Stochastic Linear Quadratic Optimal Control Problems
International Nuclear Information System (INIS)
Chen, S.; Yong, J.
2001-01-01
This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well
A Global Optimization Algorithm for Sum of Linear Ratios Problem
Yuelin Gao; Siqiao Jin
2013-01-01
We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the c...
A Linearized Relaxing Algorithm for the Specific Nonlinear Optimization Problem
Directory of Open Access Journals (Sweden)
Mio Horai
2016-01-01
Full Text Available We propose a new method for the specific nonlinear and nonconvex global optimization problem by using a linear relaxation technique. To simplify the specific nonlinear and nonconvex optimization problem, we transform the problem to the lower linear relaxation form, and we solve the linear relaxation optimization problem by the Branch and Bound Algorithm. Under some reasonable assumptions, the global convergence of the algorithm is certified for the problem. Numerical results show that this method is more efficient than the previous methods.
An Optimal Linear Coding for Index Coding Problem
Pezeshkpour, Pouya
2015-01-01
An optimal linear coding solution for index coding problem is established. Instead of network coding approach by focus on graph theoric and algebraic methods a linear coding program for solving both unicast and groupcast index coding problem is presented. The coding is proved to be the optimal solution from the linear perspective and can be easily utilize for any number of messages. The importance of this work is lying mostly on the usage of the presented coding in the groupcast index coding ...
Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem
Rahmalia, Dinita
2017-08-01
Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.
A Global Optimization Algorithm for Sum of Linear Ratios Problem
Directory of Open Access Journals (Sweden)
Yuelin Gao
2013-01-01
Full Text Available We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the convergence of the algorithm is proved. Numerical experiments are reported to show the effectiveness of the proposed algorithm.
Turnpike theory of continuous-time linear optimal control problems
Zaslavski, Alexander J
2015-01-01
Individual turnpike results are of great interest due to their numerous applications in engineering and in economic theory; in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems. The book is intended for engineers as well as for mathematicians interested in the calculus of variations, optimal control, and in applied functional analysis. Two large classes of problems are studied in more depth. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands. Chapters 3-5 consist of linear control problems with autonomous nonconvex and nonsmooth integrands. Chapter 6 discusses a turnpike property for dynamic zero-sum games with linear constraints. Chapter 7 examines genericity results. In Chapter 8, the description of structure of variational problems with extended-valued integrands is obtained. Chapter 9 ends the exposition with a study of turnpike phenomenon for dynamic games with extended value integran...
The linear ordering problem: an algorithm for the optimal solution ...
African Journals Online (AJOL)
In this paper we describe and implement an algorithm for the exact solution of the Linear Ordering problem. Linear Ordering is the problem of finding a linear order of the nodes of a graph such that the sum of the weights which are consistent with this order is as large as possible. It is an NP - Hard combinatorial optimisation ...
A Linear Programming Reformulation of the Standard Quadratic Optimization Problem
de Klerk, E.; Pasechnik, D.V.
2005-01-01
The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO).It is NPhard, and contains the maximum stable set problem in graphs as a special case.In this note we show that the SQO problem may be reformulated as an (exponentially
A program package for solving linear optimization problems
International Nuclear Information System (INIS)
Horikami, Kunihiko; Fujimura, Toichiro; Nakahara, Yasuaki
1980-09-01
Seven computer programs for the solution of linear, integer and quadratic programming (four programs for linear programming, one for integer programming and two for quadratic programming) have been prepared and tested on FACOM M200 computer, and auxiliary programs have been written to make it easy to use the optimization program package. The characteristics of each program are explained and the detailed input/output descriptions are given in order to let users know how to use them. (author)
Linearly constrained minimax optimization
DEFF Research Database (Denmark)
Madsen, Kaj; Schjær-Jacobsen, Hans
1978-01-01
We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems...
International Nuclear Information System (INIS)
Xunjing, L.
1981-12-01
The vector-valued measure defined by the well-posed linear boundary value problems is discussed. The maximum principle of the optimal control problem with non-convex constraint is proved by using the vector-valued measure. Especially, the necessary conditions of the optimal control of elliptic systems is derived without the convexity of the control domain and the cost function. (author)
Averaging and Linear Programming in Some Singularly Perturbed Problems of Optimal Control
Energy Technology Data Exchange (ETDEWEB)
Gaitsgory, Vladimir, E-mail: vladimir.gaitsgory@mq.edu.au [Macquarie University, Department of Mathematics (Australia); Rossomakhine, Sergey, E-mail: serguei.rossomakhine@flinders.edu.au [Flinders University, Flinders Mathematical Sciences Laboratory, School of Computer Science, Engineering and Mathematics (Australia)
2015-04-15
The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem of optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.
Stress-constrained truss topology optimization problems that can be solved by linear programming
DEFF Research Database (Denmark)
Stolpe, Mathias; Svanberg, Krister
2004-01-01
We consider the problem of simultaneously selecting the material and determining the area of each bar in a truss structure in such a way that the cost of the structure is minimized subject to stress constraints under a single load condition. We show that such problems can be solved by linear...... programming to give the global optimum, and that two different materials are always sufficient in an optimal structure....
Optimization of lift gas allocation in a gas lifted oil field as non-linear optimization problem
Directory of Open Access Journals (Sweden)
Roshan Sharma
2012-01-01
Full Text Available Proper allocation and distribution of lift gas is necessary for maximizing total oil production from a field with gas lifted oil wells. When the supply of the lift gas is limited, the total available gas should be optimally distributed among the oil wells of the field such that the total production of oil from the field is maximized. This paper describes a non-linear optimization problem with constraints associated with the optimal distribution of the lift gas. A non-linear objective function is developed using a simple dynamic model of the oil field where the decision variables represent the lift gas flow rate set points of each oil well of the field. The lift gas optimization problem is solved using the emph'fmincon' solver found in MATLAB. As an alternative and for verification, hill climbing method is utilized for solving the optimization problem. Using both of these methods, it has been shown that after optimization, the total oil production is increased by about 4. For multiple oil wells sharing lift gas from a common source, a cascade control strategy along with a nonlinear steady state optimizer behaves as a self-optimizing control structure when the total supply of lift gas is assumed to be the only input disturbance present in the process. Simulation results show that repeated optimization performed after the first time optimization under the presence of the input disturbance has no effect in the total oil production.
On an Optimal -Control Problem in Coefficients for Linear Elliptic Variational Inequality
Directory of Open Access Journals (Sweden)
Olha P. Kupenko
2013-01-01
Full Text Available We consider optimal control problems for linear degenerate elliptic variational inequalities with homogeneous Dirichlet boundary conditions. We take the matrix-valued coefficients in the main part of the elliptic operator as controls in . Since the eigenvalues of such matrices may vanish and be unbounded in , it leads to the “noncoercivity trouble.” Using the concept of convergence in variable spaces and following the direct method in the calculus of variations, we establish the solvability of the optimal control problem in the class of the so-called -admissible solutions.
A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.
Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa
2018-02-01
Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.
APPLYING ROBUST RANKING METHOD IN TWO PHASE FUZZY OPTIMIZATION LINEAR PROGRAMMING PROBLEMS (FOLPP
Directory of Open Access Journals (Sweden)
Monalisha Pattnaik
2014-12-01
Full Text Available Background: This paper explores the solutions to the fuzzy optimization linear program problems (FOLPP where some parameters are fuzzy numbers. In practice, there are many problems in which all decision parameters are fuzzy numbers, and such problems are usually solved by either probabilistic programming or multi-objective programming methods. Methods: In this paper, using the concept of comparison of fuzzy numbers, a very effective method is introduced for solving these problems. This paper extends linear programming based problem in fuzzy environment. With the problem assumptions, the optimal solution can still be theoretically solved using the two phase simplex based method in fuzzy environment. To handle the fuzzy decision variables can be initially generated and then solved and improved sequentially using the fuzzy decision approach by introducing robust ranking technique. Results and conclusions: The model is illustrated with an application and a post optimal analysis approach is obtained. The proposed procedure was programmed with MATLAB (R2009a version software for plotting the four dimensional slice diagram to the application. Finally, numerical example is presented to illustrate the effectiveness of the theoretical results, and to gain additional managerial insights.
Optimal Stochastic Control Problem for General Linear Dynamical Systems in Neuroscience
Directory of Open Access Journals (Sweden)
Yan Chen
2017-01-01
Full Text Available This paper considers a d-dimensional stochastic optimization problem in neuroscience. Suppose the arm’s movement trajectory is modeled by high-order linear stochastic differential dynamic system in d-dimensional space, the optimal trajectory, velocity, and variance are explicitly obtained by using stochastic control method, which allows us to analytically establish exact relationships between various quantities. Moreover, the optimal trajectory is almost a straight line for a reaching movement; the optimal velocity bell-shaped and the optimal variance are consistent with the experimental Fitts law; that is, the longer the time of a reaching movement, the higher the accuracy of arriving at the target position, and the results can be directly applied to designing a reaching movement performed by a robotic arm in a more general environment.
International Nuclear Information System (INIS)
Jian Jinbao; Li Jianling; Mo Xingde
2006-01-01
This paper discusses a kind of optimization problem with linear complementarity constraints, and presents a sequential quadratic programming (SQP) algorithm for solving a stationary point of the problem. The algorithm is a modification of the SQP algorithm proposed by Fukushima et al. [Computational Optimization and Applications, 10 (1998),5-34], and is based on a reformulation of complementarity condition as a system of linear equations. At each iteration, one quadratic programming and one system of equations needs to be solved, and a curve search is used to yield the step size. Under some appropriate assumptions, including the lower-level strict complementarity, but without the upper-level strict complementarity for the inequality constraints, the algorithm is proved to possess strong convergence and superlinear convergence. Some preliminary numerical results are reported
A Class of Optimal Portfolio Liquidation Problems with a Linear Decreasing Impact
Directory of Open Access Journals (Sweden)
Jiangming Ma
2017-01-01
Full Text Available A problem of an optimal liquidation is investigated by using the Almgren-Chriss market impact model on the background that the n agents liquidate assets completely. The impact of market is divided into three components: unaffected price process, permanent impact, and temporary impact. The key element is that the variable temporary market impact is analyzed. When the temporary market impact is decreasing linearly, the optimal problem is described by a Nash equilibrium in finite time horizon. The stochastic component of the price process is eliminated from the mean-variance. Mathematically, the Nash equilibrium is considered as the second-order linear differential equation with variable coefficients. We prove the existence and uniqueness of solutions for the differential equation with two boundaries and find the closed-form solutions in special situations. The numerical examples and properties of the solution are given. The corresponding finance phenomenon is interpreted.
Directory of Open Access Journals (Sweden)
Wanfang Shen
2012-01-01
Full Text Available The mathematical formulation for a quadratic optimal control problem governed by a linear quasiparabolic integrodifferential equation is studied. The control constrains are given in an integral sense: Uad={u∈X;∫ΩUu⩾0, t∈[0,T]}. Then the a posteriori error estimates in L∞(0,T;H1(Ω-norm and L2(0,T;L2(Ω-norm for both the state and the control approximation are given.
Ito, Kazufumi; Teglas, Russell
1987-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
Ito, K.; Teglas, R.
1984-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
Takabe, Satoshi; Hukushima, Koji
2016-05-01
Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α-uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α=2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c=e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c=1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α≥3, minimum vertex covers on α-uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c=e/(α-1) where the replica symmetry is broken.
Takabe, Satoshi; Hukushima, Koji
2016-05-01
Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α -uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α =2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c =e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c =1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α ≥3 , minimum vertex covers on α -uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c =e /(α -1 ) where the replica symmetry is broken.
Young, Katherine C.; Sobieszczanski-Sobieski, Jaroslaw
1988-01-01
This project has two objectives. The first is to determine whether linear programming techniques can improve performance when handling design optimization problems with a large number of design variables and constraints relative to the feasible directions algorithm. The second purpose is to determine whether using the Kreisselmeier-Steinhauser (KS) function to replace the constraints with one constraint will reduce the cost of total optimization. Comparisons are made using solutions obtained with linear and non-linear methods. The results indicate that there is no cost saving using the linear method or in using the KS function to replace constraints.
Heinkenschloss, Matthias
2005-01-01
We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.
Topics in computational linear optimization
DEFF Research Database (Denmark)
Hultberg, Tim Helge
2000-01-01
Linear optimization has been an active area of research ever since the pioneering work of G. Dantzig more than 50 years ago. This research has produced a long sequence of practical as well as theoretical improvements of the solution techniques avilable for solving linear optimization problems...... of high quality solvers and the use of algebraic modelling systems to handle the communication between the modeller and the solver. This dissertation features four topics in computational linear optimization: A) automatic reformulation of mixed 0/1 linear programs, B) direct solution of sparse unsymmetric...... systems of linear equations, C) reduction of linear programs and D) integration of algebraic modelling of linear optimization problems in C++. Each of these topics is treated in a separate paper included in this dissertation. The efficiency of solving mixed 0-1 linear programs by linear programming based...
Rosenberg, D. E.; Alafifi, A.
2016-12-01
Water resources systems analysis often focuses on finding optimal solutions. Yet an optimal solution is optimal only for the modelled issues and managers often seek near-optimal alternatives that address un-modelled objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as the region comprising the original problem constraints plus a new constraint that allowed performance within a specified tolerance of the optimal objective function value. MGA identified a few maximally-different alternatives from the near-optimal region. Subsequent work applied Markov Chain Monte Carlo (MCMC) sampling to generate a larger number of alternatives that span the near-optimal region of linear problems or select portions for non-linear problems. We extend the MCMC Hit-And-Run method to generate alternatives that span the full extent of the near-optimal region for non-linear, non-convex problems. First, start at a feasible hit point within the near-optimal region, then run a random distance in a random direction to a new hit point. Next, repeat until generating the desired number of alternatives. The key step at each iterate is to run a random distance along the line in the specified direction to a new hit point. If linear equity constraints exist, we construct an orthogonal basis and use a null space transformation to confine hits and runs to a lower-dimensional space. Linear inequity constraints define the convex bounds on the line that runs through the current hit point in the specified direction. We then use slice sampling to identify a new hit point along the line within bounds defined by the non-linear inequity constraints. This technique is computationally efficient compared to prior near-optimal alternative generation techniques such MGA, MCMC Metropolis-Hastings, evolutionary, or firefly algorithms because search at each iteration is confined to the hit line, the algorithm can move in one
International Nuclear Information System (INIS)
Huang, C.-H.; Li, J.-X.
2006-01-01
A non-linear optimal control algorithm is examined in this study for the diffusion process of semiconductor materials. The purpose of this algorithm is to estimate an optimal control function such that the homogeneity of the concentration can be controlled during the diffusion process and the diffusion-induced stresses for the semiconductor materials can thus be reduced. The validation of this optimal control analysis utilizing the conjugate gradient method of minimization is analysed by using numerical experiments. Three different diffusion processing times are given and the corresponding optimal control functions are to be determined. Results show that the diffusion time can be shortened significantly by applying the optimal control function at the boundary and the homogeneity of the concentration is also guaranteed. This control function can be obtained within a very short CPU time on a Pentium III 600 MHz PC
SOCP relaxation bounds for the optimal subset selection problem applied to robust linear regression
Flores, Salvador
2015-01-01
This paper deals with the problem of finding the globally optimal subset of h elements from a larger set of n elements in d space dimensions so as to minimize a quadratic criterion, with an special emphasis on applications to computing the Least Trimmed Squares Estimator (LTSE) for robust regression. The computation of the LTSE is a challenging subset selection problem involving a nonlinear program with continuous and binary variables, linked in a highly nonlinear fashion. The selection of a ...
Directory of Open Access Journals (Sweden)
Weihua Jin
2013-01-01
Full Text Available This paper proposes a genetic-algorithms-based approach as an all-purpose problem-solving method for operation programming problems under uncertainty. The proposed method was applied for management of a municipal solid waste treatment system. Compared to the traditional interactive binary analysis, this approach has fewer limitations and is able to reduce the complexity in solving the inexact linear programming problems and inexact quadratic programming problems. The implementation of this approach was performed using the Genetic Algorithm Solver of MATLAB (trademark of MathWorks. The paper explains the genetic-algorithms-based method and presents details on the computation procedures for each type of inexact operation programming problems. A comparison of the results generated by the proposed method based on genetic algorithms with those produced by the traditional interactive binary analysis method is also presented.
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Nakshatrala, Praveen B.; Tortorelli, Daniel A.
2014-01-01
Gradient-based topology optimization typically involves thousands or millions of design variables. This makes efficient sensitivity analysis essential and for this the adjoint variable method (AVM) is indispensable. For transient problems it has been observed that the traditional AVM, based on a ...
Directory of Open Access Journals (Sweden)
Nelson Maculan
2003-01-01
Full Text Available We present integer linear models with a polynomial number of variables and constraints for combinatorial optimization problems in graphs: optimum elementary cycles, optimum elementary paths and optimum tree problems.Apresentamos modelos lineares inteiros com um número polinomial de variáveis e restrições para problemas de otimização combinatória em grafos: ciclos elementares ótimos, caminhos elementares ótimos e problemas em árvores ótimas.
Semidefinite linear complementarity problems
International Nuclear Information System (INIS)
Eckhardt, U.
1978-04-01
Semidefinite linear complementarity problems arise by discretization of variational inequalities describing e.g. elastic contact problems, free boundary value problems etc. In the present paper linear complementarity problems are introduced and the theory as well as the numerical treatment of them are described. In the special case of semidefinite linear complementarity problems a numerical method is presented which combines the advantages of elimination and iteration methods without suffering from their drawbacks. This new method has very attractive properties since it has a high degree of invariance with respect to the representation of the set of all feasible solutions of a linear complementarity problem by linear inequalities. By means of some practical applications the properties of the new method are demonstrated. (orig.) [de
DEFF Research Database (Denmark)
Stolpe, Mathias; Bendsøe, Martin P.
2007-01-01
This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities...
DEFF Research Database (Denmark)
Stolpe, Mathias; Bendsøe, Martin P.
2007-01-01
This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities......) and cuts....
International Nuclear Information System (INIS)
Fernandes, L.; Friedlander, A.; Guedes, M.; Judice, J.
2001-01-01
This paper addresses a General Linear Complementarity Problem (GLCP) that has found applications in global optimization. It is shown that a solution of the GLCP can be computed by finding a stationary point of a differentiable function over a set defined by simple bounds on the variables. The application of this result to the solution of bilinear programs and LCPs is discussed. Some computational evidence of its usefulness is included in the last part of the paper
Banks, H. T.; Ito, K.
1991-01-01
A hybrid method for computing the feedback gains in linear quadratic regulator problem is proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantages of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of the efficacy of these ideas is presented.
Perturbed asymptotically linear problems
Bartolo, R.; Candela, A. M.; Salvatore, A.
2012-01-01
The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...
Optimal control linear quadratic methods
Anderson, Brian D O
2007-01-01
This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the
Linear quadratic optimization for positive LTI system
Muhafzan, Yenti, Syafrida Wirma; Zulakmal
2017-05-01
Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.
Special Cases in Optimization Problems for Stationary Linear Closed-Loop Systems
Aliev, F. A.; Larin, Vladimir Borisovich
2003-03-01
Consideration is given to problems of solving the algebraic Riccati equation (ARE)— J-factorization of matrix polynomials and J-factorization of rational matrices—to which traditional solution algorithms are not applicable. In this connection, solution algorithms for these problems are discussed where the eigenvalues of the Hamiltonian matrix corresponding to the ARE and the zeros of matrix polynomials are located on the imaginary axis. Moreover, a procedure is set forth for asymptotic expansion of a stabilizing solution of the ARE in the neighborhood of a point at which the ARE has no stabilizing solution. It is shown how this expansion can be used for constructing canonical J-factorization of matrix polynomials that is nearly a noncanonical J-factorization. It is pointed out that the algorithms described can be implemented with the help of MATLAB routines
Goswami, Deepjyoti
2011-09-01
In this article, we propose and analyze an alternate proof of a priori error estimates for semidiscrete Galerkin approximations to a general second order linear parabolic initial and boundary value problem with rough initial data. Our analysis is based on energy arguments without using parabolic duality. Further, it follows the spirit of the proof technique used for deriving optimal error estimates for finite element approximations to parabolic problems with smooth initial data and hence, it unifies both theories, that is, one for smooth initial data and other for nonsmooth data. Moreover, the proposed technique is also extended to a semidiscrete mixed method for linear parabolic problems. In both cases, optimal L2-error estimates are derived, when the initial data is in L2. A superconvergence phenomenon is also observed, which is then used to prove L∞-estimates for linear parabolic problems defined on two-dimensional spatial domain again with rough initial data. Copyright © Taylor & Francis Group, LLC.
A Problem on Optimal Transportation
Cechlarova, Katarina
2005-01-01
Mathematical optimization problems are not typical in the classical curriculum of mathematics. In this paper we show how several generalizations of an easy problem on optimal transportation were solved by gifted secondary school pupils in a correspondence mathematical seminar, how they can be used in university courses of linear programming and…
Energy Technology Data Exchange (ETDEWEB)
Addona, Davide, E-mail: d.addona@campus.unimib.it [Università degli Studi di Milano Bicocca, (MILANO BICOCCA) Dipartimento di Matematica (Italy)
2015-08-15
We obtain weighted uniform estimates for the gradient of the solutions to a class of linear parabolic Cauchy problems with unbounded coefficients. Such estimates are then used to prove existence and uniqueness of the mild solution to a semi-linear backward parabolic Cauchy problem, where the differential equation is the Hamilton–Jacobi–Bellman equation of a suitable optimal control problem. Via backward stochastic differential equations, we show that the mild solution is indeed the value function of the controlled equation and that the feedback law is verified.
DEFF Research Database (Denmark)
Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard
2015-01-01
Non-trivial real world decision-making processes usually involve multiple parties having potentially conflicting interests over a set of issues. State-of-the-art multi-objective evolutionary algorithms (MOEA) are well known to solve this class of complex real-world problems. In this paper, we...... compare the performance of state-of-the-art multi-objective evolutionary algorithms to solve a non-linear multi-objective multi-issue optimisation problem found in Greenhouse climate control. The chosen algorithms in the study includes NSGAII, eNSGAII, eMOEA, PAES, PESAII and SPEAII. The performance...... of all aforementioned algorithms is assessed and compared using performance indicators to evaluate proximity, diversity and consistency. Our insights to this comparative study enhanced our understanding of MOEAs performance in order to solve a non-linear complex climate control problem. The empirical...
DEFF Research Database (Denmark)
Stolpe, Mathias
2004-01-01
of structures subjected to either static or periodic loads, design of composite materials with prescribed homogenized properties using the inverse homogenization approach, optimization of fluids in Stokes flow, design of band gap structures, and multi-physics problems involving coupled steady-state heat...
DEFF Research Database (Denmark)
Stolpe, Mathias
2007-01-01
of structures subjected to static or periodic loads, design of composite materials with prescribed homogenized properties using the inverse homogenization approach, optimization of fluids in Stokes flow, design of band gap structures, and multi-physics problems involving coupled steady-state heat conduction...
Portfolio optimization using fuzzy linear programming
Pandit, Purnima K.
2013-09-01
Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.
Energy Technology Data Exchange (ETDEWEB)
Delbos, F.
2004-11-01
Reflexion tomography allows the determination of a subsurface velocity model from the travel times of seismic waves. The introduction of a priori information in this inverse problem can lead to the resolution of a constrained non-linear least-squares problem. The goal of the thesis is to improve the resolution techniques of this optimization problem, whose main difficulties are its ill-conditioning, its large scale and an expensive cost function in terms of CPU time. Thanks to a detailed study of the problem and to numerous numerical experiments, we justify the use of a sequential quadratic programming method, in which the tangential quadratic programs are solved by an original augmented Lagrangian method. We show the global linear convergence of the latter. The efficiency and robustness of the approach are demonstrated on several synthetic examples and on two real data cases. (author)
Energy Technology Data Exchange (ETDEWEB)
Delbos, F
2004-11-01
Reflexion tomography allows the determination of a subsurface velocity model from the travel times of seismic waves. The introduction of a priori information in this inverse problem can lead to the resolution of a constrained non-linear least-squares problem. The goal of the thesis is to improve the resolution techniques of this optimization problem, whose main difficulties are its ill-conditioning, its large scale and an expensive cost function in terms of CPU time. Thanks to a detailed study of the problem and to numerous numerical experiments, we justify the use of a sequential quadratic programming method, in which the tangential quadratic programs are solved by an original augmented Lagrangian method. We show the global linear convergence of the latter. The efficiency and robustness of the approach are demonstrated on several synthetic examples and on two real data cases. (author)
M. ZANGIABADI; H. R. MALEKI
2007-01-01
In the real-world optimization problems, coefficients of the objective function are not known precisely and can be interpreted as fuzzy numbers. In this paper we define the concepts of optimality for linear programming problems with fuzzy parameters based on those for multiobjective linear programming problems. Then by using the concept of comparison of fuzzy numbers, we transform a linear programming problem with fuzzy parameters to a multiobjective linear programming problem. To this end, w...
An example in linear quadratic optimal control
Weiss, George; Zwart, Heiko J.
1998-01-01
We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme
Mills, James W.; And Others
1973-01-01
The Study reported here tested an application of the Linear Programming Model at the Reading Clinic of Drew University. Results, while not conclusive, indicate that this approach yields greater gains in speed scores than a traditional approach for this population. (Author)
Li, Zukui; Ding, Ran; Floudas, Christodoulos A.
2011-01-01
Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263
Order-constrained linear optimization.
Tidwell, Joe W; Dougherty, Michael R; Chrabaszcz, Jeffrey S; Thomas, Rick P
2017-11-01
Despite the fact that data and theories in the social, behavioural, and health sciences are often represented on an ordinal scale, there has been relatively little emphasis on modelling ordinal properties. The most common analytic framework used in psychological science is the general linear model, whose variants include ANOVA, MANOVA, and ordinary linear regression. While these methods are designed to provide the best fit to the metric properties of the data, they are not designed to maximally model ordinal properties. In this paper, we develop an order-constrained linear least-squares (OCLO) optimization algorithm that maximizes the linear least-squares fit to the data conditional on maximizing the ordinal fit based on Kendall's τ. The algorithm builds on the maximum rank correlation estimator (Han, 1987, Journal of Econometrics, 35, 303) and the general monotone model (Dougherty & Thomas, 2012, Psychological Review, 119, 321). Analyses of simulated data indicate that when modelling data that adhere to the assumptions of ordinary least squares, OCLO shows minimal bias, little increase in variance, and almost no loss in out-of-sample predictive accuracy. In contrast, under conditions in which data include a small number of extreme scores (fat-tailed distributions), OCLO shows less bias and variance, and substantially better out-of-sample predictive accuracy, even when the outliers are removed. We show that the advantages of OCLO over ordinary least squares in predicting new observations hold across a variety of scenarios in which researchers must decide to retain or eliminate extreme scores when fitting data. © 2017 The British Psychological Society.
Templates for Linear Algebra Problems
Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der
1995-01-01
The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and
Goswami, Deepjyoti; Pani, Amiya K.
2011-01-01
In this article, we propose and analyze an alternate proof of a priori error estimates for semidiscrete Galerkin approximations to a general second order linear parabolic initial and boundary value problem with rough initial data. Our analysis
Optimal Robust Fault Detection for Linear Discrete Time Systems
Directory of Open Access Journals (Sweden)
Nike Liu
2008-01-01
Full Text Available This paper considers robust fault-detection problems for linear discrete time systems. It is shown that the optimal robust detection filters for several well-recognized robust fault-detection problems, such as ℋ−/ℋ∞, ℋ2/ℋ∞, and ℋ∞/ℋ∞ problems, are the same and can be obtained by solving a standard algebraic Riccati equation. Optimal filters are also derived for many other optimization criteria and it is shown that some well-studied and seeming-sensible optimization criteria for fault-detection filter design could lead to (optimal but useless fault-detection filters.
Class and Home Problems: Optimization Problems
Anderson, Brian J.; Hissam, Robin S.; Shaeiwitz, Joseph A.; Turton, Richard
2011-01-01
Optimization problems suitable for all levels of chemical engineering students are available. These problems do not require advanced mathematical techniques, since they can be solved using typical software used by students and practitioners. The method used to solve these problems forces students to understand the trends for the different terms…
Sensitivity analysis in optimization and reliability problems
International Nuclear Information System (INIS)
Castillo, Enrique; Minguez, Roberto; Castillo, Carmen
2008-01-01
The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods
Sensitivity analysis in optimization and reliability problems
Energy Technology Data Exchange (ETDEWEB)
Castillo, Enrique [Department of Applied Mathematics and Computational Sciences, University of Cantabria, Avda. Castros s/n., 39005 Santander (Spain)], E-mail: castie@unican.es; Minguez, Roberto [Department of Applied Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: roberto.minguez@uclm.es; Castillo, Carmen [Department of Civil Engineering, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: mariacarmen.castillo@uclm.es
2008-12-15
The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods.
Generalized Benders’ Decomposition for topology optimization problems
DEFF Research Database (Denmark)
Munoz Queupumil, Eduardo Javier; Stolpe, Mathias
2011-01-01
) problems with discrete design variables to global optimality. We present the theoretical aspects of the method, including a proof of finite convergence and conditions for obtaining global optimal solutions. The method is also linked to, and compared with, an Outer-Approximation approach and a mixed 0......–1 semi definite programming formulation of the considered problem. Several ways to accelerate the method are suggested and an implementation is described. Finally, a set of truss topology optimization problems are numerically solved to global optimality.......This article considers the non-linear mixed 0–1 optimization problems that appear in topology optimization of load carrying structures. The main objective is to present a Generalized Benders’ Decomposition (GBD) method for solving single and multiple load minimum compliance (maximum stiffness...
Combinational Optimal Stopping Problems
2016-04-01
the set of random events, F is the - algebra , and P is a probability measure, a risk measure is defined as a mapping W X 7! R, where X is a linear ...bound- ary conditions by solving a system of linear algebraic equa- tions. In order to guarantee that vectors G j are independent, and therefore...Stochastic Linear Programming: Models, Theory, and Computation. Springer Kantor IL, Solodovnikov AS (1989) Hypercomplex Num- bers: An Elementary
Deterministic operations research models and methods in linear optimization
Rader, David J
2013-01-01
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations resear
Perturbation analysis of linear control problems
International Nuclear Information System (INIS)
Petkov, Petko; Konstantinov, Mihail
2017-01-01
The paper presents a brief overview of the technique of splitting operators, proposed by the authors and intended for perturbation analysis of control problems involving unitary and orthogonal matrices. Combined with the technique of Lyapunov majorants and the implementation of the Banach and Schauder fixed point principles, it allows to obtain rigorous non-local perturbation bounds for a set of sensitivity analysis problems. Among them are the reduction of linear systems into orthogonal canonical forms, the feedback synthesis problem and pole assignment problem in particular, as well as other important problems in control theory and linear algebra. Key words: perturbation analysis, canonical forms, feedback synthesis
Solution of linear ill-posed problems using overcomplete dictionaries
Pensky, Marianna
2016-01-01
In the present paper we consider application of overcomplete dictionaries to solution of general ill-posed linear inverse problems. Construction of an adaptive optimal solution for such problems usually relies either on a singular value decomposition or representation of the solution via an orthonormal basis. The shortcoming of both approaches lies in the fact that, in many situations, neither the eigenbasis of the linear operator nor a standard orthonormal basis constitutes an appropriate co...
Optimized remedial groundwater extraction using linear programming
International Nuclear Information System (INIS)
Quinn, J.J.
1995-01-01
Groundwater extraction systems are typically installed to remediate contaminant plumes or prevent further spread of contamination. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield uses a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, the optimal locations and pump rates of extraction wells are difficult to determine when objectives related to the site hydrogeology and potential pumping scheme are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. The objectives of the pumping scheme were to contain contaminant migration and reduce contaminant concentrations while minimizing the total amount of water pumped and treated. Past site activities at the area under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input budget as groundwater discharge from the pits. Optimization of the containment pumping scheme was intended to meet three goals: (1) prevent discharge of contaminated groundwater to the wetland, (2) minimize the total water pumped and treated (cost benefit), and (3) avoid dewatering of the wetland (cost and ecological benefits). Possible well locations were placed at known source areas. To constrain the problem, the optimization program was instructed to prevent any flow toward the wetland along a user-specified border. In this manner, the optimization routine selects well locations and pump rates so that a groundwater divide is produced along this boundary
Optimal social insurance with linear income taxation
DEFF Research Database (Denmark)
Bovenberg, Lans; Sørensen, Peter Birch
2009-01-01
We study optimal social insurance aimed at insuring disability risk in the presence of linear income taxation. Optimal disability insurance benefits rise with previous earnings. Optimal insurance is incomplete even though disability risks are exogenous and verifiable so that moral hazard in disab...... in disability insurance is absent. Imperfect insurance is optimal because it encourages workers to insure themselves against disability by working and saving more, thereby alleviating the distortionary impact of the redistributive income tax on labor supply and savings.......We study optimal social insurance aimed at insuring disability risk in the presence of linear income taxation. Optimal disability insurance benefits rise with previous earnings. Optimal insurance is incomplete even though disability risks are exogenous and verifiable so that moral hazard...
Efficient decomposition and linearization methods for the stochastic transportation problem
International Nuclear Information System (INIS)
Holmberg, K.
1993-01-01
The stochastic transportation problem can be formulated as a convex transportation problem with nonlinear objective function and linear constraints. We compare several different methods based on decomposition techniques and linearization techniques for this problem, trying to find the most efficient method or combination of methods. We discuss and test a separable programming approach, the Frank-Wolfe method with and without modifications, the new technique of mean value cross decomposition and the more well known Lagrangian relaxation with subgradient optimization, as well as combinations of these approaches. Computational tests are presented, indicating that some new combination methods are quite efficient for large scale problems. (authors) (27 refs.)
Convex variational problems linear, nearly linear and anisotropic growth conditions
Bildhauer, Michael
2003-01-01
The author emphasizes a non-uniform ellipticity condition as the main approach to regularity theory for solutions of convex variational problems with different types of non-standard growth conditions. This volume first focuses on elliptic variational problems with linear growth conditions. Here the notion of a "solution" is not obvious and the point of view has to be changed several times in order to get some deeper insight. Then the smoothness properties of solutions to convex anisotropic variational problems with superlinear growth are studied. In spite of the fundamental differences, a non-uniform ellipticity condition serves as the main tool towards a unified view of the regularity theory for both kinds of problems.
Optimal non-linear health insurance.
Blomqvist, A
1997-06-01
Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.
Students’ difficulties in solving linear equation problems
Wati, S.; Fitriana, L.; Mardiyana
2018-03-01
A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.
On Optimal Feedback Control for Stationary Linear Systems
International Nuclear Information System (INIS)
Russell, David L.
2010-01-01
We study linear-quadratic optimal control problems for finite dimensional stationary linear systems AX+BU=Z with output Y=CX+DU from the viewpoint of linear feedback solution. We interpret solutions in relation to system robustness with respect to disturbances Z and relate them to nonlinear matrix equations of Riccati type and eigenvalue-eigenvector problems for the corresponding Hamiltonian system. Examples are included along with an indication of extensions to continuous, i.e., infinite dimensional, systems, primarily of elliptic type.
Topology optimization of Channel flow problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan; Sigmund, Ole; Haber, R. B.
2005-01-01
function which measures either some local aspect of the velocity field or a global quantity, such as the rate of energy dissipation. We use the finite element method to model the flow, and we solve the optimization problem with a gradient-based math-programming algorithm that is driven by analytical......This paper describes a topology design method for simple two-dimensional flow problems. We consider steady, incompressible laminar viscous flows at low to moderate Reynolds numbers. This makes the flow problem non-linear and hence a non-trivial extension of the work of [Borrvall&Petersson 2002......]. Further, the inclusion of inertia effects significantly alters the physics, enabling solutions of new classes of optimization problems, such as velocity--driven switches, that are not addressed by the earlier method. Specifically, we determine optimal layouts of channel flows that extremize a cost...
