investigated. Using Floquet theory it is shown that spread in critical currents of Josephson junction limit the stability of phase-locking state. From the simulations it follows that the phase-locking in arrays closed into superconducting loop is more stable against the spread in junction parameters than in the case of linear array of Josephson junctions. (orig.)

  18. A method for determining optimum phasing of a multiphase propulsion system for a single-stage vehicle with linearized inert weight

    Science.gov (United States)

    Martin, J. A.

    1974-01-01

    A general analytical treatment is presented of a single-stage vehicle with multiple propulsion phases. A closed-form solution for the cost and for the performance and a derivation of the optimal phasing of the propulsion are included. Linearized variations in the inert weight elements are included, and the function to be minimized can be selected. The derivation of optimal phasing results in a set of nonlinear algebraic equations for optimal fuel volumes, for which a solution method is outlined. Three specific example cases are analyzed: minimum gross lift-off weight, minimum inert weight, and a minimized general function for a two-phase vehicle. The results for the two-phase vehicle are applied to the dual-fuel rocket. Comparisons with single-fuel vehicles indicate that dual-fuel vehicles can have lower inert weight either by development of a dual-fuel engine or by parallel burning of separate engines from lift-off.

  19. Author Correction: Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager

    Science.gov (United States)

    Vadawale, S. V.; Chattopadhyay, T.; Mithun, N. P. S.; Rao, A. R.; Bhattacharya, D.; Vibhute, A.; Bhalerao, V. B.; Dewangan, G. C.; Misra, R.; Paul, B.; Basu, A.; Joshi, B. C.; Sreekumar, S.; Samuel, E.; Priya, P.; Vinod, P.; Seetha, S.

    2018-05-01

    In the Supplementary Information file originally published for this Letter, in Supplementary Fig. 7 the error bars for the polarization fraction were provided as confidence intervals but instead should have been Bayesian credibility intervals. This has been corrected and does not alter the conclusions of the Letter in any way.

  20. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform

    Science.gov (United States)

    Nagy, Péter R.; Kállay, Mihály

    2017-06-01

    An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor.

  1. A two-phase sampling survey for nonresponse and its paradata to correct nonresponse bias in a health surveillance survey.

    Science.gov (United States)

    Santin, G; Bénézet, L; Geoffroy-Perez, B; Bouyer, J; Guéguen, A

    2017-02-01

    The decline in participation rates in surveys, including epidemiological surveillance surveys, has become a real concern since it may increase nonresponse bias. The aim of this study is to estimate the contribution of a complementary survey among a subsample of nonrespondents, and the additional contribution of paradata in correcting for nonresponse bias in an occupational health surveillance survey. In 2010, 10,000 workers were randomly selected and sent a postal questionnaire. Sociodemographic data were available for the whole sample. After data collection of the questionnaires, a complementary survey among a random subsample of 500 nonrespondents was performed using a questionnaire administered by an interviewer. Paradata were collected for the complete subsample of the complementary survey. Nonresponse bias in the initial sample and in the combined samples were assessed using variables from administrative databases available for the whole sample, not subject to differential measurement errors. Corrected prevalences by reweighting technique were estimated by first using the initial survey alone and then the initial and complementary surveys combined, under several assumptions regarding the missing data process. Results were compared by computing relative errors. The response rates of the initial and complementary surveys were 23.6% and 62.6%, respectively. For the initial and the combined surveys, the relative errors decreased after correction for nonresponse on sociodemographic variables. For the combined surveys without paradata, relative errors decreased compared with the initial survey. The contribution of the paradata was weak. When a complex descriptive survey has a low response rate, a short complementary survey among nonrespondents with a protocol which aims to maximize the response rates, is useful. The contribution of sociodemographic variables in correcting for nonresponse bias is important whereas the additional contribution of paradata in

  2. Linear and mass attenuation coefficient for CdTe compound of X-rays from 10 to 100 keV energy range in different phases

    Energy Technology Data Exchange (ETDEWEB)

    Saim, A., E-mail: saim1989asma@gmail.com; Tebboune, A.; Berkok, H.; Belameiri, N.; Belbachir, A.H.

    2014-07-25

    The Full Potential Linear Muffin Tin Orbitals method within the density functional theory has been utilized to calculate structural and electronic properties of the CdTe compound. We have checked that the CdTe has two phase-transitions from zinc-blend to cinnabar and from cinnabar to rocksalt. We have found that the rigidity, the energy and the nature of the gap change according to the phase change, so we can predict that a CdTe detector may have different behaviors in different phase conditions. In order to investigate this behavior change, the linear and the mass attenuation coefficients of X-ray in rocksalt, zinc-blend and cinnabar structures are calculated from 10 keV to100 keV, using the XCOM data. We have found that when CdTe undergoes a phase transition from zinc-blend to cinnabar, its linear attenuation coefficient decreases down to a value of about 100 times smaller than its initial one, and when it undergoes a transition from cinnabar to rocksalt it increases up to a value about 90 times larger than its initial one.

  3. A Non-Volatile SRAM For Spaceborne Applications Using a Novel Ferroelectric Non-Linear Dielectric, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A ferroelectric non-linear dielectric was recently discovered that, in their film form, possess a number of properties that make it an excellent choice for...

  4. Quality assurance plan for the Molten Salt Reactor Experiment Remediation Project at the Oak Ridge National Laboratory. Phase 1 -- Interim corrective measures and Phase 2 -- Purge and trap reactive gases

    International Nuclear Information System (INIS)

    1995-11-01

    This Quality Assurance Plan (QAP) identifies and describes the systems utilized by the Molten Salt Reactor Experiment Remediation Project (MSRERP) personnel to implement the requirements and associated applicable guidance contained in the Quality Program Description Y/QD-15 Rev. 2 (Energy Systems 1995f). This QAP defines the quality assurance (QA) requirements applicable to all activities and operations in and directly pertinent to the MSRERP Phase 1--Interim Corrective Measures and Phase 2--Purge and Trap objectives. This QAP will be reviewed, revised, and approved as necessary for Phase 3 and Phase 4 activities. This QAP identifies and describes the QA activities and procedures implemented by the various Oak Ridge National Laboratory support organizations and personnel to provide confidence that these activities meet the requirements of this project. Specific support organization (Division) quality requirements, including the degree of implementation of each, are contained in the appendixes of this plan

  5. Performance of the tariffs of a single-phase electric energy meter, type electronic, operating with non-linear loads; Desempenho tarifario do medidor monofasico de energia eletrica do tipo eletronico operando com cargas nao-lineares

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G.B.; Pinheiro Neto, D.; Lisita, L.R.; Machado, P.C.M.; Oliveira, J.V.M. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Escola de Engenharia Eletrica e de Computacao], Emails: guilhermebsantos@gmail.com, daywes@gmail.com, lrlisi-ta@gmail.com, pcesar@eee.ufg.br, joao.eee@gmail.com

    2009-07-01

    This paper analyzes the behavior of a electronic meter of single-phase in the laboratory when it is subjected to a environment with linear loads and nonlinear loads kind residential and commercial. It differs from correlated studies mainly for making use of real loads encountered in day-to-day, rather than as sources of electronic loads how has been observed in the state of the art. The comparison of results is made based on high precision energy pattern developed by virtual instrumentation means.

  6. Rapid Measurement and Correction of Phase Errors from B0 Eddy Currents: Impact on Image Quality for Non-Cartesian Imaging

    Science.gov (United States)

    Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.

    2014-01-01

    Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time-varying gradients, a phenomemon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 eddy currents in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532

  7. RESTORATION OF WEAK PHASE-CONTRAST IMAGES RECORDED WITH A HIGH DEGREE OF DEFOCUS: THE"TWIN IMAGE" PROBLEM ASSOCIATED WITH CTF CORRECTION

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Kenneth H.; Glaeser, Robert M.

    2008-03-28

    Relatively large values of objective-lens defocus must normally be used to produce detectable levels of image contrast for unstained biological specimens, which are generally weak phase objects. As a result, a subsequent restoration operation must be used to correct for oscillations in the contrast transfer function (CTF) at higher resolution. Currently used methods of CTF-correction assume the ideal case in which Friedel mates in the scattered wave have contributed pairs of Fourier components that overlap with one another in the image plane. This"ideal" situation may be only poorly satisfied, or not satisfied at all, as the particle size gets smaller, the defocus value gets larger, and the resolution gets higher. We have therefore investigated whether currently used methods of CTF correction are also effective in restoring the single-sideband image information that becomes displaced (delocalized) by half (or more) the diameter of a particle of finite size. Computer simulations are used to show that restoration either by"phase flipping" or by multiplying by the CTF recovers only about half of the delocalized information. The other half of the delocalized information goes into a doubly defocused"twin" image of the type produced during optical reconstruction of an in-line hologram. Restoration with a Wiener filter is effective in recovering the delocalized information only when the signal-to-noise ratio (S/N) is orders of magnitude higher than that which exists in low-dose images of biological specimens, in which case the Wiener filter approaches division by the CTF (i.e. the formal inverse). For realistic values of the S/N, however, the"twin image" problem seenwith a Wiener filter is very similar to that seen when either phase flipping or multiplying by the CTF are used for restoration. The results of these simulations suggest that CTF correction is a poor alternative to using a Zernike-type phase plate when imaging biological specimens, in which case the images can

  8. Linearization-based method for solving a multicomponent diffusion phase-field model with arbitrary solution thermodynamics

    Science.gov (United States)

    Welland, M. J.; Tenuta, E.; Prudil, A. A.

    2017-06-01

    This article describes a phase-field model for an isothermal multicomponent, multiphase system which avoids implicit interfacial energy contributions by starting from a grand potential formulation. A method is developed for incorporating arbitrary forms of the equilibrium thermodynamic potentials in all phases to determine an explicit relationship between chemical potentials and species concentrations. The model incorporates variable densities between adjacent phases, defect migration, and dependence of internal pressure on object dimensions ranging from the macro- to nanoscale. A demonstrative simulation of an overpressurized nanoscopic intragranular bubble in nuclear fuel migrating to a grain boundary under kinetically limited vacancy diffusion is shown.

  9. Phase Behavior of Blends of Linear and Branched Polyethylenes on Micron-Length Scales via Ultra-Small-Angle Neutron Scattering (USANS)

    International Nuclear Information System (INIS)

    Agamalian, M.M.; Alamo, R.G.; Londono, J.D.; Mandelkern, L.; Wignall, G.D.

    1999-01-01

    SANS experiments on blends of linear, high density (HD) and long chain branched, low density (LD) polyethylenes indicate that these systems form a one-phase mixture in the melt. However, the maximum spatial resolution of pinhole cameras is approximately equal to 10 3 and it has therefore been suggested that data might also be interpreted as arising from a bi-phasic melt with large a particle size ( 1 m), because most of the scattering from the different phases would not be resolved. We have addressed this hypothesis by means of USANS experiments, which confirm that HDPEILDPE blends are homogenous in the melt on length scales up to 20 m. We have also studied blends of HDPE and short-chain branched linear low density polyethylenes (LLDPEs), which phase separate when the branch content is sufficiently high. LLDPEs prepared with Ziegler-Natta catalysts exhibit a wide distribution of compositions, and may therefore be thought of as a blend of different species. When the composition distribution is broad enough, a fraction of highly branched chains may phase separate on m-length scales, and USANS has also been used to quantify this phenomenon

  10. Analysis of two-phase flow instability in vertical boiling channels I: development of a linear model for the inlet velocity perturbation

    International Nuclear Information System (INIS)

    Hwang, D.H.; Yoo, Y.J.; Kim, K.K.

    1998-08-01

    A linear model, named ALFS, is developed for the analysis of two-phase flow instabilities caused by density wave oscillation and flow excursion in a vertical boiling channel with constant pressure drop conditions. The ALFS code can take into account the effect of the phase velocity difference and the thermally non-equilibrium phenomena, and the neutral boundary of the two-phase flow instability was analyzed by D-partition method. Three representative two-phase flow models ( i.e. HEM, DEM, and DNEM) were examined to investigate the effects on the stability analysis. As the results, it reveals that HEM shows the most conservative prediction of heat flux at the onset of flow instability. three linear models, Ishiis DEM, Sahas DNEM, and ALFS model, were applied to Sahas experimental data of density wave oscillation, and as the result, the mean and standard deviation of the predicted-to-measured heat flux at the onset of instability were calculated as 0.93/0.162, 0.79/0.112, and 0.95/0.143, respectively. For the long test section, however, ALFS model tends to predict the heat fluxes about 30 % lower than the measured values. (author). 14 refs

  11. Software Package for Optics Measurement and Correction in the LHC

    CERN Document Server

    Aiba, M; Tomas, R; Vanbavinckhove, G

    2010-01-01

    A software package has been developed for the LHC on-line optics measurement and correction. This package includes several different algorithms to measure phase advance, beta functions, dispersion, coupling parameters and even some non-linear terms. A Graphical User Interface provides visualization tools to compare measurements to model predictions, fit analytical formula, localize error sources and compute and send corrections to the hardware.

  12. Selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays and impacts of using incorrect weighting factors on curve stability, data quality, and assay performance.

    Science.gov (United States)

    Gu, Huidong; Liu, Guowen; Wang, Jian; Aubry, Anne-Françoise; Arnold, Mark E

    2014-09-16

    A simple procedure for selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays is reported. The correct weighting factor is determined by the relationship between the standard deviation of instrument responses (σ) and the concentrations (x). The weighting factor of 1, 1/x, or 1/x(2) should be selected if, over the entire concentration range, σ is a constant, σ(2) is proportional to x, or σ is proportional to x, respectively. For the first time, we demonstrated with detailed scientific reasoning, solid historical data, and convincing justification that 1/x(2) should always be used as the weighting factor for all bioanalytical LC-MS/MS assays. The impacts of using incorrect weighting factors on curve stability, data quality, and assay performance were thoroughly investigated. It was found that the most stable curve could be obtained when the correct weighting factor was used, whereas other curves using incorrect weighting factors were unstable. It was also found that there was a very insignificant impact on the concentrations reported with calibration curves using incorrect weighting factors as the concentrations were always reported with the passing curves which actually overlapped with or were very close to the curves using the correct weighting factor. However, the use of incorrect weighting factors did impact the assay performance significantly. Finally, the difference between the weighting factors of 1/x(2) and 1/y(2) was discussed. All of the findings can be generalized and applied into other quantitative analysis techniques using calibration curves with weighted least-squares regression algorithm.

  13. Hubbard-U corrected Hamiltonians for non-self-consistent random-phase approximation total-energy calculations

    DEFF Research Database (Denmark)

    Patrick, Christopher; Thygesen, Kristian Sommer

    2016-01-01

    In non-self-consistent calculations of the total energy within the random-phase approximation (RPA) for electronic correlation, it is necessary to choose a single-particle Hamiltonian whose solutions are used to construct the electronic density and noninteracting response function. Here we...... investigate the effect of including a Hubbard-U term in this single-particle Hamiltonian, to better describe the on-site correlation of 3d electrons in the transitionmetal compounds ZnS, TiO2, and NiO.We find that the RPA lattice constants are essentially independent of U, despite large changes...... in the underlying electronic structure. We further demonstrate that the non-selfconsistent RPA total energies of these materials have minima at nonzero U. Our RPA calculations find the rutile phase of TiO2 to be more stable than anatase independent of U, a result which is consistent with experiments...

