WorldWideScience

Sample records for linear octupole rf

  1. On Landau damping of dipole modes by non-linear space charge and octupoles

    CERN Document Server

    Möhl, D

    1995-01-01

    The joint effect of space-charge non-linearities and octupole lenses is important for Landau damping of coherent instabilities. The octupole strength required for stabilisation can depend strongly on the sign of the excitation current of the lenses. This note tries to extend results, previously obtained for coasting beams and rigid bunches, to more general head--tail modes.

  2. RF power generation for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper.

  3. RF pulse compression for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.

    1995-05-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0--1.5 TeV, 5 TeV and 25 TeV. In order keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0--1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150--200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30--40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-11 system) can be used to reduce the klystron peak power by about a factor of two, or alternately, to cut the number of klystrons in half for a 1.0--1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  4. Rf power sources for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M.A.; Callin, R.S.; Caryotakis, G.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Fowkes, W.R.; Hoag, H.A.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.M.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Nelson, E.M.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B. (Stanford Linear Accelerator Center, Menlo Park, CA (USA)); Boyd, J.K.; Houk, T.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S. (Lawrence Live

    1990-06-01

    The next generation of linear colliders requires peak power sources of over 200 MW per meter at frequencies above 10 GHz at pulse widths of less than 100 nsec. Several power sources are under active development, including a conventional klystron with rf pulse compression, a relativistic klystron (RK) and a crossed-field amplifier. Power from one of these has energized a 0.5 meter two- section High Gradient Accelerator (HGA) and accelerated a beam at over 80 MeV meter. Results of tests with these experimental devices are presented here.

  5. High-brightness rf linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines. (LEW)

  6. High-brightness rf linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines. (LEW)

  7. Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-a-half post-Newtonian order

    CERN Document Server

    Faye, Guillaume; Iyer, Bala R

    2014-01-01

    This paper is motivated by the need to improve the post-Newtonian (PN) amplitude accuracy of waveforms for gravitational waves generated by inspiralling compact binaries, both for use in data analysis and in the comparison between post-Newtonian approximations and numerical relativity computations. It presents: (i) the non-linear couplings between multipole moments of general post-Newtonian matter sources up to order 3.5PN, including all contributions from tails, tails-of-tails and the non-linear memory effect; and (ii) the source mass-type octupole moment of (non-spinning) compact binaries up to order 3PN, which permits to complete the expressions of the octupole modes (3,3) and (3,1) of the gravitational waveform to order 3.5PN. At this occasion we reconfirm by means of independent calculations our earlier results concerning the source mass-type quadrupole moment to order 3PN. Related discussions on factorized resummed waveforms and the occurence of logarithmic contributions to high order are also included.

  8. Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-a-half post-Newtonian order

    Science.gov (United States)

    Faye, Guillaume; Blanchet, Luc; Iyer, Bala R.

    2015-02-01

    This paper is motivated by the need to improve the post-Newtonian (PN) amplitude accuracy of waveforms for gravitational waves generated by inspiralling compact binaries, both for use in data analysis and in the comparison between post-Newtonian approximations and numerical relativity computations. It presents (i) the non-linear couplings between multipole moments of general post-Newtonian matter sources up to order 3.5PN, including all contributions from tails, tails-of-tails and the non-linear memory effect; and (ii) the source mass-type octupole moment of (non-spinning) compact binaries up to order 3PN, which permits completion of the expressions of the octupole modes (3,3) and (3,1) of the gravitational waveform to order 3.5PN. On this occasion we reconfirm by means of independent calculations our earlier results concerning the source mass-type quadrupole moment to order 3PN. Related discussions on factorized resummed waveforms and the occurence of logarithmic contributions to high order are also included.

  9. Versatile Low Level RF System For Linear Accelerators

    Science.gov (United States)

    Potter, James M.

    2011-06-01

    The Low Level RF (LLRF) system is the source of all of the rf signals required for an rf linear accelerator. These signals are amplified to drive accelerator and buncher cavities. It can even provide the synchronizing signal for the rf power for a synchrotron. The use of Direct Digital Synthesis (DDS) techniques results in a versatile system that can provide multiple coherent signals at the same or different frequencies with adjustable amplitudes and phase relations. Pulsing the DDS allows rf switching with an essentially infinite on/off ratio. The LLRF system includes a versatile phase detector that allows phase-locking the rf frequency to a cavity at any phase angle over the full 360° range. With the use of stepper motor driven slug tuners multiple cavity resonant frequencies can be phase locked to the rf source frequency. No external phase shifters are required and there is no feedback loop phase setup required. All that is needed is to turn the frequency feedback on. The use of Digital Signal Processing (DSP) allows amplitude and phase control over the entire rf pulse. This paper describes the basic principles of a LLRF system that has been used for both proton accelerators and electron accelerators, including multiple tank accelerators, sub-harmonic and fundamental bunchers, and synchrotrons.

  10. Control system analysis for the perturbed linear accelerator rf system

    CERN Document Server

    Sung Il Kwon

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

  11. ANALYZING SURFACE ROUGHNESS DEPENDENCE OF LINEAR RF LOSSES

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Charles E. [JLAB; Kelley, Michael J. [JLAB, W& amp; M College; Xu, Chen [JLAB, W& amp; M College

    2012-09-01

    Topographic structure on Superconductivity Radio Frequency (SRF) surfaces can contribute additional cavity RF losses describable in terms of surface RF reflectivity and absorption indices of wave scattering theory. At isotropic homogeneous extent, Power Spectrum Density (PSD) of roughness is introduced and quantifies the random surface topographic structure. PSD obtained from different surface treatments of niobium, such Buffered Chemical Polishing (BCP), Electropolishing (EP), Nano-Mechanical Polishing (NMP) and Barrel Centrifugal Polishing (CBP) are compared. A perturbation model is utilized to calculate the additional rough surface RF losses based on PSD statistical analysis. This model will not consider that superconductor becomes normal conducting at fields higher than transition field. One can calculate the RF power dissipation ratio between rough surface and ideal smooth surface within this field range from linear loss mechanisms.

  12. RF Circuit linearity optimization using a general weak nonlinearity model

    NARCIS (Netherlands)

    Cheng, W.; Oude Alink, M.S.; Annema, Anne J.; Croon, Jeroen A.; Nauta, Bram

    2012-01-01

    This paper focuses on optimizing the linearity in known RF circuits, by exploring the circuit design space that is usually available in today’s deep submicron CMOS technologies. Instead of using brute force numerical optimizers we apply a generalized weak nonlinearity model that only involves AC

  13. The general RF tuning for IH-DTL linear accelerators

    Science.gov (United States)

    Lu, Y. R.; Ratzinger, U.; Schlitt, B.; Tiede, R.

    2007-11-01

    The RF tuning is the most important research for achieving the resonant frequency and the flatness of electric field distributions along the axis of RF accelerating structures. The six different tuning concepts and that impacts on the longitudinal field distributions have been discussed in detail combining the RF tuning process of a 1:2 modeled 20.85 MV compact IH-DTL cavity, which was designed to accelerate proton, helium, oxygen or C 4+ from 400 keV/ u to 7 MeV/u and used as the linear injector of 430 MeV/ u synchrotron [Y.R. Lu, S. Minaev, U. Ratzinger, B. Schlitt, R.Tiede, The Compact 20MV IH-DTL for the Heidelberg Therapy Facility, in: Proceedings of the LINAC Conference, Luebeck, Germany, 2004 [1]; Y.R. Lu, Frankfurt University Dissertation, 2005. [2

  14. The general RF tuning for IH-DTL linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.R. [Key State Laboratory of Nuclear Physics and Technology, Peking University (China)], E-mail: yrlu@pku.edu.cn; Ratzinger, U. [Institute of Applied Physics, Frankfurt University (Germany); Schlitt, B. [Gesellschaft fuer Schwerionenforschung, mbH, Darmstadt (Germany); Tiede, R. [Institute of Applied Physics, Frankfurt University (Germany)

    2007-11-21

    The RF tuning is the most important research for achieving the resonant frequency and the flatness of electric field distributions along the axis of RF accelerating structures. The six different tuning concepts and that impacts on the longitudinal field distributions have been discussed in detail combining the RF tuning process of a 1:2 modeled 20.85 MV compact IH-DTL cavity, which was designed to accelerate proton, helium, oxygen or C{sup 4+} from 400 keV/u to 7 MeV/u and used as the linear injector of 430 MeV/u synchrotron [Y.R. Lu, S. Minaev, U. Ratzinger, B. Schlitt, R.Tiede, The Compact 20MV IH-DTL for the Heidelberg Therapy Facility, in: Proceedings of the LINAC Conference, Luebeck, Germany, 2004 ; Y.R. Lu, Frankfurt University Dissertation, 2005. ] in Heidelberg Heavy Ion Cancer Therapy (HICAT). Some of tuning concepts are also suitable and effective for the tuning of RFQ and/or other RF accelerating structures. Finally good field flatness in IH-DTL cavity has been realized successfully. The experience got from the model cavity tuning benefits real power cavity tuning, which is only needed to be tuned by the plungers. The cavity had a beam commissioning successfully for the initial beam acceleration at the end of 2006.

  15. Linear Gain for the Microbunching Instability in an RF Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Vaccarezza, C.

    2009-05-01

    Velocity (or rf) compression has been suggested as a technique for bunch compression complementary to the more established technique involving magnetic chicanes and represents an important research item being investigated at the SPARC test facility. One of the aspects of this technique still not sufficiently understood is its possible impact on the microbunching instability. The purpose of this report is to present the analytical framework for investigating this instability in rf compressors. We use methods similar to those successfully applied to magnetic compressors and derive some integral equations yielding the gain for the instability in linear approximation. The focus here is on the derivation of the relevant equations. Although examples of solutions to these equations are provided we defer a more comprehensive discussion of their implication to a future report. The present study is part of a larger effort for a more comprehensive investigation that eventually will include macroparticle simulations and experiments.

  16. High-linearity CMOS RF front-end circuits

    CERN Document Server

    Ding, Yongwang

    2005-01-01

    This monograph presents techniques to improve the performance of linear integrated circuits (IC) in CMOS at high frequencies. Those circuits are primarily used in radio-frequency (RF) front-ends of wireless communication systems, such as low noise amplifiers (LNA) and mixers in a receiver and power amplifiers (PA) in a transmitter. A novel linearization technique is presented. With a small trade-off of gain and power consumption this technique can improve the linearity of the majority of circuits by tens of dB. Particularly, for modern CMOS processes, most of which has device matching better than 1%, the distortion can be compressed by up to 40 dB at the output. A prototype LNA has been fabricated in a 0.25um CMOS process, with a measured +18 dBm IIP3. This technique improves the dynamic range of a receiver RF front-end by 12 dB. A new class of power amplifier (parallel class A&B) is also presented to extend the linear operation range and save the DC power consumption. It has been shown by both simulation...

  17. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    Science.gov (United States)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  18. Octupole shapes in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.

    1994-08-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets.

  19. RF properties of periodic accelerating structures for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.W.

    1989-07-01

    With the advent of the SLAC electron-positron linear collider (SLC) in the 100 GeV center-of-mass energy range, research and development work on even higher energy machines of this type has started in several laboratories in the United States, Europe, the Soviet Union and Japan. These linear colliders appear to provide the only promising approach to studying e/sup /plus//e/sup /minus// physics at center-of-mass energies approaching 1 TeV. This thesis concerns itself with the study of radio frequency properties of periodic accelerating structures for linear colliders and their interaction with bunched beams. The topics that have been investigated are: experimental measurements of the energy loss of single bunches to longitudinal modes in two types of structures, using an equivalent signal on a coaxial wire to simulate the beam; a method of canceling the energy spread created within a single bunch by longitudinal wakefields, through appropriate shaping of the longitudinal charge distribution of the bunch; derivation of the complete transient beam-loading equation for a train of bunches passing through a constant-gradient accelerator section, with application to the calculation and minimization of multi-bunch energy spread; detailed study of field emission and radio frequency breakdown in disk-loaded structures at S-, C- and X-band frequencies under extremely high-gradient conditions, with special attention to thermal effects, radiation, sparking, emission of gases, surface damage through explosive emission and its possible control through RF-gas processing. 53 refs., 49 figs., 9 tabs.

  20. Octupole response and stability of spherical shape in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Abrosimov, V.I.; Davidovskaya, O.I.; Dellafiore, A. E-mail: della@fi.infn.it; Matera, F

    2003-11-17

    The isoscalar octupole response of a heavy spherical nucleus is analyzed in a semiclassical model based on the linearized Vlasov equation. The octupole strength function is evaluated with different degrees of approximation. The zero-order fixed-surface response displays a remarkable concentration of strength in the 1{Dirac_h}{omega} and 3{Dirac_h}{omega} regions, in excellent agreement with the quantum single-particle response. The collective fixed-surface response reproduces both the high- and low-energy octupole resonances, but not the low-lying 3{sup -} collective states, while the moving-surface response function gives a good qualitative description of all the main features of the octupole response in heavy nuclei. The role of triangular nucleon orbits, that have been related to a possible instability of the spherical shape with respect to octupole-type deformations, is discussed within this model. It is found that, rather than creating instability, the triangular trajectories are the only classical orbits contributing to the damping of low-energy octupole excitations.

  1. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    Science.gov (United States)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  2. Landau damping dynamic aperture and octupole in LHC

    CERN Document Server

    Gareyte, Jacques; Ruggiero, F

    1997-01-01

    Maximization of the dynamic aperture and Landau damping of the collective instabilities are partly conflicting requirements. On the one hand, the non-linearities of the lattice must be minimized at large oscillation amplitude to guarantee the stability of the single particle motion. On the other hand, a spread of the betatron frequencies is necessary to guarantee the stability of the collective motion of bunches of particles; this requires the introduction of non-linearities effective at small amplitudes. We show in this note that the `natural' spread of betatron tunes due to the field imperfections is inadequate or Landau damping. An octupole scheme is required to provide collective stability at high energy. At low energy it may be used to find the optimum between the correction of the octupolar field imperfections and Landau damping. The solution of the stability problem taking into account the two degrees of freedom of the transverse motion allows a significant saving in octupole strength: 144 octupoles wi...

  3. Linearization and efficiency enhancement techniques for silicon power amplifiers from RF to mmW

    CERN Document Server

    Kerhervé, Eric

    2015-01-01

    This book provides an overview of current efficiency enhancement and linearization techniques for silicon power amplifier designs. It examines the latest state of the art technologies and design techniques to address challenges for RF cellular mobile, base stations, and RF and mmW WLAN applications. Coverage includes material on current silicon (CMOS, SiGe) RF and mmW power amplifier designs, focusing on advantages and disadvantages compared with traditional GaAs implementations. With this book you will learn: The principles of linearization and efficiency improvement techniquesThe arch

  4. High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Directory of Open Access Journals (Sweden)

    J.-M. Wu

    2012-06-01

    Full Text Available This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC for worldwide interoperability for microwave access (WiMAX receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA with noise cancellation, an RF bandpass filter (BPF, a downconverter with linearization, and an intermediate frequency (IF BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3 of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf of the RF front end by 3.5 dB.

  5. Intermodulation Linearity in High-k/Metal Gate 28 nm RF CMOS Transistors

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2015-09-01

    Full Text Available This paper presents experimental characterization, simulation, and Volterra series based analysis of intermodulation linearity on a high-k/metal gate 28 nm RF CMOS technology. A figure-of-merit is proposed to account for both VGS and VDS nonlinearity, and extracted from frequency dependence of measured IIP3. Implications to biasing current and voltage optimization for linearity are discussed.

  6. RF transconductor linearization technique robust to process, voltage and temperature variations

    NARCIS (Netherlands)

    Kundur Subramaniyan, Harish; Klumperink, Eric A.M.; Nauta, Bram; Venkatesh, Srinivasan; Kiaei, Ali

    2014-01-01

    A new reconfigurable linearized low noise transconductance amplifier (LNTA) design for a software-defined radio receiver is presented. The transconductor design aims at realizing high linearity at RF in a way that is robust for Process, Voltage and Temperature variations. It exploits resistive degen

  7. The octupoles take pole position

    CERN Multimedia

    2002-01-01

    The first preseries octupole magnet was delivered to CERN in December 2001. Hooked up to a main quadrupole magnet, its function will be to correct imperfections in the beams. The LHC will be fitted with about 5000 corrector magnets, whose task it will be to provide maximum precision in beam collisions.

  8. RF power source for the compact linear collider test facility (CTF3)

    CERN Document Server

    McMonagle, G; Brown, Peter; Carron, G; Hanni, R; Mourier, J; Rossat, G; Syratchev, I V; Tanner, L; Thorndahl, L

    2004-01-01

    The CERN CTF3 facility will test and demonstrate many vital components of CLIC (Compact Linear Collider). This paper describes the pulsed RF power source at 2998.55 MHz for the drive-beam accelerator (DBA), which produces a beam with an energy of 150 MeV and a current of 3.5 Amps. Where possible, existing equipment from the LEP preinjector, especially the modulators and klystrons, is being used and upgraded to achieve this goal. A high power RF pulse compression system is used at the output of each klystron, which requires sophisticated RF phase programming on the low level side to achieve the required RF pulse. In addition to the 3 GHz system two pulsed RF sources operating at 1.5 GHz are being built. The first is a wide-band, low power, travelling wave tube (TWT) for the subharmonic buncher (SHB) system that produces a train of "phase coded" subpulses as part of the injector scheme. The second is a high power narrow band system to produce 20 MW RF power to the 1.5 GHz RF deflectors in the delay loop situate...

  9. High-Power Multimode X-Band RF Pulse Compression System for Future Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Tantawi, S.G.; Nantista, C.D.; Dolgashev, V.A.; Pearson, C.; Nelson, J.; Jobe, K.; Chan, J.; Fant, K.; Frisch, J.; /SLAC; Atkinson, D.; /LLNL, Livermore

    2005-08-10

    We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC). The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II) pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  10. Theoretical analysis and an improvement method of the bias effect on the linearity of RF linear power amplifiers

    Institute of Scientific and Technical Information of China (English)

    Wu Tuo; Chen Hongyi; Qian Dahong

    2009-01-01

    Based on the Gummel-Poon model of BJT, the change of the DC bias as a function of the AC input signal in RF linear power amplifiers is theoretically derived, so that the linearity of different DC bias circuits can be interpreted and compared. According to the analysis results, a quantitative adaptive DC bias circuit is proposed,which can improve the linearity and efficiency. From the simulation and test results, we draw conclusions on how to improve the design of linear power amplifier.

  11. Linear CMOS RF power amplifiers a complete design workflow

    CERN Document Server

    Ruiz, Hector Solar

    2013-01-01

    The work establishes the design flow for the optimization of linear CMOS power amplifiers from the first steps of the design to the final IC implementation and tests. The authors also focuses on design guidelines of the inductor's geometrical characteristics for power applications and covers their measurement and characterization. Additionally, a model is proposed which would facilitate designs in terms of transistor sizing, required inductor quality factors or minimum supply voltage. The model considers limitations that CMOS processes can impose on implementation. The book also provides diffe

  12. Development of an Automatic Frequency Control (AFC) System for RF Electron Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Joo, Youngwoo; Lee, Soo Min; Lee, Byung Cheol; Cha, Hyungki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Hyung Dal [Radiation Technology eXcellence, Daejeon (Korea, Republic of); Lee, Seung Hyun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-10-15

    In this paper, the design, fabrication, and RF power test of the AFC system for the X-band linac are presented. The main function of the AFC system is automatically matching of the resonance frequency of the accelerating structure and the RF frequency of the magnetron. For the frequency tuning, a fine tuning of 10 kHz is possible by rotating the tuning shaft with a rotation of 0.72 degree per pulse. Therefore, the frequency deviation is about 0.01%, and almost full RF power (2.1 MW) transmission was obtained because the reflected power is minimized. The Radiation Equipment Research Division of the Korea Atomic Energy Research Institute has been developing and upgrading a medical/industrial X-band RF electron linear accelerators. The medical compact RF electron linear accelerator consists of an electron gun, an acceleration tube (accelerating structure), two solenoid magnets, two steering magnets, a magnetron, modulator, an automatic frequency control (AFC) system, and an X-ray generating target. The accelerating structure of the component is composed of oxygen-free high-conductivity copper (OFHC). Therefore, the volume of the structure, hence, its resonance frequency can easily be changeable if the ambient temperature and pressure are changed. If the RF frequency of the 9300 MHz magnetron and the resonance frequency of accelerating structure are not matched, performance of the structure can be degraded. An AFC system is automatically matched with the RF frequency of the magnetron and resonance frequency of the accelerating structure, which obtained a high output power and reliable accelerator operation.

  13. Broadband RF-amplitude-dependent flip angle pulses with linear phase slope.

    Science.gov (United States)

    Koos, Martin R M; Feyrer, Hannes; Luy, Burkhard

    2017-09-01

    Pulse sequences in NMR spectroscopy sometimes require the application of pulses with effective flip angles different from 90° and 180°. Previously (Magn. Reson. Chem. 2015, 53, 886-893), offset-compensated broadband excitation pulses with RF-amplitude-dependent effective flip angles (RADFA) were introduced that are applicable in such cases. However, especially RF-amplitude-restricted RADFA pulses turned out to perform not as good as desired in terms of achievable bandwidths. Here, a class of RF-amplitude-restricted RADFA pulses with linear phase slope is introduced that allows excitation over much larger bandwidths with better performance. In this theoretical work, the basic principle of the pulse class is explained, their physical limits explored, and their properties, also compared with other pulse classes, discussed in detail. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Ion acceleration in a scalable MEMS RF-structure for a compact linear accelerator

    CERN Document Server

    Persaud, A; Feinberg, E; Seidl, P A; Waldron, W L; Lal, A; Vinayakumar, K B; Ardanuc, S; Schenkel, T

    2016-01-01

    A new approach for a compact radio-frequency(rf) accelerator structure is presented. The idea is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC allowed scaling of rf-structure down to dimensions of centimeters while at the same time allowing for higher beam currents through parallel beamlets. Using micro-electro-mechanical systems (MEMS) for highly scalable fabrication, we reduce the critical dimension to the sub-millimeter regime, while massively scaling up the potential number of parallel beamlets. The technology is based on rf-acceleration components and electrostatic quadrupoles (ESQs) implemented in a silicon wafer based design where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach allows fast and cheap batch fabrication of the components and flexibility in system design for different applications. For prototyping these ...

  15. High-power multimode X-band rf pulse compression system for future linear colliders

    Directory of Open Access Journals (Sweden)

    Sami G. Tantawi

    2005-04-01

    Full Text Available We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC. The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  16. Digital base-band rf control system for the superconducting Darmstadt electron linear accelerator

    Directory of Open Access Journals (Sweden)

    M. Konrad

    2012-05-01

    Full Text Available The accelerating field in superconducting cavities has to be stabilized in amplitude and phase by a radio-frequency (rf control system. Because of their high loaded quality factor superconducting cavities are very susceptible for microphonics. To meet the increased requirements with respect to accuracy, availability, and diagnostics, the previous analog rf control system of the superconducting Darmstadt electron linear accelerator S-DALINAC has been replaced by a digital rf control system. The new hardware consists of two components: An rf module that converts the signal from the cavity down to the base-band and a field-programmable gate array board including a soft CPU that carries out the signal processing steps of the control algorithm. Different algorithms are used for normal-conducting and superconducting cavities. To improve the availability of the control system, techniques for automatic firmware and software deployment have been implemented. Extensive diagnostic features provide the operator with additional information. The architecture of the rf control system as well as the functionality of its components will be presented along with measurements that characterize the performance of the system, yielding, e.g., an amplitude stabilization down to (ΔA/A_{rms}=7×10^{-5} and a phase stabilization of (Δϕ_{rms}=0.8° for superconducting cavities.

  17. Simulations of octupole compensation of head-tail instability at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Meiqin Xiao; Tanaji Sen; Frank Schmidts

    2003-05-28

    The proton lifetime in the Tevatron depends sensitively on chromaticities. Too low chromaticities can make the beam unstable due to the weak head-tail instability. One way to compensate this effect is to introduce octupoles to create a larger amplitude dependent betatron tune spread. However, the use of octupoles will also introduce additional side effects such as second order chromaticity, differential tune shifts and chromaticities on both proton and anti-proton helices. The non-linear effects may also reduce the dynamic aperture. There are 67 octupoles in 4 different circuits in the Tevatron which may be used for this purpose. We report on a simulation study to find the best combinations of polarities and strengths of the octupoles.

  18. Octupole Vibrations Built on Superdeformed Rotational Bands

    Science.gov (United States)

    Mizutori, S.; Shimizu, Y. R.; Matsuyanagi, K.

    1990-04-01

    Strength functions for giant octupole resonances built on the superdeformed rotational bands are calculated by means of the RPA based on the cranking model. It is suggested that strongly collective octupole vibrational states appear within a few MeV from the superdeformed yrast line.

  19. Octupole collectivity in the Sm isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Babilon, M. [Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab.]|[Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Zamfir, N.V. [Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab.]|[National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Kusnezov, D. [Yale Univ., New Haven, CT (United States). Sloane Physics Lab.; McCutchan, E.A. [Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab.; Zilges, A. [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik

    2005-08-27

    Microscopic models suggest the occurrence of strong octupole correlations in nuclei with N{approx}88. To examine the signatures of octupole correlations in this region, the spdf Interacting Boson Approximation (IBA) Model is applied to the Sm isotopes with N = 86 - 92. The effects of including multiple negative parity bosons in the basis are compared to more standard one negative parity boson calculations and are analyzed in terms of signatures for strong octupole correlations. It is found that multiple negative parity bosons are needed to describe properties at medium spin. Bands with strong octupole correlations (multiple negative parity bosons) become yrast at medium spin in {sup 148,150}Sm. This region shares some similarities with the light actinides, where strong octupole correlations were also found at medium spin. (orig.)

  20. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    Science.gov (United States)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  1. Low voltage RF MEMS variable capacitor with linear C-V response

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    An RF MEMS variable capacitor, fabricated in the PolyMUMPS process and tuned electrostatically, possessing a linear capacitance-voltage response is reported. The measured quality factor of the device was 17 at 1GHz, while the tuning range was 1.2:1 and was achieved at an actuation DC voltage of 8V only. Further, the linear regression coefficient was 0.98. The variable capacitor was created such that it has both vertical and horizontal capacitances present. As the top suspended plate moves towards the bottom fixed plate, the vertical capacitance increases whereas the horizontal capacitance decreases simultaneously such that the sum of the two capacitances yields a linear capacitance-voltage relation. © 2012 The Institution of Engineering and Technology.

  2. Possible Octupole Correlation in 90Mo

    Institute of Scientific and Technical Information of China (English)

    LIGuang-sheng; WUXiao-guang; PENGZhao-hua; WENShu-xian; HANGuang-bing; LICheng-bo; LUShao-jun; WUShao-yong; YUANGuang-jun; YANGChun-xiang; ZHULi-hua

    2003-01-01

    The nuclei with octupole deformation have a feature of reflection asymmetry and so there exists a wealth of information about nuclear property. Therefore, study on behavior of high spin states for these nuclei is helpful to know nuclear structure further. Theories predict that octupole deformation with β3≠0 will occurs when the proton number Z and neutron number N are 56, 88, and 132.

  3. X-band rf driven free electron laser driver with optics linearization

    Directory of Open Access Journals (Sweden)

    Yipeng Sun (孙一鹏

    2014-11-01

    Full Text Available In this paper, a compact hard X-ray free electron lasers (FEL design is proposed with all X-band rf acceleration and two stage bunch compression. It eliminates the need of a harmonic rf linearization section by employing optics linearization in its first stage bunch compression. Quadrupoles and sextupoles are employed in a bunch compressor one (BC1 design, in such a way that second order longitudinal dispersion of BC1 cancels the second order energy correlation in the electron beam. Start-to-end 6-D simulations are performed with all the collective effects included. Emittance growth in the horizontal plane due to coherent synchrotron radiation is investigated and minimized, to be on a similar level with the successfully operating Linac coherent light source (LCLS. At a FEL radiation wavelength of 0.15 nm, a saturation length of 40 meters can be achieved by employing an undulator with a period of 1.5 cm. Without tapering, a FEL radiation power above 10 GW is achieved with a photon pulse length of 50 fs, which is LCLS-like performance. The overall length of the accelerator plus undulator is around 250 meters which is much shorter than the LCLS length of 1230 meters. That makes it possible to build hard X-ray FEL in a laboratory with limited size.

  4. Simulation of non-linear rf losses derived from characteristic Nb topography

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Charles E. [JLAB; Xu, Chen; Kelley, Michael [W& M. JLAB

    2013-09-01

    A simplified model has been developed to simulate non-linear RF losses on Nb surfaces exclusively due to topographical enhancement of surface magnetic fields. If local sharp edges are small enough, at locations where local surface fields exceed Hc, small volumes of material may become normal conducting without thermal leading to quench. These small volumes of normal material yield increases in the effective surface resistance of the Nb. Using topographic data from typical BCP?d and EP?d fine grain niobium surfaces, we have simulated field-dependent losses and found that when extrapolated to resulting cavity performance, these losses correspond well to characteristic BCP/EP high field Q0 performance differences for fine grain Nb. We describe the structure of the model, its limitations, and the effects of this type of non-linear loss contribution on SRF cavities.

  5. Cancellation of OpAmp virtual ground imperfections by a negative conductance applied to improve RF receiver linearity

    NARCIS (Netherlands)

    Mahrof, Dlovan H.; Klumperink, Eric A.M.; Ru, Zhiyu; Oude Alink, Mark S.; Nauta, Bram

    2014-01-01

    High linearity CMOS radio receivers often exploit linear V-I conversion at RF, followed by passive down-mixing and an OpAmp-based Transimpedance Amplifier at baseband. Due to nonlinearity and finite gain in the OpAmp, virtual ground is imperfect, inducing distortion currents. This paper proposes a n

  6. Adaptive Digital Predistortion Schemes to Linearize RF Power Amplifiers with Memory Effects

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; WU Si-liang; ZHANG Qin

    2008-01-01

    To compensate for nonlinear distortion introduced by RF power amplifiers (PAs) with memory effects, two correlated models, namely an extended memory polynomial (EMP) model and a memory lookup table (LUT) model, are proposed for predistorter design. Two adaptive digital predistortion (ADPD) schemes with indirect learning architecture are presented. One adopts the EMP model and the recursive least square (RLS) algorithm, and the other utilizes the memory LUT model and the least mean square (LMS) algorithm. Simulation results demonstrate that the EMP-based ADPD yields the best linearization performance in terms of suppressing spectral regrowth. It is also shown that the ADPD based on memory LUT makes optimum tradeoff between performance and computational complexity.

  7. Development of Low Level RF Control Systems for Superconducting Heavy Ion Linear Accelerators, Electron Synchrotrons and Storage Rings

    CERN Document Server

    Aminov, Bachtior; Kolesov, Sergej; Pekeler, Michael; Piel, Christian; Piel, Helmut

    2005-01-01

    Since 2001 ACCEL Instruments is supplying low level RF control systems together with turn key cavity systems. The early LLRF systems used the well established technology based on discrete analogue amplitude and phase detectors and modulators. Today analogue LLRF systems can make use of advanced vector demodulators and modulators combined with a fast computer controlled analogue feed back loop. Feed forward control is implemented to operate the RF cavity in an open loop mode or to compensate for predictable perturbations. The paper will introduce the general design philosophy and show how it can be adapted to different tasks as controlling a synchrotron booster nc RF system at 500 MHz, or superconducting storage ring RF cavities, as well as a linear accelerator at 176 MHz formed by a chain of individually driven and controlled superconducting λ/2 cavities.

  8. Energy displacement function as a signature for octupole deformation in excited states

    CERN Document Server

    Raduta, A A; Ursu, I I

    2003-01-01

    Energies for three positive and three negative parity bands predicted by the extended coherent states model (ECSM) in sup 2 sup 2 sup 6 Ra are calculated and used to point out new signatures for octupole deformation in ground as well as in beta and gamma bands. A beat pattern is found by using a new displacement energy function which is more appropriate for a spectrum which exhibits large deviation from a linear J(J+1) dependence. The stability against octupole deformation is revisited from a new point of view. (authors)

  9. Electric Octupole Order in Bilayer Rashba System

    Science.gov (United States)

    Hitomi, Takanori; Yanase, Youichi

    2016-12-01

    The odd-parity multipole is an emergent degree of freedom, leading to spontaneous inversion symmetry breaking. The odd-parity multipole order may occur by forming staggered even-parity multipoles in a unit cell. We focus on a locally noncentrosymmetric bilayer Rashba system, and study an odd-parity electric octupole order caused by the antiferro stacking of local electric quadrupoles. Analyzing the forward scattering model, we show that the electric octupole order is stabilized by a layer-dependent Rashba spin-orbit coupling. The roles of the spin-orbit coupling are clarified on the basis of the analytic formula of multipole susceptibility. The spin texture allowed in the D2d point group symmetry and its magnetic response are revealed. Furthermore, we show that the parity-breaking quantum critical point appears in the magnetic field. The possible realization of the electric octupole order in bilayer high-Tc cuprate superconductors is discussed.

  10. Linear beam dynamics and ampere class superconducting RF cavities at RHIC

    Science.gov (United States)

    Calaga, Rama R.

    The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half

  11. Klystron Linearizer for Use with 1.2 MW 476 MHz Klystrons in PEP-II RF Systems

    CERN Document Server

    Fox, John; Mastorides, Themis; Teytelman, Dmitry; Van Winkle, Daniel; Zhou, Yubo

    2005-01-01

    The direct and comb loop feedback around the RF cavities in PEP-II is critical in reducing longitudinal instabilities driven by the cavity impedance, and the non-linear 1 MW klystron is in the signal path for these feedback loops. As a result, the effective small-signal gain of the klystron at 85% saturation reduces the impedance control by factors of 5 to 20 as compared to a linear power amplifier. A klystron linearizer circuit has been developed which operates in series with the power amplifier and acts to equalize the small and large signal gains through the combination. The technique must implement a 1 MHz linear control bandwidth over roughly 15 dB of RF signal level variation. The dynamics of this system is operating point dependent, and the channel must have dynamic gain compensation to keep the linearity compensation loop stable over changes in operating point. The design of this non-linear signal processing channel (incorporating RF and DSP techniques) and measured results from full-power klystron te...

  12. TERA high gradient test program of RF cavities for medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Degiovanni, A., E-mail: alberto.degiovanni@cern.ch [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Ecole Polytechnique Federale Lausanne EPFL-1015 Lausanne (Switzerland); Amaldi, U. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Universita Milano Bicocca-Piazza della Scienza 1, 20126 Milan (Italy); Bonomi, R. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Politecnico di Torino-Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Garlasche, M. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Garonna, A. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Ecole Polytechnique Federale Lausanne EPFL-1015 Lausanne (Switzerland); Verdu-Andres, S. [TERA Foundation-via G. Puccini 11, 28100 Novara (Italy); Instituto de Fisica Corpuscular IFIC (CSIC-UVEG)-Paterna, 46071 Valencia (Spain); Wegner, R. [CERN- 1211 Geneva (Switzerland)

    2011-11-21

    The scientific community and the medical industries are putting a considerable effort into the design of compact, reliable and cheap accelerators for hadrontherapy. Up to now only circular accelerators are used to deliver beams with energies suitable for the treatment of deep seated tumors. The TERA Foundation has proposed and designed a hadrontherapy facility based on the cyclinac concept: a high gradient linear accelerator placed downstream of a cyclotron used as an injector. The overall length of the linac, and therefore its final cost, is almost inversely proportional to the average accelerating gradient achieved in the linac. TERA, in collaboration with the CLIC RF group, has started a high gradient test program. The main goal is to study the high gradient behavior of prototype cavities and to determine the appropriate linac operating frequency considering important issues such as machine reliability and availability of distributed power sources. A preliminary test of a 3 GHz cavity has been carried out at the beginning of 2010, giving encouraging results. Further investigations are planned before the end of 2011. A set of 5.7 GHz cavities is under production and will be tested in a near future. The construction and test of a multi-cell structure is also foreseen.

  13. TERA high gradient test program of RF cavities for medical linear accelerators

    Science.gov (United States)

    Degiovanni, A.; Amaldi, U.; Bonomi, R.; Garlasché, M.; Garonna, A.; Verdú-Andrés, S.; Wegner, R.

    2011-11-01

    The scientific community and the medical industries are putting a considerable effort into the design of compact, reliable and cheap accelerators for hadrontherapy. Up to now only circular accelerators are used to deliver beams with energies suitable for the treatment of deep seated tumors. The TERA Foundation has proposed and designed a hadrontherapy facility based on the cyclinac concept: a high gradient linear accelerator placed downstream of a cyclotron used as an injector. The overall length of the linac, and therefore its final cost, is almost inversely proportional to the average accelerating gradient achieved in the linac. TERA, in collaboration with the CLIC RF group, has started a high gradient test program. The main goal is to study the high gradient behavior of prototype cavities and to determine the appropriate linac operating frequency considering important issues such as machine reliability and availability of distributed power sources. A preliminary test of a 3 GHz cavity has been carried out at the beginning of 2010, giving encouraging results. Further investigations are planned before the end of 2011. A set of 5.7 GHz cavities is under production and will be tested in a near future. The construction and test of a multi-cell structure is also foreseen.

  14. Operational Performance and Improvements to the RF Power Sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    CERN Document Server

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses in the injector and a narrow band high power L-Band klystron powering the transverse 1.5GHz RF deflector in the Delay Loop immediately after the DBA. This paper describes these different systems and discusses their operational performance.

  15. Operational performance and improvements to the rf power sources for the Compact Linear Collider Test Facility (CTF3) at CERN

    CERN Document Server

    McMonagle, Gerard

    2006-01-01

    The CERN CTF3 facility is being used to test and demonstrate key technical issues for the CLIC (Compact Linear Collider) study. Pulsed RF power sources are essential elements in this test facility. Klystrons at S-band (29998.55 GHz), in conjunction with pulse compression systems, are used to power the Drive Beam Accelerator (DBA) to achieve an electron beam energy of 150 MeV. The L-Band RF system, includes broadband Travelling Wave Tubes (TWTs) for beam bunching with 'phase coded' sub pulses in the injector and a narrow band high power L-Band klystron powering the transverse 1.5 GHz RF deflector in the Delay Loop immediately after the DBA. This paper describes these different systems and discusses their operational performance.

  16. New method for generating linear transfer matrices through combined rf and solenoid fields

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2012-02-01

    Full Text Available We present a new method for computing the transverse transfer matrix for superimposed axisymmetric rf and solenoid field maps. The algorithm constructs the transfer matrix directly from one-dimensional rf and solenoid field maps without computing numerical derivatives or eigenfunction expansions of the field map data. In addition, this method accurately describes the dynamics of low energy particles starting from a solenoid-immersed cathode, allowing the method to simulate transport through both rf and electrostatic guns. Comparison of particle tracking with the transfer matrix, and direct integration of the equations of motion through several field setups, shows excellent agreement between the two methods.

  17. Octupole Deformed Nuclei in the Actinide Region

    CERN Multimedia

    Thorsteinsen, T; Rubio barroso, B; Simpson, J; Gulda, K; Sanchez-vega, M; Cocks, J; Nybo, K; Garcia borge, M; Aas, A; Fogelberg, B; Honsi, J; Smith, G; Naumann, R; Grant, I

    2002-01-01

    The aim of the present study is to investigate the limits of the "island" of octupole deformation in the mass region A=225. It is of particular importance to demonstrate experimentally the sudden disappearance of the stable octupole deformation in the presence of a well developed quadrupole field. \\\\ \\\\In order to establish the upper border line the $\\beta$ -decay chains of $^{227}$Rn $\\rightarrow ^{227}$Fr $\\rightarrow ^{227}$Ra and $^{231}$Fr $\\rightarrow ^{231}$Ra $\\rightarrow ^{231}$Ac were studied at PSB-ISOLDE using advanced fast timing and $\\gamma$-ray spectroscopy techniques. The lifetimes of the excited states have been measured in the picosecond range using the time-delayed $\\beta\\gamma\\gamma$(t) method.

  18. Traveling wave linear accelerator with RF power flow outside of accelerating cavities

    Science.gov (United States)

    Dolgashev, Valery A.

    2016-06-28

    A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.

  19. Low Noise and Highly Linear Wideband CMOS RF Front-End for DVB-H Direct-Conversion Receiver

    Science.gov (United States)

    Nam, Ilku; Moon, Hyunwon; Woo, Doo Hyung

    In this paper, a wideband CMOS radio frequency (RF) front-end for digital video broadcasting-handheld (DVB-H) receiver is proposed. The RF front-end circuit is composed of a single-ended resistive feedback low noise amplifier (LNA), a single-to-differential amplifier, an I/Q down-conversion mixer with linearized transconductors employing third order intermodulation distortion cancellation, and a divide-by-two circuit with LO buffers. By employing a third order intermodulation (IMD3) cancellation technique and vertical NPN bipolar junction transistor (BJT) switching pair for an I/Q down-conversion mixer, the proposed RF front-end circuit has high linearity and low low-frequency noise performance. It is fabricated in a 0.18µm deep n-well CMOS technology and draws 12mA from a 1.8V supply voltage. It shows a voltage gain of 31dB, a noise figure (NF) lower than 2.6dB, and an IIP3 of -8dBm from 470MHz to 862MHz.

  20. A study of the energy enhancement of electron in radio frequency (RF) linear accelerator of iris loaded waveguards

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Huy-Bich [Nong Lam Univ., Hochiminh City (Viet Nam). Faculty of Engineering and Technology; National Univ., Hochiminh City (Viet Nam). National Key Lab. of Digital Control and System Engineering (DCSELAB); Trinh, Hoa-Lang [Natural Science Univ., Hochiminh City (Viet Nam). Faculty of Physics - Physical Engineering; Nong Lam Univ., Hochiminh City (Viet Nam). Faculty of Engineering and Technology; Chau, Van-Tao; Nguyen, Van-Tuong [Natural Science Univ., Hochiminh City (Viet Nam). Faculty of Physics - Physical Engineering

    2014-06-15

    In this paper, the Hamiltonian theory of particle motion has been applied for developing the motion equations of electrons in linear accelerator of Iris-loaded waveguides. Using J. C. Slater assumption for determining electric field in Oz direction, the energy increase of electron in the guide wave pipe following the linacs resonance cavity with circulated electromagnetic distribution and repeat-cycle of given number of resonance cavities has been developed. The energy gain of electron following the electron way in Oz axle direction of the accelerator with the different injection phase and phase shift of RF has been obtained. The results indicate that the energy increase of electron depends on the injection phase of RF and cell-to-cell phase shift.

