International Nuclear Information System (INIS)
VanMeter, N. M.; Lougovski, P.; Dowling, Jonathan P.; Uskov, D. B.; Kieling, K.; Eisert, J.
2007-01-01
We introduce schemes for linear-optical quantum state generation. A quantum state generator is a device that prepares a desired quantum state using product inputs from photon sources, linear-optical networks, and postselection using photon counters. We show that this device can be concisely described in terms of polynomial equations and unitary constraints. We illustrate the power of this language by applying the Groebner-basis technique along with the notion of vacuum extensions to solve the problem of how to construct a quantum state generator analytically for any desired state, and use methods of convex optimization to identify bounds to success probabilities. In particular, we disprove a conjecture concerning the preparation of the maximally path-entangled |n,0>+|0,n> (NOON) state by providing a counterexample using these methods, and we derive a new upper bound on the resources required for NOON-state generation
An algebraic approach to linear-optical schemes for deterministic quantum computing
International Nuclear Information System (INIS)
Aniello, Paolo; Cagli, Ruben Coen
2005-01-01
Linear-optical passive (LOP) devices and photon counters are sufficient to implement universal quantum computation with single photons, and particular schemes have already been proposed. In this paper we discuss the link between the algebraic structure of LOP transformations and quantum computing. We first show how to decompose the Fock space of N optical modes in finite-dimensional subspaces that are suitable for encoding strings of qubits and invariant under LOP transformations (these subspaces are related to the spaces of irreducible unitary representations of U (N). Next we show how to design in algorithmic fashion LOP circuits which implement any quantum circuit deterministically. We also present some simple examples, such as the circuits implementing a cNOT gate and a Bell state generator/analyser
Probabilistic teleportation scheme of two-mode entangled photon states by using linear optic element
Institute of Scientific and Technical Information of China (English)
XIANG Shao-hua
2003-01-01
A scheme for teleporting two-mode entangled photon states with the successful probability 33.3% is proposed. In the scheme, the teleporte d qubit is two-mode photon entangled states, and two pairs of EPR pair are used as quantum channel between a sender and a receiver. This procedure is achieved by using two 50/50 symmetric beam splitters and four photon number detectors wit h the help of classical information.
An active interferometer-stabilization scheme with linear phase control
DEFF Research Database (Denmark)
Andresen, Esben Ravn; Krishnamachari, v v; Potma, E O
2006-01-01
We report a simple and robust computer-based active interferometer stabilization scheme which does not require modulation of the interfering beams and relies on an error signal which is linearly related to the optical path difference. In this setup, a non-collinearly propagating reference laser...... beam stabilizes the interference output of the laser light propagating collinearly through the interferometer. This stabilization scheme enables adjustable phase control with 20 ms switching times in the range from 0.02π radians to 6π radians at 632.8 nm....
Saravanan, R
2018-01-01
Non-linear optical materials have widespread and promising applications, but the efforts to understand the local structure, electron density distribution and bonding is still lacking. The present work explores the structural details, the electron density distribution and the local bond length distribution of some non-linear optical materials. It also gives estimation of the optical band gap, the particle size, crystallite size, and the elemental composition from UV-Visible analysis, SEM, XRD and EDS of some non-linear optical materials respectively.
Utilizing encoding in scalable linear optics quantum computing
International Nuclear Information System (INIS)
Hayes, A J F; Gilchrist, A; Myers, C R; Ralph, T C
2004-01-01
We present a scheme which offers a significant reduction in the resources required to implement linear optics quantum computing. The scheme is a variation of the proposal of Knill, Laflamme and Milburn, and makes use of an incremental approach to the error encoding to boost probability of success
Linear rotary optical delay lines
Guerboukha, Hichem; Qu, Hang; Skorobogatiy, Maksim
2016-03-01
We present a semi-analytical solution for the design of a high-speed rotary optical delay line that use a combination of two rotating curvilinear reflectors. We demonstrate that it is possible to design an infinite variety of the optical delay lines featuring linear dependence of the optical delay on the rotation angle. This is achieved via shape optimization of the rotating reflector surfaces. Moreover, a convenient spatial separation of the incoming and outgoing beams is possible. For the sake of example, we present blades that fit into a circle of 10cm diameter. Finally, a prototype of a rotary delay line is fabricated using CNC machining, and its optical properties are characterized.
One-step deterministic multipartite entanglement purification with linear optics
Energy Technology Data Exchange (ETDEWEB)
Sheng, Yu-Bo [Department of Physics, Tsinghua University, Beijing 100084 (China); Long, Gui Lu, E-mail: gllong@tsinghua.edu.cn [Department of Physics, Tsinghua University, Beijing 100084 (China); Center for Atomic and Molecular NanoSciences, Tsinghua University, Beijing 100084 (China); Key Laboratory for Quantum Information and Measurements, Beijing 100084 (China); Deng, Fu-Guo [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China)
2012-01-09
We present a one-step deterministic multipartite entanglement purification scheme for an N-photon system in a Greenberger–Horne–Zeilinger state with linear optical elements. The parties in quantum communication can in principle obtain a maximally entangled state from each N-photon system with a success probability of 100%. That is, it does not consume the less-entangled photon systems largely, which is far different from other multipartite entanglement purification schemes. This feature maybe make this scheme more feasible in practical applications. -- Highlights: ► We proposed a deterministic entanglement purification scheme for GHZ states. ► The scheme uses only linear optical elements and has a success probability of 100%. ► The scheme gives a purified GHZ state in just one-step.
A fast iterative scheme for the linearized Boltzmann equation
Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.
2017-06-01
Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference
Security of Linear Secret-Sharing Schemes Against Mass Surveillance
DEFF Research Database (Denmark)
Giacomelli, Irene; Olimid, Ruxandra; Ranellucci, Samuel
2015-01-01
by a proprietary code that the provider (“big brother”) could manipulate to covertly violate the privacy of the users (by implementing Algorithm-Substitution Attacks or ASAs). First, we formalize the security notion that expresses the goal of big brother and prove that for any linear secret-sharing scheme...... there exists an undetectable subversion of it that efficiently allows surveillance. Second, we formalize the security notion that assures that a sharing scheme is secure against ASAs and construct the first sharing scheme that meets this notion....
Topics in linear optical quantum computation
Glancy, Scott Charles
This thesis covers several topics in optical quantum computation. A quantum computer is a computational device which is able to manipulate information by performing unitary operations on some physical system whose state can be described as a vector (or mixture of vectors) in a Hilbert space. The basic unit of information, called the qubit, is considered to be a system with two orthogonal states, which are assigned logical values of 0 and 1. Photons make excellent candidates to serve as qubits. They have little interactions with the environment. Many operations can be performed using very simple linear optical devices such as beam splitters and phase shifters. Photons can easily be processed through circuit-like networks. Operations can be performed in very short times. Photons are ideally suited for the long-distance communication of quantum information. The great difficulty in constructing an optical quantum computer is that photons naturally interact weakly with one another. This thesis first gives a brief review of two early approaches to optical quantum computation. It will describe how any discrete unitary operation can be performed using a single photon and a network of beam splitters, and how the Kerr effect can be used to construct a two photon logic gate. Second, this work provides a thorough introduction to the linear optical quantum computer developed by Knill, Laflamme, and Milburn. It then presents this author's results on the reliability of this scheme when implemented using imperfect photon detectors. This author finds that quantum computers of this sort cannot be built using current technology. Third, this dissertation describes a method for constructing a linear optical quantum computer using nearly orthogonal coherent states of light as the qubits. It shows how a universal set of logic operations can be performed, including calculations of the fidelity with which these operations may be accomplished. It discusses methods for reducing and
Nonclassical lightstates in optical communication schemes
International Nuclear Information System (INIS)
Mattle, K. U.
1997-11-01
The present thesis is a result in theoretical and experimental work on quant information and quant communication. The first part describes a new high intense source for polarization entangled photon pairs. The high quality of the source is clearly demonstrated by violating a Bell-inequality in less than 5 minutes with 100 standard deviations. This new source is a genius tool for new experiments in the field of fundamental physics as well as applied physics. The next chapter shows an experimental implementation of an optical dense quantum coding scheme. The combination of Bell-state generation and analysis of this entangled states leads to a new nonclassical communication scheme, where the channel capacity is enhanced. A single two state photon can be used for coding and decoding 1.58 bit instead of 1 bit for classical two state systems. The following chapter discusses two photon interference effects for two independent light sources. In an experiment two independent fluorescence pulses show this kind of interference effects. The fifth chapter describes 3-photon interference effects. This nonclassical interference effect is the elementary process for the quantum teleportation scheme. In this scheme an unknown particle state is transmitted from A to B without sending the particle itself. (author)
Linear source approximation scheme for method of characteristics
International Nuclear Information System (INIS)
Tang Chuntao
2011-01-01
Method of characteristics (MOC) for solving neutron transport equation based on unstructured mesh has already become one of the fundamental methods for lattice calculation of nuclear design code system. However, most of MOC codes are developed with flat source approximation called step characteristics (SC) scheme, which is another basic assumption for MOC. A linear source (LS) characteristics scheme and its corresponding modification for negative source distribution were proposed. The OECD/NEA C5G7-MOX 2D benchmark and a self-defined BWR mini-core problem were employed to validate the new LS module of PEACH code. Numerical results indicate that the proposed LS scheme employs less memory and computational time compared with SC scheme at the same accuracy. (authors)
Fault tolerance in parity-state linear optical quantum computing
International Nuclear Information System (INIS)
Hayes, A. J. F.; Ralph, T. C.; Haselgrove, H. L.; Gilchrist, Alexei
2010-01-01
We use a combination of analytical and numerical techniques to calculate the noise threshold and resource requirements for a linear optical quantum computing scheme based on parity-state encoding. Parity-state encoding is used at the lowest level of code concatenation in order to efficiently correct errors arising from the inherent nondeterminism of two-qubit linear-optical gates. When combined with teleported error-correction (using either a Steane or Golay code) at higher levels of concatenation, the parity-state scheme is found to achieve a saving of approximately three orders of magnitude in resources when compared to the cluster state scheme, at a cost of a somewhat reduced noise threshold.
Linear and non-linear optics of condensed matter
International Nuclear Information System (INIS)
McLean, T.P.
1977-01-01
Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)
Two-Photon-Absorption Scheme for Optical Beam Tracking
Ortiz, Gerardo G.; Farr, William H.
2011-01-01
A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.
International Nuclear Information System (INIS)
Chen, H.-H.; Chen, C.-S.; Lee, C.-I
2009-01-01
This paper investigates the synchronization of unidirectional and bidirectional coupled unified chaotic systems. A balanced coupling coefficient control method is presented for global asymptotic synchronization using the Lyapunov stability theorem and a minimum scheme with no constraints/constraints. By using the result of the above analysis, the balanced coupling coefficients are then designed to achieve the chaos synchronization of linearly coupled unified chaotic systems. The feasibility and effectiveness of the proposed chaos synchronization scheme are verified via numerical simulations.
A positron beam for the linear collider scheme of a B-meson factory
International Nuclear Information System (INIS)
Chehab, R.
1988-02-01
An approach for a conventional positron source intended to a BantiB linear collider scheme is here given. Optical matching devices between the source and the accelerator are considered and some comparisons are made regarding the maximum acceptance and the positron beam qualities. Focusing in the preaccelerator and in the main linac are also considered. Heating and radiation problems which may introduce severe limitations are only partly examined
Linear optics and quantum maps
International Nuclear Information System (INIS)
Aiello, A.; Puentes, G.; Woerdman, J. P.
2007-01-01
We present a theoretical analysis of the connection between classical polarization optics and quantum mechanics of two-level systems. First, we review the matrix formalism of classical polarization optics from a quantum information perspective. In this manner the passage from the Stokes-Jones-Mueller description of classical optical processes to the representation of one- and two-qubit quantum operations, becomes straightforward. Second, as a practical application of our classical-vs-quantum formalism, we show how two-qubit maximally entangled mixed states can be generated by using polarization and spatial modes of photons generated via spontaneous parametric down conversion
Improvements and validation of the linear surface characteristics scheme
International Nuclear Information System (INIS)
Santandrea, S.; Jaboulay, J.C.; Bellier, P.; Fevotte, F.; Golfier, H.
2009-01-01
In this paper we present the last improvements of the recently proposed linear surface (LS) characteristics scheme for unstructured meshes. First we introduce a new numerical tracking technique, specifically adapted to the LS method, which tailors transverse integration weights to take into account the geometrical discontinuities that appear along the pipe affected to every trajectory in classical characteristics schemes. Another development allows using the volumetric flux variation of the LS method to re-compute step-wise constant fluxes to be used in other parts of a computational scheme. This permits to take greater advantage of the higher precision of the LS method without necessarily conceiving specialized theories for all the modular functionalities of a spectral code such as APOLLO2. Moreover we present a multi-level domain decomposition method for solving the synthetic acceleration operator that is used to accelerate the free iterations for the LS method. We discuss all these new developments by illustrating some benchmarks results obtained with the LS method. This is done by detailed comparisons with Monte-Carlo calculations. In particular we show that the new method can be used not only as a reference tool, but also inside a suitable industrial calculation scheme
Analyses of resource reservation schemes for optical burst switching networks
Solanska, Michaela; Scholtz, Lubomir; Ladanyi, Libor; Mullerova, Jarmila
2017-12-01
With growing demands of Internet Protocol services for transmission capacity and speed, the Optical Burst Switching presents the solution for future high-speed optical networks. Optical Burst Switching is a technology for transmitting large amounts of data bursts through a transparent optical switching network. To successfully transmit bursts over OBS network and reach the destination node, resource reservation schemes have to be implemented to allocate resources and configure optical switches for that burst at each node. The one-way resource reservation schemes and the performance evaluation of reservation schemes are presented. The OBS network model is performed using OMNeT++ simulation environment. During the reservation of network resources, the optical cross-connect based on semiconductor optical amplifier is used as the core node. Optical switches based on semiconductor optical amplifiers are a promising technology for high-speed optical communication networks.
Unconditional quantum cloning of coherent states with linear optics
International Nuclear Information System (INIS)
Leuchs, G.; Andersen, U.L.; Josse, V.
2005-01-01
Intense light pulses with non-classical properties are used to implement protocols for quantum communication. Most of the elements in the tool box needed to assemble the experimental set-ups for these protocols are readily described by Bogoliubov transformations corresponding to Gaussian transformations that map Gaussian states onto Gaussian states. One particularly interesting application is quantum cloning of a coherent state. A scheme for optimal Gaussian cloning of optical coherent states is proposed and experimentally demonstrated. Its optical realization is based entirely on simple linear optical elements and homodyne detection. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of about 65%, which almost touches the optimal value of 2/3. (author)
Light propagation in linear optical media
Gillen, Glen D; Guha, Shekhar
2013-01-01
Light Propagation in Linear Optical Media describes light propagation in linear media by expanding on diffraction theories beyond what is available in classic optics books. In one volume, this book combines the treatment of light propagation through various media, interfaces, and apertures using scalar and vector diffraction theories. After covering the fundamentals of light and physical optics, the authors discuss light traveling within an anisotropic crystal and present mathematical models for light propagation across planar boundaries between different media. They describe the propagation o
Progress in linear optics, non-linear optics and surface alignment of liquid crystals
Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.
We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.
Energy Technology Data Exchange (ETDEWEB)
Wei, Hai-Rui, E-mail: hrwei@ustb.edu.cn; Liu, Ji-Zhen
2017-02-15
It is very important to seek an efficient and robust quantum algorithm demanding less quantum resources. We propose one-photon three-qubit original and refined Deutsch–Jozsa algorithms with polarization and two linear momentums degrees of freedom (DOFs). Our schemes are constructed by solely using linear optics. Compared to the traditional ones with one DOF, our schemes are more economic and robust because the necessary photons are reduced from three to one. Our linear-optic schemes are working in a determinate way, and they are feasible with current experimental technology.
A virtual network computer's optical storage virtualization scheme
Wang, Jianzong; Hu, Huaixiang; Wan, Jiguang; Wang, Peng
2008-12-01
In this paper, we present the architecture and implementation of a virtual network computers' (VNC) optical storage virtualization scheme called VOSV. Its task is to manage the mapping of virtual optical storage to physical optical storage, a technique known as optical storage virtualization. The design of VOSV aims at the optical storage resources of different clients and servers that have high read-sharing patterns. VOSV uses several schemes such as a two-level Cache mechanism, a VNC server embedded module and the iSCSI protocols to improve the performance. The results measured on the prototype are encouraging, and indicating that VOSV provides the high I/O performance.
LDPC-PPM Coding Scheme for Optical Communication
Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael
2009-01-01
In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.
Optical surfacing via linear ion source
International Nuclear Information System (INIS)
Wu, Lixiang; Wei, Chaoyang; Shao, Jianda
2017-01-01
We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. The modified Fourier series, or sinusoidal wave surfaces, build a relationship between the fabrication process of optical surfaces and the surface characterization based on power spectral density (PSD) analysis. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of mid-spatial frequency (MSF) errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approach.
Optical surfacing via linear ion source
Energy Technology Data Exchange (ETDEWEB)
Wu, Lixiang, E-mail: wulx@hdu.edu.cn [Key Lab of RF Circuits and Systems of Ministry of Education, Zhejiang Provincial Key Lab of LSI Design, Microelectronics CAD Center, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou (China); Wei, Chaoyang, E-mail: siomwei@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Shao, Jianda, E-mail: jdshao@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)
2017-04-15
We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. The modified Fourier series, or sinusoidal wave surfaces, build a relationship between the fabrication process of optical surfaces and the surface characterization based on power spectral density (PSD) analysis. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of mid-spatial frequency (MSF) errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approach.
Linear optical quantum computing in a single spatial mode.
Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A
2013-10-11
We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.
Measurement-induced nonlinearity in linear optics
International Nuclear Information System (INIS)
Scheel, Stefan; Knight, Peter L.; Nemoto, Kae; Munro, William J.
2003-01-01
We investigate the generation of nonlinear operators with single-photon sources, linear optical elements, and appropriate measurements of auxiliary modes. We provide a framework for the construction of useful single-mode and two-mode quantum gates necessary for all-optical quantum information processing. We focus our attention generally on using minimal physical resources while providing a transparent and algorithmic way of constructing these operators
Optimal on/off scheme for all-optical switching
DEFF Research Database (Denmark)
Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper
2012-01-01
We present a two-pulsed on/off scheme based on coherent control for fast switching of the optical energy in a micro cavity and use calculus of variations to optimize the switching in terms of energy.......We present a two-pulsed on/off scheme based on coherent control for fast switching of the optical energy in a micro cavity and use calculus of variations to optimize the switching in terms of energy....
Noise limitations in optical linear algebra processors.
Batsell, S G; Jong, T L; Walkup, J F; Krile, T F
1990-05-10
A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.
Optical linear algebra processors - Architectures and algorithms
Casasent, David
1986-01-01
Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.
Resource-efficient generation of linear cluster states by linear optics with postselection
International Nuclear Information System (INIS)
Uskov, D B; Alsing, P M; Fanto, M L; Szep, A; Smith, A M; Kaplan, L; Kim, R
2015-01-01
We report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon–photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneous detection of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to (1/2) n−1 ; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of (1/4) m−1 . (paper)
Deterministic linear-optics quantum computing based on a hybrid approach
International Nuclear Information System (INIS)
Lee, Seung-Woo; Jeong, Hyunseok
2014-01-01
We suggest a scheme for all-optical quantum computation using hybrid qubits. It enables one to efficiently perform universal linear-optical gate operations in a simple and near-deterministic way using hybrid entanglement as off-line resources
Deterministic linear-optics quantum computing based on a hybrid approach
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung-Woo; Jeong, Hyunseok [Center for Macroscopic Quantum Control, Department of Physics and Astronomy, Seoul National University, Seoul, 151-742 (Korea, Republic of)
2014-12-04
We suggest a scheme for all-optical quantum computation using hybrid qubits. It enables one to efficiently perform universal linear-optical gate operations in a simple and near-deterministic way using hybrid entanglement as off-line resources.
Linear zonal atmospheric prediction for adaptive optics
McGuire, Patrick C.; Rhoadarmer, Troy A.; Coy, Hanna A.; Angel, J. Roger P.; Lloyd-Hart, Michael
2000-07-01
We compare linear zonal predictors of atmospheric turbulence for adaptive optics. Zonal prediction has the possible advantage of being able to interpret and utilize wind-velocity information from the wavefront sensor better than modal prediction. For simulated open-loop atmospheric data for a 2- meter 16-subaperture AO telescope with 5 millisecond prediction and a lookback of 4 slope-vectors, we find that Widrow-Hoff Delta-Rule training of linear nets and Back- Propagation training of non-linear multilayer neural networks is quite slow, getting stuck on plateaus or in local minima. Recursive Least Squares training of linear predictors is two orders of magnitude faster and it also converges to the solution with global minimum error. We have successfully implemented Amari's Adaptive Natural Gradient Learning (ANGL) technique for a linear zonal predictor, which premultiplies the Delta-Rule gradients with a matrix that orthogonalizes the parameter space and speeds up the training by two orders of magnitude, like the Recursive Least Squares predictor. This shows that the simple Widrow-Hoff Delta-Rule's slow convergence is not a fluke. In the case of bright guidestars, the ANGL, RLS, and standard matrix-inversion least-squares (MILS) algorithms all converge to the same global minimum linear total phase error (approximately 0.18 rad2), which is only approximately 5% higher than the spatial phase error (approximately 0.17 rad2), and is approximately 33% lower than the total 'naive' phase error without prediction (approximately 0.27 rad2). ANGL can, in principle, also be extended to make non-linear neural network training feasible for these large networks, with the potential to lower the predictor error below the linear predictor error. We will soon scale our linear work to the approximately 108-subaperture MMT AO system, both with simulations and real wavefront sensor data from prime focus.
Noninvasive blood pressure measurement scheme based on optical fiber sensor
Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan
2016-10-01
Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.
High-Dimensional Quantum Information Processing with Linear Optics
Fitzpatrick, Casey A.
Quantum information processing (QIP) is an interdisciplinary field concerned with the development of computers and information processing systems that utilize quantum mechanical properties of nature to carry out their function. QIP systems have become vastly more practical since the turn of the century. Today, QIP applications span imaging, cryptographic security, computation, and simulation (quantum systems that mimic other quantum systems). Many important strategies improve quantum versions of classical information system hardware, such as single photon detectors and quantum repeaters. Another more abstract strategy engineers high-dimensional quantum state spaces, so that each successful event carries more information than traditional two-level systems allow. Photonic states in particular bring the added advantages of weak environmental coupling and data transmission near the speed of light, allowing for simpler control and lower system design complexity. In this dissertation, numerous novel, scalable designs for practical high-dimensional linear-optical QIP systems are presented. First, a correlated photon imaging scheme using orbital angular momentum (OAM) states to detect rotational symmetries in objects using measurements, as well as building images out of those interactions is reported. Then, a statistical detection method using chains of OAM superpositions distributed according to the Fibonacci sequence is established and expanded upon. It is shown that the approach gives rise to schemes for sorting, detecting, and generating the recursively defined high-dimensional states on which some quantum cryptographic protocols depend. Finally, an ongoing study based on a generalization of the standard optical multiport for applications in quantum computation and simulation is reported upon. The architecture allows photons to reverse momentum inside the device. This in turn enables realistic implementation of controllable linear-optical scattering vertices for
Experimental quantum private queries with linear optics
International Nuclear Information System (INIS)
De Martini, Francesco; Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Nagali, Eleonora; Sansoni, Linda; Sciarrino, Fabio
2009-01-01
The quantum private query is a quantum cryptographic protocol to recover information from a database, preserving both user and data privacy: the user can test whether someone has retained information on which query was asked and the database provider can test the amount of information released. Here we discuss a variant of the quantum private query algorithm that admits a simple linear optical implementation: it employs the photon's momentum (or time slot) as address qubits and its polarization as bus qubit. A proof-of-principle experimental realization is implemented.
Method and apparatus of highly linear optical modulation
DeRose, Christopher; Watts, Michael R.
2016-05-03
In a new optical intensity modulator, a nonlinear change in refractive index is used to balance the nonlinearities in the optical transfer function in a way that leads to highly linear optical intensity modulation.
International Nuclear Information System (INIS)
Mieussens, Luc
2013-01-01
The unified gas kinetic scheme (UGKS) of K. Xu et al. (2010) [37], originally developed for multiscale gas dynamics problems, is applied in this paper to a linear kinetic model of radiative transfer theory. While such problems exhibit purely diffusive behavior in the optically thick (or small Knudsen) regime, we prove that UGKS is still asymptotic preserving (AP) in this regime, but for the free transport regime as well. Moreover, this scheme is modified to include a time implicit discretization of the limit diffusion equation, and to correctly capture the solution in case of boundary layers. Contrary to many AP schemes, this method is based on a standard finite volume approach, it does neither use any decomposition of the solution, nor staggered grids. Several numerical tests demonstrate the properties of the scheme
A linear construction of perfect secret sharing schemes
Dijk, van M.; Santis, De A.
1995-01-01
In this paper, we generalize the vector space construction due to Brickell [5]. This generalization, introduced by Bertilsson [1], leads to perfect secret sharing schemes with rational information rates in which the secret can be computed efficiently by each qualified group. A one to one
Ghosh, A
1988-08-01
Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.
Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements
International Nuclear Information System (INIS)
Ho Ngoc Phien; Nguyen Ba An
2008-01-01
We propose a linear optics scheme to teleport an arbitrary two-mode coherent state. The devices used are beam-splitters, phase-shifters and ideal photo-detectors capable of distinguishing between even and odd photon numbers. The scheme achieves faithful teleportation with a probability of 1/4. However, with additional use of an appropriate displacement operator, the teleported state can always be made near-faithful
Nam, Sung Sik; Alouini, Mohamed-Slim; Zhang, Lin; Ko, Young-Chai
2017-01-01
We propose a threshold-based multiple optical signal selection scheme (TMOS) for free-space optical wavelength division multiplexing systems. With this scheme, we can obtain higher spectral efficiency while reducing the possible complexity
Investigation on the MOC with a linear source approximation scheme in three-dimensional assembly
International Nuclear Information System (INIS)
Zhu, Chenglin; Cao, Xinrong
2014-01-01
Method of characteristics (MOC) for solving neutron transport equation has already become one of the fundamental methods for lattice calculation of nuclear design code system. At present, MOC has three schemes to deal with the neutron source of the transport equation: the flat source approximation of the step characteristics (SC) scheme, the diamond difference (DD) scheme and the linear source (LS) characteristics scheme. The MOC for SC scheme and DD scheme need large storage space and long computing time when they are used to calculate large-scale three-dimensional neutron transport problems. In this paper, a LS scheme and its correction for negative source distribution were developed and added to DRAGON code. This new scheme was compared with the SC scheme and DD scheme which had been applied in this code. As an open source code, DRAGON could solve three-dimensional assembly with MOC method. Detailed calculation is conducted on two-dimensional VVER-1000 assembly under three schemes of MOC. The numerical results indicate that coarse mesh could be used in the LS scheme with the same accuracy. And the LS scheme applied in DRAGON is effective and expected results are achieved. Then three-dimensional cell problem and VVER-1000 assembly are calculated with LS scheme and SC scheme. The results show that less memory and shorter computational time are employed in LS scheme compared with SC scheme. It is concluded that by using LS scheme, DRAGON is able to calculate large-scale three-dimensional problems with less storage space and shorter computing time
Accuracy Limitations in Optical Linear Algebra Processors
Batsell, Stephen Gordon
1990-01-01
One of the limiting factors in applying optical linear algebra processors (OLAPs) to real-world problems has been the poor achievable accuracy of these processors. Little previous research has been done on determining noise sources from a systems perspective which would include noise generated in the multiplication and addition operations, noise from spatial variations across arrays, and from crosstalk. In this dissertation, we propose a second-order statistical model for an OLAP which incorporates all these system noise sources. We now apply this knowledge to determining upper and lower bounds on the achievable accuracy. This is accomplished by first translating the standard definition of accuracy used in electronic digital processors to analog optical processors. We then employ our second-order statistical model. Having determined a general accuracy equation, we consider limiting cases such as for ideal and noisy components. From the ideal case, we find the fundamental limitations on improving analog processor accuracy. From the noisy case, we determine the practical limitations based on both device and system noise sources. These bounds allow system trade-offs to be made both in the choice of architecture and in individual components in such a way as to maximize the accuracy of the processor. Finally, by determining the fundamental limitations, we show the system engineer when the accuracy desired can be achieved from hardware or architecture improvements and when it must come from signal pre-processing and/or post-processing techniques.
A High-Accuracy Linear Conservative Difference Scheme for Rosenau-RLW Equation
Directory of Open Access Journals (Sweden)
Jinsong Hu
2013-01-01
Full Text Available We study the initial-boundary value problem for Rosenau-RLW equation. We propose a three-level linear finite difference scheme, which has the theoretical accuracy of Oτ2+h4. The scheme simulates two conservative properties of original problem well. The existence, uniqueness of difference solution, and a priori estimates in infinite norm are obtained. Furthermore, we analyze the convergence and stability of the scheme by energy method. At last, numerical experiments demonstrate the theoretical results.
An implicit iterative scheme for solving large systems of linear equations
International Nuclear Information System (INIS)
Barry, J.M.; Pollard, J.P.
1986-12-01
An implicit iterative scheme for the solution of large systems of linear equations arising from neutron diffusion studies is presented. The method is applied to three-dimensional reactor studies and its performance is compared with alternative iterative approaches
Conditional generation of arbitrary multimode entangled states of light with linear optics
International Nuclear Information System (INIS)
Fiurasek, J.; Massar, S.; Cerf, N. J.
2003-01-01
We propose a universal scheme for the probabilistic generation of an arbitrary multimode entangled state of light with finite expansion in Fock basis. The suggested setup involves passive linear optics, single-photon sources, strong coherent laser beams, and photodetectors with single-photon resolution. The efficiency of this setup may be greatly enhanced if, in addition, a quantum memory is available
Integrated optical 3D digital imaging based on DSP scheme
Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.
2008-03-01
We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.
A novel modulation scheme for noise reduction in analog fiber optic links
Marpaung, D.A.I.; Roeloffzen, C.G.H.; van Etten, Wim
2006-01-01
A novel noise reduction scheme called Balanced Modulation and Detection (BMD) is proposed. In this scheme, the modulating RF signal is half-wave rectified in the optical domain, eliminating the DC optical power resulting from pre-biasing of the optical source. A link model employing this scheme has
Kent, James; Holdaway, Daniel
2015-01-01
A number of geophysical applications require the use of the linearized version of the full model. One such example is in numerical weather prediction, where the tangent linear and adjoint versions of the atmospheric model are required for the 4DVAR inverse problem. The part of the model that represents the resolved scale processes of the atmosphere is known as the dynamical core. Advection, or transport, is performed by the dynamical core. It is a central process in many geophysical applications and is a process that often has a quasi-linear underlying behavior. However, over the decades since the advent of numerical modelling, significant effort has gone into developing many flavors of high-order, shape preserving, nonoscillatory, positive definite advection schemes. These schemes are excellent in terms of transporting the quantities of interest in the dynamical core, but they introduce nonlinearity through the use of nonlinear limiters. The linearity of the transport schemes used in Goddard Earth Observing System version 5 (GEOS-5), as well as a number of other schemes, is analyzed using a simple 1D setup. The linearized version of GEOS-5 is then tested using a linear third order scheme in the tangent linear version.
Per-Pixel, Dual-Counter Scheme for Optical Communications
Farr, William H.; Bimbaum, Kevin M.; Quirk, Kevin J.; Sburlan, Suzana; Sahasrabudhe, Adit
2013-01-01
Free space optical communications links from deep space are projected to fulfill future NASA communication requirements for 2020 and beyond. Accurate laser-beam pointing is required to achieve high data rates at low power levels.This innovation is a per-pixel processing scheme using a pair of three-state digital counters to implement acquisition and tracking of a dim laser beacon transmitted from Earth for pointing control of an interplanetary optical communications system using a focal plane array of single sensitive detectors. It shows how to implement dim beacon acquisition and tracking for an interplanetary optical transceiver with a method that is suitable for both achieving theoretical performance, as well as supporting additional functions of high data rate forward links and precision spacecraft ranging.
Splitting of quantum information in travelling wave fields using only linear optical elements
Energy Technology Data Exchange (ETDEWEB)
Cardoso, W B; De Almeida, N G; Avelar, A T; Baseia, B [Instituto de Fisica, Universidade Federal de Goias, 74.001-970, Goiania-GO (Brazil)
2011-02-28
In this paper we present a feasible post-selection scheme to split quantum information in the realm of travelling waves with success probability of 50%. Taking advantage of this scheme we have also proposed the generation of a class of W states useful for perfect teleportation and superdense coding. The scheme employs only linear optical elements as beam splitters (BS) and phase shifters, plus two photon counters and a source of two spontaneous parametric down-conversion photons. It is shown that splitting of quantum information with high fidelity is possible, even when using inefficient detectors and photoabsorption BS.
Directory of Open Access Journals (Sweden)
Peng Jiang
2013-01-01
Full Text Available The authors attempt to construct the exact finite-difference schemes for linear stochastic differential equations with constant coefficients. The explicit solutions to Itô and Stratonovich linear stochastic differential equations with constant coefficients are adopted with the view of providing exact finite-difference schemes to solve them. In particular, the authors utilize the exact finite-difference schemes of Stratonovich type linear stochastic differential equations to solve the Kubo oscillator that is widely used in physics. Further, the authors prove that the exact finite-difference schemes can preserve the symplectic structure and first integral of the Kubo oscillator. The authors also use numerical examples to prove the validity of the numerical methods proposed in this paper.
Liao, Ruolin; Wu, Zhichao; Fu, Songnian; Zhu, Shengnan; Yu, Zhe; Tang, Ming; Liu, Deming
2018-02-01
Although the linear optical sampling (LOS) technique is powerful enough to characterize various advanced modulation formats with high symbol rates, the central wavelength of a pulsed local oscillator (LO) needs to be carefully set according to that of the signal under test, due to the coherent mixing operation. Here, we experimentally demonstrate wideband LOS enabled by a fiber optics frequency comb (FOFC). Meanwhile, when the broadband FOFC acts as the pulsed LO, we propose a scheme to mitigate the enhanced sampling error arising in the non-ideal response of a balanced photodetector. Finally, precise characterizations of arbitrary 128 Gbps PDM-QPSK wavelength channels from 1550 to 1570 nm are successfully achieved, when a 101.3 MHz frequency spaced comb with a 3 dB spectral power ripple of 20 nm is used.
International Nuclear Information System (INIS)
Zhu Chang-Hua; Cao Xin; Quan Dong-Xiao; Pei Chang-Xing
2014-01-01
Linear optical quantum Fredkin gate can be applied to quantum computing and quantum multi-user communication networks. In the existing linear optical scheme, two single photon detectors (SPDs) are used to herald the success of the quantum Fredkin gate while they have no photon count. But analysis results show that for non-perfect SPD, the lower the detector efficiency, the higher the heralded success rate by this scheme is. We propose an improved linear optical quantum Fredkin gate by designing a new heralding scheme with an auxiliary qubit and only one SPD, in which the higher the detection efficiency of the heralding detector, the higher the success rate of the gate is. The new heralding scheme can also work efficiently under a non-ideal single photon source. Based on this quantum Fredkin gate, large-scale quantum switching networks can be built. As an example, a quantum Beneš network is shown in which only one SPD is used. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
International Nuclear Information System (INIS)
Chen, Haixia; Zhang, Jing
2007-01-01
We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning
Acceleration of step and linear discontinuous schemes for the method of characteristics in DRAGON5
Directory of Open Access Journals (Sweden)
Alain Hébert
2017-09-01
Full Text Available The applicability of the algebraic collapsing acceleration (ACA technique to the method of characteristics (MOC in cases with scattering anisotropy and/or linear sources was investigated. Previously, the ACA was proven successful in cases with isotropic scattering and uniform (step sources. A presentation is first made of the MOC implementation, available in the DRAGON5 code. Two categories of schemes are available for integrating the propagation equations: (1 the first category is based on exact integration and leads to the classical step characteristics (SC and linear discontinuous characteristics (LDC schemes and (2 the second category leads to diamond differencing schemes of various orders in space. The acceleration of these MOC schemes using a combination of the generalized minimal residual [GMRES(m] method preconditioned with the ACA technique was focused on. Numerical results are provided for a two-dimensional (2D eight-symmetry pressurized water reactor (PWR assembly mockup in the context of the DRAGON5 code.
Arbitrarily complete Bell-state measurement using only linear optical elements
Energy Technology Data Exchange (ETDEWEB)
Grice, W. P. [Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Tennessee (United States)
2011-10-15
A complete Bell-state measurement is not possible using only linear-optic elements, and most schemes achieve a success rate of no more than 50%, distinguishing, for example, two of the four Bell states but returning degenerate results for the other two. It is shown here that the introduction of a pair of ancillary entangled photons improves the success rate to 75%. More generally, the addition of 2{sup N}-2 ancillary photons yields a linear-optic Bell-state measurement with a success rate of 1-1/2{sup N}.
Linear and nonlinear schemes applied to pitch control of wind turbines.
Geng, Hua; Yang, Geng
2014-01-01
Linear controllers have been employed in industrial applications for many years, but sometimes they are noneffective on the system with nonlinear characteristics. This paper discusses the structure, performance, implementation cost, advantages, and disadvantages of different linear and nonlinear schemes applied to the pitch control of the wind energy conversion systems (WECSs). The linear controller has the simplest structure and is easily understood by the engineers and thus is widely accepted by the industry. In contrast, nonlinear schemes are more complicated, but they can provide better performance. Although nonlinear algorithms can be implemented in a powerful digital processor nowadays, they need time to be accepted by the industry and their reliability needs to be verified in the commercial products. More information about the system nonlinear feature is helpful to simplify the controller design. However, nonlinear schemes independent of the system model are more robust to the uncertainties or deviations of the system parameters.
An online re-linearization scheme suited for Model Predictive and Linear Quadratic Control
DEFF Research Database (Denmark)
Henriksen, Lars Christian; Poulsen, Niels Kjølstad
This technical note documents the equations for primal-dual interior-point quadratic programming problem solver used for MPC. The algorithm exploits the special structure of the MPC problem and is able to reduce the computational burden such that the computational burden scales with prediction...... horizon length in a linear way rather than cubic, which would be the case if the structure was not exploited. It is also shown how models used for design of model-based controllers, e.g. linear quadratic and model predictive, can be linearized both at equilibrium and non-equilibrium points, making...
International Nuclear Information System (INIS)
Silva, Filipe da; Pinto, Martin Campos; Després, Bruno; Heuraux, Stéphane
2015-01-01
This work analyzes the stability of the Yee scheme for non-stationary Maxwell's equations coupled with a linear current model with density fluctuations. We show that the usual procedure may yield unstable scheme for physical situations that correspond to strongly magnetized plasmas in X-mode (TE) polarization. We propose to use first order clustered discretization of the vectorial product that gives back a stable coupling. We validate the schemes on some test cases representative of direct numerical simulations of X-mode in a magnetic fusion plasma including turbulence
Vector optical fields with bipolar symmetry of linear polarization.
Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Si, Yu; Tu, Chenghou; Wang, Hui-Tian
2013-09-15
We focus on a new kind of vector optical field with bipolar symmetry of linear polarization instead of cylindrical and elliptical symmetries, enriching members of family of vector optical fields. We design theoretically and generate experimentally the demanded vector optical fields and then explore some novel tightly focusing properties. The geometric configurations of states of polarization provide additional degrees of freedom assisting in engineering the field distribution at the focus to the specific applications such as lithography, optical trapping, and material processing.
Amplitudes for multiphoton quantum processes in linear optics
International Nuclear Information System (INIS)
UrIas, Jesus
2011-01-01
The prominent role that linear optical networks have acquired in the engineering of photon states calls for physically intuitive and automatic methods to compute the probability amplitudes for the multiphoton quantum processes occurring in linear optics. A version of Wick's theorem for the expectation value, on any vector state, of products of linear operators, in general, is proved. We use it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is presented as a concise rule to write down directly explicit formulae for the probability amplitude of any multiphoton process in linear optics. The rule achieves a considerable simplification and provides an intuitive physical insight about quantum multiphoton processes. The methodology is applied to the generation of high-photon-number entangled states by interferometrically mixing coherent light with spontaneously down-converted light.
Amplitudes for multiphoton quantum processes in linear optics
Urías, Jesús
2011-07-01
The prominent role that linear optical networks have acquired in the engineering of photon states calls for physically intuitive and automatic methods to compute the probability amplitudes for the multiphoton quantum processes occurring in linear optics. A version of Wick's theorem for the expectation value, on any vector state, of products of linear operators, in general, is proved. We use it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is presented as a concise rule to write down directly explicit formulae for the probability amplitude of any multiphoton process in linear optics. The rule achieves a considerable simplification and provides an intuitive physical insight about quantum multiphoton processes. The methodology is applied to the generation of high-photon-number entangled states by interferometrically mixing coherent light with spontaneously down-converted light.
Fiber optic spectrophotometer with photodiode linear array
International Nuclear Information System (INIS)
Blanc, F.; Vernet, P.
1988-01-01
Spectrophotometric measurements are used in a great number of industrial processes, in nuclear environment and with optical precision components. Especially the evolution of a chemical process or of an optical coating could be followed by these measurements. Spectrophotometers, using optical fibers to transport the signal out of the instrument make possible the measurement ''in-situ'' and in real time. The advantage of using a diode array to detect the signal is an instantaneous measurement all over the spectral range without moving parts. It allows an excellent reproductibility. The instrument is controlled by a micro computer. The spectrophotometer is described and technical performance presented. An extension using optical fibers on a ''classical'' spectrophotometer (a H.P. one) is also described and technical performance presented
Dynamic multicast routing scheme in WDM optical network
Zhu, Yonghua; Dong, Zhiling; Yao, Hong; Yang, Jianyong; Liu, Yibin
2007-11-01
During the information era, the Internet and the service of World Wide Web develop rapidly. Therefore, the wider and wider bandwidth is required with the lower and lower cost. The demand of operation turns out to be diversified. Data, images, videos and other special transmission demands share the challenge and opportunity with the service providers. Simultaneously, the electrical equipment has approached their limit. So the optical communication based on the wavelength division multiplexing (WDM) and the optical cross-connects (OXCs) shows great potentials and brilliant future to build an optical network based on the unique technical advantage and multi-wavelength characteristic. In this paper, we propose a multi-layered graph model with inter-path between layers to solve the problem of multicast routing wavelength assignment (RWA) contemporarily by employing an efficient graph theoretic formulation. And at the same time, an efficient dynamic multicast algorithm named Distributed Message Copying Multicast (DMCM) mechanism is also proposed. The multicast tree with minimum hops can be constructed dynamically according to this proposed scheme.
Energy Technology Data Exchange (ETDEWEB)
Tetsu, Hiroyuki; Nakamoto, Taishi, E-mail: h.tetsu@geo.titech.ac.jp [Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)
2016-03-15
Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton–Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme, we examined the scheme developed by Douglas and Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.
Linear birefringence and optical ativity in a magnetized plasma
International Nuclear Information System (INIS)
Vuolo, J.H.; Galvao, R.M.O.
1982-02-01
Linear birefringence and optical activity are considered separately to electromagnetic wave propagation in magnetized cold plasma, using frequency approximation much bigger than plasma frequency. It's showen that in some interesting cases, those phenomena could be independents. Explicit expressions are obtained for refraction indices to linear birefringency and optical activity. The correspondents indices attenuation aRe obtained in first orden of attenuation. It's showen that the characteristic states for linear dichroism coincide with the characteristic states for linear birefringence. The characteristic states for elliptic dichroism are obtained. (M.A.F.) [pt
Linear Optical Properties of Gold Colloid
Directory of Open Access Journals (Sweden)
Jingmin XIA
2015-11-01
Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558
Mirza, Tahseen; Liu, Qian Julie; Vivilecchia, Richard; Joshi, Yatindra
2009-03-01
There has been a growing interest during the past decade in the use of fiber optics dissolution testing. Use of this novel technology is mainly confined to research and development laboratories. It has not yet emerged as a tool for end product release testing despite its ability to generate in situ results and efficiency improvement. One potential reason may be the lack of clear validation guidelines that can be applied for the assessment of suitability of fiber optics. This article describes a comprehensive validation scheme and development of a reliable, robust, reproducible and cost-effective dissolution test using fiber optics technology. The test was successfully applied for characterizing the dissolution behavior of a 40-mg immediate-release tablet dosage form that is under development at Novartis Pharmaceuticals, East Hanover, New Jersey. The method was validated for the following parameters: linearity, precision, accuracy, specificity, and robustness. In particular, robustness was evaluated in terms of probe sampling depth and probe orientation. The in situ fiber optic method was found to be comparable to the existing manual sampling dissolution method. Finally, the fiber optic dissolution test was successfully performed by different operators on different days, to further enhance the validity of the method. The results demonstrate that the fiber optics technology can be successfully validated for end product dissolution/release testing. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
Linear quantum optical bare raising operator
Radtke, Jennifer C. J.; Oi, Daniel K. L.; Jeffers, John
2017-11-01
We propose a simple implementation of the bare raising operator on coherent states via conditional measurement, which succeeds with high probability and fidelity. This operation works well not only on states with a Poissonian photon number distribution but also for a much wider class of states. As a part of this scheme, we highlight an experimentally testable effect in which a single photon is induced through a highly reflecting beamsplitter by a large amplitude coherent state, with probability 1/e(≈ 37 % ) in the limit of large coherent state amplitude.