Inverse problems in linear transport theory
International Nuclear Information System (INIS)
Dressler, K.
1988-01-01
Inverse problems for a class of linear kinetic equations are investigated. The aim is to identify the scattering kernel of a transport equation (corresponding to the structure of a background medium) by observing the 'albedo' part of the solution operator for the corresponding direct initial boundary value problem. This means to get information on some integral operator in an integrodifferential equation through on overdetermined boundary value problem. We first derive a constructive method for solving direct halfspace problems and prove a new factorization theorem for the solutions. Using this result we investigate stationary inverse problems with respect to well posedness (e.g. reduce them to classical ill-posed problems, such as integral equations of first kind). In the time-dependent case we show that a quite general inverse problem is well posed and solve it constructively. (orig.)
Topology Optimization for Convection Problems
DEFF Research Database (Denmark)
Alexandersen, Joe
2011-01-01
This report deals with the topology optimization of convection problems.That is, the aim of the project is to develop, implement and examine topology optimization of purely thermal and coupled thermomechanical problems,when the design-dependent eects of convection are taken into consideration.......This is done by the use of a self-programmed FORTRAN-code, which builds on an existing 2D-plane thermomechanical nite element code implementing during the course `41525 FEM-Heavy'. The topology optimizationfeatures have been implemented from scratch, and allows the program to optimize elastostatic mechanical...
The optimal graph partitioning problem
DEFF Research Database (Denmark)
Sørensen, Michael Malmros; Holm, Søren
1993-01-01
. This problem can be formulated as a MILP, which turns out to be completely symmetrical with respect to the p classes, and the gap between the relaxed LP solution and the optimal solution is the largest one possible. These two properties make it very difficult to solve even smaller problems. In this paper...
Invariant imbedding equations for linear scattering problems
International Nuclear Information System (INIS)
Apresyan, L.
1988-01-01
A general form of the invariant imbedding equations is investigated for the linear problem of scattering by a bounded scattering volume. The conditions for the derivability of such equations are described. It is noted that the possibility of the explicit representation of these equations for a sphere and for a layer involves the separation of variables in the unperturbed wave equation
On a linear-quadratic problem with Caputo derivative
Directory of Open Access Journals (Sweden)
Dariusz Idczak
2016-01-01
Full Text Available In this paper, we study a linear-quadratic optimal control problem with a fractional control system containing a Caputo derivative of unknown function. First, we derive the formulas for the differential and gradient of the cost functional under given constraints. Next, we prove an existence result and derive a maximum principle. Finally, we describe the gradient and projection of the gradient methods for the problem under consideration.
Computation of Optimal Monotonicity Preserving General Linear Methods
Ketcheson, David I.
2009-07-01
Monotonicity preserving numerical methods for ordinary differential equations prevent the growth of propagated errors and preserve convex boundedness properties of the solution. We formulate the problem of finding optimal monotonicity preserving general linear methods for linear autonomous equations, and propose an efficient algorithm for its solution. This algorithm reliably finds optimal methods even among classes involving very high order accuracy and that use many steps and/or stages. The optimality of some recently proposed methods is verified, and many more efficient methods are found. We use similar algorithms to find optimal strong stability preserving linear multistep methods of both explicit and implicit type, including methods for hyperbolic PDEs that use downwind-biased operators.
Quantization of the Linearized Kepler Problem
Guerrero, Julio; Perez, Jose Miguel
2003-01-01
The linearized Kepler problem is considered, as obtained from the Kustaanheimo-Stiefel (K-S)transformation, both for negative and positive energies. The symmetry group for the Kepler problem turns out to be SU(2,2). For negative energies, the Hamiltonian of Kepler problem can be realized as the sum of the energies of four harmonic oscillator with the same frequency, with a certain constrain. For positive energies, it can be realized as the sum of the energies of four repulsive oscillator with...
Optimal choice of basis functions in the linear regression analysis
International Nuclear Information System (INIS)
Khotinskij, A.M.
1988-01-01
Problem of optimal choice of basis functions in the linear regression analysis is investigated. Step algorithm with estimation of its efficiency, which holds true at finite number of measurements, is suggested. Conditions, providing the probability of correct choice close to 1 are formulated. Application of the step algorithm to analysis of decay curves is substantiated. 8 refs
Hybrid vehicle optimal control : Linear interpolation and singular control
Delprat, S.; Hofman, T.
2015-01-01
Hybrid vehicle energy management can be formulated as an optimal control problem. Considering that the fuel consumption is often computed using linear interpolation over lookup table data, a rigorous analysis of the necessary conditions provided by the Pontryagin Minimum Principle is conducted. For
Optimal traffic control in highway transportation networks using linear programming
Li, Yanning; Canepa, Edward S.; Claudel, Christian G.
2014-01-01
of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can
Time-optimal feedback control for linear systems
International Nuclear Information System (INIS)
Mirica, S.
1976-01-01
The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)
Topology optimization of flow problems
DEFF Research Database (Denmark)
Gersborg, Allan Roulund
2007-01-01
This thesis investigates how to apply topology optimization using the material distribution technique to steady-state viscous incompressible flow problems. The target design applications are fluid devices that are optimized with respect to minimizing the energy loss, characteristic properties...... transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the thesis gives a proof-of-concept for the application of the method within fluid dynamic problems and it remains of interest for the design of microfluidic devices. Furthermore, the thesis contributes...... at the Technical University of Denmark. Large topology optimization problems with 2D and 3D Stokes flow modeling are solved with direct and iterative strategies employing the parallelized Sun Performance Library and the OpenMP parallelization technique, respectively....
The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.
Narayanamoorthy, S; Kalyani, S
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem
Directory of Open Access Journals (Sweden)
S. Narayanamoorthy
2015-01-01
Full Text Available An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
About an Optimal Visiting Problem
Energy Technology Data Exchange (ETDEWEB)
Bagagiolo, Fabio, E-mail: bagagiol@science.unitn.it; Benetton, Michela [Unversita di Trento, Dipartimento di Matematica (Italy)
2012-02-15
In this paper we are concerned with the optimal control problem consisting in minimizing the time for reaching (visiting) a fixed number of target sets, in particular more than one target. Such a problem is of course reminiscent of the famous 'Traveling Salesman Problem' and brings all its computational difficulties. Our aim is to apply the dynamic programming technique in order to characterize the value function of the problem as the unique viscosity solution of a suitable Hamilton-Jacobi equation. We introduce some 'external' variables, one per target, which keep in memory whether the corresponding target is already visited or not, and we transform the visiting problem in a suitable Mayer problem. This fact allows us to overcome the lacking of the Dynamic Programming Principle for the originary problem. The external variables evolve with a hysteresis law and the Hamilton-Jacobi equation turns out to be discontinuous.
Well-posed optimization problems
Dontchev, Asen L
1993-01-01
This book presents in a unified way the mathematical theory of well-posedness in optimization. The basic concepts of well-posedness and the links among them are studied, in particular Hadamard and Tykhonov well-posedness. Abstract optimization problems as well as applications to optimal control, calculus of variations and mathematical programming are considered. Both the pure and applied side of these topics are presented. The main subject is often introduced by heuristics, particular cases and examples. Complete proofs are provided. The expected knowledge of the reader does not extend beyond textbook (real and functional) analysis, some topology and differential equations and basic optimization. References are provided for more advanced topics. The book is addressed to mathematicians interested in optimization and related topics, and also to engineers, control theorists, economists and applied scientists who can find here a mathematical justification of practical procedures they encounter.
Identification problems in linear transformation system
International Nuclear Information System (INIS)
Delforge, Jacques.
1975-01-01
An attempt was made to solve the theoretical and numerical difficulties involved in the identification problem relative to the linear part of P. Delattre's theory of transformation systems. The theoretical difficulties are due to the very important problem of the uniqueness of the solution, which must be demonstrated in order to justify the value of the solution found. Simple criteria have been found when measurements are possible on all the equivalence classes, but the problem remains imperfectly solved when certain evolution curves are unknown. The numerical difficulties are of two kinds: a slow convergence of iterative methods and a strong repercussion of numerical and experimental errors on the solution. In the former case a fast convergence was obtained by transformation of the parametric space, while in the latter it was possible, from sensitivity functions, to estimate the errors, to define and measure the conditioning of the identification problem then to minimize this conditioning as a function of the experimental conditions [fr
Stability problems for linear hyperbolic systems
International Nuclear Information System (INIS)
Eckhoff, K.S.
1975-05-01
The stability properties for the trivial solution of a general linear hyperbolic system of partial differential equations of the first order are studied. It is shown that results may be obtained by studying the stability properties of certain systems of ordinary differential equations which can be constructed from the hyperbolic system (the so-called transport equations). In some cases the associated stability problem for the transport equations can in fact be shown to be equivalent to the stability problem for the hyperbolic system, but in general the transport equations will only give the necessary conditions for stability. (Auth.)
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui
1994-01-01
The paper studies the problem of determining the number and dimensions of sizes of apparel so as to maximize profits. It develops a simple one-variable bisection search algorithm that gives the optimal solution. An example is solved interactively using a Macintosh LC and Math CAD, a mathematical...
Problems of radiation protection optimization
International Nuclear Information System (INIS)
Morkunas, G.
2003-01-01
One of the basic principles - optimization of radiation protection - is rather well understood by everybody engaged in protection of humans from ionizing radiation. However, the practical application of this principle is very problematic. This fact can be explained by vagueness of concept of dose constraints, possible legal consequences of any decision based on this principle, traditions of prescriptive system of radiation protection requirements in some countries, insufficiency of qualified expertise. The examples of optimization problems are the different attention given to different kinds of practices, not optimized application of remedial measures, strict requirements for radioactive contamination of imported products, uncertainties in optimization in medical applications of ionizing radiation. Such tools as international co-operation including regional networks of information exchange, training of qualified experts, identification of measurable indicators used for judging about the level of optimization may be the helpful practical means in solving of these problems. It is evident that the principle of optimization can not be replaced by any other alternative despite its complexity. The means for its practical implementation shall be searched for. (author)
A Study of Joint Cost Inclusion in Linear Programming Optimization
Directory of Open Access Journals (Sweden)
P. Armaos
2013-08-01
Full Text Available The concept of Structural Optimization has been a topic or research over the past century. Linear Programming Optimization has proved being the most reliable method of structural optimization. Global advances in linear programming optimization have been recently powered by University of Sheffield researchers, to include joint cost, self-weight and buckling considerations. A joint cost inclusion scopes to reduce the number of joints existing in an optimized structural solution, transforming it to a practically viable solution. The topic of the current paper is to investigate the effects of joint cost inclusion, as this is currently implemented in the optimization code. An extended literature review on this subject was conducted prior to familiarization with small scale optimization software. Using IntelliFORM software, a structured series of problems were set and analyzed. The joint cost tests examined benchmark problems and their consequent changes in the member topology, as the design domain was expanding. The findings of the analyses were remarkable and are being commented further on. The distinct topologies of solutions created by optimization processes are also recognized. Finally an alternative strategy of penalizing joints is presented.
Paradox in a non-linear capacitated transportation problem
Directory of Open Access Journals (Sweden)
Dahiya Kalpana
2006-01-01
Full Text Available This paper discusses a paradox in fixed charge capacitated transportation problem where the objective function is the sum of two linear fractional functions consisting of variables costs and fixed charges respectively. A paradox arises when the transportation problem admits of an objective function value which is lower than the optimal objective function value, by transporting larger quantities of goods over the same route. A sufficient condition for the existence of a paradox is established. Paradoxical range of flow is obtained for any given flow in which the corresponding objective function value is less than the optimum value of the given transportation problem. Numerical illustration is included in support of theory.
Linear decomposition approach for a class of nonconvex programming problems.
Shen, Peiping; Wang, Chunfeng
2017-01-01
This paper presents a linear decomposition approach for a class of nonconvex programming problems by dividing the input space into polynomially many grids. It shows that under certain assumptions the original problem can be transformed and decomposed into a polynomial number of equivalent linear programming subproblems. Based on solving a series of liner programming subproblems corresponding to those grid points we can obtain the near-optimal solution of the original problem. Compared to existing results in the literature, the proposed algorithm does not require the assumptions of quasi-concavity and differentiability of the objective function, and it differs significantly giving an interesting approach to solving the problem with a reduced running time.
An Entropic Estimator for Linear Inverse Problems
Directory of Open Access Journals (Sweden)
Amos Golan
2012-05-01
Full Text Available In this paper we examine an Information-Theoretic method for solving noisy linear inverse estimation problems which encompasses under a single framework a whole class of estimation methods. Under this framework, the prior information about the unknown parameters (when such information exists, and constraints on the parameters can be incorporated in the statement of the problem. The method builds on the basics of the maximum entropy principle and consists of transforming the original problem into an estimation of a probability density on an appropriate space naturally associated with the statement of the problem. This estimation method is generic in the sense that it provides a framework for analyzing non-normal models, it is easy to implement and is suitable for all types of inverse problems such as small and or ill-conditioned, noisy data. First order approximation, large sample properties and convergence in distribution are developed as well. Analytical examples, statistics for model comparisons and evaluations, that are inherent to this method, are discussed and complemented with explicit examples.
A convex optimization approach for solving large scale linear systems
Directory of Open Access Journals (Sweden)
Debora Cores
2017-01-01
Full Text Available The well-known Conjugate Gradient (CG method minimizes a strictly convex quadratic function for solving large-scale linear system of equations when the coefficient matrix is symmetric and positive definite. In this work we present and analyze a non-quadratic convex function for solving any large-scale linear system of equations regardless of the characteristics of the coefficient matrix. For finding the global minimizers, of this new convex function, any low-cost iterative optimization technique could be applied. In particular, we propose to use the low-cost globally convergent Spectral Projected Gradient (SPG method, which allow us to extend this optimization approach for solving consistent square and rectangular linear system, as well as linear feasibility problem, with and without convex constraints and with and without preconditioning strategies. Our numerical results indicate that the new scheme outperforms state-of-the-art iterative techniques for solving linear systems when the symmetric part of the coefficient matrix is indefinite, and also for solving linear feasibility problems.
Directory of Open Access Journals (Sweden)
Tunjo Perić
2017-01-01
Full Text Available This paper presents and analyzes the applicability of three linearization techniques used for solving multi-objective linear fractional programming problems using the goal programming method. The three linearization techniques are: (1 Taylor’s polynomial linearization approximation, (2 the method of variable change, and (3 a modification of the method of variable change proposed in [20]. All three linearization techniques are presented and analyzed in two variants: (a using the optimal value of the objective functions as the decision makers’ aspirations, and (b the decision makers’ aspirations are given by the decision makers. As the criteria for the analysis we use the efficiency of the obtained solutions and the difficulties the analyst comes upon in preparing the linearization models. To analyze the applicability of the linearization techniques incorporated in the linear goal programming method we use an example of a financial structure optimization problem.
Solving fault diagnosis problems linear synthesis techniques
Varga, Andreas
2017-01-01
This book addresses fault detection and isolation topics from a computational perspective. Unlike most existing literature, it bridges the gap between the existing well-developed theoretical results and the realm of reliable computational synthesis procedures. The model-based approach to fault detection and diagnosis has been the subject of ongoing research for the past few decades. While the theoretical aspects of fault diagnosis on the basis of linear models are well understood, most of the computational methods proposed for the synthesis of fault detection and isolation filters are not satisfactory from a numerical standpoint. Several features make this book unique in the fault detection literature: Solution of standard synthesis problems in the most general setting, for both continuous- and discrete-time systems, regardless of whether they are proper or not; consequently, the proposed synthesis procedures can solve a specific problem whenever a solution exists Emphasis on the best numerical algorithms to ...
Numerical stability in problems of linear algebra.
Babuska, I.
1972-01-01
Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.
Optimal Control of Switching Linear Systems
Directory of Open Access Journals (Sweden)
Ali Benmerzouga
2004-06-01
Full Text Available A solution to the control of switching linear systems with input constraints was given in Benmerzouga (1997 for both the conventional enumeration approach and the new approach. The solution given there turned out to be not unique. The main objective in this work is to determine the optimal control sequences {Ui(k , i = 1,..., M ; k = 0, 1, ..., N -1} which transfer the system from a given initial state X0 to a specific target state XT (or to be as close as possible by using the same discrete time solution obtained in Benmerzouga (1997 and minimizing a running cost-to-go function. By using the dynamic programming technique, the optimal solution is found for both approaches given in Benmerzouga (1997. The computational complexity of the modified algorithm is also given.
Multi-objective genetic optimization of linear construction projects
Directory of Open Access Journals (Sweden)
Fatma A. Agrama
2012-08-01
Full Text Available In the real world, the majority cases of optimization problems, met by engineers, are composed of several conflicting objectives. This paper presents an approach for a multi-objective optimization model for scheduling linear construction projects. Linear construction projects have many identical units wherein activities repeat from one unit to another. Highway, pipeline, and tunnels are good examples that exhibit repetitive characteristics. These projects represent a large portion of the construction industry. The present model enables construction planners to generate optimal/near-optimal construction plans that minimize project duration, total work interruptions, and total number of crews. Each of these plans identifies, from a set of feasible alternatives, optimal crew synchronization for each activity and activity interruptions at each unit. This model satisfies the following aspects: (1 it is based on the line of balance technique; (2 it considers non-serial typical activities networks with finish–start relationship and both lag or overlap time between activities is allowed; (3 it utilizes a multi-objective genetic algorithms approach; (4 it is developed as a spreadsheet template that is easy to use. Details of the model with visual charts are presented. An application example is analyzed to illustrate the use of the model and demonstrate its capabilities in optimizing the scheduling of linear construction projects.
Optimal difference-based estimation for partially linear models
Zhou, Yuejin; Cheng, Yebin; Dai, Wenlin; Tong, Tiejun
2017-01-01
Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.
Optimal difference-based estimation for partially linear models
Zhou, Yuejin
2017-12-16
Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.
Polymorphic Uncertain Linear Programming for Generalized Production Planning Problems
Directory of Open Access Journals (Sweden)
Xinbo Zhang
2014-01-01
Full Text Available A polymorphic uncertain linear programming (PULP model is constructed to formulate a class of generalized production planning problems. In accordance with the practical environment, some factors such as the consumption of raw material, the limitation of resource and the demand of product are incorporated into the model as parameters of interval and fuzzy subsets, respectively. Based on the theory of fuzzy interval program and the modified possibility degree for the order of interval numbers, a deterministic equivalent formulation for this model is derived such that a robust solution for the uncertain optimization problem is obtained. Case study indicates that the constructed model and the proposed solution are useful to search for an optimal production plan for the polymorphic uncertain generalized production planning problems.
Approximating the Pareto set of multiobjective linear programs via robust optimization
Gorissen, B.L.; den Hertog, D.
2012-01-01
We consider problems with multiple linear objectives and linear constraints and use adjustable robust optimization and polynomial optimization as tools to approximate the Pareto set with polynomials of arbitrarily large degree. The main difference with existing techniques is that we optimize a
Optimal traffic control in highway transportation networks using linear programming
Li, Yanning
2014-06-01
This article presents a framework for the optimal control of boundary flows on transportation networks. The state of the system is modeled by a first order scalar conservation law (Lighthill-Whitham-Richards PDE). Based on an equivalent formulation of the Hamilton-Jacobi PDE, the problem of controlling the state of the system on a network link in a finite horizon can be posed as a Linear Program. Assuming all intersections in the network are controllable, we show that the optimization approach can be extended to an arbitrary transportation network, preserving linear constraints. Unlike previously investigated transportation network control schemes, this framework leverages the intrinsic properties of the Halmilton-Jacobi equation, and does not require any discretization or boolean variables on the link. Hence this framework is very computational efficient and provides the globally optimal solution. The feasibility of this framework is illustrated by an on-ramp metering control example.
Treatment planning optimization for linear accelerator radiosurgery
International Nuclear Information System (INIS)
Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Mendenhall, William M.
1998-01-01
Purpose: Linear accelerator radiosurgery uses multiple arcs delivered through circular collimators to produce a nominally spherical dose distribution. Production of dose distributions that conform to irregular lesions or conformally avoid critical neural structures requires a detailed understanding of the available treatment planning parameters. Methods and Materials: Treatment planning parameters that may be manipulated within a single isocenter to provide conformal avoidance and dose conformation to ellipsoidal lesions include differential arc weighting and gantry start/stop angles. More irregular lesions require the use of multiple isocenters. Iterative manipulation of treatment planning variables can be difficult and computationally expensive, especially if the effects of these manipulations are not well defined. Effects of treatment parameter manipulation are explained and illustrated. This is followed by description of the University of Florida Stereotactic Radiosurgery Treatment Planning Algorithm. This algorithm organizes the manipulations into a practical approach for radiosurgery treatment planning. Results: Iterative treatment planning parameters may be efficiently manipulated to achieve optimal treatment plans by following the University of Florida Treatment Planning Algorithm. The ability to produce conformal stereotactic treatment plans using the algorithm is demonstrated for a variety of clinical presentations. Conclusion: The standard dose distribution produced in linear accelerator radiosurgery is spherical, but manipulation of available treatment planning parameters may result in optimal dose conformation. The University of Florida Treatment Planning Algorithm organizes available treatment parameters to efficiently produce conformal radiosurgery treatment plans
Parametrices and exact paralinearization of semi-linear boundary problems
DEFF Research Database (Denmark)
Johnsen, Jon
2008-01-01
The subject is parametrices for semi-linear problems, based on parametrices for linear boundary problems and on non-linearities that decompose into solution-dependent linear operators acting on the solutions. Non-linearities of product type are shown to admit this via exact paralinearization...... of homogeneous distributions, tensor products and halfspace extensions have been revised. Examples include the von Karman equation....
Using linear programming to analyze and optimize stochastic flow lines
DEFF Research Database (Denmark)
Helber, Stefan; Schimmelpfeng, Katja; Stolletz, Raik
2011-01-01
This paper presents a linear programming approach to analyze and optimize flow lines with limited buffer capacities and stochastic processing times. The basic idea is to solve a huge but simple linear program that models an entire simulation run of a multi-stage production process in discrete time...... programming and hence allows us to solve buffer allocation problems. We show under which conditions our method works well by comparing its results to exact values for two-machine models and approximate simulation results for longer lines....
Linear systems optimal and robust control
Sinha, Alok
2007-01-01
Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...
Applications of functional analysis to optimal control problems
International Nuclear Information System (INIS)
Mizukami, K.
1976-01-01
Some basic concepts in functional analysis, a general norm, the Hoelder inequality, functionals and the Hahn-Banach theorem are described; a mathematical formulation of two optimal control problems is introduced by the method of functional analysis. The problem of time-optimal control systems with both norm constraints on control inputs and on state variables at discrete intermediate times is formulated as an L-problem in the theory of moments. The simplex method is used for solving a non-linear minimizing problem inherent in the functional analysis solution to this problem. Numerical results are presented for a train operation. The second problem is that of optimal control of discrete linear systems with quadratic cost functionals. The problem is concerned with the case of unconstrained control and fixed endpoints. This problem is formulated in terms of norms of functionals on suitable Banach spaces. (author)
Regularization Techniques for Linear Least-Squares Problems
Suliman, Mohamed
2016-04-01
Linear estimation is a fundamental branch of signal processing that deals with estimating the values of parameters from a corrupted measured data. Throughout the years, several optimization criteria have been used to achieve this task. The most astonishing attempt among theses is the linear least-squares. Although this criterion enjoyed a wide popularity in many areas due to its attractive properties, it appeared to suffer from some shortcomings. Alternative optimization criteria, as a result, have been proposed. These new criteria allowed, in one way or another, the incorporation of further prior information to the desired problem. Among theses alternative criteria is the regularized least-squares (RLS). In this thesis, we propose two new algorithms to find the regularization parameter for linear least-squares problems. In the constrained perturbation regularization algorithm (COPRA) for random matrices and COPRA for linear discrete ill-posed problems, an artificial perturbation matrix with a bounded norm is forced into the model matrix. This perturbation is introduced to enhance the singular value structure of the matrix. As a result, the new modified model is expected to provide a better stabilize substantial solution when used to estimate the original signal through minimizing the worst-case residual error function. Unlike many other regularization algorithms that go in search of minimizing the estimated data error, the two new proposed algorithms are developed mainly to select the artifcial perturbation bound and the regularization parameter in a way that approximately minimizes the mean-squared error (MSE) between the original signal and its estimate under various conditions. The first proposed COPRA method is developed mainly to estimate the regularization parameter when the measurement matrix is complex Gaussian, with centered unit variance (standard), and independent and identically distributed (i.i.d.) entries. Furthermore, the second proposed COPRA
A recurrent neural network for solving bilevel linear programming problem.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian
2014-04-01
In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.
Local beam angle optimization with linear programming and gradient search
International Nuclear Information System (INIS)
Craft, David
2007-01-01
The optimization of beam angles in IMRT planning is still an open problem, with literature focusing on heuristic strategies and exhaustive searches on discrete angle grids. We show how a beam angle set can be locally refined in a continuous manner using gradient-based optimization in the beam angle space. The gradient is derived using linear programming duality theory. Applying this local search to 100 random initial angle sets of a phantom pancreatic case demonstrates the method, and highlights the many-local-minima aspect of the BAO problem. Due to this function structure, we recommend a search strategy of a thorough global search followed by local refinement at promising beam angle sets. Extensions to nonlinear IMRT formulations are discussed. (note)
From a Nonlinear, Nonconvex Variational Problem to a Linear, Convex Formulation
International Nuclear Information System (INIS)
Egozcue, J.; Meziat, R.; Pedregal, P.
2002-01-01
We propose a general approach to deal with nonlinear, nonconvex variational problems based on a reformulation of the problem resulting in an optimization problem with linear cost functional and convex constraints. As a first step we explicitly explore these ideas to some one-dimensional variational problems and obtain specific conclusions of an analytical and numerical nature
Sensitivity analysis of linear programming problem through a recurrent neural network
Das, Raja
2017-11-01
In this paper we study the recurrent neural network for solving linear programming problems. To achieve optimality in accuracy and also in computational effort, an algorithm is presented. We investigate the sensitivity analysis of linear programming problem through the neural network. A detailed example is also presented to demonstrate the performance of the recurrent neural network.
Menu-Driven Solver Of Linear-Programming Problems
Viterna, L. A.; Ferencz, D.
1992-01-01
Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).
An Approach for Solving Linear Fractional Programming Problems
Andrew Oyakhobo Odior
2012-01-01
Linear fractional programming problems are useful tools in production planning, financial and corporate planning, health care and hospital planning and as such have attracted considerable research interest. The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebr...
Non-linear and signal energy optimal asymptotic filter design
Directory of Open Access Journals (Sweden)
Josef Hrusak
2003-10-01
Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.
SOCIAL NETWORK OPTIMIZATION A NEW METHAHEURISTIC FOR GENERAL OPTIMIZATION PROBLEMS
Directory of Open Access Journals (Sweden)
Hassan Sherafat
2017-12-01
Full Text Available In the recent years metaheuristics were studied and developed as powerful technics for hard optimization problems. Some of well-known technics in this field are: Genetic Algorithms, Tabu Search, Simulated Annealing, Ant Colony Optimization, and Swarm Intelligence, which are applied successfully to many complex optimization problems. In this paper, we introduce a new metaheuristic for solving such problems based on social networks concept, named as Social Network Optimization – SNO. We show that a wide range of np-hard optimization problems may be solved by SNO.
Fuzzy optimization of primal-dual pair using piecewise linear membership functions
Directory of Open Access Journals (Sweden)
Pandey D.
2012-01-01
Full Text Available Present paper improves the model of Bector and Chandra [Fuzzy Sets and Systems, 125 (2002 317-325] on duality in fuzzy linear programming by using non-linear membership functions. Numerical problem discussed by these authors has also been worked out through our non-linear model to demonstrate improved optimality of the results.
Approximating the Pareto Set of Multiobjective Linear Programs via Robust Optimization
Gorissen, B.L.; den Hertog, D.
2012-01-01
Abstract: The Pareto set of a multiobjective optimization problem consists of the solutions for which one or more objectives can not be improved without deteriorating one or more other objectives. We consider problems with linear objectives and linear constraints and use Adjustable Robust
An approach for solving linear fractional programming problems ...
African Journals Online (AJOL)
The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebraically using the concept of duality ...
Method for solving fully fuzzy linear programming problems using deviation degree measure
Institute of Scientific and Technical Information of China (English)
Haifang Cheng; Weilai Huang; Jianhu Cai
2013-01-01
A new ful y fuzzy linear programming (FFLP) prob-lem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crispδ-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the δ-fuzzy optimal so-lution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the va-lues of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to il ustrate the proposed method.
Optimal linear precoding for indoor visible light communication system
Sifaou, Houssem
2017-07-31
Visible light communication (VLC) is an emerging technique that uses light-emitting diodes (LED) to combine communication and illumination. It is considered as a promising scheme for indoor wireless communication that can be deployed at reduced costs while offering high data rate performance. In this paper, we focus on the design of the downlink of a multi-user VLC system. Inherent to multi-user systems is the interference caused by the broadcast nature of the medium. Linear precoding based schemes are among the most popular solutions that have recently been proposed to mitigate inter-user interference. This paper focuses on the design of the optimal linear precoding scheme that solves the max-min signal-to-interference-plus-noise ratio (SINR) problem. The performance of the proposed precoding scheme is studied under different working conditions and compared with the classical zero-forcing precoding. Simulations have been provided to illustrate the high gain of the proposed scheme.
Adaptive regularization of noisy linear inverse problems
DEFF Research Database (Denmark)
Hansen, Lars Kai; Madsen, Kristoffer Hougaard; Lehn-Schiøler, Tue
2006-01-01
In the Bayesian modeling framework there is a close relation between regularization and the prior distribution over parameters. For prior distributions in the exponential family, we show that the optimal hyper-parameter, i.e., the optimal strength of regularization, satisfies a simple relation: T......: The expectation of the regularization function, i.e., takes the same value in the posterior and prior distribution. We present three examples: two simulations, and application in fMRI neuroimaging....
Microlocal analysis of a seismic linearized inverse problem
Stolk, C.C.
1999-01-01
The seismic inverse problem is to determine the wavespeed c x in the interior of a medium from measurements at the boundary In this paper we analyze the linearized inverse problem in general acoustic media The problem is to nd a left inverse of the linearized forward map F or equivalently to nd the
Optimization problem in quantum cryptography
International Nuclear Information System (INIS)
Brandt, Howard E
2003-01-01
A complete optimization was recently performed, yielding the maximum information gain by a general unitary entangling probe in the four-state protocol of quantum cryptography. A larger set of optimum probe parameters was found than was known previously from an incomplete optimization. In the present work, a detailed comparison is made between the complete and incomplete optimizations. Also, a new set of optimum probe parameters is identified for the four-state protocol
Toward Optimal Manifold Hashing via Discrete Locally Linear Embedding.
Rongrong Ji; Hong Liu; Liujuan Cao; Di Liu; Yongjian Wu; Feiyue Huang
2017-11-01
Binary code learning, also known as hashing, has received increasing attention in large-scale visual search. By transforming high-dimensional features to binary codes, the original Euclidean distance is approximated via Hamming distance. More recently, it is advocated that it is the manifold distance, rather than the Euclidean distance, that should be preserved in the Hamming space. However, it retains as an open problem to directly preserve the manifold structure by hashing. In particular, it first needs to build the local linear embedding in the original feature space, and then quantize such embedding to binary codes. Such a two-step coding is problematic and less optimized. Besides, the off-line learning is extremely time and memory consuming, which needs to calculate the similarity matrix of the original data. In this paper, we propose a novel hashing algorithm, termed discrete locality linear embedding hashing (DLLH), which well addresses the above challenges. The DLLH directly reconstructs the manifold structure in the Hamming space, which learns optimal hash codes to maintain the local linear relationship of data points. To learn discrete locally linear embeddingcodes, we further propose a discrete optimization algorithm with an iterative parameters updating scheme. Moreover, an anchor-based acceleration scheme, termed Anchor-DLLH, is further introduced, which approximates the large similarity matrix by the product of two low-rank matrices. Experimental results on three widely used benchmark data sets, i.e., CIFAR10, NUS-WIDE, and YouTube Face, have shown superior performance of the proposed DLLH over the state-of-the-art approaches.
Portfolio optimization by using linear programing models based on genetic algorithm
Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.
2018-01-01
In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.
Health physics problems encountered in the Saclay linear accelerator
International Nuclear Information System (INIS)
Delsaut, R.
1979-01-01
The safety and health physics problems specific to the Saclay linear accelerator are presented: activation (of gases, dust, water, structural materials, targets); individual dosimetry; the safety engineering [fr
Arasomwan, Martins Akugbe; Adewumi, Aderemi Oluyinka
2013-01-01
Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted. PMID:24324383
Groenwold, A.A.; Etman, L.F.P.
2008-01-01
We study the classical topology optimization problem, in which minimum compliance is sought, subject to linear constraints. Using a dual statement, we propose two separable and strictly convex subproblems for use in sequential approximate optimization (SAO) algorithms.Respectively, the subproblems
Optimization Research of Generation Investment Based on Linear Programming Model
Wu, Juan; Ge, Xueqian
Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.
Topology optimization of wave-propagation problems
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2006-01-01
Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures.......Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures....
A Mathematical Optimization Problem in Bioinformatics
Heyer, Laurie J.
2008-01-01
This article describes the sequence alignment problem in bioinformatics. Through examples, we formulate sequence alignment as an optimization problem and show how to compute the optimal alignment with dynamic programming. The examples and sample exercises have been used by the author in a specialized course in bioinformatics, but could be adapted…
Students' errors in solving linear equation word problems: Case ...
African Journals Online (AJOL)
The study examined errors students make in solving linear equation word problems with a view to expose the nature of these errors and to make suggestions for classroom teaching. A diagnostic test comprising 10 linear equation word problems, was administered to a sample (n=130) of senior high school first year Home ...
Topology optimization for acoustic problems
DEFF Research Database (Denmark)
Dühring, Maria Bayard
2006-01-01
In this paper a method to control acoustic properties in a room with topology optimization is presented. It is shown how the squared sound pressure amplitude in a certain part of a room can be minimized by distribution of material in a design domain along the ceiling in 2D and 3D. Nice 0-1 designs...
Optimal designs for linear mixture models
Mendieta, E.J.; Linssen, H.N.; Doornbos, R.
1975-01-01
In a recent paper Snee and Marquardt [8] considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of this
Optimal designs for linear mixture models
Mendieta, E.J.; Linssen, H.N.; Doornbos, R.
1975-01-01
In a recent paper Snee and Marquardt (1974) considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of
Pareto optimality in infinite horizon linear quadratic differential games
Reddy, P.V.; Engwerda, J.C.
2013-01-01
In this article we derive conditions for the existence of Pareto optimal solutions for linear quadratic infinite horizon cooperative differential games. First, we present a necessary and sufficient characterization for Pareto optimality which translates to solving a set of constrained optimal
Binary Cockroach Swarm Optimization for Combinatorial Optimization Problem
Directory of Open Access Journals (Sweden)
Ibidun Christiana Obagbuwa
2016-09-01
Full Text Available The Cockroach Swarm Optimization (CSO algorithm is inspired by cockroach social behavior. It is a simple and efficient meta-heuristic algorithm and has been applied to solve global optimization problems successfully. The original CSO algorithm and its variants operate mainly in continuous search space and cannot solve binary-coded optimization problems directly. Many optimization problems have their decision variables in binary. Binary Cockroach Swarm Optimization (BCSO is proposed in this paper to tackle such problems and was evaluated on the popular Traveling Salesman Problem (TSP, which is considered to be an NP-hard Combinatorial Optimization Problem (COP. A transfer function was employed to map a continuous search space CSO to binary search space. The performance of the proposed algorithm was tested firstly on benchmark functions through simulation studies and compared with the performance of existing binary particle swarm optimization and continuous space versions of CSO. The proposed BCSO was adapted to TSP and applied to a set of benchmark instances of symmetric TSP from the TSP library. The results of the proposed Binary Cockroach Swarm Optimization (BCSO algorithm on TSP were compared to other meta-heuristic algorithms.