  1. Development of an automatic frequency control system for an X-band (=9300 MHz) RF electron linear accelerator

    Science.gov (United States)

    Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad

    2017-05-01

    KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per

  2. Ultra Linear Low-loss Varactors & Circuits for Adaptive RF Systems

    NARCIS (Netherlands)

    Huang, C.

    2010-01-01

    With the evolution of wireless communication, varactors can play an important role in enabling adaptive transceivers as well as phase-diversity systems. This thesis presents various varactor diode-based circuit topologies that facilitate RF adaptivity. The proposed varactor configurations can act as

  3. Positioning of the rf potential minimum line of a linear Paul trap with micrometer precision

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Albert, Magnus

    2009-01-01

    to the basic resonant rf circuit used to drive the trap. Displacements of up to ~100 µm with micrometer precision are measured using a combination of fluorescence images of ion Coulomb crystals and coherent coupling of such crystals to a mode of an optical cavity. The displacements are made without measurable...

  4. Octupole Vibrations Built on Superdeformed Rotational Bands : Progress Letters

    OpenAIRE

    Shoujirou, MIZUTORI; Yoshifumi R., SHIMIZU; Kenichi, Matsuyanagi; Department of Physics, Kyushu University; Department of Physics, Kyoto University

    1990-01-01

    Strength functions for giant octupole resonances built on the superdeformed rotational bands are calculated by means of the RPA based on the cranking model. It is suggested that strongly collective octupole vibrational states appear within a few MeV from the superdeformed yrast line.

  5. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mayet, Frank

    2012-12-15

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  6. Octupole correlations in N =88 154Dy : Octupole vibration versus stable deformation

    Science.gov (United States)

    Zimba, G. L.; Sharpey-Schafer, J. F.; Jones, P.; Bvumbi, S. P.; Masiteng, L. P.; Majola, S. N. T.; Dinoko, T. S.; Lawrie, E. A.; Lawrie, J. J.; Negi, D.; Papka, P.; Roux, D.; Shirinda, O.; Easton, J. E.; Khumalo, N. A.

    2016-11-01

    We report on low-spin states of 154Dy populated via the reaction 155Gd (3He,4 n ) with a beam energy of 37.5 MeV from the Separated Sector Cyclotron at iThemba Laboratory. The AFRODITE γ-ray spectrometer was used to establish new E 1 transitions between bands of opposite parity. The measurements broaden the N =88 systematics on the relationship between the first excited positive-parity pairing isomer band and the lowest-lying negative-parity band as the nuclear quadrupole deformation decreases with increasing proton number. In a region of strong octupole correlations the data suggest that the spectroscopy of N =88 nuclei is driven by stable octupole deformations and not by vibrations.

  7. A multi-moded rf delay line distribution system for the next linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Tantawi, S.G.; Bowden, G.; Farkas, Z.D.; Irwin, J.; Ko, K.; Kroll, N.; Lavine, T.; Li, Z.; Loewen, R.; Miller, R.; Nantista, C.; Ruth, R.D.; Rifkin, J.; Vlieks, A.E.; Wilson, P.B.; Adolphsen, C.; Wang, J. [Stanford Linear Accelerator Center, SLAC, 2575 Sand Hill Rd, Mento Park, California 94025 (United States)

    1999-07-01

    The Delay Line Distribution System (DLDS) (1) is an alternative to conventional pulse compression which enhances the peak power of an rf source while matching the long pulse of that source to the shorter filling time of the accelerator structure. We present a variation on that scheme that combines the parallel delay lines of the system into one single line. The power of several sources is combined into a single waveguide delay line using a multi-mode launcher. The output mode of the launcher is determined by the phase coding of the input signals. The combined power is extracted using several mode extractors, each of which extracts only one single mode. Hence, the phase coding of the sources controls the output port of the combined power. The power is then fed to the local accelerator structures. We present a detailed design of such a system, including several implementation methods for the launchers, extractors, and ancillary high power rf components. The system is designed so that it can handle the 600 MW peak power required by the NLC design, while maintaining high efficiency. {copyright} {ital 1999 American Institute of Physics.}

  8. Microscopic analysis of quadrupole-octupole shape evolution

    Directory of Open Access Journals (Sweden)

    Nomura Kosuke

    2015-01-01

    Full Text Available We analyze the quadrupole-octupole collective states based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sdf interacting boson model (IBM, that is, onto the energy expectation value in the boson coherent state, the Hamiltonian parameters are determined. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in large sets of nuclei characteristic for octupole deformation and collectivity. Consistently with the empirical trend, the microscopic calculation based on the systematics of β2 – β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.

  9. Electron scattering from the octupole band in /sup 238/U

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, A.; Creswell, C.; Bertozzi, W.; Heisenberg, J.; Hynes, M.V.; Kowalski, S.; Miska, H.; Norum, B.; Rad, F.N.; Sargent, C.P.; Sasanuma, T.; Turchinetz, W.

    1978-03-06

    A simple model for nuclear surface vibrations in permanently deformed nuclei does well in reproducing electron scattering cross sections of rotational levels built on a K/sup ..pi../= 0/sup -/ intrinsic octupole vibration in /sup 238/U.

  10. Design of Octupole Channel for Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Chicago U.; Carlson, Kermit [Fermilab; Castellotti, Riccardo [Unlisted, IT; Valishev, Alexander [Fermilab; Wesseln, Steven [Fermilab

    2016-06-01

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements on maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.

  11. Improvements on the present theoretical understanding of octupole correlations

    Directory of Open Access Journals (Sweden)

    Robledo L.M.

    2014-03-01

    Full Text Available Some intriguing results, obtained in a recent survey of octupole properties for all even-even nuclei, are reanalyzed in order to understand the origin of the strong disagreement with experimental data and/or the strange behaviours observed. The limitations of the rotational formula to describe E1 and E3 transition strengths are discussed as well as the role played by octupole-quadrupole coupling in some specific nuclei.

  12. High-power magnetron transmitter as an RF source for superconducting linear accelerators

    CERN Document Server

    Kazakevich, Grigory; Flanagan, Gene; Marhauser, Frank; Yakovlev, Vyacheslav; Chase, Brian; Lebedev, Valeri; Nagaitsev, Sergei; Pasquinelli, Ralph; Solyak, Nikolay; Quinn, Kenneth; Wolff, Daniel; Pavlov, Viatcheslav

    2014-01-01

    A concept of a high-power magnetron transmitter for operation within a wideband control feedback loop in phase and amplitude is presented. This transmitter is proposed to drive Superconducting RF (SRF) cavities for intensity-frontier GeV-scale proton/ion linacs. The transmitter performance at the dynamic control was verified in experiments with CW, S-Band, 1 kW magnetrons. The wideband control of magnetrons, required for the superconducting linacs, was realized using the magnetrons, injection-locked by the phase-modulated signals. The capabilities of the magnetrons injection-locked by the phase-modulated signals and adequateness for feeding of SRF cavities were verified by measurements of the transfer function magnitude characteristics of single and 2-cascade magnetrons, by measurements the magnetrons phase performance and by measurements of spectra of the carrier frequency. At the ratio of power of locking signal to output power less than -13 dB (in 2-cascade scheme per magnetron, respectively) we demonstrat...

  13. Octupole deformation in the ground states of even-even nuclei: a global analysis within the covariant density functional theory

    CERN Document Server

    Agbemava, S E; Ring, P

    2016-01-01

    A systematic investigation of octupole deformed nuclei is presented for even-even systems with $Z\\leq 106$ located between the two-proton and two-neutron drip lines. For this study we use five most up-to-date covariant energy density functionals of different types, with a non-linear meson coupling, with density dependent meson couplings, and with density-dependent zero-range interactions. Pairing correlations are treated within relativistic Hartree-Bogoliubov (RHB) theory based on an effective separable particle-particle interaction of finite range. This allows us to assess theoretical uncertainties within the present covariant models for the prediction of physical observables relevant for octupole deformed nuclei. In addition, a detailed comparison with the predictions of non-relativistic models is performed. A new region of octupole deformation, centered around $Z\\sim 98, N\\sim 196$ is predicted for the first time. In terms of its size in the $(Z,N)$ plane and the impact of octupole deformation on binding e...

  14. Consistent quadrupole-octupole collective model

    Science.gov (United States)

    Dobrowolski, A.; Mazurek, K.; Góźdź, A.

    2016-11-01

    Within this work we present a consistent approach to quadrupole-octupole collective vibrations coupled with the rotational motion. A realistic collective Hamiltonian with variable mass-parameter tensor and potential obtained through the macroscopic-microscopic Strutinsky-like method with particle-number-projected BCS (Bardeen-Cooper-Schrieffer) approach in full vibrational and rotational, nine-dimensional collective space is diagonalized in the basis of projected harmonic oscillator eigensolutions. This orthogonal basis of zero-, one-, two-, and three-phonon oscillator-like functions in vibrational part, coupled with the corresponding Wigner function is, in addition, symmetrized with respect to the so-called symmetrization group, appropriate to the collective space of the model. In the present model it is D4 group acting in the body-fixed frame. This symmetrization procedure is applied in order to provide the uniqueness of the Hamiltonian eigensolutions with respect to the laboratory coordinate system. The symmetrization is obtained using the projection onto the irreducible representation technique. The model generates the quadrupole ground-state spectrum as well as the lowest negative-parity spectrum in 156Gd nucleus. The interband and intraband B (E 1 ) and B (E 2 ) reduced transition probabilities are also calculated within those bands and compared with the recent experimental results for this nucleus. Such a collective approach is helpful in searching for the fingerprints of the possible high-rank symmetries (e.g., octahedral and tetrahedral) in nuclear collective bands.

  15. Displacement detection with a vibrating rf superconducting interference device: beating the standard linear limit.

    Science.gov (United States)

    Buks, Eyal; Zaitsev, Stav; Segev, Eran; Abdo, Baleegh; Blencowe, M P

    2007-08-01

    We study a configuration for displacement detection consisting of a nanomechanical resonator coupled to both a radio frequency superconducting interference device and to a superconducting stripline resonator. We employ an adiabatic approximation and rotating wave approximation and calculate the displacement sensitivity. We study the performance of such a displacement detector when the stripline resonator is driven into a region of nonlinear oscillations. In this region the system exhibits noise squeezing in the output signal when homodyne detection is employed for readout. We show that displacement sensitivity of the device in this region may exceed the upper bound imposed upon the sensitivity when operating in the linear region. On the other hand, we find that the high displacement sensitivity is accompanied by a slowing down of the response of the system, resulting in a limited bandwidth.

  16. Betatron Tune Spread Generation and Differential Chromaticity Control by Octupole at Tevatron

    CERN Document Server

    Ivanov, Petr M; Annala, Jerry; Lebedev, Valeri

    2005-01-01

    Application of octupoles for Landau damping of the unstable head-tail modes requires careful consideration at their combination into separate families to insure maximum effectiveness and avoid degradation of the dynamic aperture due to the non-linear magnetic fields. Existing octupolar magnets around the machine have been arranged into four functional families with individual power supplies. Two of these families generate betatron tune spreads in the vertical and horizontal planes whereas the other two control the differential chromaticity between the proton and antiproton helices. The calculated effect on tunes and chromaticity is compared with direct measurements. Analytical formulas for betatron tune spectral density functions are presented.

  17. Crystallization of ion clouds in octupole traps: structural transitions, core melting, and scaling laws

    CERN Document Server

    Calvo, Florent; Yurtsever, Ersin

    2009-01-01

    The stable structures and melting properties of ion clouds in isotropic octupole traps are investigated using a combination of semi-analytical and numerical models, with a particular emphasis at finite size scaling effects. Small-size clouds are found to be hollow and arranged in shells corresponding approximately to the solutions of the Thomson problem. The shell structure is lost in clusters containing more than a few thousands of ions, the inner parts of the cloud becoming soft and amorphous. While melting is triggered in the core shells, the melting temperature unexpectedly follows the rule expected for three-dimensional dense particles, with a depression scaling linearly with the inverse radius.

  18. A high dynamic range linear RF power detector with a preceding LNA

    Science.gov (United States)

    Yingbo, Dai; Kefeng, Han; Na, Yan; Xi, Tan

    2012-01-01

    A design of high dynamic range linear radio frequency power detector (PD), aimed for transmitter carrier leakage suppression is presented in this paper. Based on the logarithmic amplifier principle, this detector utilizes the successive detection method to achieve a high dynamic range in the radio frequency band. In order to increase sensitivity, a low noise amplifier (LNA) is placed in the front of this detector. DC coupling is adopted in this architecture to reduce parasitics and save area, but this will unavoidably cause DC offsets in the circuit which are detrimental to the dynamic range. So a DC offset cancelling (DCOC) technique is proposed to solve the problem. Finally, this detector was fabricated in the SMIC 0.13 μm CMOS process. The measured results show that it achieves a wide dynamic range of 50 dB/40 dB with log errors in ±1 dB at 900 MHz/2 GHz, while draws 16 mA from a 1.5 V power supply. The active chip area is 0.27 × 0.67 mm2.

  19. Two regimes in the decay behavior of ions from a linear r.f. Paul trap

    Science.gov (United States)

    Kwolek, Jonathan; Wells, James; Goodman, Douglas; Blümel, Reinhold; Smith, Winthrop

    2016-05-01

    A linear Paul trap (LPT) enables ions to be trapped for use in a variety of experiments. In many of these experiments, such as those measuring charge exchange or sympathetic cooling, the decay of ions from the trap is used to measure some quantity of interest. This decay is typically modeled as a single exponential. We have found that in cases where the trap is loaded to high numbers of ions, the ion decay is better described by a double exponential decay function. We have experimentally examined the decay of ions from an LPT loaded by photoionization from a magneto-optical trap as a function of the q stability parameter of the Paul trap. The LPT is loaded to steady-state, then the loading is stopped and the number of trapped ions as a function of time is monitored to determine the decay. We present numerical simulations and experimental results that demonstrate two distinct regions in the decay. For high steady-state values, the trap exhibits a double-exponential behavior. However, if the trap is filled to a steady-state value below a threshold, the decay recovers the typical single-exponential behavior. This behavior should be universal to any Paul trap regardless of the geometry or species trapped. NSF Grant No. PHY-1307874.

  20. The CLIC RF power source a novel scheme of two-beam acceleration for electron-positron linear colliders

    CERN Document Server

    Braun, Hans Heinrich; D'Amico, Tommaso Eric; Delahaye, Jean Pierre; Guignard, Gilbert; Johnson, C D; Millich, Antonio; Pearce, Peter; Riche, A J; Rinolfi, Louis; Ruth, Ronald D; Schulte, Daniel; Thorndahl, Lars; Valentini, M; Wilson, Ian H; Wuensch, Walter; CERN. Geneva

    1998-01-01

    We discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded conventional, low-frequency (approx. 1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive-beams with gaps between. This train of drive beams is distributed from the end of the linac in the opposite direction to the main beam down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulting power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive, is very flexible, and can be used to accelerate beams for linear colliders over the...

  1. Recycler barrier RF buckets

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  2. Studies of Stable Octupole Deformations in the Radium Region

    CERN Multimedia

    2002-01-01

    The purpose of the present project is to locate and identify states in the atomic nuclei possessing stable pearshaped octupole deformation. Such states, formally related to the structures known in molecular physics, manifest themselves as families of parity doublets in odd nuclei.\\\\ \\\\ The best possibilities for observing stable octupole deformations are offered in the Ra-region. Both theoretical calculations and experimental indications support such expectations. Such indications are the non-observation of two-phonon octupole vibrational states in the ISOLDE studies of the even-even radium nuclei, and the reversed sign of the decoupling factor of the ground state band in |2|2|5Ra observed in the single-neutron transfer reactions. In order to establish the predicted strong E1 and E3-transitions between the parity doublets in odd nuclei with stable octupole deformations it is proposed to study conversion electrons in odd-mass francium radium and radon isotopes following the @b-decay of francium and astatine. \\...

  3. Study of octupole correlations in rare earth nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Babilon, M.

    2005-07-01

    Possible signatures of octupole correlations are discussed in this thesis for the rare earth nuclei {sup 148-154}Sm and {sup 152}Gd. Microscopic models suggest the occurence of strong octupole correlations in nuclei with N {approx} 88. The available data on {sup 148-154}Sm isotopes allowed for the examination of signatures of octupole correlations through the study of systematics in this region within the framework of the spdf Interacting Boson Approximation (IBA) model. It was found that properties of low-lying states can be readily understood with a simple hamiltonian consisting of a known positive parity hamiltonian coupled to a negative parity boson, and that multiple negative parity bosons were needed to describe properties at higher spin. Experiments on {sup 152}Gd have been performed at wright nuclear structure laboratory of yale university to extend the investigations on octupole correlations to other N=88 nuclei. An experiment at the moving tape collector allowed for the determination of decay properties of low-spin levels in {sup 152}Gd. To obtain information on medium-spin states, including their branchings, a fusion evaporation experiment was performed at the SASSYER setup. Existing data were verified and knowledge of state properties was extended towards higher spins. (orig.)

  4. Octupole strength in the neutron-rich calcium isotopes

    CERN Document Server

    Riley, L A; Agiorgousis, M L; Baugher, T R; Bazin, D; Bowry, M; Cottle, P D; DeVone, F G; Gade, A; Glowacki, M T; Gregory, S D; Haldeman, E B; Kemper, K W; Lunderberg, E; Noji, S; Recchia, F; Sadler, B V; Scott, M; Weisshaar, D; Zegers, R G T

    2016-01-01

    Low-lying excited states of the neutron-rich calcium isotopes $^{48-52}$Ca have been studied via $\\gamma$-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA $\\gamma$-ray tracking array. The energies and strengths of the octupole states in these isotopes are remarkably constant, indicating that these states are dominated by proton excitations.

  5. Octupole correlations in excited 0{sup +} states of the actinides

    Energy Technology Data Exchange (ETDEWEB)

    Spieker, Mark; Endres, Janis; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne (Germany); Bucurescu, Dorel; Pascu, Sorin; Zamfir, Nicolae-Victor [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Faestermann, Thomas [Physik Department, Technische Universitaet Muenchen, Munich (Germany); Hertenberger, Ralf; Wirth, Hans-Friedrich [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Munich (Germany)

    2014-07-01

    New experimental data has once again shown the importance of the octupole degree of freedom in the actinides. To further study possible admixtures of double-octupole structures to the wave function of positive-parity states, a high-resolution (p,t) experiment on {sup 242}Pu has been recently performed at the Q3D magnetic spectrograph in Munich. Excited 0{sup +} states were populated in {sup 240}Pu up to an excitation energy of 3 MeV. The new data allowed for a stringent test of the predictions of the spdf interacting boson model. In order to find possible double-octupole 0{sup +} candidates in the actinides, the signature of close-lying first and second excited 0{sup +} states has been proposed. It is found that the observation of this signature coincides with an E1 γ-decay of the first excited 0{sup +} state, while this state is strongly populated in the (p,t) reaction.

  6. Octupole correlations in the odd-[ital Z] nuclei [sup 148-151]Eu

    Energy Technology Data Exchange (ETDEWEB)

    Jongman, J.R.; Bacelar, J.C.S.; Urban, W.; Noorman, R.F.; van Pol, J.; Steenbergen, T.; de Voigt, M.J.A. (Kernfysisch Versneller Instituut, 9747 AA Groningen (Netherlands)); Nyberg, J.; Sletten, G. (Neils Bohr Institute, Riso, 4000 Roskilde (Denmark)); Dionisio, J.; Vieu, C. (Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, 91405 Orsay (France))

    1994-12-01

    The effects of octupole correlations in the [ital Z]=63 nuclei [sup 148[minus]151]Eu are studied. The persistency of octupole instability through the transitional region of near-spherical ([ital N][le]85) towards prolate nuclei ([ital N][ge]88) is established and discussed. Intrinsic dipole moments, which are experimentally inferred from the measured electric dipole transition rates observed between parity doublets, are used to characterize the strength of the octupole correlations.

  7. 新的射频功放预失真线性化方法%New Predistortion Method for RF Power Amplifier Linearization

    Institute of Scientific and Technical Information of China (English)

    詹鹏; 秦开宇; 蔡顺燕

    2011-01-01

    This paper proves that the sequence of two memoryless nonlinear systems, predistorter and RF power amplifier, is commutative through theoretical derivation. For the disadvantages of frequently used predistortion structures, this paper proposes a new predistortion structure combining direct learning structure with indirect learning structure, which is simple and easy to implement The RF power amplifier predistortion linearization method is extended to the situation with memory effect Simulation results show the correctness of this predistortion linearization method. Its linearization performance is better than that using the direct inverse indirect learning structure.%理论推导证明了预失真器和射频功放两个无记忆的非线性系统的顺序可交换,针对常用的预失真学习结构的不足,提出了将直接型和间接型相结合的新预失真学习结构,该方法简单且易实现,并将该射频功放预失真线性化方法推广到了有记忆效应的情况.仿真结果表明,所提出的预失真线性化方法可行,其线性化性能优于采用直接逆间接学习结构的情况.

  8. Reflection Asymmetric Shell Model for the Description of Octupole Rotational Bands

    Institute of Scientific and Technical Information of China (English)

    GAO Zao-Chun; CHEN Yong-Shou

    2001-01-01

    The reflection asymmetric shell model has been formulated to describe the high spin states of octupole-deformed nuclei. The long-range separable forces of quadrupole, octupole and hexadecapole, as well as monopole and quadrupole pairing, are included in the Hamiltonian. The bases, on which the Hamiltonian is diagonalized, are the eigenstates of angular momentum and parity obtained by projecting the octupole-deformed multi-quasiparticle states onto good angular momentum and good parity. The general features of rotational octupole bands in eveneven nuclei can be reproduced by the model and the calculated result is in good agreement with experiment.

  9. A high-linearity SiGe RF power amplifier for 3G and 4G small basestations

    OpenAIRE

    Johansson, Ted; Solati, Noora; Fritzin, Jonas

    2012-01-01

    This article presents the design and evaluation of a linear 3.3V SiGe power amplifier for 3G and 4G femtocells with 18dBm modulated output power at 2140 MHz. Different biasing schemes to achieve high linearity with low standby current were studied. The adjacent channel power ratio linearity performance with wide-band code division multiple access (3G) and long term evolution (4G) downlink signals were compared and differences analysed and explained.

  10. Advances in SCA and RF-DNA Fingerprinting Through Enhanced Linear Regression Attacks and Application of Random Forest Classifiers

    Science.gov (United States)

    2014-09-18

    CDF Cumulative Distribution Function CEMA Correlation Electro-Magnetic Attack DPA Differential Power Analysis DRA Dimensionality Reduction Assessment... CEMA ) SCA attacks are examined. A novel method to find time samples with high information leakage of sensitive data using the adjusted coefficient of...correlation R2a in a linear regression attack is introduced [92]. Three linear regression attacks from current literature [34, 50, 115] and CEMA [19] are

  11. Development of a Magnetron Resonance Frequency Auto Tuning System for Medical Xband [9300 MHz] RF Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sung Su; Lee, Byung Cheol [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Yujong; Park, Hyung Dal; Lee, Byeong-No; Joo, Youngwoo; Cha, Hyungki; Lee, Soo Min; Song, Ki Baek [KAERI, Daejeon (Korea, Republic of); Lee, Seung Hyun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-05-15

    The total components of the accelerator are the magnetron, electron gun, accelerating structure, a set of solenoid magnets, four sets of steering coils, a modulator, and a circulator. One of the accelerator components of the accelerating structure is made of oxygen-free high-conductivity copper (OFHC), and its volume is changed according to the ambient temperature. As the volume changes, the resonant frequency of the accelerating structure is changed. Accordingly, the resonance frequency is mismatched between the source of the magnetron and the accelerating structure. An automatic frequency tuning system is automatically matched with the resonant frequency of the magnetron and accelerating structure, which allows a high output power and reliable accelerator operation. An automatic frequency tuning system is composed of a step motor control part for correcting the frequency of the source and power measuring parts, i.e., the forward and reflected power between the magnetron and accelerating structure. In this paper, the design, fabrication, and RF power test of the automatic frequency tuning system for the X-band linac are presented. A frequency tuning system was developed to overcome an unstable accelerator operation owing to the frequency mismatch between the magnetron and accelerating structure. The frequency measurement accuracy is 100 kHz and 0.72 degree per pulse.

  12. Use of RF quadrupole structures to enhance stability in accelerator rings

    CERN Document Server

    AUTHOR|(CDS)2091303; Grudiev, Alexej; Li, Kevin Shing Bruce; Papke, Kai

    2016-01-01

    The beams required for the high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN call for efficient mechanisms to suppress transverse collective instabilities. In addition to octupole magnets installed for the purpose of Landau damping, we propose to use radio frequency (rf) quadrupole structures to considerably enhance the aforementioned stabilising effect. By means of the PyHEADTAIL macroparticle tracking code, the stabilising mechanism introduced by an rf quadrupole is studied and discussed. As a specific example, the performance of an rf quadrupole system in presence of magnetic octupoles is demonstrated for HL-LHC. Furthermore, potential performance limitations such as the excitation of synchro-betatron resonances are pointed out. Finally, efforts towards possible measurements with the CERN Super Proton Synchrotron (SPS) are discussed aiming at studying the underlying stabilising mechanisms experimentally.

  13. Plasma resistivity measurements in the Wisconsin levitated octupole

    Energy Technology Data Exchange (ETDEWEB)

    Brouchous, D. A.

    1980-11-01

    Resistivity measurements parallel to the magnetic field were made on gun injected plasmas ranging in density from 10/sup 9/cm/sup -3/ to 10/sup 1/parallelcm/sup -3/ in the Wisconsin levitated octupole with toroidal and poloidal magnetic fields. The 10/sup 9/cm/sup -3/ plasma was collisionless with lambda/sub mfp/ > 100 mirror lengths, had T/sub e/ = 10 eV, T/sub i/ = 30 eV and was found to have anomalous resistivity scaling like eta = ..sqrt..T/sub e//n/sub e/ when E/sub parallel/ > E/su c/ is the Dreicer critical field. The 10/sup 12/cm/sup -3/ plasma was collisional with lambda/sub mfp/ < mirror length, had T/sub e/ = T/sub i/ approx. = .2 eV and was found to have Spitzer resistivity when E/sub parallel/ < E/sub c/.

  14. Octupole-deformed molecular bands in {sup 21}Ne

    Energy Technology Data Exchange (ETDEWEB)

    Wheldon, C.; Thummerer, S.; Bohlen, H.G.; Gebauer, B.; Tumino, A. [Hahn-Meitner-Institut, SF7, Berlin (Germany); Kokalova, Tz.; Oertzen, W. von [Hahn Meitner Inst., Berlin (Germany). SF7; Freie Univ. Berlin (Germany). Fachbereich Physik; Massey, T.N. [Ohio University, Department of Physics and Astronomy, Athens, OH (United States); Angelis, G. de; Axiotis, M.; Gadea, A.; Kroell, Th.; Marginean, N.; Napoli, D.R.; De Poli, M.; Ur, C. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy); Bazzacco, D.; Lenzi, S.M.; Rossi Alvarez, C.; Lunardi, S.; Menegazzo, R. [Dipartimento di Fisica dell' Universita and INFN, Sezione di Padova, Padova (Italy); Bizzeti, P.G.; Bizzeti-Sona, A.M. [Dipartimento di Fisica dell' Universita and INFN, Sesto Fiorentino (Firenze) (Italy)

    2005-12-01

    Cluster states up to 12 MeV in the stable light nucleus {sup 21}Ne, based on the {sup 16}O+n+{alpha} molecular configurations, have been populated in the incomplete-fusion reaction {sup 16}{sub 8}O({sup 7}{sub 3}Li,np){sup 21}{sub 10}Ne at 29.4 MeV. The observation of both intra- and inter-band transitions leads to a re-interpretation of some levels in the K{sup {pi}}=(3)/(2){sup -} and K{sup {pi}}=(1)/(2){sup -} bands. The implications of this re-ordering on the octupole doublet bands are examined. The data allow a more accurate determination of some previously uncertain level energies. The ''missing'' I{sup {pi}}=(5)/(2){sup -} level is also discussed. (orig.)

  15. Microbunching and RF Compression

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-05-23

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  16. Single Feedback Predistortion Linearization Method for RF Power Amplifier%单路反馈射频功放预失真线性化方法

    Institute of Scientific and Technical Information of China (English)

    詹鹏; 秦开宇; 蔡顺燕

    2011-01-01

    该文基于记忆多项式模型,提出一种采用单路反馈的射频功放预失真线性化新方法,只需用正交解调后的IQ信号中的一路,就可完成对预失真器模型参数的获取.该方法可消除使用正交解调器所带来的增益和相位不平衡问题,且节省了一路反馈采样电路,在降低成本、简化设计的同时还能提高预失真线性化的性能.仿真和物理实验结果表明,该文提出的方法是正确的,能达到比较好的线性化效果.%Based on memory polynomial model, this paper proposes a new RF power amplifier predistortion linearization method using single feedback, which only needs the in-phase or quadrature component of the quadrature demodulated IQ signal, and it also can acquire the model parameters of predistorter. This method can eliminate the gain and phase imbalance problems caused by quadrature demodulator, and one feedback sampling circuit is saved, which can reduce the costs, simplify the system design, as well as improve the predistortion linearization performance. Simulation and experiment results show the correctness of the proposed method, which can achieve satisfied linearization performance.

  17. Properties of octupole-vibrational bands in the 160Dy nucleus

    Science.gov (United States)

    Usmanov, P. N.; Solnyshkin, A. A.; Vdovin, A. I.; Salikhbaev, U. S.

    2014-11-01

    The mixing of octupole-vibrational bands in the 160Dy nucleus is analyzed within a phenomenological model that involves Coriolis coupling. The energies of levels in the bands, the reduced probabilities for E1 transitions from the octupole-vibrational bands to the ground-state and γ bands, and the ratios of the reduced probabilities for these transitions to the neighboring levels of the ground-state band are calculated. Satisfactory agreement with available experimental data is reached.

  18. Understanding the tune, coupling, and chromaticity dependence of the LHC on Landau octupole powering.

    CERN Document Server

    Maclean, E H; Persson, T; Tomas, R; Wenninger, J

    2013-01-01

    During the 2012 LHC run several observations were made of shifts to tune, coupling and chromaticity which were correlated with changes in the powering of Landau octupoles. Understanding the chromaticity dependence is of particular importance given its influence on instabilities. This note briefly summarizes the observations and describes our understanding to-date of the relationship between Q, Q′, |C−| and the Landau octupole powering.

  19. Influence of the octupole mode on nuclear high-K isomeric properties

    Science.gov (United States)

    Minkov, Nikolay; Walker, Phil

    2014-05-01

    The influence of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even actinide (U, Pu, Cm, Fm, No), rare-earth (Nd, Sm and Gd), and superheavy (^{270}\\text{Ds}) nuclei is examined within a deformed shell model with pairing interaction. The neutron two-quasiparticle (2qp) isomeric energies and magnetic dipole moments are calculated over a wide range in the plane of quadrupole and octupole deformations. In most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation. At the same time, the calculations outline three different groups of nuclei: with pronounced, shallow, and missing minima in the 2qp energy surfaces with respect to the octupole deformation. The result indicates regions of nuclei with octupole softness as well as with possible octupole deformation in the high-K isomeric states. These findings show the need for further theoretical analysis as well as of detailed experimental measurements of magnetic moments in heavy deformed nuclei.

  20. Long-term Phanerozoic octupole fields and consequences for paleogeographic reconstructions

    Science.gov (United States)

    van der Voo, R.; Torsvik, T.

    2003-04-01

    The assumption that the ancient geomagnetic field was purely dipolar is fundamental to paleomagnetism. However, one sign that something may be amiss is that observed inclinations at mid-latitudes are often lower than expected. A zonal octupole field in the late Paleozoic, Mesozoic and Early Tertiary was revealed by comparing the observed paleomagnetic paleolatitude distributions for Laurussia (North America, Greenland, and Europe) with those predicted from the mean paleopoles. When only volcanics are analyzed, the pattern remains unchanged, indicating that inclination error in sediments is not the culprit. Estimates of the magnitude of the octupole/dipole field ratio center around 0.1, which could cause errors in conventional paleopoles of about 7.5 degrees; because of the antisymmetry of octupole fields a comparison of paleomagnetic poles from mid-northern and mid-southern hemisphere locations could thus be off by as much as 15 degrees. The well-known misfit between the paleomagnetic results from the Laurentia-European and Gondwana continents in a classical Pangea A configuration could be explained by such errors due to octupole fields. This explanation would negate the need to seek tectonic (Pangea B type) solutions for the misfit. Another misfit based on too-low inclinations is seen in a comparison of Central Asian poles with those for the Eurasian reference path, and here as well do octupole fields provide a possible solution, although sedimentary inclination shallowing is another possibility. When including Pre-Permian poles for Gondwana in a similar test for non-dipole fields, an increase in the percentage octupole contribution is suggested for older times. Undoubtedly, the octupole field contributions have varied in magnitude over shorter time scales as well.

  1. Octupole collectivity in $^{220}$Rn and $^{224}$Ra

    CERN Document Server

    Gaffney, Liam Paul

    Collective properties of the radioactive nuclei $^{220}$Rn and $^{224}$Ra have been studied via Coulomb excitation of a 2.8$\\,$A.MeV radioactive ion beam (RIB) incident upon $^{60}$Ni, $^{112,114}$Cd and $^{120}$Sn targets. The experiments took place at the REX-ISOLDE RIB facility, CERN. De-excitation $\\gamma$-ray yields following multiple-step Coulomb excitation were detected in coincidence with recoiling target nuclei in the Miniball spectrometer. For the first time, B(E3;3$^+ \\rightarrow 0^+$) values have been directly measured with a radioactive ion beam. In the process, $^{224}$Ra becomes the heaviest post-accelerated RIB to date at ISOLDE (with the possible exception of the quasi-stable $^{238}$U). The measurements presented in this thesis represent a tripling of the number of nuclei around Z$\\simeq88$ and N$\\simeq134$, for which direct measurements of the octupole collectivity have been performed. The only previous measurements being for the relatively long-lived $^{226}$Ra. The $\\gamma$-ray yields, in...

  2. Octupole Focusing Relativistic Self-Magnetometer Electric Storage Ring "Bottle"

    CERN Document Server

    Talman, Richard

    2015-01-01

    A method proposed for measuring the electric dipole moment (EDM) of a charged fundamental particle such as the proton, is to measure the spin precession caused by a radial electric bend field $E_r$, acting on the EDMs of frozen spin polarized protons circulating in an all-electric storage ring. The dominant systematic error limiting such a measurement comes from spurious spin precession caused by unintentional and unknown average radial magnetic field $B_r$ acting on the (vastly larger) magnetic dipole moments (MDM) of the protons. Along with taking extreme magnetic shielding measures, the best protection against this systematic error is to use the storage ring itself, as a "self-magnetometer"; the exact magnetic field average $\\langle B_r\\rangle$ that produces systematic EDM error, is nulled to exquisite precision by orbit position control. By using octupole rather than quadrupole focusing the restoring force can be vanishingly small for small amplitude vertical betatron-like motion yet strong enough at larg...

  3. Stable and Vibrational Octupole Modes in Mo, Xe, Ba, La, Ce and Nd

    Energy Technology Data Exchange (ETDEWEB)

    Gore, P.M.; Hamilton, J.H.; Hwang, J.K.; Jones, E.F.; Peker, L.K.; Ramayya, A.V.; Zhang, X.Q.; Zhu, S.J.

    1998-05-18

    Evidence is presented for stable octupole deformation in neutron-rich nuclei, bounded by Z = 54-58 and N = 85-92. To either side of this region negative parity bands built on more vibrational type octupole modes are observed in {sup 140}Ba and {sup 152,154}Nd. The largest stable octupole deformation ({beta}{sub s} {approximately} 0.1) is found in {sup 144}Ba{sub as}. The theoretically predicted quenching ({beta}{sub s} {approximately} 0) of stable octupole deformation at higher spins is found in {sup 140}Ba. There is good agreement between theory and experiment for the strongly varying electric dipole moments as a function of mass for {sup 142-141}Ba. In odd-A {sup 142}Ba and odd-Z {sup 140}La, we observe parity doublets, two pairs of positive and negative parity bands with opposite spins. In {sup 145}La a strong coupled ground band with symmetric shape coexists with the asymmetric octupole shape which stabilizes above about spin 19/2. In {sup 145,147}La a strong reduction in E2 strength around 25/2 from band crossing is observed. The isotope {sup 109}Mo was identified and a new region of stable uctpole deformation is identified in {sup 107,108}Mo centered around N = 64-66 as earlier predicted. This is the first case of stable uctpole deformation involving only one pair of orbitals.

  4. Specifications of the octupole magnets required for the ATF2 ultra-low ß* lattice

    Energy Technology Data Exchange (ETDEWEB)

    Marin, E.; /SLAC; Modena, M.; /CERN; Tauchi, T.; Terunuma, N.; /KEK, Tsukuba; Tomas, R.; /CERN; White, G.R.; /SLAC

    2014-05-28

    The Accelerator Test Facility 2 (ATF2) aims to test the novel chromaticity correction for higher chromaticity lattices as the one of CLIC. To this end the ATF2 ultra-low ß* lattice is designed to vertically focus the beam at the focal point or usually referred to as interaction point (IP), down to 23 nm. However when the measured multipole components of the ATF2 magnets are considered in the simulations, the evaluated spot sizes at the IP are well above the design value. The designed spot size is effectively recovered by inserting a pair of octupole magnets. In this note we address the technical specifications required for these octupole magnets.

  5. Influence of angular momentum in axially symmetric potentials with octupole deformation

    Institute of Scientific and Technical Information of China (English)

    JIN Hua; SUN Zhen-Wu; ZHENG Ren-Rong

    2009-01-01

    The chaotic classical single-particle motion in an oblate octupole deformed potential with a non-zero z-component of angular momentum Lz is investigated. The stability analysis of the trajectories shows that with increasing rotation of the system, the unstable negative curvature regions of the effective potential surface decrease, which converts the chaotic motion of the system into a regular one.

  6. Direct Evidence of Octupole Deformation in Neutron-Rich $^{144}$Ba

    CERN Document Server

    Bucher, B; Wu, C Y; Janssens, R V F; Cline, D; Hayes, A B; Albers, M; Ayangeakaa, A D; Butler, P A; Campbell, C M; Carpenter, M P; Chiara, C J; Clark, J A; Crawford, H L; Cromaz, M; David, H M; Dickerson, C; Gregor, E T; Harker, J; Hoffman, C R; Kay, B P; Kondev, F G; Korichi, A; Lauritsen, T; Macchiavelli, A O; Pardo, R C; Richard, A; Riley, M A; Savard, G; Scheck, M; Seweryniak, D; Smith, M K; Vondrasek, R; Wiens, A

    2016-01-01

    The neutron-rich nucleus $^{144}$Ba ($t_{1/2}$=11.5 s) is expected to exhibit some of the strongest octupole correlations among nuclei with mass numbers $A$ less than 200. Until now, indirect evidence for such strong correlations has been inferred from observations such as enhanced $E1$ transitions and interleaving positive- and negative-parity levels in the ground-state band. In this experiment, the octupole strength was measured directly by sub-barrier, multi-step Coulomb excitation of a post-accelerated 650-MeV $^{144}$Ba beam on a 1.0-mg/cm$^2$ $^{208}$Pb target. The measured value of the matrix element, $\\langle 3_1^- \\| \\mathcal{M}(E3) \\| 0_1^+ \\rangle=0.65(^{+17}_{-23})$ $e$b$^{3/2}$, corresponds to a reduced $B(E3)$ transition probability of 48($^{+25}_{-34}$) W.u. This result represents an unambiguous determination of the octupole collectivity, is larger than any available theoretical prediction, and is consistent with octupole deformation.

  7. Convective cells and their relationship to vortex diffusion in the Wisconsin Levitated Octupole

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhardt, A.B.

    1978-01-01

    The purpose of this thesis is two-fold: first, to present floating potential structure for different plasmas and operating parameters in the Wisconsin Levitated Octupole. Second, to show how the observed potential structure can be used, within the framework of vortex diffusion, to account for enhanced diffusion in the appropriate parameter regimes.

  8. 射频预失真器与基带预失真算法结合对行波管功率放大器线性化改善的影响%Effect on the linearity improvement of TWTA by combining RF predistortion linearizer and digital predistortion algorithm

    Institute of Scientific and Technical Information of China (English)

    胡欣; 王刚; 王自成; 罗积润

    2012-01-01

    In order to keep Che adaptive digital predistortion algorithms valid,usually the output power level of the TWTA must be reduced,which corresponded a reduced efficiency of the TWTA. A predistortion technique was proposed by combining RF predistortion linearizer with adaptive digital predistortion algorithm,The gain and phase change of the TWTA with a RF predistortion linearizer circuit from small-signal input drive to saturated input drive were improved,respectively. Then the adaptive digital predistortion algorithm was used for the TWTA with the RF predistortion linearizer. The good linearity improvement can be reached with the less reduction for the output power level with this method.%为了保证自适应算法的效果,一般会将行波管输出功率进行一定回退,但是会降低行波管的工作效率.通过在行波管前端加入射频预失真器,在额定输入功率范围内,线性化后的行波管的非线性失真现象得到了一定程度改善,然后再进行基带自适应算法的实现.X波段行波管在输出功率回退较少的同时,达到较好的非线性失真改善效果.

  9. RF transformer

    Science.gov (United States)

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  10. Soft octupole vibrations with K=0 and K ne built on superdeformed rotational bands and static pairing correlations

    Energy Technology Data Exchange (ETDEWEB)

    Mizutori, Shoujirou; Matsuyanagi, Kenichi (Kyoto Univ. (Japan). Dept. of Physics); Shimizu, Y.R.