  14. Revision to the humidity correction equation in the calculation formulae of the air refractive index based on a phase step interferometer with three frequency-stabilized lasers

    International Nuclear Information System (INIS)

    Chen, Qianghua; Zhang, Mengce; Liu, Shuaijie; He, Yongxi; Luo, Huifu; Luo, Jun; Lv, Weiwei

    2016-01-01

    At present the formulae proposed by G Boensch and E Potulski in 1998 (Boensch and Potulski 1998 Metrologia 35 133–9) are mostly used to calculate the air refractive index. However, the humidity correction equation in the formulae is derived by using the light source of a Cd lamp whose light frequency stability is poor and at a narrow temperature range, around 20 °C. So it is no longer suitable in present optical precision measurements. To solve this problem, we propose a refractive index measurement system based on phase step interferometer with three frequency stabilized lasers (532 nm, 633 nm, 780 nm), corrected coefficients of the humidity are measured and a corresponding revised humidity correction equation is acquired. Meanwhile, the application temperature range is extended from 14.6 °C to 25.0 °C. The experiment comparison results at the temperature of 22.2–23.2 °C show the accuracy by the presented equation is better than that of Boensch and Potulski. (paper)

  15. Electroweak corrections

    International Nuclear Information System (INIS)

    Beenakker, W.J.P.

    1989-01-01

    The prospect of high accuracy measurements investigating the weak interactions, which are expected to take place at the electron-positron storage ring LEP at CERN and the linear collider SCL at SLAC, offers the possibility to study also the weak quantum effects. In order to distinguish if the measured weak quantum effects lie within the margins set by the standard model and those bearing traces of new physics one had to go beyond the lowest order and also include electroweak radiative corrections (EWRC) in theoretical calculations. These higher-order corrections also can offer the possibility of getting information about two particles present in the Glashow-Salam-Weinberg model (GSW), but not discovered up till now, the top quark and the Higgs boson. In ch. 2 the GSW standard model of electroweak interactions is described. In ch. 3 some special techniques are described for determination of integrals which are responsible for numerical instabilities caused by large canceling terms encountered in the calculation of EWRC effects, and methods necessary to get hold of the extensive algebra typical for EWRC. In ch. 4 various aspects related to EWRC effects are discussed, in particular the dependence of the unknown model parameters which are the masses of the top quark and the Higgs boson. The processes which are discussed are production of heavy fermions from electron-positron annihilation and those of the fermionic decay of the Z gauge boson. (H.W.). 106 refs.; 30 figs.; 6 tabs.; schemes

  16. Linear iterative near-field phase retrieval (LIPR) for dual-energy x-ray imaging and material discrimination.

    Science.gov (United States)

    Li, Heyang Thomas; Kingston, Andrew M; Myers, Glenn R; Beeching, Levi; Sheppard, Adrian P

    2018-01-01

    Near-field x-ray refraction (phase) contrast is unavoidable in many lab-based micro-CT imaging systems. Quantitative analysis of x-ray refraction (a.k.a. phase retrieval) is in general an under-constrained problem. Regularizing assumptions may not hold true for interesting samples; popular single-material methods are inappropriate for heterogeneous samples, leading to undesired blurring and/or over-sharpening. In this paper, we constrain and solve the phase-retrieval problem for heterogeneous objects, using the Alvarez-Macovski model for x-ray attenuation. Under this assumption we neglect Rayleigh scattering and pair production, considering only Compton scattering and the photoelectric effect. We formulate and test the resulting method to extract the material properties of density and atomic number from single-distance, dual-energy imaging of both strongly and weakly attenuating multi-material objects with polychromatic x-ray spectra. Simulation and experimental data are used to compare our proposed method with the Paganin single-material phase-retrieval algorithm, and an innovative interpretation of the data-constrained modeling phase-retrieval technique.

  17. Bit-rate-transparent optical RZ-to-NRZ format conversion based on linear spectral phase filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Da Ros, Francesco; Guan, Pengyu

    2017-01-01

    We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal.......We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal....

  18. Phase relations and linear thermal expansion of cubic solid solutions in the Th1-xMxO2-x/2 (M=Eu, Gd, Dy) systems

    International Nuclear Information System (INIS)

    Mathews, M.D.; Ambekar, B.R.; Tyagi, A.K.

    2005-01-01

    Cell parameters and linear thermal expansion studies of the Th-M oxide systems with general compositions Th 1-x M x O 2-x/2 (M=Eu 3+ , Gd 3+ and Dy 3+ , 0.0= 1.5 in the ThO 2 lattice. The upper solid solubility limits of EuO 1.5 , GdO 1.5 and DyO 1.5 in the ThO 2 lattice under conditions of slow cooling from 1673K are represented as Th 0.50 Eu 0.50 O 1.75 , Th 0.60 Gd 0.40 O 1.80 and Th 0.85 Dy 0.15 O 1.925 , respectively. The linear thermal expansion (293-1123K) of MO 1.5 and their single-phase solid solutions with thoria were investigated by dilatometery. The average linear thermal expansion coefficients (α-bar ) of the compounds decrease on going from EuO 1.5 to DyO 1.5 . The values of α-bar for EuO 1.5 , GdO 1.5 and DyO 1.5 containing solid solutions showed a downward trend as a function of the dopant concentration. The linear thermal expansion (293-1473K) of the solid solutions investigated by high-temperature XRD also showed a similar trend

  19. Beam-hardening correction by a surface fitting and phase classification by a least square support vector machine approach for tomography images of geological samples

    Science.gov (United States)

    Khan, F.; Enzmann, F.; Kersten, M.

    2015-12-01

    In X-ray computed microtomography (μXCT) image processing is the most important operation prior to image analysis. Such processing mainly involves artefact reduction and image segmentation. We propose a new two-stage post-reconstruction procedure of an image of a geological rock core obtained by polychromatic cone-beam μXCT technology. In the first stage, the beam-hardening (BH) is removed applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. The final BH-corrected image is extracted from the residual data, or the difference between the surface elevation values and the original grey-scale values. For the second stage, we propose using a least square support vector machine (a non-linear classifier algorithm) to segment the BH-corrected data as a pixel-based multi-classification task. A combination of the two approaches was used to classify a complex multi-mineral rock sample. The Matlab code for this approach is provided in the Appendix. A minor drawback is that the proposed segmentation algorithm may become computationally demanding in the case of a high dimensional training data set.

  20. Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2006-05-01

    The Phase II Frenchman Flat groundwater flow model is a key element in the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) corrective action strategy for the Underground Test Area (UGTA) Frenchman Flat corrective action unit (CAU). The objective of this integrated process is to provide an estimate of the vertical and horizontal extent of contaminant migration for each CAU to predict contaminant boundaries. A contaminant boundary is the model-predicted perimeter that defines the extent of radionuclide-contaminated groundwater from underground testing above background conditions exceeding the ''Safe Drinking Water Act'' (SDWA) standards. The contaminant boundary will be composed of both a perimeter boundary and a lower hydrostratigraphic unit (HSU) boundary. The computer model will predict the location of this boundary within 1,000 years and must do so at a 95 percent level of confidence. Additional results showing contaminant concentrations and the location of the contaminant boundary at selected times will also be presented. These times may include the verification period, the end of the five-year proof-of-concept period, as well as other times that are of specific interest. This report documents the development and implementation of the groundwater flow model for the Frenchman Flat CAU. Specific objectives of the Phase II Frenchman Flat flow model are to: (1) Incorporate pertinent information and lessons learned from the Phase I Frenchman Flat CAU models. (2) Develop a three-dimensional (3-D), mathematical flow model that incorporates the important physical features of the flow system and honors CAU-specific data and information. (3) Simulate the steady-state groundwater flow system to determine the direction and magnitude of groundwater fluxes based on calibration to Frenchman Flat hydrogeologic data. (4) Quantify the uncertainty in the direction and magnitude of groundwater flow due to uncertainty in

  1. Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    International Nuclear Information System (INIS)

    John McCord

    2006-01-01

    The Phase II Frenchman Flat groundwater flow model is a key element in the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) corrective action strategy for the Underground Test Area (UGTA) Frenchman Flat corrective action unit (CAU). The objective of this integrated process is to provide an estimate of the vertical and horizontal extent of contaminant migration for each CAU to predict contaminant boundaries. A contaminant boundary is the model-predicted perimeter that defines the extent of radionuclide-contaminated groundwater from underground testing above background conditions exceeding the ''Safe Drinking Water Act'' (SDWA) standards. The contaminant boundary will be composed of both a perimeter boundary and a lower hydrostratigraphic unit (HSU) boundary. The computer model will predict the location of this boundary within 1,000 years and must do so at a 95 percent level of confidence. Additional results showing contaminant concentrations and the location of the contaminant boundary at selected times will also be presented. These times may include the verification period, the end of the five-year proof-of-concept period, as well as other times that are of specific interest. This report documents the development and implementation of the groundwater flow model for the Frenchman Flat CAU. Specific objectives of the Phase II Frenchman Flat flow model are to: (1) Incorporate pertinent information and lessons learned from the Phase I Frenchman Flat CAU models. (2) Develop a three-dimensional (3-D), mathematical flow model that incorporates the important physical features of the flow system and honors CAU-specific data and information. (3) Simulate the steady-state groundwater flow system to determine the direction and magnitude of groundwater fluxes based on calibration to Frenchman Flat hydrogeologic data. (4) Quantify the uncertainty in the direction and magnitude of groundwater flow due to uncertainty in parameter values and alternative component

  2. Non-linear thermal evolution of the crystal structure and phase transitions of LaFeO3 investigated by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Selbach, Sverre M.; Tolchard, Julian R.; Fossdal, Anita; Grande, Tor

    2012-01-01

    The crystal structure, anisotropic thermal expansion and structural phase transition of the perovskite LaFeO 3 has been studied by high-temperature X-ray diffraction from room temperature to 1533 K. The structural evolution of the orthorhombic phase with space group Pbnm and the rhombohedral phase with R3 ¯ c structure of LaFeO 3 is reported in terms of lattice parameters, thermal expansion coefficients, atomic positions, octahedral rotations and polyhedral volumes. Non-linear lattice expansion across the antiferromagnetic to paramagnetic transition of LaFeO 3 at T N =735 K was compared to the corresponding behavior of the ferroelectric antiferromagnet BiFeO 3 to gain insight to the magnetoelectric coupling in BiFeO 3 , which is also multiferroic. The first order phase transition of LaFeO 3 from Pbnm to R3 ¯ c was observed at 1228±9 K, and a subsequent transition to Pm3 ¯ m was extrapolated to occur at 2140±30 K. The stability of the Pbnm and R3 ¯ c polymorphs of LaFeO 3 is discussed in terms of the competing enthalpy and entropy of the two crystal polymorphs and the thermal evolution of the polyhedral volume ratio V A /V B . - Graphical abstract: Aniostropic thermal evolution of the lattice parameters and phase transition of LaFeO 3 . Highlights: ► The crystal structure of LaFeO 3 is studied by HTXRD from RT to 1533 K. ► A non-linear expansion across the Néel temperature is observed for LaFeO 3 . ► The ratio V A /V B is used to rationalize the thermal evolution of the structure.

  3. Geometric phase effects in excited state dynamics through a conical intersection in large molecules: N-dimensional linear vibronic coupling model study

    Science.gov (United States)

    Li, Jiaru; Joubert-Doriol, Loïc; Izmaylov, Artur F.

    2017-08-01

    We investigate geometric phase (GP) effects in nonadiabatic transitions through a conical intersection (CI) in an N-dimensional linear vibronic coupling (ND-LVC) model. This model allows for the coordinate transformation encompassing all nonadiabatic effects within a two-dimensional (2D) subsystem, while the other N - 2 dimensions form a system of uncoupled harmonic oscillators identical for both electronic states and coupled bi-linearly with the subsystem coordinates. The 2D subsystem governs ultra-fast nonadiabatic dynamics through the CI and provides a convenient model for studying GP effects. Parameters of the original ND-LVC model define the Hamiltonian of the transformed 2D subsystem and thus influence GP effects directly. Our analysis reveals what values of ND-LVC parameters can introduce symmetry breaking in the 2D subsystem that diminishes GP effects.

  4. SiC MOSFET Based Single Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Tang, Lixin [ORNL; Chinthavali, Madhu Sudhan [ORNL; Campbell, Steven L [ORNL; Miller (JNJ), John M. [JNJ-Miller PLC

    2014-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges the utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance due to variable parameters such as battery state-of-charge, coupling factor, and coil misalignment. This paper presents the implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation. The proposed SiC MOSFET based single phase active front end rectifier with PFC resulted in >97% efficiency at 137mm air-gap and >95% efficiency at 160mm air-gap.

  5. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator R&D in the Technical Design Phase

    CERN Document Server

    Adolphsen, Chris; Barish, Barry; Buesser, Karsten; Burrows, Philip; Carwardine, John; Clark, Jeffrey; Durand, Hélène Mainaud; Dugan, Gerry; Elsen, Eckhard; Enomoto, Atsushi; Foster, Brian; Fukuda, Shigeki; Gai, Wei; Gastal, Martin; Geng, Rongli; Ginsburg, Camille; Guiducci, Susanna; Harrison, Mike; Hayano, Hitoshi; Kershaw, Keith; Kubo, Kiyoshi; Kuchler, Victor; List, Benno; Liu, Wanming; Michizono, Shinichiro; Nantista, Christopher; Osborne, John; Palmer, Mark; Paterson, James McEwan; Peterson, Thomas; Phinney, Nan; Pierini, Paolo; Ross, Marc; Rubin, David; Seryi, Andrei; Sheppard, John; Solyak, Nikolay; Stapnes, Steinar; Tauchi, Toshiaki; Toge, Nobu; Walker, Nicholas; Yamamoto, Akira; Yokoya, Kaoru

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  6. Higgs Phase in a Gauge U(1 Non-Linear CP1-Model. Two Species of BPS Vortices and Their Zero Modes

    Directory of Open Access Journals (Sweden)

    Alberto Alonso-Izquierdo

    2016-09-01

    Full Text Available In this paper, zero modes of fluctuation are dissected around the two species of BPS vortices existing in the critical Higgs phase, where the scalar and vector meson masses are equal, of a gauged U ( 1 nonlinear CP 1 -model. If 2 π n , n ∈ Z , is the quantized magnetic flux of the two species of BPS vortex solutions, 2 n linearly-independent vortex zero modes for each species are found and described. The existence of two species of moduli spaces of dimension 2 n of these stringy topological defects is thus locally shown.

  7. Communication: An effective linear-scaling atomic-orbital reformulation of the random-phase approximation using a contracted double-Laplace transformation

    International Nuclear Information System (INIS)

    Schurkus, Henry F.; Ochsenfeld, Christian

    2016-01-01

    An atomic-orbital (AO) reformulation of the random-phase approximation (RPA) correlation energy is presented allowing to reduce the steep computational scaling to linear, so that large systems can be studied on simple desktop computers with fully numerically controlled accuracy. Our AO-RPA formulation introduces a contracted double-Laplace transform and employs the overlap-metric resolution-of-the-identity. First timings of our pilot code illustrate the reduced scaling with systems comprising up to 1262 atoms and 10 090 basis functions. 

  8. Phase II Documentation Overview of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Greg Ruskauff

    2010-04-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Subproject to assess and evaluate radiologic groundwater contamination resulting from underground nuclear testing at the NTS. These activities are overseen by the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended March 2010). For Frenchman Flat, the UGTA Subproject addresses media contaminated by the underground nuclear tests, which is limited to geologic formations within the saturated zone or 100 meters (m) or less above the water table. Transport in groundwater is judged to be the primary mechanism of migration for the subsurface contamination away from the Frenchman Flat underground nuclear tests. The intent of the UGTA Subproject is to assess the risk to the public from the groundwater contamination produced as a result of nuclear testing. The primary method used to assess this risk is the development of models of flow and contaminant transport to forecast the extent of potentially contaminated groundwater for the next 1,000 years, establish restrictions to groundwater usage, and implement a monitoring program to verify protectiveness. For the UGTA Subproject, contaminated groundwater is that which exceeds the radiological standards of the Safe Drinking Water Act (CFR, 2009) the State of Nevada’s groundwater quality standard to protect human health and the environment. Contaminant forecasts are expected to be uncertain, and groundwater monitoring will be used in combination with land-use control to build confidence in model results and reduce risk to the public. Modeling forecasts of contaminant transport will provide the basis for negotiating a compliance boundary for the Frenchman Flat Corrective Action Unit (CAU). This compliance boundary represents a regulatory-based distinction between groundwater contaminated or not contaminated by underground testing. Transport modeling simulations

  9. Selectivity of calixarene-bonded silica-phases in HPLC: description of special characteristics with a multiple term linear equation at two different pH-values.