Ultra-high Frequency Linear Fiber Optic Systems
Lau, Kam
2011-01-01
This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...
Generation of Symmetric Dicke States of Remote Qubits with Linear Optics
International Nuclear Information System (INIS)
Thiel, C.; Zanthier, J. von; Bastin, T.; Solano, E.; Agarwal, G. S.
2007-01-01
We propose a method for generating all symmetric Dicke states, either in the long-lived internal levels of N massive particles or in the polarization degrees of freedom of photonic qubits, using linear optical tools only. By means of a suitable multiphoton detection technique, erasing Welcher-Weg information, our proposed scheme allows the generation and measurement of an important class of entangled multiqubit states
State-dependent linear-optical qubit amplifier
Czech Academy of Sciences Publication Activity Database
Bartkiewicz, K.; Černoch, Antonín; Lemr, K.
2013-01-01
Roč. 88, č. 6 (2013), "062304-1"-"062304-7" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : linear-optical qubit amplifier * quantum cloning * quantum cryptography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013
Covariant electrodynamics in linear media: Optical metric
Thompson, Robert T.
2018-03-01
While the postulate of covariance of Maxwell's equations for all inertial observers led Einstein to special relativity, it was the further demand of general covariance—form invariance under general coordinate transformations, including between accelerating frames—that led to general relativity. Several lines of inquiry over the past two decades, notably the development of metamaterial-based transformation optics, has spurred a greater interest in the role of geometry and space-time covariance for electrodynamics in ponderable media. I develop a generally covariant, coordinate-free framework for electrodynamics in general dielectric media residing in curved background space-times. In particular, I derive a relation for the spatial medium parameters measured by an arbitrary timelike observer. In terms of those medium parameters I derive an explicit expression for the pseudo-Finslerian optical metric of birefringent media and show how it reduces to a pseudo-Riemannian optical metric for nonbirefringent media. This formulation provides a basis for a unified approach to ray and congruence tracing through media in curved space-times that may smoothly vary among positively refracting, negatively refracting, and vacuum.
International Nuclear Information System (INIS)
Lee, Hwang; Kok, Pieter; Dowling, Jonathan P.; Cerf, Nicolas J.
2002-01-01
We propose a method for preparing maximal path entanglement with a definite photon-number N, larger than two, using projective measurements. In contrast with the previously known schemes, our method uses only linear optics. Specifically, we exhibit a way of generating four-photon, path-entangled states of the form vertical bar 4,0>+ vertical bar 0,4>, using only four beam splitters and two detectors. These states are of major interest as a resource for quantum interferometric sensors as well as for optical quantum lithography and quantum holography
Linear-optical programmable quantum router
Czech Academy of Sciences Publication Activity Database
Lemr, K.; Černoch, Antonín
2013-01-01
Roč. 300, JUL (2013), s. 282-285 ISSN 0030-4018 R&D Projects: GA ČR GAP205/12/0382 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum router * quantum information processing * photon pairs * quantum communications * programmable phase gate Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.542, year: 2013 http://ac.els-cdn.com/S0030401813002563/1-s2.0-S0030401813002563-main.pdf?_tid=d1f7d17a-66e9-11e3-aa5e-00000aab0f6c&acdnat=1387264198_99aef4d40cf81f69
Novel Optical Labeling Scheme for Ultra-High Bit Rate Data Packets
DEFF Research Database (Denmark)
Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo
2013-01-01
We propose and verify by simulations an optical in-band labeling scheme for ultra-fast optical switching. The scheme is able to label more than 60 different 640-Gbit/s OTDM packets with eye opening penalty <1 dB....
Holdaway, Daniel; Kent, James
2015-01-01
The linearity of a selection of common advection schemes is tested and examined with a view to their use in the tangent linear and adjoint versions of an atmospheric general circulation model. The schemes are tested within a simple offline one-dimensional periodic domain as well as using a simplified and complete configuration of the linearised version of NASA's Goddard Earth Observing System version 5 (GEOS-5). All schemes which prevent the development of negative values and preserve the shape of the solution are confirmed to have nonlinear behaviour. The piecewise parabolic method (PPM) with certain flux limiters, including that used by default in GEOS-5, is found to support linear growth near the shocks. This property can cause the rapid development of unrealistically large perturbations within the tangent linear and adjoint models. It is shown that these schemes with flux limiters should not be used within the linearised version of a transport scheme. The results from tests using GEOS-5 show that the current default scheme (a version of PPM) is not suitable for the tangent linear and adjoint model, and that using a linear third-order scheme for the linearised model produces better behaviour. Using the third-order scheme for the linearised model improves the correlations between the linear and non-linear perturbation trajectories for cloud liquid water and cloud liquid ice in GEOS-5.
Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun
2018-05-01
This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.
The Linearity of Optical Tomography: Sensor Model and Experimental Verification
Directory of Open Access Journals (Sweden)
Siti Zarina MOHD. MUJI
2011-09-01
Full Text Available The aim of this paper is to show the linearization of optical sensor. Linearity of the sensor response is a must in optical tomography application, which affects the tomogram result. Two types of testing are used namely, testing using voltage parameter and testing with time unit parameter. For the former, the testing is by measuring the voltage when the obstacle is placed between transmitter and receiver. The obstacle diameters are between 0.5 until 3 mm. The latter is also the same testing but the obstacle is bigger than the former which is 59.24 mm and the testing purpose is to measure the time unit spend for the ball when it cut the area of sensing circuit. Both results show a linear relation that proves the optical sensors is suitable for process tomography application.
Jiang, YuXiao; Guo, PengLiang; Gao, ChengYan; Wang, HaiBo; Alzahrani, Faris; Hobiny, Aatef; Deng, FuGuo
2017-12-01
We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple linear-optical elements, including half-wave plates, 50:50 beam splitters, and polarization beam splitters, to convert spatial-polarization modes into different time bins. By using postselection in different time bins, the success probability of obtaining the uncorrupted states approaches 1/4 for single-photon transmission, which is not influenced by the coefficients of noisy channels. Our self-error-rejecting transmission scheme can be generalized to hyperentangled n-photon systems and is useful in practical high-capacity quantum communications with photon systems in two degrees of freedom.
Entangling efficiency of linear-optical quantum gates
Czech Academy of Sciences Publication Activity Database
Lemr, Karel; Černoch, Antonín; Soubusta, Jan; Dušek, M.
2012-01-01
Roč. 86, č. 3 (2012), "032321-1"-"032321-5" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional research plan: CEZ:AV0Z10100522 Keywords : linear-optical quantum gates * quantum physics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.042, year: 2012 http://pra.aps.org/pdf/PRA/v86/i3/e032321
International Nuclear Information System (INIS)
Zou, X B; Pahlke, K; Mathis, W
2005-01-01
We present a scheme to generate a multi-photon Greenberger-Horne-Zeilinger (GHZ) state by using single-photon sources, linear optical elements and photon detectors. Such a maximum entanglement has wide applications in the demonstration of quantum nonlocality and quantum information processing
An implicit meshless scheme for the solution of transient non-linear Poisson-type equations
Bourantas, Georgios
2013-07-01
A meshfree point collocation method is used for the numerical simulation of both transient and steady state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the application of the linearization method with special attention to the lagging of coefficients method and the Newton linearization method. The localized form of the Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are performed for regular nodal distributions, stressing the positivity conditions that make the resulting system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through representative and well-established benchmark problems. © 2013 Elsevier Ltd.
An implicit meshless scheme for the solution of transient non-linear Poisson-type equations
Bourantas, Georgios; Burganos, Vasilis N.
2013-01-01
A meshfree point collocation method is used for the numerical simulation of both transient and steady state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the application of the linearization method with special attention to the lagging of coefficients method and the Newton linearization method. The localized form of the Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are performed for regular nodal distributions, stressing the positivity conditions that make the resulting system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through representative and well-established benchmark problems. © 2013 Elsevier Ltd.
From linear optical quantum computing to Heisenberg-limited interferometry
International Nuclear Information System (INIS)
Lee, Hwang; Kok, Pieter; Williams, Colin P; Dowling, Jonathan P
2004-01-01
The working principles of linear optical quantum computing are based on photodetection, namely, projective measurements. The use of photodetection can provide efficient nonlinear interactions between photons at the single-photon level, which is technically problematic otherwise. We report an application of such a technique to prepare quantum correlations as an important resource for Heisenberg-limited optical interferometry, where the sensitivity of phase measurements can be improved beyond the usual shot-noise limit. Furthermore, using such nonlinearities, optical quantum non-demolition measurements can now be carried out easily at the single-photon level
Belazi, Akram; Abd El-Latif, Ahmed A.; Diaconu, Adrian-Viorel; Rhouma, Rhouma; Belghith, Safya
2017-01-01
In this paper, a new chaos-based partial image encryption scheme based on Substitution-boxes (S-box) constructed by chaotic system and Linear Fractional Transform (LFT) is proposed. It encrypts only the requisite parts of the sensitive information in Lifting-Wavelet Transform (LWT) frequency domain based on hybrid of chaotic maps and a new S-box. In the proposed encryption scheme, the characteristics of confusion and diffusion are accomplished in three phases: block permutation, substitution, and diffusion. Then, we used dynamic keys instead of fixed keys used in other approaches, to control the encryption process and make any attack impossible. The new S-box was constructed by mixing of chaotic map and LFT to insure the high confidentiality in the inner encryption of the proposed approach. In addition, the hybrid compound of S-box and chaotic systems strengthened the whole encryption performance and enlarged the key space required to resist the brute force attacks. Extensive experiments were conducted to evaluate the security and efficiency of the proposed approach. In comparison with previous schemes, the proposed cryptosystem scheme showed high performances and great potential for prominent prevalence in cryptographic applications.
Energy Technology Data Exchange (ETDEWEB)
C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg
2011-09-01
We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.
Adaptive phase measurements in linear optical quantum computation
International Nuclear Information System (INIS)
Ralph, T C; Lund, A P; Wiseman, H M
2005-01-01
Photon counting induces an effective non-linear optical phase shift in certain states derived by linear optics from single photons. Although this non-linearity is non-deterministic, it is sufficient in principle to allow scalable linear optics quantum computation (LOQC). The most obvious way to encode a qubit optically is as a superposition of the vacuum and a single photon in one mode-so-called 'single-rail' logic. Until now this approach was thought to be prohibitively expensive (in resources) compared to 'dual-rail' logic where a qubit is stored by a photon across two modes. Here we attack this problem with real-time feedback control, which can realize a quantum-limited phase measurement on a single mode, as has been recently demonstrated experimentally. We show that with this added measurement resource, the resource requirements for single-rail LOQC are not substantially different from those of dual-rail LOQC. In particular, with adaptive phase measurements an arbitrary qubit state α vertical bar 0>+β vertical bar 1> can be prepared deterministically
Optical linear algebra processors - Noise and error-source modeling
Casasent, D.; Ghosh, A.
1985-01-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Optical linear algebra processors: noise and error-source modeling.
Casasent, D; Ghosh, A
1985-06-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Silver Nanoparticles with Broad Multiband Linear Optical Absorption
Bakr, Osman M.
2009-07-06
A simple one-pot method produces silver nanoparticles coated with aryl thiols that show intense, broad nonplasmonic optical properties. The synthesis works with many aryl-thiol capping ligands, including water-soluble 4-mercaptobenzoic acid. The nanoparticles produced show linear absorption that is broader, stronger, and more structured than most conventional organic and inorganic dyes.
Silver Nanoparticles with Broad Multiband Linear Optical Absorption
Bakr, Osman M.; Amendola, Vincenzo; Aikens, Christine M.; Wenseleers, Wim; Li, Rui; Dal Negro, Luca; Schatz, George C.; Stellacci, Francesco
2009-01-01
A simple one-pot method produces silver nanoparticles coated with aryl thiols that show intense, broad nonplasmonic optical properties. The synthesis works with many aryl-thiol capping ligands, including water-soluble 4-mercaptobenzoic acid. The nanoparticles produced show linear absorption that is broader, stronger, and more structured than most conventional organic and inorganic dyes.
Proposal of Realization Restricted Quantum Game with Linear Optic Method
International Nuclear Information System (INIS)
Zhao Haijun; Fang Ximing
2006-01-01
We present a quantum game with the restricted strategic space and its realization with linear optical system, which can be played by two players who are separated remotely. This game can also be realized on any other quantum computers. We find that the constraint brings some interesting properties that are useful for making game models.
Linear and nonlinear optical spectroscopy: Spectral, temporal and spatial resolution
DEFF Research Database (Denmark)
Hvam, Jørn Marcher
1997-01-01
Selected linear and nonlinear optical spectroscopies are being described with special emphasis on the possibility of obtaining simultaneous spectral, temporal and spatial resolution. The potential of various experimental techniques is being demonstrated by specific examples mostly taken from inve...... investigations of the electronic, and opto-electronic, properties of semiconductor nanostructures....
Instrumentation for Linear and Nonlinear Optical Device Characterization
2018-01-31
distribution is Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Pl has acquired six pieces of equipment to extend capabilities for linear and nonlinear...optical spectral analysis • Frequency comb generation in mid-infrared Accomplishments Six major pieces of equipment have been ordered and received
McDONALD OBSERVATORY ARCHIVE OF OPTICAL LINEAR POLARIZATION MEASUREMENTS
International Nuclear Information System (INIS)
Wills, Beverley J.; Wills, D.; Breger, M.
2011-01-01
We present 990 previously unpublished optical linear polarization measurements of quasars, active galactic nuclei, and some stars observed for interstellar polarization. The observations, covering the period 1981-2000, were made with McDonald Observatory's 2.1 m Struve reflector and the Breger photopolarimeter.
International Nuclear Information System (INIS)
Clarisse, J.M.
2007-01-01
A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)
Linear optical response of carbon nanotubes under axial magnetic field
Moradian, Rostam; Chegel, Raad; Behzad, Somayeh
2010-04-01
We considered single walled carbon naotubes (SWCNTs) as real three dimensional (3D) systems in a cylindrical coordinate. The optical matrix elements and linear susceptibility, χ(ω), in the tight binding approximation in terms of one-dimensional wave vector, kz and subband index, l are calculated. In an external axial magnetic field optical frequency dependence of linear susceptibility are investigated. We found that axial magnetic field has two effects on the imaginary part of the linear susceptibility spectrum, in agreement with experimental results. The first effect is broadening and the second, splitting. Also we found that for all metallic zigzag and armchair SWCNTs, the axial magnetic field leads to the creation of a peak with energy less than 1.5 eV, contrary to what is observed in the absence of a magnetic field.
Linear triangular optimization technique and pricing scheme in residential energy management systems
Anees, Amir; Hussain, Iqtadar; AlKhaldi, Ali Hussain; Aslam, Muhammad
2018-06-01
This paper presents a new linear optimization algorithm for power scheduling of electric appliances. The proposed system is applied in a smart home community, in which community controller acts as a virtual distribution company for the end consumers. We also present a pricing scheme between community controller and its residential users based on real-time pricing and likely block rates. The results of the proposed optimization algorithm demonstrate that by applying the anticipated technique, not only end users can minimise the consumption cost, but it can also reduce the power peak to an average ratio which will be beneficial for the utilities as well.
Small-scale quantum information processing with linear optics
International Nuclear Information System (INIS)
Bergou, J.A.; Steinberg, A.M.; Mohseni, M.
2005-01-01
Full text: Photons are the ideal systems for carrying quantum information. Although performing large-scale quantum computation on optical systems is extremely demanding, non scalable linear-optics quantum information processing may prove essential as part of quantum communication networks. In addition efficient (scalable) linear-optical quantum computation proposal relies on the same optical elements. Here, by constructing multirail optical networks, we experimentally study two central problems in quantum information science, namely optimal discrimination between nonorthogonal quantum states, and controlling decoherence in quantum systems. Quantum mechanics forbids deterministic discrimination between nonorthogonal states. This is one of the central features of quantum cryptography, which leads to secure communications. Quantum state discrimination is an important primitive in quantum information processing, since it determines the limitations of a potential eavesdropper, and it has applications in quantum cloning and entanglement concentration. In this work, we experimentally implement generalized measurements in an optical system and demonstrate the first optimal unambiguous discrimination between three non-orthogonal states with a success rate of 55 %, to be compared with the 25 % maximum achievable using projective measurements. Furthermore, we present the first realization of unambiguous discrimination between a pure state and a nonorthogonal mixed state. In a separate experiment, we demonstrate how decoherence-free subspaces (DFSs) may be incorporated into a prototype optical quantum algorithm. Specifically, we present an optical realization of two-qubit Deutsch-Jozsa algorithm in presence of random noise. By introduction of localized turbulent airflow we produce a collective optical dephasing, leading to large error rates and demonstrate that using DFS encoding, the error rate in the presence of decoherence can be reduced from 35 % to essentially its pre
Zhao, Wenjie; Peng, Yiran; Wang, Bin; Yi, Bingqi; Lin, Yanluan; Li, Jiangnan
2018-05-01
A newly implemented Baum-Yang scheme for simulating ice cloud optical properties is compared with existing schemes (Mitchell and Fu schemes) in a standalone radiative transfer model and in the global climate model (GCM) Community Atmospheric Model Version 5 (CAM5). This study systematically analyzes the effect of different ice cloud optical schemes on global radiation and climate by a series of simulations with a simplified standalone radiative transfer model, atmospheric GCM CAM5, and a comprehensive coupled climate model. Results from the standalone radiative model show that Baum-Yang scheme yields generally weaker effects of ice cloud on temperature profiles both in shortwave and longwave spectrum. CAM5 simulations indicate that Baum-Yang scheme in place of Mitchell/Fu scheme tends to cool the upper atmosphere and strengthen the thermodynamic instability in low- and mid-latitudes, which could intensify the Hadley circulation and dehydrate the subtropics. When CAM5 is coupled with a slab ocean model to include simplified air-sea interaction, reduced downward longwave flux to surface in Baum-Yang scheme mitigates ice-albedo feedback in the Arctic as well as water vapor and cloud feedbacks in low- and mid-latitudes, resulting in an overall temperature decrease by 3.0/1.4 °C globally compared with Mitchell/Fu schemes. Radiative effect and climate feedback of the three ice cloud optical schemes documented in this study can be referred for future improvements on ice cloud simulation in CAM5.
Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.
Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent
2015-11-02
Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.
Ultra-high Frequency Linear Fiber Optic Systems
Lau, Kam Y
2009-01-01
Designed for a one-semester course on fiber-optics systems and communication links, this book provides a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers.
Spin and diamagnetism in linear and nonlinear optics
International Nuclear Information System (INIS)
Andersen, Torsten; Keller, Ole; Huebner, Wolfgang; Johansson, Boerje
2004-01-01
We present a local-field theory for spin and diamagnetism in linear and nonlinear optics. We examine all the processes contained in the Pauli Hamiltonian and its corresponding microscopic current density, including the terms depending on the electron spin. The resulting general real-space conductivities are presented and discussed. To quantify the implications of including the spin, we study the linear and nonlinear optical properties of free-electron metals, represented by the screened homogeneous electron gas. The real-space formalism is transformed into Fourier space, and the symmetries of the linear and nonlinear optical conductivities in a homogeneous electron gas are discussed. Numerical results are presented for the homogeneous electron gas, in which we treat ω and q as independent variables, thereby opening the theory to near-field optics and the study of evanescent waves. We show that in regions of the ω-q spectrum, the presence of diamagnetism and spin dynamics significantly alters the response in comparison to considering only the paramagnetic response. Additionally, we discuss the effects of screening, and we finish our treatment by a discussion of how to connect the present theory to existing methods in ab initio solid-state physics
A novel modulation scheme for noise reduction in analog fiber optic links
Marpaung, D.A.I.; Roeloffzen, C.G.H.; van Etten, Wim; Megret, P.; Wuilpart, M.; Bette, S.; Staquet, N.
2005-01-01
A novel balanced modulation and detection scheme for analog fiber optic links is proposed to overcome the limitations in signal-to-noise ratio (SNR) and dynamic range (DR).In this scheme, the modulating signal is split into positive and negative halves and applied to a pair of laser diodes. Both
Novel Scheme for Packet Forwarding without Header Modifications in Optical Networks
DEFF Research Database (Denmark)
Wessing, Henrik; Christiansen, Henrik Lehrmann; Fjelde, Tina
2002-01-01
We present a novel scheme for packet forwarding in optical packet-switched networks and we further demonstrate its good scalability through simulations. The scheme requires neither header modification nor any label distribution protocol, thus reducing component cost while simplifying network...
Matrix preconditioning: a robust operation for optical linear algebra processors.
Ghosh, A; Paparao, P
1987-07-15
Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.
Self-match based on polling scheme for passive optical network monitoring
Zhang, Xuan; Guo, Hao; Jia, Xinhong; Liao, Qinghua
2018-06-01
We propose a self-match based on polling scheme for passive optical network monitoring. Each end-user is equipped with an optical matcher that exploits only the specific length patchcord and two different fiber Bragg gratings with 100% reflectivity. The simple and low-cost scheme can greatly simplify the final recognition processing of the network link status and reduce the sensitivity of the photodetector. We analyze the time-domain relation between reflected pulses and establish the calculation model to evaluate the false alarm rate. The feasibility of the proposed scheme and the validity of the time-domain relation analysis are experimentally demonstrated.
Preserving Simplecticity in the Numerical Integration of Linear Beam Optics
Energy Technology Data Exchange (ETDEWEB)
Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-07-01
Presented are mathematical tools and methods for the development of numerical integration techniques that preserve the symplectic condition inherent to mechanics. The intended audience is for beam physicists with backgrounds in numerical modeling and simulation with particular attention to beam optics applications. The paper focuses on Lie methods that are inherently symplectic regardless of the integration accuracy order. Section 2 provides the mathematically tools used in the sequel and necessary for the reader to extend the covered techniques. Section 3 places those tools in the context of charged-particle beam optics; in particular linear beam optics is presented in terms of a Lie algebraic matrix representation. Section 4 presents numerical stepping techniques with particular emphasis on a third-order leapfrog method. Section 5 discusses the modeling of field imperfections with particular attention to the fringe fields of quadrupole focusing magnets. The direct computation of a third order transfer matrix for a fringe field is shown.
Polycarbonate-Based Blends for Optical Non-linear Applications
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
International Nuclear Information System (INIS)
Franzè, Giuseppe; Lucia, Walter; Tedesco, Francesco
2014-01-01
This paper proposes a Model Predictive Control (MPC) strategy to address regulation problems for constrained polytopic Linear Parameter Varying (LPV) systems subject to input and state constraints in which both plant measurements and command signals in the loop are sent through communication channels subject to time-varying delays (Networked Control System (NCS)). The results here proposed represent a significant extension to the LPV framework of a recent Receding Horizon Control (RHC) scheme developed for the so-called robust case. By exploiting the parameter availability, the pre-computed sequences of one- step controllable sets inner approximations are less conservative than the robust counterpart. The resulting framework guarantees asymptotic stability and constraints fulfilment regardless of plant uncertainties and time-delay occurrences. Finally, experimental results on a laboratory two-tank test-bed show the effectiveness of the proposed approach
Adaptive Digital Predistortion Schemes to Linearize RF Power Amplifiers with Memory Effects
Institute of Scientific and Technical Information of China (English)
ZHANG Peng; WU Si-liang; ZHANG Qin
2008-01-01
To compensate for nonlinear distortion introduced by RF power amplifiers (PAs) with memory effects, two correlated models, namely an extended memory polynomial (EMP) model and a memory lookup table (LUT) model, are proposed for predistorter design. Two adaptive digital predistortion (ADPD) schemes with indirect learning architecture are presented. One adopts the EMP model and the recursive least square (RLS) algorithm, and the other utilizes the memory LUT model and the least mean square (LMS) algorithm. Simulation results demonstrate that the EMP-based ADPD yields the best linearization performance in terms of suppressing spectral regrowth. It is also shown that the ADPD based on memory LUT makes optimum tradeoff between performance and computational complexity.
Coded-subcarrier-aided chromatic dispersion monitoring scheme for flexible optical OFDM networks.
Tse, Kam-Hon; Chan, Chun-Kit
2014-08-11
A simple coded-subcarrier aided scheme is proposed to perform chromatic dispersion monitoring in flexible optical OFDM networks. A pair of coded label subcarriers is added to both edges of the optical OFDM signal spectrum at the edge transmitter node. Upon reception at any intermediate or the receiver node, chromatic dispersion estimation is performed, via simple direct detection, followed by electronic correlation procedures with the designated code sequences. The feasibility and the performance of the proposed scheme have been experimentally characterized. It provides a cost-effective monitoring solution for the optical OFDM signals across intermediate nodes in flexible OFDM networks.
Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation
Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua
2018-06-01
Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.
Nam, Sung Sik
2017-11-13
We propose a threshold-based multiple optical signal selection scheme (TMOS) for free-space optical wavelength division multiplexing systems. With this scheme, we can obtain higher spectral efficiency while reducing the possible complexity of implementation caused by the beam-selection scheme and without a considerable performance loss. To characterize the performance of our scheme, we statistically analyze the operation characteristics under conventional detection conditions (i.e., heterodyne detection and intensity modulation/direct detection techniques) with log-normal turbulence while taking into consideration the impact of pointing error. More specifically, we derive exact closed-form expressions for the outage probability, the average bit error rate, and the average spectral efficiency while adopting an adaptive modulation. Some selected results show that TMOS increases the average spectral efficiency while maintaining a minimum average bit error rate requirement.
Applied research of quantum information based on linear optics
International Nuclear Information System (INIS)
Xu, Xiao-Ye
2016-01-01
This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.
Applied research of quantum information based on linear optics
Energy Technology Data Exchange (ETDEWEB)
Xu, Xiao-Ye
2016-08-01
This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.
Heralded creation of photonic qudits from parametric down-conversion using linear optics
Yoshikawa, Jun-ichi; Bergmann, Marcel; van Loock, Peter; Fuwa, Maria; Okada, Masanori; Takase, Kan; Toyama, Takeshi; Makino, Kenzo; Takeda, Shuntaro; Furusawa, Akira
2018-05-01
We propose an experimental scheme to generate, in a heralded fashion, arbitrary quantum superpositions of two-mode optical states with a fixed total photon number n based on weakly squeezed two-mode squeezed state resources (obtained via weak parametric down-conversion), linear optics, and photon detection. Arbitrary d -level (qudit) states can be created this way where d =n +1 . Furthermore, we experimentally demonstrate our scheme for n =2 . The resulting qutrit states are characterized via optical homodyne tomography. We also discuss possible extensions to more than two modes concluding that, in general, our approach ceases to work in this case. For illustration and with regards to possible applications, we explicitly calculate a few examples such as NOON states and logical qubit states for quantum error correction. In particular, our approach enables one to construct bosonic qubit error-correction codes against amplitude damping (photon loss) with a typical suppression of √{n }-1 losses and spanned by two logical codewords that each correspond to an n -photon superposition for two bosonic modes.
Relevance of sampling schemes in light of Ruelle's linear response theory
International Nuclear Information System (INIS)
Lucarini, Valerio; Wouters, Jeroen; Faranda, Davide; Kuna, Tobias
2012-01-01
We reconsider the theory of the linear response of non-equilibrium steady states to perturbations. We first show that using a general functional decomposition for space–time dependent forcings, we can define elementary susceptibilities that allow us to construct the linear response of the system to general perturbations. Starting from the definition of SRB measure, we then study the consequence of taking different sampling schemes for analysing the response of the system. We show that only a specific choice of the time horizon for evaluating the response of the system to a general time-dependent perturbation allows us to obtain the formula first presented by Ruelle. We also discuss the special case of periodic perturbations, showing that when they are taken into consideration the sampling can be fine-tuned to make the definition of the correct time horizon immaterial. Finally, we discuss the implications of our results in terms of strategies for analysing the outputs of numerical experiments by providing a critical review of a formula proposed by Reick
DEFF Research Database (Denmark)
Johnsen, Kristinn; Jauho, Antti-Pekka
1998-01-01
We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor structures. A general theoretical framework, based on nonequilibrium Green functions, is formulated and applied to the calculation of linear optical absorption spectrum for several...
Materials and integration schemes for above-IC integrated optics
Schmitz, Jurriaan; Rangarajan, B.; Kovalgin, Alexeij Y.
2014-01-01
A study is presented on silicon oxynitride material for waveguides and germanium-silicon alloys for p-i-n diodes. The materials are manufactured at low, CMOS-backend compatible temperatures, targeting the integration of optical functions on top of CMOS chips. Low-temperature germanium-silicon
A noble refractive optical scanner with linear response
Mega, Yair J.; Lai, Zhenhua; DiMarzio, Charles A.
2013-03-01
Many applications in various fields of science and engineering use steered optical beam systems. Currently, many methods utilize mirrors in order to steer the beam. However, this approach is an off-axis solution, which normally increases the total size of the system as well as its error and complexity. Other methods use a "Risely Prisms" based solution, which is on-axis solution, however it poses some difficulties from an engineering standpoint, and therefore isn't widely used. We present here a novel technique for steering a beam on its optical axis with a linear deflection response. We derived the formulation for the profile required of the refractive optical component necessary for preforming the beam steering. The functionality of the device was simulated analytically using Matlab, as well as using a ray-tracing software, Zemax, and showed agreement with the analytical model. An optical element was manufactured based on the proposed design and the device was tested. The results show agreement with our hypothesis. We also present some proposed geometries of the several other devices, all based on the same concept, which can be used for higher performance applications such as two-dimensional scanner, video rate scanner etc.
Linear Optics From Closed Orbits (LOCO): An Introduction
International Nuclear Information System (INIS)
Safranek, James
2009-01-01
The LOCO code is used to find and correct errors in the linear optics of storage rings. The original FORTRAN code was written to correct the optics of the NSLS X-Ray ring, and was applied soon thereafter to debug problems with the ALS optics. The ideas used in the code were developed from previous work at SLAC. Several years ago, LOCO was rewritten in MATLAB. As described in this newsletter, the MATLAB version includes a user-friendly interface, with many useful fitting and analysis options. LOCO has been used at many accelerators. Presently, a search for LOCO in the text of papers on the Joint Accelerator Conferences Website yields 107 papers. A comprehensive survey of applications will not be included here. Details of recent results at a few light sources are included in this newsletter. In the past, the quality of LOCO fitting results varied significantly, depending on the storage ring. In particular, the results were mixed for colliding beam facilities, where there tend to be fewer BPMs that in light sources. Fitting rings with less BPM data to constrain the fit optics parameters often led to unreasonably large fit quadrupole gradient variations. Recently, modifications have been made to the LOCO fitting algorithm which leads to much better results when the BPM data does not tightly constrain the fit parameters. The modifications are described in this newsletter, and an example of results with this new algorithm is included.
Lasher, Mark E.; Henderson, Thomas B.; Drake, Barry L.; Bocker, Richard P.
1986-09-01
The modified signed-digit (MSD) number representation offers full parallel, carry-free addition. A MSD adder has been described by the authors. This paper describes how the adder can be used in a tree structure to implement an optical multiply algorithm. Three different optical schemes, involving position, polarization, and intensity encoding, are proposed for realizing the trinary logic system. When configured in the generic multiplier architecture, these schemes yield the combinatorial logic necessary to carry out the multiplication algorithm. The optical systems are essentially three dimensional arrangements composed of modular units. Of course, this modularity is important for design considerations, while the parallelism and noninterfering communication channels of optical systems are important from the standpoint of reduced complexity. The authors have also designed electronic hardware to demonstrate and model the combinatorial logic required to carry out the algorithm. The electronic and proposed optical systems will be compared in terms of complexity and speed.
Wavefront Sensing for WFIRST with a Linear Optical Model
Jurling, Alden S.; Content, David A.
2012-01-01
In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.
Negative base encoding in optical linear algebra processors
Perlee, C.; Casasent, D.
1986-01-01
In the digital multiplication by analog convolution algorithm, the bits of two encoded numbers are convolved to form the product of the two numbers in mixed binary representation; this output can be easily converted to binary. Attention is presently given to negative base encoding, treating base -2 initially, and then showing that the negative base system can be readily extended to any radix. In general, negative base encoding in optical linear algebra processors represents a more efficient technique than either sign magnitude or 2's complement encoding, when the additions of digitally encoded products are performed in parallel.
IR Optics Measurement with Linear Coupling's Action-Angle Parameterization
Luo, Yun; Pilat, Fulvia Caterina; Satogata, Todd; Trbojevic, Dejan
2005-01-01
The interaction region (IP) optics are measured with the two DX/BPMs close to the IPs at the Relativistic Heavy Ion Collider (RHIC). The beta functions at IP are measured with the two eigenmodes' phase advances between the two BPMs. And the beta waists are also determined through the beta functions at the two BPMs. The coupling parameters at the IPs are also given through the linear coupling's action-angle parameterization. All the experimental data are taken during the driving oscillations with the AC dipole. The methods to do these measurements are discussed. And the measurement results during the beta*
Structure/property relationships in non-linear optical materials
Energy Technology Data Exchange (ETDEWEB)
Cole, J M [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); [Durham Univ. (United Kingdom); Howard, J A.K. [Durham Univ. (United Kingdom); McIntyre, G J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.
Directory of Open Access Journals (Sweden)
Shahid Hasnain
2017-07-01
Full Text Available This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
Woźniak, M.
2016-06-02
We study the features of a new mixed integration scheme dedicated to solving the non-stationary variational problems. The scheme is composed of the FEM approximation with respect to the space variable coupled with a 3-leveled time integration scheme with a linearized right-hand side operator. It was applied in solving the Cahn-Hilliard parabolic equation with a nonlinear, fourth-order elliptic part. The second order of the approximation along the time variable was proven. Moreover, the good scalability of the software based on this scheme was confirmed during simulations. We verify the proposed time integration scheme by monitoring the Ginzburg-Landau free energy. The numerical simulations are performed by using a parallel multi-frontal direct solver executed over STAMPEDE Linux cluster. Its scalability was compared to the results of the three direct solvers, including MUMPS, SuperLU and PaSTiX.
All-optical conversion scheme: Binary to quaternary and quaternary to binary number
Chattopadhyay, Tanay; Roy, Jitendra Nath
2009-04-01
To achieve the inherent parallelism in optics a suitable number system and efficient encoding/decoding scheme for handling the data are very much essential. Binary number is accepted as the best representing number system in almost all types of existing electronic computers. But, binary number (0 and 1) is insufficient in respect to the demand of the coming generation. Multi-valued logic (with radix >2) can be viewed as an alternative approach to solve many problems in transmission, storage and processing of large amount of information in digital signal processing. Here, in this paper all-optical scheme for the conversion of binary to quaternary number and vice versa have been proposed and described. Simulation has also been done. In this all-optical scheme the numbers are represented by different discrete polarized state of light.
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
Downie, John D.; Goodman, Joseph W.
1989-10-01
The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.
Xin, Chunsheng; Ye, Yinghua; Dixit, Sudhir; Qiao, Chunming
2001-07-01
Recently there are considerable amount of research about the automatic control and provisioning in all optical networks. One of the critical issues is how to provide effective lightpath provisioning to improve network performance, such as blocking probability and decision time. Depending on the network topology, configuration, and administration policy, a distributed or centralized control scheme can be employed to manage the routing and signaling. In a distributed control scheme, each node exchanges information with other nodes, but performs routing and signaling independently from other nodes. On the other hand, in a centralized scheme, each node communicates with a central controller and the controller performs routing and signaling on behalf of all other nodes. Intuitively, the centralized scheme can obtain a lower blocking probability since the controller has the complete resource availability information. We have studied the two schemes through emulations, determined the signaling and processing overheads and quantified the conditions that favor one approach over the other.
Kuindersma, P.I.; Leijtens, X.J.M.; Zantvoort, van J.H.C.; Waardt, de H.
2012-01-01
We characterize integrated InP circuits for high speed ‘all-optical’ signal processing. Single chip circuits act as optical transistors. Transmodulation is performed by non-linear gain sections. Integrated tunable filters give signal equalization in time domain.
Midgley, S M
2004-01-21
A novel parameterization of x-ray interaction cross-sections is developed, and employed to describe the x-ray linear attenuation coefficient and mass energy absorption coefficient for both elements and mixtures. The new parameterization scheme addresses the Z-dependence of elemental cross-sections (per electron) using a simple function of atomic number, Z. This obviates the need for a complicated mathematical formalism. Energy dependent coefficients describe the Z-direction curvature of the cross-sections. The composition dependent quantities are the electron density and statistical moments describing the elemental distribution. We show that it is possible to describe elemental cross-sections for the entire periodic table and at energies above the K-edge (from 6 keV to 125 MeV), with an accuracy of better than 2% using a parameterization containing not more than five coefficients. For the biologically important elements 1 coefficients. At higher energies, the parameterization uses fewer coefficients with only two coefficients needed at megavoltage energies.
A Review on Successive Interference Cancellation Scheme Based on Optical CDMA Network
Alsowaidi, N.; Eltaif, T.; Mokhtar, M. R.
2014-12-01
Due to various desirable features of optical code division multiple access (OCDMA), it is believed this technique once developed and commercially available will be an integral part of optical access networks. Optical CDMA system suffers from a problem called multiple access interference (MAI) which limits the number of active users, it occurs when number of active users share the same carriers. The aim of this paper is to review successive interference cancellation (SIC) scheme based on optical CDMA system. The paper also reviews the system performance in presence of shot noise, thermal noise, and phase-induced intensity noise (PIIN). A comprehensive review on the mathematical model of SIC scheme using direct detection (DS) and spectral amplitude coding (SAC) were presented in this article.
Navarrete-Benlloch, Carlos; Roldán, Eugenio; Chang, Yue; Shi, Tao
2014-10-06
Nonlinear optical cavities are crucial both in classical and quantum optics; in particular, nowadays optical parametric oscillators are one of the most versatile and tunable sources of coherent light, as well as the sources of the highest quality quantum-correlated light in the continuous variable regime. Being nonlinear systems, they can be driven through critical points in which a solution ceases to exist in favour of a new one, and it is close to these points where quantum correlations are the strongest. The simplest description of such systems consists in writing the quantum fields as the classical part plus some quantum fluctuations, linearizing then the dynamical equations with respect to the latter; however, such an approach breaks down close to critical points, where it provides unphysical predictions such as infinite photon numbers. On the other hand, techniques going beyond the simple linear description become too complicated especially regarding the evaluation of two-time correlators, which are of major importance to compute observables outside the cavity. In this article we provide a regularized linear description of nonlinear cavities, that is, a linearization procedure yielding physical results, taking the degenerate optical parametric oscillator as the guiding example. The method, which we call self-consistent linearization, is shown to be equivalent to a general Gaussian ansatz for the state of the system, and we compare its predictions with those obtained with available exact (or quasi-exact) methods. Apart from its operational value, we believe that our work is valuable also from a fundamental point of view, especially in connection to the question of how far linearized or Gaussian theories can be pushed to describe nonlinear dissipative systems which have access to non-Gaussian states.
DEFF Research Database (Denmark)
Ji, Hua; Cleary, C. S.; Dailey, J. M.
2012-01-01
Dynamic phase and amplitude all-optical responses of silicon nanowires are characterized using a terahertz optical asymmetric demultiplexer (TOAD) based pump-probe scheme. Ultra-fast recovery is observed for moderate pump powers....
Linear and Non-Linear Optical Imaging of Cancer Cells with Silicon Nanoparticles
Tolstik, Elen; Osminkina, Liubov A.; Akimov, Denis; Gongalsky, Maksim B.; Kudryavtsev, Andrew A.; Timoshenko, Victor Yu.; Heintzmann, Rainer; Sivakov, Vladimir; Popp, Jürgen
2016-01-01
New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10–40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours. PMID:27626408
B. Koren (Barry); M.R. Lewis; E.H. van Brummelen (Harald); B. van Leer
2001-01-01
textabstractA finite-volume method is presented for the computation of compressible flows of two immiscible fluids at very different densities. The novel ingredient in the method is a two-fluid linearized Godunov scheme, allowing for flux computations in case of different fluids (e.g., water and
van Lith, B.S.; ten Thije Boonkkamp, J.H.M.; IJzerman, W.L.; Tukker, T.W.
A novel scheme is developed that computes numerical solutions of Liouville’s equation with a discontinuous Hamiltonian. It is assumed that the underlying Hamiltonian system has well-defined behaviour even when the Hamiltonian is discontinuous. In the case of geometrical optics such a discontinuity
IR OPTICS MEASUREMENT WITH LINEAR COUPLING'S ACTION-ANGLE PARAMETERIZATION
International Nuclear Information System (INIS)
LUO, Y.; BAI, M.; PILAT, R.; SATOGATA, T.; TRBOJEVIC, D.
2005-01-01
A parameterization of linear coupling in action-angle coordinates is convenient for analytical calculations and interpretation of turn-by-turn (TBT) beam position monitor (BPM) data. We demonstrate how to use this parameterization to extract the twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of the long IR drift region. The example of TBT BPM analysis was acquired at the Relativistic Heavy Ion Collider (RHIC), using an AC dipole to excite a single eigenmode. Besides the full treatment, a fast estimate of beta*, the beta function at the interaction point (IP), is provided, along with the phase advance between these BPMs. We also calculate and measure the waist of the beta function and the local optics
Linear Optical Response of Silicon Nanotubes Under Axial Magnetic Field
Chegel, Raad; Behzad, Somayeh
2013-01-01
We investigated the optical properties of silicon nanotubes (SiNTs) in the low energy region, E < 0.5 eV, and middle energy region, 1.8 eV < E < 2 eV. The dependence of optical matrix elements and linear susceptibility on radius and magnetic field, in terms of one-dimensional (1-d) wavevector and subband index, is calculated using the tight-binding approximation. It is found that, on increasing the nanotube diameter, the low-energy peaks show red-shift and their intensities are decreased. Also, we found that in the middle energy region all tubes have two distinct peaks, where the energy position of the second peak is approximately constant and independent of the nanotube diameter. Comparing the band structure of these tubes in different magnetic fields, several differences are clearly seen, such as splitting of degenerate bands, creation of additional band-edge states, and bandgap modification. It is found that applying the magnetic field leads to a phase transition in zigzag silicon hexagonal nanotubes (Si h-NTs), unlike in zigzag silicon gear-like nanotubes (Si g-NTs), which remain semiconducting in any magnetic field. We found that the axial magnetic field has two effects on the linear susceptibility spectrum, namely broadening and splitting. The axial magnetic field leads to the creation of a peak with energy less than 0.2 eV in metallic Si h-NTs, whereas in the absence of a magnetic field such a transition is not allowed.
Linear position sensitive neutron detector using fiber optic encoded scintillators
International Nuclear Information System (INIS)
Davidson, P.L.; Wroe, H.
1983-01-01
A linear position sensitive slow neutron detector with 3 mm resolution is described. It uses the fiber optic coding principle in which the resolution elements are separate pieces of lithium loaded glass scintillator each coupled by means of flexible polymer optical fibers to a unique combination of 3 photo multipliers (PM's) out of a bank of 12. A decoder circuit repsponds to a triple coincidence between PM outputs and generates a 12 bit work which identifies the scintillator element which stopped the incident neutron. Some details of the construction and decoding electronics are given together with test results obtained using a laboratory isotope neutron source and a monochomated, collimated neutron beam from a reactor. The count rate in the absence of neutron sources is 2 to 3 c min - 1 per element; the element to element variation in response to a uniform flux is a few percent for 95% of the elements; the resolution as measured by a 1 mm wide prode neutron beam is 3 mm; the relative long term stability is about 0.1% over 3 days and the detection efficiency measured by comparison with an end windowed, high pressure gas counter is about 65% at a neutron wavelength of 0.9A 0
Experimental investigation of a four-qubit linear-optical quantum logic circuit.
Stárek, R; Mičuda, M; Miková, M; Straka, I; Dušek, M; Ježek, M; Fiurášek, J
2016-09-20
We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C(3)Z gate and several two-qubit and single-qubit gates. The C(3)Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.
Cosine bend-linear waveguide digital optical switch with parabolic heater
Yulianti, Ian; Supa'at, Abu Sahmah Mohd.; Idrus, Sevia M.; Al-hetar, Abdulaziz M.
2010-02-01
A new digital optical switch (DOS) with large branching angle and short device length that exhibits low crosstalk and low power consumption is demonstrated. The Y-branch shape was optimized by introducing constant effective refractive index difference between branches (Δ N eff) along the propagation direction through beam propagation method (BPM) scheme. To provide decreasing local branching angle that results in the improvement of the crosstalk, two modified cosine bend was introduced to form the Y-branch. The modified cosine branch was then connected to a linear branch. The heater electrode was optimized so that the temperature fields induce a constant Δ N eff to satisfy initial assumption in designing the Y-branch shape. With branching angle of 0.299° and device length of only 5 mm, the simulation shows that the device could exhibits crosstalk of -33 dB at calculated required power of only 26 mW.
DEFF Research Database (Denmark)
Wessing, Henrik; Fjelde, Tina; Christiansen, Henrik Lehrmann
2001-01-01
We present a novel scheme for addressing the outputs in optical packet switches and demonstrate its good scalability. The scheme requires neither header modification nor distribution of routing information to the packet switches, thus reducing optical component count while simplifying network...