Optimization and inverse problems in electromagnetism
Wiak, Sławomir
2003-01-01
From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...
Optimal recombination in genetic algorithms for combinatorial optimization problems: Part I
Directory of Open Access Journals (Sweden)
Eremeev Anton V.
2014-01-01
Full Text Available This paper surveys results on complexity of the optimal recombination problem (ORP, which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We consider efficient reductions of the ORPs, allowing to establish polynomial solvability or NP-hardness of the ORPs, as well as direct proofs of hardness results. Part I presents the basic principles of optimal recombination with a survey of results on Boolean Linear Programming Problems. Part II (to appear in a subsequent issue is devoted to the ORPs for problems which are naturally formulated in terms of search for an optimal permutation.
Crashworthiness design optimization using multipoint sequential linear programming
Etman, L.F.P.; Adriaens, J.M.T.A.; Slagmaat, van M.T.P.; Schoofs, A.J.G.
1996-01-01
A design optimization tool has been developed for the crash victim simulation software MADYMO. The crash worthiness optimization problem is characterized by a noisy behaviour of objective function and constraints. Additionally, objective function and constraint values follow from a computationally
ON PROBLEM OF REGIONAL WAREHOUSE AND TRANSPORT INFRASTRUCTURE OPTIMIZATION
Directory of Open Access Journals (Sweden)
I. Yu. Miretskiy
2017-01-01
Full Text Available The article suggests an approach of solving the problem of warehouse and transport infrastructure optimization in a region. The task is to determine the optimal capacity and location of the support network of warehouses in the region, as well as power, composition and location of motor fleets. Optimization is carried out using mathematical models of a regional warehouse network and a network of motor fleets. These models are presented as mathematical programming problems with separable functions. The process of finding the optimal solution of problems is complicated due to high dimensionality, non-linearity of functions, and the fact that a part of variables are constrained to integer, and some variables can take values only from a discrete set. Given the mentioned above complications search for an exact solution was rejected. The article suggests an approximate approach to solving problems. This approach employs effective computational schemes for solving multidimensional optimization problems. We use the continuous relaxation of the original problem to obtain its approximate solution. An approximately optimal solution of continuous relaxation is taken as an approximate solution of the original problem. The suggested solution method implies linearization of the obtained continuous relaxation and use of the separable programming scheme and the scheme of branches and bounds. We describe the use of the simplex method for solving the linearized continuous relaxation of the original problem and the specific moments of the branches and bounds method implementation. The paper shows the finiteness of the algorithm and recommends how to accelerate process of finding a solution.
The regular indefinite linear-quadratic problem with linear endpoint constraints
Soethoudt, J.M.; Trentelman, H.L.
1989-01-01
This paper deals with the infinite horizon linear-quadratic problem with indefinite cost. Given a linear system, a quadratic cost functional and a subspace of the state space, we consider the problem of minimizing the cost functional over all inputs for which the state trajectory converges to that
Infeasible Interior-Point Methods for Linear Optimization Based on Large Neighborhood
Asadi, A.R.; Roos, C.
2015-01-01
In this paper, we design a class of infeasible interior-point methods for linear optimization based on large neighborhood. The algorithm is inspired by a full-Newton step infeasible algorithm with a linear convergence rate in problem dimension that was recently proposed by the second author.
Quantum optimal control theory in the linear response formalism
International Nuclear Information System (INIS)
Castro, Alberto; Tokatly, I. V.
2011-01-01
Quantum optimal control theory (QOCT) aims at finding an external field that drives a quantum system in such a way that optimally achieves some predefined target. In practice, this normally means optimizing the value of some observable, a so-called merit function. In consequence, a key part of the theory is a set of equations, which provides the gradient of the merit function with respect to parameters that control the shape of the driving field. We show that these equations can be straightforwardly derived using the standard linear response theory, only requiring a minor generalization: the unperturbed Hamiltonian is allowed to be time dependent. As a result, the aforementioned gradients are identified with certain response functions. This identification leads to a natural reformulation of QOCT in terms of the Keldysh contour formalism of the quantum many-body theory. In particular, the gradients of the merit function can be calculated using the diagrammatic technique for nonequilibrium Green's functions, which should be helpful in the application of QOCT to computationally difficult many-electron problems.
Robust C subroutines for non-linear optimization
DEFF Research Database (Denmark)
Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun
2004-01-01
This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems. The intention is that the routines should use the currently best algorithms available. All routines have standardized calls, and the user does not have...... by changing 1 to 0. The present report is a new and updated version of a previous report NI-91-03 with the same title, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated from Fortran to C. The reason for writing the present report is that some...... of the C subroutines have been replaced by more effective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modi ed to some extent. For a description of the original Fortran subroutines see the report [17]. The software...
Optimization for nonlinear inverse problem
International Nuclear Information System (INIS)
Boyadzhiev, G.; Brandmayr, E.; Pinat, T.; Panza, G.F.
2007-06-01
The nonlinear inversion of geophysical data in general does not yield a unique solution, but a single model, representing the investigated field, is preferred for an easy geological interpretation of the observations. The analyzed region is constituted by a number of sub-regions where the multi-valued nonlinear inversion is applied, which leads to a multi-valued solution. Therefore, combining the values of the solution in each sub-region, many acceptable models are obtained for the entire region and this complicates the geological interpretation of geophysical investigations. In this paper are presented new methodologies, capable to select one model, among all acceptable ones, that satisfies different criteria of smoothness in the explored space of solutions. In this work we focus on the non-linear inversion of surface waves dispersion curves, which gives structural models of shear-wave velocity versus depth, but the basic concepts have a general validity. (author)
Numerical Methods for Solution of the Extended Linear Quadratic Control Problem
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Frison, Gianluca; Gade-Nielsen, Nicolai Fog
2012-01-01
In this paper we present the extended linear quadratic control problem, its efficient solution, and a discussion of how it arises in the numerical solution of nonlinear model predictive control problems. The extended linear quadratic control problem is the optimal control problem corresponding...... to the Karush-Kuhn-Tucker system that constitute the majority of computational work in constrained nonlinear and linear model predictive control problems solved by efficient MPC-tailored interior-point and active-set algorithms. We state various methods of solving the extended linear quadratic control problem...... and discuss instances in which it arises. The methods discussed in the paper have been implemented in efficient C code for both CPUs and GPUs for a number of test examples....
Bruhn, Peter; Geyer-Schulz, Andreas
2002-01-01
In this paper, we introduce genetic programming over context-free languages with linear constraints for combinatorial optimization, apply this method to several variants of the multidimensional knapsack problem, and discuss its performance relative to Michalewicz's genetic algorithm with penalty functions. With respect to Michalewicz's approach, we demonstrate that genetic programming over context-free languages with linear constraints improves convergence. A final result is that genetic programming over context-free languages with linear constraints is ideally suited to modeling complementarities between items in a knapsack problem: The more complementarities in the problem, the stronger the performance in comparison to its competitors.
Fuzzy solution of the linear programming problem with interval coefficients in the constraints
Dorota Kuchta
2005-01-01
A fuzzy concept of solving the linear programming problem with interval coefficients is proposed. For each optimism level of the decision maker (where the optimism concerns the certainty that no errors have been committed in the estimation of the interval coefficients and the belief that optimistic realisations of the interval coefficients will occur) another interval solution of the problem will be generated and the decision maker will be able to choose the final solution having a complete v...
FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS
Directory of Open Access Journals (Sweden)
Evans BAIDOO
2017-03-01
Full Text Available Modern real world science and engineering problems can be classified as multi-objective optimisation problems which demand for expedient and efficient stochastic algorithms to respond to the optimization needs. This paper presents an object-oriented software application that implements a firework optimization algorithm for function optimization problems. The algorithm, a kind of parallel diffuse optimization algorithm is based on the explosive phenomenon of fireworks. The algorithm presented promising results when compared to other population or iterative based meta-heuristic algorithm after it was experimented on five standard benchmark problems. The software application was implemented in Java with interactive interface which allow for easy modification and extended experimentation. Additionally, this paper validates the effect of runtime on the algorithm performance.
International Nuclear Information System (INIS)
Zavaljevski, N.
1985-01-01
Proposed optimization procedure is fast due to application of linear programming. Non-linear constraints which demand iterative application of linear programming are slowing down the calculation. Linearization can be done by different procedures starting from simple empirical rules for fuel in-core management to complicated general perturbation theory with higher order of corrections. A mathematical model was formulated for optimization of improved fuel cycle. A detailed algorithm for determining minimum of fresh fuel at the beginning of each fuel cycle is shown and the problem is linearized by first order perturbation theory and it is optimized by linear programming. Numerical illustration of the proposed method was done for the experimental reactor mostly for saving computer time
An intutionistic fuzzy optimization approach to vendor selection problem
Directory of Open Access Journals (Sweden)
Prabjot Kaur
2016-09-01
Full Text Available Selecting the right vendor is an important business decision made by any organization. The decision involves multiple criteria and if the objectives vary in preference and scope, then nature of decision becomes multiobjective. In this paper, a vendor selection problem has been formulated as an intutionistic fuzzy multiobjective optimization where appropriate number of vendors is to be selected and order allocated to them. The multiobjective problem includes three objectives: minimizing the net price, maximizing the quality, and maximizing the on time deliveries subject to supplier's constraints. The objection function and the demand are treated as intutionistic fuzzy sets. An intutionistic fuzzy set has its ability to handle uncertainty with additional degrees of freedom. The Intutionistic fuzzy optimization (IFO problem is converted into a crisp linear form and solved using optimization software Tora. The advantage of IFO is that they give better results than fuzzy/crisp optimization. The proposed approach is explained by a numerical example.
Approximative solutions of stochastic optimization problem
Czech Academy of Sciences Publication Activity Database
Lachout, Petr
2010-01-01
Roč. 46, č. 3 (2010), s. 513-523 ISSN 0023-5954 R&D Projects: GA ČR GA201/08/0539 Institutional research plan: CEZ:AV0Z10750506 Keywords : Stochastic optimization problem * sensitivity * approximative solution Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/SI/lachout-approximative solutions of stochastic optimization problem.pdf
Problem of detecting inclusions by topological optimization
Directory of Open Access Journals (Sweden)
I. Faye
2014-01-01
Full Text Available In this paper we propose a new method to detect inclusions. The proposed method is based on shape and topological optimization tools. In fact after presenting the problem, we use topologication optimization tools to detect inclusions in the domain. Numerical results are presented.
Using combinatorial problem decomposition for optimizing plutonium inventory management
International Nuclear Information System (INIS)
Niquil, Y.; Gondran, M.; Voskanian, A.; Paris-11 Univ., 91 - Orsay
1997-03-01
Plutonium Inventory Management Optimization can be modeled as a very large 0-1 linear program. To solve it, problem decomposition is necessary, since other classic techniques are not efficient for such a size. The first decomposition consists in favoring constraints that are the most difficult to reach and variables that have the highest influence on the cost: fortunately, both correspond to stock output decisions. The second decomposition consists in mixing continuous linear program solving and integer linear program solving. Besides, the first decisions to be taken are systematically favored, for they are based on data considered to be sure, when data supporting later decisions in known with less accuracy and confidence. (author)
LinvPy : a Python package for linear inverse problems
Beaud, Guillaume François Paul
2016-01-01
The goal of this project is to make a Python package including the tau-estimator algorithm to solve linear inverse problems. The package must be distributed, well documented, easy to use and easy to extend for future developers.
Formulated linear programming problems from game theory and its ...
African Journals Online (AJOL)
Formulated linear programming problems from game theory and its computer implementation using Tora package. ... Game theory, a branch of operations research examines the various concepts of decision ... AJOL African Journals Online.
On a non-linear pseudodifferential boundary value problem
International Nuclear Information System (INIS)
Nguyen Minh Chuong.
1989-12-01
A pseudodifferential boundary value problem for operators with symbols taking values in Sobolev spaces and with non-linear right-hand side was studied. Existence and uniqueness theorems were proved. (author). 11 refs
DESIGN OF EDUCATIONAL PROBLEMS ON LINEAR PROGRAMMING USING SYSTEMS OF COMPUTER MATHEMATICS
Directory of Open Access Journals (Sweden)
Volodymyr M. Mykhalevych
2013-11-01
Full Text Available From a perspective of the theory of educational problems a problem of substitution in the conditions of ICT use of one discipline by an educational problem of another discipline is represented. Through the example of mathematical problems of linear programming it is showed that a student’s method of operation in the course of an educational problem solving is determinant in the identification of an educational problem in relation to a specific discipline: linear programming, informatics, mathematical modeling, methods of optimization, automatic control theory, calculus etc. It is substantiated the necessity of linear programming educational problems renovation with the purpose of making students free of bulky similar arithmetic calculations and notes which often becomes a barrier to a deeper understanding of key ideas taken as a basis of algorithms used by them.
A property of assignment type mixed integer linear programming problems
Benders, J.F.; van Nunen, J.A.E.E.
1982-01-01
In this paper we will proof that rather tight upper bounds can be given for the number of non-unique assignments that are achieved after solving the linear programming relaxation of some types of mixed integer linear assignment problems. Since in these cases the number of splitted assignments is
Experiences with linear solvers for oil reservoir simulation problems
Energy Technology Data Exchange (ETDEWEB)
Joubert, W.; Janardhan, R. [Los Alamos National Lab., NM (United States); Biswas, D.; Carey, G.
1996-12-31
This talk will focus on practical experiences with iterative linear solver algorithms used in conjunction with Amoco Production Company`s Falcon oil reservoir simulation code. The goal of this study is to determine the best linear solver algorithms for these types of problems. The results of numerical experiments will be presented.
Multisplitting for linear, least squares and nonlinear problems
Energy Technology Data Exchange (ETDEWEB)
Renaut, R.
1996-12-31
In earlier work, presented at the 1994 Iterative Methods meeting, a multisplitting (MS) method of block relaxation type was utilized for the solution of the least squares problem, and nonlinear unconstrained problems. This talk will focus on recent developments of the general approach and represents joint work both with Andreas Frommer, University of Wupertal for the linear problems and with Hans Mittelmann, Arizona State University for the nonlinear problems.
Fuzzy chance constrained linear programming model for scrap charge optimization in steel production
DEFF Research Database (Denmark)
Rong, Aiying; Lahdelma, Risto
2008-01-01
the uncertainty based on fuzzy set theory and constrain the failure risk based on a possibility measure. Consequently, the scrap charge optimization problem is modeled as a fuzzy chance constrained linear programming problem. Since the constraints of the model mainly address the specification of the product...
Linear Programming and Its Application to Pattern Recognition Problems
Omalley, M. J.
1973-01-01
Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.
Optimal angle reduction - a behavioral approach to linear system appromixation
Roorda, B.; Weiland, S.
2001-01-01
We investigate the problem of optimal state reduction under minimization of the angle between system behaviors. The angle is defined in a worst-case sense, as the largest angle that can occur between a system trajectory and its optimal approximation in the reduced-order model. This problem is
Stochastic global optimization as a filtering problem
International Nuclear Information System (INIS)
Stinis, Panos
2012-01-01
We present a reformulation of stochastic global optimization as a filtering problem. The motivation behind this reformulation comes from the fact that for many optimization problems we cannot evaluate exactly the objective function to be optimized. Similarly, we may not be able to evaluate exactly the functions involved in iterative optimization algorithms. For example, we may only have access to noisy measurements of the functions or statistical estimates provided through Monte Carlo sampling. This makes iterative optimization algorithms behave like stochastic maps. Naive global optimization amounts to evolving a collection of realizations of this stochastic map and picking the realization with the best properties. This motivates the use of filtering techniques to allow focusing on realizations that are more promising than others. In particular, we present a filtering reformulation of global optimization in terms of a special case of sequential importance sampling methods called particle filters. The increasing popularity of particle filters is based on the simplicity of their implementation and their flexibility. We utilize the flexibility of particle filters to construct a stochastic global optimization algorithm which can converge to the optimal solution appreciably faster than naive global optimization. Several examples of parametric exponential density estimation are provided to demonstrate the efficiency of the approach.
An introduction to fuzzy linear programming problems theory, methods and applications
Kaur, Jagdeep
2016-01-01
The book presents a snapshot of the state of the art in the field of fully fuzzy linear programming. The main focus is on showing current methods for finding the fuzzy optimal solution of fully fuzzy linear programming problems in which all the parameters and decision variables are represented by non-negative fuzzy numbers. It presents new methods developed by the authors, as well as existing methods developed by others, and their application to real-world problems, including fuzzy transportation problems. Moreover, it compares the outcomes of the different methods and discusses their advantages/disadvantages. As the first work to collect at one place the most important methods for solving fuzzy linear programming problems, the book represents a useful reference guide for students and researchers, providing them with the necessary theoretical and practical knowledge to deal with linear programming problems under uncertainty.
Optimization of insulation of a linear Fresnel collector
Ardekani, Mohammad Moghimi; Craig, Ken J.; Meyer, Josua P.
2017-06-01
This study presents a simulation based optimization study of insulation around the cavity receiver of a Linear Fresnel Collector. This optimization study focuses on minimizing heat losses from a cavity receiver (maximizing plant thermal efficiency), while minimizing insulation cross-sectional area (minimizing material cost and cavity dead load), which leads to a cheaper and thermally more efficient LFC cavity receiver.
Topology optimization for transient heat transfer problems
DEFF Research Database (Denmark)
Zeidan, Said; Sigmund, Ole; Lazarov, Boyan Stefanov
The focus of this work is on passive control of transient heat transfer problems using the topology optimization (TopOpt) method [1]. The goal is to find distributions of a limited amount of phase change material (PCM), within a given design domain, which optimizes the heat energy storage [2]. Our......, TopOpt has later been extended to transient problems in mechanics and photonics (e.g. [5], [6] and [7]). In the presented approach, the optimization is gradient-based, where in each iteration the non-steady heat conduction equation is solved,using the finite element method and an appropriate time......-stepping scheme. A PCM can efficiently absorb heat while keeping its temperature nearly unchanged [8]. The use of PCM ine.g. electronics [9] and mechanics [10], yields improved performance and lower costs depending on a.o., the spatial distribution of PCM.The considered problem consists in optimizing...
Belief Propagation Algorithm for Portfolio Optimization Problems.
Shinzato, Takashi; Yasuda, Muneki
2015-01-01
The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.
Belief Propagation Algorithm for Portfolio Optimization Problems.
Directory of Open Access Journals (Sweden)
Takashi Shinzato
Full Text Available The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.
Essential linear algebra with applications a problem-solving approach
Andreescu, Titu
2014-01-01
This textbook provides a rigorous introduction to linear algebra in addition to material suitable for a more advanced course while emphasizing the subject’s interactions with other topics in mathematics such as calculus and geometry. A problem-based approach is used to develop the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality. Key features include: • a thorough presentation of the main results in linear algebra along with numerous examples to illustrate the theory; • over 500 problems (half with complete solutions) carefully selected for their elegance and theoretical significance; • an interleaved discussion of geometry and linear algebra, giving readers a solid understanding of both topics and the relationship between them. Numerous exercises and well-chosen examples make this text suitable for advanced courses at the junior or senior levels. It can also serve as a source of supplementary problems for a sophomore-level course. ...
Quasi-stability of a vector trajectorial problem with non-linear partial criteria
Directory of Open Access Journals (Sweden)
Vladimir A. Emelichev
2003-10-01
Full Text Available Multi-objective (vector combinatorial problem of finding the Pareto set with four kinds of non-linear partial criteria is considered. Necessary and sufficient conditions of that kind of stability of the problem (quasi-stability are obtained. The problem is a discrete analogue of the lower semicontinuity by Hausdorff of the optimal mapping. Mathematics Subject Classification 2000: 90C10, 90C05, 90C29, 90C31.
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
Students' errors in solving linear equation word problems: Case ...
African Journals Online (AJOL)
kofi.mereku
Development in most areas of life is based on effective knowledge of science and ... Problem solving, as used in mathematics education literature, refers ... word problems, on the other hand, are those linear equation tasks or ... taught LEWPs in the junior high school, many of them reach the senior high school without a.
Directory of Open Access Journals (Sweden)
Yi-hua Zhong
2013-01-01
Full Text Available Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.
Aihong Ren
2016-01-01
This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solut...
Delayed Stochastic Linear-Quadratic Control Problem and Related Applications
Directory of Open Access Journals (Sweden)
Li Chen
2012-01-01
stochastic differential equations (FBSDEs with Itô’s stochastic delay equations as forward equations and anticipated backward stochastic differential equations as backward equations. Especially, we present the optimal feedback regulator for the time delay system via a new type of Riccati equations and also apply to a population optimal control problem.
Optimization for decision making linear and quadratic models
Murty, Katta G
2010-01-01
While maintaining the rigorous linear programming instruction required, Murty's new book is unique in its focus on developing modeling skills to support valid decision-making for complex real world problems, and includes solutions to brand new algorithms.
Particle swarm as optimization tool in complex nuclear engineering problems
International Nuclear Information System (INIS)
Medeiros, Jose Antonio Carlos Canedo
2005-06-01
Due to its low computational cost, gradient-based search techniques associated to linear programming techniques are being used as optimization tools. These techniques, however, when applied to multimodal search spaces, can lead to local optima. When finding solutions for complex multimodal domains, random search techniques are being used with great efficacy. In this work we exploit the swarm optimization algorithm search power capacity as an optimization tool for the solution of complex high dimension and multimodal search spaces of nuclear problems. Due to its easy and natural representation of high dimension domains, the particle swarm optimization was applied with success for the solution of complex nuclear problems showing its efficacy in the search of solutions in high dimension and complex multimodal spaces. In one of these applications it enabled a natural and trivial solution in a way not obtained with other methods confirming the validity of its application. (author)
Path optimization method for the sign problem
Directory of Open Access Journals (Sweden)
Ohnishi Akira
2018-01-01
Full Text Available We propose a path optimization method (POM to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t(f ϵ R and by optimizing f(t to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.
Topology optimization of fluid mechanics problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan
While topology optimization for solid continuum structures have been studied for about 20 years and for the special case of trusses for many more years, topology optimization of fluid mechanics problems is more recent. Borrvall and Petersson [1] is the seminal reference for topology optimization......D Navier-Stokes equation as well as an example with convection dominated transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the present work gives a proof-of-concept for the application of the method within fluid mechanics problems and it remains...... processing tool. Prior to design manufacturing this allows the engineer to quantify the performance of the computed topology design using standard, credible analysis tools with a body-fitted mesh. [1] Borrvall and Petersson (2003) "Topology optimization of fluids in Stokes flow", Int. J. Num. Meth. Fluids...
Topology Optimization for Transient Wave Propagation Problems
DEFF Research Database (Denmark)
Matzen, René
The study of elastic and optical waves together with intensive material research has revolutionized everyday as well as cutting edge technology in very tangible ways within the last century. Therefore it is important to continue the investigative work towards improving existing as well as innovate...... new technology, by designing new materials and their layout. The thesis presents a general framework for applying topology optimization in the design of material layouts for transient wave propagation problems. In contrast to the high level of modeling in the frequency domain, time domain topology...... optimization is still in its infancy. A generic optimization problem is formulated with an objective function that can be field, velocity, and acceleration dependent, as well as it can accommodate the dependency of filtered signals essential in signal shape optimization [P3]. The analytical design gradients...
A joint routing and speed optimization problem
Fukasawa, Ricardo; He, Qie; Santos, Fernando; Song, Yongjia
2016-01-01
Fuel cost contributes to a significant portion of operating cost in cargo transportation. Though classic routing models usually treat fuel cost as input data, fuel consumption heavily depends on the travel speed, which has led to the study of optimizing speeds over a given fixed route. In this paper, we propose a joint routing and speed optimization problem to minimize the total cost, which includes the fuel consumption cost. The only assumption made on the dependence between the fuel cost an...
Optimal consumption problem in the Vasicek model
Directory of Open Access Journals (Sweden)
Jakub Trybuła
2015-01-01
Full Text Available We consider the problem of an optimal consumption strategy on the infinite time horizon based on the hyperbolic absolute risk aversion utility when the interest rate is an Ornstein-Uhlenbeck process. Using the method of subsolution and supersolution we obtain the existence of solutions of the dynamic programming equation. We illustrate the paper with a numerical example of the optimal consumption strategy and the value function.
Hybrid Method for Solving Inventory Problems with a Linear ...
African Journals Online (AJOL)
Osagiede and Omosigho (2004) proposed a direct search method for identifying the number of replenishment when the demand pattern is linearly increasing. The main computational task in this direct search method was associated with finding the optimal number of replenishments. To accelerate the use of this method, the ...
Multiparameter Optimization for Electromagnetic Inversion Problem
Directory of Open Access Journals (Sweden)
M. Elkattan
2017-10-01
Full Text Available Electromagnetic (EM methods have been extensively used in geophysical investigations such as mineral and hydrocarbon exploration as well as in geological mapping and structural studies. In this paper, we developed an inversion methodology for Electromagnetic data to determine physical parameters of a set of horizontal layers. We conducted Forward model using transmission line method. In the inversion part, we solved multi parameter optimization problem where, the parameters are conductivity, dielectric constant, and permeability of each layer. The optimization problem was solved by simulated annealing approach. The inversion methodology was tested using a set of models representing common geological formations.
Single-machine common/slack due window assignment problems with linear decreasing processing times
Zhang, Xingong; Lin, Win-Chin; Wu, Wen-Hsiang; Wu, Chin-Chia
2017-08-01
This paper studies linear non-increasing processing times and the common/slack due window assignment problems on a single machine, where the actual processing time of a job is a linear non-increasing function of its starting time. The aim is to minimize the sum of the earliness cost, tardiness cost, due window location and due window size. Some optimality results are discussed for the common/slack due window assignment problems and two O(n log n) time algorithms are presented to solve the two problems. Finally, two examples are provided to illustrate the correctness of the corresponding algorithms.
Non-linear programming method in optimization of fast reactors
International Nuclear Information System (INIS)
Pavelesku, M.; Dumitresku, Kh.; Adam, S.
1975-01-01
Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)
Solving global optimization problems on GPU cluster
Energy Technology Data Exchange (ETDEWEB)
Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya [Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue 23, 603950 Nizhni Novgorod (Russian Federation)
2016-06-08
The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.
Optimal selection for shielding materials by fuzzy linear programming
International Nuclear Information System (INIS)
Kanai, Y.; Miura, N.; Sugasawa, S.
1996-01-01
An application of fuzzy linear programming methods to optimization of a radiation shield is presented. The main purpose of the present study is the choice of materials and the search of the ratio of mixture-component as the first stage of the methodology on optimum shielding design according to individual requirements of nuclear reactor, reprocessing facility, shipping cask installing spent fuel, ect. The characteristic values for the shield optimization may be considered their cost, spatial space, weight and some shielding qualities such as activation rate and total dose rate for neutron and gamma ray (includes secondary gamma ray). This new approach can reduce huge combination calculations for conventional two-valued logic approaches to representative single shielding calculation by group-wised optimization parameters determined in advance. Using the fuzzy linear programming method, possibilities for reducing radiation effects attainable in optimal compositions hydrated, lead- and boron-contained materials are investigated
International Nuclear Information System (INIS)
Loock, Peter van; Nemoto, Kae; Munro, William J.; Raynal, Philippe; Luetkenhaus, Norbert
2006-01-01
We discuss the problem of implementing generalized measurements [positive operator-valued measures (POVMs)] with linear optics, either based upon a static linear array or including conditional dynamics. In our approach, a given POVM shall be identified as a solution to an optimization problem for a chosen cost function. We formulate a general principle: the implementation is only possible if a linear-optics circuit exists for which the quantum mechanical optimum (minimum) is still attainable after dephasing the corresponding quantum states. The general principle enables us, for instance, to derive a set of necessary conditions for the linear-optics implementation of the POVM that realizes the quantum mechanically optimal unambiguous discrimination of two pure nonorthogonal states. This extends our previous results on projection measurements and the exact discrimination of orthogonal states
Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution
Energy Technology Data Exchange (ETDEWEB)
Hamadameen, Abdulqader Othman [Optimization, Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia); Zainuddin, Zaitul Marlizawati [Department of Mathematical Sciences, Faculty of Science, UTM (Malaysia)
2014-06-19
This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.
Problems of the power plant shield optimization
International Nuclear Information System (INIS)
Abagyan, A.A.; Dubinin, A.A.; Zhuravlev, V.I.; Kurachenko, Yu.A.; Petrov, Eh.E.
1981-01-01
General approaches to the solution of problems on the nuclear power plant radiation shield optimization are considered. The requirements to the shield parameters are formulated in a form of restrictions on a number of functionals, determined by the solution of γ quantum and neutron transport equations or dimensional and weight characteristics of shield components. Functional determined by weight-dimensional parameters (shield cost, mass and thickness) and functionals, determined by radiation fields (equivalent dose rate, produced by neutrons and γ quanta, activation functional, radiation functional, heat flux, integral heat flux in a particular part of the shield volume, total energy flux through a particular shield surface are considered. The following methods of numerical solution of simplified optimization problems are discussed: semiempirical methods using radiation transport physical leaks, numerical solution of approximate transport equations, numerical solution of transport equations for the simplest configurations making possible to decrease essentially a number of variables in the problem. The conclusion is drawn that the attained level of investigations on the problem of nuclear power plant shield optimization gives the possibility to pass on at present to the solution of problems with a more detailed account of the real shield operating conditions (shield temperature field account, its strength and other characteristics) [ru
Proposal of Evolutionary Simplex Method for Global Optimization Problem
Shimizu, Yoshiaki
To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.
Linear Optimization of Frequency Spectrum Assignments Across System
2016-03-01
selection tools, frequency allocation, transmission optimization, electromagnetic maneuver warfare, electronic protection, assignment model 15. NUMBER ...Characteristics Modeled ...............................................................29 Table 10. Antenna Systems Modeled , Number of Systems and...surveillance EW early warning GAMS general algebraic modeling system GHz gigahertz IDE integrated development environment ILP integer linear program
Simultaneous Optimization of Decisions Using a Linear Utility Function.
Vos, Hans J.
1990-01-01
An approach is presented to simultaneously optimize decision rules for combinations of elementary decisions through a framework derived from Bayesian decision theory. The developed linear utility model for selection-mastery decisions was applied to a sample of 43 first year medical students to illustrate the procedure. (SLD)
Musthofa, M.W.; Salmah, S.; Engwerda, Jacob; Suparwanto, A.
This paper studies the robust optimal control problem for descriptor systems. We applied differential game theory to solve the disturbance attenuation problem. The robust control problem was converted into a reduced ordinary zero-sum game. Within a linear quadratic setting, we solved the problem for
Optimized multiple linear mappings for single image super-resolution
Zhang, Kaibing; Li, Jie; Xiong, Zenggang; Liu, Xiuping; Gao, Xinbo
2017-12-01
Learning piecewise linear regression has been recognized as an effective way for example learning-based single image super-resolution (SR) in literature. In this paper, we employ an expectation-maximization (EM) algorithm to further improve the SR performance of our previous multiple linear mappings (MLM) based SR method. In the training stage, the proposed method starts with a set of linear regressors obtained by the MLM-based method, and then jointly optimizes the clustering results and the low- and high-resolution subdictionary pairs for regression functions by using the metric of the reconstruction errors. In the test stage, we select the optimal regressor for SR reconstruction by accumulating the reconstruction errors of m-nearest neighbors in the training set. Thorough experimental results carried on six publicly available datasets demonstrate that the proposed SR method can yield high-quality images with finer details and sharper edges in terms of both quantitative and perceptual image quality assessments.
The maximally achievable accuracy of linear optimal regulators and linear optimal filters
Kwakernaak, H.; Sivan, Raphael
1972-01-01
A linear system with a quadratic cost function, which is a weighted sum of the integral square regulation error and the integral square input, is considered. What happens to the integral square regulation error as the relative weight of the integral square input reduces to zero is investigated. In
Statistical physics of hard optimization problems
International Nuclear Information System (INIS)
Zdeborova, L.
2009-01-01
Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial (NP)-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this article is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfy ability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named ”locked” constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfy ability.
Statistical physics of hard optimization problems
International Nuclear Information System (INIS)
Zdeborova, L.
2009-01-01
Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an non-deterministic polynomial-complete problem the practically arising instances might, in fact, be easy to solve. The principal the question we address in the article is: How to recognize if an non-deterministic polynomial-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named 'locked' constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability (Authors)
Statistical physics of hard optimization problems
Zdeborová, Lenka
2009-06-01
Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial (NP)-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this article is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named "locked" constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability.
Optimal local dimming for LED-backlit LCD displays via linear programming
DEFF Research Database (Denmark)
Shu, Xiao; Wu, Xiaolin; Forchhammer, Søren
2012-01-01
and the attenuations of LCD pixels. The objective is to minimize the distortion in luminance reproduction due to the leakage of LCD and the coarse granularity of the LED lights. The optimization problem is formulated as one of linear programming, and both exact and approximate algorithms are proposed. Simulation...
Analytic semigroups and optimal regularity in parabolic problems
Lunardi, Alessandra
2012-01-01
The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in p
Beam dynamics problems for next generation linear colliders
International Nuclear Information System (INIS)
Yokoya, Kaoru
1990-01-01
The most critical issue for the feasibility of high-energy e + e - linear colliders is obviously the development of intense microwave power sources. Remaining problems, however, are not trivial and in fact some of them require several order-of-magnitude improvement from the existing SLC parameters. The present report summarizes the study status of the beam dynamics problems of high energy linear colliders with an exaggeration on the beam-beam phenomenon at the interaction region. There are four laboratories having linear collider plans, SLAC, CERN, Novosibirsk-Protovino, and KEK. The parameters of these projects scatter in some range but seem to converge slowly if one recalls the status five years ago. The beam energy will be below 500GeV. The basic requirements to the damping ring are the short damping time and small equilibrium emittance. All the proposed designs make use of tight focusing optics and strong wiggler magnets to meet these requirements and seem to have no major problems at least compared with other problems in the colliders. One of the major problems in the linac is the transverse beam blow-up due to the wake field created by the head of the bunch and, in the case of multiple bunches per pulse, by the preceeding bunches. (N.K.)
Linear finite element method for one-dimensional diffusion problems
Energy Technology Data Exchange (ETDEWEB)
Brandao, Michele A.; Dominguez, Dany S.; Iglesias, Susana M., E-mail: micheleabrandao@gmail.com, E-mail: dany@labbi.uesc.br, E-mail: smiglesias@uesc.br [Universidade Estadual de Santa Cruz (LCC/DCET/UESC), Ilheus, BA (Brazil). Departamento de Ciencias Exatas e Tecnologicas. Laboratorio de Computacao Cientifica
2011-07-01
We describe in this paper the fundamentals of Linear Finite Element Method (LFEM) applied to one-speed diffusion problems in slab geometry. We present the mathematical formulation to solve eigenvalue and fixed source problems. First, we discretized a calculus domain using a finite set of elements. At this point, we obtain the spatial balance equations for zero order and first order spatial moments inside each element. Then, we introduce the linear auxiliary equations to approximate neutron flux and current inside the element and architect a numerical scheme to obtain the solution. We offer numerical results for fixed source typical model problems to illustrate the method's accuracy for coarse-mesh calculations in homogeneous and heterogeneous domains. Also, we compare the accuracy and computational performance of LFEM formulation with conventional Finite Difference Method (FDM). (author)
Directory of Open Access Journals (Sweden)
Tae-Hyoung Kim
2017-01-01
Full Text Available This paper studies the metaheuristic optimizer-based direct identification of a multiple-mode system consisting of a finite set of linear regression representations of subsystems. To this end, the concept of a multiple-mode linear regression model is first introduced, and its identification issues are established. A method for reducing the identification problem for multiple-mode models to an optimization problem is also described in detail. Then, to overcome the difficulties that arise because the formulated optimization problem is inherently ill-conditioned and nonconvex, the cyclic-network-topology-based constrained particle swarm optimizer (CNT-CPSO is introduced, and a concrete procedure for the CNT-CPSO-based identification methodology is developed. This scheme requires no prior knowledge of the mode transitions between subsystems and, unlike some conventional methods, can handle a large amount of data without difficulty during the identification process. This is one of the distinguishing features of the proposed method. The paper also considers an extension of the CNT-CPSO-based identification scheme that makes it possible to simultaneously obtain both the optimal parameters of the multiple submodels and a certain decision parameter involved in the mode transition criteria. Finally, an experimental setup using a DC motor system is established to demonstrate the practical usability of the proposed metaheuristic optimizer-based identification scheme for developing a multiple-mode linear regression model.