    1991-07-01

    Properties of low-lying octupole vibrations (with K=0, 1, 2 and 3) built on superdeformed rotational bands are investigated by means of the RPA in a uniformly rotating frame. Large configuration space composed of 9 major shells is used. Numerical examples are presented for the superdeformed band in {sup 192}Hg as a typical case where appreciable amount of static pairing correlations remains at finite values of the rotational frequency. We obtain strongly collective low-frequency octupole vibrations with K=0, 1 and 2. It is shown that the properties of the K=1 octupole vibrations are especially sensitive to the static pairing correlations. The Coriolis-mixings among these soft octupole vibrations are shown to become important when the rotational frequency {omega}{sub rot} > or approx. 0.2 MeV/{Dirac h}. (author).

  11. Soft Octupole Vibrations with K = 0 and K !=q 0 Built on Superdeformed Rotational Bands and Static Pairing Correlations

    Science.gov (United States)

    Mizutori, S.; Shimizu, Y. R.; Matsuyanagi, K.

    1991-07-01

    Properties of low-lying octupole vibrations (with K = 0, 1, 2 and 3) built on superdeformed rotational bands are investigated by means of the RPA in a uniformly rotating frame. Large configuration space composed of 9 major shells is used. Numerical examples are presented for the superdeformed band in (192) Hg as a typical case where appreciable amount of static pairing correlations remains at finite values of the rotational frequency. We obtain strongly collective low-frequency octupole vibrations with K = 0, 1 and 2. It is shown that the properties of the K = 1 octupole vibrations are especially sensitive to the static pairing correlations. The Coriolis-mixings among these soft octupole vibrations are shown to become important when the rotational frequency omega_{mathrm{rot}} gtrsim 0.2 MeV/hbar.

  12. Hyperfine-induced electric dipole contributions to the electric octupole and magnetic quadrupole atomic clock transitions

    CERN Document Server

    Dzuba, V A

    2016-01-01

    Hyperfine-induced electric dipole contributions may significantly increase probabilities of otherwise very weak electric octupole and magnetic quadrupole atomic clock transitions (e.g. transitions between $s$ and $f$ electron orbitals). These transitions can be used for exceptionally accurate atomic clocks, quantum information processing and search for dark matter. They are very sensitive to new physics beyond the Standard Model, such as temporal variation of the fine structure constant, the Lorentz invariance and Einstein equivalence principle violation. We formulate conditions under which the hyperfine-induced electric dipole contribution dominates. Due to the hyperfine quenching the electric octupole clock transition in $^{173}$Yb$^+$ is two orders of magnitude stronger than that in currently used $^{171}$Yb$^+$. Some enhancement is found in $^{143}$Nd$^{13+}$, $^{149}$Pm$^{14+}$, $^{147}$Sm$^{14+}$, and $^{147}$Sm$^{15+}$ ions.

  13. Microscopic description of octupole shape-phase transitions in light actinides and rare-earth nuclei

    CERN Document Server

    Nomura, K; Niksic, T; Lu, Bing-Nan

    2014-01-01

    A systematic analysis of low-lying quadrupole and octupole collective states is presented, based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the $sdf$ interacting boson model (IBM), that is, onto the energy expectation value in the boson condensate state, the Hamiltonian parameters are determined. The study is based on the global relativistic energy density functional DD-PC1. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in four isotopic chains characteristic for two regions of octupole deformation and collectivity: Th, Ra, Sm and Ba. Consistent with the empirical trend, the microscopic calculation based on the systematics of $\\beta_{2}$-$\\beta_{3}$ energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition be...

  14. Investigation of octupole vibrational states in 150Nd via inelastic proton scattering (p,p'g)

    CERN Document Server

    Elvers, M; Ahmed, T; Ahn, T; Anagnostatou, V; Cooper, N; Deng, C; Endres, J; Goddard, P; Heinz, A; Ilie, G; Jiang, E; Kueppersbusch, C; Radeck, D; Savran, D; Shenkov, N; Werner, V; Zilges, A

    2011-01-01

    Octupole vibrational states were studied in the nucleus $^{150}\\mathrm{Nd}$ via inelastic proton scattering with $\\unit[10.9]{MeV}$ protons which are an excellent probe to excite natural parity states. For the first time in $^{150}\\mathrm{Nd}$, both the scattered protons and the $\\gamma$ rays were detected in coincidence giving the possibility to measure branching ratios in detail. Using the coincidence technique, the $B(E1)$ ratios of the decaying transitions for 10 octupole vibrational states and other negative-parity states to the yrast band were determined and compared to the Alaga rule. The positive and negative-parity states revealed by this experiment are compared with Interacting Boson Approximation (IBA) calculations performed in the (spdf) boson space. The calculations are found to be in good agreement with the experimental data, both for positive and negative-parity states.

  15. Mixed-symmetry octupole and hexadecapole excitations in the N=52 isotones

    CERN Document Server

    Hennig, A; Werner, V; Ahn, T; Anagnostatou, V; Cooper, N; Derya, V; Elvers, M; Endres, J; Goddard, P; Heinz, A; Huges, R O; Ilie, G; Mineva, M N; Petkov, P; Pickstone, S G; Pietralla, N; Radeck, D; Ross, T J; Savran, D; Zilges, A

    2015-01-01

    Background: Excitations with mixed proton-neutron symmetry have been previously observed in the $N=52$ isotones. Besides the well established quadrupole mixed-symmetry states (MSS), octupole and hexadecapole MSS have been recently proposed for the nuclei $^{92}$Zr and $^{94}$Mo. Purpose: The heaviest stable $N=52$ isotone $^{96}$Ru was investigated to study the evolution of octupole and hexadecapole MSS with increasing proton number. Methods: Two inelastic proton-scattering experiments on $^{96}$Ru were performed to extract branching ratios, multipole mixing ratios, and level lifetimes. From the combined data, absolute transition strengths were calculated. Results: Strong $M1$ transitions between the lowest-lying $3^-$ and $4^+$ states were observed, providing evidence for a one-phonon mixed-symmetry character of the $3^{(-)}_2$ and $4^+_2$ states. Conclusions: $sdg$-IBM-2 calculations were performed for $^{96}$Ru. The results are in excellent agreement with the experimental data, pointing out a one-phonon he...

  16. Spectroscopy of quadrupole and octupole states in rare-earth nuclei from a Gogny force

    CERN Document Server

    Nomura, K; Robledo, L M

    2015-01-01

    Collective quadrupole and octupole states are described in a series of Sm and Gd isotopes within the framework of the interacting boson model (IBM), whose Hamiltonian parameters are deduced from mean field calculations with the Gogny energy density functional. The link between both frameworks is the ($\\beta_2\\beta_3$) potential energy surface computed within the Hartree-Fock-Bogoliubov framework in the case of the Gogny force. The diagonalization of the IBM Hamiltonian provides excitation energies and transition strengths of an assorted set of states including both positive and negative parity states. The resultant spectroscopic properties are compared with the available experimental data and also with the results of the configuration mixing calculations with the Gogny force within the generator coordinate method (GCM). The structure of excited $0^{+}$ states and its connection with double octupole phonons is also addressed. The model is shown to describe the empirical trend of the low-energy quadrupole and o...

  17. Measurements of octupole collectivity in Rn and Ra nuclei using Coulomb excitation

    CERN Multimedia

    We propose to exploit the unique capability of HIE-ISOLDE to provide post-accelerated $^{221,222}$Rn and $^{222,226,228}$Ra ion beams for the study of octupole collectivity in these nuclei. We will measure E3 transition moments in $^{222}$Rn and $^{222,226,228}$Ra in order to fully map out the variation in E3 strength in the octupole mass region with Z$\\thicksim$88 and N$\\thicksim$134. This will validate model calculations that predict different behaviour as a function of N. We will also locate the position of the parity doublet partner of the ground state in $^{221}$Rn, in order to test the suitability of odd-A radon isotopes for EDM searches.

  18. Lower hybrid heating associated with mode conversion on the Wisconsin octupole

    Energy Technology Data Exchange (ETDEWEB)

    Owens, T.L.

    1979-08-01

    This thesis addresses the following key issues in the lower hybrid frequency range: 1. What are the importent physics aspects of wave propagation and heating in an experimental situation. 2. How effective is plasma heating in the complex magnetic field configuration of the octupole. Experimental work is accomplished by launching 1-10ms pulses of up to 40kW of radio frequency power at 140MHz corresponding to the hot plasma lower hybrid resonance in the octupole. A diploe antenna which is moveable radially and is also rotatable couples wave power to the plasma. Coupling efficiencies greater than 95% are achieved by proper antenna placement near the edge of the plasma radial density profile.

  19. Evidence for octupole vibration in the superdeformed well of {sup 109}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Crowell, B.; Janssens, R.V.F.; Carpenter, M.P.; Ahmad, I.; Harfenist, S.; Henry, R.G.; Khoo, T.L.; Lauritsen, T.; Nisius, D. [Argonne National Lab., IL (United States); Wilson, A.N. [Univ. of Liverpool (United Kingdom)] [and others

    1994-07-01

    An excited superdeformed (SD) band has been observed in {sup 19O}Hg which decays to the lowest-energy (yrast) SD band rather than to the less deformed states as observed in most known SD bands in the A{approximately}150 and A{approximately}190 regions. The band exhibits properties which are in good agreement with predictions of collective octupole vibrations in the SD well of {sup 19O}Hg.

  20. Symmetry enriched U(1) topological orders for dipole-octupole doublets on a pyrochlore lattice

    Science.gov (United States)

    Li, Yao-Dong; Chen, Gang

    2017-01-01

    Symmetry plays a fundamental role in our understanding of both conventional symmetry breaking phases and the more exotic quantum and topological phases of matter. We explore the experimental signatures of symmetry enriched U(1) quantum spin liquids (QSLs) on the pyrochlore lattice. We point out that the Ce local moment of the newly discovered pyrochlore QSL candidate Ce2Sn2O7 , is a dipole-octupole doublet. The generic model for these unusual doublets supports two distinct symmetry enriched U(1) QSL ground states in the corresponding quantum spin ice regimes. These two U(1) QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While the dipolar U(1) QSL has been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the symmetry properties of the dipole-octupole doublets, we predict the peculiar physical properties of the octupolar U(1) QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We further predict the Anderson-Higgs transition from the octupolar U(1) QSL driven by the external magnetic fields. We identify the experimental relevance with the candidate material Ce2Sn2O7 and other dipole-octupole doublet systems.

  1. Octupole correlations in low-lying states of 150Nd and 150Sm and their impact on neutrinoless double-beta decay

    CERN Document Server

    Yao, J M

    2016-01-01

    We present a generator-coordinate calculation, based on a relativistic energy-density functional, of the low-lying spectra in the isotopes $^{150}$Nd and $^{150}$Sm and of the nuclear matrix element that governs the neutrinoless double-beta decay of the first isotope to the second. We carefully examine the impact of octupole correlations on both nuclear structure and the double-beta decay matrix element. Octupole correlations turn out to reduce quadrupole collectivity in both nuclei. Shape fluctuations, however, dilute the effects of octupole deformation on the double-beta decay matrix element, so that the overall octupole-induced quenching is only about 7\\%.

  2. Study of HV Dielectrics for High Frequency Operation in Linear & Nonlinear Transmission Lines & Simulation & Development of Hybrid Nonlinear Lines for RF Generation

    Science.gov (United States)

    2015-08-27

    The high voltage diodes D5 to D10 are used to protect the HV switch against negative back swing voltage, while D4 diode for reverse current ...AFRL-AFOSR-CL-TR-2015-0001 STUDY OF HV DIELECTRICS FOR HIGH FREQUENCY OPERATION IN LINEAR & NONLINEAR TRANSMISSION LINES & SIMULATION & DEVELOPMENT...AFOSR Final Performance Report Study of HV Dielectrics for High Frequency Operation in Linear and Nonlinear Transmission Lines and Simulation

  3. Development of the RF system for the KOMAC MEBT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong-Gu; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Kim, Han-Sung; Song, Young-Gi; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    In the 100 MeV proton linear accelerator (Linac) for KOMAC, the RF source will power two-accelerator cavities (an RFQ, a DTL1) operated at a frequency of 350 MHz. The low level RF (LLRF) system for 100 MeV proton linear accelerator provides field control including an RFQ and a DTL at 350 MHz. In our system, an accelerating electric field stability of ±1% in amplitude and ±1° in phase is required for the RF system. Eleven radio-frequency (RF) systems are required for the 100 MeV accelerator, which are one RF system for the radio-frequency quadrupole (RFQ) cavity, one RF system for the 20 MeV drift tube linear accelerator (DTL) tanks, two RF systems for the medium-energy beam transmission (MEBT) tanks, and seven RF systems for the 100 MeV DTL tanks. Now a total of 9 RF systems are being operated. To improve the beam quality, the additional RF system for MEBT (Medium Energy Beam Transport) is needed. An addition of a MEBT RF system will reduce loss of beam quantity caused by gab between 20 MeV DTL tank and 100 MeV DTL tank. RF system for MEBT is being installed. The condition of the test is 350 MHz, 9% pulse duty (1.5 ms, 60 Hz), 4 kW(peak power). Perfecting an RF system of MEBT will reduce loss of beam quantity.

  4. Application of the triaxial quadrupole-octupole rotor to the ground and negative-parity levels of actinide nuclei

    CERN Document Server

    Nadirbekov, M S; Strecker, M; Scheid, W

    2016-01-01

    In this work we examine the possibility to describe yrast positive- and negative-parity excitations of deformed even-even nuclei through a collective rotation model in which the nuclear surface is characterized by triaxial quadrupole and octupole deformations. The nuclear moments of inertia are expressed as sums of quadrupole and octupole parts. By assuming an adiabatic separation of rotation and vibration degrees of freedom we suppose that the structure of the positive- and negative- parity bands may be determined by the triaxial-rigid-rotor motion of the nucleus. By diagonalizing the Hamiltonian in a symmetrized rotor basis with embedded parity we obtain a model description for the yrast positive- and negative-parity bands in several actinide nuclei. We show that the energy displacement between the opposite-parity sequences can be explained as the result of the quadrupole-octupole triaxiality.

  5. A novel antiproton radial diagnostic based on octupole induced ballistic loss

    Science.gov (United States)

    Andresen, G. B.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jørgensen, L. V.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R. D.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; El Nasr, S. Seif; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2008-03-01

    We report results from a novel diagnostic that probes the outer radial profile of trapped antiproton clouds. The diagnostic allows us to determine the profile by monitoring the time history of antiproton losses that occur as an octupole field in the antiproton confinement region is increased. We show several examples of how this diagnostic helps us to understand the radial dynamics of antiprotons in normal and nested Penning-Malmberg traps. Better understanding of these dynamics may aid current attempts to trap antihydrogen atoms.

  6. A novel antiproton radial diagnostic based on octupole induced ballistic loss

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page, R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    We report results from a novel diagnostic that probes the outer radial profile of trapped antiproton clouds. The diagnostic allows us to determine the profile by monitoring the time-history of antiproton losses that occur as an octupole field in the antiproton confinement region is increased. We show several examples of how this diagnostic helps us to understand the radial dynamics of antiprotons in normal and nested Penning-Malmberg traps. Better understanding of these dynamics may aid current attempts to trap antihydrogen atoms.

  7. Structure of Hamiltonian Matrix and the Shape of Eigenfunctions: Nuclear Octupole Deformation Model

    Institute of Scientific and Technical Information of China (English)

    XING Yong-Zhong; LI Jun-Qing; LIU Fang; ZUO Wei

    2002-01-01

    The structure of a Hamiltonian matrix for a quantum chaotic system, the nuclear octupole deformationmodel, has been discussed in detail. The distribution of the eigenfunctions of this system expanded by the eigenstates ofa quantum integrable system is studied with the help ofgeneralized Brillouin-Wigner pcrturbation theory. The resultsshow that a significant randomness in this distribution can be observed when its classical counterpart is under the strongchaotic condition. The averaged shape of the eigenfunctions fits with the Gaussian distribution only when the effects ofthe symmetry have been removed.

  8. Exotic octupole deformation in proton-rich Z=N nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Satoshi; Yabana, K. [Niigata Univ. (Japan); Matsuo, M.

    1998-03-01

    We study static non-axial octupole deformations in proton-rich Z=N nuclei, {sup 64}Ge, {sup 68}Se, {sup 72}Kr, {sup 76}Sr, {sup 80}Zr and {sup 84}Mo, by using the Skyrme Hartree-Fock plus BCS method with no restrictions on the nuclear shape. The calculation predicts that the oblate ground state in {sup 68}Se is extremely soft for the Y{sub 33} triangular deformation, and that in {sup 80}Zr the low-lying local minimum state coexisting with the prolate ground state has the Y{sub 32} tetrahedral deformation. (author)

  9. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Science.gov (United States)

    Paramonov, V.; Philipp, S.; Rybakov, I.; Skassyrskaya, A.; Stephan, F.

    2017-05-01

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  10. Shell evolution of stable N = 50-56 Zr and Mo nuclei with respect to low-lying octupole excitations

    Energy Technology Data Exchange (ETDEWEB)

    Gregor, E.T.; Scheck, M.; Chapman, R.; Gaffney, L.P.; Keatings, J.; Mashtakov, K.R.; O' Donnell, D.; Smith, J.F.; Spagnoletti, P.; Wiseman, C. [University of the West of Scotland, School of Engineering and Computing, Paisley (United Kingdom); SUPA, Scottish Universities Physics Alliance, Glasgow (United Kingdom); Thuerauf, M.; Werner, V. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2017-03-15

    For the N = 50-56 zirconium (Z = 40) and molybdenum (Z = 42) isotopes, the evolution of subshells is evaluated by extracting the effective single-particle energies from available particle-transfer data. The extracted systematic evolution of neutron subshells and the systematics of the excitation energy of the octupole phonons provide evidence for type-II shape coexistence in the Zr isotopes. Employing a simplistic approach, the relative effective single-particle energies are used to estimate whether the formation of low-lying octupole-isovector excitations is possible at the proposed energies. The results raise doubts about this assignment. (orig.)

  11. High-accuracy optical clock based on the octupole transition in 171Yb+

    CERN Document Server

    Huntemann, N; Lipphardt, B; Weyers, S; Tamm, Chr; Peik, E

    2011-01-01

    We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition 2S1/2(F=0) -> F7/2(F=3) in a single trapped 171Yb+ ion. The extraordinary features of this transition result from the long natural lifetime and from the 4f136s2 configuration of the upper state. The electric quadrupole moment of the 2F7/2 state is measured as -0.041(5) e(a0)^2, where e is the elementary charge and a0 the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe light induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1x10^(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz with the uncertainty essentially determined by the employed caesium fountain reference.

  12. High-accuracy optical clock based on the octupole transition in 171Yb+.

    Science.gov (United States)

    Huntemann, N; Okhapkin, M; Lipphardt, B; Weyers, S; Tamm, Chr; Peik, E

    2012-03-02

    We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition (2)S(1/2)(F=0)→(2)F(7/2)(F=3) in a single trapped (171)Yb(+) ion. The extraordinary features of this transition result from the long natural lifetime and from the 4f(13)6s(2) configuration of the upper state. The electric-quadrupole moment of the (2)F(7/2) state is measured as -0.041(5)ea(0)(2), where e is the elementary charge and a(0) the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe-light-induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1×10(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz.

  13. Persistence of octupole correlations in sup 2 sup 3 sup 1 Ra

    CERN Document Server

    Fraile-Prieto, L M; Mach, H; Boutami, R; Aas, A J; Fogelberg, B; García-Raffi, L M; Grant, I S; Gulda, K; Hageboe, E; Kurcewicz, W; Kvasil, J; López, M J; Løvhøiden, G; Martínez, T; Rubio, B; Taín, J L; Tengblad, O

    2001-01-01

    The structure of sup 2 sup 3 sup 1 Ra, the heaviest odd Ra nucleus currently accessible for detailed spectroscopic investigation, has been studied in the beta sup - decay of sup 2 sup 3 sup 1 Fr. The main purpose has been to verify whether fast B(E1) rates and significant octupole correlations recently established in sup 2 sup 2 sup 9 Ra persist in sup 2 sup 3 sup 1 Ra. The excited states in sup 2 sup 3 sup 1 Ra have been determined for the first time. Spins and parities have been deduced from conversion electron measurements, while level half-lives in the ps and ns ranges have been measured with the Advanced Time Delayed beta gamma gamma(t) method. The moderately fast B(E1) rates found for transitions connecting the lowest-lying K suppi=5/2 sup+- and K suppi=1/2 sup+- bands, reveal the persistence of octupole collective effects in sup 2 sup 3 sup 1 Ra, although the B(E1) rates are lower than in sup 2 sup 2 sup 9 Ra. These findings reinforce the differences in the B(E1) systematics between isotonic Ra and Th ...

  14. Studies of electric dipole moments in the octupole collective regions of heavy Radiums and Bariums

    CERN Multimedia

    Hoff, P; Kaczarowski, R

    2002-01-01

    %IS386 %title\\ \\It is proposed to study the electric dipole moments in the regions of octupole collective Ra-Th and Ba-Ce nuclei by means of Advanced Time-Delayed (ATD) $\\beta\\gamma\\gamma(t)$ method with a primary goal to provide new and critical data on the properties of E1 moments. The proposal focuses on the nuclei of $^{225,226,229}$Ra, $^{229,233}$Th and $^{149,150}$Ba.\\ \\The ATD $\\beta\\gamma\\gamma$(t) method was first tested at ISOLDE as part of the IS322 study of Fr-Ra nuclei at the limits of octupole deformation region. The results have greatly increased the knowledge of electric dipole moments in the region and demonstrated that new and unique research capabilities in this field are now available at ISOLDE. Based on the experience and new systematics, we propose a specialized study with the aim to determine the missing key aspects of the E1 moment systematics. We propose : \\begin{enumerate}[a)] \\item to measure the lifetimes of the 1$_{1}^{-}$ and 3$_{1}^{-}$ states in $^{226}$Ra with $\\sim$15\\% prec...

  15. RF multipole implementation

    CERN Document Server

    Latina, A

    2012-01-01

    The electromagnetic radio-frequency (RF) field of accelerating structures and crab-cavities can exhibit transverse field components due to asymmetries in the azimuthal direction of the element geometry. Tracking simulations must be performed to evaluate the impact of such transverse RF deflections on the beam dynamics. In an ultra-relativistic regime where the Panofsky-Wenzel theorem is applicable, these RF deflections can be modeled via a multipolar expansion of the generating RF field similarly to what is done with static magnetic elements. The element implementing such RF multipolar fields has been called RF multipole. In this note we present an analytical formulation of a thin RF multipole Hamiltonian, and we explicitly calculate the RF kick and the elements of its first- and second- order transfer matrices. Also, we present the implementation of the corresponding code in MAD-X, plus some tests of tracking, simplecticity, consistency, and reflected maps that we successfully applied to verify the correctne...

  16. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to a resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.

  17. High power solid state rf amplifier for proton accelerator.

    Science.gov (United States)

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P R

    2008-01-01

    A 1.5 kW solid state rf amplifier at 352 MHz has been developed and tested at RRCAT. This rf source for cw operation will be used as a part of rf system of 100 MeV proton linear accelerator. A rf power of 1.5 kW has been achieved by combining output power from eight 220 W rf amplifier modules. Amplifier modules, eight-way power combiner and divider, and directional coupler were designed indigenously for this development. High efficiency, ease of fabrication, and low cost are the main features of this design.

  18. Octupole Contributions to the Generalized Oscillator Strengths of Discrete Dipole Transitions in Noble Gases

    CERN Document Server

    Amusia, M Ya; Felfli, Z; Msezane, A Z

    2007-01-01

    The generalized oscillator strengths (GOS) of discrete excitations np-nd, both dipole (L=1) and octupole (L=3) are studied, the latter for the first time. We demonstrate that although the relevant transitions in the same atom are closely located in energy, the dependence of their GOS on the momentum transfer q squared, is remarkably different, so that the GOS corresponding to L=3 have at least one extra maximum as a function of q squared and dominate over those of the L=1, starting from about q=1.25$ atomic unit (a.u.). The calculations were performed in the one particle Hartree-Fock approximation and with account of many-electron correlations via the Random Phase Approximation with Exchange. The GOS are studied for values of q squared up to 30 a.u.

  19. Study of octupole deformation in n-rich Ba isotopes populated via $\\beta$-decay

    CERN Multimedia

    We propose to exploit the unique capability of the ISOLDE facility to produce $^{150, 151, 152}$Cs beams to investigate their radioactive $\\beta$-decay to $^{150, 151, 152}$Ba. The interest to study this mass region is twofold: these nuclei are expected to show octupole deformations already in their low-lying state, secondly information on the $\\beta$-decay is needed for the nuclear astrophysical model. The experiment will be performed with the ISOLDE Decay Station (IDS) setup using the fast tape station of K.U.-Leuven, equipped with four Clover Germanium detectors, four LaBr$_{3}$(Ce) detectors and one LEP HPGe detector. Information on the $\\beta$-decay, such as lifetimes and delayed neutron-emission probabilities, will be extracted, together with the detailed spectroscopy of the daughter nuclei, via $\\gamma$-$\\gamma$-coincidences and lifetime measurement of specific states.

  20. Broadband direct RF digitization receivers

    CERN Document Server

    Jamin, Olivier

    2014-01-01

    This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm...

  1. Anharmonicity of multi-octupole-phonon excitations in $^{208}$Pb: analysis with multi-reference covariant density functional theory and subbarrier fusion of $^{16}$O+$^{208}$Pb

    CERN Document Server

    Yao, J M

    2016-01-01

    We discuss anharmonicity of the multi-octupole-phonon states in $^{208}$Pb based on a covariant density functional theory, by fully taking into account the interplay between the quadrupole and the octupole degrees of freedom. Our results indicate the existence of a large anharmonicity in the transition strengths, even though the excitation energies are similar to those in the harmonic limit. We also show that the quadrupole-shape fluctuation significantly enhances the fragmentation of the two-octupole-phonon states in $^{208}$Pb. Using those transition strengths as inputs to coupled channels calculations, we then discuss the fusion reaction of $^{16}$O+$^{208}$Pb at energies around the Coulomb barrier. We show that the anharmonicity of the octupole vibrational excitation considerably improves previous coupled-channels calculations in the harmonic oscillator limit, significantly reducing the height of the main peak in the fusion barrier distribution.

  2. Linearisation of RF Power Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck

    2001-01-01

    This thesis deals with linearisation techniques of RF power amplifiers (PA), PA design techniques and integration of the necessary building blocks in a CMOS technology. The opening chapters introduces the theory of transmitter architectures, RF-signal representation and the principles of digital...... modulation. Furthermore different types of power amplifiers, models and measures of non-linearities are presented. A chapter is also devoted to different types of linearisation systems. The work carried out and described in this thesis can be divided into a more theoretical and system oriented treatment...... the polar loop architecture and it’s suitability to modern digital transmitters is discussed. A proposal of an architecture that is suitable for digital transmitters, which means that it has an interface to the digital back-end, defined by low-pass signals in polar form, is presented. Simulation guidelines...

  3. Si-based RF MEMS components.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, James E.; Nordquist, Christopher Daniel; Baker, Michael Sean; Fleming, James Grant; Stewart, Harold D.; Dyck, Christopher William

    2005-01-01

    Radio frequency microelectromechanical systems (RF MEMS) are an enabling technology for next-generation communications and radar systems in both military and commercial sectors. RF MEMS-based reconfigurable circuits outperform solid-state circuits in terms of insertion loss, linearity, and static power consumption and are advantageous in applications where high signal power and nanosecond switching speeds are not required. We have demonstrated a number of RF MEMS switches on high-resistivity silicon (high-R Si) that were fabricated by leveraging the volume manufacturing processes available in the Microelectronics Development Laboratory (MDL), a Class-1, radiation-hardened CMOS manufacturing facility. We describe novel tungsten and aluminum-based processes, and present results of switches developed in each of these processes. Series and shunt ohmic switches and shunt capacitive switches were successfully demonstrated. The implications of fabricating on high-R Si and suggested future directions for developing low-loss RF MEMS-based circuits are also discussed.

  4. Interrelation between the isoscalar octupole phonon and the proton-neutron mixed-symmetry quadrupole phonon in near spherical nuclei

    CERN Document Server

    Smirnova, N A; Mizusaki, T; Van Isacker, P; Smirnova, Nadya A.; Pietralla, Norbert; Mizusaki, Takahiro; Isacker, Piet Van

    2000-01-01

    The interrelation between the octupole phonon and the low-lyingproton-neutron mixed-symmetry quadrupole phonon in near-spherical nuclei isinvestigated. The one-phonon states decay by collective E3 and E2 transitionsto the ground state and by relatively strong E1 and M1 transitions to theisoscalar 2^+ state. We apply the proton-neutron version of the InteractingBoson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spinsymmetric dynamical symmetry limits of the model, namely the vibrational andthe $\\gamma$-unstable ones, are considered. We derive analytical formulae forexcitation energies as well as B(E1), B(M1), B(E2) and B(E3) values for anumber of transitions between low-lying states. The model well reproduces manyknown transition strengths in the near spherical nuclei ^{142}Ce and ^{94}Mo.

  5. Indication for a K/sup. pi. / = 0/sup -/ octupole band in /sup 150/Nd from electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Creswell, C.; Hirsch, A.; Bertozzi, W.; Heisenberg, J.; Kowalski, S.; Sargent, C.P.; Turchinetz, W.; Dieperink, A.

    1978-11-01

    Recent electron scattering results on the 0.850 MeV level of /sup 150/Nd, when analyzed in terms of the interacting boson model, are inconsistent with the interpretation of this level as a pure J/sup ..pi../(K) = 2/sup +/(0) state. Very recent (n,n'..gamma..) work has shown this level to be a 1/sup -/, 2/sup +/ doublet. Assuming this level to be the band head of a ''K/sup ..pi../ = 0/sup -/'' octupole band, a simple model is used to predict electron scattering form factors for the 0.850 MeV state and a 3/sup -/ octupole level observed at 0.931 MeV. Comparison is made between these predicted form factors and recent electron scattering data.

  6. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  7. Pregnant women models analyzed for RF exposure and temperature increase in 3T RF shimmed birdcages.

    Science.gov (United States)

    Murbach, Manuel; Neufeld, Esra; Samaras, Theodoros; Córcoles, Juan; Robb, Fraser J; Kainz, Wolfgang; Kuster, Niels

    2017-05-01

    MRI is increasingly used to scan pregnant patients. We investigated the effect of 3 Tesla (T) two-port radiofrequency (RF) shimming in anatomical pregnant women models. RF shimming improves B1(+) uniformity, but may at the same time significantly alter the induced current distribution and result in large changes in both the level and location of the absorbed RF energy. In this study, we evaluated the electrothermal exposure of pregnant women in the third, seventh, and ninth month of gestation at various imaging landmarks in RF body coils, including modes with RF shimming. Although RF shimmed configurations may lower the local RF exposure for the mother, they can increase the thermal load on the fetus. In worst-case configurations, whole-body exposure and local peak temperatures-up to 40.8°C-are equal in fetus and mother. Two-port RF shimming can significantly increase the fetal exposure in pregnant women, requiring further research to derive a very robust safety management. For the time being, restriction to the CP mode, which reduces fetal SAR exposure compared with linear-horizontal polarization modes, may be advisable. Results from this study do not support scanning pregnant patients above the normal operating mode. Magn Reson Med 77:2048-2056, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Multi-dimensional potential energy surfaces and non-axial octupole correlations in actinide and transfermium nuclei from relativistic mean field models

    CERN Document Server

    Lu, Bing-Nan; Zhao, En-Guang; Zhou, Shan-Gui

    2013-01-01

    We have developed multi-dimensional constrained covariant density functional theories (MDC-CDFT) for finite nuclei in which the shape degrees of freedom \\beta_{\\lambda\\mu} with even \\mu, e.g., \\beta_{20}, \\beta_{22}, \\beta_{30}, \\beta_{32}, \\beta_{40}, etc., can be described simultaneously. The functional can be one of the following four forms: the meson exchange or point-coupling nucleon interactions combined with the non-linear or density-dependent couplings. For the pp channel, either the BCS approach or the Bogoliubov transformation is implemented. The MDC-CDFTs with the BCS approach for the pairing (in the following labelled as MDC-RMF models with RMF standing for "relativistic mean field") have been applied to investigate multi-dimensional potential energy surfaces and the non-axial octupole $Y_{32}$-correlations in N=150 isotones. In this contribution we present briefly the formalism of MDC-RMF models and some results from these models. The potential energy surfaces with and without triaxial deformatio...

  9. A two-Frequency RF Photocathode Gun

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.H. E-mail: dowell@slac.stanford.edu; Ferrario, M.; Kimura, T.; Lewellen, J.; Limborg, C.; Raimondi, P.; Schmerge, J.F.; Serafini, L.; Smith, T.; Young, L

    2004-08-01

    In this paper we resurrect an idea originally proposed by Serafini (Nucl. Instr. and Meth. A 318 (1992) 301) in 1992 for an RF photocathode gun capable of operating simultaneously at the fundamental frequency and a higher frequency harmonic. Driving the gun at two frequencies with the proper field ratio and relative phase produces a beam with essentially no RF emittance and a linear longitudinal phase space distribution. Such a gun allows a completely new range of operating parameters for controlling space charge emittance growth. In addition, the linear longitudinal phase space distribution aids in bunch compression. This paper will compare results of simulations for the two-frequency gun with the standard RF gun and the unique properties of the two-frequency gun will be discussed.

  10. A Two-Frequency RF Photocathode Gun

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.

    2004-11-05

    In this paper we resurrect an idea originally proposed by Serafini[1] in 1992 for an RF photocathode gun capable of operating simultaneously at the fundamental frequency and a higher frequency harmonic. Driving the gun at two frequencies with the proper field ratio and relative phase produces a beam with essentially no rf emittance and a linear longitudinal phase space distribution. Such a gun allows a completely new range of operating parameters for controlling space charge emittance growth. In addition, the linear longitudinal phase space distribution aids in bunch compression. This paper will compare results of simulations for the two-frequency gun with the standard rf gun, and the unique properties of the two-frequency gun will be discussed.

  11. Design of a Ka-band 10 W Adaptive RF Predistortion Linearization Power Amplifier%Ka频段10W自适应射频预失真线性化固态功放研制

    Institute of Scientific and Technical Information of China (English)

    李凯; 张科; 张能波

    2014-01-01

    The characteristic of radio frequency power amplifier ( RFPA) will change with the channel switching,environment temperature,working conditions and other factors. In order to guarantee the steady operation of the predistortion RFPA,the predistortion system with adaptive performance is very important. This paper proposes a detection method of adaptive feedback,and uses the multidirectional search algorithm to minimize the amplitude distortion and phase distortion of the RFPA′s output signal to optimize the pre-distortion system,to make the system operate in optimum state all the time. An adaptive RF predistortion linearization solid-state power amplifier operating at the Ka-band is developed. In 3 GHz operation fre-quency band,the three-order intermodulation of the developed RFPA is effectively enhanced to be better than -32 dBc at -40℃ ~ 60℃. The test results show that the power amplifier has the characteristics of wide operation frequency band and wide temperature adaptability.%射频功率放大器的特性会随信道切换、环境温度、工作状态等多种因素发生变化,为了保证功率放大器的优良工作特性,具有自适应性能的预失真系统就显得非常重要。提出了一种自适应反馈检测方法,以减小放大器输出信号的幅度失真和相位失真作为系统自适应的优化目标,采用多方向搜索优化算法对预失真系统进行优化调整,使系统始终处于最优工作状态。研制了工作于 Ka 频段10 W自适应射频预失真线性化固态功放原理样机,当工作温度为-40℃~+60℃时,在3 GHz的工作带宽内,三阶交调指标优于-32 dBc。测试结果表明该功放具有工作频带宽、温度适应性广等特点。

  12. Evidence for octupole vibration in the superdeformed well of {sup 190}Hg from eurogam

    Energy Technology Data Exchange (ETDEWEB)

    Crowell, B.; Carpenter, M.P.; Janssens, R.V.F. [and others

    1995-08-01

    Gammasphere experiments in 1993-94 brought to light the existence of an excited superdeformed (SD) band in {sup 190}Hg with the unusual property of decaying entirely to the lowest (yrast) SD band over 3-4 transitions, rather than to the normally deformed states as is usually the case in the A {approximately} 150 and A {approximately} 190 regions of superdeformation. Although M1 transitions between signature-partner SD bands were previously observed in {sup 193}Hg, no such mechanism was available to explain the situation in the even-even nucleus {sup 190}Hg, whose yrast SD band has no signature partner. The best explanation appears to lie in long-standing theoretical predictions that the SD minimum in the potential energy surface would be quite soft with respect to octupole vibrations. This would lead to enhanced E1 transitions connecting the one-phonon and zero-phonon states. The data and this interpretation were published. A shortcoming of the Gammasphere experiments was that they did not allow the definitive measurement of the energies of the gamma-ray transitions connecting the two bands, due to the very weak population of the excited band ({approximately}0.05% of the {sup 190}Hg channel) and also partly, we believed, to the angular distributions of the transitions, which were peaked near 90 degrees, where Gammasphere had few detectors.

  13. Search for the two-phonon octupole vibrational state in {sup 208}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, D.J.; Henning, W.; Janssens, R.V.F. [and others

    1995-08-01

    We performed an experiment to search for the two-phonon octupole vibrational state in {sup 208}Pb. Thick targets of {sup 208}Pb, {sup 209}Bi, {sup 58,64}Ni, and {sup 160}Gd were bombarded with 1305 MeV beams of were bombard {sup 208}Pb supplied by ATLAS. Gamma rays were detected using the Argonne-Notre Dame BGO gamma-ray facility, consisting of 12 Compton-suppressed germanium detectors surrounding an array of 50 BGO scintillators. We identified some 30 known gamma rays from {sup 208}Pb in the spectra gated by the 5{sup -} {yields} 3{sup -} and 3{sup -} {yields} 0{sup +} transitions in {sup 208}Pb. In addition, after unfolding these spectra for Compton response, we observed broad coincident structures in the energy region expected for the 2-phonon states. Furthermore, we confirmed the placement of a 2485 keV line observed previously in {sup 207}Pb and find no evidence consistent with the placement of this line in {sup 208}Pb. We are currently in the process of investigating the origin of the broadened lines observed in the spectra, extracting the excitation probability of states in {sup 208}Pb, and determining the relative probability of mutual excitation and neutron transfer in this reaction. An additional experiment is also being performed to collect much higher statistics germanium-germanium coincidence data for the thick {sup 208}Pb target.

  14. Space charge and octupole driven resonance trapping observed at the CERN proton synchrotron

    CERN Document Server

    Franchetti, Giuliano; Giovannozzi, Massimo; Martini, Michel; Métral, Elias

    2003-01-01

    The combined effect of space charge and nonlinear resonance on beam loss and emittance was measured in a benchmarking experiment over a 1.2 s long flat bottom at 1.4 GeV kinetic energy in the presence of a single controllable octupole. By lowering the working point towards the resonance, a gradual transition from a loss-free core emittance blowup to a regime dominated by continuous loss was found. We compare the observation with 3D simulations based on a new analytical space charge model and obtain good agreement in the emittance blowup regime. Our explanation is in terms of the synchrotron oscillation, which causes a periodic tune modulation due to space charge, and leads to trapping and detrapping on the resonance islands. For working points very close to the resonance this induces a beam halo with large radius. The underlying dynamics is studied in detail, and it is claimed that the predicted halo in conjunction with a reduced dynamic aperture for the real machine lattice is the source of the loss observed...

  15. Suppression of quadrupole and octupole modes in red giants observed by Kepler

    CERN Document Server

    Stello, D; Fuller, J; Garcia, R A; Huber, D

    2016-01-01

    The asteroseismology of red giant stars has continued to yield surprises since the onset of high-precision photometry from space-based observations. An exciting new theoretical result shows that the previously observed suppression of dipole oscillation modes in red giants can be used to detect strong magnetic fields in the stellar cores. A fundamental facet of the theory is that nearly all the mode energy leaking into the core is trapped by the magnetic greenhouse effect. This results in clear predictions for how the mode visibility changes as a star evolves up the red giant branch, and how that depends on stellar mass, spherical degree, and mode lifetime. Here, we investigate the validity of these predictions with a focus on the visibility of different spherical degrees. We find that mode suppression weakens for higher degree modes with an average reduction in the quadrupole mode visibility of up to 49% for the least evolved stars in our sample, and no detectable suppression of octupole modes, in agreement w...

  16. The decay of quadrupole-octupole $1^-$ states in $^{40}$Ca and $^{140}$Ce

    CERN Document Server

    Derya, V; Aumann, T; Bhike, M; Endres, J; Gooden, M; Hennig, A; Isaak, J; Lenske, H; Löher, B; Pietralla, N; Savran, D; Tornow, W; Werner, V; Zilges, A

    2016-01-01

    Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying $E1$ excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the $\\gamma$-decay behavior of candidates for the $(2_1^+\\otimes 3_1^-)_{1^-}$ state in the doubly-magic nucleus $^{40}$Ca and in the heavier and semi-magic nucleus $^{140}$Ce is investigated. Methods: $(\\vec{\\gamma},\\gamma')$ experiments have been carried out at the High Intensity $\\gamma$-ray Source (HI${\\gamma}$S) facility in combination with the high-efficiency $\\gamma$-ray spectroscopy setup $\\gamma^3$ consisting of HPGe and LaBr$_3$ detectors. The setup enables the acquisition of $\\gamma$-$\\gamma$ coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for $^{40}$Ca the decay into the $3^-_1$ state was observed, while for $^{140}$Ce the direct decays into the $2...