Superradiance Effects in the Linear and Nonlinear Optical Response of Quantum Dot Molecules
Sitek, A.; Machnikowski, P.
2008-11-01
We calculate the linear optical response from a single quantum dot molecule and the nonlinear, four-wave-mixing response from an inhomogeneously broadened ensemble of such molecules. We show that both optical signals are affected by the coupling-dependent superradiance effect and by optical interference between the two polarizations. As a result, the linear and nonlinear responses are not identical.
A Comparative Study of Multiplexing Schemes for Next Generation Optical Access Networks
Imtiaz, Waqas A.; Khan, Yousaf; Shah, Pir Mehar Ali; Zeeshan, M.
2014-09-01
Passive optical network (PON) is a high bandwidth, economical solution which can provide the necessary bandwidth to end-users. Wavelength division multiplexed passive optical networks (WDM PONs) and time division multiplexed passive optical networks (TDM PONs) are considered as an evolutionary step for next-generation optical access (NGOA) networks. However they fail to provide highest transmission capacity, efficient bandwidth access, and robust dispersion tolerance. Thus future PONs are considered on simpler, efficient and potentially scalable, optical code division multiplexed (OCDM) PONs. This paper compares the performance of existing PONs with OCDM PON to determine a suitable scheme for NGOA networks. Two system parameter are used in this paper: fiber length, and bit rate. Performance analysis using Optisystem shows that; for a sufficient system performance parameters i.e. bit error rate (BER) ≤ 10-9, and maximum quality factor (Q) ≥ 6, OCDMA PON efficiently performs upto 50 km with 10 Gbit/s per ONU.
Institute of Scientific and Technical Information of China (English)
ZHANG Ai-ling; ZHANG Yue; SONG Hong-yun; YAO Yuan; PAN Hong-gang
2018-01-01
An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping is experimentally demonstrated.Many modulation formats with continuously adjustable duty radio and bit rate can be formed by changing the dispersion of dispersion element and the bandwidth of shaped spectrum in this scheme.In the experiment,non-return-to-zero (NRZ) signal with bit rate of 29.41 Gbit/s and 1/2 duty ratio return-to-zero (RZ) signal with bit rate of 13.51 Gbit/s are obtained.The maximum bit rate of modulation format signal is also analyzed.
Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2013-11-18
We present a high-order UWB pulses generator based on a microwave photonic filter which provides a set of positive and negative samples by using the slicing of an incoherent optical source and the phase inversion in a Mach-Zehnder modulator. The simple scalability and high reconfigurability of the system permit a better accomplishment of the FCC requirements. Moreover, the proposed scheme permits an easy adaptation to pulse amplitude modulation, bi phase modulation, pulse shape modulation and pulse position modulation. The flexibility of the scheme for being adaptable to multilevel modulation formats permits to increase the transmission bit rate by using hybrid modulation formats.
Directory of Open Access Journals (Sweden)
Sridhar Iyer
2017-11-01
Full Text Available The spectrally efficient transportation of the high bit rate(s data is achievable by the Elastic optical networks (EONs. However, in the EONs, owing to the failure occurrence even in an individual simple element, different service(s maybe interrupted. Hence, it is imperative that the schemes for survivability be developed so that the issues due to the possible failure(s can be overcome. In the current work, in view of survivability of the link failure(s in the EONs, we propose the Spectrum Continuity and Contiguity Established DRP (SCC-E-DRP algorithm which is a novel dedicated route protection (DRP scheme that attempts to avoid the problem of trap topology during its exploration for a pair of link disjoint path. Further, to evaluate the link disjoint paths, we resort to the use of the SCC Established Shortest Route (SCC-E-SR algorithm which is a modified Dijkstra’s algorithm based scheme that selects the path(s pair(s based on the end-toend SCC. We conduct extensive simulations considering realistic network topologies, and compare the performance of the SCCE-DRP scheme with the existing techniques. The obtained results show that, compared to the existing schemes, the SCC-E-DRP scheme achieves better results in terms of blocking probability.
Optically stimulated luminescence from quartz measured using the linear modulation technique
DEFF Research Database (Denmark)
Bulur, E.; Bøtter-Jensen, L.; Murray, A.S.
2000-01-01
The optically stimulated luminescence (OSL) from heated natural quartz has been investigated using the linear modulation technique (LMT), in which the excitation light intensity is increased linearly during stimulation. In contrast to conventional stimulation, which usually produces a monotonical...
On the fly all-optical packet switching based on hybrid WDM/OCDMA labeling scheme
Brahmi, Houssem; Giannoulis, Giannis; Menif, Mourad; Katopodis, Vasilis; Kalavrouziotis, Dimitrios; Kouloumentas, Christos; Groumas, Panos; Kanakis, Giannis; Stamatiadis, Christos; Avramopoulos, Hercules; Erasme, Didier
2014-02-01
We introduce a novel design of an all-optical packet routing node that allows for the selection and forwarding of optical packets based on the routing information contained in hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) labels. A stripping paradigm of optical code-label is adopted. The router is built around an optical-code gate that consists in an optical flip-flop controlled by two fiber Bragg grating correlators and is combined with a Mach-Zehnder interferometer (MZI)-based forwarding gate. We experimentally verify the proof-of-principle operation of the proposed self-routing node under NRZ and OCDMA packet traffic conditions. The successful switching of elastic NRZ payload at 40 Gb/s controlled by DS-OCDMA coded labels and the forwarding operation of encoded data using EQC codes are presented. Proper auto-correlation functions are obtained with higher than 8.1 dB contrast ratio, suitable to efficiently trigger the latching device with a contrast ratio of 11.6 dB and switching times below 3.8 ns. Error-free operation is achieved with 1.5 dB penalty for 40 Gb/s NRZ data and with 2.1 dB penalty for DS-OCDMA packets. The scheme can further be applied to large-scale optical packet switching networks by exploiting efficient optical coders allocated at different WDM channels.
International Nuclear Information System (INIS)
Golovin, A.L.; Mas', E.T.
1989-01-01
An X-ray optical scheme for differential measurements of X-ray diffraction under sliding incidence conditions is proposed and an attachment design realizng this scheme, using standard equipment, is described. The main feature of the scheme is the following: collimation according to the Bragg angle is carried out for the reflected beam rather than the incident one. Goniometers can be used from DRON, TRS, GS-5 and other spectrometers. The goniometer head carrying the sample is standard, it is a part of the DRON, TRS and DTS. The crystal analyzer is fixed on the attachment. The angular position of the crystal monochromator is controlled by an inductive sensor. The experimental differential curves of X-ray diffraction under conditions of sliding incidence, taken for a silicon crystal having the 111 orientation, are given as well
Luminosity optimization schemes in Compton experiments based on Fabry-Perot optical resonators
Directory of Open Access Journals (Sweden)
Alessandro Variola
2011-03-01
Full Text Available The luminosity of Compton x-ray and γ sources depends on the average current in electron bunches, the energy of the laser pulses, and the geometry of the particle bunch to laser pulse collisions. To obtain high power photon pulses, these can be stacked in a passive optical resonator (Fabry-Perot cavity especially when a high average flux is required. But, in this case, owing to the presence of the optical cavity mirrors, the electron bunches have to collide at an angle with the laser pulses with a consequent luminosity decrease. In this article a crab-crossing scheme is proposed for Compton sources, based on a laser amplified in a Fabry-Perot resonator, to eliminate the luminosity losses given by the crossing angle, taking into account that in laser-electron collisions only the electron bunches can be tilted at the collision point. We report the analytical study on the crab-crossing scheme for Compton gamma sources. The analytical expression for the total yield of photons generated in Compton sources with the crab-crossing scheme of collision is derived. The optimal collision angle of the bunch was found to be equal to half of the collision angle. At this crabbing angle, the maximal yield of scattered off laser photons is attained thanks to the maximization, in the collision process, of the time spent by the laser pulse in the electron bunch. Estimations for some Compton source projects are presented. Furthermore, some schemes of the optical cavities configuration are analyzed and the luminosity calculated. As illustrated, the four-mirror two- or three-dimensional scheme is the most appropriate for Compton sources.
A threshold-based multiple optical signal selection scheme for WDM FSO systems
Nam, Sung Sik
2017-07-20
In this paper, we propose a threshold-based-multiple optical signal selection scheme (TMOS) for free-space optical systems based on wavelength division multiplexing. With the proposed TMOS, we can obtain higher spectral efficiency while reducing the potential increase in complexity of implementation caused by applying a selection-based beam selection scheme without a considerable performance loss. Here, to accurately characterize the performance of the proposed TMOS, we statistically analyze the characteristics with heterodyne detection technique over independent and identically distributed Log-normal turbulence conditions taking into considerations the impact of pointing error. Specifically, we derive exact closed-form expressions for the average bit error rate, and the average spectral efficiency by adopting an adaptive modulation. Some selected results shows that the average spectral efficiency can be increased with TMOS while the system requirement is satisfied.
A threshold-based multiple optical signal selection scheme for WDM FSO systems
Nam, Sung Sik; Alouini, Mohamed-Slim; Ko, Young-Chai; Cho, Sung Ho
2017-01-01
In this paper, we propose a threshold-based-multiple optical signal selection scheme (TMOS) for free-space optical systems based on wavelength division multiplexing. With the proposed TMOS, we can obtain higher spectral efficiency while reducing the potential increase in complexity of implementation caused by applying a selection-based beam selection scheme without a considerable performance loss. Here, to accurately characterize the performance of the proposed TMOS, we statistically analyze the characteristics with heterodyne detection technique over independent and identically distributed Log-normal turbulence conditions taking into considerations the impact of pointing error. Specifically, we derive exact closed-form expressions for the average bit error rate, and the average spectral efficiency by adopting an adaptive modulation. Some selected results shows that the average spectral efficiency can be increased with TMOS while the system requirement is satisfied.
Directory of Open Access Journals (Sweden)
Huapeng Yu
2015-02-01
Full Text Available The Kalman filter (KF has always been used to improve north-finding performance under practical conditions. By analyzing the characteristics of the azimuth rotational inertial measurement unit (ARIMU on a stationary base, a linear state equality constraint for the conventional KF used in the fine north-finding filtering phase is derived. Then, a constrained KF using the state equality constraint is proposed and studied in depth. Estimation behaviors of the concerned navigation errors when implementing the conventional KF scheme and the constrained KF scheme during stationary north-finding are investigated analytically by the stochastic observability approach, which can provide explicit formulations of the navigation errors with influencing variables. Finally, multiple practical experimental tests at a fixed position are done on a postulate system to compare the stationary north-finding performance of the two filtering schemes. In conclusion, this study has successfully extended the utilization of the stochastic observability approach for analytic descriptions of estimation behaviors of the concerned navigation errors, and the constrained KF scheme has demonstrated its superiority over the conventional KF scheme for ARIMU stationary north-finding both theoretically and practically.
Optical Code-Division Multiple-Access and Wavelength Division Multiplexing: Hybrid Scheme Review
P. Susthitha Menon; Sahbudin Shaari; Isaac A.M. Ashour; Hesham A. Bakarman
2012-01-01
Problem statement: Hybrid Optical Code-Division Multiple-Access (OCDMA) and Wavelength-Division Multiplexing (WDM) have flourished as successful schemes for expanding the transmission capacity as well as enhancing the security for OCDMA. However, a comprehensive review related to this hybrid system are lacking currently. Approach: The purpose of this paper is to review the literature on OCDMA-WDM overlay systems, including our hybrid approach of one-dimensional coding of SAC OCDMA with WDM si...
DEFF Research Database (Denmark)
Zhu, Jiangbo; Tao, Li; Zhang, Ziran
2013-01-01
We propose a novel scheme to expand the inherent limit in the product of the optical delay and the transmission bandwidth in resonator-based delay lines, with the optical orthogonal frequency division multiplexing (OOFDM) technique. The optical group delay properties of a single ring resonator we...
Chao, I.-Fen; Zhang, Tsung-Min
2015-06-01
Long-reach passive optical networks (LR-PONs) have been considered to be promising solutions for future access networks. In this paper, we propose a distributed medium access control (MAC) scheme over an advantageous LR-PON network architecture that reroutes the control information from and back to all ONUs through an (N + 1) × (N + 1) star coupler (SC) deployed near the ONUs, thereby overwhelming the extremely long propagation delay problem in LR-PONs. In the network, the control slot is designed to contain all bandwidth requirements of all ONUs and is in-band time-division-multiplexed with a number of data slots within a cycle. In the proposed MAC scheme, a novel profit-weight-based dynamic bandwidth allocation (P-DBA) scheme is presented. The algorithm is designed to efficiently and fairly distribute the amount of excess bandwidth based on a profit value derived from the excess bandwidth usage of each ONU, which resolves the problems of previously reported DBA schemes that are either unfair or inefficient. The simulation results show that the proposed decentralized algorithms exhibit a nearly three-order-of-magnitude improvement in delay performance compared to the centralized algorithms over LR-PONs. Moreover, the newly proposed P-DBA scheme guarantees low delay performance and fairness even when under attack by the malevolent ONU irrespective of traffic loads and burstiness.
Linear and nonlinear optical properties of borate crystals as ...
Indian Academy of Sciences (India)
Unknown
crystal series, with an accuracy acceptable for materials development/design, and answer the questions often ... Optical property; nonlinear optical crystals; first principles calculation. 1. ..... system, and is not in concept suitable to excitation pro-.
Non-linear optical imaging – Introduction and pharmaceutical applications
Fussell, A.L.; Isomaki, Antti; Strachan, Clare J.
2013-01-01
Nonlinear optical imaging is an emerging technology with much potential in pharmaceutical analysis. The technique encompasses a range of optical phenomena, including coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and twophoton excited fluorescence (TPEF). The
Quantitative analysis of eyes and other optical systems in linear optics.
Harris, William F; Evans, Tanya; van Gool, Radboud D
2017-05-01
To show that 14-dimensional spaces of augmented point P and angle Q characteristics, matrices obtained from the ray transference, are suitable for quantitative analysis although only the latter define an inner-product space and only on it can one define distances and angles. The paper examines the nature of the spaces and their relationships to other spaces including symmetric dioptric power space. The paper makes use of linear optics, a three-dimensional generalization of Gaussian optics. Symmetric 2 × 2 dioptric power matrices F define a three-dimensional inner-product space which provides a sound basis for quantitative analysis (calculation of changes, arithmetic means, etc.) of refractive errors and thin systems. For general systems the optical character is defined by the dimensionally-heterogeneous 4 × 4 symplectic matrix S, the transference, or if explicit allowance is made for heterocentricity, the 5 × 5 augmented symplectic matrix T. Ordinary quantitative analysis cannot be performed on them because matrices of neither of these types constitute vector spaces. Suitable transformations have been proposed but because the transforms are dimensionally heterogeneous the spaces are not naturally inner-product spaces. The paper obtains 14-dimensional spaces of augmented point P and angle Q characteristics. The 14-dimensional space defined by the augmented angle characteristics Q is dimensionally homogenous and an inner-product space. A 10-dimensional subspace of the space of augmented point characteristics P is also an inner-product space. The spaces are suitable for quantitative analysis of the optical character of eyes and many other systems. Distances and angles can be defined in the inner-product spaces. The optical systems may have multiple separated astigmatic and decentred refracting elements. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
SPECIAL ASPECTS OF INITIAL OPTICAL SCHEME SELECTION FOR DESIGN OF NON-IMAGING OPTICAL SYSTEMS
Directory of Open Access Journals (Sweden)
R. V. Anitropov
2016-01-01
Full Text Available Subject of Research. The research results, structural composition analysis and the parametric synthesis of the projected imaging and non-imaging optical systems were presented. We made an attempt to use the gained experience about imaging systems while designing non-imaging systems, by adapting the composition theory for the calculations of non-imaging systems. Several patterns were revealed, which provide a deeper understanding of the design process of non-imaging optical systems; measures of its optimization were proposed. Method. We investigated the applicability of the theory of composition and synthesis of non-imaging optical systems. The main provisions of the theory of composition are based on the division of all available optical elements in four types depending on their functionality, which corresponds to a modular design. Similar items were identified in non-imaging optical systems and adaptation of composition theory to their design became possible. Main Results. General design patterns of imaging and non-imaging optical systems were studied. Classification of systems, components, as well as technical and generic characteristics of imaging and non-imaging optical systems was determined. Search mechanism of the initial optical system by means of structural and parametric synthesis of non-imaging optical system was formalized. The basic elements were determined included in non-imaging systems and their classification by functionality was done. They were subdivided into basic, corrective, wide angle and high aperture ones. The rules for formation of these elements and their composition were determined: surface reflecting, refracting, spherical and nonspherical elements with total internal reflection. The foundations of composition theory for non-imaging optical systems were laid. The approbation of this method was carried out on the example of the illumination system calculation for surgical room. A 3D model of an illumination optical
Flexible aluminum tubes and a least square multi-objective non-linear optimization scheme
International Nuclear Information System (INIS)
Endelt, Benny; Nielsen, Karl Brian; Olsen, Soeren
2004-01-01
The automotive industry currently uses rubber hoses as the media carrier between e.g. the radiator and the engine, and the basic idea is to replace the rubber hoses with flexible aluminum tubes.A good quality is defined through several quality measurements, i.e. in the current case the key objective is to produce a flexible convolution through optimization of the tool geometry, but the process should also be stable, and the process stability is evaluated through Forming Limit Diagrams. Typically the defined objectives are conflicting, i.e. the optimized configuration represents therefore a trade-off between the individual objectives, in this case flexibility versus process stability.The optimization problem is solved through iteratively minimizing the object function. A second-order least square scheme is used for the approximation of the quadratic model, and the change in the design parameters is evaluated through the trust region scheme and box constraints are introduced within the trust region framework. Furthermore, the object function is minimized by applying the non-monotone scheme, and the trust region subproblem is solved by applying the Cholesky factorization scheme.An optimal bell shaped geometry is identified and the design is verified experimentally
Linear electro-optical properties of tetragonal BaTiO 3
Indian Academy of Sciences (India)
Linear optical susceptibility and clamped linear electro-optical tensor coefﬁcients of tetragonal BaTiO3 are calculated using a formalism based on bond charge theory. Calculated values are in close agreement with experimental data. The covalent Ti–O bonds constituting distorted TiO6 octahedral groups are found to be ...
SPECIAL ASPECTS OF INITIAL OPTICAL SCHEME SELECTION FOR DESIGN OF NON-IMAGING OPTICAL SYSTEMS
R. V. Anitropov; P. Benitez; I. L. Livshits S. K. Stafeev; S. K. Stafeev; V. N. Vasilev; M. V. Letunovskaya; A. S. Zaitceva
2016-01-01
Subject of Research. The research results, structural composition analysis and the parametric synthesis of the projected imaging and non-imaging optical systems were presented. We made an attempt to use the gained experience about imaging systems while designing non-imaging systems, by adapting the composition theory for the calculations of non-imaging systems. Several patterns were revealed, which provide a deeper understanding of the design process of non-imaging optical systems; measures ...
A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass
Yahia, I. S.; Jilani, Asim; Abutalib, M. M.; AlFaify, S.; Shkir, M.; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.
2016-06-01
The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ(1), nonlinear optical susceptibility χ(3), nonlinear refractive index (n2) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.
A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass
Energy Technology Data Exchange (ETDEWEB)
Yahia, I.S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); Abutalib, M.M. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); AlFaify, S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Shkir, M. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abdel-wahab, M.Sh.; Al-Ghamdi, Attieh A. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); El-Naggar, A.M. [Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia)
2016-06-01
The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ{sup (1)}, nonlinear optical susceptibility χ{sup (3)}, nonlinear refractive index (n{sub 2}) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.
Non-linear optical techniques and optical properties of condensed molecular systems
Citroni, Margherita
2013-06-01
Structure, dynamics, and optical properties of molecular systems can be largely modified by the applied pressure, with remarkable consequences on their chemical stability. Several examples of selective reactions yielding technologically attractive products can be cited, which are particularly efficient when photochemical effects are exploited in conjunction with the structural conditions attained at high density. Non-linear optical techniques are a basic tool to unveil key aspects of the chemical reactivity and dynamic properties of molecules. Their application to high-pressure samples is experimentally challenging, mainly because of the small sample dimensions and of the non-linear effects generated in the anvil materials. In this talk I will present results on the electronic spectra of several aromatic crystals obtained through two-photon induced fluorescence and two-photon excitation profiles measured as a function of pressure (typically up to about 25 GPa), and discuss the relationship between the pressure-induced modifications of the electronic structure and the chemical reactivity at high pressure. I will also present the first successful pump-probe infrared measurement performed as a function of pressure on a condensed molecular system. The system under examination is liquid water, in a sapphire anvil cell, up to 1 GPa along isotherms at 298 and 363 K. These measurements give a new enlightening insight into the dynamical properties of low- and high-density water allowing a definition of the two structures.
Passive linear-optics 640 Gbit/s logic NOT gate
DEFF Research Database (Denmark)
Maram, Reza; Kong, Deming; Galili, Michael
2015-01-01
We experimentally demonstrate a 640 Gbit/s all-optical NOT gate for high-speed telecommunication on-off-keying (OOK) data signals. We employ linear optical signal processing based on spectral phase-only (all-pass) optical filtering to perform the target logic NOT operation....
An effective implementation scheme of just-in-time protocol for optical burst switching networks
Wu, Guiling; Li, Xinwan; Chen, Jian-Ping; Wang, Hui
2005-02-01
Optical burst switching (OBS) has been emerging as a promising technology that can effectively support the next generation IP-oriented transportation networks. JIT signaling protocol for OBS is relatively simple and easy to be implemented by hardware. This paper presented an effective scheme to implement the JIT protocol, which not only can effectively implement reservation and release of optical channels based on JIT, but also can process the failure of channel reservation and release due to loss of burst control packets. The scheme includes: (1) a BHP (burst head packet) path table is designed and built at each OBS node. It is used to guarantee the corresponding burst control packet, i.e. BHP, BEP (burst end packet) and BEP_ACK (BEP acknowledgement), to be transmitted in the same path. (2) The timed retransmission of BEP and the reversed deletion of the item in BHP path tables triggered by the corresponding BEP_ACK are combined to solve the problems caused by the loss of the signaling messages in channel reservation and release process. (3) Burst head packets and BEP_ACK are transmitted using "best-effort" method. Related signaling messages and their formats for the proposed scheme are also given.
Liao, Renbo; Liu, Hongzhan; Qiao, Yaojun
2014-05-01
In order to improve the power efficiency and reduce the packet error rate of reverse differential pulse position modulation (RDPPM) for wireless optical communication (WOC), a hybrid reverse differential pulse position width modulation (RDPPWM) scheme is proposed, based on RDPPM and reverse pulse width modulation. Subsequently, the symbol structure of RDPPWM is briefly analyzed, and its performance is compared with that of other modulation schemes in terms of average transmitted power, bandwidth requirement, and packet error rate over ideal additive white Gaussian noise (AWGN) channels. Based on the given model, the simulation results show that the proposed modulation scheme has the advantages of improving the power efficiency and reducing the bandwidth requirement. Moreover, in terms of error probability performance, RDPPWM can achieve a much lower packet error rate than that of RDPPM. For example, at the same received signal power of -28 dBm, the packet error rate of RDPPWM can decrease to 2.6×10-12, while that of RDPPM is 2.2×10. Furthermore, RDPPWM does not need symbol synchronization at the receiving end. These considerations make RDPPWM a favorable candidate to select as the modulation scheme in the WOC systems.
A Systematic Scheme for Multiple Access in Ethernet Passive Optical Access Networks
Ma, Maode; Zhu, Yongqing; Hiang Cheng, Tee
2005-11-01
While backbone networks have experienced substantial changes in the last decade, access networks have not changed much. Recently, passive optical networks (PONs) seem to be ready for commercial deployment as access networks, due to the maturity of a number of enabling technologies. Among the PON technologies, Ethernet PON (EPON) standardized by the IEEE 802.3ah Ethernet in the First Mile (EFM) Task Force is the most attractive one because of its high speed, low cost, familiarity, interoperability, and low overhead. In this paper, we consider the issue of upstream channel sharing in the EPONs. We propose a novel multiple-access control scheme to provide bandwidth-guaranteed service for high-demand customers, while providing best effort service to low-demand customers according to the service level agreement (SLA). The analytical and simulation results prove that the proposed scheme performs best in what it is designed to do compared to another well-known scheme that has not considered providing differentiated services. With business customers preferring premium services with guaranteed bandwidth and residential users preferring low-cost best effort services, our scheme could benefit both groups of subscribers, as well as the operators.
A fast method for linear waves based on geometrical optics
Stolk, C.C.
2009-01-01
We develop a fast method for solving the one-dimensional wave equation based on geometrical optics. From geometrical optics (e.g., Fourier integral operator theory or WKB approximation) it is known that high-frequency waves split into forward and backward propagating parts, each propagating with the
Extreme non-linear elasticity and transformation optics
DEFF Research Database (Denmark)
Gersborg, Allan Roulund; Sigmund, Ole
2010-01-01
realizations correspond to minimizers of elastic energy potentials for extreme values of the mechanical Poisson's ratio ν . For TE (Hz) polarized light an incompressible transformation ν = 1/2 is ideal and for TM (E z) polarized light one should use a compressible transformation with negative Poissons's ratio......Transformation optics is a powerful concept for designing novel optical components such as high transmission waveguides and cloaking devices. The selection of specific transformations is a non-unique problem. Here we reveal that transformations which allow for all dielectric and broadband optical...... ν = -1. For the TM polarization the mechanical analogy corresponds to a modified Liao functional known from the transformation optics literature. Finally, the analogy between ideal transformations and solid mechanical material models automates and broadens the concept of transformation optics...
Gao, Xingbo
2010-03-01
We introduce a new preemptive scheduling technique for next-generation optical burst switching (OBS) networks considering the impact of cascaded wavelength conversions. It has been shown that when optical bursts are transmitted all optically from source to destination, each wavelength conversion performed along the lightpath may cause certain signal-to-noise deterioration. If the distortion of the signal quality becomes significant enough, the receiver would not be able to recover the original data. Accordingly, subject to this practical impediment, we improve a recently proposed fair channel scheduling algorithm to deal with the fairness problem and aim at burst loss reduction simultaneously in OBS environments. In our scheme, the dynamic priority associated with each burst is based on a constraint threshold and the number of already conducted wavelength conversions among other factors for this burst. When contention occurs, a new arriving superior burst may preempt another scheduled one according to their priorities. Extensive simulation results have shown that the proposed scheme further improves fairness and achieves burst loss reduction as well.
Energy-saving scheme based on downstream packet scheduling in ethernet passive optical networks
Zhang, Lincong; Liu, Yejun; Guo, Lei; Gong, Xiaoxue
2013-03-01
With increasing network sizes, the energy consumption of Passive Optical Networks (PONs) has grown significantly. Therefore, it is important to design effective energy-saving schemes in PONs. Generally, energy-saving schemes have focused on sleeping the low-loaded Optical Network Units (ONUs), which tends to bring large packet delays. Further, the traditional ONU sleep modes are not capable of sleeping the transmitter and receiver independently, though they are not required to transmit or receive packets. Clearly, this approach contributes to wasted energy. Thus, in this paper, we propose an Energy-Saving scheme that is based on downstream Packet Scheduling (ESPS) in Ethernet PON (EPON). First, we design both an algorithm and a rule for downstream packet scheduling at the inter- and intra-ONU levels, respectively, to reduce the downstream packet delay. After that, we propose a hybrid sleep mode that contains not only ONU deep sleep mode but also independent sleep modes for the transmitter and the receiver. This ensures that the energy consumed by the ONUs is minimal. To realize the hybrid sleep mode, a modified GATE control message is designed that involves 10 time points for sleep processes. In ESPS, the 10 time points are calculated according to the allocated bandwidths in both the upstream and the downstream. The simulation results show that ESPS outperforms traditional Upstream Centric Scheduling (UCS) scheme in terms of energy consumption and the average delay for both real-time and non-real-time packets downstream. The simulation results also show that the average energy consumption of each ONU in larger-sized networks is less than that in smaller-sized networks; hence, our ESPS is better suited for larger-sized networks.
Optical wireless links with enhanced linearity and selectivity [Invited
Green, Roger J.; Sweet, C.; Idrus, S.
2005-10-01
Optical wireless is an attractive medium as an alternative to optical fiber communications, and also to RF, because of its high bandwidth and relative ease of use, especially when it comes to deployment in new physical situations. We describe an optical wireless link approach that offers a performance that gives analog transmission with significantly reduced distortion levels and enhanced reception sensitivity by combining a novel hybrid detector-amplifier technique. Reduction of distortion by 40 dB and improvement in sensitivity of 20-30 dB is possible, using the techniques described.
Zhang, X.; Van Wee, G.P.
2011-01-01
In this paper, we introduce a new duration dependent parking fee regime based on the travel cost for an entire day, rather than a single commute trip. Commuters are assumed to reside at one end of a linear city and work in a business center at the other end. A two-stage differential method is used
A new LDPC decoding scheme for PDM-8QAM BICM coherent optical communication system
Liu, Yi; Zhang, Wen-bo; Xi, Li-xia; Tang, Xian-feng; Zhang, Xiao-guang
2015-11-01
A new log-likelihood ratio (LLR) message estimation method is proposed for polarization-division multiplexing eight quadrature amplitude modulation (PDM-8QAM) bit-interleaved coded modulation (BICM) optical communication system. The formulation of the posterior probability is theoretically analyzed, and the way to reduce the pre-decoding bit error rate ( BER) of the low density parity check (LDPC) decoder for PDM-8QAM constellations is presented. Simulation results show that it outperforms the traditional scheme, i.e., the new post-decoding BER is decreased down to 50% of that of the traditional post-decoding algorithm.
TITLE PAGE Linear and nonlinear optical properties of 4 ...
Indian Academy of Sciences (India)
57
optical effects viz. reverse saturable absorption and self-defocusing of laser beam. ... Defect Analysis, Mechanical stability, UV-visible spectroscopy, Refractive index .... for geometry optimization in gas phase and in the solvent phase (ethanol).
Digital chaos-masked optical encryption scheme enhanced by two-dimensional key space
Liu, Ling; Xiao, Shilin; Zhang, Lu; Bi, Meihua; Zhang, Yunhao; Fang, Jiafei; Hu, Weisheng
2017-09-01
A digital chaos-masked optical encryption scheme is proposed and demonstrated. The transmitted signal is completely masked by interference chaotic noise in both bandwidth and amplitude with analog method via dual-drive Mach-Zehnder modulator (DDMZM), making the encrypted signal analog, noise-like and unrecoverable by post-processing techniques. The decryption process requires precise matches of both the amplitude and phase between the cancellation and interference chaotic noises, which provide a large two-dimensional key space with the help of optical interference cancellation technology. For 10-Gb/s 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal over the maximum transmission distance of 80 km without dispersion compensation or inline amplifier, the tolerable mismatch ranges of amplitude and phase/delay at the forward error correction (FEC) threshold of 3.8×10-3 are 0.44 dB and 0.08 ns respectively.
Malykin, G. B.; Pozdnyakova, V. I.
2018-03-01
A linear transformation of orthogonal polarization modes in coiled optical spun-fibers with strong unperturbed linear birefringence, which causes the emergence of the dependences of the integrated elliptical birefringence and the ellipticity and azimuth of the major axis of the ellipse, as well as the polarization state of radiation (PSR), on the length of optical fiber has been considered. Optical spun-fibers are subjected to a strong mechanical twisting, which is frozen into the structure of the optical fiber upon cooling, in the process of being drawn out from the workpiece. Since the values of the local polarization parameters of coiled spunwaveguides vary according to a rather complex law, the calculations were carried out by numerical modeling of the parameters of the Jones matrices. Since the rotation speed of the axes of the birefringence is constant on a relatively short segment of a coiled optical spun-fiber in the accompanying torsion (helical) coordinate system, the so-called "Ginzburg helical polarization modes" (GHPMs)—two mutually orthogonal ellipses with the opposite directions of traversal, the axis of which rotate relative to the fixed coordinate system uniformly and unidirectionally—are approximately the local normal polarization modes of such optical fiber. It has been shown that, despite the fact that the unperturbed linear birefringence of the spun-fibers significantly exceeds the linear birefringence, which is caused by the winding on a coil, the integral birefringence of an extended segment of such a fiber coincides in order of magnitude with the linear birefringence, which is caused by the winding on the coil, and the integral polarization modes tend asymptotically to circular ones. It has been also shown that the values of the circular birefringence of twisted single-mode fibers, which were calculated in a nonrotating and torsion helical coordinate systems, differ significantly. It has been shown that the polarization phenomena occur
Cao, Z.; Yu, J.J.; Chen, L.; Shu, Q.L.
2012-01-01
The reversely modulated optical single sideband scheme (IM-OSSB) based on a parallel Mach-Zehnder modulator (P-MZM) is proposed. In this P-MZM, one sub-MZM is employed for data modulation and the other is used for optical millimeter wave (mm-wave) generation. Due to the individual modulation, this
Application of quasi-optical approach to construct RF power supply for TeV linear colliders
International Nuclear Information System (INIS)
Saldin, E.L.; Sarantsev, V.P.; Schneidmiller, E.A.; Ulyanov, Yu.N.; Yurkov, M.V.
1995-01-01
An idea to use a quasi-optical approach for constructing an RF power supply for TeV linear e + e - colliders is developed. The RF source of the proposed scheme is composed of a large number of low-power RF amplifiers commutated by quasi-optical elements. The RF power of this source is transmitted to the accelerating structure of the collider by means of quasi-optical waveguides and mirrors. Such an approach enables one not only to decrease the required peak RF power by several orders of magnitude with respect to the traditional approach based on standard klystron technique, but also to achieve the required level of reliability, as it is based on well-developed technology of serial microwave devices. To illustrate the proposed scheme, a conceptual project of 2x500 GeV X-band collider is considered. Accelerating structure of the collider is of the standard travelling wave type and the RF source is assumed to be composed of 0.7 MW klystrons. All equipment of such a collider is placed in a tunnel of 12x6 m 2 cross section. It is shown that such a collider may be constructed at the present level of accelerator technique. ((orig.))
Widely Linear Equalization for IQ Imbalance and Skew Compensation in Optical Coherent Receivers
DEFF Research Database (Denmark)
Porto da Silva, Edson; Zibar, Darko
2016-01-01
In this paper, an alternative approach to design linear equalization algorithms for optical coherent receivers is introduced. Using widely linear complex analysis, a general analytical model it is shown, where In-phase/quadrature (IQ) imbalances and IQ skew at the coherent receiver front-end are ......In this paper, an alternative approach to design linear equalization algorithms for optical coherent receivers is introduced. Using widely linear complex analysis, a general analytical model it is shown, where In-phase/quadrature (IQ) imbalances and IQ skew at the coherent receiver front...
Construction of a quantum repeater with linear optics
International Nuclear Information System (INIS)
Kok, Pieter; Williams, Colin P.; Dowling, Jonathan P.
2003-01-01
We study the mechanism and complexity of an efficient quantum repeater, employing double-photon guns, for long-distance optical quantum communication. The guns create polarization-entangled photon pairs on demand. One such source might be a semiconducter quantum dot, which has the distinct advantage over parametric down-conversion that the probability of creating a photon pair is close to 1, while the probability of creating multiple pairs vanishes. The swapping and purifying components are implemented by polarizing beam splitters and probabilistic optical controlled-NOT gates. We also show that the bottleneck in the efficiency of this repeater is due to detector losses
Keene, Scott T.; Melianas, Armantas; Fuller, Elliot J.; van de Burgt, Yoeri; Talin, A. Alec; Salleo, Alberto
2018-06-01
Neuromorphic devices are becoming increasingly appealing as efficient emulators of neural networks used to model real world problems. However, no hardware to date has demonstrated the necessary high accuracy and energy efficiency gain over CMOS in both (1) training via backpropagation and (2) in read via vector matrix multiplication. Such shortcomings are due to device non-idealities, particularly asymmetric conductance tuning in response to uniform voltage pulse inputs. Here, by formulating a general circuit model for capacitive ion-exchange neuromorphic devices, we show that asymmetric nonlinearity in organic electrochemical neuromorphic devices (ENODes) can be suppressed by an appropriately chosen write scheme. Simulations based upon our model suggest that a nonlinear write-selector could reduce the switching voltage and energy, enabling analog tuning via a continuous set of resistance states (100 states) with extremely low switching energy (~170 fJ · µm‑2). This work clarifies the pathway to neural algorithm accelerators capable of parallelism during both read and write operations.
Entanglement-based linear-optical qubit amplifier
Czech Academy of Sciences Publication Activity Database
Meyer-Scott, E.; Bula, M.; Bartkiewicz, K.; Černoch, Antonín; Soubusta, Jan; Jennewein, T.; Lemr, Karel
2013-01-01
Roč. 87, č. 1 (2013), "012327-1"-"012327-7" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : quantum physics * photonics qubits * qubit amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013
Experimental realization of linear-optical partial SWAP gates
Czech Academy of Sciences Publication Activity Database
Černoch, Antonín; Soubusta, Jan; Bartůšková, L.; Dušek, M.; Fiurášek, J.
2008-01-01
Roč. 100, č. 18 (2008), 180501/1-180501/4 ISSN 0031-9007 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : two-qubit gates * Mach-Zehnder interferomeret * quantum information processing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.180, year: 2008
Resource-efficient linear-optical quantum router
Czech Academy of Sciences Publication Activity Database
Lemr, K.; Bartkiewicz, K.; Černoch, A.; Soubusta, Jan
2013-01-01
Roč. 87, č. 6 (2013), "062333-1"-"062333-7" ISSN 1050-2947 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum router * signal qubit * quantum communications Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013
Enhanced linear photonic nanojet generated by core-shell optical microfibers
Liu, Cheng-Yang; Yen, Tzu-Ping; Chen, Chien-Wen
2017-05-01
The generation of linear photonic nanojet using core-shell optical microfiber is demonstrated numerically and experimentally in the visible light region. The power flow patterns for the core-shell optical microfiber are calculated by using the finite-difference time-domain method. The focusing properties of linear photonic nanojet are evaluated in terms of length and width along propagation and transversal directions. In experiment, the silica optical fiber is etched chemically down to 6 μm diameter and coated with metallic thin film by using glancing angle deposition. We show that the linear photonic nanojet is enhanced clearly by metallic shell due to surface plasmon polaritons. The large-area superresolution imaging can be performed by using a core-shell optical microfiber in the far-field system. The potential applications of this core-shell optical microfiber include micro-fluidics and nano-structure measurements.
Ultrabroadband optical chirp linearization for precision metrology applications.
Roos, Peter A; Reibel, Randy R; Berg, Trenton; Kaylor, Brant; Barber, Zeb W; Babbitt, Wm Randall
2009-12-01
We demonstrate precise linearization of ultrabroadband laser frequency chirps via a fiber-based self-heterodyne technique to enable extremely high-resolution, frequency-modulated cw laser-radar (LADAR) and a wide range of other metrology applications. Our frequency chirps cover bandwidths up to nearly 5 THz with frequency errors as low as 170 kHz, relative to linearity. We show that this performance enables 31-mum transform-limited LADAR range resolution (FWHM) and 86 nm range precisions over a 1.5 m range baseline. Much longer range baselines are possible but are limited by atmospheric turbulence and fiber dispersion.
Non-linear optical studies of adsorbates: Spectroscopy and dynamics
International Nuclear Information System (INIS)
Zhu, Xiangdong.
1989-08-01
In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs
Non-linear optical studies of adsorbates: Spectroscopy and dynamics
Energy Technology Data Exchange (ETDEWEB)
Zhu, Xiangdong.
1989-08-01
In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs.
Linear optical response of finite systems using multishift linear system solvers
Energy Technology Data Exchange (ETDEWEB)
Hübener, Hannes; Giustino, Feliciano [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)
2014-07-28
We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.
Linear and non-linear optical properties of amorphous Se and ...
Indian Academy of Sciences (India)
of signal transmission that requires high speeds and bit rates. [1]. Optical fibres .... mean coordination number (r) of binary glasses is the bond- .... ))(2mr)3/2) and P an integer ... that, Tauc's model that is based on the electronic transitions.
Experimental implementation of optimal linear-optical controlled-unitary gates
Czech Academy of Sciences Publication Activity Database
Lemr, K.; Bartkiewicz, K.; Černoch, Antonín; Dušek, M.; Soubusta, Jan
2015-01-01
Roč. 114, č. 15 (2015), "153602-1"-"153602-5" ISSN 0031-9007 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : two-qubit gates * optimal linear-optical controlled-unitary gates * quantum computing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.645, year: 2015
Duan, Y.; Ju, C.G.; Yang, G.; Fron, E.; Coutino-Gonzalez, E.; Semin, S.V.; Fan, C.C.; Balok, R.S.; Cremers, J.; Tinnemans, P.T.; Feng, Y.Q.; Li, Y.L.; Hofkens, J.; Rowan, A.E.; Rasing, T.H.M.; Xu, J.L.
2016-01-01
The discovery of the phenomenon known as aggregation-induced emission (AIE) has opened the door to a variety of brilliant organic solid-state light-emitting materials. While AIE is well established in linear optics, the development of AIE luminogens (AIEgens) with highly efficient nonlinear optical
Optically-driven red blood cell rotor in linearly polarized laser tweezers
Indian Academy of Sciences (India)
We have constructed a dual trap optical tweezers set-up around an inverted microscope where both the traps can be independently controlled and manipulated in all the three dimensions. Here we report our observations on rotation of red blood cells (RBCs) in a linearly polarized optical trap. Red blood cells deform and ...
Measurement of picometre non-linearity in an optical grating encoder using x-ray interferometry
Yacoot, Andrew; Cross, Nigel
2003-01-01
X-ray interferometry has been used to characterize the non-linearity in an optical encoder displacement measuring system. Traceable measurements of the non-linearity have been made and an estimation of the uncertainty associated with the measurements is given. Cyclic errors with a magnitude of up to 50 pm and periodicity of the encoder system (128 nm) have been recorded.
Communication: Symmetrical quasi-classical analysis of linear optical spectroscopy
Provazza, Justin; Coker, David F.
2018-05-01
The symmetrical quasi-classical approach for propagation of a many degree of freedom density matrix is explored in the context of computing linear spectra. Calculations on a simple two state model for which exact results are available suggest that the approach gives a qualitative description of peak positions, relative amplitudes, and line broadening. Short time details in the computed dipole autocorrelation function result in exaggerated tails in the spectrum.
Non-linear optics of nano-scale pentacene thin film
Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.
2016-07-01
We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.
Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor
Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.
2018-01-01
Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.
Optical threshold secret sharing scheme based on basic vector operations and coherence superposition
Deng, Xiaopeng; Wen, Wei; Mi, Xianwu; Long, Xuewen
2015-04-01
We propose, to our knowledge for the first time, a simple optical algorithm for secret image sharing with the (2,n) threshold scheme based on basic vector operations and coherence superposition. The secret image to be shared is firstly divided into n shadow images by use of basic vector operations. In the reconstruction stage, the secret image can be retrieved by recording the intensity of the coherence superposition of any two shadow images. Compared with the published encryption techniques which focus narrowly on information encryption, the proposed method can realize information encryption as well as secret sharing, which further ensures the safety and integrality of the secret information and prevents power from being kept centralized and abused. The feasibility and effectiveness of the proposed method are demonstrated by numerical results.
International Nuclear Information System (INIS)
Loock, Peter van; Nemoto, Kae; Munro, William J.; Raynal, Philippe; Luetkenhaus, Norbert
2006-01-01
We discuss the problem of implementing generalized measurements [positive operator-valued measures (POVMs)] with linear optics, either based upon a static linear array or including conditional dynamics. In our approach, a given POVM shall be identified as a solution to an optimization problem for a chosen cost function. We formulate a general principle: the implementation is only possible if a linear-optics circuit exists for which the quantum mechanical optimum (minimum) is still attainable after dephasing the corresponding quantum states. The general principle enables us, for instance, to derive a set of necessary conditions for the linear-optics implementation of the POVM that realizes the quantum mechanically optimal unambiguous discrimination of two pure nonorthogonal states. This extends our previous results on projection measurements and the exact discrimination of orthogonal states
Shinya, A.; Ishihara, T.; Inoue, K.; Nozaki, K.; Kita, S.; Notomi, M.
2018-02-01
We propose an optical parallel adder based on a binary decision diagram that can calculate simply by propagating light through electrically controlled optical pass gates. The CARRY and CARRY operations are multiplexed in one circuit by a wavelength division multiplexing scheme to reduce the number of optical elements, and only a single gate constitutes the critical path for one digit calculation. The processing time reaches picoseconds per digit when we use a 100-μm-long optical path gates, which is ten times faster than a CMOS circuit.