Ahmet Demir; Utku Kose
2016-01-01
ABSTRACT In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Sc...
Ahmet Demir; Utku kose
2017-01-01
In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an...
Oscillatory solutions of the Cauchy problem for linear differential equations
Directory of Open Access Journals (Sweden)
Gro Hovhannisyan
2015-06-01
Full Text Available We consider the Cauchy problem for second and third order linear differential equations with constant complex coefficients. We describe necessary and sufficient conditions on the data for the existence of oscillatory solutions. It is known that in the case of real coefficients the oscillatory behavior of solutions does not depend on initial values, but we show that this is no longer true in the complex case: hence in practice it is possible to control oscillatory behavior by varying the initial conditions. Our Proofs are based on asymptotic analysis of the zeros of solutions, represented as linear combinations of exponential functions.
Problems of linear electron (polaron) transport theory in semiconductors
Klinger, M I
1979-01-01
Problems of Linear Electron (Polaron) Transport Theory in Semiconductors summarizes and discusses the development of areas in electron transport theory in semiconductors, with emphasis on the fundamental aspects of the theory and the essential physical nature of the transport processes. The book is organized into three parts. Part I focuses on some general topics in the theory of transport phenomena: the general dynamical theory of linear transport in dissipative systems (Kubo formulae) and the phenomenological theory. Part II deals with the theory of polaron transport in a crystalline semicon
Towards an ideal preconditioner for linearized Navier-Stokes problems
Energy Technology Data Exchange (ETDEWEB)
Murphy, M.F. [Univ. of Bristol (United Kingdom)
1996-12-31
Discretizing certain linearizations of the steady-state Navier-Stokes equations gives rise to nonsymmetric linear systems with indefinite symmetric part. We show that for such systems there exists a block diagonal preconditioner which gives convergence in three GMRES steps, independent of the mesh size and viscosity parameter (Reynolds number). While this {open_quotes}ideal{close_quotes} preconditioner is too expensive to be used in practice, it provides a useful insight into the problem. We then consider various approximations to the ideal preconditioner, and describe the eigenvalues of the preconditioned systems. Finally, we compare these preconditioners numerically, and present our conclusions.
Finite Optimal Stopping Problems: The Seller's Perspective
Hemmati, Mehdi; Smith, J. Cole
2011-01-01
We consider a version of an optimal stopping problem, in which a customer is presented with a finite set of items, one by one. The customer is aware of the number of items in the finite set and the minimum and maximum possible value of each item, and must purchase exactly one item. When an item is presented to the customer, she or he observes its…
A primal-dual exterior point algorithm for linear programming problems
Directory of Open Access Journals (Sweden)
Samaras Nikolaos
2009-01-01
Full Text Available The aim of this paper is to present a new simplex type algorithm for the Linear Programming Problem. The Primal - Dual method is a Simplex - type pivoting algorithm that generates two paths in order to converge to the optimal solution. The first path is primal feasible while the second one is dual feasible for the original problem. Specifically, we use a three-phase-implementation. The first two phases construct the required primal and dual feasible solutions, using the Primal Simplex algorithm. Finally, in the third phase the Primal - Dual algorithm is applied. Moreover, a computational study has been carried out, using randomly generated sparse optimal linear problems, to compare its computational efficiency with the Primal Simplex algorithm and also with MATLAB's Interior Point Method implementation. The algorithm appears to be very promising since it clearly shows its superiority to the Primal Simplex algorithm as well as its robustness over the IPM algorithm.
Directory of Open Access Journals (Sweden)
Yan Sun
2015-09-01
Full Text Available Purpose: The purpose of study is to solve the multi-modal transportation routing planning problem that aims to select an optimal route to move a consignment of goods from its origin to its destination through the multi-modal transportation network. And the optimization is from two viewpoints including cost and time. Design/methodology/approach: In this study, a bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. Minimizing the total transportation cost and the total transportation time are set as the optimization objectives of the model. In order to balance the benefit between the two objectives, Pareto optimality is utilized to solve the model by gaining its Pareto frontier. The Pareto frontier of the model can provide the multi-modal transportation operator (MTO and customers with better decision support and it is gained by the normalized normal constraint method. Then, an experimental case study is designed to verify the feasibility of the model and Pareto optimality by using the mathematical programming software Lingo. Finally, the sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case. Findings: The calculation results indicate that the proposed model and Pareto optimality have good performance in dealing with the bi-objective optimization. The sensitivity analysis also shows the influence of the variation of the demand and supply on the multi-modal transportation organization clearly. Therefore, this method can be further promoted to the practice. Originality/value: A bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. The Pareto frontier based sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case.
On Attainability of Optimal Solutions for Linear Elliptic Equations with Unbounded Coefficients
Directory of Open Access Journals (Sweden)
P. I. Kogut
2011-12-01
Full Text Available We study an optimal boundary control problem (OCP associated to a linear elliptic equation —div (Vj/ + A(xVy = f describing diffusion in a turbulent flow. The characteristic feature of this equation is the fact that, in applications, the stream matrix A(x = [a,ij(x]i,j=i,...,N is skew-symmetric, ац(х = —a,ji(x, measurable, and belongs to L -space (rather than L°°. An optimal solution to such problem can inherit a singular character of the original stream matrix A. We show that optimal solutions can be attainable by solutions of special optimal boundary control problems.
Noise Reduction with Optimal Variable Span Linear Filters
DEFF Research Database (Denmark)
Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll
2016-01-01
In this paper, the problem of noise reduction is addressed as a linear filtering problem in a novel way by using concepts from subspace-based enhancement methods, resulting in variable span linear filters. This is done by forming the filter coefficients as linear combinations of a number...... included in forming the filter. Using these concepts, a number of different filter designs are considered, like minimum distortion, Wiener, maximum SNR, and tradeoff filters. Interestingly, all these can be expressed as special cases of variable span filters. We also derive expressions for the speech...... demonstrate the advantages and properties of the variable span filter designs, and their potential performance gain compared to widely used speech enhancement methods....
Optimal control problem for the extended Fisher–Kolmogorov equation
Indian Academy of Sciences (India)
In this paper, the optimal control problem for the extended Fisher–Kolmogorov equation is studied. The optimal control under boundary condition is given, the existence of optimal solution to the equation is proved and the optimality system is established.
International Nuclear Information System (INIS)
Romeijn, H Edwin; Ahuja, Ravindra K; Dempsey, James F; Kumar, Arvind; Li, Jonathan G
2003-01-01
We present a novel linear programming (LP) based approach for efficiently solving the intensity modulated radiation therapy (IMRT) fluence-map optimization (FMO) problem to global optimality. Our model overcomes the apparent limitations of a linear-programming approach by approximating any convex objective function by a piecewise linear convex function. This approach allows us to retain the flexibility offered by general convex objective functions, while allowing us to formulate the FMO problem as a LP problem. In addition, a novel type of partial-volume constraint that bounds the tail averages of the differential dose-volume histograms of structures is imposed while retaining linearity as an alternative approach to improve dose homogeneity in the target volumes, and to attempt to spare as many critical structures as possible. The goal of this work is to develop a very rapid global optimization approach that finds high quality dose distributions. Implementation of this model has demonstrated excellent results. We found globally optimal solutions for eight 7-beam head-and-neck cases in less than 3 min of computational time on a single processor personal computer without the use of partial-volume constraints. Adding such constraints increased the running times by a factor of 2-3, but improved the sparing of critical structures. All cases demonstrated excellent target coverage (>95%), target homogeneity (<10% overdosing and <7% underdosing) and organ sparing using at least one of the two models
Directory of Open Access Journals (Sweden)
Jingtao Shi
2013-01-01
Full Text Available This paper is concerned with the relationship between maximum principle and dynamic programming for stochastic recursive optimal control problems. Under certain differentiability conditions, relations among the adjoint processes, the generalized Hamiltonian function, and the value function are given. A linear quadratic recursive utility portfolio optimization problem in the financial engineering is discussed as an explicitly illustrated example of the main result.
Using combinatorial problem decomposition for optimizing plutonium inventory management
Energy Technology Data Exchange (ETDEWEB)
Niquil, Y.; Gondran, M. [Electricite de France (EDF), 92 - Clamart (France). Direction des Etudes et Recherches; Voskanian, A. [Electricite de France (EDF), 92 - Clamart (France). Direction des Etudes et Recherches]|[Paris-11 Univ., 91 - Orsay (France). Lab. de Recherche en Informatique
1997-03-01
Plutonium Inventory Management Optimization can be modeled as a very large 0-1 linear program. To solve it, problem decomposition is necessary, since other classic techniques are not efficient for such a size. The first decomposition consists in favoring constraints that are the most difficult to reach and variables that have the highest influence on the cost: fortunately, both correspond to stock output decisions. The second decomposition consists in mixing continuous linear program solving and integer linear program solving. Besides, the first decisions to be taken are systematically favored, for they are based on data considered to be sure, when data supporting later decisions in known with less accuracy and confidence. (author) 7 refs.
Validation of optimization strategies using the linear structured production chains
Kusiak, Jan; Morkisz, Paweł; Oprocha, Piotr; Pietrucha, Wojciech; Sztangret, Łukasz
2017-06-01
Different optimization strategies applied to sequence of several stages of production chains were validated in this paper. Two benchmark problems described by ordinary differential equations (ODEs) were considered. A water tank and a passive CR-RC filter were used as the exemplary objects described by the first and the second order differential equations, respectively. Considered in the work optimization problems serve as the validators of strategies elaborated by the Authors. However, the main goal of research is selection of the best strategy for optimization of two real metallurgical processes which will be investigated in an on-going projects. The first problem will be the oxidizing roasting process of zinc sulphide concentrate where the sulphur from the input concentrate should be eliminated and the minimal concentration of sulphide sulphur in the roasted products has to be achieved. Second problem will be the lead refining process consisting of three stages: roasting to the oxide, oxide reduction to metal and the oxidizing refining. Strategies, which appear the most effective in considered benchmark problems will be candidates for optimization of the mentioned above industrial processes.
Directory of Open Access Journals (Sweden)
Hideki Katagiri
2017-10-01
Full Text Available This paper considers linear programming problems (LPPs where the objective functions involve discrete fuzzy random variables (fuzzy set-valued discrete random variables. New decision making models, which are useful in fuzzy stochastic environments, are proposed based on both possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy random variables can be transformed into deterministic nonlinear mathematical programming problems which can be solved through a conventional mathematical programming solver under practically reasonable assumptions. A numerical example of agriculture production problems is given to demonstrate the applicability of the proposed models to real-world problems in fuzzy stochastic environments.
An interpretation of the Gini coefficient in a Stiglitz two-type optimal tax problem
DEFF Research Database (Denmark)
Rasmussen, Bo Sandemann
2015-01-01
In a two-type Stiglitz (1982) model of optimal non-linear taxation it is shown that when the utility function relating to consumption is logaritmic the shadow price of the incentive constraint relating to the optimal tax problem exactly equals the Gini coefficient of the second-best optimal income...
Optimizing Human Diet Problem Based on Price and Taste Using
Directory of Open Access Journals (Sweden)
Hossein EGHBALI
2012-07-01
Full Text Available Low price and good taste of foods are regarded as two major factors for optimal human nutrition. Due to price fluctuations and taste diversity, these two factors cannot be certainly and determinately evaluated. This problem must be viewed from another perspective because of the uncertainty about the amount of nutrients per unit of foods and also diversity of people’s daily needs to receive them.This paper discusses human diet problem in fuzzy environment. The approach deals with multi-objective fuzzy linear programming problem using a fuzzy programming technique for its solution. By prescribing a diet merely based on crisp data, some ofthe realities are neglected. For the same reason, we dealt with human diet problem through fuzzy approach. Results indicated uncertainty about factors of nutrition diet -including taste and price, amount of nutrients and their intake- would affect diet quality, making the proposed diet more realistic.
Directory of Open Access Journals (Sweden)
M. S. MANNA
2011-12-01
Full Text Available The development of electromagnetic devices as machines, transformers, heating devices confronts the engineers with several problems. For the design of an optimized geometry and the prediction of the operational behaviour an accurate knowledge of the dependencies of the field quantities inside the magnetic circuits is necessary. This paper provides the eddy current and core flux density distribution analysis in linear induction motor. Magnetic flux in the air gap of the Linear Induction Motor (LIM is reduced to various losses such as end effects, fringes, effect, skin effects etc. The finite element based software package COMSOL Multiphysics Inc. USA is used to get the reliable and accurate computational results for optimization the performance of Linear Induction Motor (LIM. The geometrical characteristics of LIM are varied to find the optimal point of thrust and minimum flux leakage during static and dynamic conditions.
Directory of Open Access Journals (Sweden)
Ahmet Demir
2017-01-01
Full Text Available In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an important role on providing software related techniques to improve the associated literature. Today, intelligent optimization techniques based on Artificial Intelligence are widely used for optimization problems. The objective of this paper is to provide a comparative study on the employment of classical optimization solutions and Artificial Intelligence solutions for enabling readers to have idea about the potential of intelligent optimization techniques. At this point, two recently developed intelligent optimization algorithms, Vortex Optimization Algorithm (VOA and Cognitive Development Optimization Algorithm (CoDOA, have been used to solve some multidisciplinary optimization problems provided in the source book Thomas' Calculus 11th Edition and the obtained results have compared with classical optimization solutions.
Linear Model for Optimal Distributed Generation Size Predication
Directory of Open Access Journals (Sweden)
Ahmed Al Ameri
2017-01-01
Full Text Available This article presents a linear model predicting optimal size of Distributed Generation (DG that addresses the minimum power loss. This method is based fundamentally on strong coupling between active power and voltage angle as well as between reactive power and voltage magnitudes. This paper proposes simplified method to calculate the total power losses in electrical grid for different distributed generation sizes and locations. The method has been implemented and tested on several IEEE bus test systems. The results show that the proposed method is capable of predicting approximate optimal size of DG when compared with precision calculations. The method that linearizes a complex model showed a good result, which can actually reduce processing time required. The acceptable accuracy with less time and memory required can help the grid operator to assess power system integrated within large-scale distribution generation.
Optimal approximation of linear systems by artificial immune response
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.
Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem
Lellmann, Jan; Lenzen, Frank; Schnö rr, Christoph
2012-01-01
We consider a variational convex relaxation of a class of optimal partitioning and multiclass labeling problems, which has recently proven quite successful and can be seen as a continuous analogue of Linear Programming (LP) relaxation methods
Numerical algorithms for contact problems in linear elastostatics
International Nuclear Information System (INIS)
Barbosa, H.J.C.; Feijoo, R.A.
1984-01-01
In this work contact problems in linear elasticity are analysed by means of Finite Elements and Mathematical Programming Techniques. The principle of virtual work leads in this case to a variational inequality which in turn is equivalent, for Hookean materials and infinitesimal strains, to the minimization of the total potential energy over the set of all admissible virtual displacements. The use of Gauss-Seidel algorithm with relaxation and projection and also Lemke's algorithm and Uzawa's algorithm for solving the minimization problem is discussed. Finally numerical examples are presented. (Author) [pt
Optimal recovery of linear operators in non-Euclidean metrics
Energy Technology Data Exchange (ETDEWEB)
Osipenko, K Yu [Moscow State Aviation Technological University, Moscow (Russian Federation)
2014-10-31
The paper looks at problems concerning the recovery of operators from noisy information in non-Euclidean metrics. A number of general theorems are proved and applied to recovery problems for functions and their derivatives from the noisy Fourier transform. In some cases, a family of optimal methods is found, from which the methods requiring the least amount of original information are singled out. Bibliography: 25 titles.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
Multiobjective Optimization of Linear Cooperative Spectrum Sensing: Pareto Solutions and Refinement.
Yuan, Wei; You, Xinge; Xu, Jing; Leung, Henry; Zhang, Tianhang; Chen, Chun Lung Philip
2016-01-01
In linear cooperative spectrum sensing, the weights of secondary users and detection threshold should be optimally chosen to minimize missed detection probability and to maximize secondary network throughput. Since these two objectives are not completely compatible, we study this problem from the viewpoint of multiple-objective optimization. We aim to obtain a set of evenly distributed Pareto solutions. To this end, here, we introduce the normal constraint (NC) method to transform the problem into a set of single-objective optimization (SOO) problems. Each SOO problem usually results in a Pareto solution. However, NC does not provide any solution method to these SOO problems, nor any indication on the optimal number of Pareto solutions. Furthermore, NC has no preference over all Pareto solutions, while a designer may be only interested in some of them. In this paper, we employ a stochastic global optimization algorithm to solve the SOO problems, and then propose a simple method to determine the optimal number of Pareto solutions under a computational complexity constraint. In addition, we extend NC to refine the Pareto solutions and select the ones of interest. Finally, we verify the effectiveness and efficiency of the proposed methods through computer simulations.
How to Use Linear Programming for Information System Performances Optimization
Directory of Open Access Journals (Sweden)
Hell Marko
2014-09-01
Full Text Available Background: Organisations nowadays operate in a very dynamic environment, and therefore, their ability of continuously adjusting the strategic plan to the new conditions is a must for achieving their strategic objectives. BSC is a well-known methodology for measuring performances enabling organizations to learn how well they are doing. In this paper, “BSC for IS” will be proposed in order to measure the IS impact on the achievement of organizations’ business goals. Objectives: The objective of this paper is to present the original procedure which is used to enhance the BSC methodology in planning the optimal targets of IS performances value in order to maximize the organization's effectiveness. Methods/Approach: The method used in this paper is the quantitative methodology - linear programming. In the case study, linear programming is used for optimizing organization’s strategic performance. Results: Results are shown on the example of a case study national park. An optimal performance value for the strategic objective has been calculated, as well as an optimal performance value for each DO (derived objective. Results are calculated in Excel, using Solver Add-in. Conclusions: The presentation of methodology through the case study of a national park shows that this methodology, though it requires a high level of formalisation, provides a very transparent performance calculation.
Trajectory generation for manipulators using linear quadratic optimal tracking
Directory of Open Access Journals (Sweden)
Olav Egeland
1989-04-01
Full Text Available The reference trajectory is normally known in advance in manipulator control which makes it possible to apply linear quadratic optimal tracking. This gives a control system which rounds corners and generates optimal feedforward. The method may be used for references consisting of straight-line segments as an alternative to the two-step method of using splines to smooth the reference and then applying feedforward. In addition, the method can be used for more complex trajectories. The actual dynamics of the manipulator are taken into account, and this results in smooth and accurate tracking. The method has been applied in combination with the computed torque technique and excellent performance was demonstrated in a simulation study. The method has also been applied experimentally to an industrial spray-painting robot where a saw-tooth reference was tracked. The corner was rounded extremely well, and the steady-state tracking error was eliminated by the optimal feedforward.
Linear energy transfer incorporated intensity modulated proton therapy optimization
Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe
2018-01-01
The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the
A Compensatory Approach to Multiobjective Linear Transportation Problem with Fuzzy Cost Coefficients
Directory of Open Access Journals (Sweden)
Hale Gonce Kocken
2011-01-01
Full Text Available This paper deals with the Multiobjective Linear Transportation Problem that has fuzzy cost coefficients. In the solution procedure, many objectives may conflict with each other; therefore decision-making process becomes complicated. And also due to the fuzziness in the costs, this problem has a nonlinear structure. In this paper, fuzziness in the objective functions is handled with a fuzzy programming technique in the sense of multiobjective approach. And then we present a compensatory approach to solve Multiobjective Linear Transportation Problem with fuzzy cost coefficients by using Werner's and operator. Our approach generates compromise solutions which are both compensatory and Pareto optimal. A numerical example has been provided to illustrate the problem.
Linux software for large topology optimization problems
DEFF Research Database (Denmark)
evolving product, which allows a parallel solution of the PDE, it lacks the important feature that the matrix-generation part of the computations is localized to each processor. This is well-known to be critical for obtaining a useful speedup on a Linux cluster and it motivates the search for a COMSOL......-like package for large topology optimization problems. One candidate for such software is developed for Linux by Sandia Nat’l Lab in the USA being the Sundance system. Sundance also uses a symbolic representation of the PDE and a scalable numerical solution is achieved by employing the underlying Trilinos...
Optimizing Biorefinery Design and Operations via Linear Programming Models
Energy Technology Data Exchange (ETDEWEB)
Talmadge, Michael; Batan, Liaw; Lamers, Patrick; Hartley, Damon; Biddy, Mary; Tao, Ling; Tan, Eric
2017-03-28
The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LP models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with $4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for
Hybrid intelligent optimization methods for engineering problems
Pehlivanoglu, Yasin Volkan
The purpose of optimization is to obtain the best solution under certain conditions. There are numerous optimization methods because different problems need different solution methodologies; therefore, it is difficult to construct patterns. Also mathematical modeling of a natural phenomenon is almost based on differentials. Differential equations are constructed with relative increments among the factors related to yield. Therefore, the gradients of these increments are essential to search the yield space. However, the landscape of yield is not a simple one and mostly multi-modal. Another issue is differentiability. Engineering design problems are usually nonlinear and they sometimes exhibit discontinuous derivatives for the objective and constraint functions. Due to these difficulties, non-gradient-based algorithms have become more popular in recent decades. Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are popular, non-gradient based algorithms. Both are population-based search algorithms and have multiple points for initiation. A significant difference from a gradient-based method is the nature of the search methodologies. For example, randomness is essential for the search in GA or PSO. Hence, they are also called stochastic optimization methods. These algorithms are simple, robust, and have high fidelity. However, they suffer from similar defects, such as, premature convergence, less accuracy, or large computational time. The premature convergence is sometimes inevitable due to the lack of diversity. As the generations of particles or individuals in the population evolve, they may lose their diversity and become similar to each other. To overcome this issue, we studied the diversity concept in GA and PSO algorithms. Diversity is essential for a healthy search, and mutations are the basic operators to provide the necessary variety within a population. After having a close scrutiny of the diversity concept based on qualification and
Directory of Open Access Journals (Sweden)
Xin-Jia Meng
2015-01-01
Full Text Available Multidisciplinary reliability is an important part of the reliability-based multidisciplinary design optimization (RBMDO. However, it usually has a considerable amount of calculation. The purpose of this paper is to improve the computational efficiency of multidisciplinary inverse reliability analysis. A multidisciplinary inverse reliability analysis method based on collaborative optimization with combination of linear approximations (CLA-CO is proposed in this paper. In the proposed method, the multidisciplinary reliability assessment problem is first transformed into a problem of most probable failure point (MPP search of inverse reliability, and then the process of searching for MPP of multidisciplinary inverse reliability is performed based on the framework of CLA-CO. This method improves the MPP searching process through two elements. One is treating the discipline analyses as the equality constraints in the subsystem optimization, and the other is using linear approximations corresponding to subsystem responses as the replacement of the consistency equality constraint in system optimization. With these two elements, the proposed method realizes the parallel analysis of each discipline, and it also has a higher computational efficiency. Additionally, there are no difficulties in applying the proposed method to problems with nonnormal distribution variables. One mathematical test problem and an electronic packaging problem are used to demonstrate the effectiveness of the proposed method.
Relaxations to Sparse Optimization Problems and Applications
Skau, Erik West
Parsimony is a fundamental property that is applied to many characteristics in a variety of fields. Of particular interest are optimization problems that apply rank, dimensionality, or support in a parsimonious manner. In this thesis we study some optimization problems and their relaxations, and focus on properties and qualities of the solutions of these problems. The Gramian tensor decomposition problem attempts to decompose a symmetric tensor as a sum of rank one tensors.We approach the Gramian tensor decomposition problem with a relaxation to a semidefinite program. We study conditions which ensure that the solution of the relaxed semidefinite problem gives the minimal Gramian rank decomposition. Sparse representations with learned dictionaries are one of the leading image modeling techniques for image restoration. When learning these dictionaries from a set of training images, the sparsity parameter of the dictionary learning algorithm strongly influences the content of the dictionary atoms.We describe geometrically the content of trained dictionaries and how it changes with the sparsity parameter.We use statistical analysis to characterize how the different content is used in sparse representations. Finally, a method to control the structure of the dictionaries is demonstrated, allowing us to learn a dictionary which can later be tailored for specific applications. Variations of dictionary learning can be broadly applied to a variety of applications.We explore a pansharpening problem with a triple factorization variant of coupled dictionary learning. Another application of dictionary learning is computer vision. Computer vision relies heavily on object detection, which we explore with a hierarchical convolutional dictionary learning model. Data fusion of disparate modalities is a growing topic of interest.We do a case study to demonstrate the benefit of using social media data with satellite imagery to estimate hazard extents. In this case study analysis we
Problem statement for optimal design of steel structures
Directory of Open Access Journals (Sweden)
Ginzburg Aleksandr Vital'evich
2014-07-01
Full Text Available The presented article considers the following complex of tasks. The main stages of the life cycle of a building construction with the indication of process entrance and process exit are described. Requirements imposed on steel constructions are considered. The optimum range of application for steel designs is specified, as well as merits and demerits of a design material. The nomenclature of metal designs is listed - the block diagram is constructed. Possible optimality criteria of steel designs, offered by various authors for various types of constructions are considered. It is established that most often the criterion of a minimum of design mass is accepted as criterion of optimality; more rarely - a minimum of the given expenses, a minimum of a design cost in business. In the present article special attention is paid to a type of objective function of optimization problem. It is also established that depending on the accepted optimality criterion, the use of different types of functions is possible. This complexity of objective function depends on completeness of optimality criterion application. In the work the authors consider the following objective functions: the mass of the main element of a design; objective function by criterion of factory cost; objective function by criterion of cost in business. According to these examples it can be seen that objective functions by the criteria of labor expenses for production of designs are generally non-linear, which complicates solving the optimization problem. Another important factor influencing the problem of optimal design solution for steel designs, which is analyzed, is account for operating restrictions. In the article 8 groups of restrictions are analyzed. Attempts to completely account for the parameters of objective function optimized by particular optimality criteria, taking into account all the operating restrictions, considerably complicates the problem of designing. For solving this
The use of linear programming in optimization of HDR implant dose distributions
International Nuclear Information System (INIS)
Jozsef, Gabor; Streeter, Oscar E.; Astrahan, Melvin A.
2003-01-01
The introduction of high dose rate brachytherapy enabled optimization of dose distributions to be used on a routine basis. The objective of optimization is to homogenize the dose distribution within the implant while simultaneously satisfying dose constraints on certain points. This is accomplished by varying the time the source dwells at different locations. As the dose at any point is a linear function of the dwell times, a linear programming approach seems to be a natural choice. The dose constraints are inherently linear inequalities. Homogeneity requirements are linearized by minimizing the maximum deviation of the doses at points inside the implant from a prescribed dose. The revised simplex method was applied for the solution of this linear programming problem. In the homogenization process the possible source locations were chosen as optimization points. To avoid the problem of the singular value of the dose at a source location from the source itself we define the 'self-contribution' as the dose at a small distance from the source. The effect of varying this distance is discussed. Test cases were optimized for planar, biplanar and cylindrical implants. A semi-irregular, fan-like implant with diverging needles was also investigated. Mean central dose calculation based on 3D Delaunay-triangulation of the source locations was used to evaluate the dose distributions. The optimization method resulted in homogeneous distributions (for brachytherapy). Additional dose constraints--when applied--were satisfied. The method is flexible enough to include other linear constraints such as the inclusion of the centroids of the Delaunay-triangulation for homogenization, or limiting the maximum allowable dwell time
Optimal Piecewise Linear Basis Functions in Two Dimensions
Energy Technology Data Exchange (ETDEWEB)
Brooks III, E D; Szoke, A
2009-01-26
We use a variational approach to optimize the center point coefficients associated with the piecewise linear basis functions introduced by Stone and Adams [1], for polygonal zones in two Cartesian dimensions. Our strategy provides optimal center point coefficients, as a function of the location of the center point, by minimizing the error induced when the basis function interpolation is used for the solution of the time independent diffusion equation within the polygonal zone. By using optimal center point coefficients, one expects to minimize the errors that occur when these basis functions are used to discretize diffusion equations, or transport equations in optically thick zones (where they approach the solution of the diffusion equation). Our optimal center point coefficients satisfy the requirements placed upon the basis functions for any location of the center point. We also find that the location of the center point can be optimized, but this requires numerical calculations. Curiously, the optimum center point location is independent of the values of the dependent variable on the corners only for quadrilaterals.
Approximability of optimization problems through adiabatic quantum computation
Cruz-Santos, William
2014-01-01
The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is l
Design of optimal linear antennas with maximally flat radiation patterns
Minkovich, B. M.; Mints, M. Ia.
1990-02-01
The paper presents an explicit solution to the problem of maximizing the aperture area utilization coefficient and obtaining the best approximation in the mean of the sectorial U-shaped radiation pattern of a linear antenna, when Butterworth flattening constraints are imposed on the approximating pattern. Constraints are established on the choice of the smallest and large antenna dimensions that make it possible to obtain maximally flat patterns, having a low sidelobe level and free from pulsations within the main lobe.
Nguyen, Nhan
2013-01-01
This paper presents the optimal control modification for linear uncertain plants. The Lyapunov analysis shows that the modification parameter has a limiting value depending on the nature of the uncertainty. The optimal control modification exhibits a linear asymptotic property that enables it to be analyzed in a linear time invariant framework for linear uncertain plants. The linear asymptotic property shows that the closed-loop plants in the limit possess a scaled input-output mapping. Using this property, we can derive an analytical closed-loop transfer function in the limit as the adaptive gain tends to infinity. The paper revisits the Rohrs counterexample problem that illustrates the nature of non-robustness of model-reference adaptive control in the presence of unmodeled dynamics. An analytical approach is developed to compute exactly the modification parameter for the optimal control modification that stabilizes the plant in the Rohrs counterexample. The linear asymptotic property is also used to address output feedback adaptive control for non-minimum phase plants with a relative degree 1.
Numerical solution of non-linear diffusion problems
International Nuclear Information System (INIS)
Carmen, A. del; Ferreri, J.C.
1998-01-01
This paper presents a method for the numerical solution of non-linear diffusion problems using finite-differences in moving grids. Due to the presence of steep fronts in the solution domain and to the presence of advective terms originating in the grid movement, an implicit TVD scheme, first order in time and second order in space has been developed. Some algebraic details of the derivation are given. Results are shown for the pure advection of a scalar as a test case and an example dealing with the slow spreading of viscous fluids over plane surfaces. The agreement between numerical and analytical solutions is excellent. (author). 8 refs., 3 figs
Description of All Solutions of a Linear Complementarity Problem
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří
2009-01-01
Roč. 18, - (2009), s. 246-252 E-ISSN 1081-3810 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : linear complementarity problem * Moore-Penrose inverse * verified solution * absolute value equation Subject RIV: BA - General Mathematics Impact factor: 0.892, year: 2009 http://www.math.technion.ac.il/iic/ ela / ela -articles/articles/vol18_pp246-252.pdf
Cost optimization of induction linac drivers for linear colliders
International Nuclear Information System (INIS)
Barletta, W.A.
1986-01-01
Recent developments in high reliability components for linear induction accelerators (LIA) make possible the use of these devices as economical power drives for very high gradient linear colliders. A particularly attractive realization of this ''two-beam accelerator'' approach is to configure the LIA as a monolithic relativistic klystron operating at 10 to 12 GHz with induction cells providing periodic reacceleration of the high current beam. Based upon a recent engineering design of a state-of-the-art, 10- to 20-MeV LIA at Lawrence Livermore National Laboratory, this paper presents an algorithm for scaling the cost of the relativistic klystron to the parameter regime of interest for the next generation high energy physics machines. The algorithm allows optimization of the collider luminosity with respect to cost by varying the characteristics (pulse length, drive current, repetition rate, etc.) of the klystron. It also allows us to explore cost sensitivities as a guide to research strategies for developing advanced accelerator technologies
Liolios, A
2003-01-01
The paper presents a new numerical approach for a non-linear optimal control problem arising in earthquake civil engineering. This problem concerns the elastoplastic softening-fracturing unilateral contact between neighbouring buildings during earthquakes when Coulomb friction is taken into account under second-order instabilizing effects. So, the earthquake response of the adjacent structures can appear instabilities and chaotic behaviour. The problem formulation presented here leads to a set of equations and inequalities, which is equivalent to a dynamic hemivariational inequality in the way introduced by Panagiotopoulos [Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993]. The numerical procedure is based on an incremental problem formulation and on a double discretization, in space by the finite element method and in time by the Wilson-theta method. The generally non-convex constitutive contact laws are piecewise linearized, and in each time-step a non-c...
Gottlieb, Sigal
2015-04-10
High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search for high order strong stability time-stepping methods with large allowable strong stability coefficient has been an active area of research over the last two decades. This research has shown that explicit SSP Runge-Kutta methods exist only up to fourth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and this order barrier is lifted: explicit SSP Runge-Kutta methods of any linear order exist. These methods reduce to second order when applied to nonlinear problems. In the current work we aim to find explicit SSP Runge-Kutta methods with large allowable time-step, that feature high linear order and simultaneously have the optimal fourth order nonlinear order. These methods have strong stability coefficients that approach those of the linear methods as the number of stages and the linear order is increased. This work shows that when a high linear order method is desired, it may still be worthwhile to use methods with higher nonlinear order.
Convergence diagnostics for Eigenvalue problems with linear regression model
International Nuclear Information System (INIS)
Shi, Bo; Petrovic, Bojan
2011-01-01
Although the Monte Carlo method has been extensively used for criticality/Eigenvalue problems, a reliable, robust, and efficient convergence diagnostics method is still desired. Most methods are based on integral parameters (multiplication factor, entropy) and either condense the local distribution information into a single value (e.g., entropy) or even disregard it. We propose to employ the detailed cycle-by-cycle local flux evolution obtained by using mesh tally mechanism to assess the source and flux convergence. By applying a linear regression model to each individual mesh in a mesh tally for convergence diagnostics, a global convergence criterion can be obtained. We exemplify this method on two problems and obtain promising diagnostics results. (author)
Bounds and estimates for the linearly perturbed eigenvalue problem
International Nuclear Information System (INIS)
Raddatz, W.D.