  17. Frequency standard based on the octupole transition in {sup 171}Yb{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Huntemann, Nils; Okhapkin, Maxim; Lipphard, Burghard; Weyers, Stefan; Tamm, Christian; Peik, Ekkehard [Fachbereich Zeit und Frequenz, Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2011-07-01

    W present our results on the development of a new optical frequency standard based on the electric octupole (E3) transition {sup 2}S{sub 1/2}(F=0) {yields} {sup 2}F{sub 7/2}(F=3) of a single trapped laser-cooled {sup 171}Yb{sup +} ion at 467 nm. In comparison with a previously realized optical frequency standard in {sup 171}Yb{sup +} this E3 transition benefits from smaller systematic level shifts due to external fields and its negligible natural linewidth. Another important aspect of the new standard is its strong dependence on variations of the fine structure constant {alpha}. A recently built probe laser system and the use of a new efficient repump scheme allows to observe Fourier transform-limited linewidths below 7 Hz and a resonant excitation probability of more than 90 %. We lock the probe laser frequency to the resonance signal of the E3 transition and use a real-time extrapolation scheme to eliminate the huge light shift induced by the probe field. The unperturbed transition frequency was measured by a comparison to a caesium fountain clock using a frequency comb generator. The resulting uncertainty was mainly limited by the systematic uncertainty of the fountain clock.

  18. Core breaking and octupole low-spin states in $^{207}$ Tl

    CERN Multimedia

    We propose to study the low-spin level structure of the $^{207}$Tl nucleus populated by the $\\beta$- decay of $^{207}$Hg. While $^{207}$Tl is a single-proton hole nucleus, the majority of the observed states will have a three-particle structure thus requiring the breaking of the neutron or proton core, or a collective octupole phonon coupled to the single proton hole. Thus information will be obtained on the single particle orbitals in the vicinity of the N=126 and Z=82 magic numbers, and on the size of the shell gap. The results will be used to improve the predictive power of the shell model for more exotic nuclei as we move to lighter N=126 nuclei.The experiment will use the ISOLDE Decay station, and will take advantage of the $^{207}$Hg beam from the molten lead target. A test on the feasibility to produce an $^{208}$Hg beam from the same target, with the aim to study the $\\beta$-decay into $^{208}$Tl, could be performed at the same time.

  19. The system of RF beam control for electron gun

    Science.gov (United States)

    Barnyakov, A. M.; Chernousov, Yu. D.; Ivannikov, V. I.; Levichev, A. E.; Shebolaev, I. V.

    2015-06-01

    The system of RF control of three-electrode electron gun current is described. It consists of a source of microwave signal, coaxial line, coaxial RF switch and RF antenna lead. The system allows one to get the electron beam in the form of bunches with the frequency of the accelerating section to achieve the capture of particles in the acceleration mode close to 100%. The results of calculation and analysis of the elements of the system are presented. Characteristics of the devices are obtained experimentally. The results of using RF control in three-electrode electron gun at electron linear accelerator are described.

  20. Superconductor Digital-RF Transceiver Components

    Science.gov (United States)

    2006-01-01

    high-power amplifier (HPA). The diagram also shows a dynamic digital equalizer, a digital predistortion module that is combined with the DAC to...intermodulation distortion, especially near their maximum output powers. Unlike conventional baseband or intermediate frequency (IF) predistorters ...which are limited to narrowband correction of slowly varying non- linearities, our RF predistorter can correct instantaneous, signal-dependent

  1. RF Circuit Design in Nanometer CMOS

    NARCIS (Netherlands)

    Nauta, Bram

    2007-01-01

    With CMOS technology entering the nanometer regime, the design of analog and RF circuits is complicated by low supply voltages, very non-linear (and nonquadratic) devices and large 1/f noise. At the same time, circuits are required to operate over increasingly wide bandwidths to implement modern mul

  2. RF Circuit Design in Nanometer CMOS

    NARCIS (Netherlands)

    Nauta, Bram

    2007-01-01

    With CMOS technology entering the nanometer regime, the design of analog and RF circuits is complicated by low supply voltages, very non-linear (and nonquadratic) devices and large 1/f noise. At the same time, circuits are required to operate over increasingly wide bandwidths to implement modern

  3. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  4. RF gymnastics in synchrotrons

    CERN Document Server

    Garoby, R

    2011-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. 'RF gymnastics' designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance, or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most commonly used gymnastics. Their principle is described as well as their performance and limitations.

  5. RF Gymnastics in Synchrotrons

    CERN Document Server

    Garoby, R

    2005-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. "RF gymnastics" designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most commonly used gymnastics. Their principle is described as well as their performance and limitations.

  6. Geolocation of RF signals

    CERN Document Server

    Progri, Ilir

    2011-01-01

    ""Geolocation of RF Signals - Principles and Simulations"" offers an overview of the best practices and innovative techniques in the art and science of geolocation over the last twenty years. It covers all research and development aspects including theoretical analysis, RF signals, geolocation techniques, key block diagrams, and practical principle simulation examples in the frequency band from 100 MHz to 18 GHz or even 60 GHz. Starting with RF signals, the book progressively examines various signal bands - such as VLF, LF, MF, HF, VHF, UHF, L, S, C, X, Ku, and, K and the corresponding geoloca

  7. RF-thermal-structural-RF coupled analysis on a travelling wave disk-loaded accelerating structure

    Institute of Scientific and Technical Information of China (English)

    PEI Shi-Lun; CHI Yun-Long; ZHANG Jing-Ru; HOU Mi; LI Xiao-Ping

    2012-01-01

    The travelling wave (TW) disk-loaded accelerating structure is one of the key components in normal conducting (NC) linear accelerators,and has been studied for many years.In the design process,usually after the dimensions of each cell and the two couplers are finalized,the structure is fabricated and tuned,and then the whole structure RF characteristics are measured by using a vector network analyzer.Before fabrication,the whole structure characteristics (including RF,thermal and structural ones) are less simulated due to the limited capability of currently available computers.In this paper,we described a method for performing RF-thermal-structural-RF coupled analysis on a TW disk-loaded structure using only one PC.In order to validate our method,we first analyzed and compared our RF simulation results on the 3 m long BEPC Ⅱ structure with the corresponding experimental results,which shows very good consistency.Finally,the RF-thermal-structure-RF coupled analysis results on the 1.35 m long NSC KIPT linac accelerating structure are presented.

  8. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  9. RF Circuit Design in Nanometer CMOS

    OpenAIRE

    Nauta, Bram

    2007-01-01

    With CMOS technology entering the nanometer regime, the design of analog and RF circuits is complicated by low supply voltages, very non-linear (and nonquadratic) devices and large 1/f noise. At the same time, circuits are required to operate over increasingly wide bandwidths to implement modern multi-band communication systems as these systems move toward software-defined radio. These trends in technology and system design call for a re-thinking of analog and RF circuit design in nanometer C...

  10. Reconfigurable RF Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build upon our existing space microelectronics and hardening technologies and products, to research and develop a novel rad hard/tolerant RF...

  11. Binary rf pulse compression experiment at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here.

  12. RF Measurement Concepts

    CERN Document Server

    Caspers, F

    2014-01-01

    For the characterization of components, systems and signals in the radiofrequency (RF) and microwave ranges, several dedicated instruments are in use. In this article the fundamentals of the RF signal techniques are discussed. The key element in these front ends is the Schottky diode which can be used either as a RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front end is the RF mixer as the RF section of modern spectrum analyses has a ra ther complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown as well as a brief discussion of commonly used noise-measurement techniques. In a further part of this article the operating principles of n...

  13. Note on a search for the two-octupole phonon 2 sup + state in sup 2 sup 0 sup 8 Pb with resonant photon scattering

    CERN Document Server

    Enders, J; Eberth, J; Fitzler, A; Fransen, C; Herzberg, R D; Kaiser, H; Käubler, L; Neuman-Cosel, P V; Pietralla, N; Ponomarev, V Yu; Richter, A; Schnare, H; Schwengner, R; Skoda, S; Thomas, H G; Tiesler, H; Weisshaar, D; Wiedenhöver, I

    2000-01-01

    Results of a sup 2 sup 0 sup 8 Pb (gamma,gamma') experiment are presented aiming at an identification of the 2 sup + member of the long-sought two-octupole phonon multiplet. Four E2 excitations have been observed below 6.5 MeV excitation energy, two of them for the first time. However, in contrast to new results of calculations within the quasiparticle-phonon nuclear model (QPM), no obvious candidate for the two-octupole phonon vibration could be found in the present study. We discuss the J suppi=2 sup + states detected in this as well as previous experiments with respect to their possible two-octupole phonon structure.

  14. A comparison of two magnetic ultra-cold neutron trapping concepts using a Halbach-octupole array

    CERN Document Server

    Leung, K; Martin, F; Rosenau, F; Simson, M; Zimmer, O

    2015-01-01

    This paper describes a new magnetic trap for ultra-cold neutrons (UCNs) made from a 1.2 m long Halbach-octupole array of permanent magnets with an inner bore radius of 47 mm combined with an assembly of superconducting end coils and bias field solenoid. The use of the trap in a vertical, magneto-gravitational and a horizontal setup are compared in terms of the effective volume and ability to control key systematic effects that need to be addressed in high precision neutron lifetime measurements.

  15. Measurements of octupole collectivity in $^{220,222}$Rn and $^{222,224}$Ra using Coulomb excitation

    CERN Multimedia

    Kruecken, R; Larsen, A; Hurst, A M; Voulot, D; Grahn, T; Clement, E; Wadsworth, R; Gernhaeuser, R A; Siem, S; Huyse, M L; Iwanicki, J S

    2008-01-01

    We propose to exploit the unique capability of ISOLDE to provide post-accelerated $^{220,222}$Rn and $^{222,224}$Ra ion beams from the REX facility to enable the Coulomb excitation of the first 3$^{-}$ states in these nuclei. By measuring the $\\gamma$-ray yields of the E1 decays from the 3$^{-}$ state using the MINIBALL array we can obtain the transition matrix elements. This will give quantitative information about octupole correlations in these nuclei. We require 22 shifts to fulfil the aims of the experiment.

  16. Fabrication and Testing of RF Structures

    CERN Document Server

    Jensen, E

    2004-01-01

    Modern RF structures make great demands on both materials and fabrication techniques. In addition to high required precision, they need to be compatible with ultra high vacuum, high power RF and the presence of particle beams. We introduce materials compatible with these demands and summarize their relevant characteristics. Methods of forming and joining follow, again with emphasis on those suited for the fabrication of accelerating structures, and we point out their limitations. We mention different tests which will be designed into the fabrication process, and describe in some detail the testing of the RF properties of accelerating structures. The following overview is non-exhaustive and limited to normal-conducting structures; many of the examples relate to a possible next-generation linear collider.

  17. Identification of excited states and evidence for octupole deformation in sup 2 sup 2 sup 6 U

    CERN Document Server

    Greenlees, P T

    1999-01-01

    Excited yrast states in the neutron-deficient nucleus sup 2 sup 2 sup 6 U have been identified in two experiments performed at the Accelerator Laboratory of the University of Jyvaeskylae, Finland. In the first, the technique of recoil-decay tagging was employed using the JUROSPHERE plus RITU device, where the reaction channel of interest is selected through correlation with a characteristic decay. In the second, the RITU device was employed to study the alpha decay of sup 2 sup 3 sup 0 Pu. Through these experiments the level scheme of sup 2 sup 2 sup 6 U was deduced for the first time. Interleaved bands of positive- and negative- parity states suggest the octupole nature of this nucleus, and the behaviour of the difference in aligned angular momentum between the negative- and positive- parity states with rotational frequency is consistent with that expected of a rotating reflection-asymmetric shape. This represents an extension of the known octupole-deformed nuclei to Z = 92. The interleaved bands of alternat...

  18. Magnetic octupole order in Ce0.7La0.3B6: A polarized neutron diffraction study

    Science.gov (United States)

    Kuwahara, K.; Iwasa, K.; Kohgi, M.; Aso, N.; Sera, M.; Iga, F.; Matsuura, M.; Hirota, K.

    2009-09-01

    Recently, in phase IV of CexLa1-xB6, weak but distinct superlattice reflections from the order parameter of phase IV have been detected by our unpolarized neutron scattering experiment [K. Kuwahara, K. Iwasa, M. Kohgi, N. Aso, M. Sera, F. Iga, J. Phys. Soc. Japan 76 (2007) 093702]. The scattering vector dependence of the intensity of superlattice reflections is quite unusual; the intensity is stronger for high scattering vectors. This result strongly indicates that the order parameter of phase IV is the magnetic octupole. However, the possibility that the observed superlattice reflections are due to lattice distortions could not be completely ruled out only on the basis of the unpolarized neutron scattering experiment. To confirm that the superlattice reflections are magnetic, therefore, we have performed a single crystal polarized neutron diffraction experiment on Ce0.7La0.3B6. The obtained result has clearly shown that the time reversal symmetry is broken by the order parameter of phase IV. This is further evidence for the magnetic octupole order in CexLa1-xB6.

  19. Evolution of quadrupole and octupole collectivity north-east of $^{132}$ Sn: the even Te and Xe isotopes

    CERN Multimedia

    We propose to study excited states in isotopes north-east of the doubly-magic $^{132}$Sn by $\\gamma$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to the determine B(E2) and B(E3) values to follow the evolution of quadrupole and octupole collectivity when going away from the shell closures at Z = 50 and N = 82. The B(E2; 0$^+_{gs}$ $\\rightarrow$ 2$^+_{1}$) values in the even isotopes $^{138-144}$Xe have been measured at REX-ISOLDE and the systematic trend towards neutron-rich nuclei is well described even by an empirical Grodzins-type formula. An increasing dipole moment observed for $^{140,142}$Xe is interpreted as indirect signature of increasing octupole correlations peaking at N = 88. So far, no B(E3) values are known. In contrast to the Xe isotopes, the Te ones, in particular $^{136}$Te, are known for their notoriously irregular behaviour. In order to understand the nuclear structure also on a microscopic basis, the isotope $^{136}$Te with just one pair of protons and neutrons...

  20. Basics of RF electronics

    CERN Document Server

    Gallo, A

    2011-01-01

    RF electronics deals with the generation, acquisition and manipulation of high-frequency signals. In particle accelerators signals of this kind are abundant, especially in the RF and beam diagnostics systems. In modern machines the complexity of the electronics assemblies dedicated to RF manipulation, beam diagnostics, and feedbacks is continuously increasing, following the demands for improvement of accelerator performance. However, these systems, and in particular their front-ends and back-ends, still rely on well-established basic hardware components and techniques, while down-converted and acquired signals are digitally processed exploiting the rapidly growing computational capability offered by the available technology. This lecture reviews the operational principles of the basic building blocks used for the treatment of high-frequency signals. Devices such as mixers, phase and amplitude detectors, modulators, filters, switches, directional couplers, oscillators, amplifiers, attenuators, and others are d...

  1. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  2. Rf2a and rf2b transcription factors

    Science.gov (United States)

    Beachy, Roger N.; Petruccelli, Silvana; Dai, Shunhong

    2007-10-02

    A method of activating the rice tungro bacilliform virus (RTBV) promoter in vivo is disclosed. The RTBV promoter is activated by exposure to at least one protein selected from the group consisting of Rf2a and Rf2b.

  3. Low power RF amplifier circuit for ion trap applications

    Science.gov (United States)

    Noriega, J. R.; García-Delgado, L. A.; Gómez-Fuentes, R.; García-Juárez, A.

    2016-09-01

    A low power RF amplifier circuit for ion trap applications is presented and described. The amplifier is based on a class-D half-bridge amplifier with a voltage mirror driver. The RF amplifier is composed of an RF class-D amplifier, an envelope modulator to ramp up the RF voltage during the ion analysis stage, a detector or amplitude demodulation circuit for sensing the output signal amplitude, and a feedback amplifier that linearizes the steady state output of the amplifier. The RF frequency is set by a crystal oscillator and the series resonant circuit is tuned to the oscillator frequency. The resonant circuit components have been chosen, in this case, to operate at 1 MHz. In testings, the class-D stage operated at a maximum of 78 mW at 1.1356 MHz producing 225 V peak.

  4. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  5. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system in

  6. Reliability engineering in RF CMOS

    OpenAIRE

    2008-01-01

    In this thesis new developments are presented for reliability engineering in RF CMOS. Given the increase in use of CMOS technology in applications for mobile communication, also the reliability of CMOS for such applications becomes increasingly important. When applied in these applications, CMOS is typically referred to as RF CMOS, where RF stands for radio frequencies.

  7. X-band RF power sources for accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirshner, Mark F.; Kowalczyk, Richard D.; Wilsen, Craig B.; True, Richard B.; Simpson, Ian T.; Wray, John T., E-mail: mark.kirshner@L-3com.com [L-3 Communications Electron Devices, San Carlos, CA (United States)

    2011-07-01

    The majority of medical and industrial linear accelerators (LINACs) in use today operate at S-band. To reduce size and weight, these systems are gradually migrating toward X-band. The new LINACs will require suitable RF components to power them. In anticipation of this market, L-3 Communications Electron Devices Division (EDD) has recently developed a suite of RF sources operating at 9.3 GHz to complement our existing S-band product line. (author)

  8. rf SQUID metamaterials

    OpenAIRE

    Lazarides, N.; Tsironis, G. P.

    2007-01-01

    An rf superconducting quantum interference device (SQUID) array in an alternating magnetic field is investigated with respect to its effective magnetic permeability, within the effective medium approximation. This system acts as an inherently nonlinear magnetic metamaterial, leading to negative magnetic response, and thus negative permeability, above the resonance frequency of the individual SQUIDs. Moreover, the permeability exhibits oscillatory behavior at low field intensities, allowing it...

  9. RF Power Amplifier Analysis

    Directory of Open Access Journals (Sweden)

    M. Lokay

    1993-04-01

    Full Text Available The special program is presented for the demonstration of RF power transistor amplifiers for the purposes of the high-school education in courses of radio transmitters. The program is written in Turbo Pascal 6. 0 and enables to study the waveforms in selected points of the amplifier and to draw the trajectories of the working point in a plot of output transistor characteristics.

  10. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  11. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  12. RF Based Spy

    Directory of Open Access Journals (Sweden)

    Robot Prerna Jain

    2014-04-01

    Full Text Available The intention of this paper is to reduce human victims in terrorist attack such as 26/11. So this problem can be overcome by designing the RF based spy robot which involves wireless camera. so that from this we can examine rivals when it required. This robot can quietly enter into enemy area and sends us the information via wireless camera. On the other hand one more feature is added in this robot that is colour sensor. Colour sensor senses the colour of surface and according to that robot will change its colour. Because of this feature this robot can’t easily detected by enemies. The movement of this robot is wirelessly controlled by a hand held RF transmitter to send commands to the RF receiver mounted on the moving robot. Since human life is always Valueable, these robots are the substitution of soldiers in war areas. This spy robot can also be used in star hotels, shopping malls, jewelry show rooms, etc where there can be threat from intruders or terrorists.

  13. The design for the LCLS RF photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Alley, R.; Bharadwaj, V.; Clendenin, J.; Emma, P.; Fisher, A.; Frisch, J.; Kotseroglou, T. E-mail: theo@slac.stanford.edu; Miller, R.H.; Palmer, D.T.; Schmerge, J.; Sheppard, J.C.; Woodley, M.; Yeremian, A.D.; Rosenzweig, J.; Meyerhofer, D.D.; Serafini, L

    1999-06-01

    We report on the design of the RF photoinjector of the Linac Coherent Light Source. The RF photoinjector is required to produce a single 150 MeV bunch of {approx}1 nC and {approx}100 A peak current at a repetition rate of 120 Hz with a normalized rms transverse emittance of {approx}1{pi} mm-mrad. The design employs a 1.6-cell S-band RF gun with an optical spot size at the cathode of a radius of {approx}1 mm and a pulse duration with an rms sigma of {approx}3 ps. The peak RF field at the cathode is 150 MV/m with extraction 57 deg. ahead of the RF peak. A solenoidal field near the cathode allows the compensation of the initial emittance growth by the end of the injection linac. Spatial and temporal shaping of the laser pulse striking the cathode will reduce the compensated emittance even further. Also, to minimize the contribution of the thermal emittance from the cathode surface, while at the same time optimizing the quantum efficiency, the laser wavelength for a Cu cathode should be tunable around 260 nm. Following the injection linac the geometric emittance simply damps linearly with energy growth. PARMELA simulations show that this design will produce the desired normalized emittance, which is about a factor of two lower than has been achieved to date in other systems. In addition to low emittance, we also aim for laser amplitude stability of 1% in the UV and a timing jitter in the electron beam of 0.5 ps rms, which will lead to less than 10% beam intensity fluctuation after the electron bunch is compressed in the main linac.

  14. Advances in piezoelectric PZT-based RF MEMS components and systems

    Science.gov (United States)

    Benoit, R. R.; Rudy, R. Q.; Pulskamp, J. S.; Polcawich, R. G.; Bedair, S. S.

    2017-08-01

    There is continuing interest in radio frequency (RF) microelectromechanical system (MEMS) devices due to their ability to offer exceptional RF performance, high linearity and low power consumption. To date, there is an impressive amount of RF MEMS components such as; switches, resonators, varactors, and tunable inductors that have enabled smaller, cheaper and more efficient RF systems. RF MEMS devices contain micromachined components that have the ability to move so that a change in the mechanical state of a device will result in a change to the device’s RF properties. There are many common modes of actuation, including, but not limited to: electrostatic, magnetostatic, piezoelectric, and electrothermal actuation. Although there are attractive aspects and drawbacks to each of these technologies, this paper will focus on advances in the application of piezoelectric actuation, and in particular the use of lead zirconium titanate (PZT), for RF MEMS.

  15. Experimental study of rf pulsed heating

    CERN Document Server

    Laurent, L; Nantista, C; Dolgashev, V; Higashi, Y; Aicheler, M; Tantawi, S; Wuensch, W

    2011-01-01

    Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop (R), copper silver, and silver plated co...

  16. Unexpected enhancements and reductions of rf spin resonance strengths

    Directory of Open Access Journals (Sweden)

    M. A. Leonova

    2006-05-01

    Full Text Available We recently analyzed all available data on spin-flipping stored beams of polarized protons, electrons, and deuterons. Fitting the modified Froissart-Stora equation to the measured polarization data after crossing an rf-induced spin resonance, we found 10–20-fold deviations from the depolarizing resonance strength equations used for many years. The polarization was typically manipulated by linearly sweeping the frequency of an rf dipole or rf solenoid through an rf-induced spin resonance; spin-flip efficiencies of up to 99.9% were obtained. The Lorentz invariance of an rf dipole’s transverse ∫Bdl and the weak energy dependence of its spin resonance strength E together imply that even a small rf dipole should allow efficient spin flipping in 100 GeV or even TeV storage rings; thus, it is important to understand these large deviations. Therefore, we recently studied the resonance strength deviations experimentally by varying the size and vertical betatron tune of a 2.1  GeV/c polarized proton beam stored in COSY. We found no dependence of E on beam size, but we did find almost 100-fold enhancements when the rf spin resonance was near an intrinsic spin resonance.

  17. Wavelength-domain RF photonic signal processing

    Science.gov (United States)

    Gao, Lu

    This thesis presents a novel approach to RF-photonic signal processing applications based on wavelength-domain optical signal processing techniques using broadband light sources as the information carriers, such as femtosecond lasers and white light sources. The wavelength dimension of the broadband light sources adds an additional degree of freedom to conventional optical signal processing systems. Two novel wavelength-domain optical signal processing systems are presented and demonstrated in this thesis. The first wavelength-domain RF photonic signal processing system is a wavelength-compensated squint-free photonic multiple beam-forming system for wideband RF phased-array antennas. Such a photonic beam-forming system employs a new modulation scheme developed in this thesis, which uses traveling-wave tunable filters to modulate wideband RF signals onto broadband optical light sources in a frequency-mapped manner. The wavelength dimension of the broadband light sources provides an additional dimension in the wavelength-compensated Fourier beam-forming system for mapping the received RF frequencies to the linearly proportional optical frequencies, enabling true-time-delay beam forming, as well as other novel RF-photonic signal processing functions such as tunable filtering and frequency down conversion. A new slow-light mechanism, the SLUGGISH light, has also been discovered with an effective slow-light velocity of 86 m/s and a record time-bandwidth product of 20. Experimental demonstration of true-time-delay beam forming based on the SLUGGISH light effect has also been presented in this thesis. In the second wavelength-domain RF photonic signal processing system, the wavelength dimension increases the information carrying capacity by spectrally multiplexing multiple wavelength channels in a wavelength-division-multiplexing fiber-optic communication system. A novel ultrafast all-optical 3R (Re-amplification, Retiming, Re-shaping) wavelength converter based on

  18. Trapping Mode Dipolar DC Collisional Activation in the RF-Only Ion Guide of a Linear Ion Trap/Time-of-Flight Instrument for Gaseous Bio-Ion Declustering

    Science.gov (United States)

    Webb, Ian K.; Gao, Yang; Londry, Frank A.; McLuckey, Scott A.

    2013-01-01

    The application of dipolar DC (DDC) to the RF-only ion guide (Q0) of a hybrid quadrupole/time-of-flight (QqTOF) mass spectrometer for collision-induced declustering of large bio-ions is described. As a broadband technique, ion trap DDC collision activation (CA) is employed to decluster ions simultaneously over a relatively broad mass-to-charge range. Declustering DDC CA can yield significantly narrower peaks relative to those observed in the absence of declustering methods, depending upon the extent of non-covalent adduction associated with the ions, and can also be used in conjunction with other methods, such as nozzle-skimmer collisional activation. The key experimental variables in the DDC experiment are the dipolar DC voltage (VDDC), VRF, and the time over which VDDC is applied. The VDDC/VRF ratio is key to the extent to which ion temperatures are elevated and also influences the upper mass-to-charge limit for ion storage. The VDDC/VRF ratio affects ion temperatures and upper m/z limit in opposing directions. That is, as the ratio increases, ion temperature increases whereas the upper m/z storage limit decreases. However, for a given VDDC/VRF ratio, the upper m/z storage limit can be increased by increasing VRF, at the expense of the lower m/z limit for ion storage. The key value of the approach is that it affords a relatively precise degree of control over ion temperatures as well as the time over which they are elevated to the higher temperature. The utility of the method is illustrated by the application of ion trap DDC CA in Q0 to oligonucleotide, protein, and multimeric protein complex analyte ions. PMID:24078247

  19. Development of RF System Model for CERN Linac2 Tanks

    CERN Document Server

    Joshi, G; Vretenar, M; Kumar, G; Agarwal, V

    2010-01-01

    An RF system model has been created for the CERN Linac2 Tanks. RF systems in this linac have both single and double feed architectures. The main elements of these systems are: RF power amplifier, main resonator, feed-line and the amplitude and phase feedback loops. The model of the composite system is derived by suitably concatenating the models of these individual sub-systems. For computational efficiency the modeling has been carried out in the base band. The signals are expressed in in-phase - quadrature domain, where the response of the resonator is expressed using two linear differential equations, making it valid for large signal conditions. MATLAB/SIMULINK has been used for creating the model. The model has been found useful in predicting the system behaviour, especially during the transients. In the paper we present the details of the model, highlighting the methodology, which could be easily extended to multiple feed RF systems.

  20. RF power generation

    CERN Document Server

    Carter, R G

    2011-01-01

    This paper reviews the main types of r.f. power amplifiers which are, or may be, used for particle accelerators. It covers solid-state devices, tetrodes, inductive output tubes, klystrons, magnetrons, and gyrotrons with power outputs greater than 10 kW c.w. or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

  1. Other RF power sources

    Energy Technology Data Exchange (ETDEWEB)

    Kurkin, G.Ya. [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)

    1999-09-01

    The main subjects discussed in this paper are as follows. Triode tube; main characteristics of the equivalent schematic of the amplifying stage. Requirements for operation of a triode stage loaded with an accelerating cavity. Influence of parameters of the output stage and transmission line length on the output impedance of RF system for the beam. Typical design of the power output stage. Magnetron, travelling-wave tube, principles of operation, main parameters. Magnetron loaded with a microtron cavity, methods of coupling, requirements for stable operation. Magnicon - BHF generator with a circular deflection of the electron beam, principle of operation, results of development. (author)

  2. SPS RF cavity

    CERN Multimedia

    1974-01-01

    The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. A power of up to 790 kW can be supplied to each giving a total accelerating voltage of about 8 MV. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities.

  3. RF Characterization of Superconducting Samples

    CERN Document Server

    Junginger, T; Welsch, C

    2009-01-01

    At CERN a compact Quadrupole Resonator has been re-commissioned for the RF characterization of superconducting materials at 400 MHz. In addition the resonator can also be excited at multiple integers of this frequency. Besides Rs it enables determination of the maximum RF magnetic field, the thermal conductivity and the penetration depth of the attached samples, at different temperatures. The features of the resonator will be compared with those of similar RF devices and first results will be presented.

  4. Interrelation between the isoscalar octupole phonon and the proton-neutron mixed-symmetry quadrupole phonon in near-spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, N.A.; Van Isacker, P. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Smirnova, N.A [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse]|[Institute for Nuclear Physics, Moscow State University (Russian Federation); Pietralla, N. [Institut fur Kernphysik, Universitat zu Koln (Germany)]|[Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab; Mizusaki, T. [Tokyo Univ. (Japan). Dept. of Physics

    2000-07-01

    The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2{sup +}{sub 1} state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the {gamma}-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei {sup 142}Ce and {sup 94}Mo. (authors)

  5. LANSCE RF System Refurbishment

    CERN Document Server

    Rees, Daniel; Kwon, Sung-il; Lyles, John T M; Lynch, Michael; Prokop, Mark; Reass, William; Tallerico, Paul J

    2005-01-01

    The Los Alamos Neutron Science Center (LANSCE) is in the planning phase of a refurbishment project that will sustain reliable facility operations well into the next decade. The LANSCE accelerator was constructed in the late 1960s and early 1970s and is a national user facility that provides pulsed protons and spallation neutrons for defense and civilian research and applications. We will be replacing all the 201 MHz RF systems and a substantial fraction of the 805 MHz RF systems and high voltage systems. The current 44 LANSCE 805 MHz, 1.25 MW klystrons have an average in-service time in excess of 110,000 hours. All 44 must be in service to operate the accelerator. There are only 9 spares left. The klystrons receive their DC power from the power system originally installed in 1960. Although this power system has been extremely reliable, gas analysis of the insulating oil is indicating age related degradation that will need attention in the next few years. This paper will provide the design details of the new R...

  6. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  7. SPS RF Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X, 7505074.

  8. Determination of the B(E3,0$^{+}$ $\\rightarrow$ 3$^{-}$) strength in the octupole correlated nuclei $^{142,144}$Ba using Coulomb excitation

    CERN Multimedia

    We propose to exploit the unique capability of ISOLDE to provide intense post-accelerated $^{142}$Ba and $^{144}$Ba ion beams from the HIE-ISOLDE facility to enable the Coulomb excitation of the first 3$^-$ state in these nuclei. By measuring the $\\gamma$-ray yields of the E1 decays from the 3$^-$ state using the MINIBALL array, we can obtain the interesting transition matrix element. The results will give quantitative information about octupole correlations in these nuclei.

  9. NSLS-II RF SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Rose, J.; Gash, W.; Holub, B.; Kawashima, Y.; Ma, H.; Towne, N.; Yeddulla, M.

    2011-03-28

    The NSLS-II is a new third generation light source being constructed at Brookhaven Lab. The storage ring is optimized for low emittance by use of damping wigglers to reduce the emittance to below 1 nm-rad. The RF systems are designed to provide stable beam through tight RF phase and amplitude stability requirements.

  10. RF MEMS Based Reconfigurable Antennas

    Science.gov (United States)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  11. Enhanced responsivity resonant RF photodetectors.

    Science.gov (United States)

    Liu, R; Dev, S; Zhong, Y; Lu, R; Streyer, W; Allen, J W; Allen, M S; Wenner, B R; Gong, S; Wasserman, D

    2016-11-14

    The responsivity of room-temperature, semiconductor-based photodetectors consisting of resonant RF circuits coupled to microstrip buslines is investigated. The dependence of the photodetector response on the semiconductor material and RF circuit geometry is presented, as is the detector response as a function of the spatial position of the incident light. We demonstrate significant improvement in detector response by choice of photoconductive material, and for a given material, by positioning our optical signal to overlap with positions of RF field enhancement. Design of RF circuits with strong field enhancement are demonstrated to further improve detector response. The improved detector response demonstrated offers opportunities for applications in RF photonics, materials metrology, or single read-out multiplexed detector arrays.

  12. Modeling rf breakdown arcs

    CERN Document Server

    Insepov, Zeke; Huang, Dazhang; Mahalingam, Sudhakar; Veitzer, Seth

    2010-01-01

    We describe breakdown in 805 MHz rf accelerator cavities in terms of a number of mechanisms. We devide the breakdown process into three stages: (1) we model surface failure using molecular dynamics of fracture caused by electrostatic tensile stress, (2) we model the ionization of neutrals responsible for plasma initiation and plasma growth using a particle in cell code, and (3) we model surface damage by assuming a process similar to unipolar arcing. Although unipolar arcs are strictly defined with equipotential boundaries, we find that the cold, dense plasma in contact with the surface produces very small Debye lengths and very high electric fields over a large area. These high fields produce strong erosion mechanisms, primarily self sputtering, compatible with the crater formation that we see. Results from the plasma simulation are included as a guide to experimental verification of this model.

  13. Cosmic Flows on 100 Mpc/h Scales: Standardized Minimum Variance Bulk Flow, Shear and Octupole Moments

    CERN Document Server

    Feldman, Hume A; Hudson, Michael J

    2009-01-01

    The low order moments of the large scale peculiar velocity field are sensitive probes of the matter density fluctuations on very large scales. However, peculiar velocity surveys have varying spatial distributions of tracers, and so the moments estimated are hard to model and thus are not directly comparable between surveys. In addition, the sparseness of typical proper distance surveys can lead to aliasing of small scale power into what is meant to be a probe of the largest scales. Here we extend our previous optimization analysis of the bulk flow to include the shear and octupole moments where velocities are weighted to give an optimal estimate of the moments of an idealized survey, with the variance of the difference between the estimate and the actual flow being minimized. These "minimum variance" (MV) estimates can be designed to calculate the moments on a particular scale with minimal sensitivity to small scale power, and thus different surveys can be directly compared. The MV moments were also designed ...

  14. Neutron lifetime measurements and effective spectral cleaning with an ultracold neutron trap using a vertical Halbach octupole permanent magnet array

    CERN Document Server

    Leung, K K H; Ivanov, S; Rosenau, F; Zimmer, O

    2016-01-01

    Ultracold neutron (UCN) storage measurements were made in a trap constructed from a 1.3 T Halbach Octupole PErmanent (HOPE) magnet array aligned vertically, using the TES-port of the PF2 source at the Institut Laue-Langevin. A mechanical UCN valve at the bottom of the trap was used for filling and emptying. This valve was covered with Fomblin grease to induce non-specular reflections and was used in combination with a movable polyethylene UCN remover inserted from the top for cleaning of above-threshold UCNs. Loss due to UCN depolarization was suppressed with a minimum 2 mT bias field. Without using the UCN remover, a total storage time constant of $(712 \\pm 19)$ s was observed; with the remover inserted for 80 s and used at either 80 cm or 65 cm from the bottom of the trap, time constants of $(824 \\pm 32)$ s and $(835 \\pm 36)$ s were observed. Combining the latter two values, a neutron lifetime of $\\tau_{\\rm n} = (887 \\pm 39)$ s is extracted after primarily correcting for losses at the UCN valve. The time co...

  15. A Micromechanical RF Channelizer

    Science.gov (United States)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  16. DC SQUID RF magnetometer with 200 MHz bandwidth

    Science.gov (United States)

    Talanov, Vladimir; Lettsome, Nesco; Orozco, Antonio; Cawthorne, Alfred; Borzenets, Valery

    2012-02-01

    Because of periodic flux-to-voltage transfer function, Superconducting QUantum Interference Device (SQUID) magnetometers operate in a closed-loop regime [1], which linearizes the response, and increases the dynamic range and sensitivity. However, a transmission line delay between the SQUID and electronics fundamentally limits the closed-loop bandwidth at 20 MHz [1], although the intrinsic bandwidth of SQUIDs is in gigahertz range. We designed a DC SQUID based RF magnetometer capable of wideband sensing coherent magnetic fields up to 200 MHz. To overcome the closed-loop bandwidth limitation, we utilized a low-frequency flux-modulated closed-loop to simultaneously lock the quasi-static magnetic flux and provide AC bias for the RF flux. The SQUID RF voltage is processed by RF electronics based on a double lock-in technique. This yields a signal proportional to the amplitude and phase of the RF magnetic flux, with more than four decades of a linear response. For YBaCuO SQUID on bi-crystal SrTiO substrate at 77 K we achieved a flux noise density of 4 μφ0/Hz at 190 MHz, which is similar to that measured at kHz frequencies with conventional flux-locked loop. [1] D. Drung, et al., Supercond. Sci. Technol. 19, S235 (2006).

  17. Theory, analysis and design of RF interferometric sensors

    CERN Document Server

    Nguyen, Cam

    2012-01-01

    Theory, Analysis and Design of RF Interferometric Sensors presents the theory, analysis and design of RF interferometric sensors. RF interferometric sensors are attractive for various sensing applications that require every fine resolution and accuracy as well as fast speed. The book also presents two millimeter-wave interferometric sensors realized using RF integrated circuits. The developed millimeter-wave homodyne sensor shows sub-millimeter resolution in the order of 0.05 mm without correction for the non-linear phase response of the sensor's quadrature mixer. The designed millimeter-wave double-channel homodyne sensor provides a resolution of only 0.01 mm, or 1/840th of the operating wavelength, and can inherently suppress the non-linearity of the sensor's quadrature mixer. The experimental results of displacement and velocity measurement are presented as a way to demonstrate the sensing ability of the RF interferometry and to illustrate its many possible applications in sensing. The book is succinct, ye...

  18. Studies of RF sheaths and diagnostics on IShTAR

    Energy Technology Data Exchange (ETDEWEB)

    Crombé, K., E-mail: Kristel.Crombe@UGent.be [Department of Applied Physics, Ghent University, Ghent (Belgium); LPP-ERM/KMS, Royal Military Academy, Brussels (Belgium); Devaux, S.; Faudot, E.; Heuraux, S.; Moritz, J. [YIJL, UMR7198 CNRS-Université de Lorraine, Nancy (France); D’Inca, R.; Faugel, H.; Fünfgelder, H.; Jacquot, J.; Ochoukov, R. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Louche, F.; Tripsky, M.; Van Eester, D.; Wauters, T. [LPP-ERM/KMS, Royal Military Academy, Brussels (Belgium); Noterdaeme, J.-M. [Department of Applied Physics, Ghent University, Ghent (Belgium); Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-12-10

    IShTAR (Ion cyclotron Sheath Test ARrangement) is a linear magnetised plasma test facility for RF sheaths studies at the Max-Planck-Institut für Plasmaphysik in Garching. In contrast to a tokamak, a test stand provides more liberty to impose the parameters and gives better access for the instrumentation and antennas. The project will support the development of diagnostic methods for characterising RF sheaths and validate and improve theoretical predictions. The cylindrical vacuum vessel has a diameter of 1 m and is 1.1 m long. The plasma is created by an external cylindrical plasma source equipped with a helical antenna that has been designed to excite the m=1 helicon mode. In inductive mode, plasma densities and electron temperatures have been characterised with a planar Langmuir probe as a function of gas pressure and input RF power. A 2D array of RF compensated Langmuir probes and a spectrometer are planned. A single strap RF antenna has been designed; the plasma-facing surface is aligned to the cylindrical plasma to ease the modelling. The probes will allow direct measurements of plasma density profiles in front of the RF antenna, and thus a detailed study of the density modifications induced by RF sheaths, which influences the coupling. The RF antenna frequency has been chosen to study different plasma wave interactions: the accessible plasma density range includes an evanescent and propagative behaviour of slow or fast waves, and allows the study of the effect of the lower hybrid resonance layer.

  19. RF system models for the CERN Large Hadron Collider with application to longitudinal dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mastorides, T.; Rivetta, C.; Fox, J.D.; Winkle, D.Van; /SLAC; Baudrenghien, P.; /CERN

    2011-03-03

    The LHC RF station-beam interaction strongly influences the longitudinal beam dynamics, both single bunch and collective effects. Non-linearities and noise generated within the Radio Frequency (RF) accelerating system interact with the beam and contribute to beam motion and longitudinal emittance blowup. Thus, the noise power spectrum of the RF accelerating voltage strongly affects the longitudinal beam distribution. Furthermore, the coupled-bunch instabilities are also directly affected by the RF components and the configuration of the Low Level RF (LLRF) feedback loops. In this work we present a formalism relating the longitudinal beam dynamics with the RF system configurations, an estimation of collective effects stability margins, and an evaluation of longitudinal sensitivity to various LLRF parameters and configurations.

  20. Plasma characteristics in inductively and capacitively coupled hybrid source using single RF power

    Science.gov (United States)

    Kim, Kwan-Yong; Lee, Moo-Young; Kim, Tae-Woo; Kim, Ju-Ho; Chung, Chin-Wook

    2016-09-01

    Parallel combined inductively coupled plasma (ICP) and capacitively coupled plasma (CCP) using single RF generator was proposed to linear control of the plasma density with RF power. In the case of ICP, linear control of the plasma density is difficult because there is a density jump up due to E to H transition. Although the plasma density of CCP changes linearly with power, the density is lower than that of ICP due to high ion energy loss at the substrate. In our hybrid source, the single RF power generator was connected to electrode and antenna, and the variable capacitor was installed between the antenna and the power generator to control the current flowing through the antenna and the electrode. By adjusting the current ratio between the antenna and the electrode, linear characteristic of plasma density with RF power is achieved.