An efficient hybrid protection scheme with shared/dedicated backup paths on elastic optical networks
Directory of Open Access Journals (Sweden)
Nogbou G. Anoh
2017-02-01
Full Text Available Fast recovery and minimum utilization of resources are the two main criteria for determining the protection scheme quality. We address the problem of providing a hybrid protection approach on elastic optical networks under contiguity and continuity of available spectrum constraints. Two main hypotheses are used in this paper for backup paths computation. In the first case, it is assumed that backup paths resources are dedicated. In the second case, the assumption is that backup paths resources are available shared resources. The objective of the study is to minimize spectrum utilization to reduce blocking probability on a network. For this purpose, an efficient survivable Hybrid Protection Lightpath (HybPL algorithm is proposed for providing shared or dedicated backup path protection based on the efficient energy calculation and resource availability. Traditional First-Fit and Best-Fit schemes are employed to search and assign the available spectrum resources. The simulation results show that HybPL presents better performance in terms of blocking probability, compared with the Minimum Resources Utilization Dedicated Protection (MRU-DP algorithm which offers better performance than the Dedicated Protection (DP algorithm.
Linear electro-optic effect in cubic silicon carbide
Tang, Xiao; Irvine, Kenneth G.; Zhang, Dongping; Spencer, Michael G.
1991-01-01
The first observation is reported of the electrooptic effect of cubic silicon carbide (beta-SiC) grown by a low-pressure chemical vapor deposition reactor using the hydrogen, silane, and propane gas system. At a wavelength of 633 nm, the value of the electrooptic coefficient r41 in beta-SiC is determined to be 2.7 +/- 0.5 x 10 (exp-12) m/V, which is 1.7 times larger than that in gallium arsenide measured at 10.6 microns. Also, a half-wave voltage of 6.4 kV for beta-SiC is obtained. Because of this favorable value of electrooptic coefficient, it is believed that silicon carbide may be a promising candidate in electrooptic applications for high optical intensity in the visible region.
No-go theorem for passive single-rail linear optical quantum computing.
Wu, Lian-Ao; Walther, Philip; Lidar, Daniel A
2013-01-01
Photonic quantum systems are among the most promising architectures for quantum computers. It is well known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit gates can be achieved via the measurement process and by introducing ancillary photons. While in principle this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are still very challenging and thus other optical encodings are being actively investigated. One of the alternatives is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we prove that even for such systems universal optical quantum computing using only passive optical elements such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used. Our result provides useful guidance for the design of optical quantum computers.
International Nuclear Information System (INIS)
Reibel, R.R.; Barber, Z.W.; Fischer, J.A.; Tian, M.; Babbitt, W.R.
2004-01-01
Linear sideband chirped (LSC) programming is introduced as a means of configuring spatial-spectral holographic gratings for optical coherent transient processors. Similar to linear frequency chirped programming, LSC programming allows the use of broadband integrated electro-optic phase modulators to produce chirps instead of using elaborate broadband chirped lasers. This approach has several advantages including the ability to use a stabilized laser for the optical carrier as well as stable, reproducible chirped optical signals when the modulator is driven digitally. Using LSC programming, we experimentally demonstrate broadband true-time delay as a proof of principle for the optical control of phased array radars. Here both cw phase modulated and binary phase shift keyed probe signals are true-time delayed with bandwidths of 1 GHz and delay resolutions better than 60 ps
OPTICAL I-BAND LINEAR POLARIMETRY OF THE MAGNETAR 4U 0142+61 WITH SUBARU
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhongxiang; Tziamtzis, Anestis [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Tanaka, Yasuyuki T.; Kawabata, Koji S. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Wang, Chen [National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Beijing 100012 (China); Fukazawa, Yasushi; Itoh, Ryosuke [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)
2015-12-01
Magnetars are known to have optical and/or infrared (IR) emission, but the origin of the emission is not well understood. In order to fully study their emission properties, we have carried out for the first time optical linear polarimetry of the magnetar 4U 0142+61, which has been determined from different observations to have a complicated broadband spectrum over optical and IR wavelengths. From our I-band imaging polarimetric observation, conducted with the 8.2-m Subaru telescope, we determine the degree of linear polarization to be P = 1.0 ± 3.4%, or P ≤ 5.6% (90% confidence level). Considering models that were suggested for optical emission from magnetars, we discuss the implications of our result. The upper limit measurement indicates that, differing from radio pulsars, magnetars probably would not have strongly polarized optical emission if the emission arises from their magnetosphere as suggested.
A high-accuracy optical linear algebra processor for finite element applications
Casasent, D.; Taylor, B. K.
1984-01-01
Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.
Yen, Chih-Ta; Huang, Jen-Fa; Chang, Yao-Tang; Chen, Bo-Hau
2010-12-01
We present an experiment demonstrating the spectral-polarization coding optical code-division multiple-access system introduced with a nonideal state of polarization (SOP) matching conditions. In the proposed system, the encoding and double balanced-detection processes are implemented using a polarization-diversity scheme. Because of the quasiorthogonality of Hadamard codes combining with array waveguide grating routers and a polarization beam splitter, the proposed codec pair can encode-decode multiple code words of Hadamard code while retaining the ability for multiple-access interference cancellation. The experimental results demonstrate that when the system is maintained with an orthogonal SOP for each user, an effective reduction in the phase-induced intensity noise is obtained. The analytical SNR values are found to overstate the experimental results by around 2 dB when the received effective power is large. This is mainly limited by insertion losses of components and a nonflattened optical light source. Furthermore, the matching conditions can be improved by decreasing nonideal influences.
Characterization of the International Linear Collider damping ring optics
Shanks, J.; Rubin, D. L.; Sagan, D.
2014-10-01
A method is presented for characterizing the emittance dilution and dynamic aperture for an arbitrary closed lattice that includes guide field magnet errors, multipole errors and misalignments. This method, developed and tested at the Cornell Electron Storage Ring Test Accelerator (CesrTA), has been applied to the damping ring lattice for the International Linear Collider (ILC). The effectiveness of beam based emittance tuning is limited by beam position monitor (BPM) measurement errors, number of corrector magnets and their placement, and correction algorithm. The specifications for damping ring magnet alignment, multipole errors, number of BPMs, and precision in BPM measurements are shown to be consistent with the required emittances and dynamic aperture. The methodology is then used to determine the minimum number of position monitors that is required to achieve the emittance targets, and how that minimum depends on the location of the BPMs. Similarly, the maximum tolerable multipole errors are evaluated. Finally, the robustness of each BPM configuration with respect to random failures is explored.
Linear-Optical Generation of Eigenstates of the Two-Site XY Model
Directory of Open Access Journals (Sweden)
Stefanie Barz
2015-04-01
Full Text Available Much of the anticipation accompanying the development of a quantum computer relates to its application to simulating dynamics of another quantum system of interest. Here, we study the building blocks for simulating quantum spin systems with linear optics. We experimentally generate the eigenstates of the XY Hamiltonian under an external magnetic field. The implemented quantum circuit consists of two cnot gates, which are realized experimentally by harnessing entanglement from a photon source and applying a cphase gate. We tune the ratio of coupling constants and the magnetic field by changing local parameters. This implementation of the XY model using linear quantum optics might open the door to future studies of quenching dynamics using linear optics.
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
Downie, John D.
1990-01-01
A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.
Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates
International Nuclear Information System (INIS)
Liu Xiao-Lan; Peng Xiao-Niu; Yang Zhong-Jian; Li Min; Zhou Li
2011-01-01
Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process. The morphology, crystal structure and linear optical extinction of the gold nanoplates have been characterized. These gold nanoplates are single-crystalline with triangular, truncated triangular and hexagonal shapes, exhibiting strong surface plasmon resonance (SPR) extinction in the visible and near-infrared (NIR) region. The linear optical properties of gold nanoplates are also investigated by theoretical calculations. We further investigate the nonlinear optical properties of the gold nanoplates in solution by Z-scan technique. The nonlinear absorption (NLA) coefficient and nonlinear refraction (NLR) index are measured to be 1.18×10 2 cm/GW and −1.04×10 −3 cm 2 /GW, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Non linear characterisation of optical components of a high power laser chain
International Nuclear Information System (INIS)
Santran, Stephane
2000-01-01
This work concerns the realisation of non linear properties measurement prototypes in glasses in the near infrared and in the visible range. The various devices are time resolved colinear pump probe experiments in which the non linear susceptibility is deduced by the probe beam intensity variations induced by the pump probe coupled in the material. The sensitivity of these experiments allows us to observe unexpected variations, greater than 30%, of several fused silica non linear indexes. As well, this allow us to analyse the origin of the promising oxide glasses non linearity for all optical applications and to understand an d measure non linear processes in the two photons photodiodes. Finally, an original structure for the non linear index measurement in non degenerated configuration by a probe pulse phase measurement approach with a Sagnac interferometer is demonstrated and analysed. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Wang, Dong-Yang [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wen, Jing-Ji [College of Foundation Science, Harbin University of Commerce, Harbin, Heilongjiang 150028 (China); Bai, Cheng-Hua; Hu, Shi; Cui, Wen-Xue [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wang, Hong-Fu, E-mail: hfwang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhu, Ai-Dong [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhang, Shou, E-mail: szhang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China)
2015-09-15
An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.
Woźniak, M.; Smołka, M.; Cortes, Adriano Mauricio; Paszyński, M.; Schaefer, R.
2016-01-01
We study the features of a new mixed integration scheme dedicated to solving the non-stationary variational problems. The scheme is composed of the FEM approximation with respect to the space variable coupled with a 3-leveled time integration scheme
International Nuclear Information System (INIS)
Maysonnave, T.; Bayol, F.; Demol, G.; Almeida, T. d'; Lassalle, F.; Morell, A.; Grunenwald, J.; Chuvatin, A.S.; Pecastaing, L.; De Ferron, A.S.
2014-01-01
SPHINX is a microsecond linear transformer driver LTD, used essentially for implosion of Z-pinch loads in direct drive mode. It can deliver a 6-MA current pulse within 800 ns into a Z-pinch load. The dynamic load current multiplier concept enables the current pulse to be modified by increasing its amplitude while reducing its rise time before being delivered to the load. This compact system is made up of concentric electrodes (auto transformer), a dynamic flux extruder (cylindrical wire array), a vacuum convolute (eight post-holes), and a vacuum closing switch, which is the key component of the system. Several different schemes are investigated for designing a vacuum switch suitable for operating the dynamic load current multiplier on the SPHINX generator for various applications, including isentropic compression experiments and Z-pinch radiation effects studies. In particular, the design of a compact vacuum surface switch and a multichannel vacuum switch, located upstream of the load are studied. Electrostatic simulations supporting the switch designs are presented along with test bed experiments. Initial results from shots on the SPHINX driver are also presented. (authors)
Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots
International Nuclear Information System (INIS)
Vahdani, M.R.K.; Rezaei, G.
2009-01-01
Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.
Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots
Energy Technology Data Exchange (ETDEWEB)
Vahdani, M.R.K. [Department of Physics, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Rezaei, G., E-mail: grezaei@mail.yu.ac.i [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914 (Iran, Islamic Republic of)
2009-08-17
Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.
Iqbal, Javed; Yahia, I. S.; Zahran, H. Y.; AlFaify, S.; AlBassam, A. M.; El-Naggar, A. M.
2016-12-01
2‧,7‧ dichloro-Fluorescein (DCF) is a promising organic semiconductor material in different technological aspects such as solar cell, photodiode, Schottky diode. DCF thin film/conductive glass (FTO glass) was prepared by a low-cost spin coating technique. The spectrophotometric data such as the absorbance, reflectance and transmittance were cogitated in the 350-2500 nm wavelength range, at the normal incidence. The absorption (n) and linear refractive indices (k) were computed using the Fresnel's equations. The optical band gap was evaluated and it was found that there is two band gap described as follows: (1) It is related to the band gap of FTO/glass which is equal 3.4 eV and (2) the second one is related to the absorption edge of DCF equals 2.25 eV. The non-linear parameters such as the refractive index (n2) and optical susceptibility χ(3) were evaluated by the spectroscopic method based on the refractive index. Both (n2) and χ(3) increased rapidly on increasing the wavelength with redshift absorption. Our work represents a new idea about using FTO glass for a new generation of the optical device and technology.
Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system
International Nuclear Information System (INIS)
Zeng, Zaiping; Garoufalis, Christos S.; Baskoutas, Sotirios
2014-01-01
Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system have been theoretically studied. In general, we find that the structure parameters of the coupled system significantly affect the optical susceptibilities. The enhancement of the coupling effects between the dot and ring is found to increase considerably the optical susceptibilities and redshift drastically the transition energies. Comparing to the linear susceptibility, the nonlinear optical susceptibility is found to be more sensitive to the variation of the structure parameters. A comprehensive analysis of the electron probability density movement with respect to the modification of the structure parameters is provided, which offers a unique perspective of the ground-state localization. - Highlights: • Optical susceptibilities in a quantum-dot–quantum-ring system are studied. • The structure parameters significantly affect the optical susceptibilities. • The enhancement of the coupling effects increases the optical susceptibilities. • The nonlinear susceptibility is more sensitive to the change in structure parameters. • A comprehensive analysis of the electron probability density movement is provided
Non-Linear Optical Studies On Sol-Gel Derived Lead Chloride Crystals Using Z-Scan Technique
Rejeena, I; Lillibai, B; Toms, Roseleena; Nampoori, VP N; Radhakrishnan, P
2014-01-01
In this paper we report the preparation, optical characterization and non linear optical behavior of pure lead chloride crystals. Lead chloride samples subjected to UV and IR irradiation and electric and magnetic fields have also been investigated Optical nonlinearity in these lead chloride samples were determined using single beam and high sensitive Z-scan technique. Non linear optical studies of these materials in single distilled water show reverse saturable absorption which makes th...
A Linear Birefringence Measurement Method for an Optical Fiber Current Sensor.
Xu, Shaoyi; Shao, Haiming; Li, Chuansheng; Xing, Fangfang; Wang, Yuqiao; Li, Wei
2017-07-03
In this work, a linear birefringence measurement method is proposed for an optical fiber current sensor (OFCS). First, the optical configuration of the measurement system is presented. Then, the elimination method of the effect of the azimuth angles between the sensing fiber and the two polarizers is demonstrated. Moreover, the relationship of the linear birefringence, the Faraday rotation angle and the final output is determined. On these bases, the multi-valued problem on the linear birefringence is simulated and its solution is illustrated when the linear birefringence is unknown. Finally, the experiments are conducted to prove the feasibility of the proposed method. When the numbers of turns of the sensing fiber in the OFCS are about 15, 19, 23, 27, 31, 35, and 39, the measured linear birefringence obtained by the proposed method are about 1.3577, 1.8425, 2.0983, 2.5914, 2.7891, 3.2003 and 3.5198 rad. Two typical methods provide the references for the proposed method. The proposed method is proven to be suitable for the linear birefringence measurement in the full range without the limitation that the linear birefringence must be smaller than π/2.
Space and frequency-multiplexed optical linear algebra processor - Fabrication and initial tests
Casasent, D.; Jackson, J.
1986-01-01
A new optical linear algebra processor architecture is described. Space and frequency-multiplexing are used to accommodate bipolar and complex-valued data. A fabricated laboratory version of this processor is described, the electronic support system used is discussed, and initial test data obtained on it are presented.
Linear all-optical signal processing using silicon micro-ring resonators
DEFF Research Database (Denmark)
Ding, Yunhong; Ou, Haiyan; Xu, Jing
2016-01-01
Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus...
Ferwerda, H.A.; Hoenders, B.J.; Slump, C.H.
The fully relativistic quantum mechanical treatment of paraxial electron-optical image formation initiated in the previous paper (this issue) is worked out and leads to a rigorous foundation of the linear transfer theory. Moreover, the status of the relativistic scaling laws for mass and wavelength,
Raptis, Nikos; Pikasis, Evangelos; Syvridis, Dimitris
2016-08-01
The exploitation of optical wireless communication channels in a non-line-of-sight regime is studied for point-to-point and networking configurations considering the use of light-emitting diodes. Two environments with different scattering center densities are considered, assuming operation at 265 nm. The bit error rate performance of both pulsed and multicarrier modulation schemes is examined, using numerical approaches. In the networking scenario, a central node only receives data, one node transmits useful data, and the rest of them act as interferers. The performance of the desirable node's transmissions is evaluated. The access to the medium is controlled by a code division multiple access scheme.
Synthesis of polymeric micro- and nanostructural materials for application in non-linear optics
International Nuclear Information System (INIS)
Kravets, Lyubov; Palistrant, Natalia; Bivol, Valerii; Robu, Stepan; Barba, Nikolai; Orelovitch, Oleg
2007-01-01
The present paper describes a new approach developed for the preparation of micro- and nanostructural materials on the basis of polymeric compositions used as a matrix in non-linear optics. This approach consists in filling the pores of poly(ethylene terephthalate) track membranes (PET TM) from polymeric compositions using an impregnation method. It is shown that depending on the concentration of polymeric compositions in the solution it is possible to form a variety of micro- and nanostructural materials (tubules and wires as well as composite membranes) with a wide spectrum of characteristics. The developed method of producing micro- and nanostructural materials provides a possible way for creating polymeric objects with non-linear optic properties which can be used to design electronic micro- and nanodevices and to obtain chemical and optical sensors
A linear ion optics model for extraction from a plasma ion source
International Nuclear Information System (INIS)
Dietrich, J.
1987-01-01
A linear ion optics model for ion extraction from a plasma ion source is presented, based on the paraxial equations which account for lens effects, space charge and finite source ion temperature. This model is applied to three- and four-electrode extraction systems with circular apertures. The results are compared with experimental data and numerical calculations in the literature. It is shown that the improved calculations of space charge effects and lens effects allow better agreement to be obtained than in earlier linear optics models. A principal result is that the model presented here describes the dependence of the optimum perveance on the aspect ratio in a manner similar to the nonlinear optics theory. (orig.)
Lin, Chao; Shen, Xueju; Wang, Zhisong; Zhao, Cheng
2014-06-20
We demonstrate a novel optical asymmetric cryptosystem based on the principle of elliptical polarized light linear truncation and a numerical reconstruction technique. The device of an array of linear polarizers is introduced to achieve linear truncation on the spatially resolved elliptical polarization distribution during image encryption. This encoding process can be characterized as confusion-based optical cryptography that involves no Fourier lens and diffusion operation. Based on the Jones matrix formalism, the intensity transmittance for this truncation is deduced to perform elliptical polarized light reconstruction based on two intensity measurements. Use of a quick response code makes the proposed cryptosystem practical, with versatile key sensitivity and fault tolerance. Both simulation and preliminary experimental results that support theoretical analysis are presented. An analysis of the resistance of the proposed method on a known public key attack is also provided.
Non linear optical investigations of silver nanoparticles synthesised by curcumin reduction
Dhanya, N. P.
2017-11-01
Metal nanoparticles have considerable applications in assorted fields like medicine, biology, photonics, metallurgy etc. Optical applications of Silver nanoparticles are of significant interest among researchers nowadays. In this paper, we report a single step chemical reduction of silver nanoparticles with Curcumin both as a reducing and stabilising agent at room temperature. Structural, plasmonic and non linear optical properties of the prepared nanoparticles are explored using Scanning Electron Microscope, Transmission Electron Microscope, UV absorption spectrometry, Spectroflurometry and Z scan. UV-Vis absorption studies affirm the Surface Plasmon Resonance (SPR) absorption and spectroflurometric studies announce the emission spectrum of the prepared silvernanoparticles at 520 nm. SEM and TEM images uphold the existence of uniform sized, spherical silvernanoparticles. Nonlinear optical studies are accomplished with the open aperture z scan technique in the nanosecond regime. The nonlinearity is in virtue of saturable absorption, two-photon absorption and excited state absorption. The marked nonlinearity and optical limiting of the Curcumin reduced silvernanoparticles enhances its photonic applications.
Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices
International Nuclear Information System (INIS)
Luz, H. L. F. da; Gammal, A.; Abdullaev, F. Kh.; Salerno, M.; Tomio, Lauro
2010-01-01
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices
da Luz, H. L. F.; Abdullaev, F. Kh.; Gammal, A.; Salerno, M.; Tomio, Lauro
2010-10-01
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
Directory of Open Access Journals (Sweden)
S. Maktoobi
2014-10-01
Full Text Available Switching is a principle process in digital computers and signal processing systems. The growth of optical signal processing systems, draws particular attention to design of ultra-fast optical switches. In this paper, All Optical Switches in linear state Based On photonic crystal Directional coupler is analyzed and simulated. Among different methods, the finite difference time domain method (FDTD is a preferable method and is used. We have studied the application of photonic crystal lattices, the physics of optical switching and photonic crystal Directional coupler. In this paper, Electric field intensity and the power output that are two factors to improve the switching performance and the device efficiency are investigated and simulated. All simulations are performed by COMSOL software.
Ultrafast all-optical clock recovery based on phase-only linear optical filtering
DEFF Research Database (Denmark)
Maram, Reza; Kong, Deming; Galili, Michael
2014-01-01
We report on a novel technique for all-optical clock recovery from RZ OOK data based on phase-only filtering, significantly enhancing the recovered clock quality and energy-efficiency compared to the use of a Fabry-Perot filter....
Huang, Xu-Hong; Lu, Hai-Han; Li, Chung-Yi; Wang, Yun-Chieh; Chang, Jen-Chieh; Jheng, Yu-Bo; Tsai, Wen-Shing
2018-06-01
A bidirectional fiber-free-space optical (FSO)/wireless convergent system that uses dual-polarization and one optical sideband transmission schemes for hybrid vestigial sideband (VSB)–four-level pulse amplitude modulation (PAM4)/millimeter-wave signal transmission is proposed and demonstrated. Using a dual-polarization scheme, one optical sideband that is modulated by a 56 Gb s‑1 VSB–PAM4 signal (x-polarization) and another optical sideband that is modulated by a 10 Gbps data stream (y-polarization) are separated and polarized orthogonally. One optical sideband modulated by a 10 Gbps data stream (y-polarization) is delivered to efficaciously suppress the dispersion-induced limitation due to a span of 40 km single-mode fiber (SMF) and the distortion due to the beating among multiple sidebands. The proposed bidirectional fiber-FSO/wireless convergent system is a prominent one for providing broadband integrated services, such as the Internet, telecommunication, and 5G mobile networks.
Improvement of PEP-II Linear Optics with a MIA-Derived Virtual Accelerator
International Nuclear Information System (INIS)
Cerio, B.; Colgate U.
2006-01-01
In several past studies, model independent analysis, in conjunction with a virtual accelerator model, has been successful in improving PEP-II linear geometric optics. In many cases, optics improvement yielded an increase in machine luminosity. In this study, an updated characterization of linear optics is presented. With the PEP-II beam position monitor (BPM) system, four independent beam centroid orbits were extracted and used to determine phase advances and linear Green's functions among BPM locations. A magnetic lattice model was then constructed with a singular value decomposition-enhanced least-square fitting of phase advances and Green's functions, which are functions of quadrupole strengths, sextupole feed-downs, as well as BPM errors, to the corresponding measured quantities. The fitting process yielded a machine model that matched the measured linear optics of the real machine and was therefore deemed the virtual accelerator. High beta beat, as well as linear coupling, was observed in both LER and HER of the virtual accelerator. Since there was higher beta beating in LER, focus was shifted to the improvement of this ring. By adjusting select quadrupoles of the virtual LER and fitting the resulting beta functions and phase advances to those of the desired lattice, the average beta beat of the virtual machine was effectively reduced. The new magnet configuration was dialed into LER on August 10, 2006, and beta beat was reduced by a factor of three. After fine tuning HER to match the improved LER for optimal collision, a record peak luminosity of 12.069 x 10 33 cm -2 s -1 was attained on August 16, 2006
A repeat-until-success quantum computing scheme
Energy Technology Data Exchange (ETDEWEB)
Beige, A [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Lim, Y L [DSO National Laboratories, 20 Science Park Drive, Singapore 118230, Singapore (Singapore); Kwek, L C [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore (Singapore)
2007-06-15
Recently we proposed a hybrid architecture for quantum computing based on stationary and flying qubits: the repeat-until-success (RUS) quantum computing scheme. The scheme is largely implementation independent. Despite the incompleteness theorem for optical Bell-state measurements in any linear optics set-up, it allows for the implementation of a deterministic entangling gate between distant qubits. Here we review this distributed quantum computation scheme, which is ideally suited for integrated quantum computation and communication purposes.
A repeat-until-success quantum computing scheme
International Nuclear Information System (INIS)
Beige, A; Lim, Y L; Kwek, L C
2007-01-01
Recently we proposed a hybrid architecture for quantum computing based on stationary and flying qubits: the repeat-until-success (RUS) quantum computing scheme. The scheme is largely implementation independent. Despite the incompleteness theorem for optical Bell-state measurements in any linear optics set-up, it allows for the implementation of a deterministic entangling gate between distant qubits. Here we review this distributed quantum computation scheme, which is ideally suited for integrated quantum computation and communication purposes
One step linear reconstruction method for continuous wave diffuse optical tomography
Ukhrowiyah, N.; Yasin, M.
2017-09-01
The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.
Classical and quantum non-linear optical applications using the Mach-Zehnder interferometer
Prescod, Andru
Mach Zehnder (MZ) modulators are widely employed in a variety of applications, such as optical communications, optical imaging, metrology and encryption. In this dissertation, we explore two non-linear MZ applications; one classified as classical and one as quantum, in which the Mach Zehnder interferometer is used. In the first application, a classical non-linear application, we introduce and study a new electro-optic highly linear (e.g., >130 dB) modulator configuration. This modulator makes use of a phase modulator (PM) in one arm of the MZ interferometer (MZI) and a ring resonator (RR) located on the other arm. The modulator performance is obtained through the control of a combination of internal and external parameters. These parameters include the RR-coupling ratio (internal parameter); the RF power split ratio and the RF phase bias (external parameters). Results show the unique and superior features, such as high linearity (SFDR˜133 dB), modulation bandwidth extension (as much as 70%) over the previously proposed and demonstrated Resonator-Assisted Mach Zehnder (RAMZ) design. Furthermore the proposed electro-optic modulator of this dissertation also provides an inherent SFDR compensation capability, even in cases where a significant waveguide optical loss exists. This design also shows potential for increased flexibility, practicality and ease of use. In the second application, a quantum non-linear application, we experimentally demonstrate quantum optical coherence tomography (QOCT) using a type II non-linear crystal (periodically-poled potassium titanyl phosphate (KTiOPO4) or PPKTP). There have been several publications discussing the merits and disadvantages of QOCT compared to OCT and other imaging techniques. First, we discuss the issues and solutions for increasing the efficiency of the quantum entangled photons. Second, we use a free space QOCT experiment to generate a high flux of these quantum entangled photons in two orthogonal polarizations, by
Structural, Linear, and Nonlinear Optical and Mechanical Properties of New Organic L-Serine Crystal
Directory of Open Access Journals (Sweden)
K. Rajesh
2014-01-01
Full Text Available Nonlinear optical single crystal of organic amino acid L-Serine (LS was grown by slow evaporation technique. Solubility study of the compound was measured and metastable zone width was found. Single crystal X-ray diffraction study was carried out for the grown crystal. The linear and nonlinear optical properties of the crystal were confirmed by UV-Vis analysis and powder SHG tester. FT-IR spectrum was recorded and functional groups were analyzed. Vickers’ microhardness studies showed the mechanical strength of the grown crystal. Laser damage threshold value of the crystal was calculated. Photoconductivity studies reveal the conductivity of the crystal.
A review of methods for experimentally determining linear optics in storage rings
International Nuclear Information System (INIS)
Safranek, J.
1995-01-01
In order to maximize the brightness and provide sufficient dynamic aperture in synchrotron radiation storage rings, one must understand and control the linear optics. Control of the horizontal beta function and dispersion is important for minimizing the horizontal beam size. Control of the skew gradient distribution is important for minimizing the vertical size. In this paper, various methods for experimentally determining the optics in a storage ring will be reviewed. Recent work at the National Synchrotron Light Source X-Ray Ring will be presented as well as work done at laboratories worldwide
Implementation of a controller for linear positioners applicable in optical fiber stretching
International Nuclear Information System (INIS)
Castrillo Piedra, Andres Rodolfo
2014-01-01
A low cost controller is implemented for linear positioners applicable in optic fiber stretching. The possibility of using a donated equipment is evaluated by the Escuela de Ingenieria Mecanica. The equipment is required by the non-linear photonic research laboratory (NLPR-LAB) for stretching of micro structured fiber. The process has required a slow and precise stretching, so the controllers must be precisely programmed to rotate the motors at different speeds. Donated equipment is evaluated to see if it is possible to use for fiber stretching [es
Testing the existence of optical linear polarization in young brown dwarfs
Manjavacas, E.; Miles-Páez, P. A.; Zapatero-Osorio, M. R.; Goldman, B.; Buenzli, E.; Henning, T.; Pallé, E.; Fang, M.
2017-07-01
Linear polarization can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases with the degree of oblateness, which is inversely proportional to the surface gravity. We aimed to test the existence of optical linear polarization in a sample of bright young brown dwarfs, with spectral types between M6 and L2, observable from the Calar Alto Observatory, and cataloged previously as low gravity objects using spectroscopy. Linear polarimetric images were collected in I and R band using CAFOS at the 2.2-m telescope in Calar Alto Observatory (Spain). The flux ratio method was employed to determine the linear polarization degrees. With a confidence of 3σ, our data indicate that all targets have a linear polarimetry degree in average below 0.69 per cent in the I band, and below 1.0 per cent in the R band, at the time they were observed. We detected significant (I.e. P/σ ≥ 3) linear polarization for the young M6 dwarf 2MASS J04221413+1530525 in the R band, with a degree of p* = 0.81 ± 0.17 per cent.
You, Chenglong; Adhikari, Sushovit; Chi, Yuxi; LaBorde, Margarite L.; Matyas, Corey T.; Zhang, Chenyu; Su, Zuen; Byrnes, Tim; Lu, Chaoyang; Dowling, Jonathan P.; Olson, Jonathan P.
2017-12-01
It was suggested in (Motes et al 2015 Phys. Rev. Lett. 114 170802) that optical networks with relatively inexpensive overheads—single photon Fock states, passive optical elements, and single photon detection—can show significant improvements over classical strategies for single-parameter estimation, when the number of modes in the network is small (ncompute the quantum Cramér-Rao bound to show these networks can have a constant-factor quantum advantage in multi-parameter estimation for even large number of modes. Additionally, we provide a simplified measurement scheme using only single-photon (on-off) detectors that is capable of approximately obtaining this sensitivity for a small number of modes.
Passive quantum error correction of linear optics networks through error averaging
Marshman, Ryan J.; Lund, Austin P.; Rohde, Peter P.; Ralph, Timothy C.
2018-02-01
We propose and investigate a method of error detection and noise correction for bosonic linear networks using a method of unitary averaging. The proposed error averaging does not rely on ancillary photons or control and feedforward correction circuits, remaining entirely passive in its operation. We construct a general mathematical framework for this technique and then give a series of proof of principle examples including numerical analysis. Two methods for the construction of averaging are then compared to determine the most effective manner of implementation and probe the related error thresholds. Finally we discuss some of the potential uses of this scheme.
Pei, Soo-Chang; Ding, Jian-Jiun
2005-03-01
Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.
Causal structure and algebraic classification of non-dissipative linear optical media
International Nuclear Information System (INIS)
Schuller, Frederic P.; Witte, Christof; Wohlfarth, Mattias N.R.
2010-01-01
In crystal optics and quantum electrodynamics in gravitational vacua, the propagation of light is not described by a metric, but an area metric geometry. In this article, this prompts us to study conditions for linear electrodynamics on area metric manifolds to be well-posed. This includes an identification of the timelike future cones and their duals associated to an area metric geometry, and thus paves the ground for a discussion of the related local and global causal structures in standard fashion. In order to provide simple algebraic criteria for an area metric manifold to present a consistent spacetime structure, we develop a complete algebraic classification of area metric tensors up to general transformations of frame. This classification, valuable in its own right, is then employed to prove a theorem excluding the majority of algebraic classes of area metrics as viable spacetimes. Physically, these results classify and drastically restrict the viable constitutive tensors of non-dissipative linear optical media.
International Nuclear Information System (INIS)
Barbieri, M.
2007-01-01
Bose-Einstein coalescence of independent photons at the surface of a beam splitter is the physical process that allows linear optical quantum gates to be built. When distinct parametric down-conversion events are used as an independent photon source, distinguishability arises form the energy correlation of each photon with its twin. We derive upper bound for the entanglement which can be generated under these conditions
DEFF Research Database (Denmark)
Asif, Rameez
2016-01-01
We have evaluated that in-line non-linear compensation schemes decrease the complexity of digital backward propagation and enhance the transmission performance of 40/112/224 Gbit/s mixed line rate network. Multiple bit rates, i.e. 40/112/224 Gbit/s and modulation formats (i.e. DP-QPSK and DP-16QAM......) are transmitted over 1280 km of Large $$\\hbox {A}_{eff}$$ A e f f Pure-Silica core fiber. Both grouped and un-grouped spectral allocation schemes are investigated. Optical add-drop multiplexers are used to drop the required wavelength for signal processing in the transmission link. Moreover, hybrid mid...
Non-linear optical properties of SiO2 with synthesized by implantation copper nanoparticles
International Nuclear Information System (INIS)
Stepanov, A.L.; Olivares, J.; Requejo-Isidro, J.; Del Coso, R.; De Nalda, R.; Solis, J.; Afonso, C.N.; Hole, D.; Townsend, P.D.; Naudon, A.
2001-01-01
In recent years there has been a growing interest in composite dielectrics containing metal nanoparticles for their potential application in wave-guide integrated all-optical non-linear switching devices. In present work, low energy high current ion implantation (50 keV) in silica at a well controlled substrate temperature (20 0 C) at a dose of 8·10 16 ion/cm 2 has been used to produce novel composites containing a large concentration of spherical Cu clusters with an average diameter of 4 nm and a very narrow size distribution. A very large value for the third order optical susceptibility, χ (3) = 10 -7 esu, has been measured in the vicinity of the surface plasmon resonance by degenerate four wave mixing at 585 nm. This value is among the largest values ever reported for Cu nano composites. Additionally, the response time of the non-linearity has been found to be shorter than 2 ps. The superior non-linear optical response of these implants is discussed in terms of the implantation conditions
Time-Frequency (Wigner Analysis of Linear and Nonlinear Pulse Propagation in Optical Fibers
Directory of Open Access Journals (Sweden)
José Azaña
2005-06-01
Full Text Available Time-frequency analysis, and, in particular, Wigner analysis, is applied to the study of picosecond pulse propagation through optical fibers in both the linear and nonlinear regimes. The effects of first- and second-order group velocity dispersion (GVD and self-phase modulation (SPM are first analyzed separately. The phenomena resulting from the interplay between GVD and SPM in fibers (e.g., soliton formation or optical wave breaking are also investigated in detail. Wigner analysis is demonstrated to be an extremely powerful tool for investigating pulse propagation dynamics in nonlinear dispersive systems (e.g., optical fibers, providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.
Linearized Optically Phase-Modulated Fiber Optic Links for Microwave Signal Transport
2009-03-03
detectors (with internal 50- Ohm resistors) capable of 40-mA dc current per detector. With this link, the linearized SFDR would improve to 133 dB/Hz4/5...the IF) limitation on the signal. All calculations consider the 3dB power loss from the hybrid combiner and 6dB loss from parallel 50- Ohm resistors...283. [25] M. Nazarathy, J. Berger, A. Ley , I. Levi, and Y. Kagan, “Externally Modulated 80 Channel Am Catv Fiber-to-feeder Distribution System Over
640 Gbit/s Optical Packet Switching using a Novel In-Band Optical Notch-Filter Labeling Scheme
DEFF Research Database (Denmark)
Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo
2014-01-01
Optical packet switching of 640 Gbit/s data packets is reported using an in-band optical labeling technique based on notch-filtering of the data spectrum and extracting the label using a bandpass filter. BER 109 is achieved.......Optical packet switching of 640 Gbit/s data packets is reported using an in-band optical labeling technique based on notch-filtering of the data spectrum and extracting the label using a bandpass filter. BER 109 is achieved....
Linear and nonlinear optical signals in probability and phase-space representations
International Nuclear Information System (INIS)
Man'ko, Margarita A
2006-01-01
Review of different representations of signals including the phase-space representations and tomographic representations is presented. The signals under consideration are either linear or nonlinear ones. The linear signals satisfy linear quantumlike Schroedinger and von Neumann equations. Nonlinear signals satisfy nonlinear Schroedinger equations as well as Gross-Pitaevskii equation describing solitons in Bose-Einstein condensate. The Ville-Wigner distributions for solitons are considered in comparison with tomographic-probability densities describing solitons completely. different kinds of tomographies - symplectic tomography, optical tomography and Fresnel tomography are reviewed. New kind of map of the signals onto probability distributions of discrete photon number-like variable is discussed. Mutual relations between different transformations of signal functions are established in explicit form. Such characteristics of the signal-probability distribution as entropy is discussed
Transfer of optical signals around bends in two-dimensional linear photonic networks
International Nuclear Information System (INIS)
Nikolopoulos, G M
2015-01-01
The ability to navigate light signals in two-dimensional networks of waveguide arrays is a prerequisite for the development of all-optical integrated circuits for information processing and networking. In this article, we present a theoretical analysis of bending losses in linear photonic lattices with engineered couplings, and discuss possible ways for their minimization. In contrast to previous work in the field, the lattices under consideration operate in the linear regime, in the sense that discrete solitons cannot exist. The present results suggest that the functionality of linear waveguide networks can be extended to operations that go beyond the recently demonstrated point-to-point transfer of signals, such as blocking, routing, logic functions, etc. (paper)
Adaptive matching of the iota ring linear optics for space charge compensation
Energy Technology Data Exchange (ETDEWEB)
Romanov, A. [Fermilab; Bruhwiler, D. L. [RadiaSoft, Boulder; Cook, N. [RadiaSoft, Boulder; Hall, C. [RadiaSoft, Boulder
2016-10-09
Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be i proved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re matching with full account of space charge in the linear approximation for the case of Fermilab’s IOTA ring. The method is based on a search for initial second moments that give closed solution and, at the same predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters
Marazzi, Marco; Gattuso, Hugo; Monari, Antonio; Assfeld, Xavier
2018-01-01
Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes-often drugs or pollutants-that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.
Directory of Open Access Journals (Sweden)
Marco Marazzi
2018-04-01
Full Text Available Bio-macromolecules as DNA, lipid membranes and (polypeptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes—often drugs or pollutants—that can (photosensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photosensitizers. Namely, absorption, emission and electronic circular dichroism (CD spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i to enhance absorption in the red and infra-red windows and (ii to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.
Marazzi, Marco; Gattuso, Hugo; Monari, Antonio; Assfeld, Xavier
2018-04-01
Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes – often drugs or pollutants – that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/ molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.
Universal squash model for optical communications using linear optics and threshold detectors
International Nuclear Information System (INIS)
Fung, Chi-Hang Fred; Chau, H. F.; Lo, Hoi-Kwong
2011-01-01
Transmission of photons through open-air or optical fibers is an important primitive in quantum-information processing. Theoretical descriptions of this process often consider single photons as information carriers and thus fail to accurately describe experimental implementations where any number of photons may enter a detector. It has been a great challenge to bridge this big gap between theory and experiments. One powerful method for achieving this goal is by conceptually squashing the received multiphoton states to single-photon states. However, until now, only a few protocols admit a squash model; furthermore, a recently proven no-go theorem appears to rule out the existence of a universal squash model. Here we show that a necessary condition presumed by all existing squash models is in fact too stringent. By relaxing this condition, we find that, rather surprisingly, a universal squash model actually exists for many protocols, including quantum key distribution, quantum state tomography, Bell's inequality testing, and entanglement verification.
Zhang, Zhen; Zhang, Qianwu; Chen, Jian; Li, Yingchun; Song, Yingxiong
2016-06-13
A low-complexity joint symbol synchronization and SFO estimation scheme for asynchronous optical IMDD OFDM systems based on only one training symbol is proposed. Numerical simulations and experimental demonstrations are also under taken to evaluate the performance of the mentioned scheme. The experimental results show that robust and precise symbol synchronization and the SFO estimation can be achieved simultaneously at received optical power as low as -20dBm in asynchronous OOFDM systems. SFO estimation accuracy in MSE can be lower than 1 × 10-11 under SFO range from -60ppm to 60ppm after 25km SSMF transmission. Optimal System performance can be maintained until cumulate number of employed frames for calculation is less than 50 under above-mentioned conditions. Meanwhile, the proposed joint scheme has a low level of operation complexity comparing with existing methods, when the symbol synchronization and SFO estimation are considered together. Above-mentioned results can give an important reference in practical system designs.
Liansheng, Sui; Bei, Zhou; Zhanmin, Wang; Ailing, Tian
2017-05-01
A novel optical color image watermarking scheme considering human visual characteristics is presented in gyrator transform domain. Initially, an appropriate reference image is constructed of significant blocks chosen from the grayscale host image by evaluating visual characteristics such as visual entropy and edge entropy. Three components of the color watermark image are compressed based on compressive sensing, and the corresponding results are combined to form the grayscale watermark. Then, the frequency coefficients of the watermark image are fused into the frequency data of the gyrator-transformed reference image. The fused result is inversely transformed and partitioned, and eventually the watermarked image is obtained by mapping the resultant blocks into their original positions. The scheme can reconstruct the watermark with high perceptual quality and has the enhanced security due to high sensitivity of the secret keys. Importantly, the scheme can be implemented easily under the framework of double random phase encoding with the 4f optical system. To the best of our knowledge, it is the first report on embedding the color watermark into the grayscale host image which will be out of attacker's expectation. Simulation results are given to verify the feasibility and its superior performance in terms of noise and occlusion robustness.
Linear and nonlinear optical properties of Sb-doped GeSe2 thin films
Zhang, Zhen-Ying; Chen, Fen; Lu, Shun-Bin; Wang, Yong-Hui; Shen, Xiang; Dai, Shi-Xun; Nie, Qiu-Hua
2015-06-01
Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb-Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.
International Nuclear Information System (INIS)
Sergienko, I.V.; Golodnikov, A.N.
1984-01-01
This article applies the methods of decompositions, which are used to solve continuous linear problems, to integer and partially integer problems. The fall-vector method is used to solve the obtained coordinate problems. An algorithm of the fall-vector is described. The Kornai-Liptak decomposition principle is used to reduce the integer linear programming problem to integer linear programming problems of a smaller dimension and to a discrete coordinate problem with simple constraints
International Nuclear Information System (INIS)
Chen, Jun-Xin; Fu, Chong; Zhu, Zhi-Liang; Zhang, Li-Bo; Zhang, Yushu
2014-01-01
In this paper, we evaluate the security of an enhanced double random phase encoding (DRPE) image encryption scheme (2013 J. Lightwave Technol. 31 2533). The original system employs a chaotic Baker map prior to DRPE to provide more protection to the plain image and hence promote the security level of DRPE, as claimed. However, cryptanalysis shows that this scheme is vulnerable to a chosen-plaintext attack, and the ciphertext can be precisely recovered. The corresponding improvement is subsequently reported upon the basic premise that no extra equipment or computational complexity is required. The simulation results and security analyses prove its effectiveness and security. The proposed achievements are suitable for all cryptosystems under permutation and, following that, the DRPE architecture, and we hope that our work can motivate the further research on optical image encryption. (paper)
Chen, Jun-Xin; Zhu, Zhi-Liang; Fu, Chong; Zhang, Li-Bo; Zhang, Yushu
2014-12-01
In this paper, we evaluate the security of an enhanced double random phase encoding (DRPE) image encryption scheme (2013 J. Lightwave Technol. 31 2533). The original system employs a chaotic Baker map prior to DRPE to provide more protection to the plain image and hence promote the security level of DRPE, as claimed. However, cryptanalysis shows that this scheme is vulnerable to a chosen-plaintext attack, and the ciphertext can be precisely recovered. The corresponding improvement is subsequently reported upon the basic premise that no extra equipment or computational complexity is required. The simulation results and security analyses prove its effectiveness and security. The proposed achievements are suitable for all cryptosystems under permutation and, following that, the DRPE architecture, and we hope that our work can motivate the further research on optical image encryption.
Optically stimulated luminescence from quartz measured using the linear modulation technique
International Nuclear Information System (INIS)
Bulur, E.; Boetter-Jensen, L.; Murray, A.S.
2000-01-01
The optically stimulated luminescence (OSL) from heated natural quartz has been investigated using the linear modulation technique (LMT), in which the excitation light intensity is increased linearly during stimulation. In contrast to conventional stimulation, which usually produces a monotonically decreasing signal, linearly increasing the stimulation power gives peaks in the signal as a function of time. In cases where the OSL signal contains more than one component, the linear increase in power of the stimulation light may result in a curve containing overlapping peaks, where the most easily stimulated component occurs at a shorter time. This allows the separation of the overlapping OSL components, which are assumed to originate from different traps. The LM-OSL curve from quartz shows an initial peak followed by a broad one. Deconvolution using curve fitting has shown that the composite OSL curve from quartz can be approximated well by using a linear combination of first-order peaks. In addition to the three known components, i.e. fast, medium and slow components from continuous-wave-OSL studies, an additional slow component is also identified for the first time. The dose responses and thermal stabilities of the various components are also studied
Full-range k-domain linearization in spectral-domain optical coherence tomography.