    Science.gov (United States)

    Schneider, Christian; Meyer, Rüdiger; Jira, Thomas

    2008-09-01

    Six different calixarene-bonded phases were characterized by analyzing 36 and 26 solutes at pH 3 and 7, respectively. Dolan and Snyder's multiple term linear equation was used to correlate retention factors k' to parameters of the solutes and columns. The column parameters have been related to molecular properties of the stationary phases and new suggestions were made for the interpretation of steric selectivity. Ionic and polar interactions have been found dependent on pH value, while steric interactions are less dependent and hydrophobic interactions remain unchanged. Distinct differences of the supported interactions were confirmed between the calixarene-bonded and the common alkyl-bonded silicas. By use of the parameters, values of k' can be estimated with an average deviation of 2.50 and 7.92% at low and neutral pH-value, respectively.

  10. Image correction during large and rapid B(0) variations in an open MRI system with permanent magnets using navigator echoes and phase compensation.

    Science.gov (United States)

    Li, Jianqi; Wang, Yi; Jiang, Yu; Xie, Haibin; Li, Gengying

    2009-09-01

    An open permanent magnet system with vertical B(0) field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. B(0) variation in such a system located close to a subway station was measured to be greater than 0.7 microT by both MRI and a fluxgate magnetometer. This B(0) variation caused image artifacts. A navigator echo approach that monitored and compensated the view-to-view variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with B(0) variations were effectively removed using the navigator method.

  11. The use of linear expressions of solute boiling point versus retention to indicate special interactions with the molecular rings of modified cyclodextrin phases in gas chromatography

    Science.gov (United States)

    Betts

    2000-08-01

    The boiling points (degrees C, 1 x 10) of diverse C10 polar solutes from volatile oils are set against their relative retention times versus n-undecane to calculate linear equations for 12 commercial modified cyclodextrin (CD) capillary phases. Ten data points are considered for each CD, then solutes are rejected until 5 or more remain that give an expression with a correlation coefficient of at least 0.990 and a standard deviation of less than 5.5. Three phases give almost perfect correlation, and 3 other CDs have difficulty complying. Solutes involved in the equations (most frequently cuminal, linalol, and carvone) are presumed to have a 'standard' polar transient interaction with the molecular rings of the CDs concerned. Several remaining solutes (mostly citral, fenchone, and menthol) exhibit extra retention over the calculated standard (up to 772%), which is believed to indicate a firm 'host' CD or 'guest' solute molecular fit in some cases. Other solutes show less retention than calculated (mostly citronellal, citronellol, estragole, and pulegone). This suggests rejection by the CD, which behaves merely as a conventional stationary phase to them. The intercept constant in the equation for each phase is suggested to be a numerical relative polarity indicator. These b values indicate that 3 hydroxypropyl CDs show the most polarity with values from 28 to 43; and CDs that are fully substituted with inert groups fall in the range of 15 to 20.

  12. Dynamics of a novel robotic leg based on the Peaucellier–Lipkin mechanism on linear paths during the transfer phase

    Directory of Open Access Journals (Sweden)

    Diego Alfredo Núñez-Altamirano

    2016-07-01

    Full Text Available This article deals with the kinematics and dynamics of a novel leg based on the Peaucellier–Lipkin mechanism, which is better known as the straight path tracer. The basic Peaucellier–Lipkin linkage with 1 degree of freedom was transformed into a more skillful mechanism, through the addition of 4 more degrees of freedom. The resulting 5-degree-of-freedom leg enables the walking machine to move along paths that are straight lines and/or concave or convex curves. Three degrees of freedom transform the leg in relation to a reachable center of rotation that the machine walks around. Once the leg is transformed, the remaining 2 degrees of freedom position the foot at a desirable Cartesian point during the transfer or support phase. We analyzed the direct and inverse kinematics developed for the leg when the foot describes a straight line and found some interesting relationships among the motion parameters. The dynamic model equations of motion for the leg were derived from the Lagrangian dynamic formulation to calculate the required torques during a particular transfer phase.

  13. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry.

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-05

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r(2)=0.998) in the range of 3.0-85.0 μg L(-1) with a detection limit of 0.7 μg L(-1) for preconcentration of 25.0 mL of the sample and the relative standard deviation (n=6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-01

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r2 = 0.998) in the range of 3.0-85.0 μg L-1 with a detection limit of 0.7 μg L-1 for preconcentration of 25.0 mL of the sample and the relative standard deviation (n = 6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments.

  15. Optimizing gradient conditions in online comprehensive two-dimensional reversed-phase liquid chromatography by use of the linear solvent strength model

    DEFF Research Database (Denmark)

    Græsbøll, Rune; Janssen, Hans-Gerd; Christensen, Jan H.

    2017-01-01

    The linear solvent strength model was used to predict coverage in online comprehensive two-dimensional reversed-phase liquid chromatography. The prediction model uses a parallelogram to describe the separation space covered with peaks in a system with limited orthogonality. The corners of the par......The linear solvent strength model was used to predict coverage in online comprehensive two-dimensional reversed-phase liquid chromatography. The prediction model uses a parallelogram to describe the separation space covered with peaks in a system with limited orthogonality. The corners...... of the parallelogram are assumed to behave like chromatographic peaks and the position of these pseudo-compounds was predicted. A mix of 25 polycyclic aromatic compounds were used as a test. The precision of the prediction, span 0-25, was tested by varying input parameters, and was found to be acceptable with root...... factors were low, or when gradient conditions affected parameters not included in the model, e.g. second dimension gradient time affects the second dimension equilibration time. The concept shows promise as a tool for gradient optimization in online comprehensive two-dimensional liquid chromatography...

  16. Non-destructive visualization of linear explosive-induced Pyroshock using phase arrayed laser-induced shock in a space launcher composite

    International Nuclear Information System (INIS)

    Jang, Jae Kyeong; Lee, Jung Ryul

    2015-01-01

    Separation mechanism of Space launch vehicles are used in various separation systems and pyrotechnic devices. The operation of these pyrotechnic devices generates Pyroshock that can cause failures in electronic components. The prediction of high frequency structural response, especially the shock response spectrum (SRS), is important. This paper presents a non-destructive visualization and simulation of linear explosive-induced Pyroshock using phase arrayed Laser-induced shock. The proposed method includes a laser shock test based on laser beam and filtering zone conditioning to predict the SRS of Pyroshock. A ballistic test based on linear explosive and non-contact Laser Doppler Vibrometers and a nondestructive Laser shock measurement using laser excitation and several PZT sensors, are performed using a carbon composite sandwich panel. The similarity of the SRS of the conditioned laser shock to that of the real explosive Pyroshock is evaluated with the Mean Acceleration Difference. The average of MADs over the two training points was 33.64%. And, MAD at verification point was improved to 31.99%. After that, experimentally found optimal conditions are applied to any arbitrary points in laser scanning area. Finally, it is shown that linear explosive-induced real Pyroshock wave propagation can be visualized with high similarity based on the proposed laser technology. (paper)

  17. Analysis of linear stability in nuclear systems associated to two-phase fluid flow and in thermodynamic balance

    International Nuclear Information System (INIS)

    Galvao, O.B.; Amorim, E.S. do; D'Oliveira, A.B.

    1981-03-01

    Under special conditions a water-cooled reactor or other multiphase process can be subject to instabilities as the so called density-wave oscillations phenomenon. The purpose of this investigation is to derive the stability limits of a boiling channel for the dynamic response to an inlet velocity perturbation. The solution scheme allowed a coupling for the single and two-phase regions together with a model for the dynamic thermal response of the heated surface. The frequency response of a rational transfer function is obtained and a Nyquist plot is used for stability analysis. The model is, although simplified, quite capable of predicting the threshold for self-excited system or the trends given by more exact solution. (Author) [pt

  18. Use of linear free energy relationship to predict Gibbs free energies of formation of pyrochlore phases (CaMTi2O7)

    International Nuclear Information System (INIS)

    Xu, H.; Wang, Y.

    1999-01-01

    In this letter, a linear free energy relationship is used to predict the Gibbs free energies of formation of crystalline phases of pyrochlore and zirconolite families with stoichiometry of MCaTi 2 O 7 (or, CaMTi 2 O 7 ,) from the known thermodynamic properties of aqueous tetravalent cations (M 4+ ). The linear free energy relationship for tetravalent cations is expressed as ΔG f,M v X 0 =a M v X ΔG n,M 4+ 0 +b M v X +β M v X r M 4+ , where the coefficients a M v X , b M v X , and β M v X characterize a particular structural family of M v X, r M 4+ is the ionic radius of M 4+ cation, ΔG f,M v X 0 is the standard Gibbs free energy of formation of M v X, and ΔG n,M 4+ 0 is the standard non-solvation energy of cation M 4+ . The coefficients for the structural family of zirconolite with the stoichiometry of M 4+ CaTi 2 O 7 are estimated to be: a M v X =0.5717, b M v X =-4284.67 (kJ/mol), and β M v X =27.2 (kJ/mol nm). The coefficients for the structural family of pyrochlore with the stoichiometry of M 4+ CaTi 2 O 7 are estimated to be: a M v X =0.5717, b M v X =-4174.25 (kJ/mol), and β M v X =13.4 (kJ/mol nm). Using the linear free energy relationship, the Gibbs free energies of formation of various zirconolite and pyrochlore phases are calculated. (orig.)

  19. Phase space information in a non-linear quantum system containing a Kerr-like medium through Su(1, 1)-algebraic treatment

    Science.gov (United States)

    Mohamed, Abdel-Baset A.

    2018-05-01

    Analytical description for a Su(2)-quantum system interacting with a damped Su(1, 1)-cavity, which is filled with a non-linear Kerr medium, is presented. The dynamics of non-classicality of Su(1, 1)-state is investigated via the negative part of the Wigner function. We show that the negative part depends on the unitary interaction and the Kerr-like medium and it can be disappeared by increasing the dissipation rate and the detuning parameter. The phase space information of the Husimi function and its Wehrl density is very sensitive not only to the coupling to the environment and the unitary interaction but also to the detuning as well as to the Kerr-like medium. The phase space information may be completely erased by increasing the coupling to the environment. The coherence loss of the Su(2)-state is investigated via the Husimi Wehrl entropy. If the effects of the detuning parameter or/and of the Kerr-like medium are combined with the damping effect, the damping effect of the coupling to the environment may be weaken, and the Wehrl entropy is delayed to reach its steady-state value. At the steady-state value, the phase space information and the coherence are quickly lost.

  20. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    International Nuclear Information System (INIS)

    Zeitler, Benno Michael Georg

    2017-01-01

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured

  1. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Zeitler, Benno Michael Georg [Hamburg Univ. (Germany). Fakultaet fuer Mathematik, Informatik und Naturwissenschaften

    2017-01-15

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured

  2. Characterization of weakly absorbing thin films by multiple linear regression analysis of absolute unwrapped phase in angle-resolved spectral reflectometry.

    Science.gov (United States)

    Dong, Jingtao; Lu, Rongsheng

    2018-04-30

    The simultaneous determination of t, n(λ), and κ(λ) of thin films can be a tough task for the high correlation of fit parameters. The strong assumptions about the type of dispersion relation are commonly used as a consequence to alleviate correlation concerns by reducing the free parameters before the nonlinear regression analysis. Here we present an angle-resolved spectral reflectometry for the simultaneous determination of weakly absorbing thin film parameters, where a reflectance interferogram is recorded in both angular and spectral domains in a single-shot measurement for the point of the sample being illuminated. The variations of the phase recovered from the interferogram as functions of t, n, and κ reveals that the unwrapped phase is monotonically related to t, n, and κ, thereby allowing the problem of correlation to be alleviated by multiple linear regression. After removing the 2π ambiguity of the unwrapped phase, the merit function based on the absolute unwrapped phase performs a 3D data cube with variables of t, n and κ at each wavelength. The unique solution of t, n, and κ can then be directly determined from the extremum of the 3D data cube at each wavelength with no need of dispersion relation. A sample of GaN thin film grown on a polished sapphire substrate is tested. The experimental data of t and [n(λ), κ(λ)] are confirmed by the scanning electron microscopy and the comparison with the results of other related works, respectively. The consistency of the results shows the proposed method provides a useful tool for the determination of the thickness and optical constants of weakly absorbing thin films.

  3. Anomalous thermal expansion, negative linear compressibility, and high-pressure phase transition in ZnAu2(CN) 4 : Neutron inelastic scattering and lattice dynamics studies

    Science.gov (United States)

    Gupta, Mayanak K.; Singh, Baltej; Mittal, Ranjan; Zbiri, Mohamed; Cairns, Andrew B.; Goodwin, Andrew L.; Schober, Helmut; Chaplot, Samrath L.

    2017-12-01

    We present temperature-dependent inelastic-neutron-scattering measurements, accompanied by ab initio calculations of the phonon spectra and elastic properties as a function of pressure to quantitatively explain an unusual combination of negative thermal expansion and negative linear compressibility behavior of ZnAu2(CN) 4 . The mechanism of the negative thermal expansion is identified in terms of specific anharmonic phonon modes that involve bending of the -Zn-NC-Au-CN-Zn- linkage. The soft phonon at the L point at the Brillouin zone boundary quantitatively relates to the high-pressure phase transition at about 2 GPa. The ambient pressure structure is also found to be close to an elastic instability that leads to a weakly first-order transition.

  4. Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging

    International Nuclear Information System (INIS)

    Hope, Thomas A.; Verdin, Emily F.; Bergsland, Emily K.; Ohliger, Michael A.; Corvera, Carlos University; Nakakura, Eric K.

    2015-01-01

    The purpose of this study was to evaluate the utility of bellows-based respiratory compensation and navigated hepatobiliary phase imaging to correct for respiratory motion in the setting of dedicated liver PET/MRI. Institutional review board approval and informed consent were obtained. Six patients with metastatic neuroendocrine tumor were imaged using Ga-68 DOTA-TOC PET/MRI. Whole body imaging and a dedicated 15-min liver PET acquisition was performed, in addition to navigated and breath-held hepatobiliary phase (HBP) MRI. Liver PET data was reconstructed three ways: the entire data set (liver PET), gated using respiratory bellows (RC-liver PET), and a non-gated data set reconstructed using the same amount of data used in the RC-liver PET (shortened liver PET). Liver lesions were evaluated using SUV max , SUV peak , SUV mean , and Vol isocontour . Additionally, the displacement of each lesion between the RC-liver PET images and the navigated and breath-held HBP images was calculated. Respiratory compensation resulted in a 43 % increase in SUVs compared to ungated data (liver vs RC-liver PET SUV max 26.0 vs 37.3, p < 0.001) and a 25 % increase compared to a non-gated reconstruction using the same amount of data (RC-liver vs shortened liver PET SUV max 26.0 vs 32.6, p < 0.001). Lesion displacement was minimized using navigated HBP MRI (1.3 ± 1.0 mm) compared to breath-held HBP MRI (23.3 ± 1.0 mm). Respiratory bellows can provide accurate respiratory compensation when imaging liver lesions using PET/MRI, and results in increased SUVs due to a combination of increased image noise and reduced respiratory blurring. Additionally, navigated HBP MRI accurately aligns with respiratory compensated PET data.