  1. Occupational RF Exposures (invited paper)

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, K.; Puranen, L

    1999-07-01

    Potentially adverse levels of RF electromagnetic fields, exceeding the present limits for occupational exposure, arise near industrial high frequency (HF) heaters, high power broadcast antennas, and high power radar antennas. Other significant emitters of RF fields in the occupational environment are radiotelephones, induction heaters, short-wave and microwave therapy devices, base station antennas, magnetic resonance imaging devices, microwave ovens, and industrial microwave heaters. In terms of the intensity and duration of the exposure as well as the number of exposed workers, the HF sealers, particularly plastic sealers, constitute the most significant RF radiation safety problem in the working environment. (author)

  2. Residential RF Exposures (invited paper)

    Energy Technology Data Exchange (ETDEWEB)

    Dahme, M

    1999-07-01

    In many areas of the world there are publications on Governmental Regulations, Standards or Guidelines to protect workers and the general public against harmful effects of exposure to electromagnetic fields. Against this background, information is given about different radiation sources of electromagnetic fields in the RF part of the spectrum, which may be typical for residential exposure. Relevant radiation characteristics of the sources and field strength numbers and distributions are given. In addition some general aspects of field structure in the near- and far-field of RF radiation sources are described. On this basis principles of measurement and calculation of RF fields are explained. (author)

  3. LHC RF System Time-Domain Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Mastorides, T.; Rivetta, C.; /SLAC

    2010-09-14

    Non-linear time-domain simulations have been developed for the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC). These simulations capture the dynamic behavior of the RF station-beam interaction and are structured to reproduce the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They are also a valuable tool for the study of diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Results from these studies and related measurements from PEP-II and LHC have been presented in multiple places. This report presents an example of the time-domain simulation implementation for the LHC.

  4. Polarization rotation by an rf-SQUID metasurface

    CERN Document Server

    Caputo, J -G; Maimistov, A I

    2015-01-01

    We study the transmission and reflection of a plane electromagnetic wave through a two dimensional array of rf-SQUIDs. The basic equations describing the amplitudes of the magnetic field and current in the split-ring resonators are developed. These yield in the linear approximation the reflection and transmission coefficients. The polarization of the reflected wave is independent of the frequency of the incident wave and of its polarization; it is defined only by the orientation of the split-ring. The reflection and transmission coefficients have a strong resonance that is determined by the parameters of the rf-SQUID; its strength depends essentially on the incident angle.

  5. Polarization rotation by an rf-SQUID metasurface

    Science.gov (United States)

    Caputo, J.-G.; Gabitov, I.; Maimistov, A. I.

    2015-03-01

    We study the transmission and reflection of a plane electromagnetic wave through a two-dimensional array of rf-SQUIDs. The basic equations describing the amplitudes of the magnetic field and current in the split-ring resonators are developed. These yield in the linear approximation the reflection and transmission coefficients. The polarization of the reflected wave is independent of the frequency of the incident wave and of its polarization; it is defined only by the orientation of the split ring. The reflection and transmission coefficients have a strong resonance that is determined by the parameters of the rf-SQUID; its strength depends essentially on the incident angle.

  6. Emittance Compensation in a Flat Beam RF Photoinjector

    Science.gov (United States)

    Rosenzweig, J. B.; Anderson, S.; Colby, E.; Serafini, L.

    1997-05-01

    The beam dynamics of a flat beam rf photoinjector, which is intended to produce asymmetric emittances for linear collider applications, are analyzed, by both analytical and computational methods. The analytical model is a generalization of the recently developed theory of emittance compensation in round beams(L.Serafini, and J.B. Rosenzweig, submitted to Physical Review E.), in which a new mode of laminar flow beam dynamics, the invariant envelope, is found to give the ideal conditions for emittance minimization. Three-dimensional rf and beam dynamics simulations are used to iluminate the analytical results. abstract.

  7. Effects of temperature variation on the SLC linac RF system

    Energy Technology Data Exchange (ETDEWEB)

    Decker, F.J.; Akre, R.; Byrne, M.; Farkas, Z.D.; Jarvis, H.; Jobe, K.; Koontz, R.; Mitchell, M.; Pennacchi, R.; Ross, M. [and others

    1995-06-01

    The rf system of the Stanford Linear Collider in California is subjected to daily temperature cycles of up to 15{degrees}C. This can result in phase variations of 15{degrees} at 3 GHz over the 3 km length of the main drive line system. Subsystems show local changes of the order of 3{degrees} over 100 meters. When operating with flat beams and normalized emittances of 0.3*10{sup {minus}5} m-rad in the vertical plane, changes as small as 0.5{degrees} perturb the wakefield tail compensation and make continuous tuning necessary. Different approaches to stabilization of the RF phases and amplitudes are discussed.

  8. Introduction to RF power amplifier design and simulation

    CERN Document Server

    Eroglu, Abdullah

    2015-01-01

    Introduction to RF Power Amplifier Design and Simulation fills a gap in the existing literature by providing step-by-step guidance for the design of radio frequency (RF) power amplifiers, from analytical formulation to simulation, implementation, and measurement. Featuring numerous illustrations and examples of real-world engineering applications, this book:Gives an overview of intermodulation and elaborates on the difference between linear and nonlinear amplifiersDescribes the high-frequency model and transient characteristics of metal-oxide-semiconductor field-effect transistorsDetails activ

  9. Novel Photonic RF Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging on recent breakthroughs in broadband photonic devices and components for RF and microwave applications, SML proposes a new type of broadband microwave...

  10. Unbalanced field RF electron gun

    Science.gov (United States)

    Hofler, Alicia

    2013-11-12

    A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

  11. Concepts for a short wavelength rf gun

    Science.gov (United States)

    Kuzikov, S. V.; Shchelkunov, S.; Vikharev, A. A.

    2017-03-01

    Three concepts of an rf gun to be operated at 0.1-10 mm wavelengths are considered. In all the concepts, the rf system exploits an accelerating traveling wave. In comparison with a classical decimeter standing-wave rf gun, we analyze the advantages of new concepts, available rf sources, and achievable beam parameters.

  12. Interrelation between the isoscalar octupole phonon and the proton-neutron mixed-symmetry quadrupole phonon in near-spherical nuclei 21.10.Re; 21.60.Ev; 21.60.Fw; Quadrupole-octupole multiphonon excitations; Negative-parity states; Mixed-symmetry states; Interacting boson model sdf-IBM-2; Transition strength

    CERN Document Server

    Smirnova, N A; Mizusaki, T; Van Isacker, P

    2000-01-01

    The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole phonon in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2 sup + sub 1 state. We apply the proton-neutron version of the interacting boson model including quadrupole and octupole bosons ( sdf -IBM-2). Two F -spin symmetric dynamical symmetry limits of the model, namely the vibrational and the gamma -unstable ones, are considered. We derive analytical formulae for excitation energies as well as B(E1) , B(M1) , B(E2) and B(E3) values for a number of transitions between low-lying states.

  13. Linear accelerators of the future

    Energy Technology Data Exchange (ETDEWEB)

    Loew, G.A.

    1986-07-01

    Some of the requirements imposed on future linear accelerators to be used in electron-positron colliders are reviewed, as well as some approaches presently being examined for meeting those requirements. RF sources for use in these linacs are described, as well as wakefields, single bunches, and multiple-bunch trains. (LEW)

  14. Observation of hyperfine mixing in measurements of a magnetic octupole decay in isotopically pure nickel-like 129Xe and 132Xe ions

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E; Beiersdorfer, P; Brown, G V

    2006-12-21

    We present measurements of high statistical significance of the rate of the magnetic octupole (M3) decay in nickel-like ions of isotopically pure {sup 129}Xe and {sup 132}Xe. On {sup 132}Xe, an isotope with zero nuclear spin and therefore without hyperfine structure, the lifetime of the metastable level was established as (15.06 {+-} 0.24) ms. On {sup 129}Xe, an additional fast (2.7 {+-} 0.1 ms) decay component was established that represents hyperfine mixing with a level that decays by electric quadrupole (E2) radiation.

  15. Determination of the B(E3;0$^+\\!\\rightarrow$ 3$^{-}$) strength in the octupole correlated nucleus $^{144}$Ba using Coulomb excitation

    CERN Multimedia

    We propose to exploit the unique capability of ISOLDE to provide intense post-accelerated $^{144}$Ba ion beams from the REX facility to enable the Coulomb excitation of the first 3$^{-}$ state in this nucleus. By measuring the $\\gamma$-ray yields of the E1 decay connecting the 3$^{-}$ and 2$^{+}$ states using the MINIBALL array, we can obtain the interesting transition matrix element. The result will give quantitative information about octupole correlations in this nucleus. We require 27 shifts to fulfill the aims of the experiment.

  16. Polarized Electrons for Linear Colliders

    CERN Document Server

    Clendenin, J E; Garwin, E L; Kirby, R E; Luh, D A; Maruyama, T; Prescott, C Y; Sheppard, J C; Turner, J; Prepost, R

    2005-01-01

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting rf structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a dc-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%.

  17. RF Group Annual Report 2011

    CERN Document Server

    Angoletta, M E; Betz, M; Brunner, O; Baudrenghien, P; Calaga, R; Caspers, F; Ciapala, E; Chambrillon, J; Damerau, H; Doebert, S; Federmann, S; Findlay, A; Gerigk, F; Hancock, S; Höfle, W; Jensen, E; Junginger, T; Liao, K; McMonagle, G; Montesinos, E; Mastoridis, T; Paoluzzi, M; Riddone, G; Rossi, C; Schirm, K; Schwerg, N; Shaposhnikova, E; Syratchev, I; Valuch, D; Venturini Delsolaro, W; Völlinger, C; Vretenar, M; Wuensch, W

    2012-01-01

    The highest priority for the RF group in 2011 was to contribute to a successful physics run of the LHC. This comprises operation of the superconducting 400 MHz accelerating system (ACS) and the transverse damper (ADT) of the LHC itself, but also all the individual links of the injector chain upstream of the LHC – Linac2, the PSB, the PS and the SPS – don’t forget that it is RF in all these accelerators that truly accelerates! A large variety of RF systems had to operate reliably, often near their limit. New tricks had to be found and implemented to go beyond limits; not to forget the equally demanding operation with Pb ions using in addition Linac3 and LEIR. But also other physics users required the full attention of the RF group: CNGS required in 2011 beams with very short, intense bunches, AD required reliable deceleration and cooling of anti-protons, Isolde the post-acceleration of radioactive isotopes in Rex, just to name a few. In addition to the supply of beams for physics, the RF group has a num...

  18. An RF-input outphasing power amplifier with RF signal decomposition network

    OpenAIRE

    Barton, Taylor W.; Perreault, David J.

    2015-01-01

    This work presents an outphasing power amplifier that directly amplifies a modulated RF input. The approach eliminates the need for multiple costly IQ modulators and baseband signal component separation found in conventional outphasing power amplifier systems, which have previously required both an RF carrier input and a separate baseband input to synthesize a modulated RF output. A novel RF signal decomposition network enables direct RF-input / RF-output outphasing by directly synthesizing t...

  19. RF linear accelerators for medical and industrial applications

    CERN Document Server

    Hanna, Samy

    2012-01-01

    This unique resource offers you a clear overview of medical and industrial accelerators. Using minimal mathematics, this book focuses on offering thorough explanations of basic concepts surrounding the operation of accelerators. you find well illustrated discussions designed to help you use accelerator-based systems in a safer, more productive, and more reliable manner.This practical book details the manufacturing process for producing accelerators for medical and industrial applications. You become knowledgeable about the commonly encountered real-world manufacturing issues and potential sources of defects which help you avoid costly production problems. From principles of operation and the role of accelerators in cancer radiation therapy, to manufacturing techniques and future trends in accelerator design and applications, this easy-to-comprehend volume quickly brings you up-to-speed with the critical concepts you need to understand for your work in the field.

  20. Optimization of RF multipole ion trap geometries

    Science.gov (United States)

    Fanghänel, Sven; Asvany, Oskar; Schlemmer, Stephan

    2017-02-01

    Radio-frequency (rf) traps are ideal places to store cold ions for spectroscopic experiments. Specific multipole configurations are suited best for different applications but have to be modified to allow e.g. for a proper overlap of a laser beam waist with the ion cloud. Therefore the corresponding trapping fields should be shaped accordingly. To achieve this goal highly accurate electrical potentials of rf multipole traps and the resulting effective trapping potentials are calculated using the boundary element method (BEM). These calculations are used to evaluate imperfections and to optimize the field geometry. For that purpose the complex fields are reduced to a small set of multipole expansion coefficients. Desirable values for these coefficients are met by systematic changes of real trap dimensions from CAD designs. The effect of misalignment of a linear quadrupole, the optimization of an optically open Paul trap, the influence of steering electrodes (end electrode and ring electrode) on a 22-pole ion trap and the effect of the micro motion on the lowest reachable temperatures in such a trap are discussed.

  1. Cryogenic vacuumm RF feedthrough device

    Science.gov (United States)

    Wu, Genfa [Yorktown, VA; Phillips, Harry Lawrence [Hayes, VA

    2008-12-30

    A cryogenic vacuum rf feedthrough device comprising: 1) a probe for insertion into a particle beam; 2) a coaxial cable comprising an inner conductor and an outer conductor, a dielectric/insulating layer surrounding the inner conductor, the latter being connected to the probe for the transmission of higher mode rf energy from the probe; and 3) a high thermal conductivity stub attached to the coaxial dielectric about and in thermal contact with the inner conductor which high thermal conductivity stub transmits heat generated in the vicinity of the probe efficiently and radially from the area of the probe and inner conductor all while maintaining useful rf transmission line characteristics between the inner and outer coaxial conductors.

  2. Ion bombardment in RF photoguns

    Energy Technology Data Exchange (ETDEWEB)

    Pozdeyev,E.; Kayran, D.; Litvinenko, V. N.

    2009-05-04

    A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the Rf field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment.

  3. RF breakdown by toroidal helicons

    Indian Academy of Sciences (India)

    S K P Tripathi; D Bora; M Mishra

    2001-04-01

    Bounded whistlers are well-known for their efficient plasma production capabilities in thin cylindrical tubes. In this paper we shall present their radio frequency (RF) breakdown and discharge sustaining capabilities in toroidal systems. Pulsed RF power in the electronmagnetohydrodynamic (EMHD) frequency regime is fed to the neutral background medium. After the breakdown stage, discharge is sustained by toroidal bounded whistlers. In these pulsed experiments the behaviour of the time evolution of the discharge could be studied in four distinct phases of RF breakdown, steady state attainment, decay and afterglow. In the steady state average electron density of ≈ 1012 per cc and average electron temperature of ≈ 20 eV are obtained at 10-3 mbar of argon filling pressure. Experimental results on toroidal mode structure, background effects and time evolution of the electron distribution function will be presented and their implications in understanding the breakdown mechanism are discussed.

  4. RF Loads for Energy Recovery

    CERN Document Server

    Federmann, S; Caspers, F

    2012-01-01

    Different conceptional designs for RF high power loads are presented. One concept implies the use of solid state rectifier modules for direct RF to DC conversion with efficiencies beyond 80%. In addition, robust metallic low-Q resonant structures, capable of operating at high temperatures (>150 ◦C) are discussed. Another design deals with a very high temperature (up to 800 ◦C) air cooled load using a ceramic foam block inside a metal enclosure. This porous ceramic block is the microwave absorber and is not brazed to the metallic enclosure.

  5. Toward High-Power Klystrons With RF Power Conversion Efficiency on the Order of 90%

    CERN Document Server

    Baikov, Andrey Yu; Syratchev, Igor

    2015-01-01

    The increase in efficiency of RF power generation for future large accelerators is considered a high priority issue. The vast majority of the existing commercial high-power RF klystrons operates in the electronic efficiency range between 40% and 55%. Only a few klystrons available on the market are capable of operating with 65% efficiency or above. In this paper, a new method to achieve 90% RF power conversion efficiency in a klystron amplifier is presented. The essential part of this method is a new bunching technique - bunching with bunch core oscillations. Computer simulations confirm that the RF production efficiency above 90% can be reached with this new bunching method. The results of a preliminary study of an L-band, 20-MW peak RF power multibeam klystron for Compact Linear Collider with the efficiency above 85% are presented.

  6. Superconducting Quantum Arrays for Broadband RF Systems

    Science.gov (United States)

    Kornev, V.; Sharafiev, A.; Soloviev, I.; Kolotinskiy, N.; Mukhanov, O.

    2014-05-01

    Superconducting Quantum Arrays (SQAs), homogenous arrays of Superconducting Quantum Cells, are developed for implementation of broadband radio frequency (RF) systems capable of providing highly linear magnetic signal to voltage transfer with high dynamic range, including active electrically small antennas (ESAs). Among the proposed quantum cells which are bi-SQUID and Differential Quantum Cell (DQC), the latter delivered better performance for SQAs. A prototype of the transformer-less active ESA based on a 2D SQA with nonsuperconducting electric connection of the DQCs was fabricated using HYPRES niobium process with critical current density 4.5 kA/cm2. The measured voltage response is characterized by a peak-to-peak swing of ~100 mV and steepness of ~6500 μV/μT.

  7. Negative ion source with external RF antenna

    Science.gov (United States)

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  8. The LHC Low Level RF

    CERN Document Server

    Baudrenghien, Philippe; Molendijk, John Cornelis; Olsen, Ragnar; Rohlev, Anton; Rossi, Vittorio; Stellfeld, Donat; Valuch, Daniel; Wehrle, Urs

    2006-01-01

    The LHC RF consists of eight 400 MHz superconducting cavities per ring, with each cavity independently powered by a 300 kW klystron, via a circulator. The challenge for the Low Level is to cope with very high beam current (more than 1 A RF component) and achieve excellent beam lifetime (emittance growth time in excess of 25 hours). Each cavity has an associated Cavity Controller rack consisting of two VME crates which implement high gain RF Feedback, a Tuner Loop with a new algorithm, a Klystron Ripple Loop and a Conditioning system. In addition each ring has a Beam Control system (four VME crates) which includes a Frequency Program, Phase Loop, Radial Loop and Synchronization Loop. A Longitudinal Damper (dipole and quadrupole mode) acting via the 400 MHz cavities is included to reduce emittance blow-up due to filamentation from phase and energy errors at injection. Finally an RF Synchronization system implements the bunch into bucket transfer from the SPS into each LHC ring. When fully installed in 2007, the...

  9. MOSFET Degradation Under RF Stress

    NARCIS (Netherlands)

    Sasse, G.T.; Kuper, F.G.; Schmitz, Jurriaan

    2008-01-01

    We report on the degradation of MOS transistors under RF stress. Hot-carrier degradation, negative-bias temperature instability, and gate dielectric breakdown are investigated. The findings are compared to established voltage- and field-driven models. The experimental results indicate that the

  10. Automatic calorimetry system monitors RF power

    Science.gov (United States)

    Harness, B. W.; Heiberger, E. C.

    1969-01-01

    Calorimetry system monitors the average power dissipated in a high power RF transmitter. Sensors measure the change in temperature and the flow rate of the coolant, while a multiplier computes the power dissipated in the RF load.

  11. Simulation of synchrotron motion with rf noise

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, B.T.; Forest, E.; Chattopadhyay, S.

    1986-08-01

    The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking.

  12. Exposure Knowledge and Risk Perception of RF EMF

    Science.gov (United States)

    Freudenstein, Frederik; Wiedemann, Peter M.; Varsier, Nadège

    2015-01-01

    The presented study is part of the EU-Project Low EMF Exposure Future Networks (LEXNET), which deals among other things with the issue of whether a reduction of the radiofrequency (RF) electro-magnetic fields (EMF) exposure will result in more acceptance of wireless communication networks in the public sphere. We assume that the effects of any reduction of EMF exposure will depend on the subjective link between exposure perception and risk perception (RP). Therefore we evaluated respondents’ RP of different RF EMF sources and their subjective knowledge about various exposure characteristics with regard to their impact on potential health risks. The results show that participants are more concerned about base stations than about all other RF EMF sources. Concerning the subjective exposure knowledge the results suggest that people have a quite appropriate impact model. The question how RF EMF RP is actually affected by the knowledge about the various exposure characteristics was tested in a linear regression analysis. The regression indicates that these features – except distance – do influence people’s general RF EMF RP. In addition, we analyzed the effect of the quality of exposure knowledge on RF EMF RP of various sources. The results show a tendency that better exposure knowledge leads to higher RP, especially for mobile phones. The study provides empirical support for models of the relationships between exposure perception and RP. It is not the aim to extrapolate these findings to the whole population because the samples are not exactly representative for the general public in the participating countries. PMID:25629026

  13. Exposure knowledge and risk perception of RF EMF

    Directory of Open Access Journals (Sweden)

    Frederik eFreudenstein

    2015-01-01

    Full Text Available The presented study is part of the EU Project LEXNET (Low EMF Exposure Future Networks, which deals among other things with the issue of whether a reduction of the radiofrequency (RF electro-magnetic fields (EMF exposure will result in more acceptance of wireless communication networks in the public sphere.We assume that the effects of any reduction of EMF exposure will depend on the subjective link between exposure perception and risk perception. Therefore we evaluated respondents’ risk perceptions of different RF EMF sources and their subjective knowledge about various exposure characteristics with regard to their impact on potential health risks. The results show that participants are more concerned about base stations than about all other RF EMF sources. Concerning the subjective exposure knowledge the results suggest that people have a quite appropriate impact model. The question how RF EMF risk perception is actually affected by the knowledge about the various exposure characteristics was tested in a linear regression analysis. The regression indicates that these features - except distance - do influence people’s general RF EMF risk perceptions. In addition, we analyzed the effect of the quality of exposure knowledge on RF EMF risk perception of various sources. The results show a tendency that better exposure knowledge leads to higher risk perception, especially for mobile phones. The study provides empirical support for models of the relationships between exposure perception and risk perception. It is not the aim to extrapolate these findings to the whole population because the samples are not exactly representative for the general public in the participating countries.

  14. Polarization rotation by an rf-SQUID metasurface

    OpenAIRE

    Caputo, J. -G.; Gabitov, I.; Maimistov, A. I.

    2015-01-01

    We study the transmission and reflection of a plane electromagnetic wave through a two dimensional array of rf-SQUIDs. The basic equations describing the amplitudes of the magnetic field and current in the split-ring resonators are developed. These yield in the linear approximation the reflection and transmission coefficients. The polarization of the reflected wave is independent of the frequency of the incident wave and of its polarization; it is defined only by the orientation of the split-...

  15. Modeling and design techniques for RF power amplifiers

    CERN Document Server

    Raghavan, Arvind; Laskar, Joy

    2008-01-01

    The book covers RF power amplifier design, from device and modeling considerations to advanced circuit design architectures and techniques. It focuses on recent developments and advanced topics in this area, including numerous practical designs to back the theoretical considerations. It presents the challenges in designing power amplifiers in silicon and helps the reader improve the efficiency of linear power amplifiers, and design more accurate compact device models, with faster extraction routines, to create cost effective and reliable circuits.

  16. Composite pulses for RF phase encoded MRI: A simulation study.

    Science.gov (United States)

    Salajeghe, Somaie; Babyn, Paul; Sarty, Gordon E

    2017-02-01

    In B1 encoded MRI, a realistic non-linear phase RF encoding coil will generate an inhomogeneous B1 field that leads to spatially dependent flip angles. The non-linearity of the B1 phase gradient can be compensated for in the reconstruction, but B1 inhomogeneity remains a problem. The effect of B1 inhomogeneity on tip angles for conventional, B0 encoded MRI, may be minimized using composite pulses. The objective of this study was to explore the feasibility of using composite pulses with non-linear RF phase encoding coils and to identify the most appropriate composite pulse scheme. RF encoded signals were simulated via the Bloch equation for various symmetric, asymmetric and antisymmetric composite pulses. The simulated signals were reconstructed using a constrained least squares method. Root mean square reconstruction errors varied from 6% (for an asymmetric composite pulse) to 9.7% (for an antisymmetric composite pulse). An asymmetric composite pulse scheme created images with fewer artifacts than other composite pulse schemes in inhomogeneous B0 and B1 fields making it the best choice for decreasing the effects of spatially varying flip angles. This is contrary to the conclusion that antisymmetric composite pulses are the best ones to use for spin echo sequences in conventional, B0 encoded, MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  17. On the theory of photocathode rf guns

    Institute of Scientific and Technical Information of China (English)

    GAO Jie

    2009-01-01

    In this paper we give a set of analytical formulae to describe the characteristics of photocathode rf guns at any rf frequencies, such as energy, energy spread, bunch length, out going current, and emittance etc.as functions of the laser injection phase, which are useful in the design and practical operation of rf guns.

  18. RF power coupling for the CSNS DTL

    Institute of Scientific and Technical Information of China (English)

    刘华昌; 彭军; 殷学军; 欧阳华甫; 傅世年

    2011-01-01

    The China Spallation Neutron Source (CSNS) drift tube linac (DTL) consists of four tanks and each tank is fed by a 2.5 MW klystron. Accurate predication of RF coupling between the RF cavity and ports is very important for DTL RF coupler design. An iris-ty

  19. Study on the RF Set Point for the PEFP DTL by using a phase scan method

    Science.gov (United States)

    Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-12-01

    The drift tube linac (DTL) is used to accelerate proton beams from 20 MeV to 100 MeV in the linear accelerator of the Proton Engineering Frontier Project (PEFP). The phase scan signature method is a common technique to determine the radio-frequency (rf) set point, including the rf amplitude and phase, in DTL tanks. In this work, we applied the phase scan method to the first tank of the PEFP's DTL in order to study the procedure for determining the rf set point by using artificial experimental data generated by using the PARMILA code.

  20. Electromagnetic Design of New RF Power Couplers for the S-DALINAC

    CERN Document Server

    Kunze, Marco; Brunken, M; Gräf, H D; Richter, Achim

    2004-01-01

    New rf power couplers for the Superconducting Darmstadt Linear Accelerator (S-DALINAC) injector have to be designed to transfer rf power of up to 2 kW to the electron beam. This allows injector operation at beam currents from 0.15 mA to 0.2 mA and electron energies up to 14 MeV. The new couplers should possibly provide a external Q of 5·106

  1. Ionization potentials of superheavy elements No, Lr, and Rf and their ions

    Science.gov (United States)

    Dzuba, V. A.; Safronova, M. S.; Safronova, U. I.; Kramida, A.

    2016-10-01

    We predict ionization potentials of superheavy elements No, Lr, and Rf and their ions using a relativistic hybrid method that combines configuration interaction (CI) with the linearized coupled-cluster approach. Extensive study of the completeness of the four-electron CI calculations for Hf and Rf was carried out. As a test of theoretical accuracy, we also calculated ionization potential of Yb, Lu, Hf, and their ions, which are homologues of the superheavy elements of this study.

  2. High-power MUTC photodetectors for RF photonic links

    Science.gov (United States)

    Estrella, Steven; Johansson, Leif A.; Mashanovitch, Milan L.; Beling, Andreas

    2016-02-01

    High power photodiodes are needed for a range of applications. The high available power conversion efficiency makes these ideal for antenna remoting applications, including high power, low duty-cycle RF pulse generation. The compact footprint and fiber optic input allow densely packed RF aperture arrays with low cross-talk for phased high directionality emitters. Other applications include linear RF photonic links and other high dynamic range optical systems. Freedom Photonics has developed packaged modified uni-traveling carrier (MUTC) photodetectors for high-power applications. Both single and balanced photodetector pairs are mounted on a ceramic carrier, and packaged in a compact module optimized for high power operation. Representative results include greater than 100 mA photocurrent, >100m W generated RF power and >20 GHz bandwidth. In this paper, we evaluate the saturation and bandwidth of these single ended and balanced photodetectors for detector diameter in the 16 μm to 34 μm range. Packaged performance is compared to chip performance. Further new development towards the realization of <100GHz packaged photodetector modules with optimized high power performance is described. Finally, incorporation of these photodetector structures in novel photonic integrated circuits (PICs) for high optical power application areas is outlined.

  3. A Study of Direct Digital Manufactured RF/Microwave Packaging

    Science.gov (United States)

    Stratton, John W. I.

    Various facets of direct digital manufactured (DDM) microwave packages are studied. The rippled surface inherent in fused deposition modeling (FDM) fabricated geometries is modeled in Ansoft HFSS, and its effect on the performance of microstrip transmission lines is assessed via simulation and measurement. The thermal response of DDM microstrip transmission lines is analyzed over a range of RF input powers, and linearity is confirmed over that range. Two IC packages are embedded into DDM printed circuit boards, and their performance is analyzed. The first is a low power RF switch, and the second is an RF front end device that includes a low noise amplifier (LNA) and a power amplifier (PA). The RF switch is shown to perform well, as compared to a layout designed for a Rogers 4003C microwave laminate substrate. The LNA performs within datasheet specifications. The power amplifier generates substantial heat, so a thermal management attempt is described. Finally, a capacitively loaded 6dB Wilkinson power divider is designed and fabricated using DDM techniques and materials. Its performance is analyzed and compared to simulation. The device is shown to compare favorably to a similar device fabricated on a Rogers 4003C microwave laminate using traditional printed circuit board techniques.

  4. RF power coupling for the CSNS DTL

    Science.gov (United States)

    Liu, Hua-Chang; Peng, Jun; Yin, Xue-Jun; Ouyang, Hua-Fu; Fu, Shi-Nian

    2011-01-01

    The China Spallation Neutron Source (CSNS) drift tube linac (DTL) consists of four tanks and each tank is fed by a 2.5 MW klystron. Accurate predication of RF coupling between the RF cavity and ports is very important for DTL RF coupler design. An iris-type coupler is chosen to couple the RF power to the DTL accelerating cavity. The physical design of the DTL coupler and the calculations of RF coupling between the cavity and coupler are carried out. The results from the numerical simulations are in excellent agreement with the analytical results.

  5. RF power coupling for the CSNS DTL

    Institute of Scientific and Technical Information of China (English)

    LIU Hua-Chang; PENG Jun; YIN Xue-Jun; OUYANG Hua-Fu; FU Shi-Nian

    2011-01-01

    The China Spallation Neutron Source(CSNS)drift tube linac(DTL)consists of four tanks and each tank is fed by a 2.5 MW klystron.Accurate predication of RF coupling between the RF cavity and ports is very important for DTL RF coupler design.An iris-type coupler is chosen to couple the RF power to the DTL accelerating cavity.The physical design of the DTL coupler and the calculations of RF coupling between the cavity and coupler are carried out.The results from the numerical simulations are in excellent agreement with the analytical results.

  6. Protection of Accelerator Hardware: RF systems

    CERN Document Server

    Kim, S-H

    2016-01-01

    The radio-frequency (RF) system is the key element that generates electric fields for beam acceleration. To keep the system reliable, a highly sophisticated protection scheme is required, which also should be designed to ensure a good balance between beam availability and machine safety. Since RF systems are complex, incorporating high-voltage and high-power equipment, a good portion of machine downtime typically comes from RF systems. Equipment and component damage in RF systems results in long and expensive repairs. Protection of RF system hardware is one of the oldest machine protection concepts, dealing with the protection of individual high-power RF equipment from breakdowns. As beam power increases in modern accelerators, the protection of accelerating structures from beam-induced faults also becomes a critical aspect of protection schemes. In this article, an overview of the RF system is given, and selected topics of failure mechanisms and examples of protection requirements are introduced.

  7. RF Microalgal lipid content characterization

    Science.gov (United States)

    Ahmad, Mahmoud Al; Al-Zuhair, Sulaiman; Taher, Hanifa; Hilal-Alnaqbi, Ali

    2014-05-01

    Most conventional techniques for the determination of microalgae lipid content are time consuming and in most cases are indirect and require excessive sample preparations. This work presents a new technique that utilizes radio frequency (RF) for rapid lipid quantification, without the need for sample preparation. Tests showed that a shift in the resonance frequency of a RF open-ended coaxial resonator and a gradual increase in its resonance magnitude may occur as the lipids content of microalgae cells increases. These response parameters can be then calibrated against actual cellular lipid contents and used for rapid determination of the cellular lipids. The average duration of lipid quantification using the proposed technique was of about 1 minute, which is significantly less than all other conventional techniques, and was achieved without the need for any time consuming treatment steps.

  8. SPS RF System a Tetrode

    CERN Multimedia

    1974-01-01

    The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  9. Time-resolved soft-x-ray spectroscopy of a magnetic octupole transition in nickel-like xenon, cesium, and barium ions

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E; Beiersdorfer, P; Brown, G V; Boyce, K; Kelley, R L; Kilbourne, C A; Porter, F S; Szymkowiak, A

    2005-11-11

    A microcalorimeter with event mode capability for time-resolved soft-x-ray spectroscopy, and a high-resolution flat-field EUV spectrometer have been employed at the Livermore EBIT-I electron beam ion trap for observations and wavelength measurements of M1, E2, and M3 decays of long-lived levels in the Ni-like ions Xe{sup 26+}, Cs{sup 27+}, and Ba{sup 28+}. Of particular interest is the lowest excited level, 3d{sup 9}4s {sup 3}D{sub 3}, which can only decay via a magnetic octupole (M3) transition. For this level in Xe an excitation energy of (590.40 {+-} 0.03eV) and a level lifetime of (11.5 {+-} 0.5 ms) have been determined.

  10. Analysis of Passive RF-DC Power Rectification and Harvesting Wireless RF Energy for Micro-watt Sensors

    Directory of Open Access Journals (Sweden)

    Antwi Nimo

    2015-04-01

    Full Text Available In this paper, analytical modeling of passive rectifying circuits and the harvesting of electromagnetic (EM power from intentionally generated as well as from ubiquitous sources are presented. The presented model is based on the linearization of rectifying circuits. The model provides an accurate method of determining the output characteristics of rectifying circuits. The model was verified with Advance Design System (ADS Harmonic balance (HB simulations and measurements. The results from the presented model were in agreement with simulations and measurements. Consequently design considerations and trade-off of radio frequency (RF harvesters are discussed. To verify the exploitation of ambient RF power sources for operation of sensors, a dual-band antenna with a size of ~λ/4 at 900MHz and a passive dual-band rectifier that is able to power a commercial Thermo-Hygrometer requiring ~1.3V and 0.5MΩ from a global system for mobile communications (GSM base station is demonstrated. The RF power delivered by the receiving dual-band antenna at a distance of about 110 m from the GSM base station ranges from -27 dBm to -50 dBm from the various GSM frequency bands. Additionally, wireless range measurements of the RF harvesters in the industrial, scientific and medical (ISM band 868MHz is presented at indoor conditions.

  11. Low jitter RF distribution system

    Science.gov (United States)

    Wilcox, Russell; Doolittle, Lawrence; Huang, Gang

    2012-09-18

    A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.

  12. Linear accelerator for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-..mu..A source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-..mu..A beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-..mu..A beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons.

  13. Linearization Techniques

    Directory of Open Access Journals (Sweden)

    Gildeberto S. Cardoso

    2011-01-01

    Full Text Available This paper presents a study of linear control systems based on exact feedback linearization and approximate feedback linearization. As exact feedback linearization is applied, a linear controller can perform the control objectives. The approximate feedback linearization is required when a nonlinear system presents a noninvolutive property. It uses a Taylor series expansion in order to compute a nonlinear transformation of coordinates to satisfy the involutivity conditions.

  14. RF Cavity Induced Sensitivity Limitations on Beam Loss Monitors

    Science.gov (United States)

    Kastriotou, M.; Degiovanni, A.; Sousa, F. S. Domingues; Effinger, E.; Holzer, E. B.; Quirante, J. L. Navarro; del Busto, E. N.; Tecker, F.; Viganò, W.; Welsch, C. P.; Woolley, B. J.

    Due to the secondary showers generated when a particle hits the vacuum chamber, beam losses at an accelerator may be detected via radiation detectors located near the beam line. Several sources of background can limit the sensitivity and reduce the dynamic range of a Beam Loss Monitor (BLM). This document concentrates on potential sources of background generated near high gradient RF cavities due to dark current and voltage breakdowns. An optical fibre has been installed at an experiment of the Compact Linear Collider (CLIC) Test Facility (CTF3), where a dedicated study of the performance of a loaded and unloaded CLIC accelerating structure is undergoing. An analysis of the collected data and a benchmarking simulation are presented to estimate BLM sensitivity limitations. Moreover, the feasibility for the use of BLMs optimised for the diagnostics of RF cavities is discussed.

  15. Linear algebra

    CERN Document Server

    Shilov, Georgi E

    1977-01-01

    Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.

  16. Linear Psoriasis

    Directory of Open Access Journals (Sweden)

    Agarwalla Arun

    2001-01-01

    Full Text Available Linear psoriasis, inflammatory linear varrucous epidermal naevus (ILVEN. Lichen straitus, linear lichen planus and invasion of epidermal naevi by psoriasis have clinical and histopathological overlap. We report two young male patients of true linear psoriasis without classical lesions elsewhere which were proved histopathologically. Seasonal variation and good response to topical antipsoriatic treatment supported the diagnosis.

  17. Moscow Meson Factory DTL RF System Upgrade

    CERN Document Server

    Esin, S K; Kvasha, A I; Serov, V L

    2004-01-01

    The last paper devoted to description of the first part (DTL) RF system of Moscow Meson Factory upgrade was published in the Proceedings of PAC95 Conference in Dallas. Since then some new works directed at improvement of reliability and efficiency of the RF system were carried out. Among them there are a new powerful pulse triode “Katran” installed in the output RF power amplifiers (PA) of three channels, modifications of the anode modulator control circuit and crow-bar system, a new additional RF channel for RF supply of RFQ and some alterations in placing of the anode modulator equipment decreasing a level of interference’s at crow-bar circuits. Some new checked at MMF RF channels ideas concerning of PA tuning are of interest for people working in this sphere of activity.

  18. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  19. Overview of the RF Systems for LCLS

    CERN Document Server

    McIntosh, Peter; Boyce, Richard; Emma, Paul; Hill, Alan; Rago, Carl

    2005-01-01

    The Linac Coherent Light Source (LCLS) at SLAC, when it becomes operational in 2009, will provide its user community with an X-ray source many orders of magnitude brighter than anything available in the world at that time. The electron beam acceleration will be provided by existing and new RF systems capable of maintaining the amplitude and phase stability of each bunch to extremely tight tolerances. RF feedback control of the various RF systems will be fundamental in ensuring the beam arrives at the LCLS undulator at precisely the required energy and phase. This paper details the requirements for RF stability for the various LCLS RF systems and also highlights proposals for how these injector and Linac RF systems can meet these constraints.

  20. Passive longitudinal phase space linearizer

    Directory of Open Access Journals (Sweden)

    P. Craievich

    2010-03-01

    Full Text Available We report on the possibility to passively linearize the bunch compression process in electron linacs for the next generation x-ray free electron lasers. This can be done by using the monopole wakefields in a dielectric-lined waveguide. The optimum longitudinal voltage loss over the length of the bunch is calculated in order to compensate both the second-order rf time curvature and the second-order momentum compaction terms. Thus, the longitudinal phase space after the compression process is linearized up to a fourth-order term introduced by the convolution between the bunch and the monopole wake function.

  1. Topology optimized RF MEMS switches

    DEFF Research Database (Denmark)

    Philippine, M. A.; Zareie, H.; Sigmund, Ole

    2013-01-01

    Topology optimization is a rigorous and powerful method that should become a standard MEMS design tool - it can produce unique and non-intuitive designs that meet complex objectives and can dramatically improve the performance and reliability of MEMS devices. We present successful uses of topology...... optimization for an RF MEM capacitive switch. Extensive experimental data confirms that the switches perform as designed by the optimizations, and that our simulation models are accurate. A subset of measurements are presented here. Broader results have been submitted in full journal format....

  2. MEMS technologies for rf communications

    Science.gov (United States)

    Wu, Qun; Kim, B. K.

    2001-04-01

    Microelectromechanical system (MEMS) represents an exciting new technology derived from the same fabricating processes used to make integrated circuits. The trends of growing importance of the wireless communications market is toward the system with minimal size, cost and power consumption. For the purpose of MEMS R&D used for wireless communications, a history and present situation of MEMS device development are reviewed in this paper, and an overview of MEMS research topics on RF communication applications and the state of the art technologies are also presented here.

  3. A LOW NOISE RF SOURCE FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    HAYES,T.

    2004-07-05

    The Relativistic Heavy Ion Collider (RHIC) requires a low noise rf source to ensure that beam lifetime during a store is not limited by the rf system. The beam is particularly sensitive to noise from power line harmonics. Additionally, the rf source must be flexible enough to handle the frequency jump required for rebucketing (transferring bunches from the acceleration to the storage rf systems). This paper will describe the design of a Direct Digital Synthesizer (DDS) based system that provides both the noise performance and the flexibility required.

  4. Muon Ionisation Cooling in Reduced RF

    CERN Document Server

    Prior, G

    2010-01-01

    In Muon Ionisation Cooling, closely packed high-field RF cavities are interspersed with energy-absorbing material in order to reduce particle beam emittance. Transverse focussing of the muon beams is achieved by superconducting magnets. This results in the RF cavities sitting in intense magnetic fields. Recent studies have shown that this may limit the peak gradient that can be achieved in the RF cavities. In this paper, we study the effect that a reduced RF gradient may have on the cooling performance of the Neutrino Factory lattice and examine methods to mitigate the effect.

  5. RF front-end world class designs

    CERN Document Server

    Love, Janine

    2009-01-01

    All the design and development inspiration and direction a harware engineer needs in one blockbuster book! Janine Love site editor for RF Design Line,columnist, and author has selected the very best RF design material from the Newnes portfolio and has compiled it into this volume. The result is a book covering the gamut of RF front end design from antenna and filter design fundamentals to optimized layout techniques with a strong pragmatic emphasis. In addition to specific design techniques and practices, this book also discusses various approaches to solving RF front end design problems and h

  6. Ion tracking in photocathode rf guns

    Directory of Open Access Journals (Sweden)

    John W. Lewellen

    2002-02-01

    Full Text Available Projected next-generation linac-based light sources, such as PERL or the TESLA free-electron laser, generally assume, as essential components of their injector complexes, long-pulse photocathode rf electron guns. These guns, due to their design rf pulse durations of many milliseconds to continuous wave, may be more susceptible to ion bombardment damage of their cathodes than conventional rf guns, which typically use rf pulses of microsecond duration. This paper explores this possibility in terms of ion propagation within the gun, and presents a basis for future study of the subject.

  7. RF Breakdown in Drift Tube Linacs

    CERN Document Server

    Stovall, J; Lown, R

    2009-01-01

    The highest RF electric field in drift-tube linacs (DTLs) often occurs on the face of the first drift tube. Typically this drift tube contains a quadrupole focusing magnet whose fringing fields penetrate the face of the drift tube parallel to the RF electric fields in the accelerating gap. It has been shown that the threshold for RF breakdown in RF cavities may be reduced in the presence of a static magnetic field. This note offers a “rule of thumb” for picking the maximum “safe” surface electric field in DTLs based on these measurements.