Jeon, Mansik; Kim, Jeehyun; Jung, Unsang; Lee, Changho; Jung, Woonggyu; Boppart, Stephen A
2011-03-10
A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broadband source or at the end of the sample path, and the filtered spectrum with a narrowed line width (∼0.5 nm) is incident on a line-scan camera in the detection path. The wavelength-swept spectra are co-registered with the pixel positions according to their central wavelengths, which can be automatically measured with an optical spectrum analyzer. For imaging, the method does not require a filter or a software recalibration algorithm; it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. The accuracy of k-linearization is maximized by increasing the k-linearization order, which is known to be a crucial parameter for maintaining a narrow point-spread function (PSF) width at increasing depths. The broadening effect is studied by changing the k-linearization order by undersampling to search for the optimal value. The system provides more position information, surpassing the optimum without compromising the imaging speed. The proposed full-range k-domain linearization method can be applied to SD-OCT systems to simplify their hardware/software, increase their speed, and improve the axial image resolution. The experimentally measured width of PSF in air has an FWHM of 8 μm at the edge of the axial measurement range. At an imaging depth of 2.5 mm, the sensitivity of the full-range calibration case drops less than 10 dB compared with the uncompensated case.
Rajagopal, Vaishnavi; Stokes, Chris; Ferzoco, Alessandra
2018-02-01
We report a custom-geometry linear ion trap designed for fluorescence spectroscopy of gas-phase ions at ambient to cryogenic temperatures. Laser-induced fluorescence from trapped ions is collected from between the trapping rods, orthogonal to the excitation laser that runs along the axis of the linear ion trap. To increase optical access to the ion cloud, the diameter of the round trapping rods is 80% of the inscribed diameter, rather than the roughly 110% used to approximate purely quadrupolar electric fields. To encompass as much of the ion cloud as possible, the first collection optic has a 25.4 mm diameter and a numerical aperture of 0.6. The choice of geometry and collection optics yields 107 detected photons/s from trapped rhodamine 6G ions. The trap is coupled to a closed-cycle helium refrigerator, which in combination with two 50 Ohm heaters enables temperature control to below 25 K on the rod electrodes. The purpose of the instrument is to broaden the applicability of fluorescence spectroscopy of gas-phase ions to cases where photon emission is a minority relaxation pathway. Such studies are important to understand how the microenvironment of a chromophore influences excited state charge transfer processes.
Growth of KNN thin films for non-linear optical applications
International Nuclear Information System (INIS)
Sharma, Shweta; Gupta, Reema; Gupta, Vinay; Tomar, Monika
2018-01-01
Two-wave mixing is a remarkable area of research in the field of non-linear optics, finding various applications in the development of opto-electronic devices, photorefractive waveguides, real time holography, etc. Non-linear optical properties of ferroelectric potassium sodium niobate (KNN) thin films have been interrogated using two-wave mixing phenomenon. Regarding this, a-axis oriented K 0.35 Na (1-0.35) NbO 3 thin films were successfully grown on epitaxial matched (100) SrTiO 3 substrate using pulsed laser deposition (PLD) technique. The uniformly distributed Au micro-discs of 200 μm diameter were integrated with KNN/STO thin film to study the plasmonic enhancement in the optical response. Beam amplification has been observed as a result of the two-wave mixing. This is due to the alignment of ferroelectric domains in KNN films and the excitement of plasmons at the metal-dielectric (Au-KNN) interface. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Growth of KNN thin films for non-linear optical applications
Energy Technology Data Exchange (ETDEWEB)
Sharma, Shweta; Gupta, Reema; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi (India); Tomar, Monika [Department of Physics, Miranda House University of Delhi (India)
2018-02-15
Two-wave mixing is a remarkable area of research in the field of non-linear optics, finding various applications in the development of opto-electronic devices, photorefractive waveguides, real time holography, etc. Non-linear optical properties of ferroelectric potassium sodium niobate (KNN) thin films have been interrogated using two-wave mixing phenomenon. Regarding this, a-axis oriented K{sub 0.35}Na{sub (1-0.35)}NbO{sub 3} thin films were successfully grown on epitaxial matched (100) SrTiO{sub 3} substrate using pulsed laser deposition (PLD) technique. The uniformly distributed Au micro-discs of 200 μm diameter were integrated with KNN/STO thin film to study the plasmonic enhancement in the optical response. Beam amplification has been observed as a result of the two-wave mixing. This is due to the alignment of ferroelectric domains in KNN films and the excitement of plasmons at the metal-dielectric (Au-KNN) interface. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
FINAL REPORT "Extreme non-linear optics of plasmas" Pierre Michel (16-LW-022)
Energy Technology Data Exchange (ETDEWEB)
Michel, Pierre [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-11-03
Large laser facilities such as the National Ignition Facility (NIF) are typically limited in performance and physical scale (and thus cost) by optics damage. In this LDRD, we investigated a radically new way to manipulate light at extreme powers and energies, where “traditional” (crystal-based) optical elements are replaced by a medium that is already “broken” and thus does not suffer from optics damage: a plasma. Our method consisted in applying multiple lasers into plasmas to imprint refractive micro-structures with optical properties designed to be similar to those of crystals or dielectric structures used in optics. In particular, we focused our efforts on two elements used to manipulate the polarization of lasers (i.e. the orientation of the light’s electric field vector): i) a polarizer, which only lets a given polarization direction pass and blocks the others, and ii) a “Pockels cell”, which can “rotate” the polarization direction or convert it from linear to elliptical or circular. These two elements are essential building blocks in almost all laser systems – for example, they can be combined to design optical gates. Here, we introduced the new concepts of a “plasma polarizer” and a “plasma Pockels cell”. Both concepts were demonstrated in proof-of-principle laboratory experiments in this LDRD. We also demonstrated that such laser-plasma systems could be used to provide full control of the refractive index of plasmas as well as their dispersion (variation of the index vs. the light wavelength), which constituted the basis for a final experiment aimed at demonstrating the feasibility of “slow light” in plasmas, i.e. the capability to slow down a light pulse almost to a full stop.
Scheme for generating Greenberger-Horne-Zeilinger-type states of n photons
International Nuclear Information System (INIS)
Sagi, Yoav
2003-01-01
In this paper we propose a scheme for creating a three photons Greenberger-Horne-Zeilinger-type (GHZ) state using only linear optics elements and single-photon detectors. We furthermore generalize the scheme for producing any GHZ-like state of n photons. The input state of the scheme consists of a nonentangled state of n photons. Experimental aspects regarding the implementation of the scheme are presented. Finally, the role of such schemes in quantum information processing with photons is discussed
Linear Optical and SERS Study on Metallic Membranes with Subwavelength Complementary Patterns
Hao, Qingzhen; Zeng, Yong; Jensen, Lasse; Werner, Douglas; Crespi, Vincent; Huang, Tony Jun; Interdepartmental Collaboration
2011-03-01
An efficient technique is developed to fabricate optically thin metallic films with subwavelength patterns and their complements simultaneously. By comparing the spectra of the complementary films, we show that Babinet's principle nearly holds in the optical domain. A discrete-dipole approximation can qualitatively describe their spectral dependence on the geometry of the constituent particles and the illuminating polarization. Using pyridine as probe molecules, we studied surface-enhanced Raman spectroscopy (SERS) from the complementary structure. Although the complementary structure posses closely related linear spectra, they have quite different near-field behaviors. For hole arrays, their averaged local field gains as well as the SERS enhancements are strongly correlated to their transmission spectra. We therefore can use cos 4 θ to approximately describe the dependence of the Raman intensity on the excitation polarization angle θ , while the complementary particle arrays present maximal local field gains at wavelengths generally much bigger than their localized surface plasmonic resonant wavelengths.
Quantum Optical Realization of Arbitrary Linear Transformations Allowing for Loss and Gain
Tischler, N.; Rockstuhl, C.; Słowik, K.
2018-04-01
Unitary transformations are routinely modeled and implemented in the field of quantum optics. In contrast, nonunitary transformations, which can involve loss and gain, require a different approach. In this work, we present a universal method to deal with nonunitary networks. An input to the method is an arbitrary linear transformation matrix of optical modes that does not need to adhere to bosonic commutation relations. The method constructs a transformation that includes the network of interest and accounts for full quantum optical effects related to loss and gain. Furthermore, through a decomposition in terms of simple building blocks, it provides a step-by-step implementation recipe, in a manner similar to the decomposition by Reck et al. [Experimental Realization of Any Discrete Unitary Operator, Phys. Rev. Lett. 73, 58 (1994), 10.1103/PhysRevLett.73.58] but applicable to nonunitary transformations. Applications of the method include the implementation of positive-operator-valued measures and the design of probabilistic optical quantum information protocols.
Optical tuning in the arcs and final focus sections of the Stanford Linear Collider
International Nuclear Information System (INIS)
Bambade, P.S.
1989-03-01
In this thesis, we present the experimental tuning procedures developed for the Arcs and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is necessary to maximize the luminosity, by minimizing the beam size at the interaction point, and to reduce backgrounds in the experiment. In the final Focus Section, the correction strategy must result from the principles of the optical design, which is based on cancellations between second order aberrations, and on the ability to measure micron-size beams typical of the SLC. In the Arcs, the corrections were designed after the initial commissioning, to make the system more error-tolerant, through a modification in the optical design, and to enable adjustments of the beam phase-space a the injection to the Final Focus System, through a harmonic perturbation technique inspired from circular accelerators. Although the overall optimization of the SLC is not entirely finished, an almost optimal set-up has been achieved for the optics of the Arcs and of the Final Focus Section. Beams with transverse sizes close to the nominal ones, of a few microns, have been obtained at the interaction point. We present and discuss our results and the optical limits to the present performance. 24 refs., 25 figs., 2 tabs
Optical tuning in the arcs and final focus sections of the Stanford Linear Collider
Energy Technology Data Exchange (ETDEWEB)
Bambade, P.S.
1989-03-01
In this thesis, we present the experimental tuning procedures developed for the Arcs and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is necessary to maximize the luminosity, by minimizing the beam size at the interaction point, and to reduce backgrounds in the experiment. In the final Focus Section, the correction strategy must result from the principles of the optical design, which is based on cancellations between second order aberrations, and on the ability to measure micron-size beams typical of the SLC. In the Arcs, the corrections were designed after the initial commissioning, to make the system more error-tolerant, through a modification in the optical design, and to enable adjustments of the beam phase-space a the injection to the Final Focus System, through a harmonic perturbation technique inspired from circular accelerators. Although the overall optimization of the SLC is not entirely finished, an almost optimal set-up has been achieved for the optics of the Arcs and of the Final Focus Section. Beams with transverse sizes close to the nominal ones, of a few microns, have been obtained at the interaction point. We present and discuss our results and the optical limits to the present performance. 24 refs., 25 figs., 2 tabs.
Counter-propagating dual-trap optical tweezers based on linear momentum conservation
International Nuclear Information System (INIS)
Ribezzi-Crivellari, M.; Huguet, J. M.; Ritort, F.
2013-01-01
We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.
Optical tuning of arcs and final focus section of the Standard Linear Collider (SLC)
International Nuclear Information System (INIS)
Bambade, P.
1989-03-01
In this thesis, we present the experimental tuning procedures developed for the Arcs and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is necessary to maximize the luminosity, by minimizing the beam size at the interaction point, and to reduce backgrounds in the experiment. In the final Focus Section, the correction strategy must result from the principles of the optical design, which is based on cancellations between second order aberrations, and on the ability to measure micron-size beams typical of the SLC. In the Arcs, the corrections were designed after the initial commissioning, to make the system more error-tolerant, through a modification in the optical design, and to enable adjustements of the beam phase-space at the injection to the Final Focus System, through a harmonic perturbation technique inspired from circular accelerators. Although the overall optimization of the SLC is not entirely finished, an almost optimal set-up has been achieved for the optics of the Arcs and of the Final Focus Section. Beams with transverse sizes close to the nominal ones, of a few microns, have been obtained at the interaction point. We present and discuss our results and the optical limits to the present performance [fr
Counter-propagating dual-trap optical tweezers based on linear momentum conservation
Energy Technology Data Exchange (ETDEWEB)
Ribezzi-Crivellari, M.; Huguet, J. M. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ritort, F. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid (Spain)
2013-04-15
We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.
Assembly and offset assignment scheme for self-similar traffic in optical burst switched networks
CSIR Research Space (South Africa)
Muwonge, KB
2007-10-01
Full Text Available at the Label Edge Router (LER) to buffer traffic in the electronic domain. Burst assembly and offset assignment schemes are implemented in a complementary manner to improve QoS of an OBS network. The authors show that OBS network performance is directly related...
Huang, Jen-Fa; Meng, Sheng-Hui; Lin, Ying-Chen
2014-11-01
The optical code-division multiple-access (OCDMA) technique is considered a good candidate for providing optical layer security. An enhanced OCDMA network security mechanism with a pseudonoise (PN) random digital signals type of maximal-length sequence (M-sequence) code switching to protect against eavesdropping is presented. Signature codes unique to individual OCDMA-network users are reconfigured according to the register state of the controlling electrical shift registers. Examples of signature reconfiguration following state switching of the controlling shift register for both the network user and the eavesdropper are numerically illustrated. Dynamically changing the PN state of the shift register to reconfigure the user signature sequence is shown; this hinders eavesdroppers' efforts to decode correct data sequences. The proposed scheme increases the probability of eavesdroppers committing errors in decoding and thereby substantially enhances the degree of an OCDMA network's confidentiality.
High-speed linear optics quantum computing using active feed-forward.
Prevedel, Robert; Walther, Philip; Tiefenbacher, Felix; Böhi, Pascal; Kaltenbaek, Rainer; Jennewein, Thomas; Zeilinger, Anton
2007-01-04
As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.
International Nuclear Information System (INIS)
Li Yong; Lu Jing; Cui Xiaobing; Xu Jiqing; Li Kechang; Sun Huaying; Li Guanghua; Pan Lingyun; Yang Qingxin
2005-01-01
Both the homometal cluster [P(ph 4 )] 2 [Mo 2 O 2 (μ-S) 2 (S 2 ) 2 ] (1) and [Mo 2 O 2 (μ-S) 2 (Et 2 dtc) 2 ] (2) (Et 2 dtc=diethyl-dithiocarbamate) were successfully synthesized by low-temperature solid-state reactions. X-ray single-crystal diffraction studies suggest that compound (1) is a dinuclear anion cluster, and compound (2) is a dinuclear neutral cluster. The two compounds were characterized by elemental analyses, IR spectra and UV-Vis spectra. The third-order non-linear optical (NLO) properties of the clusters were also investigated and all exhibited nice non-linear absorption and self-defocusing performance with moduli of the hyperpolarizabilities 5.145x10 -30 esu for (1) and 5.428x10 -30 esu for (2)
Linearly interpolated sub-symbol optical phase noise suppression in CO-OFDM system.
Hong, Xuezhi; Hong, Xiaojian; He, Sailing
2015-02-23
An optical phase noise suppression algorithm, LI-SCPEC, based on phase linear interpolation and sub-symbol processing is proposed for CO-OFDM system. By increasing the temporal resolution of carrier phase tracking through dividing one symbol into several sub-blocks, i.e., sub-symbols, inter-carrier-interference (ICI) mitigation is achieved in the proposed algorithm. Linear interpolation is employed to obtain a reliable temporal reference for sub-symbol phase estimation. The new algorithm, with only a few number of sub-symbols (N(B) = 4), can provide a considerably larger laser linewidth tolerance than several other ICI mitigation algorithms as demonstrated by Monte-Carlo simulations. Numerical analysis verifies that the best performance is achieved with an optimal and moderate number of sub-symbols. Complexity analysis shows that the required number of complex-valued multiplications is independent of the number of sub-symbols used in the proposed algorithm.
Superconducting resonators as beam splitters for linear-optics quantum computation.
Chirolli, Luca; Burkard, Guido; Kumar, Shwetank; Divincenzo, David P
2010-06-11
We propose and analyze a technique for producing a beam-splitting quantum gate between two modes of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave approximation; an exact calculation gives a fidelity of >0.9992. Our construction completes the toolkit for linear-optics quantum computing in circuit quantum electrodynamics.
"Real-Time Optical Laboratory Linear Algebra Solution Of Partial Differential Equations"
Casasent, David; Jackson, James
1986-03-01
A Space Integrating (SI) Optical Linear Algebra Processor (OLAP) employing space and frequency-multiplexing, new partitioning and data flow, and achieving high accuracy performance with a non base-2 number system is described. Laboratory data on the performance of this system and the solution of parabolic Partial Differential Equations (PDEs) is provided. A multi-processor OLAP system is also described for the first time. It use in the solution of multiple banded matrices that frequently arise is then discussed. The utility and flexibility of this processor compared to digital systolic architectures should be apparent.
Deconfinement and Phase Diagram of Bosons in a Linear Optical Lattice with a Particle Reservoir
International Nuclear Information System (INIS)
Majumdar, Kingshuk; Fertig, H.A.
2005-01-01
We investigate the zero-temperature phases of bosons in a one-dimensional optical lattice with an explicit tunnel coupling to a Bose-condensed particle reservoir. Renormalization group analysis of this system is shown to reveal three phases: one in which the linear system is fully phase locked to the reservoir; one in which Josephson vortices between the one-dimensional system and the particle reservoir deconfine due to quantum fluctuations, leading to a decoupled state in which the one-dimensional system is metallic; and one in which the one-dimensional system is in a Mott insulating state
Guo, Rui; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo
2017-03-01
The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled state approximatively. Different from previous protocols, each logic qubit is encoded in the coherent state. This protocol is based on the linear optics, which is feasible in experimental technology. This protocol may be useful in quantum information based on the C-GHZ state.
Two-level modulation scheme to reduce latency for optical mobile fronthaul networks.
Sung, Jiun-Yu; Chow, Chi-Wai; Yeh, Chien-Hung; Chang, Gee-Kung
2016-10-31
A system using optical two-level orthogonal-frequency-division-multiplexing (OFDM) - amplitude-shift-keying (ASK) modulation is proposed and demonstrated to reduce the processing latency for the optical mobile fronthaul networks. At the proposed remote-radio-head (RRH), the high data rate OFDM signal does not need to be processed, but is directly launched into a high speed photodiode (HSPD) and subsequently emitted by an antenna. Only a low bandwidth PD is needed to recover the low data rate ASK control signal. Hence, it is simple and provides low-latency. Furthermore, transporting the proposed system over the already deployed optical-distribution-networks (ODNs) of passive-optical-networks (PONs) is also demonstrated with 256 ODN split-ratios.
International Nuclear Information System (INIS)
Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.
2015-01-01
It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta–Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5–3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners. - Highlights: • We solve the multiple-right-hand-side problem in DOT with a block BiCGStab method. • We examine the CPU times of the block solver and the traditional sequential solver. • The block solver is faster than the sequential solver by a factor of 1.5–3.0. • Multi-threading block solvers give additional speedup under limited threads situation.
Energy Saving Scheme Based On Traffic Forwarding For Optical Fiber Access Networks
DEFF Research Database (Denmark)
Lopez, G. Arturo Rodes; Estaran Tolosa, Jose Manuel; Vegas Olmos, Juan José
2013-01-01
We report on an energy saving block that regroups and powers off OLTs during low traffic periods, resulting in energy savings up to 87,5% in the central office of optical access networks.......We report on an energy saving block that regroups and powers off OLTs during low traffic periods, resulting in energy savings up to 87,5% in the central office of optical access networks....
Czech Academy of Sciences Publication Activity Database
Mašek, Jan; Geleyn, J.- F.; Brožková, Radmila; Giot, O.; Achom, H. O.; Kuma, P.
2016-01-01
Roč. 142, č. 659 (2016), s. 304-326 ISSN 0035-9009 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : shortwave radiative transfer * delta-two stream system * broadband approach * Malkmus band model * optical saturation * idealized optical paths * spectral overlap Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.444, year: 2016
Maiti, Anup Kumar; Nath Roy, Jitendra; Mukhopadhyay, Sourangshu
2007-08-01
In the field of optical computing and parallel information processing, several number systems have been used for different arithmetic and algebraic operations. Therefore an efficient conversion scheme from one number system to another is very important. Modified trinary number (MTN) has already taken a significant role towards carry and borrow free arithmetic operations. In this communication, we propose a tree-net architecture based all optical conversion scheme from binary number to its MTN form. Optical switch using nonlinear material (NLM) plays an important role.
Peng, Miao; Chen, Ming; Zhou, Hui; Wan, Qiuzhen; Jiang, LeYong; Yang, Lin; Zheng, Zhiwei; Chen, Lin
2018-01-01
High peak-to-average power ratio (PAPR) of the transmit signal is a major drawback in optical orthogonal frequency division multiplexing (OOFDM) system. In this paper, we propose and experimentally demonstrate a novel hybrid scheme, combined the Huffman coding and Discrete Fourier Transmission-Spread (DFT-spread), in order to reduce high PAPR in a 16-QAM short-reach intensity-modulated and direct-detection OOFDM (IMDD-OOFDM) system. The experimental results demonstrated that the hybrid scheme can reduce the PAPR by about 1.5, 2, 3 and 6 dB, and achieve 1.5, 1, 2.5 and 3 dB receiver sensitivity improvement compared to clipping, DFT-spread and Huffman coding and original OFDM signals, respectively, at an error vector magnitude (EVM) of -10 dB after transmission over 20 km standard single-mode fiber (SSMF). Furthermore, the throughput gain can be of the order of 30% by using the hybrid scheme compared with the cases of without applying the Huffman coding.
Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications
Driscoll, Jeffrey B.
Silicon photonics has grown rapidly since the first Si electro-optic switch was demonstrated in 1987, and the field has never grown more quickly than it has over the past decade, fueled by milestone achievements in semiconductor processing technologies for low loss waveguides, high-speed Si modulators, Si lasers, Si detectors, and an enormous toolbox of passive and active integrated devices. Silicon photonics is now on the verge of major commercialization breakthroughs, and optical communication links remain the force driving integrated and Si photonics towards the first commercial telecom and datacom transceivers; however other potential and future applications are becoming uncovered and refined as researchers reveal the benefits of manipulating photons on the nanoscale. This thesis documents an exploration into the unique guided-wave and nonlinear properties of deeply-scaled high-index-contrast sub-wavelength Si waveguides. It is found that the tight confinement inherent to single-mode channel waveguides on the silicon-on-insulator platform lead to a rich physics, which can be leveraged for new devices extending well beyond simple passive interconnects and electro-optic devices. The following chapters will concentrate, in detail, on a number of unique physical features of Si waveguides and extend these attributes towards new and interesting devices. Linear optical properties and nonlinear optical properties are investigated, both of which are strongly affected by tight optical confinement of the guided waveguide modes. As will be shown, tight optical confinement directly results in strongly vectoral modal components, where the electric and magnetic fields of the guided modes extend into all spatial dimensions, even along the axis of propagation. In fact, the longitudinal electric and magnetic field components can be just as strong as the transverse fields, directly affecting the modal group velocity and energy transport properties since the longitudinal fields
Yuan, Jian-guo; Liang, Meng-qi; Wang, Yong; Lin, Jin-zhao; Pang, Yu
2016-03-01
A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check (QC-LDPC) codes for optical transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Urbanke (RU) algorithm. Furthermore, a novel irregular QC-LDPC(4 288, 4 020) code with high code-rate of 0.937 is constructed by this novel construction scheme. The simulation analyses show that the net coding gain ( NCG) of the novel irregular QC-LDPC(4 288,4 020) code is respectively 2.08 dB, 1.25 dB and 0.29 dB more than those of the classic RS(255, 239) code, the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code at the bit error rate ( BER) of 10-6. The irregular QC-LDPC(4 288, 4 020) code has the lower encoding/decoding complexity compared with the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code. The proposed novel QC-LDPC(4 288, 4 020) code can be more suitable for the increasing development requirements of high-speed optical transmission systems.
Sub-wavelength plasmonic readout for direct linear analysis of optically tagged DNA
Varsanik, Jonathan; Teynor, William; LeBlanc, John; Clark, Heather; Krogmeier, Jeffrey; Yang, Tian; Crozier, Kenneth; Bernstein, Jonathan
2010-02-01
This work describes the development and fabrication of a novel nanofluidic flow-through sensing chip that utilizes a plasmonic resonator to excite fluorescent tags with sub-wavelength resolution. We cover the design of the microfluidic chip and simulation of the plasmonic resonator using Finite Difference Time Domain (FDTD) software. The fabrication methods are presented, with testing procedures and preliminary results. This research is aimed at improving the resolution limits of the Direct Linear Analysis (DLA) technique developed by US Genomics [1]. In DLA, intercalating dyes which tag a specific 8 base-pair sequence are inserted in a DNA sample. This sample is pumped though a nano-fluidic channel, where it is stretched into a linear geometry and interrogated with light which excites the fluorescent tags. The resulting sequence of optical pulses produces a characteristic "fingerprint" of the sample which uniquely identifies any sample of DNA. Plasmonic confinement of light to a 100 nm wide metallic nano-stripe enables resolution of a higher tag density compared to free space optics. Prototype devices have been fabricated and are being tested with fluorophore solutions and tagged DNA. Preliminary results show evanescent coupling to the plasmonic resonator is occurring with 0.1 micron resolution, however light scattering limits the S/N of the detector. Two methods to reduce scattered light are presented: index matching and curved waveguides.
Liu, Ying; Song, Huadong; Zhu, Panpan; Lu, Hao; Tang, Qi
2017-08-01
The elasticity of erythrocytes is an important criterion to evaluate the quality of blood. This paper presents a novel research on erythrocytes' elasticity with the application of optical tweezers and the finite element method (FEM) during blood storage. In this work, the erythrocytes with different in vitro times were linearly stretched by trapping force using optical tweezers and the time dependent elasticity of erythrocytes was investigated. The experimental results indicate that the membrane shear moduli of erythrocytes increased with the increasing in vitro time, namely the elasticity was decreasing. Simultaneously, an erythrocyte shell model with two parameters (membrane thickness h and membrane shear modulus H) was built to simulate the linear stretching states of erythrocytes by the FEM, and the simulations conform to the results obtained in the experiment. The evolution process was found that the erythrocytes membrane thicknesses were decreasing. The analysis assumes that the partial proteins and lipid bilayer of erythrocyte membrane were decomposed during the in vitro preservation of blood, which results in thin thickness, weak bending resistance, and losing elasticity of erythrocyte membrane. This study implies that the FEM can be employed to investigate the inward mechanical property changes of erythrocyte in different environments, which also can be a guideline for studying the erythrocyte mechanical state suffered from different diseases.
Structural, electronic, linear, and nonlinear optical properties of ZnCdTe{sub 2} chalcopyrite
Energy Technology Data Exchange (ETDEWEB)
Ouahrani, Tarik [Laboratoire de Physique Theorique, Universite de Tlemcen, B.P. 230, Tlemcen 13000 (Algeria); Reshak, Ali H. [Institute of Physical Biology, South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Microelectronic Engineering, University of Malaysia Perlis (UniMAP), Block A, Kompleks Pusat Pengajian, 02600 Arau Jejawi, Perlis (Malaysia); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique, Universite de Mascara, Mascara 29000 (Algeria); Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Baltache, H.; Amrani, B. [Laboratoire de Physique Quantique et de Modelisation Mathematique, Universite de Mascara, Mascara 29000 (Algeria); Bouhemadou, A. [Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Faculty of Sciences, Department of Physics, University of Setif, Setif 19000 (Algeria)
2011-03-15
We report results of first-principles density functional calculations using the full-potential linearized augmented plane wave method. The generalized gradient approximation (GGA) and the Engel-Vosko-GGA (EV-GGA) formalism were used for the exchange-correlation energy to calculate the structural, electronic, linear, and nonlinear optical properties of the chalcopyrite ZnCdTe{sub 2} compound. The valence band maximum and the conduction band minimum are located at the {gamma}-point, resulting in a direct band gap of about 0.71 eV for GGA and 1.29 eV for EV-GGA. The results of bulk properties, such as lattice parameters (a, c, and u), bulk modulus B, and its pressure derivative B' are evaluated. The optical properties of this compound, namely the real and the imaginary parts of the dielectric function, reflectivity, and refractive index, show a considerable anisotropy as a consequence ZnCdTe{sub 2} posseses a strong birefringence. In addition, the extinction coefficient, the electron energy loss function, and the nonlinear susceptibility are calculated and their spectra are analyzed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Mancosu, Pietro; Fogliata, Antonella; Stravato, Antonella; Tomatis, Stefano; Cozzi, Luca; Scorsetti, Marta
2016-01-01
Frameless stereotactic radiosurgery (SRS) requires dedicated systems to monitor the patient position during the treatment to avoid target underdosage due to involuntary shift. The optical surface monitoring system (OSMS) is here evaluated in a phantom-based study. The new EDGE linear accelerator from Varian (Varian, Palo Alto, CA) integrates, for cranial lesions, the common cone beam computed tomography (CBCT) and kV-MV portal images to the optical surface monitoring system (OSMS), a device able to detect real-time patient׳s face movements in all 6 couch axes (vertical, longitudinal, lateral, rotation along the vertical axis, pitch, and roll). We have evaluated the OSMS imaging capability in checking the phantoms׳ position and monitoring its motion. With this aim, a home-made cranial phantom was developed to evaluate the OSMS accuracy in 4 different experiments: (1) comparison with CBCT in isocenter location, (2) capability to recognize predefined shifts up to 2° or 3cm, (3) evaluation at different couch angles, (4) ability to properly reconstruct the surface when the linac gantry visually block one of the cameras. The OSMS system showed, with a phantom, to be accurate for positioning in respect to the CBCT imaging system with differences of 0.6 ± 0.3mm for linear vector displacement, with a maximum rotational inaccuracy of 0.3°. OSMS presented an accuracy of 0.3mm for displacement up to 1cm and 1°, and 0.5mm for larger displacements. Different couch angles (45° and 90°) induced a mean vector uncertainty < 0.4mm. Coverage of 1 camera produced an uncertainty < 0.5mm. Translations and rotations of a phantom can be accurately detect with the optical surface detector system. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Circularly polarized light to study linear magneto-optics for ferrofluids: θ-scan technique
Meng, Xiangshen; Huang, Yan; He, Zhenghong; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Li, Jian; Qiu, Xiaoyan
2018-06-01
Circularly polarized light can be divided into two vertically linearly polarized light beams with ±π/2 phase differences. In the presence of an external magnetic field, when circularly polarized light travels through a ferrofluid film, whose thickness is no more than that of λ/4 plate, magneto-optical, magnetic birefringence and dichroism effects cause the transmitted light to behave as elliptically polarized light. Using angular scan by a continuously rotating polarizer as analyzer, the angular (θ) distribution curve of relative intensity (T) corresponding to elliptically polarized light can be measured. From the T ‑ θ curve having ellipsometry, the parameters such as the ratio of short to long axis, and angular orientation of the long axis to the vertical field direction can be obtained. Thus, magnetic birefringence and dichroism can be probed simultaneously by measuring magneto-optical, positive or negative birefringence and dichroism features from the transmission mode. The proposed method is called θ-scan technique, and can accurately determine sample stability, magnetic field direction, and cancel intrinsic light source ellipticity. This study may be helpful to further research done to ferrofluids and other similar colloidal samples with anisotropic optics.
Analogy between optically driven injection-locked laser diodes and driven damped linear oscillators
International Nuclear Information System (INIS)
Murakami, Atsushi; Shore, K. Alan
2006-01-01
An analytical study of optically driven laser diodes (LDs) has been undertaken to meet the requirement for a theoretical treatment for chaotic drive and synchronization occurring in the injection-locked LDs with strong injection. A small-signal analysis is performed for the sets of rate equations for the injection-locked LDs driven by a sinusoidal optical signal. In particular, as a model of chaotic driving signals from LD dynamics, an optical signal caused by direct modulation to the master LD is assumed, oscillating both in field amplitude and phase as is the case with chaotic driving signals. Consequently, we find conditions that allow reduction in the degrees of freedom of the driven LD. Under these conditions, the driven response is approximated to a simple form which is found to be equivalent to driven damped linear oscillators. The validity of the application of this theory to previous work on the synchronization of chaos and related phenomena occurring in the injection-locked LDs is demonstrated
Magnetism, optical, and thermoelectric response of CdFe2O4 by using DFT scheme
Mahmood, Q.; Yaseen, M.; Bhamu, K. C.; Mahmood, Asif; Javed, Y.; Ramay, Shahid M.
2018-03-01
Comparative analysis of electronic, magnetic, optical, and thermoelectric properties of CdFe2O4, calculated by employing PBEsol + mBJ has been done. The PBEsol reveals metallic nature, while TB-mBJ illustrates ferromagnetic semiconducting behavior. The reasons behind the origin of ferromagnetism are explored by observing the exchange, crystal field, and John–Teller energies. The optical nature is investigated by analyzing dielectric constants, refraction, absorption coefficient, reflectivity, and optical conductivity. Finally, thermoelectric properties are elaborated by describing the electrical and thermal conductivities, Seebeck coefficient, and power factor. The strong absorption for the visible energy and high power factor suggest CdFe2O4 as the potential candidate for renewable energy applications.
Cappi, R; Martini, M; Métral, Elias; Métral, G; Steerenberg, R; Müller, A S
2003-01-01
The CERN Proton Synchrotron machine is built using combined function magnets. The control of the linear tune as well as the chromaticity in both planes is achieved by means of special coils added to the main magnets, namely two pole-face-windings and one figure-of-eight loop. As a result, the overall magnetic field configuration is rather complex not to mention the saturation effects induced at top-energy. For these reasons a linear model of the PS main magnet does not provide sufficient precision to model particle dynamics. On the other hand, a sophisticated optical model is the key element for the foreseen intensity upgrade and, in particular, for the novel extraction mode based on adiabatic capture of beam particles inside stable islands in transverse phase space. A solution was found by performing accurate measurement of the nonlinear tune as a function of both amplitude and momentum offset so to extract both linear and nonlinear properties of the lattice. In this paper the measurement results are present...
A linear laser-driver array for optical transmission in the LHC experiments
Cervelli, G; Moreira, P; Vasey, F
2000-01-01
A 4-way linear laser driver has been designed and implemented in a commercial 0.25 mu m CMOS technology. The full-custom IC is intended for analogue and digital data transmission as part of the 50 000 optical fibre links of the CMS particle tracking system. Intrinsic radiation tolerance and specific design methodologies enable the device to operate over 10 years in the harsh radiation environment of the innermost LHC detectors. Although optimised for analogue operation the driver is compatible with LVDS digital signalling. A combination of linearization methods achieves good analogue performance (8-bit equivalent dynamic range with a bandwidth of 100 MHz), while maintaining wide input common-mode range (+or-350 mV) and limited power dissipation. The linearly amplified signal is added to a DC current, which can be set over a wide range (-60 mA to +60 mA). The latter capability allows tracking of changes in laser threshold due to ageing or radiation damage. The driver gain and bias current are set via a serial ...
International Nuclear Information System (INIS)
Karimi, M.J.; Rezaei, G.; Nazari, M.
2014-01-01
Based on the effective mass and parabolic one band approximations, simultaneous effects of the geometrical size, hydrogenic impurity, hydrostatic pressure, and temperature on the intersubband optical absorption coefficients and refractive index changes in multilayered spherical quantum dots are studied. Energy eigenvalues and eigenvectors are calculated using the fourth-order Runge–Kutta method and optical properties are obtained using the compact density matrix approach. The results indicate that the hydrogenic impurity, hydrostatic pressure, temperature and geometrical parameters such as the well and barrier widths have a great influence on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes. -- Highlights: • Hydrogenic impurity effects on the optical properties of a MSQD are investigated. • Hydrostatic pressure and temperature effects are also studied. • Hydrogenic impurity has a great influence on the linear and nonlinear ACs and RICs. • Hydrostatic pressure and temperature change the linear and nonlinear ACs and RICs
Enhanced signaling scheme with admission control in the hybrid optical wireless (HOW) networks
DEFF Research Database (Denmark)
Yan, Ying; Yu, Hao; Wessing, Henrik
2009-01-01
that it can support stringent Quality of Service (QoS) requirements. In this paper, we describe and evaluate a resource management framework designed for the HOW networks. There are two parts in the resource management framework The first part is the Enhanced MPCP (E-MPCP) scheme aiming at improving signaling...... dropping probability depend on several factors. These factors include the frame duration, the traffic load and the total number of shared users. The results also highlight that our proposed system achieves significant improvements over the traditional approach in terms of user QoS guarantee and network...
Lith, van B.S.; Thije Boonkkamp, ten J.H.M.; IJzerman, W.L.; Tukker, T.W.
2015-01-01
We compute numerical solutions of Liouville's equation with a discontinuous Hamiltonian. We assume that the underlying Hamiltonian system has a well-defined behaviour even when the Hamiltonian is discontinuous. In the case of geometrical optics such a discontinuity yields the familiar Snell's law or
A nearly-linear computational-cost scheme for the forward dynamics of an N-body pendulum
Chou, Jack C. K.
1989-01-01
The dynamic equations of motion of an n-body pendulum with spherical joints are derived to be a mixed system of differential and algebraic equations (DAE's). The DAE's are kept in implicit form to save arithmetic and preserve the sparsity of the system and are solved by the robust implicit integration method. At each solution point, the predicted solution is corrected to its exact solution within given tolerance using Newton's iterative method. For each iteration, a linear system of the form J delta X = E has to be solved. The computational cost for solving this linear system directly by LU factorization is O(n exp 3), and it can be reduced significantly by exploring the structure of J. It is shown that by recognizing the recursive patterns and exploiting the sparsity of the system the multiplicative and additive computational costs for solving J delta X = E are O(n) and O(n exp 2), respectively. The formulation and solution method for an n-body pendulum is presented. The computational cost is shown to be nearly linearly proportional to the number of bodies.
Yahia, I. S.; Ganesh, V.; Shkir, M.; AlFaify, S.; Zahran, H. Y.; Algarni, H.; Abutalib, M. M.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.; AlBassam, A. M.
2016-09-01
In the current work, the authors present the systematic study on linear and nonlinear optical properties of Copper-phathalocyanine thin film deposited by thermal evaporation system for the first time. The thickness of the prepared thin film was measured and found to be ~300 nm. X-ray diffraction and AFM study confirms that the prepared thin film possess good quality. The orientation of the grown thin film is found to be along (100). UV-vis-NIR study shows that the deposited thin film is highly transparent (>80%) in the wavelength range of 700-2500 nm. Further, the recorded optical data was used to determine the various linear and nonlinear optical parameters. The calculated value of refractive index is found to be in the range of 0.4-1.0. The direct and indirect band gap value is found to be 2.9 and 3.25 eV, respectively. The value of linear and nonlinear susceptibilities is found to be in order of 10-12. The higher value of linear and nonlinear parameters makes it suitable for optoelectronic applications.
Energy Technology Data Exchange (ETDEWEB)
Yahia, I.S. [Nano-Science & Semiconductor Labs, Metallurgical Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Ganesh, V. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Shkir, M., E-mail: shkirphysics@gmail.com [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); AlFaify, S. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Zahran, H.Y. [Nano-Science & Semiconductor Labs, Metallurgical Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Algarni, H. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abutalib, M.M.; Al-Ghamdi, Attieh A. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, Jeddah (Saudi Arabia); El-Naggar, A.M.; AlBassam, A.M. [Research Chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Dept., College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)
2016-09-01
In the current work, the authors present the systematic study on linear and nonlinear optical properties of Copper-phathalocyanine thin film deposited by thermal evaporation system for the first time. The thickness of the prepared thin film was measured and found to be ~300 nm. X-ray diffraction and AFM study confirms that the prepared thin film possess good quality. The orientation of the grown thin film is found to be along (100). UV–vis-NIR study shows that the deposited thin film is highly transparent (>80%) in the wavelength range of 700–2500 nm. Further, the recorded optical data was used to determine the various linear and nonlinear optical parameters. The calculated value of refractive index is found to be in the range of 0.4–1.0. The direct and indirect band gap value is found to be 2.9 and 3.25 eV, respectively. The value of linear and nonlinear susceptibilities is found to be in order of 10{sup −12}. The higher value of linear and nonlinear parameters makes it suitable for optoelectronic applications.
Falvo, Cyril
2018-02-01
The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.
Directory of Open Access Journals (Sweden)
B. M. Monge-Sanz
2013-09-01
Full Text Available This study evaluates effects and applications of a new linear parameterisation for stratospheric methane and water vapour. The new scheme (CoMeCAT is derived from a 3-D full-chemistry-transport model (CTM. It is suitable for any global model, and is shown here to produce realistic profiles in the TOMCAT/SLIMCAT 3-D CTM and the ECMWF (European Centre for Medium-Range Weather Forecasts general circulation model (GCM. Results from the new scheme are in good agreement with the full-chemistry CTM CH4 field and with observations from the Halogen Occultation Experiment (HALOE. The scheme is also used to derive stratospheric water increments, which in the CTM produce vertical and latitudinal H2O variations in fair agreement with satellite observations. Stratospheric H2O distributions in the ECMWF GCM show realistic overall features, although concentrations are smaller than in the CTM run (up to 0.5 ppmv smaller above 10 hPa. The potential of the new CoMeCAT tracer for evaluating stratospheric transport is exploited to assess the impacts of nudging the free-running GCM to ERA-40 and ERA-Interim reanalyses. The nudged GCM shows similar transport patterns to the offline CTM forced by the corresponding reanalysis data. The new scheme also impacts radiation and temperature in the model. Compared to the default CH4 climatology and H2O used by the ECMWF radiation scheme, the main effect on ECMWF temperatures when considering both CH4 and H2O from CoMeCAT is a decrease of up to 1.0 K over the tropical mid/low stratosphere. The effect of using the CoMeCAT scheme for radiative forcing (RF calculations is investigated using the offline Edwards–Slingo radiative transfer model. Compared to the default model option of a tropospheric global 3-D CH4 value, the CoMeCAT distribution produces an overall change in the annual mean net RF of up to −30 mW m−2.
Implementation of trinary logic in a polarization encoded optical shadow-casting scheme.
Rizvi, R A; Zaheer, K; Zubairy, M S
1991-03-10
The design of various multioutput trinary combinational logic units by a polarization encoded optical shadow-casting (POSC) technique is presented. The POSC modified algorithm is employed to design and implement these logic elements in a trinary number system with separate and simultaneous generation of outputs. A detailed solution of the POSC logic equations for a fixed source plane and a fixed decoding mask is given to obtain input pixel coding for a trinary half-adder, full adder, and subtractor.
Post-processing with linear optics for improving the quality of single-photon sources
International Nuclear Information System (INIS)
Berry, Dominic W; Scheel, Stefan; Myers, Casey R; Sanders, Barry C; Knight, Peter L; Laflamme, Raymond
2004-01-01
Triggered single-photon sources produce the vacuum state with non-negligible probability, but produce a much smaller multiphoton component. It is therefore reasonable to approximate the output of these photon sources as a mixture of the vacuum and single-photon states. We show that it is impossible to increase the probability for a single photon using linear optics and photodetection on fewer than four modes. This impossibility is due to the incoherence of the inputs; if the inputs were pure-state superpositions, it would be possible to obtain a perfect single-photon output. In the more general case, a chain of beam splitters can be used to increase the probability for a single photon, but at the expense of adding an additional multiphoton component. This improvement is robust against detector inefficiencies, but is degraded by distinguishable photons, dark counts or multiphoton components in the input
Spatiotemporal dynamics of Bose-Einstein condensates in linear- and circular-chain optical lattices
International Nuclear Information System (INIS)
Tsukada, N.
2002-01-01
We investigate the spatiotemporal dynamics of Bose-Einstein condensates in optical lattices that have a linear-or a circular-chain configuration with the tunneling couplings between nearest-neighbor lattice sites. A discrete nonlinear Schroedinger equation has been solved for various initial conditions and for a definite range of repulsive and attractive interatomic interactions. It is shown that the diversity of the spatiotemporal dynamics of the atomic population distribution such as a macroscopic self-trapping, bright and dark solitons, and symmetry breaking is derived from the positive and negative interatomic interactions. For the circular-chain configuration, two types of rotational modes are obtained as we introduce a definite relation for the initial phase conditions
Wang, Hong; Ren, Bao-Cang; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo
2017-10-01
Hyperentanglement has significant applications in quantum information processing. Here we present an efficient hyperentanglement concentration protocol (hyper-ECP) for partially hyperentangled Bell states simultaneously entangled in polarization, spatial-mode and time-bin degrees of freedom (DOFs) with the parameter-splitting method, where the parameters of the partially hyperentangled Bell states are known to the remote parties. In this hyper-ECP, only one remote party is required to perform some local operations on the three DOFs of a photon, only the linear optical elements are considered, and the success probability can achieve the maximal value. Our hyper-ECP can be easily generalized to concentrate the N-photon partially hyperentangled Greenberger-Horne-Zeilinger states with known parameters, where the multiple DOFs have largely improved the channel capacity of long-distance quantum communication. All of these make our hyper-ECP more practical and useful in high-capacity long-distance quantum communication.
Optical fibres sensor based in the intensity switch of a linear laser with two Bragg gratings
International Nuclear Information System (INIS)
Basurto P, M.A.; Kuzin, E.A.; Archundia B, C.; Marroquin, E.; May A, M.; Cerecedo N, H.H.; Sanchez M, J.J.; Tentori S, D.; Marquez B, I.; Shliagin, M.; Miridonov, S.