  5. Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hope, Thomas A. [Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (United States); Department of Radiology, San Francisco VA Medical Center, San Francisco, CA (United States); Verdin, Emily F. [Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (United States); Bergsland, Emily K. [Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA (United States); Ohliger, Michael A. [Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (United States); Department of Radiology, San Francisco General Hospital, San Francisco, CA (United States); Corvera, Carlos University; Nakakura, Eric K. [Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, San Francisco, CA (United States)

    2015-09-18

    The purpose of this study was to evaluate the utility of bellows-based respiratory compensation and navigated hepatobiliary phase imaging to correct for respiratory motion in the setting of dedicated liver PET/MRI. Institutional review board approval and informed consent were obtained. Six patients with metastatic neuroendocrine tumor were imaged using Ga-68 DOTA-TOC PET/MRI. Whole body imaging and a dedicated 15-min liver PET acquisition was performed, in addition to navigated and breath-held hepatobiliary phase (HBP) MRI. Liver PET data was reconstructed three ways: the entire data set (liver PET), gated using respiratory bellows (RC-liver PET), and a non-gated data set reconstructed using the same amount of data used in the RC-liver PET (shortened liver PET). Liver lesions were evaluated using SUV{sub max}, SUV{sub peak}, SUV{sub mean}, and Vol{sub isocontour}. Additionally, the displacement of each lesion between the RC-liver PET images and the navigated and breath-held HBP images was calculated. Respiratory compensation resulted in a 43 % increase in SUVs compared to ungated data (liver vs RC-liver PET SUV{sub max} 26.0 vs 37.3, p < 0.001) and a 25 % increase compared to a non-gated reconstruction using the same amount of data (RC-liver vs shortened liver PET SUV{sub max} 26.0 vs 32.6, p < 0.001). Lesion displacement was minimized using navigated HBP MRI (1.3 ± 1.0 mm) compared to breath-held HBP MRI (23.3 ± 1.0 mm). Respiratory bellows can provide accurate respiratory compensation when imaging liver lesions using PET/MRI, and results in increased SUVs due to a combination of increased image noise and reduced respiratory blurring. Additionally, navigated HBP MRI accurately aligns with respiratory compensated PET data.

  6. Temperature Dependent Rate Coefficients for the Gas-Phase Reaction of the OH Radical with Linear (L2, L3) and Cyclic (D3, D4) Permethylsiloxanes.

    Science.gov (United States)

    Bernard, François; Papanastasiou, Dimitrios K; Papadimitriou, Vassileios C; Burkholder, James B

    2018-04-19

    Permethylsiloxanes are emitted into the atmosphere during production and use as personal care products, lubricants, and cleaning agents. The predominate atmospheric loss process for permethylsiloxanes is expected to be via gas-phase reaction with the OH radical. In this study, rate coefficients, k(T), for the OH radical gas-phase reaction with the two simplest linear and cyclic permethylsiloxanes were measured using a pulsed laser photolysis-laser induced fluorescence technique over the temperature range of 240-370 K and a relative rate method at 294 K: hexamethyldisiloxane ((CH 3 ) 3 SiOSi(CH 3 ) 3 , L 2 ), k 1 ; octamethyltrisiloxane ([(CH 3 ) 3 SiO] 2 Si(CH 3 ) 2 , L 3 ), k 2 ; hexamethylcyclotrisiloxane ([-Si(CH 3 ) 2 O-] 3 , D 3 ), k 3 ; and octamethylcyclotetrasiloxane ([-Si(CH 3 ) 2 O-] 4 , D 4 ), k 4 . The obtained k(294 K) values and temperature-dependence expressions for the 240-370 K temperature range are (cm 3 molecule -1 s -1 , 2σ absolute uncertainties): k 1 (294 K) = (1.28 ± 0.08) × 10 -12 , k 1 ( T) = (1.87 ± 0.18) × 10 -11 exp(-(791 ± 27)/ T); k 2 (294 K) = (1.72 ± 0.10) × 10 -12 , k 2 ( T) = 1.96 × 10 -13 (T/298) 4.34 exp(657/ T); k 3 (294 K) = (0.82 ± 0.05) × 10 -12 , k 3 ( T) = (1.29 ± 0.19) × 10 -11 exp(-(805 ± 43)/ T); and k 4 (294 K) = (1.12 ± 0.10) × 10 -12 , k 4 ( T) = (1.80 ± 0.26) × 10 -11 exp(-(816 ± 43)/ T). The cyclic molecules were found to be less reactive than the analogous linear molecule with the same number of -CH 3 groups, while the linear and cyclic permethylsiloxane reactivity both increase with the increasing number of CH 3 - groups. The present results are compared with previous rate coefficient determinations where available. The permethylsiloxanes included in this study are atmospherically short-lived compounds with estimated atmospheric lifetimes of 11, 8, 17, and 13 days, respectively.

  7. A mathematical model for two-phase water, air, and heat flow around a linear heat source emplaced in a permeable medium

    International Nuclear Information System (INIS)

    Doughty, C.; Pruess, K.

    1991-03-01

    A semianalytical solution for transient two-phase water, air, and heat flow in a uniform porous medium surrounding a constant-strength linear heat source has been developed, using a similarity variable η=r/√t (r is radial distance, t is time). Although the similarity transformation requires a simplified radial geometry, all the physical mechanisms involved in two-phase fluid and heat flow may be taken into account in a rigorous way. The solution includes nonlinear thermophysical fluid and material properties, such as relative permeability and capillary pressure variations with saturation, and density and viscosity variations with temperature and pressure. The resulting governing equations form a set of coupled nonlinear ODEs, necessitating numerical integration. The solution has been applied to a partially saturated porous medium initially at a temperature well below the saturation temperature, which is the setting for the potential nuclear waste repository site at Yucca Mountain, Nevada. The resulting heat and fluid flows provide a stringent test of many of the capabilities of numerical simulation models, making the similarity solution a useful tool for model verification. Comparisons to date have shown excellent agreement between the TOUGH2 simulator and the similarity solution for a variety of conditions. 13 refs., 6 figs., 1 tab

  8. A Model for Analyzing a Five-Phase Fractional-Slot Permanent Magnet Tubular Linear Motor with Modified Winding Function Approach

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2016-01-01

    Full Text Available This paper presents a model for analyzing a five-phase fractional-slot permanent magnet tubular linear motor (FSPMTLM with the modified winding function approach (MWFA. MWFA is a fast modeling method and it gives deep insight into the calculations of the following parameters: air-gap magnetic field, inductances, flux linkages, and detent force, which are essential in modeling the motor. First, using a magnetic circuit model, the air-gap magnetic density is computed from stator magnetomotive force (MMF, flux barrier, and mover geometry. Second, the inductances, flux linkages, and detent force are analytically calculated using modified winding function and the air-gap magnetic density. Finally, a model has been established with the five-phase Park transformation and simulated. The calculations of detent force reveal that the end-effect force is the main component of the detent force. This is also proven by finite element analysis on the motor. The accuracy of the model is validated by comparing with the results obtained using semianalytical method (SAM and measurements to analyze the motor’s transient characteristics. In addition, the proposed method requires less computation time.

  9. Entanglement Dynamics of Linear and Nonlinear Interaction of Two Two-Level Atoms with a Quantized Phase-Damped Field in the Dispersive Regime

    Science.gov (United States)

    Tavassoly, M. K.; Daneshmand, R.; Rustaee, N.

    2018-06-01

    In this paper we study the linear and nonlinear (intensity-dependent) interactions of two two-level atoms with a single-mode quantized field far from resonance, while the phase-damping effect is also taken into account. To find the analytical solution of the atom-field state vector corresponding to the considered model, after deducing the effective Hamiltonian we evaluate the time-dependent elements of the density operator using the master equation approach and superoperator method. Consequently, we are able to study the influences of the special nonlinearity function f (n) = √ {n}, the intensity of the initial coherent state field and the phase-damping parameter on the degree of entanglement of the whole system as well as the field and atom. It is shown that in the presence of damping, by passing time, the amount of entanglement of each subsystem with the rest of system, asymptotically reaches to its stationary and maximum value. Also, the nonlinear interaction does not have any effect on the entanglement of one of the atoms with the rest of system, but it changes the amplitude and time period of entanglement oscillations of the field and the other atom. Moreover, this may cause that, the degree of entanglement which may be low (high) at some moments of time becomes high (low) by entering the intensity-dependent function in the atom-field coupling.

  10. A new method to describe two-phase solvent extraction based on net transport potential derived as linear combinations of forward and reverse constituents

    International Nuclear Information System (INIS)

    Nabeshima, Masahiro

    1998-01-01

    With the view to avoiding the difficulties encountered in estimating thermodynamic activities of the multiple chemical species in two-phase liquid system, a set of forward, reverse, net and total transport potentials are defined to represent the chemical state of a transferring solute during transient using bulk concentrations. The net transport potential corresponds to that in the conventional two-film model of diffusion-controlled processes. The overall driving forces of mass transport are redefined as the derivatives of the relevant transport potentials differentiated with respect to a state variable newly defined in terms of the bulk concentrations of the solute contained in both phases. Net and total quantities, i.e. transport potentials, overall driving forces and the molar fluxes are obtained as linear combinations of those for forward and reverse directions. The topical features presented by these quantities and their mutual relations are discussed in detail. The experimental new overall transport coefficient for U(VI) varied in accord with the changes in the theoretical net transport potential and overall driving force. The present method permits describing the extractive mass transport consistently both to forward and reverse directions of transport. (author)

  11. Development of soil-cement blocks with three interventions: natural soil, soil corrected with sand and soil more phase change materials (PCMs)

    International Nuclear Information System (INIS)

    Dantas, Valter Bezerra; Gomes, Uilame Umbelino; Reis, Edmilson Pedreira; Valcacer, Samara Melo; Silva, A.S.

    2014-01-01

    In this work, the results of characterization tests of soil samples collected in Mossoro-RN, UFERSA-RN Campus, located approximately 20 meters high, and "5 ° 12'34.68 south latitude and 37 ° 19'5.74 "west longitude, with the purpose of producing soil-cement for the manufacture of pressed blocks with good resistance to compression and thermal stability. The following tests were performed: granulometry, plasticity limit, liquidity limit, particle size correction, scanning electron microscopy (SEM), X-ray fluorescence. In this soil, based on the results of the granulometric analysis, 10% of medium sand with 3% and 5% of eicosane paraffin and 10% of medium sand with 3% and 5% of paraffin 120 / 125F were added, forming analysis compositions, standard soil-cement block and natural soil-cement block with addition of 10% medium sand and 0% paraffin. Paraffins are referred to as PCMs (Phase Change Material). The contrasting effect between the different dosages on the compressive strength values of the soil-cement blocks was observed. The objective is to create new materials that give the block quality equal to or higher than the recommendations of ABNT norms, and that offer greater thermal comfort in the constructions. Soil particles of different sizes were added to 8% (by weight) of cement, and about 9.20% of water added to the mixture

  12. linear-quadratic-linear model

    Directory of Open Access Journals (Sweden)

    Tanwiwat Jaikuna

    2017-02-01

    Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  13. Linear algebra

    CERN Document Server

    Shilov, Georgi E

    1977-01-01

    Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.

  14. Publisher Correction

    DEFF Research Database (Denmark)

    Turcot, Valérie; Lu, Yingchang; Highland, Heather M

    2018-01-01

    In the published version of this paper, the name of author Emanuele Di Angelantonio was misspelled. This error has now been corrected in the HTML and PDF versions of the article.......In the published version of this paper, the name of author Emanuele Di Angelantonio was misspelled. This error has now been corrected in the HTML and PDF versions of the article....

  15. Author Correction

    DEFF Research Database (Denmark)

    Grundle, D S; Löscher, C R; Krahmann, G

    2018-01-01

    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.......A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper....

  16. Prediction of the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient-elution conditions.

    Science.gov (United States)

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Ruggieri, Fabrizio

    2014-08-01

    In this paper, a multilayer artificial neural network is used to model simultaneously the effect of solute structure and eluent concentration profile on the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient elution. The retention data of 24 triazines, including common herbicides and their metabolites, are collected under 13 different elution modes, covering the following experimental domain: starting acetonitrile volume fraction ranging between 40 and 60% and gradient slope ranging between 0 and 1% acetonitrile/min. The gradient parameters together with five selected molecular descriptors, identified by quantitative structure-retention relationship modelling applied to individual separation conditions, are the network inputs. Predictive performance of this model is evaluated on six external triazines and four unseen separation conditions. For comparison, retention of triazines is modelled by both quantitative structure-retention relationships and response surface methodology, which describe separately the effect of molecular structure and gradient parameters on the retention. Although applied to a wider variable domain, the network provides a performance comparable to that of the above "local" models and retention times of triazines are modelled with accuracy generally better than 7%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Determination of eight pesticides of varying polarity in surface waters using solid phase extraction with multiwalled carbon nanotubes and liquid chromatography-linear ion trap mass spectrometry

    International Nuclear Information System (INIS)

    Dahane, Soraya; Derdour, Aicha; García, María Dolores Gil; Moreno, Ana Uclés; Galera, María Martínez; Viciana, María del Mar Socías

    2015-01-01

    We describe a MWCNT-based method for the solid-phase extraction of eight pesticides from environmental water samples. The analytes are extracted from 100 mL samples at pH 5.0 (containing 5 mmol L −1 of KCl) by passing the solution through a column filled with 20 mg of multiwalled carbon nanotubes. Following elution, the pesticides were determined by LC and electrospray ionization hybrid quadrupole linear ion trap MS. Two selected reaction monitoring transitions were monitored per compound, the most intense one being used for quantification and the second one for confirmation. In addition, an information-dependent acquisition experiment was performed for unequivocal confirmation of positive findings. Matrix effect was not found in real waters and therefore the quantitation was carried out with calibration graphs built with solvent based standards. Except for cymoxanil, the detection and quantitation limits in surface waters are in the range from 0.3 to 9.5 ng L −1 and 1.6 to 45.2 ng L −1 , respectively. Recoveries from spiked ultrapure water are ∼100 %, except for the most polar pesticides methomyl and cymoxanil. The same behavior is found for real water samples (except for phosalone). The relative standard deviation is <10 % in all cases. (author)

  18. The importance of non-linearities in modern proton synchrotrons

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1977-01-01

    The paper outlines the physics and mathematics of non-linear field errors in the quide fields of accelerators, with particular reference to large accelerators such as the SPS. These non-linearities give rise to closed orbital distortions and non-linear resonances or stopbands. Both of these effects are briefly discussed and the use of resonances for slow beam extraction is also described. Another problem considered is that of chromaticity of the particle beam. The use of sextupoles to correct chromaticity and the Landau damping of beam instabilities using octupoles are also discussed. In the final section the application of Hamiltonian mechanics to non-linearities is demonstrated. The author concludes that the effect of non-linearities on particle dynamics may place a more severe limit on intensity and storage time in large rings than any other effect in transverse phase space. (B.D.)

  19. Methods of orbit correction system optimization

    International Nuclear Information System (INIS)

    Chao, Yu-Chiu.