  8. RF/optical shared aperture for high availability wideband communication RF/FSO links

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2014-04-29

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  9. RF/optical shared aperture for high availability wideband communication RF/FSO links

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2015-03-24

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  10. JLEIC SRF cavity RF Design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The initial design of a low higher order modes (HOM) impedance superconducting RF (SRF) cavity is presented in this paper. The design of this SRF cavity is for the proposed Jefferson Lab Electron Ion Collider (JLEIC). The electron ring of JLEIC will operate with electrons of 3 to 10 GeV energy. The ion ring of JLEIC will operate with protons of up to 100 GeV energy. The bunch lengths in both rings are ~12 mm (RMS). In order to maintain the short bunch length in the ion ring, SRF cavities are adopted to provide large enough gradient. In the first phase of JLEIC, the PEP II RF cavities will be reused in the electron ring to lower the initial cost. The frequency of the SRF cavities is chosen to be the second harmonic of PEP II cavities, 952.6 MHz. In the second phase of JLEIC, the same frequency SRF cavities may replace the normal conducting PEP II cavities to achieve higher luminosity at high energy. At low energies, the synchro-tron radiation damping effect is quite weak, to avoid the coupled bunch instability caused by the intense closely-spaced electron bunches, low HOM impedance of the SRF cavities combined with longitudinal feedback sys-tem will be necessary.

  11. SPS RF System Amplifier plant

    CERN Multimedia

    1977-01-01

    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  12. Direct RF modulation transmitter, sampling clock frequency setting method for direct RF modulation transmitter

    NARCIS (Netherlands)

    Fukuda, Shuichi; Nauta, Bram

    2013-01-01

    PROBLEM TO BE SOLVED: To provide a direct RF modulation transmitter capable of satisfying a radiation level regulation even without providing a SAW filter. SOLUTION: A direct RF modulation transmitter includes: digital/RF converters 105, 106 to which an I digital baseband signal, a Q digital baseb

  13. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  14. LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab; Edstrom, D. [Fermilab; Halavanau, A. [Northern Illinois U.

    2017-07-16

    The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.

  15. Volterra series based predistortion for broadband RF power amplifiers with memory effects

    Institute of Scientific and Technical Information of China (English)

    Jin Zhe; Song Zhihuan; He Jiaming

    2008-01-01

    RF power amplifiers(PAs)are usually considered as memoryless devices in most existing predistortion techniques.However,in broadband communication systems,such as WCDMA,the PA memory effects are significant,and memoryless predistortion cannot linearize the PAs effectively.After analyzing the PA memory effects,a novel predistortion method based on the simplified Volterra series is proposed to linearize broadband RF PAs with memory effects.The indirect learning architecture is adopted to design the predistortion scheme and the recursive least squares algorithm with forgetting factor is applied to identify the parameters of the predistorter.Simulation results show that the proposed predistortion method can compensate the nonlinear distortion and memory effects of broadband RF PAs effectively.

  16. Multipacting simulation in accelerating RF structures

    Energy Technology Data Exchange (ETDEWEB)

    Gusarova, M.A.; Kaminsky, V.I. [Moscow Engineering Physics Institute, State University (Russian Federation); Kravchuk, L.V. [Institute for Nuclear Research of Russian Academy of Sciences (Russian Federation); Kutsaev, S.V. [Moscow Engineering Physics Institute, State University (Russian Federation)], E-mail: s_kutsaev@mail.ru; Lalayan, M.V.; Sobenin, N.P. [Moscow Engineering Physics Institute, State University (Russian Federation); Tarasov, S.G. [Institute for Nuclear Research of Russian Academy of Sciences (Russian Federation)

    2009-02-01

    A new computer code for 3D simulation of multipacting phenomenon in axisymmetric and non-axisymmetric radio frequency (RF) structures is presented. The goal of the simulation is to determine resonant electron trajectories and electron multiplication in RF structure. Both SW and TW structures of normal and superconductivity have been studied. Simulation results are compared with theoretical calculations and experimental measurements.

  17. 17th International Conference on RF Superconductivity

    CERN Document Server

    2015-01-01

    RF superconductivity is the key technology of accelerators for particle physics, nuclear physics and light sources. SRF 2015 covered the latest advances in the science, technology, and applications of superconducting RF. There was also an industrial exhibit during the conference with the key vendors in the community available to discuss their capabilities and products.

  18. 17th International Conference on RF Superconductivity

    CERN Document Server

    Laxdal, Robert E.; Schaa, Volker R.W.

    2015-01-01

    RF superconductivity is the key technology of accelerators for particle physics, nuclear physics and light sources. SRF 2015 covered the latest advances in the science, technology, and applications of superconducting RF. There was also an industrial exhibit during the conference with the key vendors in the community available to discuss their capabilities and products.

  19. LTE RF subsystem power consumption modeling

    DEFF Research Database (Denmark)

    Musiige, Deogratius; Vincent, Laulagnet; Anton, François;

    2012-01-01

    This paper presents a new power consumption emulation model, for all possible scenarios of the RF subsystem, when transmitting a LTE signal. The model takes the logical interface parameters, Tx power, carrier frequency and bandwidth between the baseband and RF subsystem as inputs to compute the p...

  20. 47 CFR 95.1221 - RF exposure.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false RF exposure. 95.1221 Section 95.1221... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1221 RF exposure. MedRadio medical... chapter) are subject to the radiofrequency radiation exposure requirements specified in §§ 1.1307 and 2...

  1. Comparison of RF spectrum prediction methods for dynamic spectrum access

    Science.gov (United States)

    Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2017-05-01

    Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.

  2. RF Wave Simulation Using the MFEM Open Source FEM Package

    Science.gov (United States)

    Stillerman, J.; Shiraiwa, S.; Bonoli, P. T.; Wright, J. C.; Green, D. L.; Kolev, T.

    2016-10-01

    A new plasma wave simulation environment based on the finite element method is presented. MFEM, a scalable open-source FEM library, is used as the basis for this capability. MFEM allows for assembling an FEM matrix of arbitrarily high order in a parallel computing environment. A 3D frequency domain RF physics layer was implemented using a python wrapper for MFEM and a cold collisional plasma model was ported. This physics layer allows for defining the plasma RF wave simulation model without user knowledge of the FEM weak-form formulation. A graphical user interface is built on πScope, a python-based scientific workbench, such that a user can build a model definition file interactively. Benchmark cases have been ported to this new environment, with results being consistent with those obtained using COMSOL multiphysics, GENRAY, and TORIC/TORLH spectral solvers. This work is a first step in bringing to bear the sophisticated computational tool suite that MFEM provides (e.g., adaptive mesh refinement, solver suite, element types) to the linear plasma-wave interaction problem, and within more complicated integrated workflows, such as coupling with core spectral solver, or incorporating additional physics such as an RF sheath potential model or kinetic effects. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.

  3. FinFET and UTBB for RF SOI communication systems

    Science.gov (United States)

    Raskin, Jean-Pierre

    2016-11-01

    Performance of RF integrated circuit (IC) is directly linked to the analog and high frequency characteristics of the transistors, the quality of the back-end of line process as well as the electromagnetic properties of the substrate. Thanks to the introduction of the trap-rich high-resistivity Silicon-on-Insulator (SOI) substrate on the market, the ICs requirements in term of linearity are fulfilled. Today partially depleted SOI MOSFET is the mainstream technology for RF SOI systems. Future generations of mobile communication systems will require transistors with better high frequency performance at lower power consumption. The advanced MOS transistors in competition are FinFET and Ultra Thin Body and Buried oxide (UTBB) SOI MOSFETs. Both devices have been intensively studied these last years. Most of the reported data concern their digital performance. In this paper, their analog/RF behavior is described and compared. Both show similar characteristics in terms of transconductance, Early voltage, voltage gain, self-heating issue but UTBB outperforms FinFET in terms of cutoff frequencies thanks to their relatively lower fringing parasitic capacitances.

  4. A large-area RF source for negative hydrogen ions

    Science.gov (United States)

    Frank, P.; Feist, J. H.; Kraus, W.; Speth, E.; Heinemann, B.; Probst, F.; Trainham, R.; Jacquot, C.

    1998-08-01

    In a collaboration with CEA Cadarache, IPP is presently developing an rf source, in which the production of negative ions (H-/D-) is being investigated. It utilizes PINI-size rf sources with an external antenna and for the first step a small size extraction system with 48 cm2 net extraction area. First results from BATMAN (Ba¯varian T_est Ma¯chine for N_egative Ions) show (without Cs) a linear dependence of the negative ion yield with rf power, without any sign of saturation. At elevated pressure (1.6 Pa) a current density of 4.5 mA/cm2 H- (without Cs) has been found so far. At medium pressure (0.6 Pa) the current density is lower by approx. a factor of 5, but preliminary results with Cesium injection show a relative increase by almost the same factor in this pressure range. Langmuir probe measurements indicate an electron temperature Te>2 eV close to the plasma grid with a moderate magnetic filter (700 Gcm). Attempts to improve the performance by using different magnetic configurations and different wall materials are under way.

  5. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    P N Prakash; T S Datta; B P Ajith Kumar; J Antony; P Barua; J Chacko; A Choudhury; G K Chadhari; S Ghosh; S Kar; S A Krishnan; Manoj Kumar; Rajesh Kumar; A Mandal; D S Mathuria; R S Meena; R Mehta; K K Mistri; A Pandey; M V Suresh Babu; B K Sahu; A Sarkar; S S K Sonti; A Rai; S Venkatramanan; J Zacharias; R K Bhowmik; A Roy

    2002-11-01

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed sufficiently. Details of the entire accelerator system including the cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indigenously, and present status of the project are presented.

  6. A New Interlock Design for the TESLA RF System

    Institute of Scientific and Technical Information of China (English)

    H.Leich; J.Kahl; 等

    2001-01-01

    The RF system for TESLA requires a comprehensive interlock system.Usually interlock systems are organized in a hierarchical way,In order to react to different fault conditions in a fast and flexible manner a nonhierarchical organization seems to be the better solution ,At the TESLA Test Facility (TTF) at DESY we will install a nonhierarchical interlock system that is based on user desgned reprogrammable gate-arrays (FPGA's) which incorporate an embedded microcontroller system.This system could beused later for the TESLA linear collider replacing a strictly hierarchical design.

  7. Handbook of RF, microwave, and millimeter-wave components

    CERN Document Server

    Smolskiy, Sergey M; Kochemasov, Victor N

    2012-01-01

    This unique and comprehensive resource offers you a detailed treatment of the operations principles, key parameters, and specific characteristics of active and passive RF, microwave, and millimeter-wave components. The book covers both linear and nonlinear components that are used in a wide range of application areas, from communications and information sciences, to avionics, space, and military engineering. This practical book presents descriptions and clear examples and of the best materials and products used in the field, including laminates, prepregs, substrates; microstrip, coaxial and wa

  8. RF impedance measurements of DC atmospheric micro-discharges

    CERN Document Server

    Overzet, Lawrence J; Mandra, Monali; Goeckner, Matthew; Dufour, Thierry; Dussart, Remi; Lefaucheux, Philippe

    2016-01-01

    The available diagnostics for atmospheric micro-plasmas remain limited and relatively complex to implement; so we present a radio-frequency technique for diagnosing a key parameter here. The technique allows one to estimate the dependencies of the electron density by measuring the RF-impedance of the micro-plasma and analyzing it with an appropriate equivalent circuit. This technique is inexpensive, can be used in real time and gives reasonable results for argon and helium DC micro-plasmas in holes over a wide pressure range. The electron density increases linearly with current in the expected range consistent with normal glow discharge behavior.

  9. RF Transceiver Design for MIMO Wireless Communications

    CERN Document Server

    Mohammadi, Abbas

    2012-01-01

    This practical resource offers a thorough examination of RF transceiver design for MIMO communications.  Offering a practical view on MIMO wireless systems, this book extends fundamental concepts on classic wireless transceiver design techniques to MIMO transceivers. This helps reader gain a very comprehensive understanding of the subject. This in-depth volume describes many theoretical and implementation challenges on MIMO transceivers and provides the practical solutions for these issues. This comprehensive book provides thorough descriptions of MIMO theoretical concepts, MIMO single carrier and OFDM modulation, RF transceiver design concepts, power amplifier, MIMO transmitter design techniques and their RF impairments, MIMO receiver design methods, RF impairments study including nonlinearity, DC-offset, I/Q imbalance and phase noise and their compensation in OFDM and MIMO techniques. In addition, it provides the most practical techniques to realize RF front-ends in MIMO systems. This book is supported wit...

  10. Operation experience with the LHC RF system

    CERN Document Server

    Arnaudon, L; Brunner, O; Butterworth, A

    2010-01-01

    The LHC ACS RF system is composed of 16 superconducting cavities, eight per ring, housed in a total of four cryomodules each containing four cavities. Each cavity is powered by a 300 kW klystron. The ACS RF power control system is based on industrial Programmable Logic Controllers (PLCs), with additional fast RF interlock protection systems. The Low Level RF (LLRF) is implemented in VME crates. Operational performance and reliability are described. A full set of user interfaces, both for experts and operators has been developed, with user feedback and maintenance issues as key points. Operational experience with the full RF chain, including the low level system, the beam control, the synchronization system and optical fibers distribution is presented. Last but not least overall performance and reliability based on experience with first beam are reviewed and perspectives for future improvement outlined.

  11. RF Jitter Modulation Alignment Sensing

    Science.gov (United States)

    Ortega, L. F.; Fulda, P.; Diaz-Ortiz, M.; Perez Sanchez, G.; Ciani, G.; Voss, D.; Mueller, G.; Tanner, D. B.

    2017-01-01

    We will present the numerical and experimental results of a new alignment sensing scheme which can reduce the complexity of alignment sensing systems currently used, while maintaining the same shot noise limited sensitivity. This scheme relies on the ability of electro-optic beam deflectors to create angular modulation sidebands in radio frequency, and needs only a single-element photodiode and IQ demodulation to generate error signals for tilt and translation degrees of freedom in one dimension. It distances itself from current techniques by eliminating the need for beam centering servo systems, quadrant photodetectors and Gouy phase telescopes. RF Jitter alignment sensing can be used to reduce the complexity in the alignment systems of many laser optical experiments, including LIGO and the ALPS experiment.

  12. New Driver For The Powerful Output Rf Amplifier Of Mmf Dtl Rf System

    CERN Document Server

    Kvasha, A I; Vassilyev, A G

    2004-01-01

    More than 30 years ago a few powerful vacuum tubes were specially designed and produced in the former design office Swetlana for the Moscow meson factory DTL RF system. Among them was tetrode GI-51A with output pulse RF power up to 300 kW at frequency 198.2 MHz, which was used as driver for RF power amplifier with output RF pulse power (2-3) MW. In connection with well-known events in our country manufacture of these tubes, including GI-51A was finished about 10 years ago. In "SED-SPb" (successor of the design office Swetlana) triode GI-57A was offered instead of GI-51A. In this paper results of calculations and design of RF amplifier with new triode are presented. Preliminary results of RF amplifier tests, also presented in the paper, showed that triode GI-57A will be able successfully used in the DTL RF system channels.

  13. VERSE-Guided Numerical RF Pulse Design: A Fast Method for Peak RF Power Control

    Science.gov (United States)

    Lee, Daeho; Grissom, William A.; Lustig, Michael; Kerr, Adam B.; Stang, Pascal P.; Pauly, John M.

    2013-01-01

    In parallel excitation, the computational speed of numerical radiofrequency (RF) pulse design methods is critical when subject dependencies and system nonidealities need to be incorporated on-the-fly. One important concern with optimization-based methods is high peak RF power exceeding hardware or safety limits. Hence, online controllability of the peak RF power is essential. Variable-rate selective excitation pulse reshaping is ideally suited to this problem due to its simplicity and low computational cost. In this work, we first improve the fidelity of variable-rate selective excitation implementation for discrete-time waveforms through waveform oversampling such that variable-rate selective excitation can be robustly applied to numerically designed RF pulses. Then, a variable-rate selective excitation-guided numerical RF pulse design is suggested as an online RF pulse design framework, aiming to simultaneously control peak RF power and compensate for off-resonance. PMID:22135085

  14. Femtosecond precision measurement of laser-rf phase jitter in a photocathode rf gun

    Science.gov (United States)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao

    2017-03-01

    We report on the measurement of the laser-rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser-rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser-rf phase jitter in the gun through measurement of the beam-rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  15. Installation and Commissioning of CYCIAE-100 RF Cavity

    Institute of Scientific and Technical Information of China (English)

    JI; Bin; XING; Jian-sheng; LIU; Geng-shou; YIN; Zhi-guo; ZHANG; Tian-jue; LEI; Yu; FU; Xiao-liang; LI; Peng-zhan; LV; Yin-long; ZHU; Peng-fei; FU; Li-cheng; LIU; Jie; ZHANG; De-zhi; CUI; Bai-yao; DONG; Huan-jun; WANG; Zhen-hui

    2013-01-01

    The RF cavity is used to establish electrical field for the particle acceleration in the cyclotron,the stability of the RF cavity affects the RF system directly.A RF cavity with high quality can reduce thepower consumption of the RF system and make the cooling system simple.A good design is the first step towards RF cavity with high quality.The installation and commissioning are the next important process to achieve an excellent performance.The height of the

  16. A Wideband Supply Modulator for 20MHz RF Bandwidth Polar PAs in 65nm CMOS

    NARCIS (Netherlands)

    Shrestha, R.; van der Zee, Ronan A.R.; de Graauw, Anton; Nauta, Bram

    2009-01-01

    Polar modulated RF amplifiers have the potential to enhance efficiency while achieving sufficient linearity for a signal having non-constant envelope. However, switching modulators used in such architectures to generate the envelope signal are difficult to implement because of the high bandwidth and

  17. Towards low power N-Path filters for flexible RF-Channel selection

    NARCIS (Netherlands)

    Klumperink, Eric A.M.; Soer, Michiel C.M.; Struiksma, Remko E.; Vliet, van Frank E.; Nauta, Bram

    2015-01-01

    N-path filters can offer high-linearity high-Q channel selection filtering at a flexibly programmable RF center frequency, which is highly wanted for Software Defined Radio. Relying on capacitors and MOSFET switches, driven by digital non-overlapping clocks, N-path filters fit well to CMOS and benef

  18. Microfabricated linear Paul-Straubel ion trap

    Science.gov (United States)

    Mangan, Michael A.; Blain, Matthew G.; Tigges, Chris P.; Linker, Kevin L.

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  19. A new insight into the dipole-quadrupole and dipole-octupole polarizabilities of CCl4 from ab initio calculations and anisotropic light scattering experiment

    Science.gov (United States)

    El-Kader, M. S. A.; Kalugina, Y. N.

    2015-10-01

    The dipole-quadrupole and dipole-octupole polarizabilities of CCl4 have been determined from collision-induced light scattering (CILS) spectrum. (Hyper)polarizabilities were calculated at the CCSD(T) level of theory with aug-cc-pVXZ (X = D, T, Q) basis sets. The CILS spectra were analyzed using our new intermolecular potential and those available in literature. The quality of the present potential was checked by comparison between calculated and experimental thermophysical and transport properties over a wide temperature range. Our final estimates from experiment for these properties are |A|=62.7 a.u. and |E|=423.8 a.u. and the theoretical values of (hyper)polarizabilities calculated at the CCSD(T)/aug-cc-pVQZ level of theory are α = 69.27 a.u., A = 67.15 a.u., E = -203.97 a.u., C = 821.75 a.u., β = 11.88 a.u., and γ = 10 768.6 a.u.

  20. Study of octupole-deformed K=1/2 bands in sup 2 sup 2 sup 7 Th High spin states

    CERN Document Server

    Hammond, N

    2002-01-01

    High spin states in sup 2 sup 2 sup 7 Th have been populated using the reaction sup 2 sup 2 sup 6 Ra(alpha,3n) sup 2 sup 2 sup 7 Th at a bombarding energy of 33 MeV. The high-spin rotational structures of this nucleus have been refined and extended. In addition, the linking of these structures with the low-spin states known from sup 2 sup 3 sup 1 U alpha decay has allowed a comprehensive decay scheme of this nucleus to be assembled for the first time. Four previously known rotational bands are interpreted as Coriolis-coupled K suppi = 1/2 sup + and K suppi = 1/2 sup - bands, in agreement with predictions using a reflection-asymmetric mean-field approach. The determination of decoupling parameters for these bands is consistent with the a(K suppi = 1/2 sup +) = -a(K suppi = 1/2 sup -) rigid-octupole-rotor expectation. A further rotational band is interpreted as having K suppi = 3/ sup - . Measured D sub 0 /Q sub 0 ratios are consistent with an interpolation, of the values given for neighbouring even-even nuclei...

  1. [Gene expression profile of the peripheral CD4(+)T cells in patients with RF(+) and RF(-) rheumatoid arthritis].

    Science.gov (United States)

    Lu, Cheng; Xu, Shi-jie; Xiao, Cheng; Yan, Xiao-ping; Zhao, Lin-hua; Wang, Jian-ming; Li, Shao; Lu, Ai-ping

    2008-02-01

    To explore the differences of the gene expression of CD4(+) lymphocytes between the RF(+) and RF(-) patients with rheumatoid arthritis. mRNA of all the CD4(+) lymphocytes samples were extracted and identified. Then they were labeled and hybridized to microarrays. Hierarchical clustering analysis showed there were 55 differential expression genes between the RF(+) and RF(-) patients with rheumatoid arthritis. There are differential expression genes between the RF(+) and RF(-) patients and these genes are related to immunoresponse.

  2. A Low-Voltage CMOS Buffer for RF Applications Based on a Fully-Differential Voltage-Combiner

    OpenAIRE

    Abdollahvand, S.; Santos-Tavares, R.; Goes, João

    2013-01-01

    Part 20: Electronics: RF Applications; International audience; This paper presents a new CMOS buffer circuit topology for radio-frequency (RF) applications based on a fully-differential voltage-combiner circuit, capable of operating at low-voltage. The proposed circuit uses a combination of common-source (CS) and common-drain (CD) devices. The simulation results show good levels of linearity and bandwidth. To improve total harmonic distortion (THD) a source degeneration technique is used. The...

  3. Reduction of implant RF heating through modification of transmit coil electric field.

    Science.gov (United States)

    Eryaman, Yigitcan; Akin, Burak; Atalar, Ergin

    2011-05-01

    In this work, we demonstrate the possibility to modify the electric-field distribution of a radio frequency (RF) coil to generate electric field-free zones in the body without significantly altering the transmit sensitivity. Because implant heating is directly related to the electric-field distribution, implant-friendly RF transmit coils can be obtained by this approach. We propose a linear birdcage transmit coil with a zero electric-field plane as an example of such implant-friendly coils. When the zero electric-field plane coincides with the implant position, implant heating is reduced, as we demonstrated by the phantom experiments. By feeding RF pulses with identical phases and shapes but different amplitudes to the two orthogonal ports of the coil, the position of the zero electric-field plane can also be adjusted. Although implant heating is reduced with this method, a linear birdcage coil results in a whole-volume average specific absorption rate that is twice that of a quadrature birdcage coil. To solve this issue, we propose alternative methods to design implant-friendly RF coils with optimized electromagnetic fields and reduced whole-volume average specific absorption rate. With these methods, the transmit field was modified to reduce RF heating of implants and obtain uniform transmit sensitivity. Copyright © 2010 Wiley-Liss, Inc.

  4. A Green's function approach to local rf heating in interventional MRI.

    Science.gov (United States)

    Yeung, C J; Atalar, E

    2001-05-01

    Current safety regulations for local radiofrequency (rf) heating, developed for externally positioned rf coils, may not be suitable for internal rf coils that are being increasingly used in interventional MRI. This work presents a two-step model for rf heating in an interventional MRI setting: (1) the spatial distribution of power in the sample from the rf pulse (Maxwell's equations); and (2) the transformation of that power to temperature change according to thermal conduction and tissue perfusion (tissue bioheat equation). The tissue bioheat equation is approximated as a linear, shift-invariant system in the case of local rf heating and is fully characterized by its Green's function. Expected temperature distributions are calculated by convolving (averaging) transmit coil specific absorption rate (SAR) distributions with the Green's function. When the input SAR distribution is relatively slowly varying in space, as is the case with excitation by external rf coils, the choice of averaging methods makes virtually no difference on the expected heating as measured by temperature change (deltaT). However, for highly localized SAR distributions, such as those encountered with internal coils in interventional MRI, the Green's function method predicts heating that is significantly different from the averaging method in current regulations. In our opinion, the Green's function method is a better predictor since it is based on a physiological model. The Green's function also elicits a time constant and scaling factor between SAR and deltaT that are both functions of the tissue perfusion rate. This emphasizes the critical importance of perfusion in the heating model. The assumptions made in this model are only valid for local rf heating and should not be applied to whole body heating.

  5. REMOTE RF LABORATORY REQUIREMENTS: Engineers’ and Technicians’ Perspective

    Directory of Open Access Journals (Sweden)

    Nergiz Ercil CAGILTAY

    2007-10-01

    Full Text Available ABSTRACT This study aims to find out requirements and needs to be fulfilled in developing remote Radio Frequency (RF laboratory. Remote laboratories are newly emerging solutions for better supporting of e-learning platforms and for increasing their efficiency and effectiveness in technical education. By this way, modern universities aim to provide lifelong learning environments to extend their education for a wider area and support learners anytime and anywhere when they need help. However, as far as the authors concern, there is no study investigating the requirements and needs of remote laboratories in that particular field in the literature. This study is based on electrical engineers’ and technicians’ perspectives on the requirements of a remote laboratory in RF domain. Its scope covers investigation of the participants’ perceptions toward computer mediated communication and it attempts to answer the questions: which studying strategies are preferred by the learners and what kind of RF laboratory content should be provided. The analysis of the results showed that, geographic independence, finding quickly the elements of past communication and temporal independence are declared as the most important advantages of computer-mediated communication. However, reading significant amount of information is a problem of these environments. In the context of how to show the content, respondents want to see shorter text on the screen. Therefore the instructions should include little amount of text and must be supported with figures and interactive elements. The instructional materials developed for such learner groups should support both linear and non-linear instructions. While analyzing the content to be provided, we have seen that, most of the participants do not have access to high level equipments and traditional experiments are considered as the necessary ones for both engineers and technicians.

  6. Matching network for RF plasma source

    Science.gov (United States)

    Pickard, Daniel S.; Leung, Ka-Ngo

    2007-11-20

    A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.

  7. Practical guide to RF-MEMS

    CERN Document Server

    Iannacci, Jacopo

    2013-01-01

    Closes the gap between hardcore-theoretical and purely experimental RF-MEMS books. The book covers, from a practical viewpoint, the most critical steps that have to be taken in order to develop novel RF-MEMS device concepts. Prototypical RF-MEMS devices, both including lumped components and complex networks, are presented at the beginning of the book as reference examples, and these are then discussed from different perspectives with regard to design, simulation, packaging, testing, and post-fabrication modeling. Theoretical concepts are introduced when necessary to complement the practical

  8. RF engineering basic concepts: S-parameters

    CERN Document Server

    Caspers, F

    2011-01-01

    The concept of describing RF circuits in terms of waves is discussed and the S-matrix and related matrices are defined. The signal flow graph (SFG) is introduced as a graphical means to visualize how waves propagate in an RF network. The properties of the most relevant passive RF devices (hybrids, couplers, non-reciprocal elements, etc.) are delineated and the corresponding S-parameters are given. For microwave integrated circuits (MICs) planar transmission lines such as the microstrip line have become very important.

  9. Experimental Study on RF Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    甘肇强; 吴雪梅; 姚伟国

    2001-01-01

    By using a longitudinal static magnetic field, we have shown that it is possible to excite an intensive plasma in a simple stainless steel tube which is connected with a RF power supply. Under certain conditions, the very bright Ar Ⅱ lines were excited. The emission intensities of Ar Ⅱ lines were increased with the increase in RF power, magnetic field, and the decrease in argon pressure. As the plasma-sheath boundary oscillating under the RF voltage, the plasma column is periodically compressed by the oscillating boundary.``

  10. RF Power and HOM Coupler Tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Rusnak, B

    2003-10-28

    Radio frequency (RF) couplers are used on superconducting cavities to deliver RF power for creating accelerating fields and to remove unwanted higher-order mode power for reducing emittance growth and cryogenic load. RF couplers in superconducting applications present a number of interdisciplinary design challenges that need to be addressed, since poor performance in these devices can profoundly impact accelerator operations and the overall success of a major facility. This paper will focus on critical design issues for fundamental and higher order mode (HOM) power couplers, highlight a sampling of reliability-related problems observed in couplers, and discuss some design strategies for improving performance.

  11. RF and Surface Properties of Superconducting Samples

    CERN Document Server

    Junginger, T; Weingarten, W; Welsch, C

    2011-01-01

    At CERN a compact Quadrupole Resonator has been developed for the RF characterization of superconducting samples at different frequencies. In this paper, results from measurements on bulk niobium and niobium filmon copper substrate samples are presented. We show how different contributions to the surface resistance depend on temperature, applied RF magnetic field and frequency. Furthermore, measurements of the maximum RF magnetic field as a function of temperature and frequency in pulsed and CW operation are presented. The study is accompanied by measurements of the surface properties of the samples by various techniques.

  12. MD1831: Single Bunch Instabilities with Q" and Non-Linear Corrections

    CERN Document Server

    Carver, Lee Robert; De Maria, Riccardo; Li, Kevin Shing Bruce; Amorim, David; Biancacci, Nicolo; Buffat, Xavier; Maclean, Ewen Hamish; Metral, Elias; Lasocha, Kacper; Lefevre, Thibaut; Levens, Tom; Salvant, Benoit; CERN. Geneva. ATS Department

    2017-01-01

    During MD1751, it was observed that both a full single beam and 964 non-colliding bunches in Beam 1 (B1) and Beam 2 (B2) were both stable at the End of Squeeze (EOS) for 0A in the Landau Octupoles. At ß* = 40cm there is also a significant Q" arising from the lattice, as well as uncorrected non-linearities in the Insertion Regions (IRs). Each of these effects could be capable of fully stabilising the beam. This MD made first use of a Q" knob through variation of the Main Sextupoles (MS) by stabilising a single bunch at Flat Top, before showing at EOS that the non-linearities were the main contributors to the beam stability.

  13. Linear Systems.

    Science.gov (United States)

    The report documents a series of seminars at Rome Air Development Center with the content equivalent to an intense course in Linear Systems . Material...is slanted toward the practicing engineer and introduces some of the fundamental concepts and techniques for analyzing linear systems . Techniques for

  14. LCLS-II high power RF system overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    Yeremian, Anahid Dian

    2015-10-07

    A second X-ray free electron laser facility, LCLS-II, will be constructed at SLAC. LCLS-II is based on a 1.3 GHz, 4 GeV, continuous-wave (CW) superconducting linear accelerator, to be installed in the first kilometer of the SLAC tunnel. Multiple types of high power RF (HPRF) sources will be used to power different systems on LCLS-II. The main 1.3 GHz linac will be powered by 280 1.3 GHz, 3.8 kW solid state amplifier (SSA) sources. The normal conducting buncher in the injector will use four more SSAs identical to the linac SSAs but run at 2 kW. Two 185.7 MHz, 60 kW sources will power the photocathode dual-feed RF gun. A third harmonic linac section, included for linearizing the bunch energy spread before the first bunch compressor, will require sixteen 3.9 GHz sources at about 1 kW CW. A description and an update on all the HPRF sources of LCLS-II and their implementation is the subject of this paper.

  15. DC and RF Measurements of Serial Bi-SQUID Arrays

    CERN Document Server

    Prokopenko, G V; de Escobar, A Leese; Taylor, B; de Andrade, M C; Berggren, S; Longhini, P; Palacios, A; Nisenoff, M; Fagaly, R L

    2012-01-01

    SQUID arrays are promising candidates for low profile antennas and low noise amplifier applications. We present the integrated circuit designs and results of DC and RF measurements of the wideband serial arrays based on integration of linear bi-SQUID cells forming a Superconducting Quantum Interference Filter (bi-SQUID SQIF). Various configurations of serial arrays designs are described. The measured linearity, power gain, and noise temperature are analyzed and compared. The experimental results are matched to results of mathematical modeling. A serial bi-SQUID SQIF arrays are mounted into a coplanar waveguide (CPW) and symmetrically grounded to corresponding sides of CPW. The RF output comes out from the central common line, which is also used for DC biasing and forms a symmetrical balanced output. The signal and DC flux biasing line is designed as coplanar lines passed in parallel over each bi-SQUID cell in a bidirectional fashion concentrating magnetic flux inside of each cell. Serial bi-SQUID SQIF arrays ...

  16. TESLA superconducting RF cavity development

    Energy Technology Data Exchange (ETDEWEB)

    Koepke, K. [Fermi National Accelerator Lab., Batavia, IL (United States); TESLA Collaboration

    1995-05-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.).

  17. KSTAR RF heating system development

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J. G.; Kim, S. K.; Hwang, C. K. (and others)

    2007-10-15

    Design, high-voltage test, and installation of 6 MW ICRF heating system for KSTAR is completed. The antenna demonstrated satisfactory standoff at high voltages up to 41 kV for 300 sec. The result indicates good power handling capabilities of the antenna as high as 10 MW/m2. This power density is equivalent to RF power coupling of 6 MW into a 4 {omega}/m target plasma, and is typical of advanced tokamak heating scenarios. In addition, vacuum feed through, DC break, and liquid stub developed for 300 sec operation are installed, as well as a 2 MW, 30-60MHz transmitter. The transmitter successfully produced output powers of 600 kW continuously, 1.5{approx}1.8 MW for 300 sec, and 2 MW for 100 msec or shorter pulses. A realtime control system based on DSP and EPICS is developed, installed, and tested on the ICRF system. Initial results from feasibility study indicate that the present antenna and the transmission lines could allow load-resilient operation on KSTAR. Until the KSTAR tokamak start to produce plasmas in 2008, however, hands-on operational experiences are obtained from participating in ICRF heating experiments at ASDEX and DIII-D tokamaks arranged through international cooperation.

  18. RF Localization in Indoor Environment

    Directory of Open Access Journals (Sweden)

    M. Stella

    2012-06-01

    Full Text Available In this paper indoor localization system based on the RF power measurements of the Received Signal Strength (RSS in WLAN environment is presented. Today, the most viable solution for localization is the RSS fingerprinting based approach, where in order to establish a relationship between RSS values and location, different machine learning approaches are used. The advantage of this approach based on WLAN technology is that it does not need new infrastructure (it reuses already and widely deployed equipment, and the RSS measurement is part of the normal operating mode of wireless equipment. We derive the Cramer-Rao Lower Bound (CRLB of localization accuracy for RSS measurements. In analysis of the bound we give insight in localization performance and deployment issues of a localization system, which could help designing an efficient localization system. To compare different machine learning approaches we developed a localization system based on an artificial neural network, k-nearest neighbors, probabilistic method based on the Gaussian kernel and the histogram method. We tested the developed system in real world WLAN indoor environment, where realistic RSS measurements were collected. Experimental comparison of the results has been investigated and average location estimation error of around 2 meters was obtained.

  19. Spectrometers for RF breakdown studies for CLIC

    Science.gov (United States)

    Jacewicz, M.; Ziemann, V.; Ekelöf, T.; Dubrovskiy, A.; Ruber, R.

    2016-08-01

    An e+e- collider of several TeV energy will be needed for the precision studies of any new physics discovered at the LHC collider at CERN. One promising candidate is CLIC, a linear collider which is based on a two-beam acceleration scheme that efficiently solves the problem of power distribution to the acceleration structures. The phenomenon that currently prevents achieving high accelerating gradients in high energy accelerators such as the CLIC is the electrical breakdown at very high electrical field. The ongoing experimental work within the CLIC collaboration is trying to benchmark the theoretical models focusing on the physics of vacuum breakdown which is responsible for the discharges. In order to validate the feasibility of accelerating structures and observe the characteristics of the vacuum discharges and their eroding effects on the structure two dedicated spectrometers are now commissioned at the high-power test-stands at CERN. First, the so called Flashbox has opened up a possibility for non-invasive studies of the emitted breakdown currents during two-beam acceleration experiments. It gives a unique possibility to measure the energy of electrons and ions in combination with the arrival time spectra and to put that in context with accelerated beam, which is not possible at any of the other existing test-stands. The second instrument, a spectrometer for detection of the dark and breakdown currents, is operated at one of the 12 GHz stand-alone test-stands at CERN. Built for high repetition rate operation it can measure the spatial and energy distributions of the electrons emitted from the acceleration structure during a single RF pulse. Two new analysis tools: discharge impedance tracking and tomographic image reconstruction, applied to the data from the spectrometer make possible for the first time to obtain the location of the breakdown inside the structure both in the transversal and longitudinal direction thus giving a more complete picture of the

  20. Introduction to Superconducting RF Structures and the Effect of High Pressure Rinsing

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Tsuyoshi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-30

    This presentation begins by describing RF superconductivity and SRF accelerating structures. Then the use of superconducting RF structures in a number of accelerators around the world is reviewed; for example, the International Linear Collider (ILC) will use ~16,000 SRF cavities with ~2,000 cryomodules to get 500 GeV e⁺/e⁻ colliding energy. Field emission control was (and still is) a very important practical issue for SRF cavity development. It has been found that high-pressure ultrapure water rinsing as a final cleaning step after chemical surface treatment resulted in consistent performance of single- and multicell superconducting cavities.

  1. A method to measure the nonlinear force caused emittance growth in a RF photoinjector

    Institute of Scientific and Technical Information of China (English)

    Li Zheng-Hong; Yang Zhen-Ping

    2006-01-01

    Based on the multi-slit method, a new method is introduced to measure the non linear force caused emittance growth in a RF photoinjector. It is possible to reconstruct the phase space of a beam under some conditions by the multi-slit method. Based on the reconstructed phase space, besides the emittance, the emittance growth from the distortion of the phase space can also be measured. The emittance growth results from the effects of nonlinear force acting on electron, which is very important for the high quality beam in a RF photoinjector.

  2. FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Troy [Fermilab; Diamond, J. S. [Fermilab; McDowell, D. [Fermilab; Nicklaus, D. [Fermilab; Prieto, P. S. [Fermilab; Semenov, A. [Fermilab

    2016-10-12

    An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of a fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.

  3. Signal interference RF photonic bandstop filter.

    Science.gov (United States)

    Aryanfar, Iman; Choudhary, Amol; Shahnia, Shayan; Pagani, Mattia; Liu, Yang; Marpaung, David; Eggleton, Benjamin J

    2016-06-27

    In the microwave domain, signal interference bandstop filters with high extinction and wide stopbands are achieved through destructive interference of two signals. Implementation of this filtering concept using RF photonics will lead to unique filters with high performance, enhanced tuning range and reconfigurability. Here we demonstrate an RF photonic signal interference filter, achieved through the combination of precise synthesis of stimulated Brillouin scattering (SBS) loss with advanced phase and amplitude tailoring of RF modulation sidebands. We achieve a square-shaped, 20-dB extinction RF photonic filter over a tunable bandwidth of up to 1 GHz with a central frequency tuning range of 16 GHz using a low SBS loss of ~3 dB. Wideband destructive interference in this novel filter leads to the decoupling of the filter suppression from its bandwidth and shape factor. This allows the creation of a filter with all-optimized qualities.

  4. RF accelerating unit installed in the PSB

    CERN Multimedia

    1972-01-01

    RF accelerating unit installed in the PSB ring between two bending magnets. Cool air from a heat exchanger is injected into the four cavities from the central feeder and the hot air recirculated via the lateral ducts.

  5. Design of RF Power System for CPHS

    Science.gov (United States)

    Cheng, Cheng; Du, Taibin; Guan, Xialing

    The Compact Pulsed Hadron Source (CPHS) system has been proposed and designed by the Department of Engineering Physics of Tsinghua University in Beijing, China. It consists of an accelerator front-end-a highintensity ion source, a 3 MeV radiofrequency quadrupole linac (RFQ), and a 13 MeV drift-tube linac (DTL), a neutron target station, and some experimental stations. In design of our RF power supply, both RFQ and DTL share a single klystron which is capable of 2.5 MW peak RF power and a 3.33% duty factor. The 325 MHz klystron contains a modulating anode and has a 100 kW average output power. Portions of the RF power system, such as pulsed high voltage power supply, modulator, crowbar protection and RF power transmission are all presented in details in this paper.

  6. RF/Optical Demonstration: Focal Plane Assembly

    Science.gov (United States)

    Hoppe, D. J.; Chung, S.; Kovalik, J.; Gama, E.; Fernandez, M. M.

    2016-11-01

    In this article, we describe the second-generation focal plane optical assembly employed in the RF/optical demonstration at DSS-13. This assembly receives reflected light from the two mirror segments mounted on the RF primary. The focal plane assembly contains a fast steering mirror (FSM) to stabilize the focal plane spot, a pupil camera to aid in aligning the two segments, and several additional cameras for receiving the optical signal prior to as well as after the FSM loop.

  7. RF waveguide phase-directed power combiners

    Energy Technology Data Exchange (ETDEWEB)

    Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.

    2017-05-02

    High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.

  8. Prototype storage cavity for LEP accelerating RF

    CERN Multimedia

    1980-01-01

    The principle of an RF storage cavity was demonstrated with this prototype, working at 500 MHz. Ian Wilso seems to hold it in his hands. The storage cavities had 4 portholes, 1 each for: RF feed; tuning; connection to the accelerating cavity; vacuum pump. The final storage cavities were larger, to suit the lower LEP accelerating frequency of 352.2 MHz. See also 8002294, 8006510X, 8109346, 8407619X, and Annual Report 1980, p.115.