2000-01-01
In this work we propose a new configuration for an optical fiber temperature sensor, based on a linear type Er-doped fiber laser. The laser cavity consists of an Er-doped fiber and two identical Bragg gratings at the fiber ends (working as reflectors). Temperature changes are detected by measuring, through one of the gratings, the intensity variations at the system's output. When the temperature of one of the Bragg gratings is modified, a wavelength shift of its spectral reflectivity is observed. Hence, the laser emission intensity of the system is modified. We present experimental results of the intensity switch observed when the temperature difference between the gratings detunes their spectral reflectance. Making use of this effect it is possible to develop limit comparators to bound the temperature range for the object under supervision. This limiting work can be performed with a high sensitivity using a very simple interrogation procedure. (Author)
Significant and variable linear polarization during the prompt optical flash of GRB 160625B.
Troja, E.; Lipunov, V. M.; Mundell, C. G.; Butler, N. R.; Watson, A. M.; Kobayashi, S.; Cenko, S. B.; Marshall, F. E.; Ricci, R.; Fruchter, A.; Wieringa, M. H.; Gorbovskoy, E. S.; Kornilov, V.; Kutyrev, A.; Lee, W. H.; Toy, V.; Tyurina, N. V.; Budnev, N. M.; Buckley, D. A. H.; González, J.; Gress, O.; Horesh, A.; Panasyuk, M. I.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rebolo Lopez, R.; Richer, M. G.; Roman-Zuniga, C.; Serra-Ricart, M.; Yurkov, V.; Gehrels, N.
2017-07-01
Newly formed black holes of stellar mass launch collimated outflows (jets) of ionized matter that approach the speed of light. These outflows power prompt, brief and intense flashes of γ-rays known as γ-ray bursts (GRBs), followed by longer-lived afterglow radiation that is detected across the electromagnetic spectrum. Measuring the polarization of the observed GRB radiation provides a direct probe of the magnetic fields in the collimated jets. Rapid-response polarimetric observations of newly discovered bursts have probed the initial afterglow phase, and show that, minutes after the prompt emission has ended, the degree of linear polarization can be as high as 30 per cent - consistent with the idea that a stable, globally ordered magnetic field permeates the jet at large distances from the central source. By contrast, optical and γ-ray observations during the prompt phase have led to discordant and often controversial results, and no definitive conclusions have been reached regarding the origin of the prompt radiation or the configuration of the magnetic field. Here we report the detection of substantial (8.3 ± 0.8 per cent from our most conservative simulation), variable linear polarization of a prompt optical flash that accompanied the extremely energetic and long-lived prompt γ-ray emission from GRB 160625B. Our measurements probe the structure of the magnetic field at an early stage of the jet, closer to its central black hole, and show that the prompt phase is produced via fast-cooling synchrotron radiation in a large-scale magnetic field that is advected from the black hole and distorted by dissipation processes within the jet.
Sun, Deyong; Hu, Chuanmin; Qiu, Zhongfeng; Wang, Shengqiang
2015-06-01
A new scheme has been proposed by Lee et al. (2014) to reconstruct hyperspectral (400 - 700 nm, 5 nm resolution) remote sensing reflectance (Rrs(λ), sr-1) of representative global waters using measurements at 15 spectral bands. This study tested its applicability to optically complex turbid inland waters in China, where Rrs(λ) are typically much higher than those used in Lee et al. (2014). Strong interdependence of Rrs(λ) between neighboring bands (≤ 10 nm interval) was confirmed, with Pearson correlation coefficient (PCC) mostly above 0.98. The scheme of Lee et al. (2014) for Rrs(λ) re-construction with its original global parameterization worked well with this data set, while new parameterization showed improvement in reducing uncertainties in the reconstructed Rrs(λ). Mean absolute error (MAERrs(λi)) in the reconstructed Rrs(λ) was mostly -1 between 400 and 700nm, and mean relative error (MRERrs(λi)) was rs(λ) spectra. When Rrs(λ) at the MODIS bands were used to reconstruct the hyperspectral Rrs(λ), MAERrs(λi) was -1 and MRERrs(λi) was rs(λ) at the MERIS bands were used, MAERrs(λi) in the reconstructed hyperspectral Rrs(λ) was -1 and MRERrs(λi) was rs(λ) data using spectral bands that may not exist on satellite sensors.
A Novel Scheme of Fast-frequency Hopping Optical CDMA System with No-hit-zone Sequence
Ji, Jianhua; liu, Ling; Wang, Ke; Zhang, Zhipeng; Xu, Ming
2013-09-01
In traditional fast frequency-hopping OCDMA (FFH-OCDMA) system, beat noise and multiple-access interference are the main performance limitations, and complicated power control must be employed to eliminate the near-far effect. In this paper, a novel scheme of FFH-OCDMA with no-hit-zone sequence is proposed, which is named NHZ FFH-OCDMA. In NHZ FFH-OCDMA, the synchronization among users can be controlled within permissible time delay, and the code cross-correlation for different users equals zero. Therefore, near-far effect can be eliminated. Furthermore, beat noise and multiple-access interference also can be removed. Simulation of eight simultaneous users with dada rate 100 Mbit/s is demonstrated, where the fiber link consists of 50 km single-mode fiber, plus 5 km dispersion compensating fiber. Simulation results show that the near-far problem of NHZ FFH-OCDMA can be eliminated, and complicated power control can be removed. Therefore, this scheme is a good candidate for optical access network.
Kumar, Love; Sharma, Vishal; Singh, Amarpal
2018-02-01
Wireless sensor networks have tremendous applications, such as civil, military, and environmental monitoring. In most of the applications, sensor data are required to be propagated over the internet/core networks, which result in backhaul setback. Subsequently, there is a necessity to backhaul the sensed information of such networks together with prolonging of the transmission link. Passive optical network (PON) is next-generation access technology emerging as a potential candidate for convergence of the sensed data to the core system. Earlier, the work with single-optical line terminal-PON was demonstrated and investigated merely analytically. This work is an attempt to demonstrate a practical model of a bidirectional single-sink wireless sensor network-PON converged network in which the collected data from cluster heads are transmitted over PON networks. Further, modeled converged structure has been investigated under the influence of double, single, and tandem sideband modulation schemes incorporating a corresponding phase-delay to the sensor data entities that have been overlooked in the past. The outcome illustrates the successful fusion of the sensor data entities over PON with acceptable bit error rate and signal to noise ratio serving as a potential development in the sphere of such converged networks. It has also been revealed that the data entities treated with tandem side band modulation scheme help in improving the performance of the converged structure. Additionally, analysis for uplink transmission reported with queue theory in terms of time cycle, average time delay, data packet generation, and bandwidth utilization. An analytical analysis of proposed converged network shows that average time delay for data packet transmission is less as compared with time cycle delay.
Demonstration of feed-forward control for linear optics quantum computation
International Nuclear Information System (INIS)
Pittman, T.B.; Jacobs, B.C.; Franson, J.D.
2002-01-01
One of the main requirements in linear optics quantum computing is the ability to perform single-qubit operations that are controlled by classical information fed forward from the output of single-photon detectors. These operations correspond to predetermined combinations of phase corrections and bit flips that are applied to the postselected output modes of nondeterministic quantum logic devices. Corrections of this kind are required in order to obtain the correct logical output for certain detection events, and their use can increase the overall success probability of the devices. In this paper, we report on the experimental demonstration of the use of this type of feed-forward system to increase the probability of success of a simple nondeterministic quantum logic operation from approximately (1/4) to (1/2). This logic operation involves the use of one target qubit and one ancilla qubit which, in this experiment, are derived from a parametric down-conversion photon pair. Classical information describing the detection of the ancilla photon is fed forward in real time and used to alter the quantum state of the output photon. A fiber-optic delay line is used to store the output photon until a polarization-dependent phase shift can be applied using a high-speed Pockels cell
X-ray topographic studies of organic and non-linear optical materials
International Nuclear Information System (INIS)
Halfpenny, P. J.; Sherwood, J. N.; Simpson, G. S.
1997-01-01
The flexible and non-destructive nature of X-ray topography is ideally suited to the study of large single crystals for both fundamental research and technological applications as well as the optimisation of crystal growth processes. Three examples are discussed, illustrating the application of X-ray topographic methods to non-linear optical (NLO) crystals. Synchrotron radiation section topography has been applied to the examination of large organic crystals. X-ray topography has been used to examine growth defects and the quality of crystals of m-nitroaniline (mNA) grown by the Bridgeman method. These studies allow evaluation of growth parameters together with their influence on defect density and show that in the case of mNA, remarkably low defect densities can be achieved under optimum growth conditions. Double-crystal reflection topography, with synchrotron radiation has been used to image defects intersecting the (011) faces of the inorganic NLO material potassium titanyl phosphate (KTP). X-ray images have been combined with optical microscopy and interferometry to provide valuable information on the crystal growth process
International Nuclear Information System (INIS)
Martínez-Orozco, J.C.; Mora-Ramos, M.E.; Duque, C.A.
2014-01-01
The conduction band states of GaAs-based vertically coupled double triangular quantum dots in two dimensions are investigated within the effective mass and parabolic approximation, using a diagonalization procedure to solve the corresponding Schrödinger-like equation. The effect of an externally applied static electric field is included in the calculation, and the variation of the lowest confined energy levels as a result of the change of the field strength is reported for different geometrical setups. The linear and nonlinear optical absorptions and the relative change of the refractive index, associated with the energy transition between the ground and the first excited state in the system, are studied as a function of the incident light frequency for distinct configurations of inter-dot distance and electric field intensities. The blueshift of the resonant absorption peaks is detected as a consequence of the increment in the field intensity, whereas the opposite effect is obtained from the increase of inter-dot vertical distance. It is also shown that for large enough values of the electric field there is a quenching of the optical absorption due to field-induced change of symmetry of the first excited state wavefunction, in the case of triangular dots of equal shape and size
Structural, linear and nonlinear optical properties of co-doped ZnO thin films
Shaaban, E. R.; El-Hagary, M.; Moustafa, El Sayed; Hassan, H. Shokry; Ismail, Yasser A. M.; Emam-Ismail, M.; Ali, A. S.
2016-01-01
Different compositions of Co-doped zinc oxide [(Zn(1- x)Co x O) ( x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10)] thin films were evaporated onto highly clean glass substrates by thermal evaporation technique using a modified source. The structural properties investigated by X-ray diffraction revealed hexagonal wurtzite ZnO-type structure. The crystallite size of the films was found to decrease with increasing Co content. The optical characterization of the films has been carried out using spectral transmittance and reflectance obtained in the wavelength range from 300 to 2500 nm. The refractive index has been found to increase with increasing Co content. It was further found that optical energy gap decreases from 3.28 to 3.03 eV with increasing Co content from x = 0 to x = 0.10, respectively. The dispersion of refractive index has been analyzed in terms of Wemple-DiDomenico (WDD) single-oscillator model. The oscillator parameters, the single-oscillator energy ( E o), the dispersion energy ( E d), and the static refractive index ( n 0), were determined. The nonlinear refractive index of the Zn(1- x)Co x O thin films was calculated and revealed well correlation with the linear refractive index and WDD parameters which in turn depend on the density and molar volume of the system.
Energy Technology Data Exchange (ETDEWEB)
Martínez-Orozco, J.C. [Unidad Académica de Física. Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060. Zacatecas, Zac. (Mexico); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2014-11-01
The conduction band states of GaAs-based vertically coupled double triangular quantum dots in two dimensions are investigated within the effective mass and parabolic approximation, using a diagonalization procedure to solve the corresponding Schrödinger-like equation. The effect of an externally applied static electric field is included in the calculation, and the variation of the lowest confined energy levels as a result of the change of the field strength is reported for different geometrical setups. The linear and nonlinear optical absorptions and the relative change of the refractive index, associated with the energy transition between the ground and the first excited state in the system, are studied as a function of the incident light frequency for distinct configurations of inter-dot distance and electric field intensities. The blueshift of the resonant absorption peaks is detected as a consequence of the increment in the field intensity, whereas the opposite effect is obtained from the increase of inter-dot vertical distance. It is also shown that for large enough values of the electric field there is a quenching of the optical absorption due to field-induced change of symmetry of the first excited state wavefunction, in the case of triangular dots of equal shape and size.
Sukarno; Law, Cheryl Suwen; Santos, Abel
2017-06-08
We present the first realisation of linear variable bandpass filters in nanoporous anodic alumina (NAA-LVBPFs) photonic crystal structures. NAA gradient-index filters (NAA-GIFs) are produced by sinusoidal pulse anodisation and used as photonic crystal platforms to generate NAA-LVBPFs. The anodisation period of NAA-GIFs is modified from 650 to 850 s to systematically tune the characteristic photonic stopband of these photonic crystals across the UV-visible-NIR spectrum. Then, the nanoporous structure of NAA-GIFs is gradually widened along the surface under controlled conditions by wet chemical etching using a dip coating approach aiming to create NAA-LVBPFs with finely engineered optical properties. We demonstrate that the characteristic photonic stopband and the iridescent interferometric colour displayed by these photonic crystals can be tuned with precision across the surface of NAA-LVBPFs by adjusting the fabrication and etching conditions. Here, we envisage for the first time the combination of the anodisation period and etching conditions as a cost-competitive, facile, and versatile nanofabrication approach that enables the generation of a broad range of unique LVBPFs covering the spectral regions. These photonic crystal structures open new opportunities for multiple applications, including adaptive optics, hyperspectral imaging, fluorescence diagnostics, spectroscopy, and sensing.
Giacometti, Paolo; Diamond, Solomon G.
Diffuse optical tomography (DOT) is a functional brain imaging technique that measures cerebral blood oxygenation and blood volume changes. This technique is particularly useful in human neuroimaging measurements because of the coupling between neural and hemodynamic activity in the brain. DOT is a multichannel imaging extension of near-infrared spectroscopy (NIRS). NIRS uses laser sources and light detectors on the scalp to obtain noninvasive hemodynamic measurements from spectroscopic analysis of the remitted light. This review explains how NIRS data analysis is performed using a combination of the modified Beer-Lambert law (MBLL) and the diffusion approximation to the radiative transport equation (RTE). Laser diodes, photodiode detectors, and optical terminals that contact the scalp are the main components in most NIRS systems. Placing multiple sources and detectors over the surface of the scalp allows for tomographic reconstructions that extend the individual measurements of NIRS into DOT. Mathematically arranging the DOT measurements into a linear system of equations that can be inverted provides a way to obtain tomographic reconstructions of hemodynamics in the brain.
Directory of Open Access Journals (Sweden)
Yonghua Qu
2014-05-01
Full Text Available The canopy foliage clumping effect is primarily caused by the non-random distribution of canopy foliage. Currently, measurements of clumping index (CI by handheld instruments is typically time- and labor-intensive. We propose a low-cost and low-power automatic measurement system called Multi-point Linear Array of Optical Sensors (MLAOS, which consists of three above-canopy and nine below-canopy optical sensors that capture plant transmittance at different times of the day. Data communication between the MLAOS node is facilitated by using a ZigBee network, and the data are transmitted from the field MLAOS to a remote data server using the Internet. The choice of the electronic element and design of the MLAOS software is aimed at reducing costs and power consumption. A power consumption test showed that, when a 4000 mAH Li-ion battery is used, a maximum of 8–10 months of work can be achieved. A field experiment on a coniferous forest revealed that the CI of MLAOS may reveal a clumping effect that occurs within the canopy. In further work, measurement of the multi-scale clumping effect can be achieved by utilizing a greater number of MLAOS devices to capture the heterogeneity of the plant canopy.
A. Garba, Aminata
2017-01-01
This paper presents a new approach to optical Code Division Multiple Access (CDMA) network transmission scheme using alternated amplitude sequences and energy differentiation at the transmitters to allow concurrent and secure transmission of several signals. The proposed system uses error control encoding and soft-decision demodulation to reduce the multi-user interference at the receivers. The design of the proposed alternated amplitude sequences, the OCDMA energy modulators and the soft decision, single-user demodulators are also presented. Simulation results show that the proposed scheme allows achieving spectral efficiencies higher than several reported results for optical CDMA and much higher than the Gaussian CDMA capacity limit.
Design of a self-calibration high precision micro-angle deformation optical monitoring scheme
Gu, Yingying; Wang, Li; Guo, Shaogang; Wu, Yun; Liu, Da
2018-03-01
In order to meet the requirement of high precision and micro-angle measurement on orbit, a self-calibrated optical non-contact real-time monitoring device is designed. Within three meters, the micro-angle variable of target relative to measuring basis can be measured in real-time. The range of angle measurement is +/-50'', the angle measurement accuracy is less than 2''. The equipment can realize high precision real-time monitoring the micro-angle deformation, which caused by high strength vibration and shock of rock launching, sun radiation and heat conduction on orbit and so on.
Experimental demonstration of optical data links using a hybrid CAP/QAM modulation scheme.
Wei, J L; Ingham, J D; Cheng, Q; Cunningham, D G; Penty, R V; White, I H
2014-03-15
The first known experimental demonstrations of a 10 Gb/s hybrid CAP-2/QAM-2 and a 20 Gb/s hybrid CAP-4/QAM-4 transmitter/receiver-based optical data link are performed. Successful transmission over 4.3 km of standard single-mode fiber (SMF) is achieved, with a link power penalty ∼0.4 dBo for CAP-2/QAM-2 and ∼1.5 dBo for CAP-4/QAM-4 at BER=10(-9).
X-band rf driven free electron laser driver with optics linearization
Directory of Open Access Journals (Sweden)
Yipeng Sun (孙一鹏
2014-11-01
Full Text Available In this paper, a compact hard X-ray free electron lasers (FEL design is proposed with all X-band rf acceleration and two stage bunch compression. It eliminates the need of a harmonic rf linearization section by employing optics linearization in its first stage bunch compression. Quadrupoles and sextupoles are employed in a bunch compressor one (BC1 design, in such a way that second order longitudinal dispersion of BC1 cancels the second order energy correlation in the electron beam. Start-to-end 6-D simulations are performed with all the collective effects included. Emittance growth in the horizontal plane due to coherent synchrotron radiation is investigated and minimized, to be on a similar level with the successfully operating Linac coherent light source (LCLS. At a FEL radiation wavelength of 0.15 nm, a saturation length of 40 meters can be achieved by employing an undulator with a period of 1.5 cm. Without tapering, a FEL radiation power above 10 GW is achieved with a photon pulse length of 50 fs, which is LCLS-like performance. The overall length of the accelerator plus undulator is around 250 meters which is much shorter than the LCLS length of 1230 meters. That makes it possible to build hard X-ray FEL in a laboratory with limited size.
Bounds on achievable accuracy in analog optical linear-algebra processors
Batsell, Stephen G.; Walkup, John F.; Krile, Thomas F.
1990-07-01
Upper arid lower bounds on the number of bits of accuracy achievable are determined by applying a seconth-ortler statistical model to the linear algebra processor. The use of bounds was found necessary due to the strong signal-dependence of the noise at the output of the optical linear algebra processor (OLAP). 1 1. ACCURACY BOUNDS One of the limiting factors in applying OLAPs to real world problems has been the poor achievable accuracy of these processors. Little previous research has been done on determining noise sources from a systems perspective which would include noise generated in the multiplication ard addition operations spatial variations across arrays and crosstalk. We have previously examined these noise sources and determined a general model for the output noise mean and variance. The model demonstrates a strony signaldependency in the noise at the output of the processor which has been confirmed by our experiments. 1 We define accuracy similar to its definition for an analog signal input to an analog-to-digital (ND) converter. The number of bits of accuracy achievable is related to the log (base 2) of the number of separable levels at the P/D converter output. The number of separable levels is fouri by dividing the dynamic range by m times the standard deviation of the signal a. 2 Here m determines the error rate in the P/D conversion. The dynamic range can be expressed as the
Nassehi, M. Mehdi
1987-01-01
Local Area Networks are in common use for data communications and have enjoyed great success. Recently, there is a growing interest in using a single network to support many applications in addition to traditional data traffic. These additional applications introduce new requirements in terms of volume of traffic and real-time delivery of data which are not met by existing networks. To satisfy these requirements, a high-bandwidth tranmission medium, such as fiber optics, and a distributed channel access scheme for the efficient sharing of the bandwidth among the various applications are needed. As far as the throughput-delay requirements of the various application are concerned, a network structure along with a distributed channel access are proposed which incorporate appropriate scheduling policies for the transmission of outstanding messages on the network. A dynamic scheduling policy was devised which outperforms all existing policies in terms of minimizing the expected cost per message. A broadcast mechanism was devised for the efficient dissemination of all relevant information. Fiber optic technology is considered for the high-bandwidth transmisison medium.
Directory of Open Access Journals (Sweden)
Buscaglia Gustavo C.
2001-01-01
Full Text Available A new numerical approach is proposed to alleviate the computational cost of solving non-linear non-uniform homogenized problems. The article details the application of the proposed approach to lubrication problems with roughness effects. The method is based on a two-parameter Taylor expansion of the implicit dependence of the homogenized coefficients on the average pressure and on the local value of the air gap thickness. A fourth-order Taylor expansion provides an approximation that is accurate enough to be used in the global problem solution instead of the exact dependence, without introducing significant errors. In this way, when solving the global problem, the solution of local problems is simply replaced by the evaluation of a polynomial. Moreover, the method leads naturally to Newton-Raphson nonlinear iterations, that further reduce the cost. The overall efficiency of the numerical methodology makes it feasible to apply rigorous homogenization techniques in the analysis of compressible fluid contact considering roughness effects. Previous work makes use of an heuristic averaging technique. Numerical comparison proves that homogenization-based methods are superior when the roughness is strongly anisotropic and not aligned with the flow direction.
Optical image encryption scheme with multiple light paths based on compressive ghost imaging
Zhu, Jinan; Yang, Xiulun; Meng, Xiangfeng; Wang, Yurong; Yin, Yongkai; Sun, Xiaowen; Dong, Guoyan
2018-02-01
An optical image encryption method with multiple light paths is proposed based on compressive ghost imaging. In the encryption process, M random phase-only masks (POMs) are generated by means of logistic map algorithm, and these masks are then uploaded to the spatial light modulator (SLM). The collimated laser light is divided into several beams by beam splitters as it passes through the SLM, and the light beams illuminate the secret images, which are converted into sparse images by discrete wavelet transform beforehand. Thus, the secret images are simultaneously encrypted into intensity vectors by ghost imaging. The distances between the SLM and secret images vary and can be used as the main keys with original POM and the logistic map algorithm coefficient in the decryption process. In the proposed method, the storage space can be significantly decreased and the security of the system can be improved. The feasibility, security and robustness of the method are further analysed through computer simulations.
Corsetti, James A; Green, William E; Ellis, Jonathan D; Schmidt, Greg R; Moore, Duncan T
2016-10-10
Characterizing the thermal properties of optical materials is necessary for understanding how to design an optical system for changing environmental conditions. A method is presented for simultaneously measuring both the linear coefficient of thermal expansion and the temperature-dependent refractive index coefficient of a sample interferometrically in air. Both the design and fabrication of the interferometer is presented as well as a discussion of the results of measuring both a steel and a CaF2 sample.
International Nuclear Information System (INIS)
Chan, C.T.; Vanderbilt, D.; Louie, S.G.; Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720)
1986-01-01
We present a general self-consistency procedure formulated in momentum space for electronic structure and total-energy calculations of crystalline solids. It is shown that both the charge density and the change in the Hamiltonian matrix elements in each iteration can be calculated in a straight-forward fashion once a set of overlap matrices is computed. The present formulation has the merit of bringing the self-consistency problem for different basis sets to the same footing. The scheme is used to extend a first-principles pseudopotential linear combination of Gaussian orbitals method to full point-by-point self-consistency, without refitting of potentials. It is shown that the set of overlap matrices can be calculated very efficiently if we exploit the translational and space-group symmetries of the system under consideration. This scheme has been applied to study the structural and electronic properties of Si and W, prototypical systems of very different bonding properties. The results agree well with experiment and other calculations. The fully self-consistent results are compared with those obtained by a variational procedure [J. R. Chelikowsky and S. G. Louie, Phys. Rev. B 29, 3470 (1984)]. We find that the structural properties for bulk Si and W (both systems have no interatomic charge transfer) can be treated accurately by the variational procedure. However, full self-consistency is needed for an accurate description of the band energies
Directory of Open Access Journals (Sweden)
Kowal Robert
2016-12-01
Full Text Available A simple linear regression model is one of the pillars of classic econometrics. Multiple areas of research function within its scope. One of the many fundamental questions in the model concerns proving the efficiency of the most commonly used OLS estimators and examining their properties. In the literature of the subject one can find taking back to this scope and certain solutions in that regard. Methodically, they are borrowed from the multiple regression model or also from a boundary partial model. Not everything, however, is here complete and consistent. In the paper a completely new scheme is proposed, based on the implementation of the Cauchy-Schwarz inequality in the arrangement of the constraint aggregated from calibrated appropriately secondary constraints of unbiasedness which in a result of choice the appropriate calibrator for each variable directly leads to showing this property. A separate range-is a matter of choice of such a calibrator. These deliberations, on account of the volume and kinds of the calibration, were divided into a few parts. In the one the efficiency of OLS estimators is proven in a mixed scheme of the calibration by averages, that is preliminary, and in the most basic frames of the proposed methodology. In these frames the future outlines and general premises constituting the base of more distant generalizations are being created.
International Nuclear Information System (INIS)
Song Wei
2007-01-01
We present two schemes for concentrating unknown nonmaximally entangled Greenberger-Horme-Zeilinger (GHZ) or W class states. The first scheme for concentrating the nonmaximally entangled GHZ state is based on linear optical devices. The second scheme for concentrating the W class states can be applied to a wide variety of atomic state. Both of our schemes are not postselection ones and are within the current technologies.
International Nuclear Information System (INIS)
Correia, Teresa; Arridge, Simon
2016-01-01
Fluorescence diffuse optical tomography (fDOT) provides 3D images of fluorescence distributions in biological tissue, which represent molecular and cellular processes. The image reconstruction problem is highly ill-posed and requires regularisation techniques to stabilise and find meaningful solutions. Quadratic regularisation tends to either oversmooth or generate very noisy reconstructions, depending on the regularisation strength. Edge preserving methods, such as anisotropic diffusion regularisation (AD), can preserve important features in the fluorescence image and smooth out noise. However, AD has limited ability to distinguish an edge from noise. In this two-part paper, we propose a patch-based anisotropic diffusion regularisation (PAD), where regularisation strength is determined by a weighted average according to the similarity between patches around voxels within a search window, instead of a simple local neighbourhood strategy. However, this method has higher computational complexity and, hence, we wavelet compress the patches (PAD-WT) to speed it up, while simultaneously taking advantage of the denoising properties of wavelet thresholding. The proposed method combines the nonlocal means (NLM), AD and wavelet shrinkage methods, which are image processing methods. Therefore, in this first paper, we used a denoising test problem to analyse the performance of the new method. Our results show that the proposed PAD-WT method provides better results than the AD or NLM methods alone. The efficacy of the method for fDOT image reconstruction problem is evaluated in part 2. (paper)
Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry
Lüker, S.; Kuhn, T.; Reiter, D. E.
2017-12-01
Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.
Navon, M. I.; Stefanescu, R.; Fuelberg, H. E.; Marchand, M.
2012-12-01
NASA's launch of the GOES-R Lightning Mapper (GLM) in 2015 will provide continuous, full disc, high resolution total lightning (IC + CG) data. The data will be available at a horizontal resolution of approximately 9 km. Compared to other types of data, the assimilation of lightning data into operational numerical models has received relatively little attention. Previous efforts of lightning assimilation mostly have employed nudging. This paper will describe the implementation of 1D+3D/4D Var assimilation schemes of existing ground-based WTLN (Worldwide Total Lightning Network) lightning observations using non-linear observation operators in the incremental WRFDA system. To mimic the expected output of GLM, the WTLN data were used to generate lightning super-observations characterized by flash rates/81 km2/20 min. A major difficulty associated with variational approaches is the complexity of the observation operator that defines the model equivalent of lightning. We use Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. This operator is highly nonlinear. Marecal and Mahfouf (2003) have shown that nonlinearities can prevent direct assimilation of rainfall rates in the ECMWF 4D-VAR (using the incremental formulation proposed by Courtier et al. (1994)) from being successful. Using data from the 2011 Tuscaloosa, AL tornado outbreak, we have proved that the direct assimilation of lightning data into the WRF 3D/4D - Var systems is limited due to this incremental approach. Severe threshold limits must be imposed on the innovation vectors to obtain an improved analysis. We have implemented 1D+3D/4D Var schemes to assimilate lightning observations into the WRF model. Their use avoids innovation vector constrains from preventing the inclusion of a greater number of lightning observations Their use also minimizes the problem that nonlinearities in the moist convective scheme can introduce discontinuities in the cost function
Correia, Teresa; Koch, Maximilian; Ale, Angelique; Ntziachristos, Vasilis; Arridge, Simon
2016-02-21
Fluorescence diffuse optical tomography (fDOT) provides 3D images of fluorescence distributions in biological tissue, which represent molecular and cellular processes. The image reconstruction problem is highly ill-posed and requires regularisation techniques to stabilise and find meaningful solutions. Quadratic regularisation tends to either oversmooth or generate very noisy reconstructions, depending on the regularisation strength. Edge preserving methods, such as anisotropic diffusion regularisation (AD), can preserve important features in the fluorescence image and smooth out noise. However, AD has limited ability to distinguish an edge from noise. We propose a patch-based anisotropic diffusion regularisation (PAD), where regularisation strength is determined by a weighted average according to the similarity between patches around voxels within a search window, instead of a simple local neighbourhood strategy. However, this method has higher computational complexity and, hence, we wavelet compress the patches (PAD-WT) to speed it up, while simultaneously taking advantage of the denoising properties of wavelet thresholding. Furthermore, structural information can be incorporated into the image reconstruction with PAD-WT to improve image quality and resolution. In this case, the weights used to average voxels in the image are calculated using the structural image, instead of the fluorescence image. The regularisation strength depends on both structural and fluorescence images, which guarantees that the method can preserve fluorescence information even when it is not structurally visible in the anatomical images. In part 1, we tested the method using a denoising problem. Here, we use simulated and in vivo mouse fDOT data to assess the algorithm performance. Our results show that the proposed PAD-WT method provides high quality and noise free images, superior to those obtained using AD.
Yadav, Dharmendra Singh; Babu, Sarath; Manoj, B. S.
2018-03-01
Spectrum conflict during primary and backup routes assignment in elastic optical networks results in increased resource consumption as well as high Bandwidth Blocking Probability. In order to avoid such conflicts, we propose a new scheme, Quasi Path Restoration (QPR), where we divide the available spectrum into two: (1) primary spectrum (for primary routes allocation) and (2) backup spectrum (for rerouting the data on link failures). QPR exhibits three advantages over existing survivable strategies such as Shared Path Protection (SPP), Primary First Fit Backup Last Fit (PFFBLF), Jointly Releasing and re-establishment Defragmentation SPP (JRDSSPP), and Path Restoration (PR): (1) the conflict between primary and backup spectrum during route assignment is completely eliminated, (2) upon a link failure, connection recovery requires less backup resources compared to SPP, PFFBLF, and PR, and (3) availability of the same backup spectrum on each link improves the recovery guarantee. The performance of our scheme is analyzed with different primary backup spectrum partitions on varying connection-request demands and number of frequency slots. Our results show that QPR provides better connection recovery guarantee and Backup Resources Utilization (BRU) compared to bandwidth recovery of PR strategy. In addition, we compare QPR with Shared Path Protection and Primary First-Fit Backup Last Fit strategies in terms of Bandwidth Blocking Probability (BBP) and average frequency slots per connection request. Simulation results show that BBP of SPP, PFFBLF, and JRDSPP varies between 18.59% and 14.42%, while in QPR, BBP ranges from 2.55% to 17.76% for Cost239, NSFNET, and ARPANET topologies. Also, QPR provides bandwidth recovery between 93.61% and 100%, while in PR, the recovery ranges from 86.81% to 98.99%. It is evident from our analysis that QPR provides a reasonable trade-off between bandwidth blocking probability and connection recoverability.
International Nuclear Information System (INIS)
Medeiros, Adriana S.
2009-01-01
Poly(vinylidene fluoride) [PVDF] is a semicrystalline linear homopolymer composed by the repetition of CH 2 - CF 2 monomers. The Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] is a copolymer which is obtained with the random introduction of fluorinated CHF-CF 2 monomers in the PVDF main chain. PVDF, and also its copolymers with TrFE contents ranging from 18 to 63 wt. %, have long been studied for their striking ferroelectric properties and their applications in actuators, transducers and ferroelectric memory. Recent research work around the world have demonstrated that, for TrFE contents ranging from with 30 to 50 wt. %, the copolymer can have its ferroelectric properties modified by high doses of ionizing radiation, with the appearing of radio-induced relaxor ferroelectric features. These studies have lead us to investigate the possible use of these copolymers as high dose dosemeters, once the reported amount of induced C=C conjugated bonds after X-ray, UV and gamma irradiation seems to be a function of the delivered radiation dose. In a first investigation for doses ranging from 0.1 to 100 kGy we found out a linear relation between the gamma radiation dose and the absorption peak intensities in the UV region of the spectrum, i.e., at 223 and 274 nm. The absorption peak at 223 nm is the most sensitive to gamma rays and can be used for detecting gamma doses ranging from 0.3 to 75 kGy. Simultaneously, the absorption peak at 274 nm can be used for doses ranging from 1 to 100 kGy. Now, in the present work, we extended the investigation to gamma doses up to 3 MGy. Particularly, this study is focused in the optical absorption peak at 274 nm, corresponding to the radio-induction of triplets of conjugated C=C double bonds. The investigation revealed a linear correlation between the gamma dose and peak intensity at 274 nm for gamma doses ranging from 0.1 to more than 750 KGy, with a huge extension of the original usable dose range. Calorimetric data revealed a
Thomas, Michael E
2006-01-01
PART I: Background Theory and Measurement. 1. Optical Electromagnetics I. 2. Optical Electromagnetics II. 3. Spectroscopy of Matter. 4. Electrodynamics I: Macroscopic Interaction of Light and Matter. 5. Electrodynamics II: Microscopic Interaction of Light and Matter. 6. Experimental Techniques. PART II: Practical Models for Various Media. 7. Optical Propagation in Gases and the Atmosphere of the Earth. 8. Optical Propagation in Solids. 9. Optical Propagation in Liquids. 10. Particle Absorption and Scatter. 11. Propagation Background and Noise
Physical origin of third order non-linear optical response of porphyrin nanorods
International Nuclear Information System (INIS)
Mongwaketsi, N.; Khamlich, S.; Pranaitis, M.; Sahraoui, B.; Khammar, F.; Garab, G.; Sparrow, R.; Maaza, M.
2012-01-01
The non-linear optical properties of porphyrin nanorods were studied using Z-scan, Second and Third harmonic generation techniques. We investigated in details the heteroaggregate behaviour formation of [H 4 TPPS 4 ] 2- and [SnTPyP] 2+ mixture by means of the UV-VIS spectroscopy and aggregates structure and morphology by transmission electron microscopy. The porphyrin nanorods under investigation were synthesized by self assembly and molecular recognition method. They have been optimized in view of future application in the construction of the light harvesting system. The focus of this study was geared towards understanding the influence of the type of solvent used on these porphyrins nanorods using spectroscopic and microscopic techniques. Highlights: ► We synthesized porphyrin nanorods by self assembly and molecular recognition method. ► TEM images confirmed solid cylindrical shapes. ► UV-VIS spectroscopy showed the decrease in the absorbance peaks of the precursors. ► The enhanced third-order nonlinearities were observed.
Linear and nonlinear optics, dynamics, and lasing in ZnO bulk and nanostructures
International Nuclear Information System (INIS)
Klingshirn, C.; Fallert, J.; Gogolin, O.; Wissinger, M.; Hauschild, R.; Hauser, M.; Kalt, H.; Zhou, H.
2008-01-01
In linear optics, we report on measurements of the absolute external quantum efficiency of bulk ZnO and powders using an integrating sphere. At low temperature the near band edge emission efficiency can reach 0.15 in the best samples. For deep center luminescence this value may be even higher. When going to room temperature (RT) the quantum efficiency drops by about one order of magnitude. From time resolved luminescence measurements we deduce the lifetime of the free and bound excitons to be in the sub ns regime and find for the latter a systematic increase with increasing binding energy. Concerning lasing, we discuss the role of excitonic processes and the recombination in an inverted electron-hole plasma (EHP). While excitonic processes seem well justified at lower temperatures and densities, doubts arise concerning the concept of excitonic lasing at RT in ZnO. The densities at laser threshold at RT are frequently close to the Mott density or above but below the density at which population inversion in an EHP is reached. We suggest alternative processes which can explain stimulated emission in this density regime in an EHP at RT
Effect of weak nonsphericity on linear and nonlinear optical properties of small particle composites
International Nuclear Information System (INIS)
Goncharenko, A.V.; Popelnukh, V.V.; Venger, E.F.
2002-01-01
A small particle composite in which the inclusions are slightly nonspherical and distributed in shape is considered. Within the framework of the mean-field approximation, the functions of linear and nonlinear optical responses are calculated in terms of a nonsphericity parameter specifying the width of the distribution function in shape. To estimate the effect of weak nonsphericity on the functions, their second derivatives with respect to the nonsphericity parameter are computed. The derivatives are shown to be complexly structured surfaces in the coordinates (Re(ε i /ε m ), Im(ε i /ε m )), where ε i and ε m are the inclusion and matrix permittivity, respectively. Based on the results obtained, applicability area of the classical Maxwell Garnett theory is discussed. The main conclusion is that weak nonsphericity is significant only in the close vicinity of a dipole resonance of a single ball made of inclusion material. At the same time, the role of nonsphericity increases with decreasing the imaginary part of inclusion permittivity. (author)
Active liquid/liquid interfaces: contributions of non linear optics and tensiometry
International Nuclear Information System (INIS)
Gassin, P.M.
2013-01-01
Liquid-liquid extraction processes are widely used in the industrial fields of selective separation. Despite its numerous applications, the microscopic mechanisms which occur during a liquid-liquid extraction processes are really unknown specially at the liquid/liquid interface. Thus, this work deals on the understanding of the phenomena which drive the mass transfer across a liquid/liquid interface. Two experimental techniques were used in this work: dynamic interfacial tension measurement and non-linear optical experiments. Along with the use of this experimental approach, a numerical model describing the mass transfer dynamic has been developed. This model works under the assumption that both diffusion and a chemical step describing adsorption and desorption processes contribute to the global transfer kinetics. Model systems of surfactant molecules, chromophore molecules and complexing molecule were investigated at liquid/liquid and air/liquid interface. Interfacial phenomena like adsorption, surface aggregation and ion complexing were studied. Finally, the methodology developed in this work was applied to studied an extractant molecule with potential industrial application. (author) [fr
Two-Hierarchy Entanglement Swapping for a Linear Optical Quantum Repeater.
Xu, Ping; Yong, Hai-Lin; Chen, Luo-Kan; Liu, Chang; Xiang, Tong; Yao, Xing-Can; Lu, He; Li, Zheng-Da; Liu, Nai-Le; Li, Li; Yang, Tao; Peng, Cheng-Zhi; Zhao, Bo; Chen, Yu-Ao; Pan, Jian-Wei
2017-10-27
Quantum repeaters play a significant role in achieving long-distance quantum communication. In the past decades, tremendous effort has been devoted towards constructing a quantum repeater. As one of the crucial elements, entanglement has been created in different memory systems via entanglement swapping. The realization of j-hierarchy entanglement swapping, i.e., connecting quantum memory and further extending the communication distance, is important for implementing a practical quantum repeater. Here, we report the first demonstration of a fault-tolerant two-hierarchy entanglement swapping with linear optics using parametric down-conversion sources. In the experiment, the dominant or most probable noise terms in the one-hierarchy entanglement swapping, which is on the same order of magnitude as the desired state and prevents further entanglement connections, are automatically washed out by a proper design of the detection setting, and the communication distance can be extended. Given suitable quantum memory, our techniques can be directly applied to implementing an atomic ensemble based quantum repeater, and are of significant importance in the scalable quantum information processing.
Two-Hierarchy Entanglement Swapping for a Linear Optical Quantum Repeater
Xu, Ping; Yong, Hai-Lin; Chen, Luo-Kan; Liu, Chang; Xiang, Tong; Yao, Xing-Can; Lu, He; Li, Zheng-Da; Liu, Nai-Le; Li, Li; Yang, Tao; Peng, Cheng-Zhi; Zhao, Bo; Chen, Yu-Ao; Pan, Jian-Wei
2017-10-01
Quantum repeaters play a significant role in achieving long-distance quantum communication. In the past decades, tremendous effort has been devoted towards constructing a quantum repeater. As one of the crucial elements, entanglement has been created in different memory systems via entanglement swapping. The realization of j -hierarchy entanglement swapping, i.e., connecting quantum memory and further extending the communication distance, is important for implementing a practical quantum repeater. Here, we report the first demonstration of a fault-tolerant two-hierarchy entanglement swapping with linear optics using parametric down-conversion sources. In the experiment, the dominant or most probable noise terms in the one-hierarchy entanglement swapping, which is on the same order of magnitude as the desired state and prevents further entanglement connections, are automatically washed out by a proper design of the detection setting, and the communication distance can be extended. Given suitable quantum memory, our techniques can be directly applied to implementing an atomic ensemble based quantum repeater, and are of significant importance in the scalable quantum information processing.
Mechanism of linear and nonlinear optical properties of bis-thiourea cadmium chloride single crystal
International Nuclear Information System (INIS)
Yang, J.T.; Luo, S.J.; Yi, L.; Laref, A.
2013-01-01
Within the generalized gradient approximation (GGA), a calculation of the electronic structure of a semiorganic crystal named bis-thiourea cadmium chloride (BTCC) was performed, then the linear and nonlinear optical responses were obtained over a wide energy range, using a scissor energy of 1.30 eV, and our results are in good agreement with the experiments. The accurate full-potential projected augmented wave (FP-PAW) method was used. The prominent spectrum of the second harmonic generation (SHG) was successfully correlated with the dielectric function in terms of single- and double-photon resonances. Both the virtual electron (VE) and virtual hole (VH) processes make contributions to the SHG of BTCC crystal, and the VH process is enhanced by the Cd-centered tetrahedron. The SHG effect of the semiorganic material is attributed to the charge transfer (CT). The CT model for the semiorganic crystal is named as “M-Π O ⋯X”. “M” is a metal atom providing electrons, “Π O ” is a π-conjugated covalent of an organic molecule, and “X” is a high electronegativity atom. The CT across the BTCC molecule is along a π-electron conjugation covalence bond, and the delocalized electrons of sulfur provide an excellent bridge. The strong “pull” effect for the CT is due to the intramolecular hydrogen bonds provided by the chlorine with the high electron affinity.
Orbit, optics and chromaticity correction for PS2 negative momentum compaction lattices
Energy Technology Data Exchange (ETDEWEB)
Papaphilippou,Y.; Barranco, J.; Bartmann, W.; Benedikt, M.; Carli, C.; de Maria, R.; Peggs, S.; Trbojevic, D.
2009-05-04
The effect of magnet misalignments in the beam orbit and linear optics functions are reviewed and correction schemes are applied to the negative momentum compaction lattice of PS2. Chromaticity correction schemes are also proposed and tested with respect to off-momentum optics properties. The impact of the correction schemes in the dynamic aperture of the lattice is finally evaluated.
Torre, Amalia
2005-01-01
Ray, wave and quantum concepts are central to diverse and seemingly incompatible models of light. Each model particularizes a specific ''manifestation'' of light, and then corresponds to adequate physical assumptions and formal approximations, whose domains of applicability are well-established. Accordingly each model comprises its own set of geometric and dynamic postulates with the pertinent mathematical means.At a basic level, the book is a complete introduction to the Wigner optics, which bridges between ray and wave optics, offering the optical phase space as the ambience and the Wigner f
Energy Technology Data Exchange (ETDEWEB)
Nageshwari, M.; Jayaprakash, P.; Kumari, C. Rathika Thaya [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India); Vinitha, G. [Department of Physics, School of Advanced Sciences, VIT Chennai, 600127 Tamil Nadu (India); Caroline, M. Lydia, E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India)
2017-04-15
An efficient nonlinear optical semiorganic material L-valinium L-valine chloride (LVVCl) was synthesized and grown-up by means of slow evaporation process. Single crystal XRD evince that LVVCl corresponds to monoclinic system having acentric space group P2{sub 1}. The diverse functional groups existing in LVVCl were discovered with FTIR spectral investigation. The UV-Visible and photoluminescence spectrum discloses the optical and electronic properties respectively for the grown crystal. Several optical properties specifically extinction coefficient, reflectance, linear refractive index, electrical and optical conductivity were also determined. The SEM analysis was also carried out and it portrayed the surface morphology of LVVCl. The calculated value of laser damage threshold was 2.59 GW/cm{sup 2}. The mechanical and dielectric property of LVVCl was investigated employing microhardness and dielectric studies. The second and third order nonlinear optical characteristics of LVVCl was characterized utilizing Kurtz Perry and Z scan technique respectively clearly suggest its suitability in the domain of optics and photonics. - Graphical abstract: Good quality transparent single crystals of L-valinium L-valine chloride single crystal was grown by slow evaporation technique. The grown crystals were analyzed using different instrumentation methods to check its usefulness for the device fabrication. The determination of nonlinear refractive index (n{sub 2}), absorption coefficient (β) and third order nonlinear susceptibility was determined by Z scan technique, highlighted that LVVCl can serve as a promising candidate for opto electronic and nonlinear optical applications.