1983-01-01
This thesis considers the problem of bounding and estimating the discrete portion of the spectrum of a linearly perturbed self-adjoint operator, M(x). It is supposed that one knows an incomplete set of data consisting in the first few coefficients of the Taylor series expansions of one or more of the eigenvalues of M(x) about x = 0. The foundations of the variational study of eigen-values are first presented. These are then used to construct the best possible upper bounds and estimates using various sets of given information. Lower bounds are obtained by estimating the error in the upper bounds. The extension of these bounds and estimates to the eigenvalues of the doubly-perturbed operator M(x,y) is discussed. The results presented have numerous practical application in the physical sciences, including problems in atomic physics and the theory of vibrations of acoustical and mechanical systems
Optimal linear detectors for nonorthogonal amplify-and-forward protocol
Ahmed, Qasim Zeeshan; Park, Kihong; Alouini, Mohamed-Slim; Aissa, Sonia
2013-01-01
In this paper, we propose optimal linear detectors for non-orthogonal amplify-and-forward cooperative protocol when considering a single-relay scenario. Two types of detectors are proposed based on the principles of minimum mean square error (MMSE) and minimum bit error rate (MBER). The MMSE detector minimizes the mean square error, while the MBER minimizes the system bit error rate (BER). Both detectors exhibit excellent BER performance with relatively low complexity as compared to the maximal likelihood (ML) detector. The BER performance of both detectors is superior to the channel inversion, the maximal ratio combining, and the biased ML detectors. © 2013 IEEE.
Optimal linear detectors for nonorthogonal amplify-and-forward protocol
Ahmed, Qasim Zeeshan
2013-06-01
In this paper, we propose optimal linear detectors for non-orthogonal amplify-and-forward cooperative protocol when considering a single-relay scenario. Two types of detectors are proposed based on the principles of minimum mean square error (MMSE) and minimum bit error rate (MBER). The MMSE detector minimizes the mean square error, while the MBER minimizes the system bit error rate (BER). Both detectors exhibit excellent BER performance with relatively low complexity as compared to the maximal likelihood (ML) detector. The BER performance of both detectors is superior to the channel inversion, the maximal ratio combining, and the biased ML detectors. © 2013 IEEE.
Non-linear theory of elasticity and optimal design
Ratner, LW
2003-01-01
In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it
Optimal Piecewise-Linear Approximation of the Quadratic Chaotic Dynamics
Directory of Open Access Journals (Sweden)
J. Petrzela
2012-04-01
Full Text Available This paper shows the influence of piecewise-linear approximation on the global dynamics associated with autonomous third-order dynamical systems with the quadratic vector fields. The novel method for optimal nonlinear function approximation preserving the system behavior is proposed and experimentally verified. This approach is based on the calculation of the state attractor metric dimension inside a stochastic optimization routine. The approximated systems are compared to the original by means of the numerical integration. Real electronic circuits representing individual dynamical systems are derived using classical as well as integrator-based synthesis and verified by time-domain analysis in Orcad Pspice simulator. The universality of the proposed method is briefly discussed, especially from the viewpoint of the higher-order dynamical systems. Future topics and perspectives are also provided
Thermodynamic Optimality criteria for biological systems in linear irreversible thermodynamics
International Nuclear Information System (INIS)
Chimal, J C; Sánchez, N; Ramírez, PR
2017-01-01
In this paper the methodology of the so-called Linear Irreversible Thermodynamics (LIT) is applied; although traditionally used locally to study general systems in non-equilibrium states in which it is consider both internal and external contributions to the entropy increments in order to analyze the efficiency of two coupled processes with generalized fluxes J 1 , J 2 and their corresponding forces X 1 , X 2 . We extend the former analysis to takes into account two different operating regimes namely: Omega Function and Efficient Power criterion, respectively. Results show analogies in the optimal performance between and we can say that there exist a criteria of optimization which can be used specially for biological systems where a good design of the biological parameters made by nature at maximum efficient power conditions lead to more efficient engines than those at the maximum power conditions or ecological conditions. (paper)
A hybrid iterative scheme for optimal control problems governed by ...
African Journals Online (AJOL)
MRT
KEY WORDS: Optimal control problem; Fredholm integral equation; ... control problems governed by Fredholm integral and integro-differential equations is given in (Brunner and Yan, ..... The exact optimal trajectory and control functions are. 2.
Particle Swarm Optimization for Structural Design Problems
Directory of Open Access Journals (Sweden)
Hamit SARUHAN
2010-02-01
Full Text Available The aim of this paper is to employ the Particle Swarm Optimization (PSO technique to a mechanical engineering design problem which is minimizing the volume of a cantilevered beam subject to bending strength constraints. Mechanical engineering design problems are complex activities which are computing capability are more and more required. The most of these problems are solved by conventional mathematical programming techniques that require gradient information. These techniques have several drawbacks from which the main one is becoming trapped in local optima. As an alternative to gradient-based techniques, the PSO does not require the evaluation of gradients of the objective function. The PSO algorithm employs the generation of guided random positions when they search for the global optimum point. The PSO which is a nature inspired heuristics search technique imitates the social behavior of bird flocking. The results obtained by the PSO are compared with Mathematical Programming (MP. It is demonstrated that the PSO performed and obtained better convergence reliability on the global optimum point than the MP. Using the MP, the volume of 2961000 mm3 was obtained while the beam volume of 2945345 mm3 was obtained by the PSO.
System and economic optimization problems of NPPs and its ideology
International Nuclear Information System (INIS)
Klimenko, A.V.; Mironovich, V.L.
2016-01-01
The iterative circuit design of optimization of system of links of nuclear fuel and energy complex (NFEC) is presented in the paper. Problems of system optimization of links NFEC as functional of NPP optimization are indicated and investigated [ru
Directory of Open Access Journals (Sweden)
Animesh Biswas
2016-04-01
Full Text Available This paper deals with fuzzy goal programming approach to solve fuzzy linear bilevel integer programming problems with fuzzy probabilistic constraints following Pareto distribution and Frechet distribution. In the proposed approach a new chance constrained programming methodology is developed from the view point of managing those probabilistic constraints in a hybrid fuzzy environment. A method of defuzzification of fuzzy numbers using ?-cut has been adopted to reduce the problem into a linear bilevel integer programming problem. The individual optimal value of the objective of each DM is found in isolation to construct the fuzzy membership goals. Finally, fuzzy goal programming approach is used to achieve maximum degree of each of the membership goals by minimizing under deviational variables in the decision making environment. To demonstrate the efficiency of the proposed approach, a numerical example is provided.
Solving dominance and potential optimality in imprecise multi-attribute additive problems
International Nuclear Information System (INIS)
Mateos, Alfonso; Jimenez, Antonio; Rios-Insua, Sixto
2003-01-01
We consider the multicriteria decision-making problem where there is partial information on decision maker preferences, represented by means of an imprecise multiattribute additive utility function, and where the consequences of the alternatives or strategies are also possibly imprecise. Under these circumstances we consider how useful problem-solving concepts, namely nondominated, potentially optimal, adjacent potentially optimal alternatives, can be analytically computed. Thus, the problem can be solved much more efficiently using the classical methodology of linear programming
Dynamic Optimization for IPS2 Resource Allocation Based on Improved Fuzzy Multiple Linear Regression
Directory of Open Access Journals (Sweden)
Maokuan Zheng
2017-01-01
Full Text Available The study mainly focuses on resource allocation optimization for industrial product-service systems (IPS2. The development of IPS2 leads to sustainable economy by introducing cooperative mechanisms apart from commodity transaction. The randomness and fluctuation of service requests from customers lead to the volatility of IPS2 resource utilization ratio. Three basic rules for resource allocation optimization are put forward to improve system operation efficiency and cut unnecessary costs. An approach based on fuzzy multiple linear regression (FMLR is developed, which integrates the strength and concision of multiple linear regression in data fitting and factor analysis and the merit of fuzzy theory in dealing with uncertain or vague problems, which helps reduce those costs caused by unnecessary resource transfer. The iteration mechanism is introduced in the FMLR algorithm to improve forecasting accuracy. A case study of human resource allocation optimization in construction machinery industry is implemented to test and verify the proposed model.
Finite Volumes Discretization of Topology Optimization Problems
DEFF Research Database (Denmark)
Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter
, FVMs represent a standard method of discretization within engineering communities dealing with computational uid dy- namics, transport, and convection-reaction problems. Among various avours of FVMs, cell based approaches, where all variables are associated only with cell centers, are particularly...... computations is done using nite element methods (FEMs). Despite some limited recent eorts [1, 2], we have only started to develop our understanding of the interplay between the control in the coecients and FVMs. Recent advances in discrete functional analysis allow us to analyze convergence of FVM...... of the induced parametrization of the design space that allows optimization algorithms to eciently explore it, and the ease of integration with existing computational codes in a variety of application areas, the simplicity and eciency of sensitivity analyses|all stemming from the use of the same grid throughout...
Optimization of refinery product blending by using linear programming
International Nuclear Information System (INIS)
Ristikj, Julija; Tripcheva-Trajkovska, Loreta; Rikaloski, Ice; Markovska, Liljana
1999-01-01
The product slate of a simple refinery consists mainly of liquefied petroleum gas, leaded and unleaded gasoline, jet fuel, diesel fuel, extra light heating oil and fuel oil. The quality of the oil products (fuels) for sale has to comply with the adopted standards for liquid fuels, and the produced quantities have to be comply with the market needs. The oil products are manufactured by blending two or more different fractions which quantities and physical-chemical properties depend on the crude oil type, the way and conditions of processing, and at the same time the fractions are used to blend one or more products. It is in producer's interest to do the blending in an optimal way, namely, to satisfy the requirements for the oil products quality and quantity with a maximal usage of the available fractions and, of course, with a maximal profit out of the sold products. This could be accomplished by applying linear programming, that is by using a linear model for oil products blending optimization. (Author)
Optimization methods for activities selection problems
Mahad, Nor Faradilah; Alias, Suriana; Yaakop, Siti Zulaika; Arshad, Norul Amanina Mohd; Mazni, Elis Sofia
2017-08-01
Co-curriculum activities must be joined by every student in Malaysia and these activities bring a lot of benefits to the students. By joining these activities, the students can learn about the time management and they can developing many useful skills. This project focuses on the selection of co-curriculum activities in secondary school using the optimization methods which are the Analytic Hierarchy Process (AHP) and Zero-One Goal Programming (ZOGP). A secondary school in Negeri Sembilan, Malaysia was chosen as a case study. A set of questionnaires were distributed randomly to calculate the weighted for each activity based on the 3 chosen criteria which are soft skills, interesting activities and performances. The weighted was calculated by using AHP and the results showed that the most important criteria is soft skills. Then, the ZOGP model will be analyzed by using LINGO Software version 15.0. There are two priorities to be considered. The first priority which is to minimize the budget for the activities is achieved since the total budget can be reduced by RM233.00. Therefore, the total budget to implement the selected activities is RM11,195.00. The second priority which is to select the co-curriculum activities is also achieved. The results showed that 9 out of 15 activities were selected. Thus, it can concluded that AHP and ZOGP approach can be used as the optimization methods for activities selection problem.
Shen, Peiping; Zhang, Tongli; Wang, Chunfeng
2017-01-01
This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm.
Pradanti, Paskalia; Hartono
2018-03-01
Determination of insulin injection dose in diabetes mellitus treatment can be considered as an optimal control problem. This article is aimed to simulate optimal blood glucose control for patient with diabetes mellitus. The blood glucose regulation of diabetic patient is represented by Ackerman’s Linear Model. This problem is then solved using dynamic programming method. The desired blood glucose level is obtained by minimizing the performance index in Lagrange form. The results show that dynamic programming based on Ackerman’s Linear Model is quite good to solve the problem.
Point source reconstruction principle of linear inverse problems
International Nuclear Information System (INIS)
Terazono, Yasushi; Matani, Ayumu; Fujimaki, Norio; Murata, Tsutomu
2010-01-01
Exact point source reconstruction for underdetermined linear inverse problems with a block-wise structure was studied. In a block-wise problem, elements of a source vector are partitioned into blocks. Accordingly, a leadfield matrix, which represents the forward observation process, is also partitioned into blocks. A point source is a source having only one nonzero block. An example of such a problem is current distribution estimation in electroencephalography and magnetoencephalography, where a source vector represents a vector field and a point source represents a single current dipole. In this study, the block-wise norm, a block-wise extension of the l p -norm, was defined as the family of cost functions of the inverse method. The main result is that a set of three conditions was found to be necessary and sufficient for block-wise norm minimization to ensure exact point source reconstruction for any leadfield matrix that admit such reconstruction. The block-wise norm that satisfies the conditions is the sum of the cost of all the observations of source blocks, or in other words, the block-wisely extended leadfield-weighted l 1 -norm. Additional results are that minimization of such a norm always provides block-wisely sparse solutions and that its solutions form cones in source space
A New Interpolation Approach for Linearly Constrained Convex Optimization
Espinoza, Francisco
2012-08-01
In this thesis we propose a new class of Linearly Constrained Convex Optimization methods based on the use of a generalization of Shepard\\'s interpolation formula. We prove the properties of the surface such as the interpolation property at the boundary of the feasible region and the convergence of the gradient to the null space of the constraints at the boundary. We explore several descent techniques such as steepest descent, two quasi-Newton methods and the Newton\\'s method. Moreover, we implement in the Matlab language several versions of the method, particularly for the case of Quadratic Programming with bounded variables. Finally, we carry out performance tests against Matab Optimization Toolbox methods for convex optimization and implementations of the standard log-barrier and active-set methods. We conclude that the steepest descent technique seems to be the best choice so far for our method and that it is competitive with other standard methods both in performance and empirical growth order.
An investigation on the solutions for the linear inverse problem in gamma ray tomography
International Nuclear Information System (INIS)
Araujo, Bruna G.M.; Dantas, Carlos C.; Santos, Valdemir A. dos; Finkler, Christine L.L.; Oliveira, Eric F. de; Melo, Silvio B.; Santos, M. Graca dos
2009-01-01
This paper the results obtained in single beam gamma ray tomography are investigated according to direct problem formulation and the applied solution for the linear system of equations. By image reconstruction based algebraic computational algorithms are used. The sparse under and over-determined linear system of equations was analyzed. Build in functions of Matlab software were applied and optimal solutions were investigate. Experimentally a section of the tube is scanned from various positions and at different angles. The solution, to find the vector of coefficients μ, from the vector of measured p values through the W matrix inversion, constitutes an inverse problem. A industrial tomography process requires a numerical solution of the system of equations. The definition of inverse problem according to Hadmard's is considered and as well the requirement of a well posed problem to find stable solutions. The formulation of the basis function and the computational algorithm to structure the weight matrix W were analyzed. For W full rank matrix the obtained solution is unique as expected. Total Least Squares was implemented which theory and computation algorithm gives adequate treatment for the problems due to non-unique solutions of the system of equations. Stability of the solution was investigating by means of a regularization technique and the comparison shows that it improves the results. An optimal solution as a function of the image quality, computation time and minimum residuals were quantified. The corresponding reconstructed images are shown in 3D graphics in order to compare with the solution. (author)
Mean-Variance-CvaR Model of Multiportfolio Optimization via Linear Weighted Sum Method
Directory of Open Access Journals (Sweden)
Younes Elahi
2014-01-01
Full Text Available We propose a new approach to optimizing portfolios to mean-variance-CVaR (MVC model. Although of several researches have studied the optimal MVC model of portfolio, the linear weighted sum method (LWSM was not implemented in the area. The aim of this paper is to investigate the optimal portfolio model based on MVC via LWSM. With this method, the solution of the MVC model of portfolio as the multiobjective problem is presented. In data analysis section, this approach in investing on two assets is investigated. An MVC model of the multiportfolio was implemented in MATLAB and tested on the presented problem. It is shown that, by using three objective functions, it helps the investors to manage their portfolio better and thereby minimize the risk and maximize the return of the portfolio. The main goal of this study is to modify the current models and simplify it by using LWSM to obtain better results.
Optimal placement of capacitors in a radial network using conic and mixed integer linear programming
Energy Technology Data Exchange (ETDEWEB)
Jabr, R.A. [Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box: 72, Zouk Mikhael, Zouk Mosbeh (Lebanon)
2008-06-15
This paper considers the problem of optimally placing fixed and switched type capacitors in a radial distribution network. The aim of this problem is to minimize the costs associated with capacitor banks, peak power, and energy losses whilst satisfying a pre-specified set of physical and technical constraints. The proposed solution is obtained using a two-phase approach. In phase-I, the problem is formulated as a conic program in which all nodes are candidates for placement of capacitor banks whose sizes are considered as continuous variables. A global solution of the phase-I problem is obtained using an interior-point based conic programming solver. Phase-II seeks a practical optimal solution by considering capacitor sizes as discrete variables. The problem in this phase is formulated as a mixed integer linear program based on minimizing the L1-norm of deviations from the phase-I state variable values. The solution to the phase-II problem is obtained using a mixed integer linear programming solver. The proposed method is validated via extensive comparisons with previously published results. (author)
Optimization of constrained multiple-objective reliability problems using evolutionary algorithms
International Nuclear Information System (INIS)
Salazar, Daniel; Rocco, Claudio M.; Galvan, Blas J.
2006-01-01
This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature
Optimization of constrained multiple-objective reliability problems using evolutionary algorithms
Energy Technology Data Exchange (ETDEWEB)
Salazar, Daniel [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain) and Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: danielsalazaraponte@gmail.com; Rocco, Claudio M. [Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve; Galvan, Blas J. [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain)]. E-mail: bgalvan@step.es
2006-09-15
This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature.
An improved partial bundle method for linearly constrained minimax problems
Directory of Open Access Journals (Sweden)
Chunming Tang
2016-02-01
Full Text Available In this paper, we propose an improved partial bundle method for solving linearly constrained minimax problems. In order to reduce the number of component function evaluations, we utilize a partial cutting-planes model to substitute for the traditional one. At each iteration, only one quadratic programming subproblem needs to be solved to obtain a new trial point. An improved descent test criterion is introduced to simplify the algorithm. The method produces a sequence of feasible trial points, and ensures that the objective function is monotonically decreasing on the sequence of stability centers. Global convergence of the algorithm is established. Moreover, we utilize the subgradient aggregation strategy to control the size of the bundle and therefore overcome the difficulty of computation and storage. Finally, some preliminary numerical results show that the proposed method is effective.
Directory of Open Access Journals (Sweden)
Sukhpreet Kaur Sidhu
2014-01-01
Full Text Available The drawbacks of the existing methods to obtain the fuzzy optimal solution of such linear programming problems, in which coefficients of the constraints are represented by real numbers and all the other parameters as well as variables are represented by symmetric trapezoidal fuzzy numbers, are pointed out, and to resolve these drawbacks, a new method (named as Mehar method is proposed for the same linear programming problems. Also, with the help of proposed Mehar method, a new method, much easy as compared to the existing methods, is proposed to deal with the sensitivity analysis of the same type of linear programming problems.
PARETO OPTIMAL SOLUTIONS FOR MULTI-OBJECTIVE GENERALIZED ASSIGNMENT PROBLEM
Directory of Open Access Journals (Sweden)
S. Prakash
2012-01-01
Full Text Available
ENGLISH ABSTRACT: The Multi-Objective Generalized Assignment Problem (MGAP with two objectives, where one objective is linear and the other one is non-linear, has been considered, with the constraints that a job is assigned to only one worker – though he may be assigned more than one job, depending upon the time available to him. An algorithm is proposed to find the set of Pareto optimal solutions of the problem, determining assignments of jobs to workers with two objectives without setting priorities for them. The two objectives are to minimise the total cost of the assignment and to reduce the time taken to complete all the jobs.
AFRIKAANSE OPSOMMING: ‘n Multi-doelwit veralgemeende toekenningsprobleem (“multi-objective generalised assignment problem – MGAP” met twee doelwitte, waar die een lineêr en die ander nielineêr is nie, word bestudeer, met die randvoorwaarde dat ‘n taak slegs toegedeel word aan een werker – alhoewel meer as een taak aan hom toegedeel kan word sou die tyd beskikbaar wees. ‘n Algoritme word voorgestel om die stel Pareto-optimale oplossings te vind wat die taaktoedelings aan werkers onderhewig aan die twee doelwitte doen sonder dat prioriteite toegeken word. Die twee doelwitte is om die totale koste van die opdrag te minimiseer en om die tyd te verminder om al die take te voltooi.
A State-Space Approach to Optimal Level-Crossing Prediction for Linear Gaussian Processes
Martin, Rodney Alexander
2009-01-01
In many complex engineered systems, the ability to give an alarm prior to impending critical events is of great importance. These critical events may have varying degrees of severity, and in fact they may occur during normal system operation. In this article, we investigate approximations to theoretically optimal methods of designing alarm systems for the prediction of level-crossings by a zero-mean stationary linear dynamic system driven by Gaussian noise. An optimal alarm system is designed to elicit the fewest false alarms for a fixed detection probability. This work introduces the use of Kalman filtering in tandem with the optimal level-crossing problem. It is shown that there is a negligible loss in overall accuracy when using approximations to the theoretically optimal predictor, at the advantage of greatly reduced computational complexity. I
Multiobjective optimal allocation problem with probabilistic non ...
African Journals Online (AJOL)
This paper considers the optimum compromise allocation in multivariate stratified sampling with non-linear objective function and probabilistic non-linear cost constraint. The probabilistic non-linear cost constraint is converted into equivalent deterministic one by using Chance Constrained programming. A numerical ...
On the robust optimization to the uncertain vaccination strategy problem
International Nuclear Information System (INIS)
Chaerani, D.; Anggriani, N.; Firdaniza
2014-01-01
In order to prevent an epidemic of infectious diseases, the vaccination coverage needs to be minimized and also the basic reproduction number needs to be maintained below 1. This means that as we get the vaccination coverage as minimum as possible, thus we need to prevent the epidemic to a small number of people who already get infected. In this paper, we discuss the case of vaccination strategy in term of minimizing vaccination coverage, when the basic reproduction number is assumed as an uncertain parameter that lies between 0 and 1. We refer to the linear optimization model for vaccination strategy that propose by Becker and Starrzak (see [2]). Assuming that there is parameter uncertainty involved, we can see Tanner et al (see [9]) who propose the optimal solution of the problem using stochastic programming. In this paper we discuss an alternative way of optimizing the uncertain vaccination strategy using Robust Optimization (see [3]). In this approach we assume that the parameter uncertainty lies within an ellipsoidal uncertainty set such that we can claim that the obtained result will be achieved in a polynomial time algorithm (as it is guaranteed by the RO methodology). The robust counterpart model is presented
On the robust optimization to the uncertain vaccination strategy problem
Energy Technology Data Exchange (ETDEWEB)
Chaerani, D., E-mail: d.chaerani@unpad.ac.id; Anggriani, N., E-mail: d.chaerani@unpad.ac.id; Firdaniza, E-mail: d.chaerani@unpad.ac.id [Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Padjadjaran Indonesia, Jalan Raya Bandung Sumedang KM 21 Jatinangor Sumedang 45363 (Indonesia)
2014-02-21
In order to prevent an epidemic of infectious diseases, the vaccination coverage needs to be minimized and also the basic reproduction number needs to be maintained below 1. This means that as we get the vaccination coverage as minimum as possible, thus we need to prevent the epidemic to a small number of people who already get infected. In this paper, we discuss the case of vaccination strategy in term of minimizing vaccination coverage, when the basic reproduction number is assumed as an uncertain parameter that lies between 0 and 1. We refer to the linear optimization model for vaccination strategy that propose by Becker and Starrzak (see [2]). Assuming that there is parameter uncertainty involved, we can see Tanner et al (see [9]) who propose the optimal solution of the problem using stochastic programming. In this paper we discuss an alternative way of optimizing the uncertain vaccination strategy using Robust Optimization (see [3]). In this approach we assume that the parameter uncertainty lies within an ellipsoidal uncertainty set such that we can claim that the obtained result will be achieved in a polynomial time algorithm (as it is guaranteed by the RO methodology). The robust counterpart model is presented.
Spectral Analysis of Large Finite Element Problems by Optimization Methods
Directory of Open Access Journals (Sweden)
Luca Bergamaschi
1994-01-01
Full Text Available Recently an efficient method for the solution of the partial symmetric eigenproblem (DACG, deflated-accelerated conjugate gradient was developed, based on the conjugate gradient (CG minimization of successive Rayleigh quotients over deflated subspaces of decreasing size. In this article four different choices of the coefficient βk required at each DACG iteration for the computation of the new search direction Pk are discussed. The “optimal” choice is the one that yields the same asymptotic convergence rate as the CG scheme applied to the solution of linear systems. Numerical results point out that the optimal βk leads to a very cost effective algorithm in terms of CPU time in all the sample problems presented. Various preconditioners are also analyzed. It is found that DACG using the optimal βk and (LLT−1 as a preconditioner, L being the incomplete Cholesky factor of A, proves a very promising method for the partial eigensolution. It appears to be superior to the Lanczos method in the evaluation of the 40 leftmost eigenpairs of five finite element problems, and particularly for the largest problem, with size equal to 4560, for which the speed gain turns out to fall between 2.5 and 6.0, depending on the eigenpair level.
Climate Intervention as an Optimization Problem
Caldeira, Ken; Ban-Weiss, George A.
2010-05-01
Typically, climate models simulations of intentional intervention in the climate system have taken the approach of imposing a change (eg, in solar flux, aerosol concentrations, aerosol emissions) and then predicting how that imposed change might affect Earth's climate or chemistry. Computations proceed from cause to effect. However, humans often proceed from "What do I want?" to "How do I get it?" One approach to thinking about intentional intervention in the climate system ("geoengineering") is to ask "What kind of climate do we want?" and then ask "What pattern of radiative forcing would come closest to achieving that desired climate state?" This involves defining climate goals and a cost function that measures how closely those goals are attained. (An important next step is to ask "How would we go about producing these desired patterns of radiative forcing?" However, this question is beyond the scope of our present study.) We performed a variety of climate simulations in NCAR's CAM3.1 atmospheric general circulation model with a slab ocean model and thermodynamic sea ice model. We then evaluated, for a specific set of climate forcing basis functions (ie, aerosol concentration distributions), the extent to which the climate response to a linear combination of those basis functions was similar to a linear combination of the climate response to each basis function taken individually. We then developed several cost functions (eg, relative to the 1xCO2 climate, minimize rms difference in zonal and annual mean land temperature, minimize rms difference in zonal and annual mean runoff, minimize rms difference in a combination of these temperature and runoff indices) and then predicted optimal combinations of our basis functions that would minimize these cost functions. Lastly, we produced forward simulations of the predicted optimal radiative forcing patterns and compared these with our expected results. Obviously, our climate model is much simpler than reality and
Aether: leveraging linear programming for optimal cloud computing in genomics.
Luber, Jacob M; Tierney, Braden T; Cofer, Evan M; Patel, Chirag J; Kostic, Aleksandar D
2018-05-01
Across biology, we are seeing rapid developments in scale of data production without a corresponding increase in data analysis capabilities. Here, we present Aether (http://aether.kosticlab.org), an intuitive, easy-to-use, cost-effective and scalable framework that uses linear programming to optimally bid on and deploy combinations of underutilized cloud computing resources. Our approach simultaneously minimizes the cost of data analysis and provides an easy transition from users' existing HPC pipelines. Data utilized are available at https://pubs.broadinstitute.org/diabimmune and with EBI SRA accession ERP005989. Source code is available at (https://github.com/kosticlab/aether). Examples, documentation and a tutorial are available at http://aether.kosticlab.org. chirag_patel@hms.harvard.edu or aleksandar.kostic@joslin.harvard.edu. Supplementary data are available at Bioinformatics online.
A linear programming approach to max-sum problem: a review.
Werner, Tomás
2007-07-01
The max-sum labeling problem, defined as maximizing a sum of binary (i.e., pairwise) functions of discrete variables, is a general NP-hard optimization problem with many applications, such as computing the MAP configuration of a Markov random field. We review a not widely known approach to the problem, developed by Ukrainian researchers Schlesinger et al. in 1976, and show how it contributes to recent results, most importantly, those on the convex combination of trees and tree-reweighted max-product. In particular, we review Schlesinger et al.'s upper bound on the max-sum criterion, its minimization by equivalent transformations, its relation to the constraint satisfaction problem, the fact that this minimization is dual to a linear programming relaxation of the original problem, and the three kinds of consistency necessary for optimality of the upper bound. We revisit problems with Boolean variables and supermodular problems. We describe two algorithms for decreasing the upper bound. We present an example application for structural image analysis.
A trust region interior point algorithm for optimal power flow problems
Energy Technology Data Exchange (ETDEWEB)
Wang Min [Hefei University of Technology (China). Dept. of Electrical Engineering and Automation; Liu Shengsong [Jiangsu Electric Power Dispatching and Telecommunication Company (China). Dept. of Automation
2005-05-01
This paper presents a new algorithm that uses the trust region interior point method to solve nonlinear optimal power flow (OPF) problems. The OPF problem is solved by a primal/dual interior point method with multiple centrality corrections as a sequence of linearized trust region sub-problems. It is the trust region that controls the linear step size and ensures the validity of the linear model. The convergence of the algorithm is improved through the modification of the trust region sub-problem. Numerical results of standard IEEE systems and two realistic networks ranging in size from 14 to 662 buses are presented. The computational results show that the proposed algorithm is very effective to optimal power flow applications, and favors the successive linear programming (SLP) method. Comparison with the predictor/corrector primal/dual interior point (PCPDIP) method is also made to demonstrate the superiority of the multiple centrality corrections technique. (author)
Directory of Open Access Journals (Sweden)
Nurdan Cetin
2014-01-01
Full Text Available We consider a multiobjective linear fractional transportation problem (MLFTP with several fractional criteria, such as, the maximization of the transport profitability like profit/cost or profit/time, and its two properties are source and destination. Our aim is to introduce MLFTP which has not been studied in literature before and to provide a fuzzy approach which obtain a compromise Pareto-optimal solution for this problem. To do this, first, we present a theorem which shows that MLFTP is always solvable. And then, reducing MLFTP to the Zimmermann’s “min” operator model which is the max-min problem, we construct Generalized Dinkelbach’s Algorithm for solving the obtained problem. Furthermore, we provide an illustrative numerical example to explain this fuzzy approach.
Fisz, Jacek J
2006-12-07
The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression (MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear parameters, and the linear parameters are calculated from MLR. GA-MLR is an intuitive optimization approach and it exploits all advantages of the genetic algorithm technique. This optimization method results from an appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only one strictly mathematical "tool" involved in GA-MLR. The GA-MLR approach simplifies and accelerates considerably the optimization process because the linear parameters are not the fitted ones. Its properties are exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fréchet derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the GA method with the NR method, in which the minimum-value condition for the quadratic approximation to chi(2), obtained from the Taylor series expansion of chi(2), is recovered by means of the Newton-Raphson algorithm. The application of the GA-NR optimizer to model functions which are multi-linear
IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS
Fogle, F. R.
1994-01-01
IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.
Linear differential equations to solve nonlinear mechanical problems: A novel approach
Nair, C. Radhakrishnan
2004-01-01
Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...
Firefly Mating Algorithm for Continuous Optimization Problems
Directory of Open Access Journals (Sweden)
Amarita Ritthipakdee
2017-01-01
Full Text Available This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA, for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i the mutual attraction between males and females causes them to mate and (ii fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.
Adjoint optimization of natural convection problems: differentially heated cavity
Saglietti, Clio; Schlatter, Philipp; Monokrousos, Antonios; Henningson, Dan S.
2017-12-01
Optimization of natural convection-driven flows may provide significant improvements to the performance of cooling devices, but a theoretical investigation of such flows has been rarely done. The present paper illustrates an efficient gradient-based optimization method for analyzing such systems. We consider numerically the natural convection-driven flow in a differentially heated cavity with three Prandtl numbers (Pr=0.15{-}7) at super-critical conditions. All results and implementations were done with the spectral element code Nek5000. The flow is analyzed using linear direct and adjoint computations about a nonlinear base flow, extracting in particular optimal initial conditions using power iteration and the solution of the full adjoint direct eigenproblem. The cost function for both temperature and velocity is based on the kinetic energy and the concept of entransy, which yields a quadratic functional. Results are presented as a function of Prandtl number, time horizons and weights between kinetic energy and entransy. In particular, it is shown that the maximum transient growth is achieved at time horizons on the order of 5 time units for all cases, whereas for larger time horizons the adjoint mode is recovered as optimal initial condition. For smaller time horizons, the influence of the weights leads either to a concentric temperature distribution or to an initial condition pattern that opposes the mean shear and grows according to the Orr mechanism. For specific cases, it could also been shown that the computation of optimal initial conditions leads to a degenerate problem, with a potential loss of symmetry. In these situations, it turns out that any initial condition lying in a specific span of the eigenfunctions will yield exactly the same transient amplification. As a consequence, the power iteration converges very slowly and fails to extract all possible optimal initial conditions. According to the authors' knowledge, this behavior is illustrated here for
Design and optimization of a modal- independent linear ultrasonic motor.
Zhou, Shengli; Yao, Zhiyuan
2014-03-01
To simplify the design of the linear ultrasonic motor (LUSM) and improve its output performance, a method of modal decoupling for LUSMs is proposed in this paper. The specific embodiment of this method is decoupling of the traditional LUSM stator's complex vibration into two simple vibrations, with each vibration implemented by one vibrator. Because the two vibrators are designed independently, their frequencies can be tuned independently and frequency consistency is easy to achieve. Thus, the method can simplify the design of the LUSM. Based on this method, a prototype modal- independent LUSM is designed and fabricated. The motor reaches its maximum thrust force of 47 N, maximum unloaded speed of 0.43 m/s, and maximum power of 7.85 W at applied voltage of 200 Vpp. The motor's structure is then optimized by controlling the difference between the two vibrators' resonance frequencies to reach larger output speed, thrust, and power. The optimized results show that when the frequency difference is 73 Hz, the output force, speed, and power reach their maximum values. At the input voltage of 200 Vpp, the motor reaches its maximum thrust force of 64.2 N, maximum unloaded speed of 0.76 m/s, maximum power of 17.4 W, maximum thrust-weight ratio of 23.7, and maximum efficiency of 39.6%.
Linear versus quadratic portfolio optimization model with transaction cost
Razak, Norhidayah Bt Ab; Kamil, Karmila Hanim; Elias, Siti Masitah
2014-06-01
Optimization model is introduced to become one of the decision making tools in investment. Hence, it is always a big challenge for investors to select the best model that could fulfill their goal in investment with respect to risk and return. In this paper we aims to discuss and compare the portfolio allocation and performance generated by quadratic and linear portfolio optimization models namely of Markowitz and Maximin model respectively. The application of these models has been proven to be significant and popular among others. However transaction cost has been debated as one of the important aspects that should be considered for portfolio reallocation as portfolio return could be significantly reduced when transaction cost is taken into consideration. Therefore, recognizing the importance to consider transaction cost value when calculating portfolio' return, we formulate this paper by using data from Shariah compliant securities listed in Bursa Malaysia. It is expected that, results from this paper will effectively justify the advantage of one model to another and shed some lights in quest to find the best decision making tools in investment for individual investors.
Optimal management with hybrid dynamics : The shallow lake problem
Reddy, P.V.; Schumacher, Hans; Engwerda, Jacob; Camlibel, M.K.; Julius, A.A.; Pasumarthy, R.
2015-01-01
In this article we analyze an optimal management problem that arises in ecological economics using hybrid systems modeling. First, we introduce a discounted autonomous infinite horizon hybrid optimal control problem and develop few tools to analyze the necessary conditions for optimality. Next,
On a Highly Nonlinear Self-Obstacle Optimal Control Problem
Energy Technology Data Exchange (ETDEWEB)
Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)
2015-10-15
We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.
A note on the depth function of combinatorial optimization problems
Woeginger, G.J.
2001-01-01
In a recent paper [Discrete Appl. Math. 43 (1993) 115–129], Kern formulates two conjectures on the relationship between the computational complexity of computing the depth function of a discrete optimization problem and the computational complexity of solving this optimization problem to optimality.
Optimal Linear Filters for Pulse Height Measurements in the Presence of Noise
International Nuclear Information System (INIS)
Nygaard, K.