    1997-01-01

    Extracting optimal performance out of an orbit correction system is an important component of accelerator design and evaluation. The question of effectiveness vs. economy, however, is not always easily tractable. This is especially true in cases where betatron function magnitude and phase advance do not have smooth or periodic dependencies on the physical distance. In this report a program is presented using linear algebraic techniques to address this problem. A systematic recipe is given, supported with quantitative criteria, for arriving at an orbit correction system design with the optimal balance between performance and economy. The orbit referred to in this context can be generalized to include angle, path length, orbit effects on the optical transfer matrix, and simultaneous effects on multiple pass orbits

  20. Correção cirúrgica do aneurisma de ventrículo esquerdo: comparação entre as técnicas de sutura linear e reconstrução geométrica Surgical correction of left ventricular aneurysm: comparison between linear suture and geometric reconstruction techniques

    Directory of Open Access Journals (Sweden)

    Cássio José SGARBI

    2000-12-01

    na evolução dos pacientes revascularizados.OBJECTIVE: To evaluate the evolution up to 15 years of patients who underwent surgical correction of left ventricular aneurysm and to compare the techniques of linear suture and geometric reconstruction. METHODS: We studied 213 patients, of which 166 (77.9% were men. The mean age was 53.1 years (SD=9.9 years. Of these, 145 (68% underwent repair using the linear suture technique and 68 (32% underwent the geometric reconstruction technique. The Kaplan - Meier method was used to evaluate late survival. We evaluated the presence of mural thrombus, in and out of hospital mortality and the possibility of myocardial revascularization in the same procedure. Statistical differences were measured using the Log Rank method for actuarial curves and the nonparametric test in the remaining data compared. RESULTS: Our survival curves after a follow up of 10 years demonstrated that patients submitted to the linear suture and LV geometric reconstruction had a survival of 47.19% (SEM=0.056 and 63,55% (SEM=0.068, respectively, which were not statistically significantly different (p= 0.56. The overall survival in the 2 groups together was 51.34% (SEM=0.0473 at 10 years and 35,77%(SEM=0.0684 at 15 years. The in hospital death was 9.5% for the linear suture and 16.6% for the geometric reconstruction (p=0.17. The removal of LV thrombus was 31.29% and 45.45%, respectively (p=0.07. Revascularization was performed in, 69% of the patients in the linear suture group and 85.3% in the geometric reconstruction group. Comparing patients who were revascularized with those who were not, there was a better survival at 10 years for the first group (p=0.008. CONCLUSIONS: There was no statistically significant difference in the survival of patients who underwent linear suture compared to geometric reconstruction of the LV for aneurysm repair. Our results demonstrated superior survival in those patients who could undergo revascularization in the same procedure.

  1. Correction: Kousholt, A.N. et al. Pathways for Genome Integrity in G2 Phase of the Cell Cycle. Biomolecules 2012, 2, 579-607.

    Science.gov (United States)

    Kousholt, Arne Nedergaard; Menzel, Tobias; Sørensen, Claus Storgaard

    2013-01-15

    We have discovered an error in our paper published in Biomolecules [1], in Figure 1 on page 589. The protein names ATR and ATRIP have been swapped. A corrected version of the Figure 1 is provided below. [...].

  2. Phase II Corrective Action Investigation Plan for Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nye County, Nevada, Revision 2 with ROTC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, Sam [Nevada Test Site (NTS), Mercury, NV (United States)

    2009-07-01

    This Phase II CAIP describes new work needed to potentially reduce uncertainty and achieve increased confidence in modeling results. This work includes data collection and data analysis to refine model assumptions, improve conceptual models of flow and transport in a complex hydrogeologic setting, and reduce parametric and structural uncertainty. The work was prioritized based on the potential to reduce model uncertainty and achieve an acceptable level of confidence in the model predictions for flow and transport, leading to model acceptance by NDEP and completion of the Phase II CAI stage of the UGTA strategy.

  3. Dynamic linearization system for a radiation gauge

    International Nuclear Information System (INIS)

    Panarello, J.A.

    1977-01-01

    The linearization system and process converts a high resolution non-linear analog input signal, representative of the thickness of an object, into a high resolution linear analog output signal suitable for use in driving a variety of output devices. The system requires only a small amount of memory for storing pre-calculated non-linear correction coefficients. The system channels the input signal to separate circuit paths so that it may be used directly to; locate an appropriate correction coefficient; develop a correction term after an appropriate correction coefficient is located; and develop a linearized signal having the same high resolution inherent in the input signal. The system processes the linearized signal to compensate for the possible errors introduced by radiation source noise. The processed linearized signal is the high resolution linear analog output signal which accurately represents the thickness of the object being gauged

  4. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Van Aert, S.; Chen, J.H.; Van Dyck, D.

    2010-01-01

    A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has

  5. Linear gate

    International Nuclear Information System (INIS)

    Suwono.

    1978-01-01

    A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)

  6. Linear Accelerators

    International Nuclear Information System (INIS)

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  7. Non-Linear Fibres for Widely Tunable Femtosecond Fibre Lasers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard

    and numerically. For the intermodal four-wave mixing experiment an alternative version of the Generalised Non-Linear Schrödinger Equation is derived, which includes the correct dispersion of the transverse field. It is observed that the alternative version of the Generalised Non-Linear Schrödinger Equation......, as opposed to the commonly used version, is able to reproduce the intermodal four-wave mixing experiment. The relation between the intramodal self-phase modulation and the intramodal Raman effect is determined from experimental measurements on a number of step-index fibres. The Raman fraction is found...

  8. Publisher Correction

    DEFF Research Database (Denmark)

    Stokholm, Jakob; Blaser, Martin J.; Thorsen, Jonathan

    2018-01-01

    The originally published version of this Article contained an incorrect version of Figure 3 that was introduced following peer review and inadvertently not corrected during the production process. Both versions contain the same set of abundance data, but the incorrect version has the children...

  9. Publisher Correction

    DEFF Research Database (Denmark)

    Flachsbart, Friederike; Dose, Janina; Gentschew, Liljana

    2018-01-01

    The original version of this Article contained an error in the spelling of the author Robert Häsler, which was incorrectly given as Robert Häesler. This has now been corrected in both the PDF and HTML versions of the Article....

  10. Correction to

    DEFF Research Database (Denmark)

    Roehle, Robert; Wieske, Viktoria; Schuetz, Georg M

    2018-01-01

    The original version of this article, published on 19 March 2018, unfortunately contained a mistake. The following correction has therefore been made in the original: The names of the authors Philipp A. Kaufmann, Ronny Ralf Buechel and Bernhard A. Herzog were presented incorrectly....

  11. Linearization Method and Linear Complexity

    Science.gov (United States)

    Tanaka, Hidema

    We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.

  12. Linear algebra

    CERN Document Server

    Said-Houari, Belkacem

    2017-01-01

    This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...

  13. High-precision broad-band linear polarimetry of early-type binaries. II. Variable, phase-locked polarization in triple Algol-type system λ Tauri

    Science.gov (United States)

    Berdyugin, A.; Piirola, V.; Sakanoi, T.; Kagitani, M.; Yoneda, M.

    2018-03-01

    Aim. To study the binary geometry of the classic Algol-type triple system λ Tau, we have searched for polarization variations over the orbital cycle of the inner semi-detached binary, arising from light scattering in the circumstellar material formed from ongoing mass transfer. Phase-locked polarization curves provide an independent estimate for the inclination i, orientation Ω, and the direction of the rotation for the inner orbit. Methods: Linear polarization measurements of λ Tau in the B, V , and R passbands with the high-precision Dipol-2 polarimeter have been carried out. The data have been obtained on the 60 cm KVA (Observatory Roque de los Muchachos, La Palma, Spain) and Tohoku 60 cm (Haleakala, Hawaii, USA) remotely controlled telescopes over 69 observing nights. Analytic and numerical modelling codes are used to interpret the data. Results: Optical polarimetry revealed small intrinsic polarization in λ Tau with 0.05% peak-to-peak variation over the orbital period of 3.95 d. The variability pattern is typical for binary systems showing strong second harmonic of the orbital period. We apply a standard analytical method and our own light scattering models to derive parameters of the inner binary orbit from the fit to the observed variability of the normalized Stokes parameters. From the analytical method, the average for three passband values of orbit inclination i = 76° + 1°/-2° and orientation Ω = 15°(195°) ± 2° are obtained. Scattering models give similar inclination values i = 72-76° and orbit orientation ranging from Ω = 16°(196°) to Ω = 19°(199°), depending on the geometry of the scattering cloud. The rotation of the inner system, as seen on the plane of the sky, is clockwise. We have found that with the scattering model the best fit is obtained for the scattering cloud located between the primary and the secondary, near the inner Lagrangian point or along the Roche lobe surface of the secondary facing the primary. The inclination i

  14. Phase I Focused Corrective Measures Study/Feasibility Study for the L-Area Oil and Chemical Basin (904-83G)

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-02-01

    This report presents the completed Resource Conservation and Recovery Act (RCRA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Focused Corrective Measures Study/Feasibility Study (CMS/FS) for the L-Area Oil and Chemical Basin (LAOCB)/L-Area Acid Caustic Basin (9LAACB) Solid Waste Management Unit/Operable Unit (SWMU/OU) at the Savannah River Site (SRS).

  15. On D-branes from gauged linear sigma models

    International Nuclear Information System (INIS)

    Govindarajan, S.; Jayaraman, T.; Sarkar, T.

    2001-01-01

    We study both A-type and B-type D-branes in the gauged linear sigma model by considering worldsheets with boundary. The boundary conditions on the matter and vector multiplet fields are first considered in the large-volume phase/non-linear sigma model limit of the corresponding Calabi-Yau manifold, where we find that we need to add a contact term on the boundary. These considerations enable to us to derive the boundary conditions in the full gauged linear sigma model, including the addition of the appropriate boundary contact terms, such that these boundary conditions have the correct non-linear sigma model limit. Most of the analysis is for the case of Calabi-Yau manifolds with one Kaehler modulus (including those corresponding to hypersurfaces in weighted projective space), though we comment on possible generalisations

  16. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment of jaws ... out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment of jaws ...

  17. Linear algebra

    CERN Document Server

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  18. Linear programming

    CERN Document Server

    Solow, Daniel

    2014-01-01

    This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.

  19. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  20. Linear algebra

    CERN Document Server

    Berberian, Sterling K

    2014-01-01

    Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.

  1. Linear Models

    CERN Document Server

    Searle, Shayle R

    2012-01-01

    This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.

  2. LINEAR ACCELERATOR

    Science.gov (United States)

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  3. Phase I Flow and Transport Model Document for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 1 with ROTCs 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Robert

    2013-09-01

    The Underground Test Area (UGTA) Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, in the northeast part of the Nevada National Security Site (NNSS) requires environmental corrective action activities to assess contamination resulting from underground nuclear testing. These activities are necessary to comply with the UGTA corrective action strategy (referred to as the UGTA strategy). The corrective action investigation phase of the UGTA strategy requires the development of groundwater flow and contaminant transport models whose purpose is to identify the lateral and vertical extent of contaminant migration over the next 1,000 years. In particular, the goal is to calculate the contaminant boundary, which is defined as a probabilistic model-forecast perimeter and a lower hydrostratigraphic unit (HSU) boundary that delineate the possible extent of radionuclide-contaminated groundwater from underground nuclear testing. Because of structural uncertainty in the contaminant boundary, a range of potential contaminant boundaries was forecast, resulting in an ensemble of contaminant boundaries. The contaminant boundary extent is determined by the volume of groundwater that has at least a 5 percent chance of exceeding the radiological standards of the Safe Drinking Water Act (SDWA) (CFR, 2012).

  4. Stanford's linear collider

    International Nuclear Information System (INIS)

    Southworth, B.

    1985-01-01

    The peak of the construction phase of the Stanford Linear Collider, SLC, to achieve 50 GeV electron-positron collisions has now been passed. The work remains on schedule to attempt colliding beams, initially at comparatively low luminosity, early in 1987. (orig./HSI).

  5. Comments on the electroweak phase transition

    International Nuclear Information System (INIS)

    Dine, M.; Leigh, R.G.; Huet, P.; Linde, A.; Linde, D.

    1992-01-01

    We report on an investigation of various problems related to the theory of the electroweak phase transition. This includes a determination of the nature of the phase transition, a discussion of the possible role of higher order radiative corrections and the theory of the formation and evolution of the bubbles of the new phase. We find in particular that no dangerous linear terms appear in the effective potential. However, the strength of the first-order phase transition is 2/3 times less than what follows from the one-loop approximation. This rules out baryogenesis in the minimal version of the electroweak theory with light Higgs bosons. (orig.)

  6. Aortic and Hepatic Contrast Enhancement During Hepatic-Arterial and Portal Venous Phase Computed Tomography Scanning: Multivariate Linear Regression Analysis Using Age, Sex, Total Body Weight, Height, and Cardiac Output.

    Science.gov (United States)

    Masuda, Takanori; Nakaura, Takeshi; Funama, Yoshinori; Higaki, Toru; Kiguchi, Masao; Imada, Naoyuki; Sato, Tomoyasu; Awai, Kazuo

    We evaluated the effect of the age, sex, total body weight (TBW), height (HT) and cardiac output (CO) of patients on aortic and hepatic contrast enhancement during hepatic-arterial phase (HAP) and portal venous phase (PVP) computed tomography (CT) scanning. This prospective study received institutional review board approval; prior informed consent to participate was obtained from all 168 patients. All were examined using our routine protocol; the contrast material was 600 mg/kg iodine. Cardiac output was measured with a portable electrical velocimeter within 5 minutes of starting the CT scan. We calculated contrast enhancement (per gram of iodine: [INCREMENT]HU/gI) of the abdominal aorta during the HAP and of the liver parenchyma during the PVP. We performed univariate and multivariate linear regression analysis between all patient characteristics and the [INCREMENT]HU/gI of aortic- and liver parenchymal enhancement. Univariate linear regression analysis demonstrated statistically significant correlations between the [INCREMENT]HU/gI and the age, sex, TBW, HT, and CO (all P linear regression analysis showed that only the TBW and CO were of independent predictive value (P linear regression analysis only the TBW and CO were significantly correlated with aortic and liver parenchymal enhancement; the age, sex, and HT were not. The CO was the only independent factor affecting aortic and liver parenchymal enhancement at hepatic CT when the protocol was adjusted for the TBW.

  7. Rapid and sensitive determination of major polyphenolic components in Euphoria longana Lam. seeds using matrix solid-phase dispersion extraction and UHPLC with hybrid linear ion trap triple quadrupole mass spectrometry.

    Science.gov (United States)

    Rathore, Atul S; Sathiyanarayanan, L; Deshpande, Shreekant; Mahadik, Kakasaheb R

    2016-11-01

    A rapid and sensitive method for the extraction and determination of four major polyphenolic components in Euphoria longana Lam. seeds is presented for the first time based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry. Matrix solid-phase dispersion method was designed for the extraction of Euphoria longana seed constituents and compared with microwave-assisted extraction and ultrasonic-assisted extraction methods. An Ultra high performance liquid chromatography with hybrid triple quadrupole linear ion-trap mass spectrometry method was developed for quantitative analysis in multiple-reaction monitoring mode in negative electrospray ionization. The chromatographic separation was accomplished using an ACQUITY UPLC BEH C 18 (2.1 mm × 50 mm, 1.7 μm) column with gradient elution of 0.1% aqueous formic acid and 0.1% formic acid in acetonitrile. The developed method was validated with acceptable linearity (r 2 > 0.999), precision (RSD ≤ 2.22%) and recovery (RSD ≤ 2.35%). The results indicated that matrix solid-phase dispersion produced comparable extraction efficiency compared with other methods nevertheless was more convenient and time-saving with reduced requirements on sample and solvent volumes. The proposed method is rapid and sensitive in providing a promising alternative for extraction and comprehensive determination of active components for quality control of Euphoria longana products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ballistic deficit correction

    International Nuclear Information System (INIS)

    Duchene, G.; Moszynski, M.; Curien, D.

    1991-01-01

    The EUROGAM data-acquisition has to handle a large number of events/s. Typical in-beam experiments using heavy-ion fusion reactions assume the production of about 50 000 compound nuclei per second deexciting via particle and γ-ray emissions. The very powerful γ-ray detection of EUROGAM is expected to produce high-fold event rates as large as 10 4 events/s. Such high count rates introduce, in a common dead time mode, large dead times for the whole system associated with the processing of the pulse, its digitization and its readout (from the preamplifier pulse up to the readout of the information). In order to minimize the dead time the shaping time constant τ, usually about 3 μs for large volume Ge detectors has to be reduced. Smaller shaping times, however, will adversely affect the energy resolution due to ballistic deficit. One possible solution is to operate the linear amplifier, with a somewhat smaller shaping time constant (in the present case we choose τ = 1.5 μs), in combination with a ballistic deficit compensator. The ballistic deficit can be corrected in different ways using a Gated Integrator, a hardware correction or even a software correction. In this paper we present a comparative study of the software and hardware corrections as well as gated integration

  9. The relationship between phase and heart rate

    International Nuclear Information System (INIS)

    Underwood, S.R.; Walton, S.; Brown, N.J.G.; Laming, P.J.; Ell, P.J.; Emanuel, R.W.; Swanton, R.H.