International Nuclear Information System (INIS)
Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sökmen, I.
2012-01-01
In this present work, we have investigated theoretically the effects of applied electric and magnetic fields on the linear and nonlinear optical properties in a GaAs/Al x Ga 1−x As inverse parabolic quantum well for different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The energy levels and wave functions are calculated within the effective mass approximation and the envelope function approach. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The linear, third-order nonlinear and total absorption and refractive index changes depending on the Al concentration at the well center are investigated as a function of the incident photon energy for the different values of the applied electric and magnetic fields. The results show that the applied electric and magnetic fields have a great effect on these optical quantities. - Highlights: ► The x c concentration has a great effect on the optical characteristics of these structures. ► The EM fields have a great effect on the optical properties of these structures. ► The total absorption coefficients increased as the electric and magnetic field increases. ► The RICs reduced as the electric and magnetic field increases.
Magneto-optic current sensor with Faraday mirror for linear birefringence compensation
Arroyo Breña, Javier; Rodriguez Horche, Paloma; Martín Minguez, Alfredo
2012-01-01
Fiber optic sensors have some advantages in subjects related with electrical current and magnetic field measurement. In spite of the optical fiber utilization advantages we have to take into account undesirable effects, which are present in real non-ideal optical fibers. In telecommunication and sensor application fields the presence of inherent and induced birefringence is crucial. The presence of birefringence may cause an undesirable change in the polarization state. In order to compensate...
Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi
2011-12-01
A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.
Nieh, Ta-Chun; Yang, Chao-Chin; Huang, Jen-Fa
2011-08-01
A complete complementary/prime/shifted prime (CPS) code family for the optical code-division multiple-access (OCDMA) system is proposed. Based on the ability of complete complementary (CC) code, the multiple-access interference (MAI) can be suppressed and eliminated via spectral amplitude coding (SAC) OCDMA system under asynchronous/synchronous transmission. By utilizing the shifted prime (SP) code in the SAC scheme, the hardware implementation of encoder/decoder can be simplified with a reduced number of optical components, such as arrayed waveguide grating (AWG) and fiber Bragg grating (FBG). This system has a superior performance as compared to previous bipolar-bipolar coding OCDMA systems.
International Nuclear Information System (INIS)
Wang, Wei; Sommer, Ephraim; De Sio, Antonietta; Gross, Petra; Vogelgesang, Ralf; Lienau, Christoph; Vasa, Parinda
2014-01-01
We analyze the linear optical reflectivity spectra of a prototypical, strongly coupled metal/molecular hybrid nanostructure by means of a new experimental approach, linear two-dimensional optical spectroscopy. White-light, broadband spectral interferometry is used to measure amplitude and spectral phase of the sample reflectivity or transmission with high precision and to reconstruct the time structure of the electric field emitted by the sample upon impulsive excitation. A numerical analysis of this time-domain signal provides a two-dimensional representation of the coherent optical response of the sample as a function of excitation and detection frequency. The approach is used to study a nanostructure formed by depositing a thin J-aggregated dye layer on a gold grating. In this structure, strong coupling between excitons and surface plasmon polaritons results in the formation of hybrid polariton modes. In the strong coupling regime, Lorentzian lineshape profiles of different polariton modes are observed at room temperature. This is taken as an indication that the investigated strongly coupled polariton excitations are predominantly homogeneously broadened at room temperature. This new approach presents a versatile, simple and highly precise addition to nonlinear optical spectroscopic techniques for the analysis of line broadening phenomena. (paper)
International Nuclear Information System (INIS)
Sciancalepore, C; Agostiano, A; Cassano, T; Valentini, A; Curri, M L; Striccoli, M; Mecerreyes, D; Tommasi, R
2008-01-01
Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO 2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO 2 /PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO 2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO 2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region
Sciancalepore, C.; Cassano, T.; Curri, M. L.; Mecerreyes, D.; Valentini, A.; Agostiano, A.; Tommasi, R.; Striccoli, M.
2008-05-01
Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO2/PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region.
Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO2 matrix
Directory of Open Access Journals (Sweden)
Deepti Maikhuri
2012-03-01
Full Text Available In this work we investigate some optical properties of semiconductor ZnO spherical quantum dot embedded in an amorphous SiO2 dielectric matrix. Using the framework of effective mass approximation, we have studied intraband S-P, and P-D transitions in a singly charged spherical ZnO quantum dot. The optical properties are investigated in terms of the linear and nonlinear photoabsorption coefficient, the change in refractive index, and the third order nonlinear susceptibility and oscillator strengths. Using the parabolic confinement potential of electron in the dot these parameters are studied with the variation of the dot size, and the energy and intensity of incident radiation. The photoionization cross sections are also obtained for the different dot radii from the initial ground state of the dot. It is found that dot size, confinement potential, and incident radiation intensity affects intraband optical properties of the dot significantly.
Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A; Chee, Kok Han; Liew, Yih Miin
2017-12-01
Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Directory of Open Access Journals (Sweden)
Nam Lyong Kang
2013-07-01
Full Text Available The projection-reduction method introduced by the present authors is known to give a validated theory for optical transitions in the systems of electrons interacting with phonons. In this work, using this method, we derive the linear and first order nonlinear optical conductivites for an electron-impurity system and examine whether the expressions faithfully satisfy the quantum mechanical philosophy, in the same way as for the electron-phonon systems. The result shows that the Fermi distribution function for electrons, energy denominators, and electron-impurity coupling factors are contained properly in organized manners along with absorption of photons for each electron transition process in the final expressions. Furthermore, the result is shown to be represented properly by schematic diagrams, as in the formulation of electron-phonon interaction. Therefore, in conclusion, we claim that this method can be applied in modeling optical transitions of electrons interacting with both impurities and phonons.
Energy Technology Data Exchange (ETDEWEB)
Zahran, H.Y. [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Alamri, F.H. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia)
2017-05-15
Pyronin Y dye (PY) is a kind of xanthene derivatives. Thin films of pyronin Y were deposited onto highly cleaned glass substrates using low-cost/spin coating technique. The structure properties of pyronin Y thin films with different thicknesses were investigated by using X-ray diffraction (XRD) and atomic force microscope (AFM). PY thin films for all the studied thicknesses have an amorphous structure supporting the short range order of the grain size. AFM supports the nanostructure with spherical/clusters morphologies of the investigated thin films. The optical constants of pyronin Y thin films for various thicknesses were studied by using UV–vis–NIR spectrophotometer in the wavelength range 350–2500 nm. The transmittance T(λ), reflectance R(λ) spectral and absorbance (abs(λ)) were obtained for all film thicknesses at room temperature and the normal light incident. These films showed a high transmittance in the wide scale wavelengths. For different thicknesses of the studied thin films, the optical band gaps were determined and their values around 2 eV. Real and imaginary dielectric constants, dissipation factor and the nonlinear optical parameters were calculated in the wavelengths to the range 300–2500 nm. The pyronin Y is a new organic semiconductor with a good optical absorption in UV–vis regions and it is suitable for nonlinear optical applications. - Highlights: • Pyronin Y (PY) nanostructured thin films were deposited by using spin coating technique. • XRD/AFM were used to study the structure of PY films. • The optical band gap was calculated on the basis of Tauc's model. • Linear/nonlinear optical parameters are calculated and interpreted via the applied optical theories. • PY thin films is a new organic semiconductor for its application in optoelectronic devices.
Lee, Hyung-Seok; Lee, Hwi Don; Kim, Hyo Jin; Cho, Jae Du; Jeong, Myung Yung; Kim, Chang-Seok
2014-01-01
A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG) sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system. PMID:25177803
International Nuclear Information System (INIS)
Wu Qingjie; Guo Kangxian; Liu Guanghui; Wu Jinghe
2013-01-01
Polaron effects on the linear and the nonlinear optical absorption coefficients and refractive index changes in cylindrical quantum dots with the radial parabolic potential and the z-direction linear potential with applied magnetic field are theoretically investigated. The optical absorption coefficients and refractive index changes are presented by using the compact-density-matrix approach and iterative method. Numerical calculations are presented for GaAs/AlGaAs. It is found that taking into account the electron-LO-phonon interaction, not only are the linear, the nonlinear and the total optical absorption coefficients and refractive index changes enhanced, but also the total optical absorption coefficients are more sensitive to the incident optical intensity. It is also found that no matter whether the electron-LO-phonon interaction is considered or not, the absorption coefficients and refractive index changes above are strongly dependent on the radial frequency, the magnetic field and the linear potential coefficient.
Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli
Aerts, Johan
The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and
Anugop, B.; Prasanth, S.; Rithesh Raj, D.; Vineeshkumar, T. V.; Pranitha, S.; Mahadevan Pillai, V. P.; Sudarsanakumar, C.
2016-12-01
Ni1-xMnxSe nanoparticles (x = 0.1, 0.3, 0.5, 0.7, 0.9) were successfully synthesized by chemical co-precipitation method and their structural and optical properties were studied using X-ray diffraction, transmission electron microscopy, UV-Visible absorption and photo luminescence spectroscopy. XRD pattern reveals the hexagonal structure of the particles and the peak positions were shifted to higher 2θ values with increase in Mn2+ concentration. The average particle size determined from XRD varies from 6 to 11 nm. The UV-Visible absorption spectrum shows absorption edge around the blue region and is red-shifted with increasing Mn2+ concentration consequently the optical bandgap energy is decreasing. The PL emission spectrum shows a broad emission around 380 nm, and the intensity of the emission decreases with increase in Mn2+ concentration. The nonlinear optical properties of the samples were analysed using Z-scan technique and the samples show optical limiting behaviour and the 2 PA coefficient increases with increasing Mn2+ concentration. Overall, manganese concentration influences the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles.
National Research Council Canada - National Science Library
Yablonovitch, Eli
2000-01-01
.... The equipment purchased under this grant has permitted UCLA to purchase a number of broad-band optical components, including especially some unique code division multiplexing filters that permitted...
Computational Study of Chalcopyrite Semiconductors and Their Non-Linear Optical Properties
National Research Council Canada - National Science Library
Lambrecht, Walter R
2007-01-01
... (Including cation antisites, cation and anion vacancies) and CdGeAs2; a study of the feasibility of nonciritical phase matching and associated nonlinear optical parameters in CdSiP2 and CdSIAs2...
NASA Laser Communications with Adaptive Optics and Linear Mode Photon Counting, Phase I
National Aeronautics and Space Administration — In this effort, the Optical Sciences Company (tOSC) and Raytheon Vision Systems (RVS) will team to provide NASA with a long range laser communications system for...
Linear electro-optic coefficient in multilayer self-organized InAs quantum dot structures
Akca, I.B.; Dana, A.; Aydinli, A.; Rossetti, M.; Li, L.; Dagli, N.; Fiore, A.
2007-01-01
The electro-optic coefficients of self-organized InAs quantum dot layers in molecular beam epitaxy grown laser structures in reverse bias have been investigated. Enhanced electrooptic coefficients compared to bulk GaAs were observed.
Wang, Liming; Qiao, Yaojun; Yu, Qian; Zhang, Wenbo
2016-04-01
We introduce a watermark non-binary low-density parity check code (NB-LDPC) scheme, which can estimate the time-varying noise variance by using prior information of watermark symbols, to improve the performance of NB-LDPC codes. And compared with the prior-art counterpart, the watermark scheme can bring about 0.25 dB improvement in net coding gain (NCG) at bit error rate (BER) of 1e-6 and 36.8-81% reduction of the iteration numbers. Obviously, the proposed scheme shows great potential in terms of error correction performance and decoding efficiency.
FPGA and optical-network-based LLRF distributed control system for TESLA-XFEL linear accelerator
Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Czarski, Tomasz; Giergusiewicz, Wojciech; Jalmuzna, Wojciech; Olowski, Krysztof; Perkuszewski, Karol; Zielinski, Jerzy; Simrock, Stefan
2005-02-01
The work presents a structural and functional model of a distributed low level radio frequency (LLRF) control system for the TESLA-XFEL accelerator. The design of a system basing on the FPGA chips and multi-gigabit optical network was debated. The system design approach was fully parametric. The major emphasis is put on the methods of the functional and hardware concentration to use fully both: a very big transmission capacity of the optical fiber telemetric channels and very big processing power of the latest series of the, DSP enhanced and optical I/O equipped, FPGA chips. The subject of the work is the design of a universal, laboratory module of the LLRF sub-system. Initial parameters of the system model under the design are presented.
International Nuclear Information System (INIS)
Nielsen, Tim; Brendel, Bernhard; Ziegler, Ronny; Beek, Michiel van; Uhlemann, Falk; Bontus, Claas; Koehler, Thomas
2009-01-01
Diffuse optical tomography (DOT) is a potential new imaging modality to detect or monitor breast lesions. Recently, Philips developed a new DOT system capable of transmission and fluorescence imaging, where the investigated breast is hanging freely into the measurement cup containing scattering fluid. We present a fast and robust image reconstruction algorithm that is used for the transmission measurements. The algorithm is based on the Rytov approximation. We show that this algorithm can be used over a wide range of tissue optical properties if the reconstruction is adapted to each patient. We use estimates of the breast shape and average tissue optical properties to initialize the reconstruction, which improves the image quality significantly. We demonstrate the capability of the measurement system and reconstruction to image breast lesions by clinical examples
Optical-Path-Difference Linear Mechanism for the Panchromatic Fourier Transform Spectrometer
Blavier, Jean-Francois L.; Heverly, Matthew C.; Key, Richard W.; Sander, Stanley P.
2011-01-01
A document discusses a mechanism that uses flex-pivots in a parallelogram arrangement to provide frictionless motion with an unlimited lifetime. A voicecoil actuator drives the parallelogram over the required 5-cm travel. An optical position sensor provides feedback for a servo loop that keeps the velocity within 1 percent of expected value. Residual tip/tilt error is compensated for by a piezo actuator that drives the interferometer mirror. This mechanism builds on previous work that targeted ground-based measurements. The main novelty aspects include cryogenic and vacuum operation, high reliability for spaceflight, compactness of the design, optical layout compatible with the needs of an imaging FTS (i.e. wide overall field-of-view), and mirror optical coatings to cover very broad wavelength range (i.e., 0.26 to 15 m).
DEFF Research Database (Denmark)
Porto da Silva, Edson
Digital signal processing (DSP) has become one of the main enabling technologies for the physical layer of coherent optical communication networks. The DSP subsystems are used to implement several functionalities in the digital domain, from synchronization to channel equalization. Flexibility...... nonlinearity compensation, (II) spectral shaping, and (III) adaptive equalization. For (I), original contributions are presented to the study of the nonlinearity compensation (NLC) with digital backpropagation (DBP). Numerical and experimental performance investigations are shown for different application...... scenarios. Concerning (II), it is demonstrated how optical and electrical (digital) pulse shaping can be allied to improve the spectral confinement of a particular class of optical time-division multiplexing (OTDM) signals that can be used as a building block for fast signaling single-carrier transceivers...
Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A.; Chee, Kok Han; Liew, Yih Miin
2017-12-01
Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame.
Baraskar, Priyanka; Chouhan, Romita; Agrawal, Arpana; Choudhary, R. J.; Sen, Pranay K.; Sen, Pratima
2018-03-01
We report the magnetic field effect on the linear and nonlinear optical properties of pulse laser ablated Ti-incorporated Cr2O3 nanostructured thin film. Optical properties have been experimentally analyzed under Voigt geometry by performing ultraviolet-visible spectroscopy and closed aperture Z-scan technique using a continuous wave He-Ne laser source. Nonlinear optical response reveals a single peak-valley feature in the far field diffraction pattern in absence of magnetic field (B = 0) confirming self-defocussing effect. This feature switches to a valley-peak configuration for B = 5000G, suggesting self-focusing effect. For B ≤ 750G, oscillations were observed revealing the occurrence of higher order nonlinearity. Origin of nonlinearity is attributed to the near resonant d-d transitions observed from the broad peak occurring around 2 eV. These transitions are of magnetic origin and get modified under the application of external magnetic field. Our results suggest that magnetic field can be used as an effective tool to monitor the sign of optical nonlinearity and hence the thermal expansion in Ti-incorporated Cr2O3 nanostructured thin film.
Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.
Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H
2015-02-23
The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other.
Energy Technology Data Exchange (ETDEWEB)
Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos, México (Mexico); Kasapoglu, E.; Ungan, F.; Yesilgul, U. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sakiroglu, S. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey); Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sökmen, I. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey)
2013-11-15
The 1s-like and 2p-like donor impurity energy states are studied in a semiconductor quantum wire of equilateral triangular cross section as functions of the impurity position and the geometrical size of the structure. Linear and nonlinear coefficients for the optical absorption and relative refractive index change associated with 1s→2p transitions are calculated for both the x-polarization and y-polarization of the incident light. The results show a mixed effect of redshift and blueshift depending on the location of the donor atom. Also, strong nonlinear contributions to the optical absorption coefficient are obtained for both polarizations in the on-center impurity case. -- Highlights: • The 1s- and 2p-like impurity states in triangular quantum-well wires. • Optical absorption and relative refractive index changes are calculated. • Redshift and blueshift in the optical structures depend on the donor position. • Strong nonlinear contributions to the absorption coefficient have been obtained.
Fault-tolerant linear optical quantum computing with small-amplitude coherent States.
Lund, A P; Ralph, T C; Haselgrove, H L
2008-01-25
Quantum computing using two coherent states as a qubit basis is a proposed alternative architecture with lower overheads but has been questioned as a practical way of performing quantum computing due to the fragility of diagonal states with large coherent amplitudes. We show that using error correction only small amplitudes (alpha>1.2) are required for fault-tolerant quantum computing. We study fault tolerance under the effects of small amplitudes and loss using a Monte Carlo simulation. The first encoding level resources are orders of magnitude lower than the best single photon scheme.
Fault-tolerant quantum repeater with atomic ensembles and linear optics
International Nuclear Information System (INIS)
Chen Zengbing; Zhao Bo; Chen Yuao; Schmiedmayer, Joerg; Pan Jianwei
2007-01-01
We present a detailed analysis of a robust quantum repeater architecture building on the original Duan-Lukin-Cirac-Zoller (DLCZ) protocol [L.M. Duan et al. Nature (London) 414, 413 (2001)]. The architecture is based on two-photon Hong-Ou-Mandel-type interference which relaxes the long-distance interferometric stability requirements by about seven orders of magnitude, from subwavelength for the single photon interference required by DLCZ to the coherence length of the photons, thereby removing the weakest point in the DLCZ scheme. Our proposal provides an exciting possibility for robust and realistic long-distance quantum communication
Experimental linear-optical implementation of a multifunctional optimal qubit cloner
Czech Academy of Sciences Publication Activity Database
Lemr, K.; Bartkiewicz, K.; Černoch, A.; Soubusta, Jan; Miranowicz, A.
2012-01-01
Roč. 85, č. 5 (2012), "050307-1"-"050307-4" ISSN 1050-2947 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum cloning * qubit cloner Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.042, year: 2012
Guanylurea(1+) hydrogen phosphite: study of linear and nonlinear optical properties
Czech Academy of Sciences Publication Activity Database
Fridrichová, M.; Kroupa, Jan; Němec, I.; Císařová, I.; Chvostová, Dagmar
2010-01-01
Roč. 83, 10-11 (2010), s. 761-767 ISSN 0141-1594 R&D Projects: GA ČR GA203/09/0878 Institutional research plan: CEZ:AV0Z10100520 Keywords : non-centrosymmetric * guanylurea * refractive indices * nonlinear optics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.006, year: 2010
Determination of linear optics functions from turn-by-turn data
Energy Technology Data Exchange (ETDEWEB)
Alexahin, Y; Gianfelice-Wendt, E, E-mail: alexahin@fnal.gov [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510 (United States)
2011-10-15
A method for evaluation of coupled optics functions, detection of strong perturbing elements, determination of BPM calibration errors and tilts using turn-by-turn (TBT) data is presented as well as the new version of the Hamiltonian perturbation theory of betatron oscillations the method is based upon. An example of application of the considered method to the Tevatron is given.
Linear electro-optic effect in sputtered polycrystalline LiNbO3 films
Griffel, G.; Ruschin, S.; Croitoru, N.
1989-04-01
Light guiding and modulation was demonstrated in sputtered LiNbO3 films deposited on glass substrates. We report on films' exceptionally low attenuation (<2 dB/cm) and the highest electro-optical coefficient reported so far for this kind of film (1.34×10-12 m/V).
Li, Jing; Wu, Xiaoping
2011-10-10
In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.
Bouclé, J.; Kassiba, A.; Makowska-Janusik, M.; Herlin-Boime, N.; Reynaud, C.; Desert, A.; Emery, J.; Bulou, A.; Sanetra, J.; Pud, A. A.; Kodjikian, S.
2006-11-01
An electro-optical activity has been recently reported for hybrid nanocomposite thin films where inorganic silicon carbide nanocrystals (ncSiC) are incorporated into polymer matrices. The role of the interface SiC polymer is suggested as the origin of the observed second order nonlinear optical susceptibility in the hybrid materials based on poly-(methylmethacrylate) (PMMA) or poly-( N -vinylcarbazole) matrices. In this work, we report an analysis of the electro-optical response of this hybrid system as a function of the ncSiC content and surface state in order to precise the interface effect in the observed phenomenon. Two specific ncSiC samples with similar morphology and different surface states are incorporated in the PMMA matrix. The effective Pockels parameters of the corresponding hybrid nanocomposites have been estimated up to 7.59±0.74pm/V ( 1wt.% of ncSiC in the matrix). The interfacial region ncSiC polymer is found to play the main role in the observed effect. Particularly, the electronic defects on the ncSiC nanocrystal surface modify the interfacial electrical interactions between the two components. The results are interpreted and discussed on the basis of the strong influence of these active centers in the interfacial region at the nanoscale, which are found to monitor the local hyperpolarizabilities and the macroscopic nonlinear optical susceptibilities. This approach allows us to complete the description and understanding of the electro-optical response in the hybrid SiC /polymer systems.
DEFF Research Database (Denmark)
Rodrigo Navarro, Jaime; Kakkar, Aditya; Pang, Xiaodan
2016-01-01
(ΔνTs) tolerance is achieved compared to the single-stage n-PSK partitioning scheme. Superior performance in the ΔνTs tolerance compared to the blind phase search algorithm is also reported. The relative improvements with respect to other CPR schemes are also validated experimentally for a 28-Gbaud C......A novel two-stage n-PSK partitioning carrier phase recovery (CPR) scheme for circular multilevel quadrature amplitude modulation (C-mQAM) constellations is presented. The first stage of the algorithm provides an initial rough estimation of the received constellation, which is utilized in the second...... stage for CPR. The performance of the proposed algorithm is studied through extensive simulations at the forward error correction bit error rate targets of 3.8 × 10−3 and 1 × 10−2 and is compared with different CPR algorithms. A significant improvement in the combined linewidth symbol duration product...
Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach
Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-06-01
The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.
Experimental realization of the quantum duel game using linear optical circuits
International Nuclear Information System (INIS)
Balthazar, W F; Passos, M H M; Schmidt, A G M; Huguenin, J A O; Caetano, D P
2015-01-01
We report on the experimental realization of the quantum duel game for two players, Alice and Bob. Using an all optical approach, we have encoded Alice and Bob states in transverse modes and polarization degrees of freedom of a laser beam, respectively. By setting Alice and Bob input states and considering the possibility of Alice performing two shots, we demonstrated the quantum features of the game as well as we recovered the classical version of the game. (paper)
Passive linear nanoscale optical and molecular electronics device synthesis from nanoparticles
International Nuclear Information System (INIS)
Yurke, Bernard; Kuang Wan
2010-01-01
Arrays of nanoparticles whose interactions can be characterized by hopping Hamiltonians can serve as excitation transmission lines. Here we show, that in addition suitable arrangements of nanoparticles can form beam splitters, phase shifters, and crossover splitters. With these elements, any discrete unitary transformation can be implemented on input modes via a network of nanoparticles in which all the components lie in the same plane. These nanoparticle networks can produce optical functionalities at a length scale much smaller than 1 μm.
Linear and nonlinear optical characteristics of Te nanoparticles-doped germanate glasses
Xu, Zhousu; Guo, Qiangbing; Liu, Chang; Ma, Zhijun; Liu, Xiaofeng; Qiu, Jianrong
2016-10-01
Te nanoparticles (NPs)-doped GeO2-MgO-B2O3-Al2O3-TeO2 glasses were prepared by the conventional melt-quenching method. Based on X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscope observation, the coloration of the glass at high TeO2 concentration is ascribed to the precipitation of elemental Te NPs with a size of 5-10 nm in the germanate glass. Optical absorption spectra and nonlinear optical (NLO) properties of the glass samples were analyzed by UV-3600 spectrophotometry and Z-scan technique, respectively. The nonlinear absorption coefficient ( β) and the imaginary part of the third-order NLO susceptibility (Im χ (3)) were estimated to be 1.74 cm/GW and 1.142 × 10-12 esu for laser power of 95 μW, respectively. Due to the excellent NLO properties, the Te NPs-doped germanate glasses may have potential applications for ultrafast optical switch and photonics.
Healy, John J.
2018-01-01
The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.
Tyagi, Chetna; Yadav, Preeti; Sharma, Ambika
2018-05-01
The present work reveals the optical study of Se82Te15Bi1.0Sn2.0/polyvinylpyrrolidone (PVP) nanocomposites. Bulk glasses of chalcogenide was prepared by well-known melt quenching technique. Wet chemical technique is proposed for making the composite of Se82Te15Bi1.0Sn2.0 and PVP polymer as it is easy to handle and cost effective. The composites films were made on glass slide from the solution of Se-Te-Bi-Sn and PVP polymer using spin coating technique. The transmission as well as absorbance is recorded by using UV-Vis-NIR spectrophotometer in the spectral range 350-700 nm. The linear refractive index (n) of polymer nanocomposites are calculated by Swanepoel approach. The linear refractive index (n) PVP doped Se82Te15Bi1.0Sn2.0 chalcogenide is found to be 1.7. The optical band gap has been evaluated by means of Tauc extrapolation method. Tichy and Ticha model was utilized for the characterization of nonlinear refractive index (n2).
Optics Design and Performance of an Ultra-Low Emittance Damping Ring for the Compact Linear Collider
Korostelev, M S
2006-01-01
A high-energy (0.5-3.0 TeV centre of mass) electron-positron Compact Linear Collider (CLIC) is being studied at CERN as a new physics facility. The design study has been optimized for 3 TeV centre-of-mass energy. Intense bunches injected into the main linac must have unprecedentedly small emittances to achieve the design luminosity 1035cm-2s-1 required for the physics experiments. The positron and electron bunch trains will be provided by the CLIC injection complex. This thesis describes an optics design and performance of a positron damping ring developed for producing such ultra-low emittance beam. The linear optics of the CLIC damping ring is optimized by taking into account the combined action of radiation damping, quantum excitation and intrabeam scattering. The required beam emittance is obtained by using a TME (Theoretical Minimum Emittance) lattice with compact arcs and short period wiggler magnets located in dispersionfree regions. The damping ring beam energy is chosen as 2.42 GeV. The lattice featu...
Hijas, K. M.; Madan Kumar, S.; Byrappa, K.; Geethakrishnan, T.; Jeyaram, S.; Nagalakshmi, R.
2018-03-01
Single crystals of 2-methoxy-4(phenyliminomethyl)phenol were grown from ethanol by slow evaporation solution growth technique. Single crystal X-ray diffraction experiment reveals the crystallization in orthorhombic system having non-centrosymmetric space group C2221. Geometrical optimization by density functional theory method was carried out using Gaussian program and compared with experimental results. Detailed experimental and theoretical vibrational analyses were carried out and the results were correlated to find close agreement. Thermal analyses show the material is thermally stable with a melting point of 159 °C. Natural bond orbital analysis was carried out to explain charge transfer interactions through hydrogen bonding. Relatively smaller HOMO-LUMO band gap favors the non linear optical activity of the molecule. Natural population analysis and molecular electrostatic potential calculations visualize the charge distribution in an isolated molecule. Calculated first-order molecular hyperpolarizability and preliminary second harmonic generation test carried out using Kurtz-Perry technique establish 2-methoxy-4(phenyliminomethyl)phenol crystal as a good non linear optical material. Z-scan proposes the material for reverse saturable absorption.
Ouahrani, T.; Reshak, A. H.; de La Roza, A. Otero; Mebrouki, M.; Luaña, V.; Khenata, R.; Amrani, B.
2009-12-01
We report results from first-principles density functional calculations using the full-potential linear augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) and the Engel-Vosko-generalized gradient approximation (EV-GGA) were used for the exchange-correlation energy of the structural, electronic, linear and nonlinear optical properties of the chalcopyrite Ga2PSb compound. The valence band maximum (VBM) is located at the Γv point, and the conduction band minimum (CBM) is located at the Γc point, resulting in a direct band gap of about 0.365 eV for GGA and 0.83 eV for EV-GGA. In comparison with the experimental one (1.2 eV) we found that EV-GGA calculation gives energy gap in reasonable agreement with the experiment. The spin orbit coupling has marginal influence on the optical properties. The ground state quantities such as lattice parameters (a, c and u), bulk modules B and its pressure derivative B^primeare evaluated.
Directory of Open Access Journals (Sweden)
Jaime Rodrigo Navarro
2016-06-01
Full Text Available A novel two-stage n-PSK partitioning carrier phase recovery (CPR scheme for circular multilevel quadrature amplitude modulation (C-mQAM constellations is presented. The first stage of the algorithm provides an initial rough estimation of the received constellation, which is utilized in the second stage for CPR. The performance of the proposed algorithm is studied through extensive simulations at the forward error correction bit error rate targets of 3.8 × 10−3 and 1 × 10−2 and is compared with different CPR algorithms. A significant improvement in the combined linewidth symbol duration product (ΔνTs tolerance is achieved compared to the single-stage n-PSK partitioning scheme. Superior performance in the ΔνTs tolerance compared to the blind phase search algorithm is also reported. The relative improvements with respect to other CPR schemes are also validated experimentally for a 28-Gbaud C-16QAM back-to-back transmission system. The computational complexity of the proposed CPR scheme is studied, and reduction factors of 24.5 | 30.1 and 59.1 | 63.3 are achieved for C-16QAM and C-64QAM, respectively, compared to single-stage BPS in the form of multipliers | adders.
Quantum criticality of geometric phase in coupled optical cavity arrays under linear quench
Sarkar, Sujit
2013-01-01
The atoms trapped in microcavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We study the dynamics of the geometric phase of this system under the linear quenching process of laser field detuning which shows the XX criticality of the geometric phase in presence of single Rabi frequency oscillation. We also study the quantum criticality for different quenching rate in the presence of single or two Rabi frequencies osci...
Horiuchi, Toshiyuki; Watanabe, Jun; Suzuki, Yuta; Iwasaki, Jun-ya
2017-05-01
Two dimensional code marks are often used for the production management. In particular, in the production lines of liquid-crystal-display panels and others, data on fabrication processes such as production number and process conditions are written on each substrate or device in detail, and they are used for quality managements. For this reason, lithography system specialized in code mark printing is developed. However, conventional systems using lamp projection exposure or laser scan exposure are very expensive. Therefore, development of a low-cost exposure system using light emitting diodes (LEDs) and optical fibers with squared ends arrayed in a matrix is strongly expected. In the past research, feasibility of such a new exposure system was demonstrated using a handmade system equipped with 100 LEDs with a central wavelength of 405 nm, a 10×10 matrix of optical fibers with 1 mm square ends, and a 10X projection lens. Based on these progresses, a new method for fabricating large-scale arrays of finer fibers with squared ends was developed in this paper. At most 40 plastic optical fibers were arranged in a linear gap of an arraying instrument, and simultaneously squared by heating them on a hotplate at 120°C for 7 min. Fiber sizes were homogeneous within 496+/-4 μm. In addition, average light leak was improved from 34.4 to 21.3% by adopting the new method in place of conventional one by one squaring method. Square matrix arrays necessary for printing code marks will be obtained by piling the newly fabricated linear arrays up.
The optical design of the spin manipulation system for the SLAC Linear Collider
International Nuclear Information System (INIS)
Fieguth, T.H.
1989-03-01
The optical design of the beam transport lines between the SLAC Linac and the electron damping ring and the design of part of the Linac lattice itself will be modified to accommodate three superconducting solenoids for the purpose of manipulating the polarization of the electron beam. In order to allow arbitrary orientation of the polarization vector, this design will be capable of compensating the fields of two independent solenoids for arbitrary strengths ranging to 7.0 T-m. The method of dealing with the coupling of the betatron functions and the method of handling both the electron and positron beams in the common region are discussed. 8 refs., 5 figs
Compact optical system for measuring linear and angular displacement of solid structures
DEFF Research Database (Denmark)
Jakobsen, M.L.; Larsen, H.E.; Hanson, Steen Grüner
2004-01-01
and rotation of the target. The presented free space propagation design can provide a sensor with no direct sensitivity on the working distance. The electrical signals from the sensor are processed with a digital algorithm, based on zero-crossings detection to provide real-time displacement measurements....... The spatial filter of the sensor is characterized here, and the precision of the sensor, integrated with a processor, which applies zero-crossing detection to the signal, is considered. © 2004 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted...
Synthesis, characterization and non-linear optical response of organophilic carbon dots
Bourlinos, Athanasios B.; Karakassides, Michael A.; Kouloumpis, Antonios; Gournis, Dimitrios; Bakandritsos, Aristides; Papagiannouli, Irene; Aloukos, Panagiotis; Couris, Stelios; Hola, Katerina; Zboril, Radek; Krysmann, Marta; Giannelis, Emmanuel P.
2013-01-01
For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.
Synthesis, characterization and non-linear optical response of organophilic carbon dots
Bourlinos, Athanasios B.
2013-09-01
For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.
A non-linear optical ''photograph'' of picosecond pulses
Energy Technology Data Exchange (ETDEWEB)
Sukhorukova, A.K.; Sukhorukov, A.P.; Telegin, L.S.; Yankina, I.B.
1981-01-01
Results are given of experimental and theoretical studies on the conversion of the temporary structure of picosecond pulses into a spatial diagram with noncollinated lasing of the sum frequency. Correlations are found for the crystal parameters, the pumping emission and the interaction geometry, which are needed in measuring durations in a range from 10 /sup -10/ all the way up to 10 /sup -13/ seconds. The proposed optical recording circuit in the relatively simple experiment makes it possible to measure the duration of the super short pulses of weak signals.
Magneto-optics for linear electron accelerator with beam recirculation for radiotherapy
International Nuclear Information System (INIS)
Nagaenko, M.G.; Severgin, Yu.P.; Fedorov, A.S.
1985-01-01
Magneto-optical devices of the 40 MeV LUEhR-40M accelrator designed for radiotherapy, are described. A magnetic mirrow and bending-shaping device are reffered to magnetooptical systems. The both devices do not contain quadrupole lenses and have only dipole magnets with radial-homogeneous field. Axial focusing of particles is carried out by magnetic field boundary skew. The both devices have internal mirror symmetry. Results of optimization of devices parameters with the help of BETRAMF program are presented
International Nuclear Information System (INIS)
Moencke, Doris; Mountrichas, Grigoris; Pispas, Stergios; Kamitsos, Efstratios I.
2011-01-01
The effectiveness of chromophore alignment in polymer films following corona poling can be assessed by the generated second harmonic signal. Optimization of the stability and strength of this nonlinear optical response may improve with a better understanding of the underlying principal order phenomena. Structural analysis by vibrational, optical, and 1 H NMR spectroscopy reveals side chain tacticity, aggregation effects, and changes in orientation as a function of temperature. Co-polymers with the functionalized chromophore Disperse Red 1 methacrylate (MDR1) were prepared for three different methacrylate types. High side chain polarity and short side chain length increase generally chromophore aggregation in films, whereas the very long poly-ether side chains in PMEO based co-polymers are wrapped separately around the DR1 entities. Side chain tacticity depends on space requirements, but also on the capacity of side groups to form OH-bridges. Side chain tacticity might present an additional parameter for the assessment of chromophore aggregation and poling induced alignments. Stepwise heating of co-polymer films causes an increase in the number of random over ordered side chain arrangements. Cross-linking by anhydride formation is observed after heating the methacrylic acid based co-polymer.
Optical Measurement of Radiocarbon below Unity Fraction Modern by Linear Absorption Spectroscopy.
Fleisher, Adam J; Long, David A; Liu, Qingnan; Gameson, Lyn; Hodges, Joseph T
2017-09-21
High-precision measurements of radiocarbon ( 14 C) near or below a fraction modern 14 C of 1 (F 14 C ≤ 1) are challenging and costly. An accurate, ultrasensitive linear absorption approach to detecting 14 C would provide a simple and robust benchtop alternative to off-site accelerator mass spectrometry facilities. Here we report the quantitative measurement of 14 C in gas-phase samples of CO 2 with F 14 C radiocarbon measurement science including the study of biofuels and bioplastics, illicitly traded specimens, bomb dating, and atmospheric transport.
Measurement of IR optics with linear coupling's action-angle parametrization
Luo, Y.; Bai, M.; Pilat, F.; Satogata, T.; Trbojevic, D.
2005-08-01
Linear coupling’s action-angle parametrization is convenient for interpretation of turn-by-turn beam position monitor (BPM) data. We demonstrate how to apply this parametrization to extract Twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of a long IR drift region. Example data were acquired at the Relativistic Heavy Ion Collider, using an ac dipole to excite a single transverse eigenmode. We have measured the waist of the β function and its Twiss and coupling parameters.
Measurement of IR optics with linear coupling’s action-angle parametrization
Directory of Open Access Journals (Sweden)
Y. Luo
2005-08-01
Full Text Available Linear coupling’s action-angle parametrization is convenient for interpretation of turn-by-turn beam position monitor (BPM data. We demonstrate how to apply this parametrization to extract Twiss and coupling parameters in interaction regions (IRs, using BPMs on each side of a long IR drift region. Example data were acquired at the Relativistic Heavy Ion Collider, using an ac dipole to excite a single transverse eigenmode. We have measured the waist of the β function and its Twiss and coupling parameters.
Zhou, Ji; Qiao, Yaojun
2015-09-01
In this Letter, we propose a discrete Hartley transform (DHT)-spread asymmetrically clipped optical orthogonal frequency-division multiplexing (DHT-S-ACO-OFDM) uplink transmission scheme in which the multiplexing/demultiplexing process also uses the DHT algorithm. By designing a simple encoding structure, the computational complexity of the transmitter can be reduced from O(Nlog(2)(N)) to O(N). At the probability of 10(-3), the peak-to-average power ratio (PAPR) of 2-ary pulse amplitude modulation (2-PAM)-modulated DHT-S-ACO-OFDM is approximately 9.7 dB lower than that of 2-PAM-modulated conventional ACO-OFDM. To verify the feasibility of the proposed scheme, a 4-Gbit/s DHT-S-ACO-OFDM uplink transmission scheme with a 1∶64 way split has been experimentally implemented using 100-km standard single-mode fiber (SSMF) for a long-reach passive optical network (LR-PON).
Yumura, Takashi; Yamamoto, Wataru
2017-09-20
We employed density functional theory (DFT) calculations with dispersion corrections to investigate energetically preferred alignments of certain p,p'-dimethylaminonitrostilbene (DANS) molecules inside an armchair (m,m) carbon nanotube (n × DANS@(m,m)), where the number of inner molecules (n) is no greater than 3. Here, three types of alignments of DANS are considered: a linear alignment in a parallel fashion and stacking alignments in parallel and antiparallel fashions. According to DFT calculations, a threshold tube diameter for containing DANS molecules in linear or stacking alignments was found to be approximately 1.0 nm. Nanotubes with diameters smaller than 1.0 nm result in the selective formation of linearly aligned DANS molecules due to strong confinement effects within the nanotubes. By contrast, larger diameter nanotubes allow DANS molecules to align in a stacking and linear fashion. The type of alignment adopted by the DANS molecules inside a nanotube is responsible for their second-order non-linear optical properties represented by their static hyperpolarizability (β 0 values). In fact, we computed β 0 values of DANS assemblies taken from optimized n × DANS@(m,m) structures, and their values were compared with those of a single DANS molecule. DFT calculations showed that β 0 values of DANS molecules depend on their alignment, which decrease in the following order: linear alignment > parallel stacking alignment > antiparallel stacking alignment. In particular, a linear alignment has a β 0 value more significant than that of the same number of isolated molecules. Therefore, the linear alignment of DANS molecules, which is only allowed inside smaller diameter nanotubes, can strongly enhance their second-order non-linear optical properties. Since the nanotube confinement determines the alignment of DANS molecules, a restricted nanospace can be utilized to control their second-order non-linear optical properties. These DFT findings can assist in the
Choi, D H
2002-01-01
Photocrosslinkable soluble polyimide and polymethacrylate compound were synthesized for studying the optically induced anisotropy of the thin films. Chalcone group was introduced into the side chain unit of two polymers. We observed a photodimerization behavior between the double bonds in the chalcone group and an optical anisotropy of these materials by irradiation of a linearly polarized UV light (LPL). Optical anisotropy of the thin film was also investigated by using polarized UV absorption spectroscopy.The dynamic property of optical anisotropy in photoreactive polyimide was compared to that in polymethacrylate containing chalcone group in the side chain.
Non-linear optics for the final focus of the single-pass-collider
International Nuclear Information System (INIS)
Brown, K.L.; Spencer, J.E.
1981-02-01
The purpose of the final focus system (FFS) is to demagnify the beam envelope in the Collider arc lattice to a size suitable for beam collisions at the interaction region. The final spot size is determined by the beam emittance, the beta function β* at the IR, the momentum spread in the beam, and the quality of the FFS optics. In particular, if the focusing system is not chromatically corrected, the momentum dispersion in the beam can lead to a substantial degradation in the quality of the final focus. The objective is to design a FFS for 50 GeV/c within approx. 100 meters having an IR spot size sigma/sub xy/ of approximately 2 μm for a beam emittance of epsilon = 3 x 10 -10 m-rad and a momentum spread of delta = +-0.5%. This requires a β/sub x,y/ equal to or less than 1 cm. This report considers the problems encountered in the design of a final focus system that will reliably provide the desired beam size for collisions
Hosseini, K.; Ayati, Z.; Ansari, R.
2018-04-01
One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.
Bonus schemes and trading activity
Pikulina, E.S.; Renneboog, L.D.R.; ter Horst, J.R.; Tobler, P.N.
2014-01-01
Little is known about how different bonus schemes affect traders' propensity to trade and which bonus schemes improve traders' performance. We study the effects of linear versus threshold bonus schemes on traders' behavior. Traders buy and sell shares in an experimental stock market on the basis of
International Nuclear Information System (INIS)
Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Restrepo, R.L.; Duque, C.A.
2013-01-01
The linear and nonlinear intra-band optical absorption coefficients in GaAs/Ga 1−x Al x As two-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and aluminum concentration the energies of the ground (n=1,l=0) and the first excited state (n=2,l=1) have been found using the effective mass approximation and the transfer matrix formalism. The energies of these states and the corresponding threshold energy of the intra-band optical transitions are examined as a function of hydrostatic pressure and aluminum concentration for different sizes of the structure. We also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as functions of the incident photon energy for different values of hydrostatic pressure, aluminum concentration, sizes of the structure, and incident optical intensity. Its is found that the effects of the hydrostatic pressure and the aluminum concentration lead to a shifting of the resonant peaks of the intra-band optical spectrum. - Highlights: ► Linear and nonlinear intra-band absorption in quantum rings. ► Threshold energy strongly depends on the hydrostatic pressure. ► Threshold energy strongly depends on the stoichiometry and sizes of structure. ► Optical absorption is affected by the incident optical intensity.
International Nuclear Information System (INIS)
Solaimani, M.; Morteza, Izadifard; Arabshahi, H.; Reza, Sarkardehi Mohammad
2013-01-01
In this work, we have studied the effect of the number of the wells, in a multiple quantum wells structure with constant total effective length, on the optical properties of multiple quantum wells like the absorption coefficient and the refractive index by means of compact density matrix approach. GaAs/Al x Ga (1−x) As multiple quantum wells systems was selected as an example. Besides, the effect of varying number of wells on the subband energies, wave functions, number of bound states, and the Fermi energy have been also investigated. Our calculation revealed that the number of wells in a multiple quantum well is a criterion with which we can control the amount of nonlinearity. This study showed that for the third order refractive index change there is two regimes of variations and the critical well number was six. In our calculations, we have used the same wells and barrier thicknesses to construct the multiple quantum wells system. - Highlights: ► OptiOptical Non-Linear. ► Total Effective Length. ► Multiple Quantum Wells System - genetic algorithm ► Schrödinger equation solution. ► Nanostructure.