1966-07-01
For measurements of nuclear pulse height spectra a linear filter is used between the pulse amplifier and the pulse height recorder so as to improve the signal/noise ratio. The problem of finding the optimal filter is investigated with emphasis on technical realizability. The maximum available signal/noise ratio is theoretically calculated on the basis of all the information which can be found in the output of the pulse amplifier, and on an assumed a priori knowledge of the pulse time of arrival. It is then shown that the maximum available signal/noise ratio can be obtained with practical measurements without any a priori knowledge of pulse time of arrival, and a general description of the optimal linear filter is given. The solution is unique, technically realizable, and based solely on data (noise power spectrum and pulse shape) which can be measured at the output terminals of the pulse amplifier used
International Nuclear Information System (INIS)
Shimizu, Yoshiaki
1981-01-01
A mathematical procedure is proposed to make a radioactive waste management plan comprehensively. Since such planning is relevant to some different goals in management, decision making has to be formulated as a multiobjective optimization problem. A mathematical programming method was introduced to make a decision through an interactive manner which enables us to assess the preference of decision maker step by step among the conflicting objectives. The reference system taken as an example is the radioactive waste management system at the Research Reactor Institute of Kyoto University (KUR). Its linear model was built based on the experience in the actual management at KUR. The best-compromise model was then formulated as a multiobjective linear programming by the aid of the computational analysis through a conventional optimization. It was shown from the numerical results that the proposed approach could provide some useful informations to make an actual management plan. (author)
Robust non-gradient C subroutines for non-linear optimization
DEFF Research Database (Denmark)
Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun
2004-01-01
This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems, where gradient information is not required. The intention is that the routines should use the currently best algorithms available. All routines have...... subroutines are obtained by changing 0 to 1. The present report is a new and updated version of a previous report NI-91-04 with the title Non-gradient c Subroutines for Non- Linear Optimization, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated...... from Fortran to C. The reason for writing the present report is that some of the C subroutines have been replaced by more e ective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modified to some extent...
Optimal Linear Filters for Pulse Height Measurements in the Presence of Noise
Energy Technology Data Exchange (ETDEWEB)
Nygaard, K
1966-07-15
For measurements of nuclear pulse height spectra a linear filter is used between the pulse amplifier and the pulse height recorder so as to improve the signal/noise ratio. The problem of finding the optimal filter is investigated with emphasis on technical realizability. The maximum available signal/noise ratio is theoretically calculated on the basis of all the information which can be found in the output of the pulse amplifier, and on an assumed a priori knowledge of the pulse time of arrival. It is then shown that the maximum available signal/noise ratio can be obtained with practical measurements without any a priori knowledge of pulse time of arrival, and a general description of the optimal linear filter is given. The solution is unique, technically realizable, and based solely on data (noise power spectrum and pulse shape) which can be measured at the output terminals of the pulse amplifier used.
International Nuclear Information System (INIS)
Liolios, A.A.; Boglou, A.K.
2003-01-01
The paper presents a new numerical approach for a non-linear optimal control problem arising in earthquake civil engineering. This problem concerns the elastoplastic softening-fracturing unilateral contact between neighbouring buildings during earthquakes when Coulomb friction is taken into account under second-order instabilizing effects. So, the earthquake response of the adjacent structures can appear instabilities and chaotic behaviour. The problem formulation presented here leads to a set of equations and inequalities, which is equivalent to a dynamic hemivariational inequality in the way introduced by Panagiotopoulos [Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993]. The numerical procedure is based on an incremental problem formulation and on a double discretization, in space by the finite element method and in time by the Wilson-θ method. The generally non-convex constitutive contact laws are piecewise linearized, and in each time-step a non-convex linear complementarity problem is solved with a reduced number of unknowns
Multi-objective optimization of linear multi-state multiple sliding window system
International Nuclear Information System (INIS)
Konak, Abdullah; Kulturel-Konak, Sadan; Levitin, Gregory
2012-01-01
This paper considers the optimal element sequencing in a linear multi-state multiple sliding window system that consists of n linearly ordered multi-state elements. Each multi-state element can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. The failure of type i in the system occurs if for any i (1≤i≤I) the cumulative performance of any r i consecutive elements is lower than w i . The element sequence strongly affects the probability of any type of system failure. The sequence that minimizes the probability of certain type of failure can provide high probability of other types of failures. Therefore the optimization problem for the multiple sliding window system is essentially multi-objective. The paper formulates and solves the multi-objective optimization problem for the multiple sliding window systems. A multi-objective Genetic Algorithm is used as the optimization engine. Illustrative examples are presented.
An Interpretation of the Gini Coefficient in a Stiglitz Two-Type Optimal Tax Problem
DEFF Research Database (Denmark)
Rasmussen, Bo Sandemann
2014-01-01
In a two-type Stiglitz (1982) model of optimal non-linear taxation it is shown that when the utility function relating to consumption is logaritmic the shadow price of the incentive constraint relating to the optimal tax problem exactly equals the Gini coefficient of the second-best optimal income...... distribution of a utilitarian government. In this sense the optimal degree of income redistribution is determined by the severity of the incentive problem facing the policy-maker. Extensions of the benchmark model to allow for more general functional forms of the utility function and for more than two types...
Asymptotic Method of Solution for a Problem of Construction of Optimal Gas-Lift Process Modes
Directory of Open Access Journals (Sweden)
Fikrat A. Aliev
2010-01-01
Full Text Available Mathematical model in oil extraction by gas-lift method for the case when the reciprocal value of well's depth represents a small parameter is considered. Problem of optimal mode construction (i.e., construction of optimal program trajectories and controls is reduced to the linear-quadratic optimal control problem with a small parameter. Analytic formulae for determining the solutions at the first-order approximation with respect to the small parameter are obtained. Comparison of the obtained results with known ones on a specific example is provided, which makes it, in particular, possible to use obtained results in realizations of oil extraction problems by gas-lift method.
ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (DEC VAX VERSION)
Frisch, H.
1994-01-01
This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following
ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (CDC VERSION)
Armstrong, E. S.
1994-01-01
This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following
Replica analysis for the duality of the portfolio optimization problem.
Shinzato, Takashi
2016-11-01
In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.
Replica analysis for the duality of the portfolio optimization problem
Shinzato, Takashi
2016-11-01
In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.
Energy Technology Data Exchange (ETDEWEB)
Djukanovic, M.; Babic, B.; Milosevic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [EPRI, Palo Alto, CA (United States). Power System Control; Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)
1996-05-01
In this paper the blending/transloading facilities are modeled using an interactive fuzzy linear programming (FLP), in order to allow the decision-maker to solve the problem of uncertainty of input information within the fuel scheduling optimization. An interactive decision-making process is formulated in which decision-maker can learn to recognize good solutions by considering all possibilities of fuzziness. The application of the fuzzy formulation is accompanied by a careful examination of the definition of fuzziness, appropriateness of the membership function and interpretation of results. The proposed concept provides a decision support system with integration-oriented features, whereby the decision-maker can learn to recognize the relative importance of factors in the specific domain of optimal fuel scheduling (OFS) problem. The formulation of a fuzzy linear programming problem to obtain a reasonable nonfuzzy solution under consideration of the ambiguity of parameters, represented by fuzzy numbers, is introduced. An additional advantage of the FLP formulation is its ability to deal with multi-objective problems.
Geometry optimization of linear and annular plasma synthetic jet actuators
International Nuclear Information System (INIS)
Neretti, G; Seri, P; Taglioli, M; Borghi, C A; Shaw, A; Iza, F
2017-01-01
The electrohydrodynamic (EHD) interaction induced in atmospheric air pressure by a surface dielectric barrier discharge (DBD) actuator has been experimentally investigated. Plasma synthetic jet actuators (PSJAs) are DBD actuators able to induce an air stream perpendicular to the actuator surface. These devices can be used in the field of aerodynamics to prevent or induce flow separation, modify the laminar to turbulent transition inside the boundary layer, and stabilize or mix air flows. They can also be used to enhance indirect plasma treatment effects, increasing the reactive species delivery rate onto surfaces and liquids. This can play a major role in plasma processing and chemical kinetics modelling, where often only diffusive mechanisms are considered. This paper reports on the importance that different electrode geometries can have on the performance of different PSJAs. A series of DBD aerodynamic actuators designed to produce perpendicular jets has been fabricated on two-layer printed circuit boards (PCBs). Both linear and annular geometries were considered, testing different upper electrode distances in the linear case and different diameters in the annular one. An AC voltage supplied at a peak of 11.5 kV and a frequency of 5 kHz was used. Lower electrodes were connected to the ground and buried in epoxy resin to avoid undesired plasma generation on the lower actuator surface. Voltage and current measurements were carried out to evaluate the active power delivered to the discharges. Schlieren imaging allowed the induced jets to be visualized and gave an estimate of their evolution and geometry. Pitot tube measurements were performed to obtain the velocity profiles of the PSJAs and to estimate the mechanical power delivered to the fluid. The optimal values of the inter-electrode distance and diameter were found in order to maximize jet velocity, mechanical power or efficiency. Annular geometries were found to achieve the best performance. (paper)
International Nuclear Information System (INIS)
Oh, S.-D.; Kwak, H.-Y.
2005-01-01
An optimal planning for gas turbine cogeneration system has been studied. The planning problem considered in this study is to determine the optimal configuration of the system equipments and optimal operational policy of the system when the annual energy demands of electric power, heat and cooling are given a priori. The main benefit of the optimal planning is to minimize operational costs and to save energy by efficient energy utilization. A mixed-integer linear programming and the branch and bound algorithm have been adopted to obtain the optimal solution. Both the optimal configuration of the system equipments and the optimal operation policy has been obtained based on annual cost method. The planning method employed here may be applied to the planning problem of the cogeneration plant to any specific building or hotel. (author)
Li, Yanning
2013-10-01
This article presents a new robust control framework for transportation problems in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi equation, we pose the problem of controlling the state of the system on a network link, using boundary flow control, as a Linear Program. Unlike many previously investigated transportation control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e. discontinuities in the state of the system). We also demonstrate that the same framework can handle robust control problems, in which the uncontrollable components of the initial and boundary conditions are encoded in intervals on the right hand side of inequalities in the linear program. The lower bound of the interval which defines the smallest feasible solution set is used to solve the robust LP (or MILP if the objective function depends on boolean variables). Since this framework leverages the intrinsic properties of the Hamilton-Jacobi equation used to model the state of the system, it is extremely fast. Several examples are given to demonstrate the performance of the robust control solution and the trade-off between the robustness and the optimality. © 2013 IEEE.
Li, Yanning; Canepa, Edward S.; Claudel, Christian G.
2013-01-01
This article presents a new robust control framework for transportation problems in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi equation, we pose the problem of controlling the state of the system on a network link, using boundary flow control, as a Linear Program. Unlike many previously investigated transportation control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e. discontinuities in the state of the system). We also demonstrate that the same framework can handle robust control problems, in which the uncontrollable components of the initial and boundary conditions are encoded in intervals on the right hand side of inequalities in the linear program. The lower bound of the interval which defines the smallest feasible solution set is used to solve the robust LP (or MILP if the objective function depends on boolean variables). Since this framework leverages the intrinsic properties of the Hamilton-Jacobi equation used to model the state of the system, it is extremely fast. Several examples are given to demonstrate the performance of the robust control solution and the trade-off between the robustness and the optimality. © 2013 IEEE.
An Augmented Lagrangian Method for the Optimal H∞ Model Order Reduction Problem
Directory of Open Access Journals (Sweden)
Hongli Yang
2017-01-01
Full Text Available This paper treats the computational method of the optimal H∞ model order reduction (MOR problem of linear time-invariant (LTI systems. Optimal solution of MOR problem of LTI systems can be obtained by solving the LMIs feasibility coupling with a rank inequality constraint, which makes the solutions much harder to be obtained. In this paper, we show that the rank inequality constraint can be formulated as a linear rank function equality constraint. Properties of the linear rank function are discussed. We present an iterative algorithm based on augmented Lagrangian method by replacing the rank inequality with the linear rank function. Convergence analysis of the algorithm is given, which is distinct to the now available heuristic methods. Numerical experiments for the MOR problems of continuous LTI system illustrate the practicality of our method.
Toward solving the sign problem with path optimization method
Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira
2017-12-01
We propose a new approach to circumvent the sign problem in which the integration path is optimized to control the sign problem. We give a trial function specifying the integration path in the complex plane and tune it to optimize the cost function which represents the seriousness of the sign problem. We call it the path optimization method. In this method, we do not need to solve the gradient flow required in the Lefschetz-thimble method and then the construction of the integration-path contour arrives at the optimization problem where several efficient methods can be applied. In a simple model with a serious sign problem, the path optimization method is demonstrated to work well; the residual sign problem is resolved and precise results can be obtained even in the region where the global sign problem is serious.
Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2017-10-01
This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.
Fuzzy linear model for production optimization of mining systems with multiple entities
Vujic, Slobodan; Benovic, Tomo; Miljanovic, Igor; Hudej, Marjan; Milutinovic, Aleksandar; Pavlovic, Petar
2011-12-01
Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.
NP-Hardness of optimizing the sum of Rational Linear Functions over an Asymptotic-Linear-Program
Chermakani, Deepak Ponvel
2012-01-01
We convert, within polynomial-time and sequential processing, an NP-Complete Problem into a real-variable problem of minimizing a sum of Rational Linear Functions constrained by an Asymptotic-Linear-Program. The coefficients and constants in the real-variable problem are 0, 1, -1, K, or -K, where K is the time parameter that tends to positive infinity. The number of variables, constraints, and rational linear functions in the objective, of the real-variable problem is bounded by a polynomial ...
An optimal design problem in wave propagation
DEFF Research Database (Denmark)
Bellido, J.C.; Donoso, Alberto
2007-01-01
of finding the best distributions of the two initial materials in a rod in order to minimize the vibration energy in the structure under periodic loading of driving frequency Omega. We comment on relaxation and optimality conditions, and perform numerical simulations of the optimal configurations. We prove...... also the existence of classical solutions in certain cases....
Identification and optimization problems in plasma physics
International Nuclear Information System (INIS)
Gilbert, J.C.
1986-06-01
Parameter identification of the current in a tokamak plasma is studied. Plasma equilibrium in a vacuum container with a diaphragm is analyzed. A variable metric method with reduced optimization with nonlinear equality constraints; and a quasi-Newton reduced optimization method with constraints giving priority to restoration are presented [fr
Multiobjective optimal allocation problem with probabilistic non ...
African Journals Online (AJOL)
user
The probabilistic non-linear cost constraint is converted into equivalent deterministic .... Further, in a survey the costs for enumerating a character in various strata are not known exactly, rather these are being ...... Naval Research Logistics, Vol.
Directory of Open Access Journals (Sweden)
Aihong Ren
2016-01-01
Full Text Available This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solution of the problem, we apply deviation degree measures to deal with the fuzzy constraints and use a ranking function method of fuzzy numbers to rank the upper and lower level fuzzy objective functions. Then the fully fuzzy bilevel linear programming problem can be transformed into a deterministic bilevel programming problem. Considering the overall balance between improving objective function values and decreasing allowed deviation degrees, the computational procedure for finding a fuzzy optimal solution is proposed. Finally, a numerical example is provided to illustrate the proposed approach. The results indicate that the proposed approach gives a better optimal solution in comparison with the existing method.
Optimal solutions for routing problems with profits
Archetti, C.; Bianchessi, N.; Speranza, M. G.
2013-01-01
In this paper, we present a branch-and-price algorithm to solve two well-known vehicle routing problems with profits, the Capacitated Team Orienteering Problem and the Capacitated Profitable Tour Problem. A restricted master heuristic is applied at each node of the branch-and-bound tree in order to
ISOGEOMETRIC SHAPE OPTIMIZATION FOR ELECTROMAGNETIC SCATTERING PROBLEMS
DEFF Research Database (Denmark)
Nguyen, D. M.; Evgrafov, Anton; Gravesen, Jens
2012-01-01
We consider the benchmark problem of magnetic energy density enhancement in a small spatial region by varying the shape of two symmetric conducting scatterers. We view this problem as a prototype for a wide variety of geometric design problems in electromagnetic applications. Our approach...
Stability of multi-objective bi-level linear programming problems under fuzziness
Directory of Open Access Journals (Sweden)
Abo-Sinna Mahmoud A.
2013-01-01
Full Text Available This paper deals with multi-objective bi-level linear programming problems under fuzzy environment. In the proposed method, tentative solutions are obtained and evaluated by using the partial information on preference of the decision-makers at each level. The existing results concerning the qualitative analysis of some basic notions in parametric linear programming problems are reformulated to study the stability of multi-objective bi-level linear programming problems. An algorithm for obtaining any subset of the parametric space, which has the same corresponding Pareto optimal solution, is presented. Also, this paper established the model for the supply-demand interaction in the age of electronic commerce (EC. First of all, the study uses the individual objectives of both parties as the foundation of the supply-demand interaction. Subsequently, it divides the interaction, in the age of electronic commerce, into the following two classifications: (i Market transactions, with the primary focus on the supply demand relationship in the marketplace; and (ii Information service, with the primary focus on the provider and the user of information service. By applying the bi-level programming technique of interaction process, the study will develop an analytical process to explain how supply-demand interaction achieves a compromise or why the process fails. Finally, a numerical example of information service is provided for the sake of illustration.
A linear bi-level multi-objective program for optimal allocation of water resources.
Directory of Open Access Journals (Sweden)
Ijaz Ahmad
Full Text Available This paper presents a simple bi-level multi-objective linear program (BLMOLP with a hierarchical structure consisting of reservoir managers and several water use sectors under a multi-objective framework for the optimal allocation of limited water resources. Being the upper level decision makers (i.e., leader in the hierarchy, the reservoir managers control the water allocation system and tend to create a balance among the competing water users thereby maximizing the total benefits to the society. On the other hand, the competing water use sectors, being the lower level decision makers (i.e., followers in the hierarchy, aim only to maximize individual sectoral benefits. This multi-objective bi-level optimization problem can be solved using the simultaneous compromise constraint (SICCON technique which creates a compromise between upper and lower level decision makers (DMs, and transforms the multi-objective function into a single decision-making problem. The bi-level model developed in this study has been applied to the Swat River basin in Pakistan for the optimal allocation of water resources among competing water demand sectors and different scenarios have been developed. The application of the model in this study shows that the SICCON is a simple, applicable and feasible approach to solve the BLMOLP problem. Finally, the comparisons of the model results show that the optimization model is practical and efficient when it is applied to different conditions with priorities assigned to various water users.
Advances in bio-inspired computing for combinatorial optimization problems
Pintea, Camelia-Mihaela
2013-01-01
Advances in Bio-inspired Combinatorial Optimization Problems' illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems.Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed.Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive a
Two-Layer Linear MPC Approach Aimed at Walking Beam Billets Reheating Furnace Optimization
Directory of Open Access Journals (Sweden)
Silvia Maria Zanoli
2017-01-01
Full Text Available In this paper, the problem of the control and optimization of a walking beam billets reheating furnace located in an Italian steel plant is analyzed. An ad hoc Advanced Process Control framework has been developed, based on a two-layer linear Model Predictive Control architecture. This control block optimizes the steady and transient states of the considered process. Two main problems have been addressed. First, in order to manage all process conditions, a tailored module defines the process variables set to be included in the control problem. In particular, a unified approach for the selection on the control inputs to be used for control objectives related to the process outputs is guaranteed. The impact of the proposed method on the controller formulation is also detailed. Second, an innovative mathematical approach for stoichiometric ratios constraints handling has been proposed, together with their introduction in the controller optimization problems. The designed control system has been installed on a real plant, replacing operators’ mental model in the conduction of local PID controllers. After two years from the first startup, a strong energy efficiency improvement has been observed.
A local-global problem for linear differential equations
Put, Marius van der; Reversat, Marc
2008-01-01
An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is
A local-global problem for linear differential equations
Put, Marius van der; Reversat, Marc
An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is
First-order system least squares for the pure traction problem in planar linear elasticity
Energy Technology Data Exchange (ETDEWEB)
Cai, Z.; Manteuffel, T.; McCormick, S.; Parter, S.
1996-12-31
This talk will develop two first-order system least squares (FOSLS) approaches for the solution of the pure traction problem in planar linear elasticity. Both are two-stage algorithms that first solve for the gradients of displacement, then for the displacement itself. One approach, which uses L{sup 2} norms to define the FOSLS functional, is shown under certain H{sup 2} regularity assumptions to admit optimal H{sup 1}-like performance for standard finite element discretization and standard multigrid solution methods that is uniform in the Poisson ratio for all variables. The second approach, which is based on H{sup -1} norms, is shown under general assumptions to admit optimal uniform performance for displacement flux in an L{sup 2} norm and for displacement in an H{sup 1} norm. These methods do not degrade as other methods generally do when the material properties approach the incompressible limit.
Frequency response as a surrogate eigenvalue problem in topology optimization
DEFF Research Database (Denmark)
Andreassen, Erik; Ferrari, Federico; Sigmund, Ole
2018-01-01
This article discusses the use of frequency response surrogates for eigenvalue optimization problems in topology optimization that may be used to avoid solving the eigenvalue problem. The motivation is to avoid complications that arise from multiple eigenvalues and the computational complexity as...
Ant Colony Optimization and the Minimum Cut Problem
DEFF Research Database (Denmark)
Kötzing, Timo; Lehre, Per Kristian; Neumann, Frank
2010-01-01
Ant Colony Optimization (ACO) is a powerful metaheuristic for solving combinatorial optimization problems. With this paper we contribute to the theoretical understanding of this kind of algorithm by investigating the classical minimum cut problem. An ACO algorithm similar to the one that was prov...
Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem
Chen, Wei
2015-07-01
In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.
Sufficient conditions for Lagrange, Mayer, and Bolza optimization problems
Directory of Open Access Journals (Sweden)
Boltyanski V.
2001-01-01
Full Text Available The Maximum Principle [2,13] is a well known necessary condition for optimality. This condition, generally, is not sufficient. In [3], the author proved that if there exists regular synthesis of trajectories, the Maximum Principle also is a sufficient condition for time-optimality. In this article, we generalize this result for Lagrange, Mayer, and Bolza optimization problems.
Optimal Control Problems for Nonlinear Variational Evolution Inequalities
Directory of Open Access Journals (Sweden)
Eun-Young Ju
2013-01-01
Full Text Available We deal with optimal control problems governed by semilinear parabolic type equations and in particular described by variational inequalities. We will also characterize the optimal controls by giving necessary conditions for optimality by proving the Gâteaux differentiability of solution mapping on control variables.
Optimized parallel convolutions for non-linear fluid models of tokamak ηi turbulence
International Nuclear Information System (INIS)
Milovich, J.L.; Tomaschke, G.; Kerbel, G.D.
1993-01-01
Non-linear computational fluid models of plasma turbulence based on spectral methods typically spend a large fraction of the total computing time evaluating convolutions. Usually these convolutions arise from an explicit or semi implicit treatment of the convective non-linearities in the problem. Often the principal convective velocity is perpendicular to magnetic field lines allowing a reduction of the convolution to two dimensions in an appropriate geometry, but beyond this, different models vary widely in the particulars of which mode amplitudes are selectively evolved to get the most efficient representation of the turbulence. As the number of modes in the problem, N, increases, the amount of computation required for this part of the evolution algorithm then scales as N 2 /timestep for a direct or analytic method and N ln N/timestep for a pseudospectral method. The constants of proportionality depend on the particulars of mode selection and determine the size problem for which the method will perform equally. For large enough N, the pseudospectral method performance is always superior, though some problems do not require correspondingly high resolution. Further, the Courant condition for numerical stability requires that the timestep size must decrease proportionately as N increases, thus accentuating the need to have fast methods for larger N problems. The authors have developed a package for the Cray system which performs these convolutions for a rather arbitrary mode selection scheme using either method. The package is highly optimized using a combination of macro and microtasking techniques, as well as vectorization and in some cases assembly coded routines. Parts of the package have also been developed and optimized for the CM200 and CM5 system. Performance comparisons with respect to problem size, parallelization, selection schemes and architecture are presented
Mathematical programming methods for large-scale topology optimization problems
DEFF Research Database (Denmark)
Rojas Labanda, Susana
for mechanical problems, but has rapidly extended to many other disciplines, such as fluid dynamics and biomechanical problems. However, the novelty and improvements of optimization methods has been very limited. It is, indeed, necessary to develop of new optimization methods to improve the final designs......, and at the same time, reduce the number of function evaluations. Nonlinear optimization methods, such as sequential quadratic programming and interior point solvers, have almost not been embraced by the topology optimization community. Thus, this work is focused on the introduction of this kind of second...... for the classical minimum compliance problem. Two of the state-of-the-art optimization algorithms are investigated and implemented for this structural topology optimization problem. A Sequential Quadratic Programming (TopSQP) and an interior point method (TopIP) are developed exploiting the specific mathematical...
Mathematical problems in non-linear Physics: some results
International Nuclear Information System (INIS)
1979-01-01
The basic results presented in this report are the following: 1) Characterization of the range and Kernel of the variational derivative. 2) Determination of general conservation laws in linear evolution equations, as well as bounds for the number of polynomial conserved densities in non-linear evolution equations in two independent variables of even order. 3) Construction of the most general evolution equation which has a given family of conserved densities. 4) Regularity conditions for the validity of the Lie invariance method. 5) A simple class of perturbations in non-linear wave equations. 6) Soliton solutions in generalized KdV equations. (author)
International Nuclear Information System (INIS)
Aspinall, J.
1982-01-01
A computational method was developed which alleviates the need for lengthy parametric scans as part of a design process. The method makes use of a least squares algorithm to find the optimal value of a parameter vector. Optimal is defined in terms of a utility function prescribed by the user. The placement of the vertical field coils of a torsatron is such a non linear problem
3D Topology optimization of Stokes flow problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan; Dammann, Bernd
of energy efficient devices for 2D Stokes flow. Creeping flow problems are described by the Stokes equations which model very viscous fluids at macro scales or ordinary fluids at very small scales. The latter gives the motivation for topology optimization problems based on the Stokes equations being a model......The present talk is concerned with the application of topology optimization to creeping flow problems in 3D. This research is driven by the fact that topology optimization has proven very successful as a tool in academic and industrial design problems. Success stories are reported from such diverse...
Optimization Problems in Supply Chain Management
D. Romero Morales (Dolores)
2000-01-01
textabstractMaria Dolores Romero Morales was born on Augustus 5th, 1971, in Sevilla (Spain). She studied Mathematics at University of Sevilla from 1989 to 1994 and specialized in Statistics and Operations Research. She wrote her Master's thesis on Global Optimization in Location Theory under the
Burgers' turbulence problem with linear or quadratic external potential
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Leonenko, N.N.
2005-01-01
We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions.......We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions....
Application of Hybrid Optimization Algorithm in the Synthesis of Linear Antenna Array
Directory of Open Access Journals (Sweden)
Ezgi Deniz Ülker
2014-01-01
Full Text Available The use of hybrid algorithms for solving real-world optimization problems has become popular since their solution quality can be made better than the algorithms that form them by combining their desirable features. The newly proposed hybrid method which is called Hybrid Differential, Particle, and Harmony (HDPH algorithm is different from the other hybrid forms since it uses all features of merged algorithms in order to perform efficiently for a wide variety of problems. In the proposed algorithm the control parameters are randomized which makes its implementation easy and provides a fast response. This paper describes the application of HDPH algorithm to linear antenna array synthesis. The results obtained with the HDPH algorithm are compared with three merged optimization techniques that are used in HDPH. The comparison shows that the performance of the proposed algorithm is comparatively better in both solution quality and robustness. The proposed hybrid algorithm HDPH can be an efficient candidate for real-time optimization problems since it yields reliable performance at all times when it gets executed.
Improved Ant Colony Optimization for Seafood Product Delivery Routing Problem
Directory of Open Access Journals (Sweden)
Baozhen Yao
2014-02-01
Full Text Available This paper deals with a real-life vehicle delivery routing problem, which is a seafood product delivery routing problem. Considering the features of the seafood product delivery routing problem, this paper formulated this problem as a multi-depot open vehicle routing problem. Since the multi-depot open vehicle routing problem is a very complex problem, a method is used to reduce the complexity of the problem by changing the multi-depot open vehicle routing problem into an open vehicle routing problem with a dummy central depot in this paper. Then, ant colony optimization is used to solve the problem. To improve the performance of the algorithm, crossover operation and some adaptive strategies are used. Finally, the computational results for the benchmark problems of the multi-depot vehicle routing problem indicate that the proposed ant colony optimization is an effective method to solve the multi-depot vehicle routing problem. Furthermore, the computation results of the seafood product delivery problem from Dalian, China also suggest that the proposed ant colony optimization is feasible to solve the seafood product delivery routing problem.
Dirichlet problem for quasi-linear elliptic equations
Directory of Open Access Journals (Sweden)
Azeddine Baalal
2002-10-01
Full Text Available We study the Dirichlet Problem associated to the quasilinear elliptic problem $$ -sum_{i=1}^{n}frac{partial }{partial x_i}mathcal{A}_i(x,u(x, abla u(x+mathcal{B}(x,u(x,abla u(x=0. $$ Then we define a potential theory related to this problem and we show that the sheaf of continuous solutions satisfies the Bauer axiomatic theory. Submitted April 9, 2002. Published October 2, 2002. Math Subject Classifications: 31C15, 35B65, 35J60. Key Words: Supersolution; Dirichlet problem; obstacle problem; nonlinear potential theory.
Topology optimization of fluid-structure-interaction problems in poroelasticity
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe; Sigmund, Ole
2013-01-01
This paper presents a method for applying topology optimization to fluid-structure interaction problems in saturated poroelastic media. The method relies on a multiple-scale method applied to periodic media. The resulting model couples the Stokes flow in the pores of the structure with the deform...... by topology optimization in order to optimize the performance of a shock absorber and test the pressure loading capabilities and optimization of an internally pressurized lid. © 2013 Published by Elsevier B.V....
Some Optimization Problems for p-Laplacian Type Equations
International Nuclear Information System (INIS)
Del Pezzo, L. M.; Fernandez Bonder, J.
2009-01-01
In this paper we study some optimization problems for nonlinear elastic membranes. More precisely, we consider the problem of optimizing the cost functional over some admissible class of loads f where u is the (unique) solution to the problem -Δ p u+ vertical bar u vertical bar p-2 u=0 in Ω with vertical bar ∇u vertical bar p-2 u ν =f on ∂Ω
Constraint interface preconditioning for topology optimization problems
Czech Academy of Sciences Publication Activity Database
Kočvara, Michal; Loghin, D.; Turner, J.
2016-01-01
Roč. 38, č. 1 (2016), A128-A145 ISSN 1064-8275 R&D Projects: GA AV ČR IAA100750802 Grant - others:European Commission - EC(XE) 313781 Institutional support: RVO:67985556 Keywords : topology optimization * domain decomposition * Newton-Krylov Subject RIV: BA - General Mathematics Impact factor: 2.195, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0460325.pdf
Portfolio optimization and the random magnet problem
Rosenow, B.; Plerou, V.; Gopikrishnan, P.; Stanley, H. E.
2002-08-01
Diversification of an investment into independently fluctuating assets reduces its risk. In reality, movements of assets are mutually correlated and therefore knowledge of cross-correlations among asset price movements are of great importance. Our results support the possibility that the problem of finding an investment in stocks which exposes invested funds to a minimum level of risk is analogous to the problem of finding the magnetization of a random magnet. The interactions for this "random magnet problem" are given by the cross-correlation matrix C of stock returns. We find that random matrix theory allows us to make an estimate for C which outperforms the standard estimate in terms of constructing an investment which carries a minimum level of risk.
Optimal control of LQG problem with an explicit trade-off between mean and variance
Qian, Fucai; Xie, Guo; Liu, Ding; Xie, Wenfang
2011-12-01
For discrete-time linear-quadratic Gaussian (LQG) control problems, a utility function on the expectation and the variance of the conventional performance index is considered. The utility function is viewed as an overall objective of the system and can perform the optimal trade-off between the mean and the variance of performance index. The nonlinear utility function is first converted into an auxiliary parameters optimisation problem about the expectation and the variance. Then an optimal closed-loop feedback controller for the nonseparable mean-variance minimisation problem is designed by nonlinear mathematical programming. Finally, simulation results are given to verify the algorithm's effectiveness obtained in this article.
Topology optimization problems with design-dependent sets of constraints
DEFF Research Database (Denmark)
Schou, Marie-Louise Højlund
Topology optimization is a design tool which is used in numerous fields. It can be used whenever the design is driven by weight and strength considerations. The basic concept of topology optimization is the interpretation of partial differential equation coefficients as effective material...... properties and designing through changing these coefficients. For example, consider a continuous structure. Then the basic concept is to represent this structure by small pieces of material that are coinciding with the elements of a finite element model of the structure. This thesis treats stress constrained...... structural topology optimization problems. For such problems a stress constraint for an element should only be present in the optimization problem when the structural design variable corresponding to this element has a value greater than zero. We model the stress constrained topology optimization problem...
Optimal Wafer Cutting in Shuttle Layout Problems
DEFF Research Database (Denmark)
Nisted, Lasse; Pisinger, David; Altman, Avri
2011-01-01
. The shuttle layout problem is frequently solved in two phases: first, a floorplan of the shuttle is generated. Then, a cutting plan is found which minimizes the overall number of wafers needed to satisfy the demand of each die type. Since some die types require special production technologies, only compatible...
Constraint Optimization for Highly Constrained Logistic Problems
DEFF Research Database (Denmark)
Mochnacs, Maria Kinga; Tanaka, Meang Akira; Nyborg, Anders
This report investigates whether propagators combined with branch and bound algorithm are suitable for solving the storage area stowage problem within reasonable time. The approach has not been attempted before and experiments show that the implementation was not capable of solving the storage ar...
An improved exploratory search technique for pure integer linear programming problems
Fogle, F. R.
1990-01-01
The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.
International Nuclear Information System (INIS)
Culver, T.B.
1991-01-01
Several modifications of the linear-quadratic regulator (LQR) optimization algorithm are developed, and the computational efficiency of each algorithm with respect to groundwater remediation is evaluated. In each case, the optimization model is combined with a finite element groundwater flow and transport simulation model to determine the optimal time-varying pump-and-treat policy. The first modification of the LQR algorithm incorporated management periods, which are groups of simulation time steps during which the pumping policy remains constant. Management periods reduced the total computational demand, as measured by the CPU time, by as much as 85% compared to the time needed for the LQR solution without management periods. Complexity analysis revealed that computational savings of equal or greater magnitude can be expected in general for groundwater remediation applications and for many other applications of dynamic control. The LQR algorithm with management periods was further modified by assuming steady-state hydraulics within a management period (SSLQR), which simplifies the derivatives of the transition equation. A quasi-Newton differential dynamic programming (QNDDP) was formulated by approximating the complicated second derivatives of the transition equation using a Broyden rank-one approximation. QNDDP converged to the optimal policy for the test problem significantly faster than the LQR algorithm, requiring approximately half the computational time. With the test problem expanded to include the capacity of the treatment facility as a state variable, QNDDP with management periods can determine the optimal treatment facility capacity. With many management periods, the addition of the capital costs of the treatment facility changed the optimal policy so that the required treatment facility capacity was reduced
Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm
Directory of Open Access Journals (Sweden)
Wenping Zou
2011-01-01
Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.
A novel approach based on preference-based index for interval bilevel linear programming problem.
Ren, Aihong; Wang, Yuping; Xue, Xingsi
2017-01-01
This paper proposes a new methodology for solving the interval bilevel linear programming problem in which all coefficients of both objective functions and constraints are considered as interval numbers. In order to keep as much uncertainty of the original constraint region as possible, the original problem is first converted into an interval bilevel programming problem with interval coefficients in both objective functions only through normal variation of interval number and chance-constrained programming. With the consideration of different preferences of different decision makers, the concept of the preference level that the interval objective function is preferred to a target interval is defined based on the preference-based index. Then a preference-based deterministic bilevel programming problem is constructed in terms of the preference level and the order relation [Formula: see text]. Furthermore, the concept of a preference δ -optimal solution is given. Subsequently, the constructed deterministic nonlinear bilevel problem is solved with the help of estimation of distribution algorithm. Finally, several numerical examples are provided to demonstrate the effectiveness of the proposed approach.