  9. RF MEMS reconfigurable triangular patch antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Christos George (The University of New Mexico, Albuquerque, NM); Nordquist, Christopher Daniel; Feldner, Lucas Matthew

    2005-07-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  10. RF MEMS reconfigurable triangular patch antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Nordquist, Christopher Daniel; Christodoulou, Christos George (University of New Mexico, Albuquerque, NM); Feldner, Lucas Matthew

    2005-01-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  11. Self-consistent 3D simulations of longitudinal halo in rf -linacs

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, J J; Lund, S M; Ryne, R D

    1998-08-19

    In order to prevent activation of the beam pipe walls and components of a high power ion accelera- tor: beam loss must be minimized. Here we present self-consistent, 3D particle-in-cell simulations of longi- tudinally mismatched beams including the effects of rf non-linearities using parameters based on the Acceler- ator Production of Tritium linac design. In particular, we explore the evolution of the longitudinal halo distri- bution, i.e., the distribution of particles in longitudinal phase space with oscillation amplitudes significantly larger than amplitudes of particles in the main body or ''core'' of the beam. When a particle reaches a suf- ficiently large amplitude longitudinally it can he lost from the rf bucket and consequently loses synchro- nism with thr rf wave. Such particles will lose energy and so be poorly matched to the transverse focusing field and consequently can be lost transversely. We compare the present simulations in which all particles contribute self-consistently to the self-field to predic- tions of a core/test particle model in which the core distribution has uniformly distributed charge and does not evolve self-consistently. Effects of self-consistent, non-linear space-charge forces, non-linear rf focusing on envelope mismatch induced beam halo are explored through comparisons of both models.

  12. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  13. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  14. Linear algebra

    CERN Document Server

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  15. Overview of High Power Vacuum Dry RF Load Designs

    Energy Technology Data Exchange (ETDEWEB)

    Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  16. Low reflectance high power RF load

    Energy Technology Data Exchange (ETDEWEB)

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  17. Linear Models

    CERN Document Server

    Searle, Shayle R

    2012-01-01

    This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.

  18. Linear programming

    CERN Document Server

    Solow, Daniel

    2014-01-01

    This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.

  19. Linear algebra

    CERN Document Server

    Berberian, Sterling K

    2014-01-01

    Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.

  20. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  1. BRS 369RF and BRS 370RF: Glyphosate tolerant, high-yielding upland cotton cultivars for central Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Camilo de Lelis Morello

    2015-12-01

    Full Text Available BRS 369RF and BRS 370RF were developed by the EMBRAPA as a part of efforts to create high-yielding germplasm with combinations of transgenic traits. BRS 369RF and BRS 370RF are midseason cultivars and have yield stability, adaptation to the central Brazilian savanna, good fiber quality and tolerance to glyphosate herbicide.

  2. Design and studies on the traveling wave transverse RF deflecting structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Ru; HOU Mi; DAI Jian-Ping; PEI Shi-Lun; PEI Guo-Xi

    2008-01-01

    With the development of free electron laser (FEL) and the international linear collider (ILC), the electron bunch length is getting smaller and smaller. The traveling-wave transverse RF deflecting structure is an important part of the RF deflecting method for bunch length measurement and phase space diagnostics.The operation mode in RF deflector is the "TM11-like" mode. Since the TM11-like mode in this structure has a pair of degenerate dipole modes, two additional holes are provided on either side of each iris to stabilize the mode. The simulation and optimization have been done. A prototype has been fabricated and tested. The cold test results have been compared with the simulations of the first three modes.

  3. RF MEMS的关键技术与器件%Key Technology and Devices of RF MEMS

    Institute of Scientific and Technical Information of China (English)

    夏牟; 郝达兵

    2006-01-01

    文章介绍了RF MEMS的基本概念、基本特征与关键工艺技术.文章在介绍了RF-MEMS元器件的基础上,对RF MEMS与MMIC进行了比较,分析了RF MEMS需解决的重点问题.最后对RF MEMS的发展前景进行了展望.

  4. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    CERN Document Server

    Yang, J; Okada, Y; Yorozu, M; Yanagida, T; Endo, A

    2002-01-01

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91+-0.28 pi mm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac.

  5. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  6. Linear algebra

    CERN Document Server

    Sahai, Vivek

    2013-01-01

    Beginning with the basic concepts of vector spaces such as linear independence, basis and dimension, quotient space, linear transformation and duality with an exposition of the theory of linear operators on a finite dimensional vector space, this book includes the concept of eigenvalues and eigenvectors, diagonalization, triangulation and Jordan and rational canonical forms. Inner product spaces which cover finite dimensional spectral theory and an elementary theory of bilinear forms are also discussed. This new edition of the book incorporates the rich feedback of its readers. We have added new subject matter in the text to make the book more comprehensive. Many new examples have been discussed to illustrate the text. More exercises have been included. We have taken care to arrange the exercises in increasing order of difficulty. There is now a new section of hints for almost all exercises, except those which are straightforward, to enhance their importance for individual study and for classroom use.

  7. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  8. RF characterization and testing of ridge waveguide transitions for RF power couplers

    Science.gov (United States)

    Kumar, Rajesh; Jose, Mentes; Singh, G. N.; Kumar, Girish; Bhagwat, P. V.

    2016-12-01

    RF characterization of rectangular to ridge waveguide transitions for RF power couplers has been carried out by connecting them back to back. Rectangular waveguide to N type adapters are first calibrated by TRL method and then used for RF measurements. Detailed information is obtained about their RF behavior by measurements and full wave simulations. It is shown that the two transitions can be characterized and tuned for required return loss at design frequency of 352.2 MHz. This opens the possibility of testing and conditioning two transitions together on a test bench. Finally, a RF coupler based on these transitions is coupled to an accelerator cavity. The power coupler is successfully tested up to 200 kW, 352.2 MHz with 0.2% duty cycle.

  9. Linear algebra

    CERN Document Server

    Allenby, Reg

    1995-01-01

    As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin

  10. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  11. Investigation of MIM Diodes for RF Applications

    KAUST Repository

    Khan, Adnan

    2015-05-01

    Metal Insulator Metal (MIM) diodes that work on fast mechanism of tunneling have been used in a number of very high frequency applications such as (Infra-Red) IR detectors and optical Rectennas for energy harvesting. Their ability to operate under zero bias condition as well as the possibility of realizing them through printing makes them attractive for (Radio Frequency) RF applications. However, MIM diodes have not been explored much for RF applications. One reason preventing their widespread RF use is the requirement of a very thin oxide layer essential for the tunneling operation that requires sophisticated nano-fabrication processes. Another issue is that the reliability and stable performance of MIM diodes is highly dependent on the surface roughness of the metallic electrodes. Finally, comprehensive RF characterization has not been performed for MIM diodes reported in the literature, particularly from the perspective of their integration with antennas as well as their rectification abilities. In this thesis, various metal deposition methods such as sputtering, electron beam evaporation, and Atomic Layer Deposition (ALD) are compared in pursuit of achieving low surface roughness. It is worth mentioning here that MIM diodes realized through ALD method have been presented for the first time in this thesis. Amorphous metal alloy have also been investigated in terms of their low surface roughness. Zinc-oxide has been investigated for its suitability as a thin dielectric layer for MIM diodes. Finally, comprehensive RF characterization of MIM diodes has been performed in two ways: 1) by standard S-parameter methods, and 2) by investigating their rectification ability under zero bias operation. It is concluded from the Atomic Force Microscopy (AFM) imaging that surface roughness as low as sub 1 nm can be achieved reliably from crystalline metals such as copper and platinum. This value is comparable to surface roughness achieved from amorphous alloys, which are non

  12. Focusing properties of discrete RF quadrupoles

    Science.gov (United States)

    Li, Zhi-Hui; Wang, Zhi-Jun

    2017-08-01

    The particle motion equation for a Radio Frequency (RF) quadrupole is derived. The motion equation shows that the general transform matrix of a RF quadrupole with length less than or equal to 0.5βλ (β is the relativistic velocity of particles and λ is wavelength of radio frequency electromagnetic field) can describe the particle motion in an arbitrarily long RF quadrupole. By iterative integration, the general transform matrix of a discrete RF quadrupole is derived from the motion equation. The transform matrix is in form of a power series of focusing parameter B. It shows that for length less than βλ, the series up to the 2nd order of B agrees well with the direct integration results for B up to 30, while for length less than 0.5βλ, the series up to 1st order is already a good approximation of the real solution for B less than 30. The formula of the transform matrix can be integrated into linac or beam line design code to deal with the focusing of discrete RF quadrupoles. Supported by National Natural Science Foundation of China (11375122, 11511140277) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03020705)

  13. The CEBAF RF Separator System Upgrade

    CERN Document Server

    Hovater, C; Guerra, A; Nelson, R; Terrel, R A; Wissmann, M

    2004-01-01

    The CEBAF accelerator uses RF deflecting cavities operating at the third sub-harmonic (499 MHz) of the accelerating frequency (1497 MHz) to “kick” the electron beam to the experimental halls. The cavities operate in a TEM dipole mode incorporating mode enhancing rods to increase the cavity’s transverse shunt impedance. As the accelerators energy has increased from 4 GeV to 6 GeV the RF system, specifically the 1 kW solid state amplifiers, have become problematic, operating in saturation because of the increased beam energy demands. Two years ago we began a study to look into replacement for the RF amplifiers and decided to use a commercial broadcast Inductive Output Tube (IOT) capable of 30 kW. The new RF system uses one IOT amplifier on multiple cavities as opposed to one amplifier per cavity originally. In addition the new RF system supports the proposed 12 GeV energy upgrade to CEBAF. Currently we are halfway through the upgrade with two IOTs in operation and two more to be in...

  14. Rf Station For Ion Beam Staking In Hirfl-csr

    CERN Document Server

    Arbuzov, V S; Bushuev, A A; Dranichnikov, A N; Gorniker, E I; Kendjebulatov, E K; Kondakov, A A; Kondaurov, M; Kruchkov, Ya G; Krutikhin, S A; Kurkin, G Ya; Mironenko, L A; Motygin, S V; Osipov, V N; Petrov, V M; Pilan, Andrey M; Popov, A M; Rashenko, V V; Selivanov, A N; Shteinke, A R; Vajenin, N F

    2004-01-01

    BINP has developed and produced the RF station for Institute of Modern Physics (IMP), Lanzhou, China, for multipurpose accelerator complex with electron cooling. The RF station will be used for accumulation of ion beams in the main ring of the system. It was successfully tested in IMP and installed into the main accelerator ring of the complex. The RF station includes accelerating RF cavity and RF power generator with power supplies. The station works within frequency range 6.0 - 14.0 MHz, maximum voltage across the accelerating gap of the RF cavity - 20 kV. In the RF cavity the 200 VNP ferrite is utilized. A residual gas pressure in vacuum chamber does not exceed 2,5E-11 mbar. Maximum output power of the RF generator 25 kW. The data acquisition and control of the RF station is based on COMPACT - PCI bus and provides all functions of monitoring and control.

  15. Three-dimensional flow vectors from rf ultrasound signals

    Science.gov (United States)

    Tuthill, Theresa A.; Rubin, Jonathan M.; Fowlkes, J. B.

    2002-04-01

    A new ultrasound technique for determining three-dimensional velocity vectors has been devised using radio frequency (RF) data from commercially available scanners. Applied to blood flow, this technique could prove useful for evaluating hemodynamics and detecting stenoses. Three orthogonal velocity vectors are computed from the RF signals of two steered beams from a single array. The in-plane velocities are determined using standard Doppler analysis, while the out-of-plane component is derived from the total velocity as computed from temporal decorrelation and the in-plane components. The technique was tested using contrast agent pumped through a flow tube. A GE Vingmed SystemV scanner with a 10 MHz linear array provided scans at beam steering angles of +/- 20 degree(s). Both Doppler velocities and temporal complex decorrelation were computed for each digitized voxel. Additional studies were done on a blood mimicking fluid and in vivo with a canine femoral artery. Vector plots were constructed to show flow for various transducer angles. Angle estimates were within 20 degree(s), and the mean error for the velocity amplitude was less than 15%. The in vivo results provided velocity estimates consistent with the literature. The proposed method, unlike current Doppler velocity measurement techniques, provides quantitative velocity information independent of transducer orientation.

  16. RF power amplifier: pushing the boundaries of performance versus cost

    Science.gov (United States)

    De Souza, M. M.; Chevaux, N.; Rasheduzzaman, M.

    2012-10-01

    The Radio Frequency Power Amplifier lies at the heart of all modern day communication systems ranging from the cellular infrastructure market to broadcast, radar, medical, automotive and military to name a few. Transmission systems not only require substantial power at high frequencies, but they are also one of the most demanding of semiconductor applications on account of their requirements for efficiency and linearity, which inherently introduces a tradeoff during design. Three types of device technologies have been in typical use for RF power amplification: the VDMOS (at frequencies upto 1 GHz), the LDMOS (at frequencies upto 3.5 GHz), and more recently the Gallium Nitride HEMT, which extends the frequency range upto 5-7 GHz. As an emerging technology, GaN has huge potential, but its widespread use is still currently limited by the level of experience, absence of reliable device models and prices which are roughly (6-10 times that of silicon). This overview highlights the distinct features of the RF Power devices and touches upon the performance metrics of the above technologies (in silicon and GaN).

  17. Physics and technology of silicon RF power devices

    CERN Document Server

    Cao, G

    2000-01-01

    can be increased by optimising the drift and epi-layer design, higher power can be delivered without increasing the input capacitance and feedback capacitance. first time, it is identified that the intrinsic MOSFET is the dominant component in the RF LDMOSFET, which ensures the saturation property in forward I-V characteristics. Detailed results are presented on the transconductance performance of the device. It is clarified that the fall-off of transconductance of a RF LDMOSFET is caused jointly by the high resistance of this region and the reduction in channel resistance at a high gate voltage. Because of these two factors, most of the potential is dropped across the drift region at a high gate bias. As a result, the intrinsic MOSFET is forced into its linear region of operation, which results in a fall-off of the transconductance. To increase the range of gate voltages for a constant transconductance, higher drift doping concentration is preferred. This can be achieved by incorporating a grounded field pla...

  18. Hysteresis in rf-driven large-area josephson junctions

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1986-01-01

    We have studied the effect of an applied rf signal on the radiation emitted from a large-area Josephson junction by means of a model based on the sine-Gordon equation. The rms value of the voltage of the emitted signal has been calculated and a hysteresis loop found. An analysis shows that the hy......We have studied the effect of an applied rf signal on the radiation emitted from a large-area Josephson junction by means of a model based on the sine-Gordon equation. The rms value of the voltage of the emitted signal has been calculated and a hysteresis loop found. An analysis shows...... that the hysteresis is due to the nonlinearity in the system, i.e., the dynamics of the lower branch can be described by a solution to the linearized system while the upper branch is described by a breather mode. These solutions are frequency locked to the driving signal. Various characteristics of the loop...

  19. Compact Superconducting Radio-frequency Accelerators and Innovative RF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kephart, Robert [Fermilab; Chattopadhyay, Swaapan [Northern Illinois U.; Milton, Stephen [Colorado State U.

    2015-04-10

    We will present several new technical and design breakthroughs that enable the creation of a new class of compact linear electron accelerators for industrial purposes. Use of Superconducting Radio-Frequency (SRF) cavities allow accelerators less than 1.5 M in length to create electron beams beyond 10 MeV and with average beam powers measured in 10’s of KW. These machines can have the capability to vary the output energy dynamically to produce brehmstrahlung x-rays of varying spectral coverage for applications such as rapid scanning of moving cargo for security purposes. Such compact accelerators will also be cost effective for many existing and new industrial applications. Examples include radiation crosslinking of plastics and rubbers, creation of pure materials with surface properties radically altered from the bulk, modification of bulk or surface optical properties of materials, sterilization of medical instruments animal solid or liquid waste, and destruction of organic compounds in industrial waste water effluents. Small enough to be located on a mobile platform, such accelerators will enable new remediation methods for chemical and biological spills and/or in-situ crosslinking of materials. We will describe one current design under development at Fermilab including plans for prototype and value-engineering to reduce costs. We will also describe development of new nano-structured field-emitter arrays as sources of electrons, new methods for fabricating and cooling superconducting RF cavities, and a new novel RF power source based on magnetrons with full phase and amplitude control.

  20. Industrialization of Superconducting RF Accelerator Technology

    Science.gov (United States)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  1. RF-Photonic Frequency Stability Gear Box

    CERN Document Server

    Matsko, Andrey B; Ilchenko, Vladimir S; Seidel, David; Maleki, Lute

    2011-01-01

    An optical technique based on stability transfer among modes of a monolithic optical microresonator is proposed for long therm frequency stabilization of a radiofrequency (RF) oscillator. We show that locking two resonator modes, characterized with dissimilar sensitivity in responding to an applied forcing function, to a master RF oscillator allows enhancing the long term stability of a slave RF oscillator locked to two resonator modes having nearly identical sensitivity. For instance, the stability of a 10 MHz master oscillator characterized with Allan deviation of 10^-7 at 10^4s can be increased and transferred to a slave oscillator with identical stability performance, so that the resultant Allan deviation of the slave oscillator becomes equal to 10-13 at 10^4s. The method does not require absolute frequency references to achieve such a performance.

  2. Nanocavity optomechanical torque magnetometry and RF susceptometry

    CERN Document Server

    Wu, Marcelo; Firdous, Tayyaba; Sani, Fatemeh Fani; Losby, Joseph E; Freeman, Mark R; Barclay, Paul E

    2016-01-01

    Nanophotonic optomechanical devices allow observation of nanoscale vibrations with sensitivity that has dramatically advanced metrology of nanomechanical structures [1-9] and has the potential to similarly impact studies of nanoscale physical systems [10, 11]. Here we demonstrate this potential with a nanophotonic optomechanical torque magnetometer and radio-frequency (RF) magnetic susceptometer. Exquisite readout sensitivity provided by a nanocavity integrated within a torsional nanomechanical resonator enables observations of the unique net magnetization and RF driven responses of single mesoscopic magnetic structures in ambient conditions. The magnetic moment resolution is sufficient for observation of Barkhausen steps in the magnetic hysteresis of a lithographically-patterned permalloy island [12]. In addition, significantly enhanced RF susceptibility is found over narrow field ranges and attributed to thermally-assisted driven hopping of a magnetic vortex core between neighboring pinning sites [13]. The ...

  3. Investigation of RF Signal Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Soudeh Heydari Nasab

    2010-01-01

    Full Text Available The potential utilization of RF signals for DC power is experimentally investigated. The aim of the work is to investigate the levels of power that can be harvested from the air and processed to achieve levels of energy that are sufficient to charge up low-power electronic circuits. The work presented shows field measurements from two selected regions: an urbanized hence signal congested area and a less populated one. An RF harvesting system has been specifically designed, built, and shown to successfully pick up enough energy to power up circuits. The work concludes that while RF harvesting was successful under certain conditions, however, it required the support of other energy harvesting techniques to replace a battery. Efficiency considerations have, hence, placed emphasis on comparing the developed harvester to other systems.

  4. Directions for rf-controlled intelligent microvalve

    Science.gov (United States)

    Enderling, Stefan; Varadan, Vijay K.; Abbott, Derek

    2001-03-01

    In this paper, we consider the novel concept of a Radio Frequency (RF) controllable microvalve for different medical applications. Wireless communication via a Surface Acoustic Wave Identification-mark (SAW ID-tag) is used to control, drive and locate the microvalve inside the human body. The energy required for these functions is provided by RF pulses, which are transmitted to the valve and back by a reader/transmitter system outside of the body. These RF bursts are converted into Surface Acoustic Waves (SAWs), which propagate along the piezoelectric actuator material of the microvalve. These waves cause deflections, which are employed to open and close the microvalve. We identified five important areas of application of the microvalve in biomedicine: 1) fertility control; 2) artificial venous valves; 3) flow cytometry; 4) drug delivery and 5) DNA mapping.

  5. Photonic technology for switched rf avionics networks

    Science.gov (United States)

    Hamilton, Michael C.; Thaniyavarn, Suwat; Abbas, Gregory L.; LaGasse, Michael J.; Traynor, Timothy; Lin, Jack P.

    1997-10-01

    The application of photonics technology in switched RF networks is discussed with emphasis on the benefits for avionics applications. System requirements and performance issues are addressed. A 16 X 16 photonic switch module prototype is described and results for RF fiber-optic links passing through the module are presented. RF channel isolation measured was at least 75 dB. A demonstration is described in which a photonic network using the switch module passed signals from a dynamic electromagnetic environment simulator to two radar warning systems under test. Demonstration modes included simulation of both aperture sharing and processor sharing. Finally, a novel alternative switch module architecture is described that is strictly non-blocking and has inherently better channel isolation.

  6. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  7. The CLICopti RF structure parameter estimator

    CERN Document Server

    Sjobak, Kyrre Ness

    2014-01-01

    This document describes the CLICopti RF structure parameter estimator. This is a C++ library which makes it possible to quickly estimate the parameters of an RF structure from its length, apertures, tapering, and basic cell type. Typical estimated parameters are the input power required to reach a certain voltage with a given beam current, the maximum safe pulse length for a given input power and the minimum bunch spacing in RF cycles allowed by a given long-range wake limit. The document describes the implemented physics, usage of the library through its Application Programming Interface (API) and the relation between the different parts of the library. Also discussed is how the library is checked for correctness, and the example programs included with the sources are described.

  8. Computational Tools for RF Structure Design

    CERN Document Server

    Jensen, E

    2004-01-01

    The Finite Differences Method and the Finite Element Method are the two principally employed numerical methods in modern RF field simulation programs. The basic ideas behind these methods are explained, with regard to available simulation programs. We then go through a list of characteristic parameters of RF structures, explaining how they can be calculated using these tools. With the help of these parameters, we introduce the frequency-domain and the time-domain calculations, leading to impedances and wake-fields, respectively. Subsequently, we present some readily available computer programs, which are in use for RF structure design, stressing their distinctive features and limitations. One final example benchmarks the precision of different codes for calculating the eigenfrequency and Q of a simple cavity resonator.

  9. Rf-inhomogeneity compensation using method of Fourier synthesis

    Science.gov (United States)

    Khaneja, Navin

    2017-04-01

    In this paper, we propose a new method for design of composite pulses that are robust to rf-amplitude (rf-inhomogeneity). We call this, the method of Fourier synthesis. The method is general enough to design excitation, inversion, refocusing or arbitary flip angle pulses that are robust to rf-amplitude. The method can be tailored to have amplitude selective excitation. We experimentally show rf-compensation over a order of magnitude (20 db) variation in rf-amplitude. The method is expected to find use in invivo NMR studies using surface coils, where there is large dispersion in rf-amplitude over the sample.

  10. RF Driven Multicusp H- Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N.; DeVries, G.J.; DiVergilio, W.F.; Hamm, R.W.; Hauck, C.A.; Kunkel, W.B.; McDonald, D.S.; Williams, M.D.

    1990-06-01

    An rf driven multicusp source capable of generating 1-ms H{sup -} beam pulses with a repetition rate as high as 150 Hz has been developed. This source can be operated with a filament or other types of starter. There is almost no lifetime limitation and a clean plasma can be maintained for a long period of operation. It is demonstrated that rf power as high as 25 kW could be coupled inductively to the plasma via a glass-coated copper-coil antenna. The extracted H{sup -} current density achieved is about 200 mA/cm{sup 2}.

  11. Coherent oscillations of driven rf SQUID metamaterials.

    Science.gov (United States)

    Trepanier, Melissa; Zhang, Daimeng; Mukhanov, Oleg; Koshelets, V P; Jung, Philipp; Butz, Susanne; Ott, Edward; Antonsen, Thomas M; Ustinov, Alexey V; Anlage, Steven M

    2017-05-01

    Through experiments and numerical simulations we explore the behavior of rf SQUID (radio frequency superconducting quantum interference device) metamaterials, which show extreme tunability and nonlinearity. The emergent electromagnetic properties of this metamaterial are sensitive to the degree of coherent response of the driven interacting SQUIDs. Coherence suffers in the presence of disorder, which is experimentally found to be mainly due to a dc flux gradient. We demonstrate methods to recover the coherence, specifically by varying the coupling between the SQUID meta-atoms and increasing the temperature or the amplitude of the applied rf flux.

  12. Lumped elements for RF and microwave circuits

    CERN Document Server

    Bahl, Inder

    2003-01-01

    Due to the unprecedented growth in wireless applications over the past decade, development of low-cost solutions for RF and microwave communication systems has become of great importance. This practical new book is the first comprehensive treatment of lumped elements, which are playing a critical role in the development of the circuits that make these cost-effective systems possible. The books offers you an in-depth understanding of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Support

  13. Inductance of rf-wave-heated plasmas.

    Science.gov (United States)

    Farshi, E; Todo, Y

    2003-03-14

    The inductance of rf-wave-heated plasmas is derived. This inductance represents the inductance of fast electrons located in a plateau during their acceleration due to electric field or deceleration due to collisions and electric field. This inductance has been calculated for small electric fields from the two-dimensional Fokker-Planck equation as the flux crossing the surface of critical energy mv(2)(ph)/2 in the velocity space. The new expression may be important for radio-frequency current drive ramp-up, current drive efficiency, current profile control, and so on in tokamaks. This inductance may be incorporated into transport codes that study plasma heating by rf waves.

  14. RF MEMS theory, design, and technology

    CERN Document Server

    Rebeiz, Gabriel M

    2003-01-01

    Ultrasmall Radio Frequency and Micro-wave Microelectromechanical systems (RF MEMs), such as switches, varactors, and phase shifters, exhibit nearly zero power consumption or loss. For this reason, they are being developed intensively by corporations worldwide for use in telecommunications equipment. This book acquaints readers with the basics of RF MEMs and describes how to design practical circuits and devices with them. The author, an acknowledged expert in the field, presents a range of real-world applications and shares many valuable tricks of the trade.

  15. RF installation for the grain disinfestation

    CERN Document Server

    Zajtzev, B V; Kobetz, A F; Rudiak, B I

    2001-01-01

    The ecologically pure method of grain product disinfestations through the grain treatment with the RF electric field is described. The experimental data obtained showed that with strengths of the electrical RF field of E=5 kV/cm and frequency of 80 MHz the relative death rate is 100%.The time of the grain treatment it this case is 1 sec. The pulses with a duration of 600 mu s and repetition rate of 2 Hz were used, the duration of the front was 10 mu s. The schematic layout of installation with a productivity of 50 tones/h and power of 10 kW is given.

  16. Initial measurements of the UCLA rf photoinjector

    Science.gov (United States)

    Hartman, S. C.; Barov, N.; Pellegrini, C.; Park, S.; Rosenzweig, J.; Travish, G.; Zhang, R.; Clayton, C.; Davis, P.; Everett, M.; Joshi, C.; Hairapetian, G.

    1994-02-01

    The 1.5 cell standing wave rf photoinjector has been operated for the past several months using a copper cathode. The photoinjector drive laser produces sub 2 ps pulses of UV (λ = 266 nm) light with up to 200 μJ/pulse which generates up to 3 nC of charge. The emittance of the photoinjector was measured as a function of charge, rf launching phase, and peak accelerating field. Also, the quantum efficiency and pulse lengths of the laser beam and the electron beam were measured.

  17. Emittance investigation of RF photo-injector

    CERN Document Server

    Yang Mao Rong; Li Zheng; Li Ming; Xu Zhou

    2002-01-01

    A high-power laser beam illuminates a photocathode surface placed on an end wall of an RF cavity. The emitted electrons are accelerated immediately to a relativistic energy by the strong RF find in the cavity. But space charge effect induces beam emittance growth especially near the cathode where the electrons are still nonrelativistic. The author analyzes the factors which lead the transverse emittance growth and method how to resolve this problem. After introducing solenoidal focusing near the photocathode, the beam emittance growth is suppressed dramatically. The beam emittance is given also after compensation and simulation results. The measurements show these results are coincident

  18. Linear programming

    CERN Document Server

    Karloff, Howard

    1991-01-01

    To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method…via the Ellipsoid algorithm to Karmarkar’s algorithm. Moreover, its point of view is algorithmic and thus it provides both a history and a case history of work in complexity theory. The presentation is admirable; Karloff's style is informal (even humorous at times) without sacrificing anything necessary for understanding. Diagrams (including horizontal brackets that group terms) aid in providing clarity. The end-of-chapter notes are helpful...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews The reader will be well served by reading the monograph from cover to cover. The author succeeds in providing a concise, readable, understandable introduction to modern linear programming. —Mathematics of Computing This is a textbook intend...

  19. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  20. Cryoelectron Microscopic Structures of Eukaryotic Translation Termination Complexes Containing eRF1-eRF3 or eRF1-ABCE1

    Directory of Open Access Journals (Sweden)

    Anne Preis

    2014-07-01

    Full Text Available Termination and ribosome recycling are essential processes in translation. In eukaryotes, a stop codon in the ribosomal A site is decoded by a ternary complex consisting of release factors eRF1 and guanosine triphosphate (GTP-bound eRF3. After GTP hydrolysis, eRF3 dissociates, and ABCE1 can bind to eRF1-loaded ribosomes to stimulate peptide release and ribosomal subunit dissociation. Here, we present cryoelectron microscopic (cryo-EM structures of a pretermination complex containing eRF1-eRF3 and a termination/prerecycling complex containing eRF1-ABCE1. eRF1 undergoes drastic conformational changes: its central domain harboring the catalytically important GGQ loop is either packed against eRF3 or swung toward the peptidyl transferase center when bound to ABCE1. Additionally, in complex with eRF3, the N-terminal domain of eRF1 positions the conserved NIKS motif proximal to the stop codon, supporting its suggested role in decoding, yet it appears to be delocalized in the presence of ABCE1. These results suggest that stop codon decoding and peptide release can be uncoupled during termination.

  1. People-Sensing Spatial Characteristics of RF Sensor Networks

    CERN Document Server

    Patwari, Neal

    2009-01-01

    An "RF sensor" network can monitor RSS values on links in the network and perform device-free localization, i.e., locating a person or object moving in the area in which the network is deployed. This paper provides a statistical model for the RSS variance as a function of the person's position w.r.t. the transmitter (TX) and receiver (RX). We show that the ensemble mean of the RSS variance has an approximately linear relationship with the expected total affected power (ETAP). We then use analysis to derive approximate expressions for the ETAP as a function of the person's position, for both scattering and reflection. Counterintuitively, we show that reflection, not scattering, causes the RSS variance contours to be shaped like Cassini ovals. Experimental tests reported here and in past literature are shown to validate the analysis.

  2. The short bunch blow-out regime in RF photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, L. [INFN and Universita di Milano, Via Celoria 16, 20133Milano (Italy)

    1997-06-01

    A new beam dynamics regime of RF Photoinjectors is presented here, dealing with a violent bunch elongation under the action of longitudinal space charge forces. It is shown that such a blow-out expansion of the electron bunch can lead to highly linear behaviors of both the longitudinal and the transverse space charge field, a well known prerequisite to achieve minimum emittance dilution in photoinjectors. If operated in the ultra-short pancake-like bunch regime, such an effect can be very beneficial to the emittance correction mechanism, making it effective also for ultra-short pancake like bunches. The anticipated performances are presented: kA peak current beams can be generated directly out of the photoinjector (10 to 20 MeV exit energy) with rms normalized emittances below 1mm{center_dot}mrad. {copyright} {ital 1997 American Institute of Physics.}

  3. Designing a Hemispherical Breast RF Coil Array for MRI

    Institute of Scientific and Technical Information of China (English)

    XU Wen-long; ZHANG Ju-cheng; WANG Zhi-kang; LI Xing-xin; LOU Hai-fang

    2015-01-01

    In this paper, an approach to the design of hemispherical breast RF coil array is proposedThe target field method is applied to find the current density distribution on the hemisphere surface, which induces a homogeneous magnetic field in a hemispherical volumeThe components of current density are expanded into Fourier series, and the highly ill-conditioned character of the linear equation related to Fourier coefficients is solved using the Tikhonov regularization method with a minimum curvature penalty functionThe winding pattern was acquired using the stream function techniqueThe results indicate that a simple winding pattern with homogeneous magnetic field can be obtained through manually selecting the penalty factor.

  4. A HIGH STABILITY, LOW NOISE RF DISTRIBUTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Dorel

    2002-08-20

    Next generation linear colliders require high stability, low noise distribution of RF phase and timing signals. We describe a fiber-optics system that transmits phase at 357MHz, at a 1500nm wavelength, over a distance of 15 kilometers. Phase length errors in the transmission fiber are measured using the phase of the signal reflected from the fiber end. Corrections are performed by controlling the temperature of a 6-kilometer fiber spool placed in series with the main transmission fiber. This system has demonstrated a phase stability better than 10 femtoseconds per degree C, per kilometer, an improvement of a factor of >2000 relative to un-stabilized fiber. This system uses standard low cost telecom fiber and components.

  5. Material Selection and Characterization for High Gradient RF Applications

    CERN Document Server

    Arnau-Izquierdo, G; Heikkinen, S; Ramsvik, T; Sgobba, Stefano; Taborelli, M; Wuensch, W

    2007-01-01

    The selection of candidate materials for the accelerating cavities of the Compact Linear Collider (CLIC) is carried out in parallel with high power RF testing. The maximum DC breakdown field of copper, copper alloys, refractory metals, aluminium and titanium have been measured with a dedicated setup. Higher maximum fields are obtained for refractory metals and for titanium, which exhibits, however, important damages after conditioning. Fatigue behaviour of copper alloys has been studied for surface and bulk by pulsed laser irradiation and ultrasonic excitation, respectively. The selected copper alloys show consistently higher fatigue resistance than copper in both experiments. In order to obtain the best local properties in the device a possible solution is a bi-metallic assembly. Junctions of molybdenum and copper-zirconium UNS C15000 alloy, achieved by HIP (Hot Isostatic Pressing) diffusion bonding or explosion bonding were evaluated for their mechanical strength. The reliability of the results obtained wit...

  6. 1.3 GHz superconducting RF cavity program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  7. Scalable arrays of RF Paul traps in degenerate Si

    CERN Document Server

    Britton, J; Beall, J; Blakestad, R B; Wesenberg, J H; Wineland, D J

    2009-01-01

    We report techniques for the fabrication of multi-zone linear RF Paul traps that exploit the machinability and electrical conductivity of degenerate silicon. The approach was tested by trapping and laser cooling 24Mg+ ions in two trap geometries: a single-zone two-layer trap and a multi-zone surface-electrode trap. From the measured ion motional heating rate we determine an electric field spectral density at the ion's position of approximately 1E-10 (V/m)^2/Hz at a frequency of 1.125 MHz when the ion lies 40 micron above the trap surface. One application of these devices is controlled manipulation of atomic ion qubits, the basis of one form of quantum information processing.

  8. Simulations of S-band RF gun with RF beam control

    Science.gov (United States)

    Barnyakov, A. M.; Levichev, A. E.; Maltseva, M. V.; Nikiforov, D. A.

    2017-08-01

    The RF gun with RF control is discussed. It is based on the RF triode and two kinds of the cavities. The first cavity is a coaxial cavity with cathode-grid assembly where beam bunches are formed, the second one is an accelerating cavity. The features of such a gun are the following: bunched and relativistic beams in the output of the injector, absence of the back bombarding electrons, low energy spread and short length of the bunches. The scheme of the injector is shown. The electromagnetic field simulation and longitudinal beam dynamics are presented. The possible using of the injector is discussed.

  9. RF design of X-band RF deflector for femtosecond diagnostics of LCLS electron beam

    Science.gov (United States)

    Dolgashev, Valery A.; Wang, Juwen

    2012-12-01

    We designed a successful constant impedance traveling wave X-band rf deflector for electron beam diagnostics at the 14 GeV SLAC Linac Coherent Light Source (LCLS). This is the first practical deflector built with a waveguide coupler. The 1-meter rf deflector produces 24 MeV peak transverse kick when powered with 20 MW of 11.424 GHz rf. The design is based on our experience with high gradient X-band accelerating structures. Several deflectors of this design have been built at SLAC and are currently in use. Here we describe the design and distinguishing features of this device.

  10. Wavelet network based predistortion method for wideband RF power amplifiers exhibiting memory effects

    Institute of Scientific and Technical Information of China (English)

    JIN Zhe; SONG Zhi-huan; HE Jia-ming

    2007-01-01

    RF power amplifiers (PAs) are usually considered as memoryless devices in most existing predistortion techniques.Nevertheless, in wideband communication systems, PA memory effects can no longer be ignored and memoryless predistortion cannot linearize PAs effectively. After analyzing PA memory effects, a novel predistortion method based on wavelet networks (WNs) is proposed to linearize wideband RF power amplifiers. A complex wavelet network with tapped delay lines is applied to construct the predistorter and then a complex backpropagation algorithm is developed to train the predistorter parameters. The simulation results show that compared with the previously published feed-forward neural network predistortion method, the proposed method provides faster convergence rate and better performance in reducing out-of-band spectral regrowth.

  11. X-band Dielectric Loaded Rf Driven Accelerator Structures Theoretical And Experimental Investigations

    CERN Document Server

    Zou, P

    2001-01-01

    An important area of application of high-power radio frequency (RF) and microwave sources is particle acceleration. A major challenge for the current worldwide research and development effort in linear accelerator is the search for a compact and affordable very-high-energy accelerator technology for the next generation supercolliders. It has been recognized for sometime that dielectric loaded accelerator structures are attractive candidates for the next generation very-high-energy linear accelerators, because they possess several distinct advantages over conventional metallic iris- loaded accelerator structures. However, some fundamental issues, such as RF breakdown in the dielectric, Joule heating, and vacuum properties of dielectric materials, are still the subjects of intense investigation, requiring the validation by experiments conducted at high power levels. An X-band traveling-wave accelerator based on dielectric-lined waveguide has been designed and constructed. Numerical calculation, bench measuremen...

  12. ANALYSIS AND MEASUREMENT OF LARGE DYNAMIC RANGE RF SWITCH INTER-MODULATION

    Institute of Scientific and Technical Information of China (English)

    Han Zhouan

    2008-01-01

    Radio Frequency (RF) switch circuit is the basic part of microwave devices and systems. The non-linearity distortion figure is necessary in the field of large dynamic range of signal. This letter analyzes the basic switch circuit and its inter-modulation, and studies in detail the measurement methods and systems of RF switch intercept point. It has provided cascaded simulation testing methods,which can accurately measure the PF switch, of which the second or third order intercept point value is above 75dB and 60dB, respectively. As the testing results are consistent with the theoretical analyses,it proves that the validity of the method satisfies the requirements of large scaled linearity measurement in engineering.

  13. Next Generation Fast RF Interlock Module and ATCA Adapter for ILC High Availability RF Test Station Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R

    2009-10-17

    High availability interlocks and controls are required for the ILC (International Linear Collider) L-Band high power RF stations. A new F3 (Fast Fault Finder) VME module has been developed to process both fast and slow interlocks using FPGA logic to detect the interlock trip excursions. This combination eliminates the need for separate PLC (Programmable Logic Controller) control of slow interlocks. Modules are chained together to accommodate as many inputs as needed. In the next phase of development the F3's will be ported to the new industry standard ATCA (Advanced Telecom Computing Architecture) crate (shelf) via a specially designed VME adapter module with IPMI (Intelligent Platform Management Interface). The goal is to demonstrate auto-failover and hot-swap for future partially redundant systems.

  14. RF MEMS Switches for Mobile Communication

    NARCIS (Netherlands)

    Steeneken, Peter; Herfst, Rodolf; Suy, Hilco; Goossens, Martijn; Beek, van Joost; Bielen, Jeroen; Stulemeijer, Jiri; Schmitz, Jurriaan

    2008-01-01

    Switched capacitors based on radio frequency microelectromechanical systems (RF MEMS) can enable a breakthrough in radio technology. Their switching principle is based on the mechanical movement of the plates of a parallel plate capacitor using the electrostatic force. The resulting difference in ca

  15. Novel RF-MEMS capacitive switching structures

    NARCIS (Netherlands)

    Rottenberg, X.; Jansen, H.; Fiorini, P.; De Raedt, W.; Tilmans, H.A.C.

    2002-01-01

    This paper reports on novel RF-MEMS capacitive switching devices implementing an electrically floating metal layer covering the dielectric to ensure intimate contact with the bridge in the down state. This results in an optimal switch down capacitance and allows optimisation of the down/up capacitan

  16. Sources of Emittance in RF Photocathode Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-12-11

    Advances in electron beam technology have been central to creating the current generation of x-ray free electron lasers and ultra-fast electron microscopes. These once exotic devices have become essential tools for basic research and applied science. One important beam technology for both is the electron source which, for many of these instruments, is the photocathode RF gun. The invention of the photocathode gun and the concepts of emittance compensation and beam matching in the presence of space charge and RF forces have made these high-quality beams possible. Achieving even brighter beams requires a taking a finer resolution view of the electron dynamics near the cathode during photoemission and the initial acceleration of the beam. In addition, the high brightness beam is more sensitive to degradation by the optical aberrations of the gun’s RF and magnetic lenses. This paper discusses these topics including the beam properties due to fundamental photoemission physics, space charge effects close to the cathode, and optical distortions introduced by the RF and solenoid fields. Analytic relations for these phenomena are derived and compared with numerical simulations.

  17. Status of RF superconductivity at Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.

    1989-01-01

    Development of a superconducting (SC) slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first SC heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerating System), which began regularly scheduled operation in 1978. To date, more than 40,000 hours of bean-on target operating time has been accumulated with ATLAS. The Physics Division at ANL has continued to develop SC RF technology for accelerating heavy-ions, with the result that the SC linac has, up to the present, has been in an almost continuous process of upgrade and expansion. It should be noted that this has been accomplished while at the same time maintaining a vigorous operating schedule in support of the nuclear and atomic physics research programs of the division. In 1987, the Engineering Physics Division at ANL began development of SC RF components for the acceleration of high-brightness proton and deuterium beams. This work has included the evaluation of RF properties of high-{Tc} oxide superconductors, both for the above and for other applications. The two divisions collaborated while they worked on several applications of RF SC, and also worked to develop the technology generally. 11 refs., 6 figs.

  18. Characterization of dielectric charging in RF MEMS

    NARCIS (Netherlands)

    Herfst, R.W.; Huizing, H.G.A.; Steeneken, P.G.; Schmitz, Jurriaan

    Capacitive RF MEMS switches show great promise for use in wireless communication devices such as mobile phones, but the successful application of these switches is hindered by the reliability of the devices: charge injection in the dielectric layer (SiN) can cause irreversible stiction of the moving

  19. Theory of RF superconductivity for resonant cavities

    Science.gov (United States)

    Gurevich, Alex

    2017-03-01

    An overview of a theory of electromagnetic response of superconductors in strong radio-frequency (RF) electromagnetic fields is given with the emphasis on applications to superconducting resonant cavities for particle accelerators. The paper addresses fundamentals of the BCS surface resistance, the effect of subgap states and trapped vortices on the residual surface resistance at low RF fields, and a nonlinear surface resistance at strong fields, particularly the effect of the RF field suppression of the surface resistance. These issues are essential for the understanding of the field dependence of high quality factors Q({B}a)∼ {10}10{--}{10}11 achieved on the Nb cavities at 1.3–2 K in strong RF fields B a close to the depairing limit, and the extended Q({B}a) rise which has been observed on Ti and N-treated Nb cavities. Possible ways of further increase of Q({B}a) and the breakdown field by optimizing impurity concentration at the surface and by multilayer nanostructuring with materials other than Nb are discussed.