He, Jing; Dai, Min; Chen, Qinghui; Deng, Rui; Xiang, Changqing; Chen, Lin
2017-07-01
In this paper, an effective bit-loading combined with adaptive LDPC code rate algorithm is proposed and investigated in software reconfigurable multiband UWB over fiber system. To compensate the power fading and chromatic dispersion for the high frequency of multiband OFDM UWB signal transmission over standard single mode fiber (SSMF), a Mach-Zehnder modulator (MZM) with negative chirp parameter is utilized. In addition, the negative power penalty of -1 dB for 128 QAM multiband OFDM UWB signal are measured at the hard-decision forward error correction (HD-FEC) limitation of 3.8 × 10-3 after 50 km SSMF transmission. The experimental results show that, compared to the fixed coding scheme with the code rate of 75%, the signal-to-noise (SNR) is improved by 2.79 dB for 128 QAM multiband OFDM UWB system after 100 km SSMF transmission using ALCR algorithm. Moreover, by employing bit-loading combined with ALCR algorithm, the bit error rate (BER) performance of system can be further promoted effectively. The simulation results present that, at the HD-FEC limitation, the value of Q factor is improved by 3.93 dB at the SNR of 19.5 dB over 100 km SSMF transmission, compared to the fixed modulation with uncoded scheme at the same spectrum efficiency (SE).
Liu, Pudong; Shi, Runhe; Wang, Hong; Bai, Kaixu; Gao, Wei
2014-10-01
Leaf pigments are key elements for plant photosynthesis and growth. Traditional manual sampling of these pigments is labor-intensive and costly, which also has the difficulty in capturing their temporal and spatial characteristics. The aim of this work is to estimate photosynthetic pigments at large scale by remote sensing. For this purpose, inverse model were proposed with the aid of stepwise multiple linear regression (SMLR) analysis. Furthermore, a leaf radiative transfer model (i.e. PROSPECT model) was employed to simulate the leaf reflectance where wavelength varies from 400 to 780 nm at 1 nm interval, and then these values were treated as the data from remote sensing observations. Meanwhile, simulated chlorophyll concentration (Cab), carotenoid concentration (Car) and their ratio (Cab/Car) were taken as target to build the regression model respectively. In this study, a total of 4000 samples were simulated via PROSPECT with different Cab, Car and leaf mesophyll structures as 70% of these samples were applied for training while the last 30% for model validation. Reflectance (r) and its mathematic transformations (1/r and log (1/r)) were all employed to build regression model respectively. Results showed fair agreements between pigments and simulated reflectance with all adjusted coefficients of determination (R2) larger than 0.8 as 6 wavebands were selected to build the SMLR model. The largest value of R2 for Cab, Car and Cab/Car are 0.8845, 0.876 and 0.8765, respectively. Meanwhile, mathematic transformations of reflectance showed little influence on regression accuracy. We concluded that it was feasible to estimate the chlorophyll and carotenoids and their ratio based on statistical model with leaf reflectance data.
Energy Technology Data Exchange (ETDEWEB)
Radu, I.E.
2006-03-15
This thesis presents the femtosecond laser-induced electron, lattice and spin dynamics on two representative rare-earth systems: The ferromagnetic gadolinium Gd(0001) and the paramagnetic yttrium Y(0001) metals. The employed investigation tools are the time-resolved linear reflectivity and second-harmonic generation, which provide complementary information about the bulk and surface/interface dynamics, respectively. The femtosecond laser excitation of the exchange-split surface state of Gd(0001) triggers simultaneously the coherent vibrational dynamics of the lattice and spin subsystems in the surface region at a frequency of 3 THz. The coherent optical phonon corresponds to the vibration of the topmost atomic layer against the underlying bulk along the normal direction to the surface. The coupling mechanism between phonons and magnons is attributed to the modulation of the exchange interaction J between neighbour atoms due to the coherent lattice vibration. This leads to an oscillatory motion of the magnetic moments having the same frequency as the lattice vibration. Thus these results reveal a new type of phonon-magnon coupling mediated by the modulation of the exchange interaction and not by the conventional spin-orbit interaction. Moreover, we show that coherent spin dynamics in the THz frequency domain is achievable, which is at least one order of magnitude faster than previously reported. The laser-induced (de)magnetization dynamics of the ferromagnetic Gd(0001) thin films have been studied. Upon photo-excitation, the nonlinear magneto-optics measurements performed in this work show a sudden drop in the spin polarization of the surface state by more than 50% in a <100 fs time interval. Under comparable experimental conditions, the time-resolved photoemission studies reveal a constant exchange splitting of the surface state. The ultrafast decrease of spin polarization can be explained by the quasi-elastic spin-flip scattering of the hot electrons among spin
International Nuclear Information System (INIS)
Gaudry, Jean-Baptiste
2000-01-01
This research thesis reports the study of two mechanisms of non linear interaction of a laser wave with matter. More particularly, it reports the experimental investigation of non linear optical properties of organometallic molecules in solution, as well as the damage of perfect silica under laser irradiation by using simulation codes. As far as optical properties are concerned, the author highlights the influence of the electronic configuration of the metal present in the organometallic compound, and the influence of the ligand on the second-order non-linear response. As far as the simulation is concerned, some experimental results have been reproduced. This work can be useful for the investigation of the extrinsic damage of imperfect materials, and for the design of experiments of transient measurements of excited silica [fr
Energy Technology Data Exchange (ETDEWEB)
Clarisse, J.M
2007-07-01
A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)
Cuppo, F L S; Gómez, S L; Figueiredo Neto, A M
2004-04-01
In this paper is reported a systematic experimental study of the linear-optical-absorption coefficient of ferrofluid-doped isotropic lyotropic mixtures as a function of the magnetic-grains concentration. The linear optical absorption of ferrolyomesophases increases in a nonlinear manner with the concentration of magnetic grains, deviating from the usual Beer-Lambert law. This behavior is associated to the presence of correlated micelles in the mixture which favors the formation of small-scale aggregates of magnetic grains (dimers), which have a higher absorption coefficient with respect to that of isolated grains. We propose that the indirect heating of the micelles via the ferrofluid grains (hyperthermia) could account for this nonlinear increase of the linear-optical-absorption coefficient as a function of the grains concentration.
Kandouci, Chahinaz; Djebbari, Ali
2018-04-01
A new family of two-dimensional optical hybrid code which employs zero cross-correlation (ZCC) codes, constructed by the balanced incomplete block design BIBD, as both time-spreading and wavelength hopping patterns are used in this paper. The obtained codes have both off-peak autocorrelation and cross-correlation values respectively equal to zero and unity. The work in this paper is a computer experiment performed using Optisystem 9.0 software program as a simulator to determine the wavelength hopping/time spreading (WH/TS) OCDMA system performances limitations. Five system parameters were considered in this work: the optical fiber length (transmission distance), the bitrate, the chip spacing and the transmitted power. This paper shows for what sufficient system performance parameters (BER≤10-9, Q≥6) the system can stand for.
Eltaif, Tawfig; Shalaby, Hossam M. H.; Shaari, Sahbudin; Hamarsheh, Mohammad M. N.
2009-04-01
A successive interference cancellation scheme is applied to optical code-division multiple-access (OCDMA) systems with spectral amplitude coding (SAC). A detailed analysis of this system, with Hadamard codes used as signature sequences, is presented. The system can easily remove the effect of the strongest signal at each stage of the cancellation process. In addition, simulation of the prose system is performed in order to validate the theoretical results. The system shows a small bit error rate at a large number of active users compared to the SAC OCDMA system. Our results reveal that the proposed system is efficient in eliminating the effect of the multiple-user interference and in the enhancement of the overall performance.
International Nuclear Information System (INIS)
Pustelny, Szymon; Jackson Kimball, Derek F.; Pankow, Chris; Ledbetter, Micah P.; Wlodarczyk, Przemyslaw; Wcislo, Piotr; Pospelov, Maxim; Smith, Joshua R.; Read, Jocelyn; Gawlik, Wojciech; Budker, Dmitry
2013-01-01
A novel experimental scheme enabling the investigation of transient exotic spin couplings is discussed. The scheme is based on synchronous measurements of optical-magnetometer signals from several devices operating in magnetically shielded environments in distant locations (>or similar 100 km). Although signatures of such exotic couplings may be present in the signal from a single magnetometer, it would be challenging to distinguish them from noise. By analyzing the correlation between signals from multiple, geographically separated magnetometers, it is not only possible to identify the exotic transient but also to investigate its nature. The ability of the network to probe presently unconstrained physics beyond the Standard Model is examined by considering the spin coupling to stable topological defects (e.g., domain walls) of axion-like fields. In the spirit of this research, a brief (∝2 hours) demonstration experiment involving two magnetometers located in Krakow and Berkeley (∝9000 km separation) is presented and discussion of the data-analysis approaches that may allow identification of transient signals is provided. The prospects of the network are outlined in the last part of the paper. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Oguri, Katsuya; Mashiko, Hiroki; Ogawa, Tatsuya; Hanada, Yasutaka; Nakano, Hidetoshi; Gotoh, Hideki
2018-04-01
We demonstrate the generation of ultrabroad bandwidth attosecond continua extending to sub-50-as duration in the extreme ultraviolet (EUV) region based on a 1.6-cycle Ti:sapphire laser pulse. The combination of the amplitude gating scheme with a sub-two-cycle driver pulse and the double optical gating scheme achieves the continuum generation with a bandwidth of 70 eV at the full width at half maximum near the peak photon energy of 140 eV, which supports a Fourier-transform-limited pulse duration as short as 32 as. The carrier-envelope-phase (CEP) dependence of the attosecond continua shows a single-peak structure originating from the half-cycle cut-off at appropriate CEP values, which strongly indicates the generation of a single burst of an isolated attosecond pulse. Our approach suggests a possibility for isolated sub-50-as pulse generation in the EUV region by compensating for the intrinsic attosecond chirp with a Zr filter.
Energy Technology Data Exchange (ETDEWEB)
Liu Guanghui [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Guo Kangxian, E-mail: axguo@sohu.com [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Chao [Institute of Public Administration, Guangzhou University, Guangzhou 510006 (China)
2012-06-15
The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.
International Nuclear Information System (INIS)
Liu Guanghui; Guo Kangxian; Wang Chao
2012-01-01
The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.
Bhattacharya, S.; Maiti, R.; Saha, S.; Das, A. C.; Mondal, S.; Ray, S. K.; Bhaktha, S. B. N.; Datta, P. K.
2016-04-01
Graphene Oxide (GO) has been prepared by modified Hummers method and it has been reduced using an IR bulb (800-2000 nm). Both as grown GO and reduced graphene oxide (RGO) have been characterized using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Raman spectra shows well documented Dband and G-band for both the samples while blue shift of G-band confirms chemical functionalization of graphene with different oxygen functional group. The XPS result shows that the as-prepared GO contains 52% of sp2 hybridized carbon due to the C=C bonds and 33% of carbon atoms due to the C-O bonds. As for RGO, increment of the atomic % of the sp2 hybridized carbon atom to 83% and rapid decrease in atomic % of C=O bonds confirm an efficient reduction with infrared radiation. UV-Visible absorption spectrum also confirms increment of conjugation with increased reduction. Non-linear optical properties of both GO and RGO are measured using single beam open aperture Z-Scan technique in femtosecond regime. Intensity dependent nonlinear phenomena are observed. Depending upon the intensity, both saturable absorption and two photon absorption contribute to the non-linearity of both the samples. Saturation dominates at low intensity (~ 127 GW/cm2) while two photon absorption become prominent at higher intensities (from 217 GW/cm2 to 302 GW/cm2). We have calculated the two-photon absorption co-efficient and saturation intensity for both the samples. The value of two photon absorption co-efficient (for GO~ 0.0022-0.0037 cm/GW and for RGO~ 0.0128-0.0143 cm/GW) and the saturation intensity (for GO~57 GW/cm2 and for RGO~ 194GW/cm2) is increased with reduction. Increase in two photon absorption coefficient with increasing intensity can also suggest that there may be multi-photon absorption is taking place.
Energy Technology Data Exchange (ETDEWEB)
Khan, Wilayat, E-mail: wkhan@ntc.zcu.cz [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); Murtaza, G., E-mail: murtaza@icp.edu.pk [Department of Physics, Islamia College Peshawar, KPK (Pakistan); Ouahrani, T. [Laboratoire de Physique Théorique, B.P. 230, Université de Tlemcen, Tlemcen 13000 (Algeria); École Préparatoire en Sciences et Techniques, BP 165 R.P., 13000 Tlemcen (Algeria); Mahmood, Asif [College of Engineering, Chemical Engineering Department, King Saud University Riyadh (Saudi Arabia); Khenata, R.; El Amine Monir, Mohammed; Baltache, H. [Laboratoire de Physique Quantique, de la Matière et de la Modélisation Mathématique (LPQ3M), Université de Mascara, Mascara 29000 (Algeria)
2016-07-25
Recently a new sulphide compound Li{sub 2}Ga{sub 2}GeS{sub 6} was synthesized. It has attracted great attention due to its nonlinear optical properties. Quite surprisingly no theoretical study yet been reported on the physical properties of this important material. We have paid attention to study the electronic and optical properties of Li{sub 2}Ga{sub 2}GeS{sub 6} using first principles techniques of density functional theory. Different exchange-correlation techniques have been applied to study these properties. From local density and generalized gradient approximations the compound is predicted to be direct bandgap. However the band gap is indirect when calculated through the Engle–Vosko and modified Becke–Johnson potentials. Therefore the bandgap of the compound is pseudo direct (direct and indirect band gaps are very close). In optical properties dielectric function, refractive index, reflectivity and absorption coefficient were studied. Furthermore, the second harmonic generation properties of the compound are predicted. - Highlights: • Li{sub 2}Ga{sub 2}GeS{sub 6} studied for the first time using first principles calculations. • Different exchange correlation potentials have been adopted for the calculations. • Bandgap of the compound is pseudo direct. • Optical structures are prominent in the low frequency ultraviolet region. • The lone pair basins seem to have a non-negligible role in the optical properties.
Energy Technology Data Exchange (ETDEWEB)
Heo, Jino [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Kang, Min-Sung [Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul, 136-791 (Korea, Republic of); Hong, Chang-Ho [National Security Research Institute, P.O.Box 1, Yuseong, Daejeon, 34188 (Korea, Republic of); Choi, Seong-Gon [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Hong, Jong-Phil, E-mail: jongph@cbnu.ac.kr [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of)
2017-06-15
We propose a scheme for swapping two unknown states of a photon and electron spin confined to a charged quantum dot (QD) between two users by transferring a single photon. This scheme simultaneously transfers and teleports an unknown state (electron spin) between two users. For this bidirectional quantum communication, we utilize the interactions between a photonic and an electron-spin qubits of a QD located inside a single-sided optical cavity. Thus, our proposal using QD-cavity systems can obtain a certain success probability with high fidelity. Furthermore, compared to a previous scheme using cross-Kerr nonlinearities and homodyne detections, our scheme (using QD-cavity systems) can improve the feasibility under the decoherence effect in practice. - Highlights: • Design of Simultaneous quantum transmission and teleportation scheme via quantum dots and cavities. • We have developed the experimental feasibility of this scheme compared with the existing scheme. • Analysis of some benefits when our scheme is experimentally implemented using quantum dots and single-sided cavities.
International Nuclear Information System (INIS)
Kityk, I.V.; Makowska-Janusik, M.; Ebothe, J.; El Hichou, A.; El Idrissi, B.; Addou, M.
2002-01-01
The effective nanometer-sized thin layer (about 1-2 nm) located between a crystalline ZnS film and glass substrate is studied here using photoinduced optical and second-order non-linear optical (second harmonic generation (SHG) and electrooptics effects) techniques. A photoinduced shift of the effective energy gap is found for the first time in ZnS films doped with the same amount (4 at.%) of different elements, namely, In, Al and Sn. The photoinduced second-order non-linear optical properties (linear electrooptics (LEO) and SHG) of the specimens show a good correlation with the corresponding features of the linear optical susceptibilities, particularly, the imaginary part of dielectric susceptibility near the absorption edge. The maximal response of the photoinduced signal is observed for the pump-probe delaying time of about 20 ps. The performed experimental measurements indicate that the observed effects are stimulated by two factors: the first one is connected with the interface potential gradients at the glass-ZnS film boarder; the second one is a consequence of the additional polarization due to the insertion of Al, In and Sn atoms. The observed phenomenon may be proposed as a sensitive tool for investigation of thin semiconducting-glass interface layer. Moreover, such nanolayers may be applied in quantum electronic devices
DEFF Research Database (Denmark)
Maram, Reza; Kong, Deming; Galili, Michael
2016-01-01
We propose a novel approach for all-optical return-to-zero (RZ) to non-return-to-zero (NRZ) telecommunication data format conversion based on linear spectral phase manipulation of an RZ data signal. The operation principle is numerically analyzed and experimentally validated through successful fo...
Kimiagar, Salimeh; Abrinaei, Fahimeh
2018-01-01
Magnesium oxide (MgO)-graphene oxide (GO) nanocomposites were prepared by the hydrothermal method at different temperatures. The effect of growth temperature on the structural, linear, and nonlinear optical (NLO) parameters was investigated. The decoration of MgO on GO sheets was confirmed by X-ray diffraction, scanning electron microscopy, Fourier transform infrared, and UV-visible (UV-vis) spectroscopy analyses. The energy band-gaps of MgO-GO nanocomposites were calculated from UV-vis spectrum using Tauc plot. The NLO parameters of MgO-GO nanocomposites were calculated for the first time by the simple Z-scan technique with nanosecond Nd:YAG laser at 532 nm. The nonlinear absorption coefficient β and nonlinear refractive index n2 for MgO-GO nanocomposites at the laser intensity of 1.1×108 W/cm2 were measured to be in the order of 10-7 cm/W and 10-12 cm2/W, respectively. The third-order NLO susceptibility of MgO-GO nanocomposites was measured in the order of 10-9 esu. The results showed that MgO-GO structures have negative nonlinearity as well as good nonlinear two-photon absorption at 532 nm. Furthermore, the NLO parameters increased by the enhancement of the growth temperature. As the investigation of new materials plays an important role in the advancement of optoelectronics, MgO-GO nanocomposites possess potential applications in NLO devices.
Mansilha, C; Melo, A; Rebelo, H; Ferreira, I M P L V O; Pinho, O; Domingues, V; Pinho, C; Gameiro, P
2010-10-22
A multi-residue methodology based on a solid phase extraction followed by gas chromatography-tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC-MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness. Copyright © 2010 Elsevier B.V. All rights reserved.
NSCC-A NEW SCHEME OF CLASSIFICATION OF C-RICH STARS DEVISED FROM OPTICAL AND INFRARED OBSERVATIONS
International Nuclear Information System (INIS)
De Mello, A. B.; De Araujo, F. X.; Pereira, C. Bastos; Landaberry, S. J. Codina; Lorenz-Martins, S.
2009-01-01
A new classification system for carbon-rich stars is presented based on an analysis of 51 asymptotic giant branch carbon stars through the most relevant classifying indices available. The extension incorporated, which also represents the major advantage of this new system, is the combination of the usual optical indices that describe the photospheres of the objects, with new infrared ones, which allow an interpretation of the circumstellar environment of the carbon-rich stars. This new system is presented with the usual spectral subclasses and C 2 -, j-, MS-, and temperature indices, and also with the new SiC- (SiC/C.A. abundance estimation) and τ- (opacity) indices. The values for the infrared indices were carried out through a Monte Carlo simulation of the radiative transfer in the circumstellar envelopes of the stars. The full set of indices, when applied to our sample, resulted in a more efficient system of classification, since an examination in a wide spectral range allows us to obtain a complete scenario for carbon stars.
International Nuclear Information System (INIS)
Jbara, Ahmed S; Othaman, Zulkafli; Saeed, M A
2016-01-01
Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients. (paper)
Bruce, R.; Bracco, C.; De Maria, R.; Giovannozzi, M.; Mereghetti, A.; Mirarchi, D.; Redaelli, S.; Quaranta, E.; Salvachua, B.
2017-03-01
The Large Hadron Collider (LHC) at CERN is built to collide intense proton beams with an unprecedented energy of 7 TeV. The design stored energy per beam of 362 MJ makes the LHC beams highly destructive, so that any beam losses risk to cause quenches of superconducting magnets or damage to accelerator components. Collimators are installed to protect the machine and they define a minimum normalized aperture, below which no other element is allowed. This imposes a limit on the achievable luminosity, since when squeezing β* (the β-function at the collision point) to smaller values for increased luminosity, the β-function in the final focusing system increases. This leads to a smaller normalized aperture that risks to go below the allowed collimation aperture. In the first run of the LHC, this was the main limitation on β*, which was constrained to values above the design specification. In this article, we show through theoretical and experimental studies how tighter collimator openings and a new optics with specific phase-advance constraints allows a β* as small as 40 cm, a factor 2 smaller than β*=80 cm used in 2015 and significantly below the design value β*=55 cm, in spite of a lower beam energy. The proposed configuration with β*=40 cm has been successfully put into operation and has been used throughout 2016 as the LHC baseline. The decrease in β* compared to 2015 has been an essential contribution to reaching and surpassing, in 2016, the LHC design luminosity for the first time, and to accumulating a record-high integrated luminosity of around 40 fb-1 in one year, in spite of using less bunches than in the design.
Chen, R; Hahn, C E W; Farmery, A D
2012-08-15
The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.
Freeman, Jason L; Zhao, Qun; Zhang, Yuanli; Wang, Jianwei; Lawson, Christopher M; Gray, Gary M
2013-10-21
Two new series of phosphonato-substituted bithiophenes, BpP(X)(C4H2S)2H and BpP(X)(C4H2S)2P(X)Bp (Bp = 2,2'-C12H8O2, X = O, S, Se), have been synthesized and characterized using linear absorption and emission spectra, and third-order nonlinear absorption measurements at 430 nm with 27 ps laser pulses. The compounds were synthesized in three steps: (1) reacting lithiated bithiophene with (Et2N)2PCl; (2) reacting the product from the first step with biphenol; and (3) reacting the product from the second step with the appropriate chalcogen. The X-ray crystal structures of two of the compounds, BpP(O)(C4H2S)2P(O)Bp and BpP(Se)(C4H2S)2P(Se)Bp, are reported and show a number of intermolecular π-π interactions. The linear absorption spectra, emission spectra, and emission quantum yields show distinct trends with respect to the chalcogen and the number of phosphorus substituents attached to the 2,2'-bithiophene ring. The compounds show emission maxima at wavelengths ranging from 380-400 nm and, BpP(S)(C4H2S)2H shows a 23-fold increase in fluorescence quantum yield relative to that of 2,2'-bithiophene. Fluorescence lifetimes and radiative and non-radiative decay rate constants for the first singlet excited state have been extracted from the quantum yields using time-dependent DFT calculations. Nonlinear transmission measurements indicate that all of the compounds show nonlinear absorption at 430 nm with 27 ps laser pulses in spite of their low solubilities. Notably, the nonlinear absorption threshold of a 0.16 mol L(-1) CH2Cl2 solution of BpP(Se)(C4H2S)2H is 0.9 J cm(-2). The excellent emission quantum yields and good nonlinear absorptions make these compounds promising candidates for optical power limiting applications and as host materials for violet-blue organic light emitting diodes.
Chicane and wiggler based bunch compressors for future linear colliders
International Nuclear Information System (INIS)
Raubenheimer, T.O.; Emma, P.; Kheifets, S.
1993-05-01
In this paper, we discuss bunch compressors for future linear colliders. In the past, the bunch compression optics has been based upon achromatic cells using strong sextupoles to correct the dispersive and betatron chromaticity. To preserve the very small emittances required in most future collider designs, these schemes tend to have very tight alignment tolerances. Here, we describe bunch compressors based upon magnetic chicanes or wigglers which do need sextupoles to correct the chromatic emittance dilution. The dispersive chromaticity cancels naturally and the betatron chromaticity is not a significant source of emittance dilution. Thus, these schemes allow for substantially reduced alignment tolerances. Finally, we present a detailed design for the NLC linear collider
Energy Technology Data Exchange (ETDEWEB)
Zia, Haider
2015-12-15
Compact and stable ultrafast laser sources for electron diffraction experiments are the first step in accomplishing the dream experiment of producing a molecular movie. This thesis work focuses on developing new robust laser sources to enable arbitrary scaling in laser repetition rate, pulse energy, duration and stability as needed to provide sufficient integrated detected electrons for high quality diffraction patterns that can be inverted to real space movies. In chapter 2, the construction of a novel stable and high power stretched pulse fiber oscillator outputting 300 mW at 31 MHz and compressible pulses to below 90 fs will be described. Chapter 3 describes the construction of a solid-state regenerative amplifier that was developed to achieve pulse energies above 1mJ with 0.40 mJ already achieved at 1 kHz. Novel simulation techniques were explored that aided the construction of the amplifier. Chapter 4 derives a new, fast and powerful numerical theory that is implemented for generalized non-linear Schrodinger equations in all spatial dimensions and time. This new method can model complicated terms in these equations that outperforms other numerical methods with respect to minimizing numerical error and increased speed. These advantages are due to this method's Fourier nature. A simulation tool was created, employing this numerical technique to simulate white-light generation in bulk media. The simulation matches extremely well with published experimental data, and is superior to the original simulation method used to match the experiment. The use of this tool enables accurate calculations of continuum or white light generation as needed for different experimental protocols and serves as the primary input to generate wide bandwidth coherent light.This work has solved the problem of predictably designing continuum generation within targeted wavelength ranges. This information is needed as part of an overall scheme in laser source development to coherently
International Nuclear Information System (INIS)
Zia, Haider
2015-12-01
Compact and stable ultrafast laser sources for electron diffraction experiments are the first step in accomplishing the dream experiment of producing a molecular movie. This thesis work focuses on developing new robust laser sources to enable arbitrary scaling in laser repetition rate, pulse energy, duration and stability as needed to provide sufficient integrated detected electrons for high quality diffraction patterns that can be inverted to real space movies. In chapter 2, the construction of a novel stable and high power stretched pulse fiber oscillator outputting 300 mW at 31 MHz and compressible pulses to below 90 fs will be described. Chapter 3 describes the construction of a solid-state regenerative amplifier that was developed to achieve pulse energies above 1mJ with 0.40 mJ already achieved at 1 kHz. Novel simulation techniques were explored that aided the construction of the amplifier. Chapter 4 derives a new, fast and powerful numerical theory that is implemented for generalized non-linear Schrodinger equations in all spatial dimensions and time. This new method can model complicated terms in these equations that outperforms other numerical methods with respect to minimizing numerical error and increased speed. These advantages are due to this method's Fourier nature. A simulation tool was created, employing this numerical technique to simulate white-light generation in bulk media. The simulation matches extremely well with published experimental data, and is superior to the original simulation method used to match the experiment. The use of this tool enables accurate calculations of continuum or white light generation as needed for different experimental protocols and serves as the primary input to generate wide bandwidth coherent light.This work has solved the problem of predictably designing continuum generation within targeted wavelength ranges. This information is needed as part of an overall scheme in laser source development to coherently
Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan
2016-03-24
Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML.
Directory of Open Access Journals (Sweden)
Kimiagar Salimeh
2018-01-01
Full Text Available Magnesium oxide (MgO-graphene oxide (GO nanocomposites were prepared by the hydrothermal method at different temperatures. The effect of growth temperature on the structural, linear, and nonlinear optical (NLO parameters was investigated. The decoration of MgO on GO sheets was confirmed by X-ray diffraction, scanning electron microscopy, Fourier transform infrared, and UV-visible (UV-vis spectroscopy analyses. The energy band-gaps of MgO-GO nanocomposites were calculated from UV-vis spectrum using Tauc plot. The NLO parameters of MgO-GO nanocomposites were calculated for the first time by the simple Z-scan technique with nanosecond Nd:YAG laser at 532 nm. The nonlinear absorption coefficient β and nonlinear refractive index n2 for MgO-GO nanocomposites at the laser intensity of 1.1×108 W/cm2 were measured to be in the order of 10−7 cm/W and 10−12 cm2/W, respectively. The third-order NLO susceptibility of MgO-GO nanocomposites was measured in the order of 10−9 esu. The results showed that MgO-GO structures have negative nonlinearity as well as good nonlinear two-photon absorption at 532 nm. Furthermore, the NLO parameters increased by the enhancement of the growth temperature. As the investigation of new materials plays an important role in the advancement of optoelectronics, MgO-GO nanocomposites possess potential applications in NLO devices.
Sokolov, Sergei; Lian, Jin; Combrié, Sylvain; Rossi, Alfredo De; Mosk, Allard. P.
2017-01-01
Ga0.51In0.49PGa0.51In0.49P is a promising candidate for thermally tunable nanophotonic devices due to its low thermal conductivity. In this work we study its thermo-optical response. We obtain the linear thermo-optical coefficient 푑푛/푑푇=2.0±0.3·10−4 K−1dn/dT=2.0±0.3·10−4 K−1 by investigating the
Energy Technology Data Exchange (ETDEWEB)
Yang, Xi [Brookhaven National Laboratory, Upton, Long Island, NY 11973 (United States); Huang, Xiaobiao, E-mail: xiahuang@slac.stanford.edu [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)
2016-08-21
We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.
Energy Technology Data Exchange (ETDEWEB)
Yang, Xi [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2016-08-01
We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.
Directory of Open Access Journals (Sweden)
Masatoshi Hasegawa
2017-10-01
Full Text Available This paper reviews the development of new high-temperature polymeric materials applicable to plastic substrates in image display devices with a focus on our previous results. Novel solution-processable colorless polyimides (PIs with ultra-low linear coefficients of thermal expansion (CTE are proposed in this paper. First, the principles of the coloration of PI films are briefly discussed, including the influence of the processing conditions on the film coloration, as well as the chemical and physical factors dominating the low CTE characteristics of the resultant PI films to clarify the challenges in simultaneously achieving excellent optical transparency, a very high Tg, a very low CTE, and excellent film toughness. A possible approach of achieving these target properties is to use semi-cycloaliphatic PI systems consisting of linear chain structures. However, semi-cycloaliphatic PIs obtained using cycloaliphatic diamines suffer various problems during precursor polymerization, cyclodehydration (imidization, and film preparation. In particular, when using trans-1,4-cyclohexanediamine (t-CHDA as the cycloaliphatic diamine, a serious problem emerges: salt formation in the initial stages of the precursor polymerization, which terminates the polymerization in some cases or significantly extends the reaction period. The system derived from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA and t-CHDA can be polymerized by a controlled heating method and leads to a PI film with relatively good properties, i.e., excellent light transmittance at 400 nm (T400 = ~80%, a high Tg (>300 °C, and a very low CTE (10 ppm·K−1. However, this PI film is somewhat brittle (the maximum elongation at break, εb max is about 10%. On the other hand, the combination of cycloaliphatic tetracarboxylic dianhydrides and aromatic diamines does not result in salt formation. The steric structures of cycloaliphatic tetracarboxylic dianhydrides significantly influence
Lucchetti, Liana; Fraccia, Tommaso P.; Ciciulla, Fabrizio; Bellini, Tommaso
2017-01-01
Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced bi...
Bit-rate-transparent optical RZ-to-NRZ format conversion based on linear spectral phase filtering
DEFF Research Database (Denmark)
Maram, Reza; Da Ros, Francesco; Guan, Pengyu
2017-01-01
We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal.......We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal....
Czech Academy of Sciences Publication Activity Database
Sigaev, V. N.; Sukhov, S.S.; Sarkisov, P. D.; Stefanovich, S. Yu.; Pernice, P.; Aronne, A.; Gregora, Ivan
2005-01-01
Roč. 318, - (2005), s. 95-104 ISSN 0015-0193 Grant - others:Russian Fondation of Basic Research(RU) 02-03-32105; NATO SfP program(XX) SfP-977980; Italien Ministry of Education , Univerity and Research, FIRB(IT) RBNE0155X7 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric * glass composites * optical non-linearity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.459, year: 2005
Efficient scheme for three-photon Greenberger–Horne–Zeilinger state generation
Energy Technology Data Exchange (ETDEWEB)
Ding, Dong [College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang, 050024 (China); Department of Basic Curriculum, North China Institute of Science and Technology, Beijing, 101601 (China); Yan, Feng-Li, E-mail: flyan@hebtu.edu.cn [College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang, 050024 (China)
2013-06-17
We propose an efficient scheme for the generation of three-photon Greenberger–Horne–Zeilinger (GHZ) state with linear optics, nonlinear optics and postselection. Several devices are designed and a two-mode quantum nondemolition detection is introduced to obtain the desired state. It is worth noting that the states which have entanglement in both polarization and spatial degrees of freedom are created in one of the designed setups. The method described in the present scheme can create a large number of three-photon GHZ states in principle. We also discuss an approach to generate the desired GHZ state in the presence of channel noise.
Efficient scheme for three-photon Greenberger–Horne–Zeilinger state generation
International Nuclear Information System (INIS)
Ding, Dong; Yan, Feng-Li
2013-01-01
We propose an efficient scheme for the generation of three-photon Greenberger–Horne–Zeilinger (GHZ) state with linear optics, nonlinear optics and postselection. Several devices are designed and a two-mode quantum nondemolition detection is introduced to obtain the desired state. It is worth noting that the states which have entanglement in both polarization and spatial degrees of freedom are created in one of the designed setups. The method described in the present scheme can create a large number of three-photon GHZ states in principle. We also discuss an approach to generate the desired GHZ state in the presence of channel noise.
DEFF Research Database (Denmark)
van Leeuwen, Theo
2013-01-01
This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation.......This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation....
International Nuclear Information System (INIS)
Schneider, B.I.; Collins, L.A.
1983-01-01
We propose a method for constructing an effective optical potential through which correlation effects can be introduced into the electron-molecule scattering formulation. The optical potential is based on a nonperturbative, Feshbach projection-operator procedure and is evaluated on an L 2 basis. The optical potential is incorporated into the scattering equations by means of a separable expansion, and the resulting scattering equations are solved by a linear-algebraic method based on the integral-equation formulation. We report the results of scattering calculations, which include polarization effects, for low-energy e-H 2 and e-N 2 collisions. The agreement with other theoretical and with experimental results is quite good
Directory of Open Access Journals (Sweden)
Christopher M. Bentz
2014-03-01
Full Text Available We compare optical time domain reflectometry (OTDR techniques based on conventional single impulse, coding and linear frequency chirps concerning their signal to noise ratio (SNR enhancements by measurements in a passive optical network (PON with a maximum one-way attenuation of 36.6 dB. A total of six subscribers, each represented by a unique mirror pair with narrow reflection bandwidths, are installed within a distance of 14 m. The spatial resolution of the OTDR set-up is 3.0 m.
International Nuclear Information System (INIS)
Hulin, S.
2001-01-01
Thanks to their high brightness and short wavelength, X ray lasers are interesting diagnostics in many experiments because they can efficiently probe dense plasmas. Furthermore their mono-chromaticity and collimation make them interesting tools in plasma physics but also in many biology or chemistry experiments. The effective use of this diagnostic is mainly depending on its dimensions and cost. For this reason, research on X ray laser is now focused on the reduction of cost and the realization of table-top facilities. One of these research axis, based on the optical field induced ionization (OFI) of the plasma, is presented in this work. An ultra-short (60 fs) high-brightness (10 19 W/cm 2 ) Ti:Sapphire (790 nm) laser is focused into a nitrogen pulsed gas jet. A dense (10 20 cm -3 ) plasma of fully stripped nitrogen is created by the way. During the fast recombination of the plasma some population inversions between levels of principal quantum number 2 and 1 (2.4 nm) and 3 and 2 (13.4 nm) can occur depending on the plasma parameters. The creation of the plasma by OFI, laser-plasma interaction dominated by relativistic self-focusing, and recombination dynamics are studied by numerical simulations on one hand and experiments on the other hand. Temperature measurements and numerical simulations show a strong heating, destructive for the laser scheme, which can be explained by Raman instability growing. Nevertheless plasma X ray emission in the 2-20 nm range show a strong increase with the electronic density of the 13.4 nm line intensity. This behavior is consistent with a laser effect but is not detected on the 2.4 nm transition line. (author)
Mahadevan, M.; Sankar, P. K.; Vinitha, G.; Arivanandhan, M.; Ramachandran, K.; Anandan, P.
2017-07-01
L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP) has been synthesized and grown by solution growth at room temperature using deionized water as a solvent. The various functional groups of the sample were identified by Fourier transform infra-red and Fourier transforms - Raman spectroscopic analyses. The Laser damage threshold of LAPP has been studied. Refractive index of LAPP single crystal was measured using Metricon prism coupler Instrument. The etching studies were carried out to study the quality of the grown crystals. The third order nonlinear optical properties of LAPP sample was analyzed by the Z-scan technique using 532 nm diode pumped CW Nd: YAG laser. The LAPP material exhibits negative optical nonlinearity. The results show that LAPP sample has potential applications in nonlinear optics and it can be exploited for optical limiting or switching.
Energy Technology Data Exchange (ETDEWEB)
Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.
2014-07-25
This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.
Mathieu, Jean Paul
1975-01-01
Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p
Divya, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.
2014-08-01
TiN nanoparticles of average size 55 nm were investigated for their optical non-linear properties. During the experiment the irradiated laser wavelength coincided with the surface plasmon resonance (SPR) peak of the nanoparticle. The large non-linearity of the nanoparticle was attributed to the plasmon resonance, which largely enhanced the local field within the nanoparticle. Both open and closed aperture Z-scan experiments were performed and the corresponding optical constants were explored. The post-excitation absorption spectra revealed the interesting phenomenon of photo fragmentation leading to the blue shift in band gap and red shift in the SPR. The results are discussed in terms of enhanced interparticle interaction simultaneous with size reduction. Here, the optical constants being intrinsic constants for a particular sample change unusually with laser power intensity. The dependence of χ(3) is discussed in terms of the size variation caused by photo fragmentation. The studies proved that the TiN nanoparticles are potential candidates in photonics technology offering huge scope to study unexplored research for various expedient applications.
J.K. Hoogland (Jiri); C.D.D. Neumann
2000-01-01
textabstractIn this article we present a new approach to the numerical valuation of derivative securities. The method is based on our previous work where we formulated the theory of pricing in terms of tradables. The basic idea is to fit a finite difference scheme to exact solutions of the pricing
Directory of Open Access Journals (Sweden)
Faznny Mohd Fudzi
2017-01-01
Full Text Available Enhancing the optical properties of glasses for the sake of optical application in various fields is an ongoing challenge in materials science and technology. Thus, the optical properties of zinc borotellurite glass doped with lanthanum oxide nanoparticles (La2O3 NPs with the chemical composition of {[(TeO20.7(B2O30.3]0.7(ZnO0.3}1−x (La2O3 NPsx, where x = 0.01, 0.02, 0.03, 0.04, and 0.05 molar fraction, have been investigated. Characterization techniques such as x-ray diffraction, Fourier Transform Infrared Spectroscopy, and Ultraviolet-Visible Spectroscopy are employed to yield the structural properties and optical parameter of the glass. The amorphous nature of the fabricated glasses is confirmed with the presence of a broad hump via XRD diffraction pattern. The decreasing amount of high polarizable nonbridging oxygen as the concentration of La2O3 NPs increases has contributed to the increasing trend of energy band gap in the range of 2.70 to 3.52 eV and decreasing value of refractive index between 2.34 and 2.48. The fabricated glasses that have a higher refractive index than the widely used fiber material, pure silica glass, indicate that zinc borotellurite glass doped with lanthanum nanoparticles is a promising material to be applied as optical fibers.
Linearity and Non-linearity of Photorefractive effect in Materials ...
African Journals Online (AJOL)
In this paper we have studied the Linearity and Non-linearity of Photorefractive effect in materials using the band transport model. For low light beam intensities the change in the refractive index is proportional to the electric field for linear optics while for non- linear optics the change in refractive index is directly proportional ...
Reconstructions in ultrasound modulated optical tomography
Allmaras, Moritz; Bangerth, Wolfgang
2011-01-01
We introduce a mathematical model for ultrasound modulated optical tomography and present a simple reconstruction scheme for recovering the spatially varying optical absorption coefficient from scanning measurements with narrowly focused ultrasound signals. Computational results for this model show that the reconstruction of sharp features of the absorption coefficient is possible. A formal linearization of the model leads to an equation with a Fredholm operator, which explains the stability observed in our numerical experiments. © de Gruyter 2011.
Meera, M. R.; Joselin Beaula, T.; Rayar, S. L.; Bena Jothy, V.
2017-09-01
NLO materials are gaining importance in technologies such as optical communication, optical computing and dynamic image processing. Many NLO crystals grown by mixing amino acids with various organic and inorganic acids have been reported in the literature. Hence, glycine mixed semi-organic material will be of special interest as a fundamental building block to develop many complex crystals with improved NLO properties. A semi organic Single crystal of Triglycine Phosphate (TGP) which was grown and spectral analysis have been using FTIR and Raman spectral analysis. Natural Bond Orbital Analysis and the atomic natural charges are also predicted. HOMO LUMO energy gap value suggests the possibility of charge transfer within the molecule.
International Nuclear Information System (INIS)
Lee, ChaBum; Kim, Gyu Ha; Lee, Sun-Kyu
2011-01-01
This paper presents the method of a six-degree-of-freedom (DOF) posture measurement in a linear stage by employing a single unit of an optical encoder. The proposed optical encoder was constructed to simultaneously measure the posture along the traveling axis; angular errors, pitch, yaw and roll; and translational errors, ΔX, ΔY and ΔZ. It consists of a diffractive optical element, a corner cube, four separate two-dimensional position-sensitive detectors, four photodiodes and auxiliary optics components. The circularly polarizing interferometric technique was integrated to measure the displacement of the stage along the traveling axis in a robust manner and the resolution was estimated to be less than 0.4 nm. Two types of stages were employed for the measurement implementation, the piezoelectric transducer-driven and the ballscrew-driven, and they were feedback-controlled for the traveling axis, respectively. With a single travel of the stage, it provided a six-DOF motion error with a high resolution, less than 0.03 arcsec, 20 nm and 0.4 nm for angular errors, ΔY and ΔZ, and ΔX, respectively, at the same time. As a result, it was seen that motion errors of the stage have relevance to the driving mechanism and the whole construction of the stage
Investigation of non linear optical properties in glasses. Case of the Na2O - TiO2 - P2O5 system
International Nuclear Information System (INIS)
Duchesne, Claire
1993-01-01
The research thesis is part of collaborative work between research laboratories on optical nonlinearities in glasses. The first part proposes an overview, in terms of optics as well as solid chemistry, of relevant criteria for the design of such materials which leads to the choice of the Na 2 O-TiO 2 -P 2 O 5 system. Characterizations means are then presented, notably X ray absorption spectroscopy (Extended X-Ray Absorption Fine Structure spectroscopy or EXAFS, and X-ray Absorption Near Edge Structure or XANES) for the glass structure analysis, and Kerr-type nonlinearity measurements by means of a Mach-Zender interferometer modified for nonlinear optics and operating in the sub-picosecond range. The next part highlights the influence of structure entities formed about the titanium atom on the noticed optical nonlinearities. The author finally reports an attempt of modelling of the linear and nonlinear response in mineral glasses under the effect of an electric perturbation [fr
Czech Academy of Sciences Publication Activity Database
Reshak, Ali H; Auluck, S.; Kityk, I. V.
2008-01-01
Roč. 4, č. 181 (2008), s. 789-795 ISSN 0022-4596 Institutional research plan: CEZ:AV0Z60870520 Keywords : electronic structure * optical properties * SHG * DFT Subject RIV: BO - Biophysics Impact factor: 1.910, year: 2008
Energy Technology Data Exchange (ETDEWEB)
Thukral, Kanika [Academy of Scientific and Innovative Research, CSIR- National Physical Laboratory, New Delhi, 110012 (India); CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110 012 (India); Vijayan, N., E-mail: nvijayan@nplindia.org [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110 012 (India); Vij, Mahak [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110 012 (India); Nagaraja, C.M. [Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab (India); Jayaramakrishnan, V. [Centro De Investigations En Optica, Loma del Bosque 115, Colonia Lomas del Campestre, León, Guanajuato, Código Postal, 37150 (Mexico); Jayalakshmy, M.S. [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560 (India); Kant, Rajni [Department of Physics and Electronics, University of Jammu, Jammu Tawi, 180006 (India)
2017-06-15
Today the fundamental aspect of the researchers is to explore maximum physical properties of the material for device fabrication. In the present article, single crystal X-ray diffraction has been carried out to verify the formation of the synthesized compound. In addition to that, powder X-ray diffraction has been performed to obtain diffraction pattern of L-Prolinium Picrate single crystal. The strain present inside the single crystal was measured using Hall-Williamson equation from PXRD measurements. The dark current and photon current was obtained from photoconductivity technique whose plot depicted that the sample was negative photoconducting material. Optical homogeneity of the single crystal was analyzed using birefringence technique. Its resistance towards Nd: YAG laser was scrutinized for L-Prolinium Picrate single crystal by applying 1 pulse per second. Different thermal parameters like thermal conductivity, thermal diffusivity, thermal effusivity and specific heat were computed using photo-pyroelectric technique. Solid state parameters were calculated from Clausius Mossotti relation by taking structural information of the title compound. Also, optical parameters like refractive index, reflectance etc were calculated through UV–Vis–NIR analysis. - Highlights: • An optically transparent L-Prolinium Picrate single crystal was harvested from slow evaporation solution growth technique. • The compound shows negative photoconducting nature. • Its optical homogeneity was analyzed using birefringence. • Single shot of laser was applied to sample to measure laser damage threshold value. • The thermal parameters were computed from Photopyroelectric technique.