A novel approach based on preference-based index for interval bilevel linear programming problem
Directory of Open Access Journals (Sweden)
Aihong Ren
2017-05-01
Full Text Available Abstract This paper proposes a new methodology for solving the interval bilevel linear programming problem in which all coefficients of both objective functions and constraints are considered as interval numbers. In order to keep as much uncertainty of the original constraint region as possible, the original problem is first converted into an interval bilevel programming problem with interval coefficients in both objective functions only through normal variation of interval number and chance-constrained programming. With the consideration of different preferences of different decision makers, the concept of the preference level that the interval objective function is preferred to a target interval is defined based on the preference-based index. Then a preference-based deterministic bilevel programming problem is constructed in terms of the preference level and the order relation ⪯ m w $\\preceq_{mw}$ . Furthermore, the concept of a preference δ-optimal solution is given. Subsequently, the constructed deterministic nonlinear bilevel problem is solved with the help of estimation of distribution algorithm. Finally, several numerical examples are provided to demonstrate the effectiveness of the proposed approach.
International Nuclear Information System (INIS)
Meneses, Anderson Alvarenga de Moura; Schirru, Roberto
2005-01-01
This work focuses on the usage the Artificial Intelligence technique Particle Swarm Optimization (PSO) to optimize the fuel recharge at a nuclear reactor. This is a combinatorial problem, in which the search of the best feasible solution is done by minimizing a specific objective function. However, in this first moment it is possible to compare the fuel recharge problem with the Traveling Salesman Problem (TSP), since both of them are combinatorial, with one advantage: the evaluation of the TSP objective function is much more simple. Thus, the proposed methods have been applied to two TSPs: Oliver 30 and Rykel 48. In 1995, KENNEDY and EBERHART presented the PSO technique to optimize non-linear continued functions. Recently some PSO models for discrete search spaces have been developed for combinatorial optimization. Although all of them having different formulation from the ones presented here. In this paper, we use the PSO theory associated with to the Random Keys (RK)model, used in some optimizations with Genetic Algorithms. The Particle Swarm Optimization with Random Keys (PSORK) results from this association, which combines PSO and RK. The adaptations and changings in the PSO aim to allow the usage of the PSO at the nuclear fuel recharge. This work shows the PSORK being applied to the proposed combinatorial problem and the obtained results. (author)
Optimality conditions for the numerical solution of optimization problems with PDE constraints :
Energy Technology Data Exchange (ETDEWEB)
Aguilo Valentin, Miguel Alejandro; Ridzal, Denis
2014-03-01
A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.
NonLinear Parallel OPtimization Tool, Phase II
National Aeronautics and Space Administration — The technological advancement proposed is a novel large-scale Noninear Parallel OPtimization Tool (NLPAROPT). This software package will eliminate the computational...
Present-day Problems and Methods of Optimization in Mechatronics
Directory of Open Access Journals (Sweden)
Tarnowski Wojciech
2017-06-01
Full Text Available It is justified that design is an inverse problem, and the optimization is a paradigm. Classes of design problems are proposed and typical obstacles are recognized. Peculiarities of the mechatronic designing are specified as a proof of a particle importance of optimization in the mechatronic design. Two main obstacles of optimization are discussed: a complexity of mathematical models and an uncertainty of the value system, in concrete case. Then a set of non-standard approaches and methods are presented and discussed, illustrated by examples: a fuzzy description, a constraint-based iterative optimization, AHP ranking method and a few MADM functions in Matlab.
Comments on `A discrete optimal control problem for descriptor systems'
DEFF Research Database (Denmark)
Ravn, Hans
1990-01-01
In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates that there ......In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates...
On nonlocal semi linear elliptic problem with an indefinite term
International Nuclear Information System (INIS)
Yechoui, Akila
2007-08-01
The aim of this paper is to investigate the existence of solutions of a nonlocal semi linear elliptic equation with an indefinite term. The monotone method, the method of upper and lower solutions and the classical maximum principle are used to obtain our results. (author)
Preconditioned Iterative Methods for Solving Weighted Linear Least Squares Problems
Czech Academy of Sciences Publication Activity Database
Bru, R.; Marín, J.; Mas, J.; Tůma, Miroslav
2014-01-01
Roč. 36, č. 4 (2014), A2002-A2022 ISSN 1064-8275 Institutional support: RVO:67985807 Keywords : preconditioned iterative methods * incomplete decompositions * approximate inverses * linear least squares Subject RIV: BA - General Mathematics Impact factor: 1.854, year: 2014
Answers to selected problems in multivariable calculus with linear algebra and series
Trench, William F
1972-01-01
Answers to Selected Problems in Multivariable Calculus with Linear Algebra and Series contains the answers to selected problems in linear algebra, the calculus of several variables, and series. Topics covered range from vectors and vector spaces to linear matrices and analytic geometry, as well as differential calculus of real-valued functions. Theorems and definitions are included, most of which are followed by worked-out illustrative examples.The problems and corresponding solutions deal with linear equations and matrices, including determinants; vector spaces and linear transformations; eig
Topology optimization for acoustic-structure interaction problems
DEFF Research Database (Denmark)
Yoon, Gil Ho; Jensen, Jakob Søndergaard; Sigmund, Ole
2006-01-01
We propose a gradient based topology optimization algorithm for acoustic-structure (vibro-acoustic) interaction problems without an explicit interfacing boundary representation. In acoustic-structure interaction problems, the pressure field and the displacement field are governed by the Helmholtz...... to subdomain interfaces evolving during the optimization process. In this paper, we propose to use a mixed finite element formulation with displacements and pressure as primary variables (u/p formulation) which eliminates the need for explicit boundary representation. In order to describe the Helmholtz......-dimensional acoustic-structure interaction problems are optimized to show the validity of the proposed method....
Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen
2018-01-01
With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP
Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen
2018-01-05
With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP
Optimal linear filtering of Poisson process with dead time
International Nuclear Information System (INIS)
Glukhova, E.V.
1993-01-01
The paper presents a derivation of an integral equation defining the impulsed transient of optimum linear filtering for evaluation of the intensity of the fluctuating Poisson process with allowance for dead time of transducers
Bardhan, Jaydeep P; Altman, Michael D; Tidor, B; White, Jacob K
2009-01-01
We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule's electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts-in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method.
Bardhan, Jaydeep P.; Altman, Michael D.
2009-01-01
We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule’s electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts–in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method. PMID:23055839
Ebrahimnejad, Ali
2015-08-01
There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.
The Tree Inclusion Problem: In Linear Space and Faster
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li
2011-01-01
Given two rooted, ordered, and labeled trees P and T the tree inclusion problem is to determine if P can be obtained from T by deleting nodes in T. This problem has recently been recognized as an important query primitive in XML databases. Kilpel äinen and Mannila [1995] presented the first....... This is particularly important in practical applications, such as XML databases, where the space is likely to be a bottleneck. © 2011 ACM....
Comparison of optimal design methods in inverse problems
International Nuclear Information System (INIS)
Banks, H T; Holm, K; Kappel, F
2011-01-01
Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst–Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667–77; De Gaetano A and Arino O 2000 J. Math. Biol. 40 136–68; Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979–90)
Comparison of optimal design methods in inverse problems
Banks, H. T.; Holm, K.; Kappel, F.
2011-07-01
Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667-77 De Gaetano A and Arino O 2000 J. Math. Biol. 40 136-68 Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979-90).
Some mathematical problems in non-linear Physics
International Nuclear Information System (INIS)
1983-01-01
The main results contained in this report are the following: I) A general analysis of non-autonomous conserved densities for simple linear evolution systems. II) Partial differential systems within a wide class are converted into Lagrange an form. III) Rigorous criteria for existence of integrating factor matrices. IV) Isolation of all third-order evolution equations with high order symmetries and conservation laws. (Author) 3 refs
New Exact Penalty Functions for Nonlinear Constrained Optimization Problems
Directory of Open Access Journals (Sweden)
Bingzhuang Liu
2014-01-01
Full Text Available For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the sense that local minimizers of the associated penalty problem are precisely the local minimizers of the original constrained problem.
An optimal control approach to manpower planning problem
Directory of Open Access Journals (Sweden)
H. W. J. Lee
2001-01-01
Full Text Available A manpower planning problem is studied in this paper. The model includes scheduling different types of workers over different tasks, employing and terminating different types of workers, and assigning different types of workers to various trainning programmes. The aim is to find an optimal way to do all these while keeping the time-varying demand for minimum number of workers working on each different tasks satisfied. The problem is posed as an optimal discrete-valued control problem in discrete time. A novel numerical scheme is proposed to solve the problem, and an illustrative example is provided.
Topology Optimization of Large Scale Stokes Flow Problems
DEFF Research Database (Denmark)
Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan
2008-01-01
This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....
Pozo, Carlos; Marín-Sanguino, Alberto; Alves, Rui; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Sorribas, Albert
2011-08-25
Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Directory of Open Access Journals (Sweden)
Sorribas Albert
2011-08-01
Full Text Available Abstract Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Directory of Open Access Journals (Sweden)
Jens G. Balchen
1984-10-01
Full Text Available The problem of systematic derivation of a quasi-dynamic optimal control strategy for a non-linear dynamic process based upon a non-quadratic objective function is investigated. The wellknown LQG-control algorithm does not lead to an optimal solution when the process disturbances have non-zero mean. The relationships between the proposed control algorithm and LQG-control are presented. The problem of how to constrain process variables by means of 'penalty' - terms in the objective function is dealt with separately.
Optimal stability polynomials for numerical integration of initial value problems
Ketcheson, David I.; Ahmadia, Aron
2013-01-01
We consider the problem of finding optimally stable polynomial approximations to the exponential for application to one-step integration of initial value ordinary and partial differential equations. The objective is to find the largest stable step
Infinite-horizon optimal control problems in economics
Energy Technology Data Exchange (ETDEWEB)
Aseev, Sergei M; Besov, Konstantin O; Kryazhimskii, Arkadii V
2012-04-30
This paper extends optimal control theory to a class of infinite-horizon problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of this sort the initial state is fixed, no constraints are imposed on the behaviour of the admissible trajectories at large times, and the objective functional is given by a discounted improper integral. We develop the method of finite-horizon approximations in a broad context and use it to derive complete versions of the Pontryagin maximum principle for such problems. We provide sufficient conditions for the normality of infinite-horizon optimal control problems and for the validity of the 'standard' limit transversality conditions with time going to infinity. As a meaningful example, we consider a new two-sector model of optimal economic growth subject to a random jump in prices. Bibliography: 53 titles.
An inverse optimal control problem in the electrical discharge ...
Indian Academy of Sciences (India)
Marin Gostimirovic
2018-05-10
May 10, 2018 ... Keywords. EDM process; discharge energy; heat source parameters; inverse problem; optimization. 1. Introduction .... ation, thermal modeling of the EDM process would become ..... simulation of die-sinking EDM. CIRP Ann.
Infinite-horizon optimal control problems in economics
International Nuclear Information System (INIS)
Aseev, Sergei M; Besov, Konstantin O; Kryazhimskii, Arkadii V
2012-01-01
This paper extends optimal control theory to a class of infinite-horizon problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of this sort the initial state is fixed, no constraints are imposed on the behaviour of the admissible trajectories at large times, and the objective functional is given by a discounted improper integral. We develop the method of finite-horizon approximations in a broad context and use it to derive complete versions of the Pontryagin maximum principle for such problems. We provide sufficient conditions for the normality of infinite-horizon optimal control problems and for the validity of the 'standard' limit transversality conditions with time going to infinity. As a meaningful example, we consider a new two-sector model of optimal economic growth subject to a random jump in prices. Bibliography: 53 titles.
Directory of Open Access Journals (Sweden)
H Kazemipoor
2012-04-01
Full Text Available A multi-skilled project scheduling problem (MSPSP has been generally presented to schedule a project with staff members as resources. Each activity in project network requires different skills and also staff members have different skills, too. This causes the MSPSP becomes a special type of a multi-mode resource-constrained project scheduling problem (MM-RCPSP with a huge number of modes. Given the importance of this issue, in this paper, a mixed integer linear programming for the MSPSP is presented. Due to the complexity of the problem, a meta-heuristic algorithm is proposed in order to find near optimal solutions. To validate performance of the algorithm, results are compared against exact solutions solved by the LINGO solver. The results are promising and show that optimal or near-optimal solutions are derived for small instances and good solutions for larger instances in reasonable time.
On the relation between flexibility analysis and robust optimization for linear systems
Zhang, Qi
2016-03-05
Flexibility analysis and robust optimization are two approaches to solving optimization problems under uncertainty that share some fundamental concepts, such as the use of polyhedral uncertainty sets and the worst-case approach to guarantee feasibility. The connection between these two approaches has not been sufficiently acknowledged and examined in the literature. In this context, the contributions of this work are fourfold: (1) a comparison between flexibility analysis and robust optimization from a historical perspective is presented; (2) for linear systems, new formulations for the three classical flexibility analysis problems—flexibility test, flexibility index, and design under uncertainty—based on duality theory and the affinely adjustable robust optimization (AARO) approach are proposed; (3) the AARO approach is shown to be generally more restrictive such that it may lead to overly conservative solutions; (4) numerical examples show the improved computational performance from the proposed formulations compared to the traditional flexibility analysis models. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3109–3123, 2016
Complicated problem solution techniques in optimal parameter searching
International Nuclear Information System (INIS)
Gergel', V.P.; Grishagin, V.A.; Rogatneva, E.A.; Strongin, R.G.; Vysotskaya, I.N.; Kukhtin, V.V.
1992-01-01
An algorithm is presented of a global search for numerical solution of multidimentional multiextremal multicriteria optimization problems with complicated constraints. A boundedness of object characteristic changes is assumed at restricted changes of its parameters (Lipschitz condition). The algorithm was realized as a computer code. The algorithm was realized as a computer code. The programme was used to solve in practice the different applied optimization problems. 10 refs.; 3 figs
Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications
2015-06-24
WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Arizona State University School of Mathematical & Statistical Sciences 901 S...SUPPLEMENTARY NOTES 14. ABSTRACT The major goals of this project were completed: the exact solution of previously unsolved challenging combinatorial optimization... combinatorial optimization problem, the Directional Sensor Problem, was solved in two ways. First, heuristically in an engineering fashion and second, exactly
Topology optimization of vibration and wave propagation problems
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2007-01-01
The method of topology optimization is a versatile method to determine optimal material layouts in mechanical structures. The method relies on, in principle, unlimited design freedom that can be used to design materials, structures and devices with significantly improved performance and sometimes...... novel functionality. This paper addresses basic issues in simulation and topology design of vibration and wave propagation problems. Steady-state and transient wave propagation problems are addressed and application examples for both cases are presented....
The effect of linear guide representation for topology optimization on a five-axis milling machine
Yüksel, Esra; Yuksel, Esra
2017-01-01
Topology optimization is a countermeasure to obtain lightweight and stiff structures for machine tools. Topology optimizations are applied at component level due to computational limitations, therefore linear guides’ rolling elements are underestimated in most of the cases. Stiffness of the entire assembly depends on the least stiff components which are identified as linear guides in the current literature. In this study, effects of linear guide’s representation in virtual environment are inv...
On some fundamental properties of structural topology optimization problems
DEFF Research Database (Denmark)
Stolpe, Mathias
2010-01-01
We study some fundamental mathematical properties of discretized structural topology optimization problems. Either compliance is minimized with an upper bound on the volume of the structure, or volume is minimized with an upper bound on the compliance. The design variables are either continuous o....... The presented examples can be used as teaching material in graduate and undergraduate courses on structural topology optimization....
STATEMENT OF THE OPTIMIZATION PROBLEM OF CARBON PRODUCTS PRODUCTION
Directory of Open Access Journals (Sweden)
O. A. Zhuchenko
2016-08-01
Full Text Available The paper formulated optimization problem formulation production of carbon products. The analysis of technical and economic parameters that can be used to optimize the production of carbonaceous products had been done by the author. To evaluate the efficiency of the energy-intensive production uses several technical and economic indicators. In particular, the specific cost, productivity, income and profitability of production. Based on a detailed analysis had been formulated optimality criterion that takes into account the technological components of profitability. The components in detail the criteria and the proposed method of calculating non-trivial, one of them - the production cost of each product. When solving the optimization problem of technological modes of production into account constraints on the variables are optimized. Thus, restrictions may be expressed on the number of each product produced. Have been formulated the method of calculating the cost per unit of product. Attention is paid to the quality indices of finished products as an additional constraint in the optimization problem. As a result have been formulated the general problem of optimizing the production of carbon products, which includes the optimality criterion and restrictions.
SolveDB: Integrating Optimization Problem Solvers Into SQL Databases
DEFF Research Database (Denmark)
Siksnys, Laurynas; Pedersen, Torben Bach
2016-01-01
for optimization problems, (2) an extensible infrastructure for integrating different solvers, and (3) query optimization techniques to achieve the best execution performance and/or result quality. Extensive experiments with the PostgreSQL-based implementation show that SolveDB is a versatile tool offering much...
Effective Teaching of Economics: A Constrained Optimization Problem?
Hultberg, Patrik T.; Calonge, David Santandreu
2017-01-01
One of the fundamental tenets of economics is that decisions are often the result of optimization problems subject to resource constraints. Consumers optimize utility, subject to constraints imposed by prices and income. As economics faculty, instructors attempt to maximize student learning while being constrained by their own and students'…
Parallel Quasi Newton Algorithms for Large Scale Non Linear Unconstrained Optimization
International Nuclear Information System (INIS)
Rahman, M. A.; Basarudin, T.
1997-01-01
This paper discusses about Quasi Newton (QN) method to solve non-linear unconstrained minimization problems. One of many important of QN method is choice of matrix Hk. to be positive definite and satisfies to QN method. Our interest here is the parallel QN methods which will suite for the solution of large-scale optimization problems. The QN methods became less attractive in large-scale problems because of the storage and computational requirements. How ever, it is often the case that the Hessian is space matrix. In this paper we include the mechanism of how to reduce the Hessian update and hold the Hessian properties.One major reason of our research is that the QN method may be good in solving certain type of minimization problems, but it is efficiency degenerate when is it applied to solve other category of problems. For this reason, we use an algorithm containing several direction strategies which are processed in parallel. We shall attempt to parallelized algorithm by exploring different search directions which are generated by various QN update during the minimization process. The different line search strategies will be employed simultaneously in the process of locating the minimum along each direction.The code of algorithm will be written in Occam language 2 which is run on the transputer machine
Problems in determining the optimal use of road safety measures
DEFF Research Database (Denmark)
Elvik, Rune
2014-01-01
for intervention that ensures maximum safety benefits. The third problem is how to develop policy options to minimise the risk of indivisibilities and irreversible choices. The fourth problem is how to account for interaction effects between road safety measures when determining their optimal use. The fifth......This paper discusses some problems in determining the optimal use of road safety measures. The first of these problems is how best to define the baseline option, i.e. what will happen if no new safety measures are introduced. The second problem concerns choice of a method for selection of targets...... problem is how to obtain the best mix of short-term and long-term measures in a safety programme. The sixth problem is how fixed parameters for analysis, including the monetary valuation of road safety, influence the results of analyses. It is concluded that it is at present not possible to determine...
Random Matrix Approach for Primal-Dual Portfolio Optimization Problems
Tada, Daichi; Yamamoto, Hisashi; Shinzato, Takashi
2017-12-01
In this paper, we revisit the portfolio optimization problems of the minimization/maximization of investment risk under constraints of budget and investment concentration (primal problem) and the maximization/minimization of investment concentration under constraints of budget and investment risk (dual problem) for the case that the variances of the return rates of the assets are identical. We analyze both optimization problems by the Lagrange multiplier method and the random matrix approach. Thereafter, we compare the results obtained from our proposed approach with the results obtained in previous work. Moreover, we use numerical experiments to validate the results obtained from the replica approach and the random matrix approach as methods for analyzing both the primal and dual portfolio optimization problems.
International Nuclear Information System (INIS)
Mashayekh, Salman; Stadler, Michael; Cardoso, Gonçalo; Heleno, Miguel
2017-01-01
Highlights: • This paper presents a MILP model for optimal design of multi-energy microgrids. • Our microgrid design includes optimal technology portfolio, placement, and operation. • Our model includes microgrid electrical power flow and heat transfer equations. • The case study shows advantages of our model over aggregate single-node approaches. • The case study shows the accuracy of the integrated linearized power flow model. - Abstract: Optimal microgrid design is a challenging problem, especially for multi-energy microgrids with electricity, heating, and cooling loads as well as sources, and multiple energy carriers. To address this problem, this paper presents an optimization model formulated as a mixed-integer linear program, which determines the optimal technology portfolio, the optimal technology placement, and the associated optimal dispatch, in a microgrid with multiple energy types. The developed model uses a multi-node modeling approach (as opposed to an aggregate single-node approach) that includes electrical power flow and heat flow equations, and hence, offers the ability to perform optimal siting considering physical and operational constraints of electrical and heating/cooling networks. The new model is founded on the existing optimization model DER-CAM, a state-of-the-art decision support tool for microgrid planning and design. The results of a case study that compares single-node vs. multi-node optimal design for an example microgrid show the importance of multi-node modeling. It has been shown that single-node approaches are not only incapable of optimal DER placement, but may also result in sub-optimal DER portfolio, as well as underestimation of investment costs.
Analytical Solutions to Non-linear Mechanical Oscillation Problems
DEFF Research Database (Denmark)
Kaliji, H. D.; Ghadimi, M.; Barari, Amin
2011-01-01
In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...
(AJST) THE LINEAR ORDERING PROBLEM: AN ALGORITHM FOR ...
African Journals Online (AJOL)
ABSTRACT:- In this paper we describe and implement an algorithm for the exact ... of the solutions space which grows exponentially with ... terms of the formulation of the problem, these are the ... Definition: A digraph D = (V, A) is called a k-fence if it has the following ... (iv) If two dicycles Ci and Cj, 2
Optimization of production planning in Czech agricultural co-operative via linear programming
Directory of Open Access Journals (Sweden)
Jitka Janová
2009-01-01
Full Text Available The production planning is one of the key managerial decisions in agricultural business, which must be done periodically every year. Correct decision must cover the agriculture demands of planting the crops such as crop rotation restrictions or water resource scarcity, while the decision maker aims to plan the crop design in most profitable way in sense of maximizing the total profit from the crop yield. This decision problem represents the optimization of crop design and can be treated by the methods of linear programming which begun to be extensively used in agriculture production planning in USA during 50’s. There is ongoing research of mathematical programming applications in agriculture worldwide, but the results are not easily transferable to other localities due to the specific local restrictions in each country. In Czech Republic the farmers use for production planning mainly their expert knowledge and past experience. However, the mathematical programming approach enables find the true optimal solution of the problem, which especially in the problems with a great number of constraints is not easy to find intuitively. One of the possible barriers for using the general decision support systems (which are based on mathematical programming methods for agriculture production planning in Czech Republic is its expensiveness. The small farmer can not afford to buy the expensive software or to employ a mathematical programming specialist. The aim of this paper is to present a user friendly linear programming model of the typical agricultural production planning problem in Czech Republic which can be solved via software tools commonly available in any farm (e.g. EXCEL. The linear programming model covering the restrictions on total costs, crop rotation, thresholds for the total area sowed by particular crops, total amount of manure and the need of feed crops is developed. The model is applied in real-world problem of Czech agriculture
Huang, Hui; Ning, Jixian
2017-01-01
Prederivatives play an important role in the research of set optimization problems. First, we establish several existence theorems of prederivatives for γ -paraconvex set-valued mappings in Banach spaces with [Formula: see text]. Then, in terms of prederivatives, we establish both necessary and sufficient conditions for the existence of Pareto minimal solution of set optimization problems.
Directory of Open Access Journals (Sweden)
Kana Sawai
2015-07-01
Full Text Available This paper discusses an optimization-based approach for the design of a product platform for industrial three-axis linear-type robots, which are widely used for handling objects in manufacturing lines. Since the operational specifications of these robots, such as operation speed, working distance and orientation, weight and shape of loads, etc., will vary for different applications, robotic system vendors must provide various types of robots efficiently and effectively to meet a range of market needs. A promising step toward this goal is the concept of a product platform, in which several key elements are commonly used across a series of products, which can then be customized for individual requirements. However the design of a product platform is more complicated than that of each product, due to the need to optimize the design across many products. This paper proposes an optimization-based fundamental framework toward the design of a product platform for industrial three-axis linear-type robots; this framework allows the solution of a complicated design problem and builds an optimal design method of fundamental features of robot frames that are commonly used for a wide range of robots. In this formulation, some key performance metrics of the robot are estimated by a reduced-order model which is configured with beam theory. A multi-objective optimization problem is formulated to represent the trade-offs among key design parameters using a weighted-sum form for a single product. This formulation is integrated into a mini–max type optimization problem across a series of robots as an optimal design formulation for the product platform. Some case studies of optimal platform design for industrial three-axis linear-type robots are presented to demonstrate the applications of a genetic algorithm to such mathematical models.
ON THE OPTIMAL CONTROL OF A PROBLEM OF ENVIRONMENTAL POLLUTION
Directory of Open Access Journals (Sweden)
José Dávalos Chuquipoma
2016-06-01
Full Text Available This article is studied the optimal control of distributed parameter systems applied to an environmental pollution problem. The model consists of a differential equation partial parabolic modeling of a pollutant transport in a fluid. The model is considered the speed with which the pollutant spreads in the environment and degradation that suffers the contaminant by the presence of a factor biological inhibitor, which breaks the contaminant at a rate that is not dependent on space and time. Using the method of Lagrange multipliers is possible to prove the existence solving the problem of control and obtaining optimality conditions for optimal control.
Directory of Open Access Journals (Sweden)
Hongchun Sun
2012-01-01
Full Text Available For the extended mixed linear complementarity problem (EML CP, we first present the characterization of the solution set for the EMLCP. Based on this, its global error bound is also established under milder conditions. The results obtained in this paper can be taken as an extension for the classical linear complementarity problems.
Linear problems and Baecklund transformations for the Hirota-Ohta system
International Nuclear Information System (INIS)
Adler, V.E.; Postnikov, V.V.
2011-01-01
The auxiliary linear problems are presented for all discretization levels of the Hirota-Ohta system. The structure of these linear problems coincides essentially with the structure of Nonlinear Schroedinger hierarchy. The squared eigenfunction constraints are found which relate Hirota-Ohta and Kulish-Sklyanin vectorial NLS hierarchies.
Fundamental solution of the problem of linear programming and method of its determination
Petrunin, S. V.
1978-01-01
The idea of a fundamental solution to a problem in linear programming is introduced. A method of determining the fundamental solution and of applying this method to the solution of a problem in linear programming is proposed. Numerical examples are cited.
Some contributions to non-linear physic: Mathematical problems
International Nuclear Information System (INIS)
1981-01-01
The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of ζ/ζ u α , |α | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs
Directory of Open Access Journals (Sweden)
Henryk Josiński
2014-01-01
Full Text Available This paper introduces an expanded version of the Invasive Weed Optimization algorithm (exIWO distinguished by the hybrid strategy of the search space exploration proposed by the authors. The algorithm is evaluated by solving three well-known optimization problems: minimization of numerical functions, feature selection, and the Mona Lisa TSP Challenge as one of the instances of the traveling salesman problem. The achieved results are compared with analogous outcomes produced by other optimization methods reported in the literature.
Study of load change control in PWRs using the methods of linear optimal control
International Nuclear Information System (INIS)
Yang, T.
1983-01-01
This thesis investigates the application of modern control theory to the problem of controlling load changes in PWR power plants. A linear optimal state feedback scheme resulting from linear optimal control theory with a quadratic cost function is reduced to a partially decentralized control system using mode preservation techniques. Minimum information transfer among major components of the plant is investigated to provide an adequate coordination, simple implementation, and a reliable control system. Two control approaches are proposed: servo and model following. Each design considers several information structures for performance comparison. Integrated output error has been included in the control systems to accommodate external and plant parameter disturbances. In addition, the cross limit feature, specific to certain modern reactor control systems, is considered in the study to prevent low pressure reactor trip conditions. An 11th order nonlinear model for the reactor and boiler is derived based on theoretical principles, and simulation tests are performed for 10% load change as an illustration of system performance
Strong Duality and Optimality Conditions for Generalized Equilibrium Problems
Directory of Open Access Journals (Sweden)
D. H. Fang
2013-01-01
Full Text Available We consider a generalized equilibrium problem involving DC functions. By using the properties of the epigraph of the conjugate functions, some sufficient and/or necessary conditions for the weak and strong duality results and optimality conditions for generalized equilibrium problems are provided.
Optimization of the solution of the problem of scheduling theory ...
African Journals Online (AJOL)
This article describes the genetic algorithm used to solve the problem related to the scheduling theory. A large number of different methods is described in the scientific literature. The main issue that faced the problem in question is that it is necessary to search the optimal solution in a large search space for the set of ...
Solving conic optimization problems via self-dual embedding and facial reduction: A unified approach
DEFF Research Database (Denmark)
Permenter, Frank; Friberg, Henrik A.; Andersen, Erling D.
2017-01-01
it fails to return a primal-dual optimal solution or a certificate of infeasibility. Using this observation, we give an algorithm based on facial reduction for solving the primal problem that, in principle, always succeeds. (An analogous algorithm is easily stated for the dual problem.) This algorithm has...... the appealing property that it only performs facial reduction when it is required, not when it is possible; e.g., if a primal-dual optimal solution exists, it will be found in lieu of a facial reduction certificate even if Slater's condition fails. For the case of linear, second-order, and semidefinite...
Global Optimization for Bus Line Timetable Setting Problem
Directory of Open Access Journals (Sweden)
Qun Chen
2014-01-01
Full Text Available This paper defines bus timetables setting problem during each time period divided in terms of passenger flow intensity; it is supposed that passengers evenly arrive and bus runs are set evenly; the problem is to determine bus runs assignment in each time period to minimize the total waiting time of passengers on platforms if the number of the total runs is known. For such a multistage decision problem, this paper designed a dynamic programming algorithm to solve it. Global optimization procedures using dynamic programming are developed. A numerical example about bus runs assignment optimization of a single line is given to demonstrate the efficiency of the proposed methodology, showing that optimizing buses’ departure time using dynamic programming can save computational time and find the global optimal solution.
Optimal linear precoding for indoor visible light communication system
Sifaou, Houssem; Park, Kihong; Kammoun, Abla; Alouini, Mohamed-Slim
2017-01-01
) problem. The performance of the proposed precoding scheme is studied under different working conditions and compared with the classical zero-forcing precoding. Simulations have been provided to illustrate the high gain of the proposed scheme.
Leibov Roman
2017-01-01
This paper presents a bilinear approach to nonlinear differential equations system approximation problem. Sometimes the nonlinear differential equations right-hand sides linearization is extremely difficult or even impossible. Then piecewise-linear approximation of nonlinear differential equations can be used. The bilinear differential equations allow to improve piecewise-linear differential equations behavior and reduce errors on the border of different linear differential equations systems ...
Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations
Nakamura, Gen; Vashisth, Manmohan
2017-01-01
In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...
Zhao, Yingfeng; Liu, Sanyang
2016-01-01
We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.
Institute of Scientific and Technical Information of China (English)
Gopi RAM; Durbadal MANDAL; Sakti Prasad GHOSHAL; Rajib KAR
2017-01-01
In this paper, an optimal design of linear antenna arrays having microstrip patch antenna elements has been carried out. Cat swarm optimization (CSO) has been applied for the optimization of the control parameters of radiation pattern of an antenna array. The optimal radiation patterns of isotropic antenna elements are obtained by optimizing the current excitation weight of each element and the inter-element spacing. The antenna arrays of 12, 16, and 20 elements are taken as examples. The arrays are de-signed by using MATLAB computation and are validated through Computer Simulation Technology-Microwave Studio (CST-MWS). From the simulation results it is evident that CSO is able to yield the optimal design of linear antenna arrays of patch antenna elements.
International Nuclear Information System (INIS)
Zamirian, M.; Kamyad, A.V.; Farahi, M.H.
2009-01-01
In this Letter a new approach for solving optimal path planning problems for a single rigid and free moving object in a two and three dimensional space in the presence of stationary or moving obstacles is presented. In this approach the path planning problems have some incompatible objectives such as the length of path that must be minimized, the distance between the path and obstacles that must be maximized and etc., then a multi-objective dynamic optimization problem (MODOP) is achieved. Considering the imprecise nature of decision maker's (DM) judgment, these multiple objectives are viewed as fuzzy variables. By determining intervals for the values of these fuzzy variables, flexible monotonic decreasing or increasing membership functions are determined as the degrees of satisfaction of these fuzzy variables on their intervals. Then, the optimal path planning policy is searched by maximizing the aggregated fuzzy decision values, resulting in a fuzzy multi-objective dynamic optimization problem (FMODOP). Using a suitable t-norm, the FMODOP is converted into a non-linear dynamic optimization problem (NLDOP). By using parametrization method and some calculations, the NLDOP is converted into the sequence of conventional non-linear programming problems (NLPP). It is proved that the solution of this sequence of the NLPPs tends to a Pareto optimal solution which, among other Pareto optimal solutions, has the best satisfaction of DM for the MODOP. Finally, the above procedure as a novel algorithm integrating parametrization method and fuzzy aggregation to solve the MODOP is proposed. Efficiency of our approach is confirmed by some numerical examples.
On the relation between flexibility analysis and robust optimization for linear systems
Zhang, Qi; Grossmann, Ignacio E.; Lima, Ricardo
2016-01-01
Flexibility analysis and robust optimization are two approaches to solving optimization problems under uncertainty that share some fundamental concepts, such as the use of polyhedral uncertainty sets and the worst-case approach to guarantee
Liu, Qingshan; Wang, Jun
2011-04-01
This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.
Peeling Potatoes Near-optimally in Near-linear Time
Czech Academy of Sciences Publication Activity Database
Cabello, S.; Cibulka, J.; Kynčl, J.; Saumell, Maria; Valtr, P.
2017-01-01
Roč. 46, č. 5 (2017), s. 1574-1602 ISSN 0097-5397 R&D Projects: GA ČR GBP202/12/G061 Grant - others:GA MŠk(CZ) LO1506; GA MŠk(CZ) EE2.3.30.0038 Institutional support: RVO:67985807 Keywords : geometric optimization * potato peeling * visibility graph * geometric probability * approximation algorithm Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.433, year: 2016
Towards Resolving the Crab Sigma-Problem: A Linear Accelerator?
Contopoulos, Ioannis; Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)
2002-01-01
Using the exact solution of the axisymmetric pulsar magnetosphere derived in a previous publication and the conservation laws of the associated MHD flow, we show that the Lorentz factor of the outflowing plasma increases linearly with distance from the light cylinder. Therefore, the ratio of the Poynting to particle energy flux, generically referred to as sigma, decreases inversely proportional to distance, from a large value (typically approx. greater than 10(exp 4)) near the light cylinder to sigma approx. = 1 at a transition distance R(sub trans). Beyond this distance the inertial effects of the outflowing plasma become important and the magnetic field geometry must deviate from the almost monopolar form it attains between R(sub lc), and R(sub trans). We anticipate that this is achieved by collimation of the poloidal field lines toward the rotation axis, ensuring that the magnetic field pressure in the equatorial region will fall-off faster than 1/R(sup 2) (R being the cylindrical radius). This leads both to a value sigma = a(sub s) much less than 1 at the nebular reverse shock at distance R(sub s) (R(sub s) much greater than R(sub trans)) and to a component of the flow perpendicular to the equatorial component, as required by observation. The presence of the strong shock at R = R(sub s) allows for the efficient conversion of kinetic energy into radiation. We speculate that the Crab pulsar is unique in requiring sigma(sub s) approx. = 3 x 10(exp -3) because of its small translational velocity, which allowed for the shock distance R(sub s) to grow to values much greater than R(sub trans).