    1984-01-01

    The Fourier phase image is used in rest and stress radionuclide angiocardiography to assess the timing of ventricular wall motion in a regional fashion, and areas of high phase are taken to reprensent areas of delayed contraction. However, phase increases with heart rate and this can make interpretation difficult. This study investigates the relationship between phase and heart rate. A heterogenous group of 43 subjects was studied by ECG-gated equilibrium radionuclide angiocardiography, all of the subjects having normal extent of left ventricular wall motion as judged by normal ejection fraction and normal amplitude image. Mean left ventricular phase correlated well with mean time of end systole (r=0.92), but there was no correlation with time of end diastole.Thus phase reflects the time of end systole as a proportion of cycle length and should be linearly related to heart rate provided the duration of systole is unchanged. In 28 normal subjects mean left ventricular phase correlated linearly with resting rate (r=0.91), and when exercised the relationship was maintained up to 90 beats per minute. Above this rate the increases were less marked as the duration of systole shortened. The same was true in 4 subjects paced at different rates. Mean resting heart rate in the normal subjects was 70 beats per minute and correcting phase linearly to rate 70 did not change mean left ventricular phase but did decrease the standard deviation from 18 degree to 12 degree. It is concluded that correcting phase for heart rate below 90 beats per minute will increase the sensitivity of the phase image to abnormalities of the timing of ventricular contraction. This correction should be appropriate in resting, isometric exercise, and cold pressor studies but because of the higher heart rates involved will not be appropriate for bicycle exercise. (Author)

  10. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  11. Linear Colliders

    International Nuclear Information System (INIS)

    Alcaraz, J.

    2001-01-01

    After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs

  12. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  13. Inductor Design Comparison of Three-wire and Four-wire Three-phase Voltage Source Converters in Power Factor Correction Applications

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2015-01-01

    This paper studies the inductor design for three-wire and four-wire power factor correction converter (PFC). Designing the efficient inductor for this converter (regardless of connecting the midpoint to the ground) requires a comprehensive knowledge of the inductor current and voltage behavior....... This paper investigates how changing three-wire PFC to four-wire counterpart influences the inductor design in terms of size, losses, and overall efficiency of the converter. Therefore, the inductor current and voltage waveforms are analyzed and generalized in both cases for one switching cycle to build...... a foundation for comparison. Accordingly, the analyses are able to interpret the differences between both configurations and explain the core losses and the copper losses of inductors, especially those caused by the high frequency ac current ripple. Finally, two inductors are designed for a 5 kW PFC...

  14. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    Linearity and Non-linearity of Photorefractive effect in Materials using the Band transport ... For low light beam intensities the change in the refractive index is ... field is spatially phase shifted by /2 relative to the interference fringe pattern, which ...

  15. Rank error-correcting pairs

    DEFF Research Database (Denmark)

    Martinez Peñas, Umberto; Pellikaan, Ruud

    2017-01-01

    Error-correcting pairs were introduced as a general method of decoding linear codes with respect to the Hamming metric using coordinatewise products of vectors, and are used for many well-known families of codes. In this paper, we define new types of vector products, extending the coordinatewise ...

  16. Linear programming

    CERN Document Server

    Karloff, Howard

    1991-01-01

    To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method…via the Ellipsoid algorithm to Karmarkar’s algorithm. Moreover, its point of view is algorithmic and thus it provides both a history and a case history of work in complexity theory. The presentation is admirable; Karloff's style is informal (even humorous at times) without sacrificing anything necessary for understanding. Diagrams (including horizontal brackets that group terms) aid in providing clarity. The end-of-chapter notes are helpful...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews The reader will be well served by reading the monograph from cover to cover. The author succeeds in providing a concise, readable, understandable introduction to modern linear programming. —Mathematics of Computing This is a textbook intend...

  17. Theoretical study of adsorption of amino acids on graphene and BN sheet in gas and aqueous phase with empirical DFT dispersion correction.

    Science.gov (United States)

    Singla, Preeti; Riyaz, Mohd; Singhal, Sonal; Goel, Neetu

    2016-02-21

    Understanding interactions of biomolecules with nanomaterials at the molecular level is crucial to design new materials for practical use. In the present study, adsorption of three distinct types of amino acids, namely, valine, arginine and aspartic acid, over the surface of structurally analogous but chemically different graphene and BN nanosheets has been explored within the formalism of DFT. The explicit dispersion correction incorporated in the computational methodology improves the accuracy of the results by accounting for long range van der Waals interactions and is essential for agreement with experimental values. The real biological environment has been mimicked by re-optimizing all the model structures in an aqueous medium. The study provides ample evidence in terms of adsorption energy, solvation energy, separation distance and charge analysis to conclude that both the nano-surfaces adsorb the amino acids with release of energy and there are no bonded interactions between the two. The polarity of the BN nanosheet provides it an edge over the graphene surface to have more affinity towards amino acids.

  18. Solid-Phase Contact Assay That Uses a lux-Marked Nitrosomonas europaea Reporter Strain To Estimate Toxicity of Bioavailable Linear Alkylbenzene Sulfonate in Soil

    OpenAIRE

    Brandt, Kristian K.; Pedersen, Anders; Sørensen, Jan

    2002-01-01

    Information about in situ toxicity of the bioavailable pools of adsorptive soil pollutants is a prerequisite for proper ecological risk assessment in contaminated soils. Such toxicity data may be obtained by assays allowing for direct exposure of introduced test microorganisms to the toxicants, as they appear in solid solution equilibria in the natural soil. We describe a novel sensitive solid-phase contact assay for in situ toxicity testing of soil pollutants based on a recombinant biolumine...

  19. Reduction of Linear Programming to Linear Approximation

    OpenAIRE

    Vaserstein, Leonid N.

    2006-01-01

    It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.

  20. Sfermion Precision Measurements at a Linear Collider

    CERN Document Server

    Freitas, A.; Ananthanarayan, B.; Bartl, A.; Blair, G.A.; Blochinger, C.; Boos, E.; Brandenburg, A.; Datta, A.; Djouadi, A.; Fraas, H.; Guasch, J.; Hesselbach, S.; Hidaka, K.; Hollik, W.; Kernreiter, T.; Maniatis, M.; von Manteuffel, A.; Martyn, H.U.; Miller, D.J.; Moortgat-Pick, Gudrid A.; Muhlleitner, M.; Nauenberg, U.; Kluge, Hannelies; Porod, W.; Sola, J.; Sopczak, A.; Stahl, A.; Weber, M.M.; Zerwas, P.M.

    2002-01-01

    At future e+- e- linear colliders, the event rates and clean signals of scalar fermion production - in particular for the scalar leptons - allow very precise measurements of their masses and couplings and the determination of their quantum numbers. Various methods are proposed for extracting these parameters from the data at the sfermion thresholds and in the continuum. At the same time, NLO radiative corrections and non-zero width effects have been calculated in order to match the experimental accuracy. The substantial mixing expected for the third generation sfermions opens up additional opportunities. Techniques are presented for determining potential CP-violating phases and for extracting tan(beta) from the stau sector, in particular at high values. The consequences of possible large mass differences in the stop and sbottom system are explored in dedicated analyses.

  1. Sfermion precision measurements at a linear collider

    International Nuclear Information System (INIS)

    Freitas, A.; Ananthanarayan, B.; Bartl, A.; Blair, G.; Bloechinger, C.; Boos, E.; Brandenburg, A.; Datta, A.; Djouadi, A.; Fraas, H.; Guasch, J.; Hesselbach, S.; Hidaka, K.; Hollik, W.; Kernreiter, T.; Maniatis, M.; Manteuffel, A. von; Martyn, H.-U.; Miller, D.J.; Moortgat-Pick, G.; Muehlleitner, M.; Nauenberg, U.; Nowak, H.; Porod, W.; Sola, J.; Sopczak, A.; Stahl, A.; Weber, M.M.; Zerwas, P.M.

    2003-01-01

    At prospective e ± e - linear colliders, the large cross-sections and clean signals of scalar fermion production--in particular for the scalar leptons - allow very precise measurements of their masses and couplings and the determination of their quantum numbers. Various methods are proposed for extracting these parameters from the data at the sfermion thresholds and in the continuum. At the same time, NLO radiative corrections and non-zero width effects have been calculated in order to match the experimental accuracy. The substantial mixing expected in the third generation opens up additional opportunities. Techniques are presented for determining potential CP-violating phases and for extracting tan β from the stau sector, in particular at high values. The consequences of possible large mass differences in the stop and sbottom system are explored in dedicated analyses

  2. Sfermion precision measurements at a linear collider

    International Nuclear Information System (INIS)

    Freitas, A.

    2003-01-01

    At future e + e - linear colliders, the event rates and clean signals of scalar fermion production--in particular for the scalar leptons--allow very precise measurements of their masses and couplings and the determination of their quantum numbers. Various methods are proposed for extracting these parameters from the data at the sfermion thresholds and in the continuum. At the same time, NLO radiative corrections and non-zero width effects have been calculated in order to match the experimental accuracy. The substantial mixing expected for the third generation sfermions opens up additional opportunities. Techniques are presented for determining potential CP-violating phases and for extracting tan β from the stau sector, in particular at high values. The consequences of possible large mass differences in the stop and sbottom system are explored in dedicated analyses

  3. A hybrid numerical method for orbit correction

    International Nuclear Information System (INIS)

    White, G.; Himel, T.; Shoaee, H.

    1997-09-01

    The authors describe a simple hybrid numerical method for beam orbit correction in particle accelerators. The method overcomes both degeneracy in the linear system being solved and respects boundaries on the solution. It uses the Singular Value Decomposition (SVD) to find and remove the null-space in the system, followed by a bounded Linear Least Squares analysis of the remaining recast problem. It was developed for correcting orbit and dispersion in the B-factory rings

  4. Interstellar Gas-phase Element Depletions in the Small Magellanic Cloud: A Guide to Correcting for Dust in QSO Absorption Line Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Edward B. [Princeton University Observatory, Princeton, NJ 08544-1001 (United States); Wallerstein, George, E-mail: ebj@astro.princeton.edu, E-mail: walleg@u.washington.edu [University of Washington, Seattle, Dept. of Astronomy, Seattle, WA 98195-1580 (United States)

    2017-04-01

    We present data on the gas-phase abundances for 9 different elements in the interstellar medium of the Small Magellanic Cloud (SMC), based on the strengths of ultraviolet absorption features over relevant velocities in the spectra of 18 stars within the SMC. From this information and the total abundances defined by the element fractions in young stars in the SMC, we construct a general interpretation on how these elements condense into solid form onto dust grains. As a group, the elements Si, S, Cr, Fe, Ni, and Zn exhibit depletion sequences similar to those in the local part of our Galaxy defined by Jenkins. The elements Mg and Ti deplete less rapidly in the SMC than in the Milky Way, and Mn depletes more rapidly. We speculate that these differences might be explained by the different chemical affinities to different existing grain substrates. For instance, there is evidence that the mass fractions of polycyclic aromatic hydrocarbons in the SMC are significantly lower than those in the Milky Way. We propose that the depletion sequences that we observed for the SMC may provide a better model for interpreting the element abundances in low-metallicity Damped Lyman Alpha (DLA) and sub-DLA absorption systems that are recorded in the spectra of distant quasars and gamma-ray burst afterglows.

  5. CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models

    Directory of Open Access Journals (Sweden)

    J. P. McCormack

    2006-01-01

    Full Text Available The new CHEM2D-Ozone Photochemistry Parameterization (CHEM2D-OPP for high-altitude numerical weather prediction (NWP systems and climate models specifies the net ozone photochemical tendency and its sensitivity to changes in ozone mixing ratio, temperature and overhead ozone column based on calculations from the CHEM2D interactive middle atmospheric photochemical transport model. We evaluate CHEM2D-OPP performance using both short-term (6-day and long-term (1-year stratospheric ozone simulations with the prototype high-altitude NOGAPS-ALPHA forecast model. An inter-comparison of NOGAPS-ALPHA 6-day ozone hindcasts for 7 February 2005 with ozone photochemistry parameterizations currently used in operational NWP systems shows that CHEM2D-OPP yields the best overall agreement with both individual Aura Microwave Limb Sounder ozone profile measurements and independent hemispheric (10°–90° N ozone analysis fields. A 1-year free-running NOGAPS-ALPHA simulation using CHEM2D-OPP produces a realistic seasonal cycle in zonal mean ozone throughout the stratosphere. We find that the combination of a model cold temperature bias at high latitudes in winter and a warm bias in the CHEM2D-OPP temperature climatology can degrade the performance of the linearized ozone photochemistry parameterization over seasonal time scales despite the fact that the parameterized temperature dependence is weak in these regions.

  6. Correcting quantum errors with entanglement.

    Science.gov (United States)

    Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-10-20

    We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.

  7. A modified phase coherence model for the non-linear c-axis V-I characteristics of highly anisotropic, high temperature superconductors

    CERN Document Server

    Luo Sheng; Huang Sai Jun; He Yu Sheng; Li Chun Guang; Zhang Xue Qiang

    2003-01-01

    A modified Ambegaokar-Halperin thermal-fluctuation model has been developed to describe the c-axis V-I characteristics and low-current ohmic resistance of highly anisotropic superconductors in a magnetic field parallel to the c-axis. The model assumes loss of phase coherence across the CuO-planes associated with the correlated motion of pancake vortices in the liquid state. The predicted V-I characteristics in the current-induced transition from the superconducting to the resistive state are in good agreement with measurements on a 2212-BSCCO single crystal as a function of temperature and field, provided the effect of the interlayer capacitance is taken into account. The measurements are consistent with a flux pancake correlation length within the CuO-planes varying as xi sub 0 /(T/T sub 0 - 1) supnu, where xi sub 0 = 1.57 +- 0.08 mu m and nu = 0.50 +- 0.01. Our measurements imply a current-dependent interlayer resistance above and below T sub c.

  8. Correção cirúrgica do aneurisma de ventrículo esquerdo: comparação entre as técnicas de sutura linear e reconstrução geométrica Surgical correction of left ventricular aneurysm: comparison between linear suture and geometric reconstruction techniques

    OpenAIRE

    Cássio José SGARBI; Roberto Vito ARDITO; Rinaldo Costa SANTOS; Renata Andrea B. BOGDAN; Franscismar Vidal de ARRUDA JUNIOR; Elaine Moraes da SILVA; Ariane Cristina M. BENITES; Wilma R. ARDITO; Maria de Fátima F. B. NEVES

    2000-01-01

    OBJETIVOS: Avaliar a evolução até 15 anos de acompanhamento dos pacientes submetidos a correção cirúrgica do aneurisma de ventrículo esquerdo, comparando as técnicas de sutura linear (RL) e reconstrução geométrica(RG). CASUÍSTICA E MÉTODOS: Foram estudados 213 pacientes; destes, 166 (77,9%) eram do sexo masculino. A idade média foi de 53,1 anos (DP= 9,9 anos), variando de 24 a 73 anos. Do total dos pacientes, 145 (68%) foram operados pela técnica de SL e 68 (32%) submetidos a RG de VE. A sobr...

  9. Phase gradients in acceleration structures

    International Nuclear Information System (INIS)

    Decker, F.J.; Jobe, R.K.