Hanks, Brantley R.; Skelton, Robert E.
1991-01-01
Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.
Integrating packing and distribution problems and optimization through mathematical programming
Directory of Open Access Journals (Sweden)
Fabio Miguel
2016-06-01
Full Text Available This paper analyzes the integration of two combinatorial problems that frequently arise in production and distribution systems. One is the Bin Packing Problem (BPP problem, which involves finding an ordering of some objects of different volumes to be packed into the minimal number of containers of the same or different size. An optimal solution to this NP-Hard problem can be approximated by means of meta-heuristic methods. On the other hand, we consider the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW, which is a variant of the Travelling Salesman Problem (again a NP-Hard problem with extra constraints. Here we model those two problems in a single framework and use an evolutionary meta-heuristics to solve them jointly. Furthermore, we use data from a real world company as a test-bed for the method introduced here.
Ghosh, D.; Sierksma, G.
2000-01-01
Sensitivity analysis of e-optimal solutions is the problem of calculating the range within which a problem parameter may lie so that the given solution re-mains e-optimal. In this paper we study the sensitivity analysis problem for e-optimal solutions tocombinatorial optimization problems with
Finding Multiple Optimal Solutions to Optimal Load Distribution Problem in Hydropower Plant
Directory of Open Access Journals (Sweden)
Xinhao Jiang
2012-05-01
Full Text Available Optimal load distribution (OLD among generator units of a hydropower plant is a vital task for hydropower generation scheduling and management. Traditional optimization methods for solving this problem focus on finding a single optimal solution. However, many practical constraints on hydropower plant operation are very difficult, if not impossible, to be modeled, and the optimal solution found by those models might be of limited practical uses. This motivates us to find multiple optimal solutions to the OLD problem, which can provide more flexible choices for decision-making. Based on a special dynamic programming model, we use a modified shortest path algorithm to produce multiple solutions to the problem. It is shown that multiple optimal solutions exist for the case study of China’s Geheyan hydropower plant, and they are valuable for assessing the stability of generator units, showing the potential of reducing occurrence times of units across vibration areas.
Selecting Optimal Parameters of Random Linear Network Coding for Wireless Sensor Networks
DEFF Research Database (Denmark)
Heide, J; Zhang, Qi; Fitzek, F H P
2013-01-01
This work studies how to select optimal code parameters of Random Linear Network Coding (RLNC) in Wireless Sensor Networks (WSNs). With Rateless Deluge [1] the authors proposed to apply Network Coding (NC) for Over-the-Air Programming (OAP) in WSNs, and demonstrated that with NC a significant...... reduction in the number of transmitted packets can be achieved. However, NC introduces additional computations and potentially a non-negligible transmission overhead, both of which depend on the chosen coding parameters. Therefore it is necessary to consider the trade-off that these coding parameters...... present in order to obtain the lowest energy consumption per transmitted bit. This problem is analyzed and suitable coding parameters are determined for the popular Tmote Sky platform. Compared to the use of traditional RLNC, these parameters enable a reduction in the energy spent per bit which grows...
Estimation of time-varying reactivity by the H∞ optimal linear filter
International Nuclear Information System (INIS)
Suzuki, Katsuo; Shimazaki, Junya; Watanabe, Koiti
1995-01-01
The problem of estimating the time-varying net reactivity from flux measurements is solved for a point reactor kinetics model using a linear filtering technique in an H ∞ settings. In order to sue this technique, an appropriate dynamical model of the reactivity is constructed that can be embedded into the reactor model as one of its variables. A filter, which minimizes the H ∞ norm of the estimation error power spectrum, operates on neutron density measurements corrupted by noise and provides an estimate of the dynamic net reactivity. Computer simulations are performed to reveal the basic characteristics of the H ∞ optimal filter. The results of the simulation indicate that the filter can be used to determine the time-varying reactivity from neutron density measurements that have been corrupted by noise
Lyubetsky, Vassily; Gershgorin, Roman; Gorbunov, Konstantin
2017-12-06
Chromosome structure is a very limited model of the genome including the information about its chromosomes such as their linear or circular organization, the order of genes on them, and the DNA strand encoding a gene. Gene lengths, nucleotide composition, and intergenic regions are ignored. Although highly incomplete, such structure can be used in many cases, e.g., to reconstruct phylogeny and evolutionary events, to identify gene synteny, regulatory elements and promoters (considering highly conserved elements), etc. Three problems are considered; all assume unequal gene content and the presence of gene paralogs. The distance problem is to determine the minimum number of operations required to transform one chromosome structure into another and the corresponding transformation itself including the identification of paralogs in two structures. We use the DCJ model which is one of the most studied combinatorial rearrangement models. Double-, sesqui-, and single-operations as well as deletion and insertion of a chromosome region are considered in the model; the single ones comprise cut and join. In the reconstruction problem, a phylogenetic tree with chromosome structures in the leaves is given. It is necessary to assign the structures to inner nodes of the tree to minimize the sum of distances between terminal structures of each edge and to identify the mutual paralogs in a fairly large set of structures. A linear algorithm is known for the distance problem without paralogs, while the presence of paralogs makes it NP-hard. If paralogs are allowed but the insertion and deletion operations are missing (and special constraints are imposed), the reduction of the distance problem to integer linear programming is known. Apparently, the reconstruction problem is NP-hard even in the absence of paralogs. The problem of contigs is to find the optimal arrangements for each given set of contigs, which also includes the mutual identification of paralogs. We proved that these
Directory of Open Access Journals (Sweden)
M. Pattnaik
2013-08-01
Full Text Available In this paper the concept of fuzzy Non-Linear Programming Technique is applied to solve an economic order quantity (EOQ model under restricted space. Since various types of uncertainties and imprecision are inherent in real inventory problems they are classically modeled using the approaches from the probability theory. However, there are uncertainties that cannot be appropriately treated by usual probabilistic models. The questions how to define inventory optimization tasks in such environment how to interpret optimal solutions arise. This paper allows the modification of the Single item EOQ model in presence of fuzzy decision making process where demand is related to the unit price and the setup cost varies with the quantity produced/Purchased. This paper considers the modification of objective function and storage area in the presence of imprecisely estimated parameters. The model is developed for the problem by employing different modeling approaches over an infinite planning horizon. It incorporates all concepts of a fuzzy arithmetic approach, the quantity ordered and the demand per unit compares both fuzzy non linear and other models. Investigation of the properties of an optimal solution allows developing an algorithm whose validity is illustrated through an example problem and ugh MATLAB (R2009a version software, the two and three dimensional diagrams are represented to the application. Sensitivity analysis of the optimal solution is also studied with respect to changes in different parameter values and to draw managerial insights of the decision problem.
SOLVING ENGINEERING OPTIMIZATION PROBLEMS WITH THE SWARM INTELLIGENCE METHODS
Directory of Open Access Journals (Sweden)
V. Panteleev Andrei
2017-01-01
Full Text Available An important stage in problem solving process for aerospace and aerostructures designing is calculating their main charac- teristics optimization. The results of the four constrained optimization problems related to the design of various technical systems: such as determining the best parameters of welded beams, pressure vessel, gear, spring are presented. The purpose of each task is to minimize the cost and weight of the construction. The object functions in optimization practical problem are nonlinear functions with a lot of variables and a complex layer surface indentations. That is why using classical approach for extremum seeking is not efficient. Here comes the necessity of using such methods of optimization that allow to find a near optimal solution in acceptable amount of time with the minimum waste of computer power. Such methods include the methods of Swarm Intelligence: spiral dy- namics algorithm, stochastic diffusion search, hybrid seeker optimization algorithm. The Swarm Intelligence methods are designed in such a way that a swarm consisting of agents carries out the search for extremum. In search for the point of extremum, the parti- cles exchange information and consider their experience as well as the experience of population leader and the neighbors in some area. To solve the listed problems there has been designed a program complex, which efficiency is illustrated by the solutions of four applied problems. Each of the considered applied optimization problems is solved with all the three chosen methods. The ob- tained numerical results can be compared with the ones found in a swarm with a particle method. The author gives recommenda- tions on how to choose methods parameters and penalty function value, which consider inequality constraints.
A coherent Ising machine for 2000-node optimization problems
Inagaki, Takahiro; Haribara, Yoshitaka; Igarashi, Koji; Sonobe, Tomohiro; Tamate, Shuhei; Honjo, Toshimori; Marandi, Alireza; McMahon, Peter L.; Umeki, Takeshi; Enbutsu, Koji; Tadanaga, Osamu; Takenouchi, Hirokazu; Aihara, Kazuyuki; Kawarabayashi, Ken-ichi; Inoue, Kyo; Utsunomiya, Shoko; Takesue, Hiroki
2016-11-01
The analysis and optimization of complex systems can be reduced to mathematical problems collectively known as combinatorial optimization. Many such problems can be mapped onto ground-state search problems of the Ising model, and various artificial spin systems are now emerging as promising approaches. However, physical Ising machines have suffered from limited numbers of spin-spin couplings because of implementations based on localized spins, resulting in severe scalability problems. We report a 2000-spin network with all-to-all spin-spin couplings. Using a measurement and feedback scheme, we coupled time-multiplexed degenerate optical parametric oscillators to implement maximum cut problems on arbitrary graph topologies with up to 2000 nodes. Our coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.
Optimal stability polynomials for numerical integration of initial value problems
Ketcheson, David I.
2013-01-08
We consider the problem of finding optimally stable polynomial approximations to the exponential for application to one-step integration of initial value ordinary and partial differential equations. The objective is to find the largest stable step size and corresponding method for a given problem when the spectrum of the initial value problem is known. The problem is expressed in terms of a general least deviation feasibility problem. Its solution is obtained by a new fast, accurate, and robust algorithm based on convex optimization techniques. Global convergence of the algorithm is proven in the case that the order of approximation is one and in the case that the spectrum encloses a starlike region. Examples demonstrate the effectiveness of the proposed algorithm even when these conditions are not satisfied.
Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.
2014-01-01
This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860
Directory of Open Access Journals (Sweden)
Paweł Sitek
2016-01-01
Full Text Available This paper presents a hybrid method for modeling and solving supply chain optimization problems with soft, hard, and logical constraints. Ability to implement soft and logical constraints is a very important functionality for supply chain optimization models. Such constraints are particularly useful for modeling problems resulting from commercial agreements, contracts, competition, technology, safety, and environmental conditions. Two programming and solving environments, mathematical programming (MP and constraint logic programming (CLP, were combined in the hybrid method. This integration, hybridization, and the adequate multidimensional transformation of the problem (as a presolving method helped to substantially reduce the search space of combinatorial models for supply chain optimization problems. The operation research MP and declarative CLP, where constraints are modeled in different ways and different solving procedures are implemented, were linked together to use the strengths of both. This approach is particularly important for the decision and combinatorial optimization models with the objective function and constraints, there are many decision variables, and these are summed (common in manufacturing, supply chain management, project management, and logistic problems. The ECLiPSe system with Eplex library was proposed to implement a hybrid method. Additionally, the proposed hybrid transformed model is compared with the MILP-Mixed Integer Linear Programming model on the same data instances. For illustrative models, its use allowed finding optimal solutions eight to one hundred times faster and reducing the size of the combinatorial problem to a significant extent.
Optimization of a constrained linear monochromator design for neutral atom beams
International Nuclear Information System (INIS)
Kaltenbacher, Thomas
2016-01-01
A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1 μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100 nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up – a Fresnel zone plate in combination with a pinhole aperture – in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. - Highlights: • The presented results are essential for optimal operation conditions of a neutral atom microscope set-up. • The key parameters for the experimental arrangement of a neutral microscopy set-up are identified and their interplay is quantified. • Insights in the multidimensional problem provide deep and crucial understanding for pushing beyond the apparent focus limitations. • This work points out the trade-offs for high intensity and high spatial resolution indicating several use cases.
Optimization of a constrained linear monochromator design for neutral atom beams
Energy Technology Data Exchange (ETDEWEB)
Kaltenbacher, Thomas
2016-04-15
A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1 μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100 nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up – a Fresnel zone plate in combination with a pinhole aperture – in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. - Highlights: • The presented results are essential for optimal operation conditions of a neutral atom microscope set-up. • The key parameters for the experimental arrangement of a neutral microscopy set-up are identified and their interplay is quantified. • Insights in the multidimensional problem provide deep and crucial understanding for pushing beyond the apparent focus limitations. • This work points out the trade-offs for high intensity and high spatial resolution indicating several use cases.
Directory of Open Access Journals (Sweden)
Rubio Gerardo
2011-03-01
Full Text Available We consider the Cauchy problem in ℝd for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The linear equations involved can not be solved with the traditional results. Therefore, we construct a classical solution to the linear Cauchy problem under the same hypotheses on the coefficients for the semilinear equation. Our approach is using stochastic differential equations and parabolic differential equations in bounded domains. Finally, we apply the results to a stochastic optimal consumption problem. Nous considérons le problème de Cauchy dans ℝd pour une classe d’équations aux dérivées partielles paraboliques semi linéaires qui se pose dans certains problèmes de contrôle stochastique. Nous supposons que les coefficients ne sont pas bornés et sont localement Lipschitziennes, pas nécessairement différentiables, avec des données continues et ellipticité local uniforme. Nous construisons une solution classique par approximation avec les équations paraboliques linéaires. Les équations linéaires impliquées ne peuvent être résolues avec les résultats traditionnels. Par conséquent, nous construisons une solution classique au problème de Cauchy linéaire sous les mêmes hypothèses sur les coefficients pour l’équation semi-linéaire. Notre approche utilise les équations différentielles stochastiques et les équations différentielles paraboliques dans les domaines bornés. Enfin, nous appliquons les résultats à un problème stochastique de consommation optimale.
Robust and Reliable Portfolio Optimization Formulation of a Chance Constrained Problem
Directory of Open Access Journals (Sweden)
Sengupta Raghu Nandan
2017-02-01
Full Text Available We solve a linear chance constrained portfolio optimization problem using Robust Optimization (RO method wherein financial script/asset loss return distributions are considered as extreme valued. The objective function is a convex combination of portfolio’s CVaR and expected value of loss return, subject to a set of randomly perturbed chance constraints with specified probability values. The robust deterministic counterpart of the model takes the form of Second Order Cone Programming (SOCP problem. Results from extensive simulation runs show the efficacy of our proposed models, as it helps the investor to (i utilize extensive simulation studies to draw insights into the effect of randomness in portfolio decision making process, (ii incorporate different risk appetite scenarios to find the optimal solutions for the financial portfolio allocation problem and (iii compare the risk and return profiles of the investments made in both deterministic as well as in uncertain and highly volatile financial markets.
Galerkin approximations of nonlinear optimal control problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Mickael D. Chekroun
2017-07-01
Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.
Optimal overlapping of waveform relaxation method for linear differential equations
International Nuclear Information System (INIS)
Yamada, Susumu; Ozawa, Kazufumi
2000-01-01
Waveform relaxation (WR) method is extremely suitable for solving large systems of ordinary differential equations (ODEs) on parallel computers, but the convergence of the method is generally slow. In order to accelerate the convergence, the methods which decouple the system into many subsystems with overlaps some of the components between the adjacent subsystems have been proposed. The methods, in general, converge much faster than the ones without overlapping, but the computational cost per iteration becomes larger due to the increase of the dimension of each subsystem. In this research, the convergence of the WR method for solving constant coefficients linear ODEs is investigated and the strategy to determine the number of overlapped components which minimizes the cost of the parallel computations is proposed. Numerical experiments on an SR2201 parallel computer show that the estimated number of the overlapped components by the proposed strategy is reasonable. (author)
International Nuclear Information System (INIS)
Gene Golub; Kwok Ko
2009-01-01
The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.
Generalized Pattern Search methods for a class of nonsmooth optimization problems with structure
Bogani, C.; Gasparo, M. G.; Papini, A.
2009-07-01
We propose a Generalized Pattern Search (GPS) method to solve a class of nonsmooth minimization problems, where the set of nondifferentiability is included in the union of known hyperplanes and, therefore, is highly structured. Both unconstrained and linearly constrained problems are considered. At each iteration the set of poll directions is enforced to conform to the geometry of both the nondifferentiability set and the boundary of the feasible region, near the current iterate. This is the key issue to guarantee the convergence of certain subsequences of iterates to points which satisfy first-order optimality conditions. Numerical experiments on some classical problems validate the method.
International Nuclear Information System (INIS)
Ureba, A.; Palma, B. A.; Leal, A.
2011-01-01
Develop a more efficient method of optimization in relation to time, based on linear programming designed to implement a multi objective penalty function which also permits a simultaneous solution integrated boost situations considering two white volumes simultaneously.
International Nuclear Information System (INIS)
Viana, Rodrigo Sartorelo S.; Lima, Ernesto A.B.F.; Florentino, Helenice de Oliveira; Fonseca, Paulo Roberto da; Homem, Thiago Pedro Donadon
2009-01-01
Linear programming models are widely found in the literature addressing various aspects involved in the creation of optimized planning for radiotherapy. However, most mathematical formulations does not incorporate certain factors that are of extreme importance for the formulation of a real planning like the attenuation of the beam of radiation and heterogeneity in the composition of tissue irradiated. In this context are proposed in this paper some modifications in the formulation of a linear programming problem with the objective of making the simulation closer to the real planning for radiotherapy and thus enable a more reliable and comprehensive planning requirements. (author)
Parallel and Cooperative Particle Swarm Optimizer for Multimodal Problems
Directory of Open Access Journals (Sweden)
Geng Zhang
2015-01-01
Full Text Available Although the original particle swarm optimizer (PSO method and its related variant methods show some effectiveness for solving optimization problems, it may easily get trapped into local optimum especially when solving complex multimodal problems. Aiming to solve this issue, this paper puts forward a novel method called parallel and cooperative particle swarm optimizer (PCPSO. In case that the interacting of the elements in D-dimensional function vector X=[x1,x2,…,xd,…,xD] is independent, cooperative particle swarm optimizer (CPSO is used. Based on this, the PCPSO is presented to solve real problems. Since the dimension cannot be split into several lower dimensional search spaces in real problems because of the interacting of the elements, PCPSO exploits the cooperation of two parallel CPSO algorithms by orthogonal experimental design (OED learning. Firstly, the CPSO algorithm is used to generate two locally optimal vectors separately; then the OED is used to learn the merits of these two vectors and creates a better combination of them to generate further search. Experimental studies on a set of test functions show that PCPSO exhibits better robustness and converges much closer to the global optimum than several other peer algorithms.
Directory of Open Access Journals (Sweden)
Qinghua Zeng
2015-07-01
Full Text Available This article proposes a linear matrix inequality–based robust controller design approach to implement the synchronous design of aircraft control discipline and other disciplines, in which the variation in design parameters is treated as equivalent perturbations. Considering the complicated mapping relationships between the coefficient arrays of aircraft motion model and the aircraft design parameters, the robust controller designed is directly based on the variation in these coefficient arrays so conservative that the multidisciplinary design optimization problem would be too difficult to solve, or even if there is a solution, the robustness of design result is generally poor. Therefore, this article derives the uncertainty model of disciplinary design parameters based on response surface approximation, converts the design problem of the robust controller into a problem of solving a standard linear matrix inequality, and theoretically gives a less conservative design method of the robust controller which is based on the variation in design parameters. Furthermore, the concurrent subspace approach is applied to the multidisciplinary system with this kind of robust controller in the design loop. A multidisciplinary design optimization of a tailless aircraft as example is shown that control discipline can be synchronous optimal design with other discipline, especially this method will greatly reduce the calculated amount of multidisciplinary design optimization and make multidisciplinary design optimization results more robustness of flight performance.
Optimal Control Problems for Partial Differential Equations on Reticulated Domains
Kogut, Peter I
2011-01-01
In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for gradu
Intelligent discrete particle swarm optimization for multiprocessor task scheduling problem
Directory of Open Access Journals (Sweden)
S Sarathambekai
2017-03-01
Full Text Available Discrete particle swarm optimization is one of the most recently developed population-based meta-heuristic optimization algorithm in swarm intelligence that can be used in any discrete optimization problems. This article presents a discrete particle swarm optimization algorithm to efficiently schedule the tasks in the heterogeneous multiprocessor systems. All the optimization algorithms share a common algorithmic step, namely population initialization. It plays a significant role because it can affect the convergence speed and also the quality of the final solution. The random initialization is the most commonly used method in majority of the evolutionary algorithms to generate solutions in the initial population. The initial good quality solutions can facilitate the algorithm to locate the optimal solution or else it may prevent the algorithm from finding the optimal solution. Intelligence should be incorporated to generate the initial population in order to avoid the premature convergence. This article presents a discrete particle swarm optimization algorithm, which incorporates opposition-based technique to generate initial population and greedy algorithm to balance the load of the processors. Make span, flow time, and reliability cost are three different measures used to evaluate the efficiency of the proposed discrete particle swarm optimization algorithm for scheduling independent tasks in distributed systems. Computational simulations are done based on a set of benchmark instances to assess the performance of the proposed algorithm.
Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches
Directory of Open Access Journals (Sweden)
Jui-Yu Wu
2013-01-01
Full Text Available Stochastic global optimization (SGO algorithms such as the particle swarm optimization (PSO approach have become popular for solving unconstrained global optimization (UGO problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO method and an artificial immune algorithm-based PSO (AIA-PSO method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.
Krohling, Renato A; Coelho, Leandro dos Santos
2006-12-01
In this correspondence, an approach based on coevolutionary particle swarm optimization to solve constrained optimization problems formulated as min-max problems is presented. In standard or canonical particle swarm optimization (PSO), a uniform probability distribution is used to generate random numbers for the accelerating coefficients of the local and global terms. We propose a Gaussian probability distribution to generate the accelerating coefficients of PSO. Two populations of PSO using Gaussian distribution are used on the optimization algorithm that is tested on a suite of well-known benchmark constrained optimization problems. Results have been compared with the canonical PSO (constriction factor) and with a coevolutionary genetic algorithm. Simulation results show the suitability of the proposed algorithm in terms of effectiveness and robustness.
Particle swarm optimization with random keys applied to the nuclear reactor reload problem
Energy Technology Data Exchange (ETDEWEB)
Meneses, Anderson Alvarenga de Moura [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear; Fundacao Educacional de Macae (FUNEMAC), RJ (Brazil). Faculdade Professor Miguel Angelo da Silva Santos; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: ameneses@con.ufrj.br; marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br; schirru@lmp.ufrj.br
2007-07-01
In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)
Particle swarm optimization with random keys applied to the nuclear reactor reload problem
International Nuclear Information System (INIS)
Meneses, Anderson Alvarenga de Moura; Fundacao Educacional de Macae; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto
2007-01-01
In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)
Heuristic Optimization for the Discrete Virtual Power Plant Dispatch Problem
DEFF Research Database (Denmark)
Petersen, Mette Kirschmeyer; Hansen, Lars Henrik; Bendtsen, Jan Dimon
2014-01-01
We consider a Virtual Power Plant, which is given the task of dispatching a fluctuating power supply to a portfolio of flexible consumers. The flexible consumers are modeled as discrete batch processes, and the associated optimization problem is denoted the Discrete Virtual Power Plant Dispatch...... Problem. First NP-completeness of the Discrete Virtual Power Plant Dispatch Problem is proved formally. We then proceed to develop tailored versions of the meta-heuristic algorithms Hill Climber and Greedy Randomized Adaptive Search Procedure (GRASP). The algorithms are tuned and tested on portfolios...... of varying sizes. We find that all the tailored algorithms perform satisfactorily in the sense that they are able to find sub-optimal, but usable, solutions to very large problems (on the order of 10 5 units) at computation times on the scale of just 10 seconds, which is far beyond the capabilities...
Solving optimization problems by the public goods game
Javarone, Marco Alberto
2017-09-01
We introduce a method based on the Public Goods Game for solving optimization tasks. In particular, we focus on the Traveling Salesman Problem, i.e. a NP-hard problem whose search space exponentially grows increasing the number of cities. The proposed method considers a population whose agents are provided with a random solution to the given problem. In doing so, agents interact by playing the Public Goods Game using the fitness of their solution as currency of the game. Notably, agents with better solutions provide higher contributions, while those with lower ones tend to imitate the solution of richer agents for increasing their fitness. Numerical simulations show that the proposed method allows to compute exact solutions, and suboptimal ones, in the considered search spaces. As result, beyond to propose a new heuristic for combinatorial optimization problems, our work aims to highlight the potentiality of evolutionary game theory beyond its current horizons.
Newton-type methods for optimization and variational problems
Izmailov, Alexey F
2014-01-01
This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will b...
Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem
Directory of Open Access Journals (Sweden)
Xiaomei Zhang
2012-01-01
Full Text Available We present some sufficient global optimality conditions for a special cubic minimization problem with box constraints or binary constraints by extending the global subdifferential approach proposed by V. Jeyakumar et al. (2006. The present conditions generalize the results developed in the work of V. Jeyakumar et al. where a quadratic minimization problem with box constraints or binary constraints was considered. In addition, a special diagonal matrix is constructed, which is used to provide a convenient method for justifying the proposed sufficient conditions. Then, the reformulation of the sufficient conditions follows. It is worth noting that this reformulation is also applicable to the quadratic minimization problem with box or binary constraints considered in the works of V. Jeyakumar et al. (2006 and Y. Wang et al. (2010. Finally some examples demonstrate that our optimality conditions can effectively be used for identifying global minimizers of the certain nonconvex cubic minimization problem.
Improved Full-Newton Step O(nL) Infeasible Interior-Point Method for Linear Optimization
Gu, G.; Mansouri, H.; Zangiabadi, M.; Bai, Y.Q.; Roos, C.
2009-01-01
We present several improvements of the full-Newton step infeasible interior-point method for linear optimization introduced by Roos (SIAM J. Optim. 16(4):1110–1136, 2006). Each main step of the method consists of a feasibility step and several centering steps. We use a more natural feasibility step, which targets the ?+-center of the next pair of perturbed problems. As for the centering steps, we apply a sharper quadratic convergence result, which leads to a slightly wider neighborhood for th...
Approximate analytical relationships for linear optimal aeroelastic flight control laws
Kassem, Ayman Hamdy
1998-09-01
This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.
Discrete Optimization Model for Vehicle Routing Problem with Scheduling Side Cosntraints
Juliandri, Dedy; Mawengkang, Herman; Bu'ulolo, F.
2018-01-01
Vehicle Routing Problem (VRP) is an important element of many logistic systems which involve routing and scheduling of vehicles from a depot to a set of customers node. This is a hard combinatorial optimization problem with the objective to find an optimal set of routes used by a fleet of vehicles to serve the demands a set of customers It is required that these vehicles return to the depot after serving customers’ demand. The problem incorporates time windows, fleet and driver scheduling, pick-up and delivery in the planning horizon. The goal is to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the overall costs of all routes over the planning horizon. We model the problem as a linear mixed integer program. We develop a combination of heuristics and exact method for solving the model.
Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem
Lellmann, Jan
2012-11-09
We consider a variational convex relaxation of a class of optimal partitioning and multiclass labeling problems, which has recently proven quite successful and can be seen as a continuous analogue of Linear Programming (LP) relaxation methods for finite-dimensional problems. While for the latter several optimality bounds are known, to our knowledge no such bounds exist in the infinite-dimensional setting. We provide such a bound by analyzing a probabilistic rounding method, showing that it is possible to obtain an integral solution of the original partitioning problem from a solution of the relaxed problem with an a priori upper bound on the objective. The approach has a natural interpretation as an approximate, multiclass variant of the celebrated coarea formula. © 2012 Springer Science+Business Media New York.
Portfolio selection problem: a comparison of fuzzy goal programming and linear physical programming
Directory of Open Access Journals (Sweden)
Fusun Kucukbay
2016-04-01
Full Text Available Investors have limited budget and they try to maximize their return with minimum risk. Therefore this study aims to deal with the portfolio selection problem. In the study two criteria are considered which are expected return, and risk. In this respect, linear physical programming (LPP technique is applied on Bist 100 stocks to be able to find out the optimum portfolio. The analysis covers the period April 2009- March 2015. This period is divided into two; April 2009-March 2014 and April 2014 – March 2015. April 2009-March 2014 period is used as data to find an optimal solution. April 2014-March 2015 period is used to test the real performance of portfolios. The performance of the obtained portfolio is compared with that obtained from fuzzy goal programming (FGP. Then the performances of both method, LPP and FGP are compared with BIST 100 in terms of their Sharpe Indexes. The findings reveal that LPP for portfolio selection problem is a good alternative to FGP.
A linear programming model for protein inference problem in shotgun proteomics.
Huang, Ting; He, Zengyou
2012-11-15
Assembling peptides identified from tandem mass spectra into a list of proteins, referred to as protein inference, is an important issue in shotgun proteomics. The objective of protein inference is to find a subset of proteins that are truly present in the sample. Although many methods have been proposed for protein inference, several issues such as peptide degeneracy still remain unsolved. In this article, we present a linear programming model for protein inference. In this model, we use a transformation of the joint probability that each peptide/protein pair is present in the sample as the variable. Then, both the peptide probability and protein probability can be expressed as a formula in terms of the linear combination of these variables. Based on this simple fact, the protein inference problem is formulated as an optimization problem: minimize the number of proteins with non-zero probabilities under the constraint that the difference between the calculated peptide probability and the peptide probability generated from peptide identification algorithms should be less than some threshold. This model addresses the peptide degeneracy issue by forcing some joint probability variables involving degenerate peptides to be zero in a rigorous manner. The corresponding inference algorithm is named as ProteinLP. We test the performance of ProteinLP on six datasets. Experimental results show that our method is competitive with the state-of-the-art protein inference algorithms. The source code of our algorithm is available at: https://sourceforge.net/projects/prolp/. zyhe@dlut.edu.cn. Supplementary data are available at Bioinformatics Online.
Compiling Planning into Quantum Optimization Problems: A Comparative Study
2015-06-07
to SAT, and then reduces higher order terms to quadratic terms through a series of gadgets . Our mappings allow both positive and negative preconditions...to its being specific to this type of problem) and likely benefits from an homogeneous parameter setting (Venturelli et al. 2014), as it generates a...Guzik, A. 2013. Resource efficient gadgets for compiling adiabatic quan- tum optimization problems. Annalen der Physik 525(10- 11):877–888. Blum, A
Optimal Results and Numerical Simulations for Flow Shop Scheduling Problems
Directory of Open Access Journals (Sweden)
Tao Ren
2012-01-01
Full Text Available This paper considers the m-machine flow shop problem with two objectives: makespan with release dates and total quadratic completion time, respectively. For Fm|rj|Cmax, we prove the asymptotic optimality for any dense scheduling when the problem scale is large enough. For Fm‖ΣCj2, improvement strategy with local search is presented to promote the performance of the classical SPT heuristic. At the end of the paper, simulations show the effectiveness of the improvement strategy.
Ojalehto, Vesa; Podkopaev, Dmitry; Miettinen, Kaisa
2015-01-01
We generalize the applicability of interactive methods for solving computationally demanding, that is, time-consuming, multiobjective optimization problems. For this purpose we propose a new agent assisted interactive algorithm. It employs a computationally inexpensive surrogate problem and four different agents that intelligently update the surrogate based on the preferences specified by a decision maker. In this way, we decrease the waiting times imposed on the decision maker du...
Zhang, Chenglong; Guo, Ping
2017-10-01
The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.
Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Haitao Xu
2018-01-01
Full Text Available As we all know, there are a great number of optimization problems in the world. One of the relatively complicated and high-level problems is the vehicle routing problem (VRP. Dynamic vehicle routing problem (DVRP is a major variant of VRP, and it is closer to real logistic scene. In DVRP, the customers’ demands appear with time, and the unserved customers’ points must be updated and rearranged while carrying out the programming paths. Owing to the complexity and significance of the problem, DVRP applications have grabbed the attention of researchers in the past two decades. In this paper, we have two main contributions to solving DVRP. Firstly, DVRP is solved with enhanced Ant Colony Optimization (E-ACO, which is the traditional Ant Colony Optimization (ACO fusing improved K-means and crossover operation. K-means can divide the region with the most reasonable distance, while ACO using crossover is applied to extend search space and avoid falling into local optimum prematurely. Secondly, several new evaluation benchmarks are proposed, which can objectively and comprehensively estimate the proposed method. In the experiment, the results for different scale problems are compared to those of previously published papers. Experimental results show that the algorithm is feasible and efficient.
Optimal recombination in genetic algorithms for combinatorial optimization problems: Part II
Directory of Open Access Journals (Sweden)
Eremeev Anton V.
2014-01-01
Full Text Available This paper surveys results on complexity of the optimal recombination problem (ORP, which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. In Part II, we consider the computational complexity of ORPs arising in genetic algorithms for problems on permutations: the Travelling Salesman Problem, the Shortest Hamilton Path Problem and the Makespan Minimization on Single Machine and some other related problems. The analysis indicates that the corresponding ORPs are NP-hard, but solvable by faster algorithms, compared to the problems they are derived from.
Quadratic third-order tensor optimization problem with quadratic constraints
Directory of Open Access Journals (Sweden)
Lixing Yang
2014-05-01
Full Text Available Quadratically constrained quadratic programs (QQPs problems play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Semidenite programming (SDP relaxations often provide good approximate solutions to these hard problems. For several special cases of QQP, e.g., convex programs and trust region subproblems, SDP relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective.In this paper, we consider a certain QQP where the variable is neither vector nor matrix but a third-order tensor. This problem can be viewed as a generalization of the ordinary QQP with vector or matrix as it's variant. Under some mild conditions, we rst show that SDP relaxation provides exact optimal solutions for the original problem. Then we focus on two classes of homogeneous quadratic tensor programming problems which have no requirements on the constraints number. For one, we provide an easily implemental polynomial time algorithm to approximately solve the problem and discuss the approximation ratio. For the other, we show there is no gap between the SDP relaxation and itself.
Searching for optimal integer solutions to set partitioning problems using column generation
Bredström, David; Jörnsten, Kurt; Rönnqvist, Mikael
2007-01-01
We describe a new approach to produce integer feasible columns to a set partitioning problem directly in solving the linear programming (LP) relaxation using column generation. Traditionally, column generation is aimed to solve the LP relaxation as quick as possible without any concern of the integer properties of the columns formed. In our approach we aim to generate the columns forming the optimal integer solution while simultaneously solving the LP relaxation. By this we can re...
Fuzzy Multi Objective Linear Programming Problem with Imprecise Aspiration Level and Parameters
Directory of Open Access Journals (Sweden)
Zahra Shahraki
2015-07-01
Full Text Available This paper considers the multi-objective linear programming problems with fuzzygoal for each of the objective functions and constraints. Most existing works deal withlinear membership functions for fuzzy goals. In this paper, exponential membershipfunction is used.
Mass Optimization of Battery/Supercapacitors Hybrid Systems Based on a Linear Programming Approach
Fleury, Benoit; Labbe, Julien
2014-08-01
The objective of this paper is to show that, on a specific launcher-type mission profile, a 40% gain of mass is expected using a battery/supercapacitors active hybridization instead of a single battery solution. This result is based on the use of a linear programming optimization approach to perform the mass optimization of the hybrid power supply solution.
Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics
DEFF Research Database (Denmark)
Iwankiewicz, R.; Nielsen, Søren R. K.
Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically-numerical tec......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...
EZLP: An Interactive Computer Program for Solving Linear Programming Problems. Final Report.
Jarvis, John J.; And Others
Designed for student use in solving linear programming problems, the interactive computer program described (EZLP) permits the student to input the linear programming model in exactly the same manner in which it would be written on paper. This report includes a brief review of the development of EZLP; narrative descriptions of program features,…
Zörnig, Peter
2015-08-01
We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.