    1990-05-01

    In linear accelerators with two or more bunches the beam loading of one bunch will influence the energy and energy spread the following bunches. This can be corrected by quickly changing the phase of a travelling wave structure, so that each bunch recieves a slightly different net phase. At the SLAC Linear Collider (SLC) three bunches, two (e + ,e - ) for the high energy collisions and one (e - -scavenger) for producing positrons should sit at different phases, due to their different tasks. The two e - -bunches are extracted from the damping ring at the same cycle time about 60 ns apart. Fast phase switching of the RF to the bunch length compressor in the Ring-To-Linac (RTL) section can produce the necessary advance of the scavenger bunch (about 6 degree in phase). This allows a low energy spread of this third bunch at the e + -production region at 2/3 of the linac length, while the other bunches are not influenced. The principles and possible other applications of this fast phase switching as using it for multi-bunches, as well as the experimental layout for the actual RTL compressor are presented

  10. A new trajectory correction technique for linacs

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.; Ruth, R.D.

    1990-06-01

    In this paper, we describe a new trajectory correction technique for high energy linear accelerators. Current correction techniques force the beam trajectory to follow misalignments of the Beam Position Monitors. Since the particle bunch has a finite energy spread and particles with different energies are deflected differently, this causes ''chromatic'' dilution of the transverse beam emittance. The algorithm, which we describe in this paper, reduces the chromatic error by minimizing the energy dependence of the trajectory. To test the method we compare the effectiveness of our algorithm with a standard correction technique in simulations on a design linac for a Next Linear Collider. The simulations indicate that chromatic dilution would be debilitating in a future linear collider because of the very small beam sizes required to achieve the necessary luminosity. Thus, we feel that this technique will prove essential for future linear colliders. 3 refs., 6 figs., 2 tabs

  11. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... and Craniofacial Surgery Cleft Lip/Palate and Craniofacial Surgery A cleft lip may require one or more ... find out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment ...

  12. Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras.

    Science.gov (United States)

    Payne, Andrew D; Dorrington, Adrian A; Cree, Michael J; Carnegie, Dale A

    2010-08-10

    Time-of-flight range imaging systems utilizing the amplitude modulated continuous wave (AMCW) technique often suffer from measurement nonlinearity due to the presence of aliased harmonics within the amplitude modulation signals. Typically a calibration is performed to correct these errors. We demonstrate an alternative phase encoding approach that attenuates the harmonics during the sampling process, thereby improving measurement linearity in the raw measurements. This mitigates the need to measure the system's response or calibrate for environmental changes. In conjunction with improved linearity, we demonstrate that measurement precision can also be increased by reducing the duty cycle of the amplitude modulated illumination source (while maintaining overall illumination power).

  13. SDP_mharwit_1: Demonstration of HIFI Linear Polarization Analysis of Spectral Features

    Science.gov (United States)

    Harwit, M.

    2010-03-01

    We propose to observe the polarization of the 621 GHz water vapor maser in VY Canis Majoris to demonstrate the capability of HIFI to make polarization observations of Far-Infrared/Submillimeter spectral lines. The proposed Demonstration Phase would: - Show that HIFI is capable of interesting linear polarization measurements of spectral lines; - Test out the highest spectral resolving power to sort out closely spaced Doppler components; - Determine whether the relative intensities predicted by Neufeld and Melnick are correct; - Record the degree and direction of linear polarization for the closely-Doppler shifted peaks.

  14. Complex energy eigenvalues of a linear potential with a parabolical barrier

    International Nuclear Information System (INIS)

    Malherbe, J.B.

    1978-01-01

    The physical meaning and restrictions of complex energy eigenvalues are briefly discussed. It is indicated that a quasi-stationary phase describes an idealised disintegration system. Approximate resonance-eigenvalues of the one dimensional Schrodinger equation with a linear potential and parabolic barrier are calculated by means of Connor's semiclassical method. This method is based on the generalized WKB-method of Miller and Good. The results obtained confirm the correctness of a model representation which explains the unusual distribution of eigenvalues by certain other linear potentials in a complex energy level [af

  15. Linear and non-linear optics of condensed matter

    International Nuclear Information System (INIS)

    McLean, T.P.

    1977-01-01

    Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)

  16. Design of an Internal Model Control strategy for single-phase grid-connected PWM inverters and its performance analysis with a non-linear local load and weak grid.

    Science.gov (United States)

    Chaves, Eric N; Coelho, Ernane A A; Carvalho, Henrique T M; Freitas, Luiz C G; Júnior, João B V; Freitas, Luiz C

    2016-09-01

    This paper presents the design of a controller based on Internal Model Control (IMC) applied to a grid-connected single-phase PWM inverter. The mathematical modeling of the inverter and the LCL output filter, used to project the 1-DOF IMC controller, is presented and the decoupling of grid voltage by a Feedforward strategy is analyzed. A Proportional - Resonant Controller (P+Res) was used for the control of the same plant in the running of experimental results, thus moving towards the discussion of differences regarding IMC and P+Res performances, which arrived at the evaluation of the proposed control strategy. The results are presented for typical conditions, for weak-grid and for non-linear local load, in order to verify the behavior of the controller against such situations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Use of linear free energy relationship to predict Gibbs free energies of formation of zirconolite phases (MZrTi2O7 and MHfTi2O7)

    International Nuclear Information System (INIS)

    Xu, H.

    1999-01-01

    In this letter, the Sverjensky-Molling equation derived from a linear free energy relationship is used to calculate the Gibbs free energies of formation of zirconolite crystalline phases (MZrTi 2 O 7 and MHfTi 2 O 7 ) from the known thermodynamic properties of the corresponding aqueous divalent cations (M 2+ ). Sverjensky-Molling equation is expressed as ΔG 0 f,M v X =a M v X ΔG 0 n,M 2+ +b M v X +β M v X r M 2+ , where the coefficients a M v X , b M v X , and β M v X characterize a particular structural family of M v X, r M 2+ is the ionic radius of M 2+ cation, ΔG f,M v X 0 is the standard Gibbs free energy of formation of M v X, and ΔG 0 n,M 2+ is the standard non-solvation energy of cation M 2+ . This relationship can be used to predict the Gibbs free energies of formation of various fictive phases (such as BaZrTi 2 O 7 , SrZrTi 2 O 7 , PbZrTi 2 O 7 , etc.) that may form solid solution with CaZrTi 2 O 7 in actual Synroc-based nuclear waste forms. Based on obtained linear free energy relationships, it is predicted that large cations (e.g., Ba and Ra) prefer to be in perovskite structure, and small cations (e.g., Ca, Zn, and Cd) prefer to be in zirconolite structure. (orig.)

  18. Emittance control in linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1991-01-01

    Before completing a realistic design of a next-generation linear collider, the authors must first learn the lessons taught by the first generation, the SLC. Given that, they must make designs fault tolerant by including correction and compensation in the basic design. They must also try to eliminate these faults by improved alignment and stability of components. When these two efforts cross, they have a realistic design. The techniques of generation and control of emittance reviewed here provide a foundation for a design which can obtain the necessary luminosity in a next-generation linear collider

  19. Acoustic emission linear pulse holography

    International Nuclear Information System (INIS)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-01-01

    This paper describes the emission linear pulse holography which produces a chronological linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. A thirty two point sampling array is used to construct phase-only linear holograms of simulated acoustic emission sources on large metal plates. The concept behind the AE linear pulse holography is illustrated, and a block diagram of a data acquisition system to implement the concept is given. Array element spacing, synthetic frequency criteria, and lateral depth resolution are specified. A reference timing transducer positioned between the array and the inspection zone and which inititates the time-of-flight measurements is described. The results graphically illustrate the technique using a one-dimensional FFT computer algorithm (ie. linear backward wave) for an AE image reconstruction

  20. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...

  1. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    International Nuclear Information System (INIS)

    John McCord

    2007-01-01

    This document, which makes changes to Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, S-N/99205--077, Revision 0 (June 2006), was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 4, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made for the two plates inserted in the back of the document: Plate 4: Disregard the repeat of legend text 'Drill Hole Name' and 'Drill Hole Location' in the lower left corner of the map. Plate 6: The symbol at the ER-16-1 location (white dot on the lower left side of the map) is not color-coded because no water level has been determined. The well location is included for reference. Plate 6: The symbol at the ER-12-1 location (upper left corner of the map), a yellow dot, represents the lower water level elevation. The higher water level elevation, represented by a red dot, was overprinted

  2. Test accelerator for linear collider

    International Nuclear Information System (INIS)

    Takeda, S.; Akai, K.; Akemoto, M.; Araki, S.; Hayano, H.; Hugo, T.; Ishihara, N.; Kawamoto, T.; Kimura, Y.; Kobayashi, H.; Kubo, T.; Kurokawa, S.; Matsumoto, H.; Mizuno, H.; Odagiri, J.; Otake, Y.; Sakai, H.; Shidara, T.; Shintake, T.; Suetake, M.; Takashima, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yamamoto, N.; Yokoya, K.; Yoshida, M.; Yoshioka, M.; Yamaoka, Y.

    1989-01-01

    KEK has proposed to build Test Accelerator Facility (TAF) capable of producing a 2.5 GeV electron beam for the purpose of stimulating R ampersand D for linear collider in TeV region. The TAF consists of a 1.5 GeV S-band linear accelerator, 1.5 GeV damping ring and 1.0 GeV X-band linear accelerator. The TAF project will be carried forward in three phases. Through Phase-I and Phase-II, the S-band and X-band linacs will be constructed, and in Phase-III, the damping ring will be completed. The construction of TAF Phase-I has started, and the 0.2 GeV S-band injector linac has been almost completed. The Phase-I linac is composed of a 240 keV electron gun, subharmonic bunchers, prebunchers and traveling buncher followed by high-gradient accelerating structures. The SLAC 5045 klystrons are driven at 450 kV in order to obtain the rf-power of 100 MW in a 1 μs pulse duration. The rf-power from a pair of klystrons are combined into an accelerating structure. The accelerating gradient up to 100 MeV/m will be obtained in a 0.6 m long structure. 5 refs., 3 figs., 2 tabs

  3. The linear-non-linear frontier for the Goldstone Higgs

    International Nuclear Information System (INIS)

    Gavela, M.B.; Saa, S.; Kanshin, K.; Machado, P.A.N.

    2016-01-01

    The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)

  4. The linear-non-linear frontier for the Goldstone Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Gavela, M.B.; Saa, S. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Kanshin, K. [Universita di Padova, Dipartimento di Fisica e Astronomia ' G. Galilei' , Padua (Italy); INFN, Padova (Italy); Machado, P.A.N. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Fermi National Accelerator Laboratory, Theoretical Physics Department, Batavia, IL (United States)

    2016-12-15

    The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)

  5. Directivity of basic linear arrays

    DEFF Research Database (Denmark)

    Bach, Henning

    1970-01-01

    For a linear uniform array ofnelements, an expression is derived for the directivity as a function of the spacing and the phase constants. The cases of isotropic elements, collinear short dipoles, and parallel short dipoles are included. The formula obtained is discussed in some detail and contour...

  6. Scalar-tensor linear inflation

    Energy Technology Data Exchange (ETDEWEB)

    Artymowski, Michał [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Racioppi, Antonio, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Antonio.Racioppi@kbfi.ee [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia)

    2017-04-01

    We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f (φ) R /2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead to linear inflation in the strong coupling limit.

  7. A control strategy based on UTT and I CosΘ theory of three-phase ...

    African Journals Online (AJOL)

    The performance of the implemented control algorithm is evaluated in terms of power-factor correction; load balancing, neutral source current mitigation and mitigation of voltage and current harmonics, voltage sag and swell and voltage dips in a three-phase four-wire distribution system for different combination of linear and ...

  8. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  9. NWS Corrections to Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Form B-14 is the National Weather Service form entitled 'Notice of Corrections to Weather Records.' The forms are used to make corrections to observations on forms...

  10. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... more surgeries depending on the extent of the repair needed. Click here to find out more. Corrective ... more surgeries depending on the extent of the repair needed. Click here to find out more. Corrective ...

  11. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... Jaw Surgery Download Download the ebook for further information Corrective jaw, or orthognathic surgery is performed by ... your treatment. Correction of Common Dentofacial Deformities ​ ​ The information provided here is not intended as a substitute ...

  12. Gastric emptying measurements: delayed and complex emptying patterns without appropriate correction

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.G.; Christian, P.E.; Taylor, A.T.; Alazraki, N.

    1985-10-01

    Anteriorly acquired and geometric mean corrected gastric emptying curves of solids and liquid isotopic-labeled meals were compared in 37 subjects given 61 meals of three different sizes. Anterior data alone consistently and significantly underestimated solid-phase gastric emptying rates with all meal sizes when compared to geometric mean acquired data. However, with liquids there were only slight differences between anterior and anterior and posterior geometric mean corrected emptying-rates. The difference probably reflects greater attenuation of the 140 kev photon of /sup 99m/Tc compared to the 247 keV photon of In. With anterior data alone, an apparent early delay in emptying of solids was present with all meal sizes and the resultant emptying curves were nonlinear in shape. Geometric mean correction resulted in the linearization of the solid-phase emptying curves and essentially eliminated the apparent delay in emptying or lag phase noted with the anterior data alone. Based on our results, geometric mean correction techniques are necessary for accurate assessment of radioisotopic-labeled solid meals.

  13. Topics in linear optical quantum computation

    Science.gov (United States)

    Glancy, Scott Charles

    This thesis covers several topics in optical quantum computation. A quantum computer is a computational device which is able to manipulate information by performing unitary operations on some physical system whose state can be described as a vector (or mixture of vectors) in a Hilbert space. The basic unit of information, called the qubit, is considered to be a system with two orthogonal states, which are assigned logical values of 0 and 1. Photons make excellent candidates to serve as qubits. They have little interactions with the environment. Many operations can be performed using very simple linear optical devices such as beam splitters and phase shifters. Photons can easily be processed through circuit-like networks. Operations can be performed in very short times. Photons are ideally suited for the long-distance communication of quantum information. The great difficulty in constructing an optical quantum computer is that photons naturally interact weakly with one another. This thesis first gives a brief review of two early approaches to optical quantum computation. It will describe how any discrete unitary operation can be performed using a single photon and a network of beam splitters, and how the Kerr effect can be used to construct a two photon logic gate. Second, this work provides a thorough introduction to the linear optical quantum computer developed by Knill, Laflamme, and Milburn. It then presents this author's results on the reliability of this scheme when implemented using imperfect photon detectors. This author finds that quantum computers of this sort cannot be built using current technology. Third, this dissertation describes a method for constructing a linear optical quantum computer using nearly orthogonal coherent states of light as the qubits. It shows how a universal set of logic operations can be performed, including calculations of the fidelity with which these operations may be accomplished. It discusses methods for reducing and

  14. Linearly constrained minimax optimization

    DEFF Research Database (Denmark)

    Madsen, Kaj; Schjær-Jacobsen, Hans

    1978-01-01

    We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems...

  15. Development of a Low Inductance Linear Alternator for Stirling Power Convertors

    Science.gov (United States)

    Geng, Steven M.; Schifer, Nicholas A.

    2017-01-01

    The free-piston Stirling power convertor is a promising technology for high efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper, eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations, and compares the predictions with experimental data for one of the configurations that has been built and is currently being tested.

  16. Development of a Low-Inductance Linear Alternator for Stirling Power Convertors

    Science.gov (United States)

    Geng, Steven M.; Schifer, Nicholas A.

    2017-01-01

    The free-piston Stirling power convertor is a promising technology for high-efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-the-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations. Additionally, one of the configurations was built and tested at GRC, and the experimental data is compared with the predictions.

  17. Removing Malmquist bias from linear regressions

    Science.gov (United States)

    Verter, Frances

    1993-01-01

    Malmquist bias is present in all astronomical surveys where sources are observed above an apparent brightness threshold. Those sources which can be detected at progressively larger distances are progressively more limited to the intrinsically luminous portion of the true distribution. This bias does not distort any of the measurements, but distorts the sample composition. We have developed the first treatment to correct for Malmquist bias in linear regressions of astronomical data. A demonstration of the corrected linear regression that is computed in four steps is presented.

  18. Foundations of linear and generalized linear models

    CERN Document Server

    Agresti, Alan

    2015-01-01

    A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,

  19. Ions in the linacs of future linear colliders

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.; Chen, P.

    1992-01-01

    Ions have been identified as a potential limitation in high current storage rings. In this paper we consider the effects of ions in the linacs of future linear colliders. Future linear collider designs call for long trains of closely spaced bunches and/or very dense bunches. Significant ion densities can be generated through the collisional ionization process and trapping in a long train of bunches or through tunneling ionization with very dense bunches. These ions provide skew fields which cause transverse betatron coupling and increase the vertical emittance of the flat beams, and they increase the rate of filamentation, making correction of the emittance dilutions more difficult. While transverse coupling can be alleviated by separating the horizontal and vertical phase advances, the increased filamentation will reduce the effectiveness of non-local correction techniques, leading to tighter alignment tolerances. To reduce the effect of the ions in the designs considered to the level of the intrinsic energy spread one would need to achieve vacuum pressures less than 10 -9 Torr. 5 figs., 5 refs

  20. Evolution Is Linear: Debunking Life's Little Joke.

    Science.gov (United States)

    Jenner, Ronald A

    2018-01-01

    Linear depictions of the evolutionary process are ubiquitous in popular culture, but linear evolutionary imagery is strongly rejected by scientists who argue that evolution branches. This point is frequently illustrated by saying that we didn't evolve from monkeys, but that we are related to them as collateral relatives. Yet, we did evolve from monkeys, but our monkey ancestors are extinct, not extant. Influential voices, such as the late Stephen Jay Gould, have misled audiences for decades by falsely portraying the linear and branching aspects of evolution to be in conflict, and by failing to distinguish between the legitimate linearity of evolutionary descent, and the branching relationships among collateral relatives that result when lineages of ancestors diverge. The purpose of this article is to correct the widespread misplaced rejection of linear evolutionary imagery, and to re-emphasize the basic truth that the evolutionary process is fundamentally linear. © 2017 WILEY Periodicals, Inc.

  1. Color corrected Fresnel lens for solar concentration

    International Nuclear Information System (INIS)

    Kritchman, E.M.

    1979-01-01

    A new linear convex Fresnel lens with its groove side down is described. The design philosophy is similar to the highly concentrating two focal Fresnel lens but including a correction for chromatic aberration. A solar concentration ratio as high as 80 is achieved. For wide acceptance angles the concentration nears the theoretical maximum. (author)

  2. Volterra Filtering for ADC Error Correction

    Directory of Open Access Journals (Sweden)

    J. Saliga

    2001-09-01

    Full Text Available Dynamic non-linearity of analog-to-digital converters (ADCcontributes significantly to the distortion of digitized signals. Thispaper introduces a new effective method for compensation such adistortion based on application of Volterra filtering. Considering ana-priori error model of ADC allows finding an efficient inverseVolterra model for error correction. Efficiency of proposed method isdemonstrated on experimental results.

  3. Quantum error-correcting code for ternary logic

    Science.gov (United States)

    Majumdar, Ritajit; Basu, Saikat; Ghosh, Shibashis; Sur-Kolay, Susmita

    2018-05-01

    Ternary quantum systems are being studied because they provide more computational state space per unit of information, known as qutrit. A qutrit has three basis states, thus a qubit may be considered as a special case of a qutrit where the coefficient of one of the basis states is zero. Hence both (2 ×2 ) -dimensional and (3 ×3 ) -dimensional Pauli errors can occur on qutrits. In this paper, we (i) explore the possible (2 ×2 ) -dimensional as well as (3 ×3 ) -dimensional Pauli errors in qutrits and show that any pairwise bit swap error can be expressed as a linear combination of shift errors and phase errors, (ii) propose a special type of error called a quantum superposition error and show its equivalence to arbitrary rotation, (iii) formulate a nine-qutrit code which can correct a single error in a qutrit, and (iv) provide its stabilizer and circuit realization.

  4. Primordial black holes in linear and non-linear regimes

    Energy Technology Data Exchange (ETDEWEB)

    Allahyari, Alireza; Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Firouzjaee, Javad T., E-mail: allahyari@physics.sharif.edu, E-mail: j.taghizadeh.f@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2017-06-01

    We revisit the formation of primordial black holes (PBHs) in the radiation-dominated era for both linear and non-linear regimes, elaborating on the concept of an apparent horizon. Contrary to the expectation from vacuum models, we argue that in a cosmological setting a density fluctuation with a high density does not always collapse to a black hole. To this end, we first elaborate on the perturbation theory for spherically symmetric space times in the linear regime. Thereby, we introduce two gauges. This allows to introduce a well defined gauge-invariant quantity for the expansion of null geodesics. Using this quantity, we argue that PBHs do not form in the linear regime irrespective of the density of the background. Finally, we consider the formation of PBHs in non-linear regimes, adopting the spherical collapse picture. In this picture, over-densities are modeled by closed FRW models in the radiation-dominated era. The difference of our approach is that we start by finding an exact solution for a closed radiation-dominated universe. This yields exact results for turn-around time and radius. It is important that we take the initial conditions from the linear perturbation theory. Additionally, instead of using uniform Hubble gauge condition, both density and velocity perturbations are admitted in this approach. Thereby, the matching condition will impose an important constraint on the initial velocity perturbations δ {sup h} {sub 0} = −δ{sub 0}/2. This can be extended to higher orders. Using this constraint, we find that the apparent horizon of a PBH forms when δ > 3 at turn-around time. The corrections also appear from the third order. Moreover, a PBH forms when its apparent horizon is outside the sound horizon at the re-entry time. Applying this condition, we infer that the threshold value of the density perturbations at horizon re-entry should be larger than δ {sub th} > 0.7.

  5. Advanced statistics: linear regression, part II: multiple linear regression.

    Science.gov (United States)

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  6. Linearized gyro-kinetic equation

    International Nuclear Information System (INIS)

    Catto, P.J.; Tsang, K.T.

    1976-01-01

    An ordering of the linearized Fokker-Planck equation is performed in which gyroradius corrections are retained to lowest order and the radial dependence appropriate for sheared magnetic fields is treated without resorting to a WKB technique. This description is shown to be necessary to obtain the proper radial dependence when the product of the poloidal wavenumber and the gyroradius is large (k rho much greater than 1). A like particle collision operator valid for arbitrary k rho also has been derived. In addition, neoclassical, drift, finite β (plasma pressure/magnetic pressure), and unperturbed toroidal electric field modifications are treated

  7. Gyrokinetic linearized Landau collision operator

    DEFF Research Database (Denmark)

    Madsen, Jens

    2013-01-01

    , which is important in multiple ion-species plasmas. Second, the equilibrium operator describes drag and diffusion of the magnetic field aligned component of the vorticity associated with the E×B drift. Therefore, a correct description of collisional effects in turbulent plasmas requires the equilibrium......The full gyrokinetic electrostatic linearized Landau collision operator is calculated including the equilibrium operator, which represents the effect of collisions between gyrokinetic Maxwellian particles. First, the equilibrium operator describes energy exchange between different plasma species...... operator, even for like-particle collisions....

  8. Linear resonance acceleration of pellets

    International Nuclear Information System (INIS)

    Mills, R.G.

    1978-01-01

    A possible requirement for the acceleration of macroscopic pellets to velocities exceeding 10 4 meters per second implies the development of new apparatus. A satisfactory approach might be the linear resonance accelerator. Such apparatus would require the charging of pellets to very high values not yet demonstrated. The incompatibility of phase stability with radial stability in these machines may require abandoning phase stability and adopting feedback control of the accelerating voltage to accommodate statistical fluctuations in the charge to mass ratio of successive pellets

  9. Corrections to primordial nucleosynthesis

    International Nuclear Information System (INIS)

    Dicus, D.A.; Kolb, E.W.; Gleeson, A.M.; Sudarshan, E.C.G.; Teplitz, V.L.; Turner, M.S.

    1982-01-01

    The changes in primordial nucleosynthesis resulting from small corrections to rates for weak processes that connect neutrons and protons are discussed. The weak rates are corrected by improved treatment of Coulomb and radiative corrections, and by inclusion of plasma effects. The calculations lead to a systematic decrease in the predicted 4 He abundance of about ΔY = 0.0025. The relative changes in other primoridal abundances are also 1 to 2%

  10. Forms and Linear Network Codes

    DEFF Research Database (Denmark)

    Hansen, Johan P.

    We present a general theory to obtain linear network codes utilizing forms and obtain explicit families of equidimensional vector spaces, in which any pair of distinct vector spaces intersect in the same small dimension. The theory is inspired by the methods of the author utilizing the osculating...... spaces of Veronese varieties. Linear network coding transmits information in terms of a basis of a vector space and the information is received as a basis of a possibly altered vector space. Ralf Koetter and Frank R. Kschischang introduced a metric on the set af vector spaces and showed that a minimal...... distance decoder for this metric achieves correct decoding if the dimension of the intersection of the transmitted and received vector space is sufficiently large. The vector spaces in our construction are equidistant in the above metric and the distance between any pair of vector spaces is large making...

  11. Linear programming foundations and extensions

    CERN Document Server

    Vanderbei, Robert J

    2001-01-01

    Linear Programming: Foundations and Extensions is an introduction to the field of optimization. The book emphasizes constrained optimization, beginning with a substantial treatment of linear programming, and proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. The book is carefully written. Specific examples and concrete algorithms precede more abstract topics. Topics are clearly developed with a large number of numerical examples worked out in detail. Moreover, Linear Programming: Foundations and Extensions underscores the purpose of optimization: to solve practical problems on a computer. Accordingly, the book is coordinated with free efficient C programs that implement the major algorithms studied: -The two-phase simplex method; -The primal-dual simplex method; -The path-following interior-point method; -The homogeneous self-dual methods. In addition, there are online JAVA applets that illustrate various pivot rules and variants of the simplex m...

  12. Linear polarization of BY Draconis

    International Nuclear Information System (INIS)

    Koch, R.H.; Pfeiffer, R.J.

    1976-01-01

    Linear polarization measurements are reported in four bandpasses for the flare star BY Dra. The red polarization is intrinsically variable at a confidence level greater than 99 percent. On a time scale of many months, the variability is not phase-locked to either a rotational or a Keplerian ephemeris. The observations of the three other bandpasses are useful principally to indicate a polarization spectrum rising toward shorter wavelengths

  13. Feedback Systems for Linear Colliders

    International Nuclear Information System (INIS)

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies

  14. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    Science.gov (United States)

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  15. Leading gravitational corrections and a unified universe

    DEFF Research Database (Denmark)

    Codello, Alessandro; Jain, Rajeev Kumar

    2016-01-01

    Leading order gravitational corrections to the Einstein-Hilbert action can lead to a consistent picture of the universe by unifying the epochs of inflation and dark energy in a single framework. While the leading local correction induces an inflationary phase in the early universe, the leading...... nonlocal term leads to an accelerated expansion of the universe at the present epoch. We argue that both the leading UV and IR terms can be obtained within the framework of a covariant effective field theory of gravity. The perturbative gravitational corrections therefore provide a fundamental basis...

  16. Publisher Correction: Predicting unpredictability

    Science.gov (United States)

    Davis, Steven J.

    2018-06-01

    In this News & Views article originally published, the wrong graph was used for panel b of Fig. 1, and the numbers on the y axes of panels a and c were incorrect; the original and corrected Fig. 1 is shown below. This has now been corrected in all versions of the News & Views.

  17. Technical challenge of future linear colliders

    International Nuclear Information System (INIS)

    Himel, T.

    1986-05-01

    The next generation of high energy e + e - colliders is likely to be built with colliding linear accelerators. A lot of research and development is needed before such a machine can be practically built. Some of the problems and recent progress made toward their solution are described here. Quantum corrections to beamstrahlung, the production of low emittance beams and strong focusing techniques are covered

  18. Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime

    Science.gov (United States)

    Debayle, A.; Masson-Laborde, P.-E.; Ruyer, C.; Casanova, M.; Loiseau, P.

    2018-05-01

    We present an extensive numerical study by means of particle-in-cell simulations of the energy transfer that occurs during the crossing of two laser beams. In the linear regime, when ions are not trapped in the potential well induced by the laser interference pattern, a very good agreement is obtained with a simple linear stationary model, provided the laser intensity is sufficiently smooth. These comparisons include different plasma compositions to cover the strong and weak Landau damping regimes as well as the multispecies case. The correct evaluation of the linear Landau damping at the phase velocity imposed by the laser interference pattern is essential to estimate the energy transfer rate between the laser beams, once the stationary regime is reached. The transient evolution obtained in kinetic simulations is also analysed by means of a full analytical formula that includes 3D beam energy exchange coupled with the ion acoustic wave response. Specific attention is paid to the energy transfer when the laser presents small-scale inhomogeneities. In particular, the energy transfer is reduced when the laser inhomogeneities are comparable with the Landau damping characteristic length of the ion acoustic wave.

  19. Oscillating systems with cointegrated phase processes

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Rahbek, Anders; Ditlevsen, Susanne

    2017-01-01

    We present cointegration analysis as a method to infer the network structure of a linearly phase coupled oscillating system. By defining a class of oscillating systems with interacting phases, we derive a data generating process where we can specify the coupling structure of a network...... that resembles biological processes. In particular we study a network of Winfree oscillators, for which we present a statistical analysis of various simulated networks, where we conclude on the coupling structure: the direction of feedback in the phase processes and proportional coupling strength between...... individual components of the system. We show that we can correctly classify the network structure for such a system by cointegration analysis, for various types of coupling, including uni-/bi-directional and all-to-all coupling. Finally, we analyze a set of EEG recordings and discuss the current...

  20. Analysis of polar organic contaminants in surface water of the northern Adriatic Sea by solid-phase extraction followed by ultrahigh-pressure liquid chromatography-QTRAP® MS using a hybrid triple-quadrupole linear ion trap instrument.

    Science.gov (United States)

    Loos, Robert; Tavazzi, Simona; Paracchini, Bruno; Canuti, Elisabetta; Weissteiner, Christof

    2013-07-01

    Water-soluble polar organic contaminants are discharged by rivers, cities, and ships into the oceans. Little is known on the fate, pollution effects, and thresholds of toxic chemical mixtures in the marine environment. A new trace analytical method was developed for the multi-compound analysis of polar organic chemical contaminants in marine waters. The method is based on automated solid-phase extraction (SPE) of one-liter water samples followed by ultrahigh-pressure liquid chromatography triple-quadrupole linear ion-trap mass spectrometry (UHPLC-QTRAP(®) MS). Marine water samples from the open Adriatic Sea taken 16 km offshore from Venice (Italy) were analyzed. Method limits of quantification (LOQs) in the low picogram per liter (pg/l) concentration range were achieved. Among the 67 target chemicals analyzed, 45 substances could be detected above the LOQ. The chemicals detected at the highest concentrations were caffeine (up to 367 ng/l), nitrophenol (36 ng/l), 2,4-dinitrophenol (34 ng/l), 5-methyl-1H-benzotriazole (18.5 ng/l), sucralose (11 ng/l), 1H-benzotriazole (9.2 ng/l), terbuthylazine (9 ng/l), alachlor (7.7 ng/l), atrazine-desisopropyl (6.6 ng/l), diethyltoluamide (DEET) (5.0 ng/l), terbuthylazine-desethyl (4.3 ng/l), metolachlor (2.8 ng/l), perfluorooctanoic acid (PFOA) (2.5 ng/l), perfluoropentanoic acid (PFPeA) (2.3 ng/l), linuron (2.3 ng/l), perfluorohexanoic acid (PFHxA) (2.2 ng/l), diuron (2.0 ng/l), perfluorohexane sulfonate (PFHxS) (1.6 ng/l), simazine (1.6 ng/l), atrazine (1.5 ng/l), and perfluorooctane sulfonate (PFOS) (1.3 ng/l). Higher concentrations were detected during summer due to increased levels of tourist activity during this period.