  20. RF building block modelling : optimization and synthesis

    NARCIS (Netherlands)

    Cheng, Wei

    2012-01-01

    For circuit designers it is desirable to have relatively simple RF circuit models that do give decent estimation accuracy and provide sufficient understanding of circuits. Chapter 2 in this thesis shows a general weak nonlinearity model that meets these demands. Using a method that is related to har

  1. RF spectrum sensing in CMOS exploiting crosscorrelation

    NARCIS (Netherlands)

    Oude Alink, Mark Stefan

    2013-01-01

    The introduction of new wireless services, the demand for higher datarates, and higher traffic volumes call for a more efficient use of the RF spectrum than what is currently possible with static frequency allocation. Dynamic spectrum access offers a more efficient use by allowing unlicensed users t

  2. Modeling and simulation for RF system design

    CERN Document Server

    Frevert, Ronny; Jancke, Roland; Knöchel, Uwe; Schwarz, Peter; Kakerow, Ralf; Darianian, Mohsen

    2005-01-01

    Focusing on RF specific modeling and simulation methods, and system and circuit level descriptions, this work contains application-oriented training material. Accompanied by a CD- ROM, it combines the presentation of a mixed-signal design flow, an introduction into VHDL-AMS and Verilog-A, and the application of commercially available simulators.

  3. RF Sputtering of Gold Contacts On Niobium

    Science.gov (United States)

    Barr, D. W.

    1983-01-01

    Reliable gold contacts are deposited on niobium by combination of RF sputtering and photolithography. Process results in structures having gold only where desired for electrical contact. Contacts are stable under repeated cycling from room temperature to 4.2 K and show room-temperature contact resistance as much as 40 percent below indium contacts made by thermalcompression bonding.

  4. Carbon nanotubes for RF and microwaves

    OpenAIRE

    Burke, P. J.; Yu, Z; Rutherglen, C.

    2005-01-01

    In this invited overview paper we provide a brief up-to-date summary of the potential applications of carbon nanotubes for RF and microwave devices and systems. We focus in particular on the use of nanotubes as ultra-high speed interconnects in integrated circuits.

  5. Design of 162 MHz RF Experimental Cavity

    Institute of Scientific and Technical Information of China (English)

    YIN; Zhi-guo; CAO; Xue-long; GUO; Juan-juan; JI; Bin; FU; Xiao-liang; WEI; Jun-yi

    2015-01-01

    In this paper,a 162MHz RF experimental cavity is designed to study the multipacting multiplier effect of the medium and the metal electrode and its relationship with the plate surface characteristics,and to find out the method for inhibiting multipacting multiplier effects.The

  6. RF building block modeling: optimization and synthesis

    NARCIS (Netherlands)

    Cheng, W.

    2012-01-01

    For circuit designers it is desirable to have relatively simple RF circuit models that do give decent estimation accuracy and provide sufficient understanding of circuits. Chapter 2 in this thesis shows a general weak nonlinearity model that meets these demands. Using a method that is related to

  7. RF performance of T-DAB receivers

    NARCIS (Netherlands)

    Schiphorst, R.; Potman, J.; Hofstra, K.L.; Cronie, H.S.; Slump, C.H.

    2008-01-01

    In every wireless system, the weakest link determines the performance of the network. In this paper the Radio Frequency (RF) performance of both band III and L-band Terrestrial Digital Audio Broadcasting (T-DAB) consumer receivers are discussed. The receivers have been tested based on the EN 50248 s

  8. Coherence-Multiplexed Optical RF Feeder Networks

    NARCIS (Netherlands)

    Meijerink, Arjan; Taniman, Robert O.; Etten, van Wim

    2007-01-01

    An optical RF feeding system for wireless access is proposed, in which the radio access points are distinguished by means of coherence multiplexing (CM). CM is a rather unknown and potentially inexpensive optical code division multiple access technique, which is particularly suitable for relatively

  9. Prototype storage cavity for LEP accelerating RF

    CERN Multimedia

    1980-01-01

    The principle of an RF storage cavity was demonstrated with this prototype, working at 500 MHz. The final storage cavities were larger, to suit the LEP accelerating frequency of 352.2 MHz. Cu-tubes for watercooling are brazed onto the upper half, the lower half is to follow. See also 8006061, 8109346, 8407619X, and Annual Report 1980, p.115.

  10. RF electrodynamics in small particles of oxides - a review

    CSIR Research Space (South Africa)

    Srinivasu, VV

    2008-01-01

    Full Text Available RF electrodynamics, particularly, the low field rf absorption in small superconducting and manganite particles is reviewed and compared with their respective bulk counterparts. Experimental and theoretical aspects of the small particle...

  11. RF Anechoic Chambers, Tri-Service Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — In collaboration with the Navy, there are 12 RF Anechoic and static free exposure chambers located at TSRL. These chambers cover the majority of the RF spectrum and...

  12. RF Anechoic Chambers, Tri-Service Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — In collaboration with the Navy, there are 12 RF Anechoic and static free exposure chambers located at TSRL. These chambers cover the majority of the RF spectrum and...

  13. Triplet Focusing for Recirculating Linear Muon Accelerators

    CERN Document Server

    Keil, Eberhard

    2001-01-01

    Focusing by symmetrical triplets is studied for the linear accelerator lattices in recirculating muon accelerators with several passes where the ratio of final to initial muon energy is about four. Triplet and FODO lattices are compared. At similar acceptance, triplet lattices have straight sections for the RF cavities that are about twice as long as in FODO lat-tices. For the same energy gain, the total lengths of the linear accelerators with triplet lattices are about the same as of those with FODO lattices.

  14. ProGeRF: Proteome and Genome Repeat Finder Utilizing a Fast Parallel Hash Function

    Directory of Open Access Journals (Sweden)

    Robson da Silva Lopes

    2015-01-01

    primarily user-friendly web tool allowing many ways to view and analyse the results. ProGeRF (Proteome and Genome Repeat Finder is freely available as a stand-alone program, from which the users can download the source code, and as a web tool. It was developed using the hash table approach to extract perfect and imperfect repetitive regions in a (multiFASTA file, while allowing a linear time complexity.

  15. Linear systems

    CERN Document Server

    Bourlès, Henri

    2013-01-01

    Linear systems have all the necessary elements (modeling, identification, analysis and control), from an educational point of view, to help us understand the discipline of automation and apply it efficiently. This book is progressive and organized in such a way that different levels of readership are possible. It is addressed both to beginners and those with a good understanding of automation wishing to enhance their knowledge on the subject. The theory is rigorously developed and illustrated by numerous examples which can be reproduced with the help of appropriate computation software. 60 exe

  16. Fabrication and low-power RF test of C-band RF gun

    Energy Technology Data Exchange (ETDEWEB)

    Taira, Y., E-mail: yoshitaka-taira@aist.go.jp; Kuroda, R.; Tanaka, M.; Kato, H.; Suzuki, R.; Toyokawa, H.

    2014-07-15

    A C-band RF gun for compact radiation sources such as high-energy X-ray and terahertz radiation sources is developed at AIST and is designed to work at a frequency of 5.3 GHz. The total length of this equipment is about 1.5 m. An electron beam with a maximum energy of 0.9 MeV can be generated when the peak electric field is 85 MV/m, corresponding to an RF peak power of 600 kW. A coniferous-tree-type carbon nanostructure is used for the field emission cathode. We present the structural design and fabrication of the C-band RF cavity and a low-power RF test of it.

  17. Modeling of the RF system for the normal conducting linac

    Institute of Scientific and Technical Information of China (English)

    GENG Zhe-Qiao; HOU Mi; PEI Guo-Xi

    2008-01-01

    To study the new RF control methods, a mathematic model of the RF system for the normal conducting linac is built and implemented with the software of Matlab. The model contains some typical units of the RF system, such as the klystron, the SLED and the traveling wave accelerating tube. Finally, the model is used to study the working point of the SLED and the adaptive feed forward algorithm for the RF control system. Simulation shows that the model works well as expected.

  18. Complexity-reduced digital predistortion for subcarrier multiplexed radio over fiber systems transmitting sparse multi-band RF signals.

    Science.gov (United States)

    Pei, Yinqing; Xu, Kun; Li, Jianqiang; Zhang, Anxu; Dai, Yitang; Ji, Yuefeng; Lin, Jintong

    2013-02-11

    A novel multi-band digital predistortion (DPD) technique is proposed to linearize the subcarrier multiplexed radio-over-fiber (SCM-RoF) system transmitting sparse multi-band RF signal with large blank spectra between the constituent RF bands. DPD performs on the baseband signal of each individual RF band before up-conversion and RF combination. By disregarding the blank spectra, the processing bandwidth of the proposed DPD technique is greatly reduced, which is only determined by the baseband signal bandwidth of each individual RF band, rather than the entire bandwidth of the combined multi-band RF signal. Experimental demonstration is performed in a directly modulated SCM-RoF system transmitting two 64QAM modulated OFDM signals on 2.4GHz band and 3.6GHz band. Results show that the adjacent channel power (ACP) is suppressed by 15dB leading to significant improvement of the EVM performances of the signals on both of the two bands.

  19. Linearization Technologies for Broadband Radio-Over-Fiber Transmission Systems

    Directory of Open Access Journals (Sweden)

    Xiupu Zhang

    2014-11-01

    Full Text Available Linearization technologies that can be used for linearizing RoF transmission are reviewed. Three main linearization methods, i.e. electrical analog linearization, optical linearization, and electrical digital linearization are presented and compared. Analog linearization can be achieved using analog predistortion circuits, and can be used for suppression of odd order nonlinear distortion components, such as third and fifth order. Optical linearization includes mixed-polarization, dual-wavelength, optical channelization and the others, implemented in optical domain, to suppress both even and odd order nonlinear distortion components, such as second and third order. Digital predistortion has been a widely used linearization method for RF power amplifiers. However, digital linearization that requires analog to digital converter is severely limited to hundreds of MHz bandwidth. Instead, analog and optical linearization provide broadband linearization with up to tens of GHz. Therefore, for broadband radio over fiber transmission that can be used for future broadband cloud radio access networks, analog and optical linearization are more appropriate than digital linearization. Generally speaking, both analog and optical linearization are able to improve spur-free dynamic range greater than 10 dB over tens of GHz. In order for current digital linearization to be used for broadband radio over fiber transmission, the reduced linearization complexity and increased linearization bandwidth are required. Moreover, some digital linearization methods in which the complexity can be reduced, such as Hammerstein type, may be more promising and require further investigation.

  20. Transversely rf-excited CO/sub 2/ waveguide laser

    Energy Technology Data Exchange (ETDEWEB)

    Lachambre, J.; Macfarlane, J.; Otis, G.; Lavigne, P.

    1978-05-15

    An electrodeless CO/sub 2/ waveguide laser with transverse rf pumping is described. In the rf cw mode, the laser emits up to 0.6 W at 100 Torr. In the rf pulse mode, atmospheric operation has been achieved with pulse duration of 20 ..mu..s and peak power of a few watts at a repetition rate of 300 Hz.

  1. Study of Control Grid Thermionic Cathode RF Gun

    CERN Document Server

    Xiao, Jin; Ming, Li; Xinfan, Yang; Xumin, Shen; Yanan, Chen; Zhou, Xu

    2004-01-01

    In this paper, the beam loading effect of RF Gun was analyzed. To minimize the energy spread, the grid control RF Gun was introduced. The result shows that the grid congrol RF Gun can increase electron beam within 1% energy spread.

  2. A Reduced-Complexity Mixer Linearization Scheme

    Directory of Open Access Journals (Sweden)

    Paul A. Warr

    2009-01-01

    Full Text Available Measurement results of the signals emanating from both IF and LO ports of a double balanced mixer are presented, and, thus, it is shown that the linearization of the output in a down-converting mixer by the summation of the IF signal and the signal emanating from the LO or RF port is feasible. Feedforward-based architectures for the linearization of down-conversion mixers are introduced that exploit this phenomenon, and linearity performance results of the frequency translation of both two-tone and TETRA-modulated signals are presented. This technique employs only a single mixer and hence overcomes the complexity of other mixer linearization schemes. The overall processing gain of the system is limited by the level of wanted signal present in the error signal.

  3. Design of a multivariable RF control system using gain-shaping in the frequency domain

    Science.gov (United States)

    Ziomek, C. D.; Jachim, S. P.; Natter, E. F.

    1991-05-01

    Due to the time-varying nature of the radio-frequency (RF) accelerator, RF field amplitude and phase parameters must be precisely controlled in order to confine and accelerate the charged particle beam. Typically, a feedback control system regulates the RF field, rejects noise and disturbances, and maintains operational stability over changes in the electrical structure of the accelerator. This paper describes a multivariable control system that compensates the electrical structure of the accelerator by using gain-shaping in the frequency domain. The amplitude and phase quantities have been resolved into in-phase and quadrature (I and Q) variables. These orthogonal variables have simple mathematical relationships, and can be analyzed using linear transfer function matrices. The transfer matrix theory has been applied to the design of the multivariable control system that regulates the RF field in-phase and quadrature components. Frequency-domain controllers compensate these two signals to provide desired frequency response characteristics. A control predistorter performs an inverse coupling function, so that the I and Q components are effectively decoupled by the accelerator. Furthermore, computer interface circuitry allows the adaptive optimization of the mathematical transfer functions of the compensators.

  4. Upgrade of X-band thermionic cathode RF gun for Compton scattering X-ray source

    Science.gov (United States)

    Taniguchi, Yoshihiro; Sakamoto, Fumito; Natsui, Takuya; Yamamoto, Tomohiko; Hashimoto, Eiko; Lee, KiWoo; Uesaka, Mitsuru; Yoshida, Mitsuhiro; Higo, Toshiyasu; Fukuda, Shigeki; Akemoto, Mitsuo

    2009-09-01

    A Compton scattering X-ray source consisting of an X-band (11.424 GHz) electron linear accelerator (linac) and Q-switched Nd: YAG laser is currently under development at the University of Tokyo. Monochromatic X-rays are required for a variety of medical and biological applications. The X-ray source produces monochromatic X-rays via collision between a 35-MeV multi-bunch (104 bunches in a 1 μs RF pulse) electron beam and 1.4 J/10 ns (532 nm) Nd: YAG laser pulse. The linac uses an X-band 3.5-cell thermionic cathode RF gun and an alpha magnet as an injector. Until now, electron beam generation (2 MeV, 1 pC/bunch at the exit of the injector), beam acceleration, and X-ray generation have been verified. In order to increase X-ray energy and intensity, we have completed the design and construction of a new RF gun with relevant modifications in some structures. In this paper, we describe the details of the concepts of designing a new RF gun and discuss future works.

  5. High-gradient normal-conducting RF structures for muon cooling channels

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Green, M.A.; Hartman, N.; Ladran, A.; Li, D.; MacGill, R.; Rimmer, R.; Moretti, A.; Jurgens, T.; Holtkamp, N.; Black, E.; Summers, D.; Booke, M.

    2001-06-12

    We present a status report on the research and development of high-gradient normal-conducting RF structures for the ionization cooling of muons in a neutrino factory or muon collider. High-gradient RF structures are required in regions enclosed in strong focusing solenoidal magnets, precluding the application of superconducting RF technology [1]. We propose using linear accelerating structures, with individual cells electromagnetically isolated, to achieve the required gradients of over 15 MV/m at 201 MHz and 30 MV/m at 805 MHz. Each cell will be powered independently, and cell length and drive phase adjusted to optimize shunt impedance of the assembled structure. This efficient design allows for relatively small field enhancement on the structure walls, and an accelerating field approximately 1.7 times greater than the peak surface field. The electromagnetic boundary of each cell may be provided by a thin Be sheet, or an assembly of thin-walled metal tubes. Use of thin, low-Z materials will allow passage of the muon beams without significant deterioration in beam quality due to scattering. R and D in design and analysis of robust structures that will operate under large electric and magnetic fields and RF current heating are discussed, including the experimental program based in a high-power test laboratory developed for this purpose.

  6. Cascadable and reconfigurable photonic logic gates based on linear lightwave interference and non-linear phase erasure.

    Science.gov (United States)

    Larom, Bar; Nazarathy, Moshe; Rudnitsky, Arkady; Nevet, Amir; Zalevsky, Zeev

    2010-06-21

    Feasibility of cascading and reconfiguring a pair of linear-nonlinear all-optical logic gate structures is experimentally demonstrated using RF photonics. Progress in highly integrated O/E/O repeaters over Si/InP hybrid platforms enables large-scale reconfigurable gate arrays.

  7. Rare Variants in Genes Encoding MuRF1 and MuRF2 Are Modifiers of Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ming Su

    2014-05-01

    Full Text Available Modifier genes contribute to the diverse clinical manifestations of hypertrophic cardiomyopathy (HCM, but are still largely unknown. Muscle ring finger (MuRF proteins are a class of muscle-specific ubiquitin E3-ligases that appear to modulate cardiac mass and function by regulating the ubiquitin-proteasome system. In this study we screened all the three members of the MuRF family, MuRF1, MuRF2 and MuRF3, in 594 unrelated HCM patients and 307 healthy controls by targeted resequencing. Identified rare variants were confirmed by capillary Sanger sequencing. The prevalence of rare variants in both MuRF1 and MuRF2 in HCM patients was higher than that in control subjects (MuRF1 13/594 (2.2% vs. 1/307 (0.3%, p = 0.04; MuRF2 22/594 (3.7% vs. 2/307 (0.7%; p = 0.007. Patients with rare variants in MuRF1 or MuRF2 were younger (p = 0.04 and had greater maximum left ventricular wall thickness (p = 0.006 than those without such variants. Mutations in genes encoding sarcomere proteins were present in 19 (55.9% of the 34 HCM patients with rare variants in MuRF1 and MuRF2. These data strongly supported that rare variants in MuRF1 and MuRF2 are associated with higher penetrance and more severe clinical manifestations of HCM. The findings suggest that dysregulation of the ubiquitin-proteasome system contributes to the pathogenesis of HCM.

  8. Microwave RF antennas and circuits nonlinearity applications in engineering

    CERN Document Server

    Aluf, Ofer

    2017-01-01

    This book describes a new concept for analyzing RF/microwave circuits, which includes RF/microwave antennas. The book is unique in its emphasis on practical and innovative microwave RF engineering applications. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual RF microwave circuits and antennas are innovative and can be broadly implemented in engineering applications. Given the dynamics of RF microwave circuits and antennas, they are suitable for use in a broad range of applications. The book presents analytical methods for microwave RF antennas and circuit analysis, concrete examples, and geometric examples. The analysis is developed systematically, starting with basic differential equations and their bifurcations, and subsequently moving on to fixed point analysis, limit cycles and their bifurcations. Engineering applications include microwave RF circuits and antennas in a variety of topological structures, RFID ICs and antennas, micros...

  9. Aluminum nitride for heatspreading in RF IC's

    Science.gov (United States)

    La Spina, L.; Iborra, E.; Schellevis, H.; Clement, M.; Olivares, J.; Nanver, L. K.

    2008-09-01

    To reduce the electrothermal instabilities in silicon-on-glass high-frequency bipolar devices, the integration of thin-film aluminum nitride as a heatspreader is studied. The AlN is deposited by reactive sputtering and this material is shown to fulfill all the requirements for actively draining heat from RF IC's, i.e., it has good process compatibility, sufficiently high thermal conductivity and good electrical isolation also at high frequencies. The residual stress and the piezoelectric character of the material, both of which can be detrimental for the present application, are minimized by a suitable choice of deposition conditions including variable biasing of the substrate in a multistep deposition cycle. Films of AlN as thick as 4 μm are successfully integrated in RF silicon-on-glass bipolar junction transistors that display a reduction of more than 70% in the value of the thermal resistance.

  10. An Efficient RF Source for Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, M. [Muons, Inc.; Dudas, A. [Muons, Inc.; Rimmer, Robert A. [JLAB; Wang, Haipeng [JLAB

    2013-12-01

    We propose the development of a highly reliable high efficiency RF source for JLAB with a lower lifetime cost operating at 80% efficiency with system operating costs of about 0.7M$/year for the 6 GeV machine. The design of the RF source will be based upon two injection locked magnetrons in a novel combining architecture for amplitude modulation and a cross field amplifier (CFA) as an output tube for the 12 GeV upgrade. A cost analysis including efficiency and reliability will be performed to determine the optimum system architecture. Several different system architectures will be designed and evaluated for a dual injection locked magnetron source using novel combining techniques and possibly a CFA as the output tube. A paper design for the 1497 MHz magnetron system will be completed. The optimum system architecture with all relevant specifications will be completed so that a prototype can be built.

  11. ILC RF System R and D

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris; /SLAC

    2012-07-03

    The Linac Group at SLAC is actively pursuing a broad range of R&D to improve the reliability and reduce the cost of the L-band (1.3 GHz) rf system proposed for the ILC linacs. Current activities include the long-term evaluation of a 120 kV Marx Modulator driving a 10 MW Multi-Beam Klystron, design of a second-generation Marx Modulator, testing of a sheet-beam gun and beam transport system for a klystron, construction of an rf distribution system with remotely-adjustable power tapoffs, and development of a system to combine the power from many klystrons in low-loss circular waveguide where it would be tapped-off periodically to power groups of cavities. This paper surveys progress during the past few years.

  12. RUGGED CERAMIC WINDOW FOR RF APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    MIKE NEUBAUER

    2012-11-01

    High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

  13. SPS RF System an Accelerating Cavity

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X.

  14. Matching Parasitic Antenna for Single RF MIMO

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Nielsen, Rasmus Hjorth

    2012-01-01

    Single RF MIMO communication emerges a novel low cost communication method which does not consume as much power as the conventional MIMO. The implementation of such single RF MIMO system is done by mapping the weighting factors to the polarizations or the radiation patterns of the antennas....... In order to have such performance, an antenna with rich pattern modes is required by the system, thus the ESPAR antenna is investigated. The critical part on such antenna is parasitic element impedance matching. Unlike the conventional smith-chart matching method which assumes the minimal resistance...... is zero and with goal of 50 ohm or 75 ohm matching, matching on such parasitic antenna will adopt negative value as well. This paper presents a matching network with controllable impedance even to the range of negative values....

  15. Cognitive Radio RF: Overview and Challenges

    Directory of Open Access Journals (Sweden)

    Van Tam Nguyen

    2012-01-01

    Full Text Available Cognitive radio system (CRS is a radio system which is aware of its operational and geographical environment, established policies, and its internal state. It is able to dynamically and autonomously adapt its operational parameters and protocols and to learn from its previous experience. Based on software-defined radio (SDR, CRS provides additional flexibility and offers improved efficiency to overall spectrum use. CRS is a disruptive technology targeting very high spectral efficiency. This paper presents an overview and challenges of CRS with focus on radio frequency (RF section. We summarize the status of the related regulation and standardization activities which are very important for the success of any emerging technology. We point out some key research challenges, especially implementation challenges of cognitive radio (CR. A particular focus is on RF front-end, transceiver, and analog-to-digital and digital-to-analog interfaces which are still a key bottleneck in CRS development.

  16. Terahertz-driven linear electron acceleration

    CERN Document Server

    Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2014-01-01

    The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

  17. Superconducting RF separator for Omega Spectrometer

    CERN Multimedia

    1977-01-01

    The photo shows an Nb-deflector for the superconducting RF separator ready for installation in its cryostat (visible at the back). Each deflector was about 3 m long. L. Husson and P. Skacel (Karlsruhe) stand on the left, A. Scharding (CERN) stands on the right. This particle separator, the result of a collaboration between the Gesellshaft für Kernforschung, Karlsruhe, and CERN was installed in the S1 beam line to Omega spectrometer. (See Annual Report 1977.)

  18. RF Control and Measurement of Superconducting Qubits

    Science.gov (United States)

    2015-02-14

    208047 New Haven, CT 06520 -8047 14-Sep-2014 ABSTRACT Final Report: RF Control and Measurement of Superconducting Qubits Report Title This is the final...project duration, to the generation a new architecture which, while taking into account the limitations discovered in the other research line of the...materials properties. Third, spurious electromagnetic modes, not accounted for in the Hamiltonian (1), can spuriously couple to the atoms or the

  19. rf superconducting quantum interference device metamaterials

    Science.gov (United States)

    Lazarides, N.; Tsironis, G. P.

    2007-04-01

    A rf superconducting quantum interference device (SQUID) array in an alternating magnetic field is investigated with respect to its effective magnetic permeability, within the effective medium approximation. This system acts as an inherently nonlinear magnetic metamaterial, leading to negative magnetic response, and thus negative permeability above the resonance frequency of the individual SQUIDs. Moreover, the permeability exhibits oscillatory behavior at low field intensities, allowing its tuning by a slight change of the intensity of the applied field.

  20. Activities on RF superconductivity at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Matheisen, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-01-01

    At DESY the HERA electron storage ring is supplied with normal and superconducting cavities. The superconducting system transfers up to 1 MW klystron power to the beam. Experiences are reported on luminosity and machine study runs. Since 1993 one major activity in the field of RF superconducting cavities is the installation of the TESLA Test Facility. Set-up of hardware and first tests of s.c. resonators are presented. (R.P.). 11 refs.

  1. NSLS-II RF Cryogenic System

    Energy Technology Data Exchange (ETDEWEB)

    Rose, J.; Dilgen, T.; Gash, B.; Gosman, J.; Mortazavi, P.; Papu, J.; Ravindranath, V.; Sikora, R.; Sitnikov, A.; Wilhelm, H.; Jia, Y.; Monroe, C.

    2015-05-03

    The National Synchrotron Light Source II is a 3 GeV X-ray user facility commissioned in 2014. A new helium refrigerator system has been installed and commissioned to support the superconducting RF cavities in the storage ring. Special care was taken to provide very stable helium and LN2 pressures and flow rates to minimize microphonics and thermal effects at the cavities. Details of the system design along with commissioning and early operations data will be presented.

  2. Safety assessment for the rf Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, A.; Beane, F. (eds.)

    1984-08-01

    The Radio Frequency Test Facility (RFTF) is a part of the Magnetic Fusion Program's rf Heating Experiments. The goal of the Magnetic Fusion Program (MFP) is to develop and demonstrate the practical application of fusion. RFTF is an experimental device which will provide an essential link in the research effort aiming at the realization of fusion power. This report was compiled as a summary of the analysis done to ensure the safe operation of RFTF.

  3. At the RF Lab, EF Division

    CERN Multimedia

    1980-01-01

    A four-cell superconducting RF cavity ready for installation in its cryostat, the first one at CERN. From bottom to top, on the right, Herbert Lengeler, Jean-François Malo, Enrico Chiaveri and François Grabowski, Albert Insomby. On the left, ..?, Ernst Ullrich Haebel, ..?, Jean-Marie Maugain, Artur Scharding, Hansuli Preis, R. Romjin. The place is the EF hall next to Bld. 13. (see Annual Report 1980 p. 71)

  4. Spatial proximity effects on the excitation of sheath RF voltages by evanescent slow waves in the ion cyclotron range of frequencies

    Science.gov (United States)

    Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric

    2017-02-01

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF  +  DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  5. The Frankfurt RF-driven ion source

    CERN Document Server

    Beller, Peter; Klein, H; Maaser, A; Volk, K; Weber, M

    2000-01-01

    An RF-driven volume ion source based on the high efficiency ion source (HIEFS) has been developed at the Institut fuer Angewandte Physik in Frankfurt. The RF-driven ion source operates at a frequency of 3.5 MHz with a maximum duty factor of 10%. Using an 11 kW RF-amplifier a He sup + -beam with a current of 82 mA as well as an oxygen beam with a current of 39 mA and an O sup + -fraction of 90% could be extracted. Experiments were done to study the operating conditions of the ion source. For the working gases helium and oxygen the emission current density in dependence on several ion source parameters was investigated. Furthermore, the energy distribution of the electrons and ions in the plasma as well as the beam composition for several working gases were studied. This article will give a detailed description of the ion source and the experimental setup. In addition, various dependencies between the plasma parameters and the emission current density, the energy distribution of electrons and ions and the beam ...

  6. RF Gun Photocathode Research at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Jongewaard, E.; Akre, R.; Brachmann, A.; Corbett, J.; Gilevich, S.; Grouev, K.; Hering, P.; P.Krejcik,; Lewandowski, J.; Loos, H.; Montagne, T.; Sheppard, J.C.; Stefan, P.; Vlieks, A.; Weathersby, S.; Zhou, F.; /SLAC

    2012-05-16

    LCLS is presently operating with a third copper photocathode in the original rf gun, with a quantum efficiency (QE) of {approx}1 x 10{sup -4} and projected emittance {gamma}{var_epsilon}{sub x,y} = 0.45 {micro}m at 250 pC bunch charge. The spare LCLS gun is installed in the SLAC Accelerator Structure Test Area (ASTA), fully processed to high rf power. As part of a wider photocathode R and D program, a UV laser system and additional gun diagnostics are being installed at ASTA to measure QE, QE lifetime, and electron beam emittance under a variety of operating conditions. The near-term goals are to test and verify the spare photocathode production/installation sequence, including transfer from the final holding chamber to the rf gun. Mid- and longer-term goals include development of a rigorous understanding of plasma and laser-assisted surface conditioning and investigation of new, high-QE photocathode materials. In parallel, an x-ray photoemission spectroscopy station is nearing completion, to analyze Cu photocathode surface chemistry. In this paper we review the status and anticipated operating parameters of ASTA and the spectroscopy test chamber.

  7. The RF Cycle of the PIMMS Synchrotron

    CERN Document Server

    Crescenti, M; Rossi, S

    1999-01-01

    This paper deals with the study of the rf cycle of the synchrotron of the Proton-Ion Medical Machine Study (PIMMS) hosted at CERN. The cycle comprises the adiabatic trapping, the acceleration and the rf gymnastics, both for protons and fully stripped carbon ions. The injection energy is 20 MeV for protons and 7 MeV/u for carbon. The maximum extraction energies are 250 MeV for protons and 400 MeV/u for carbon ions. The reserved time is less than 1 s, with a maximum magnetic field ramp of less than 3 T/s. The simulations show that the beam stays inside the aperture of the machine, and that there are no longitudinal losses. At the end of the cycle the beam is ready for extraction with a Dp/p of 0.4 %. The peak rf voltage is 3 kV and the frequency range is from 0.49 to 2.85 MHz.

  8. Beam-Based Procedures for RF Guns

    CERN Document Server

    Krasilnikov, Mikhail; Grabosch, H J; Hartrott, Michael; Hui Han, Jang; Miltchev, Velizar; Oppelt, Anne; Petrosyan, Bagrat; Staykov, Lazar; Stephan, Frank

    2005-01-01

    A wide range of rf photo injector parameters has to be optimized in order to achieve an electron source performance as required for linac based high gain FELs. Some of the machine parameters can not be precisely controlled by direct measurements, whereas the tolerance on them is extremely tight. Therefore, this should be met with beam-based techniques. Procedures for beam-based alignment (BBA) of the laser on the photo cathode as well as solenoid alignment have been developed. They were applied at the Photo Injector Test facility at DESY Zeuthen (PITZ) and at the photo injector of the VUV-FEL at DESY Hamburg. A field balance of the accelerating mode in the 1 ½ cell gun cavity is one of the key beam dynamics issues of the rf gun. Since no direct field measurement in the half and full cell of the cavity is available for the PITZ gun, a beam-based technique to determine the field balance has been proposed. A beam-based rf phase monitoring procedure has been developed as well.

  9. SPS RF System:Tetrodes and Waveguides

    CERN Multimedia

    1977-01-01

    The picture shows part of a RF power generating plant. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  10. SPS RF system:Tetrodes and waveguides

    CERN Multimedia

    1974-01-01

    This picture shows one of the initially installed amplifier units of the SPS RF system. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: in 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X.

  11. Biogenic syngenetic pyrite from tuffaceous sedimentary RF3-V rocks

    Science.gov (United States)

    Kozyreva, Irina; Nikulova, Natalia

    2015-04-01

    Biogenic framboidal pyrite was found in intraformational tuffaceous sedimentary gravelites, within basic volcanites (RF3-V) in Subpolar Urals (Sablya Ridge). Pyrite grains (Fe 44.07-44,33, S 50.22-53.31 wt. %) are composed of ball-like microconcretions, sometimes intergrown with crystals of pentagondodecahedron and cubic habit. The microconcretions (20 to 40 mcm) are roundish and composed of microcrystals, which end faces form spherical surface. The nuclei of the microconcretions are represented by frambohedrons 4-5 mcm in size, which are pyritized cells of sulphate-reducing colonial coccoid microfossils. The formation of the frambohedrons occurred synchronously to sedimentation in stagnant reducing environment at interaction of biogenic hydrogen sulphide with water-dissolved iron. The biogenic hydrogen sulphide is reduced by microorganisms in the conditions of free and unrestricted access of dissolved sulphate ions sourced from sulphur of fumarole gases. Iron came from washed-out basic volcanites. The growth of outer radial parts of microconcretions occurred during compaction of sediments in diagenetic stage. The quantity of dissolved sulphate and iron during pyrite formation exceeded possibilitites of bacterial "starters" which resulted in the formation of pyrites of other morphological varieties. This is confirmed by the accretion of concentric rays of the concretions and cubic microcrystals of pyrite in the aggregate grains. The formation of tuffaceous sediments occurred during temporary decrease of volcanic activity in a continuous linear water flow with stagnant areas composed of water-displaced pebbles from underlying metaterrigenous rocks (RF 1-2), which were exposed beyond the development area of volcanic strata, unchanged clasts of recent and synchronously formed basic and medium volcanites with participation of air-driven ashes and influence of volcanic gases in the presence of sulphate-reducing bacteria. The work is financially supported by the Program

  12. Effects of Various RF Powers on CdTe Thin Film Growth Using RF Magnetron Sputtering

    Science.gov (United States)

    Alibakhshi, Mohammad; Ghorannevis, Zohreh

    2016-09-01

    Cadmium telluride (CdTe) film was deposited using the magnetron sputtering system onto a glass substrate at various deposition times and radio frequency (RF) powers. Ar gas was used to generate plasma to sputter the CdTe atoms from CdTe target. Effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD) analysis showed that the films exhibited polycrystalline nature of CdTe structure with the (111) orientation as the most prominent peak. Optimum condition to grow the CdTe film was obtained and it was found that increasing the deposition time and RF power increases the crystallinity of the films. From the profilometer and XRD data's, the thicknesses and crystal sizes of the CdTe films increased at the higher RF power and the longer deposition time, which results in affecting the band gap as well. From atomic force microscopy (AFM) analysis we found that roughnesses of the films depend on the deposition time and is independent of the RF power.

  13. Commissioning of two RF operation modes for RF negative ion source experimental setup at HUST

    Science.gov (United States)

    Li, D.; Chen, D.; Liu, K.; Zhao, P.; Zuo, C.; Wang, X.; Wang, H.; Zhang, L.

    2017-08-01

    An RF-driven negative ion source experimental setup, without a cesium oven and an extraction system, has been built at Huazhong University of Science and Technology (HUST). The working gas is hydrogen, and the typical operational gas pressure is 0.3 Pa. The RF generator is capable of delivering up to 20 kW at 0.9 - 1.1 MHz, and has two operation modes, the fixed-frequency mode and auto-tuning mode. In the fixed-frequency mode, it outputs a steady RF forward power (Pf) at a fixed frequency. In the auto-tuning mode, it adjusts the operating frequency to seek and track the minimum standing wave ratio (SWR) during plasma discharge. To achieve fast frequency tuning, the RF signal source adopts a direct digital synthesizer (DDS). To withstand high SWR during the discharge, a tetrode amplifier is chosen as the final stage amplifier. The trend of maximum power reflection coefficient |ρ|2 at plasma ignition is presented at the fixed frequency of 1.02 MHz with the Pf increasing from 5 kW to 20 kW, which shows the maximum |ρ|2 tends to be "steady" under high RF power. The experiments in auto-tuning mode fail due to over-current protection of screen grid. The possible reason is the relatively large equivalent anode impedance caused by the frequency tuning. The corresponding analysis and possible solution are presented.

  14. LINEAR SYSTEMS AND LINEAR INTERPOLATION I

    Institute of Scientific and Technical Information of China (English)

    丁立峰

    2001-01-01

    he linear interpolation of linear system on a family of linear systems is introduced and discussed. Some results and examples on singly generated systems on a finite dimensional vector space are given.

  15. Technology development of RF MEMS switches on printed circuit boards

    Science.gov (United States)

    Chang, Hung-Pin

    Today, some engineers have shifted their focus on the micro-electro-mechanical system (MEMS) to pursue better technological advancements. Recent development in RF MEMS technologies have lead to superior switch characteristics, i.e., very low insertion loss, very low power requirements, and high isolation comparing to the conventional semiconductor devices. This success has promised the potential of MEMS to revolutionize RF and microwave system implementation for the next generation of communication applications. However, RF MEMS switches integrated monolithically with various RF functional components on the same substrate to create multifunctional and reconfigurable complete communication systems remains to be a challenge research topic due to the concerns of the high cost of packaging process and the high cost of RF matching requirements in module board implementation. Furthermore, the fabrication of most RF MEMS switches requires thickness control and surface planarization of wide metal lines prior to deposition of a metal membrane bridge, which poses a major challenge to manufacturability. To ease the fabrication of RF MEMS switches and to facilitate their integration with other RF components such as antennas, phase delay lines, tunable filters, it is imperative to develop a manufacturable RF MEMS switch technology on a common substrate housing all essential RF components. Development of a novel RF MEMS technology to build a RF MEMS switch and provide a system-level packaging on microwave laminated printed circuit boards (PCBs) are proposed in this dissertation. Two key processes, high-density inductively coupled plasma chemical vapor deposition (HDICP CVD) for low temperature dielectric deposition, and compressive molding planarization (COMP) for the temporary sacrificial polymer planarization have been developed for fabricating RF MEMS switches on PCBs. Several membrane-type capacitive switches have been fabricated showing excellent RF performance and dynamic

  16. Design and manufacture of the RF power supply and RF transmission line for SANAEM project Prometheus

    Science.gov (United States)

    Turemen, G.; Ogur, S.; Ahiska, F.; Yasatekin, B.; Cicek, E.; Ozbey, A.; Kilic, I.; Unel, G.; Alacakir, A.

    2017-08-01

    A 1-5 MeV proton beamline is being built by the Turkish Atomic Energy Authority in collaboration with a number of graduate students from different universities. The primary goal of the project, is to acquire the design ability and manufacturing capability of all the components locally. SPP will be an accelerator and beam diagnostics test facility and it will also serve the detector development community with its low beam current. This paper discusses the design and construction of the RF power supply and the RF transmission line components such as its waveguide converters and its circulator. Additionally low and high power RF test results are presented to compare the performances of the locally produced components to the commercially available ones.

  17. Design and Manufacture of the RF Power Supply and RF Transmission Line for SANAEM Project Prometheus

    CERN Document Server

    Turemen, G; Unel, G; Alacakir, A

    2015-01-01

    A 1-5 MeV proton beamline is being built by the Turkish Atomic Energy Authority in collaboration with a number of graduate students from different universities. The most important aspect of the project, is to acquire the design ability and manufacturing capability of all the components locally. SPP will be an accelerator and beam diagnostics test facility and it will also serve the detector development community with its low beam current. This paper discusses the design and construction of the RF power supply and the RF transmission line components such as its waveguide converters and its circulator.

  18. Slice emittance measurement for photocathode RF gun with solenoid scanning and RF deflecting cavity

    Science.gov (United States)

    Li, Chen; Huang, WenHui; Du, YingChao; Yan, LiXin; Tang, ChuanXiang

    2011-12-01

    The radiation of high-gain short-wavelength free-electron laser depends on the slice transverse emittance of the electron bunch. This essay introduces the method of slice emittance measurement, and shows the brief setup of this experiment using the solenoid scanning and RF deflecting cavity at Tsinghua University. The preliminary experimental results show that the slice rms emittance of the electron bunch generated by photocathode RF gun has considerable variations along the bunch and is typically less than 0.55 mm mrad for the laser rms radius of 0.4 mm.

  19. Slice emittance measurement for photocathode RF gun with solenoid scanning and RF deflecting cavity

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The radiation of high-gain short-wavelength free-electron laser depends on the slice transverse emittance of the electron bunch. This essay introduces the method of slice emittance measurement, and shows the brief setup of this experiment using the solenoid scanning and RF deflecting cavity at Tsinghua University. The preliminary experimental results show that the slice rms emittance of the electron bunch generated by photocathode RF gun has considerable variations along the bunch and is typically less than 0.55 mm mrad for the laser rms radius of 0.4 mm.

  20. A HIGH POWER RF COUPLER DESIGN FOR MUON COOLING RF CAVITIES.

    Energy Technology Data Exchange (ETDEWEB)

    CORLETT,J.; LI,DERUN; RIMMER,R.; HOLTKAMP,N.; MORETTI,A.; KIRK,H.G.

    1999-03-29

    We present a high power RF coupler design for an interleaved {pi}/2 805 MHz standing wave accelerating structure proposed for an muon cooling experiment at FNAL. The coupler, in its simplest form, is a rectangular waveguide directly connected to an accelerating Cell through an open slot on the cavity side-wall or end-plates. Two of such couplers are needed to feed the interleaved cavities. Current high power RF test requires the coupler to be at critical coupling. Numerical simulations on the coupler designs using MAFIA will be presented.

  1. Simplified quantification of labile proton concentration-weighted chemical exchange rate (kws) with RF saturation time dependent ratiometric analysis (QUESTRA) - Normalization of relaxation and RF irradiation spillover effects for improved quantitative chemical exchange saturation transfer (CEST) MRI

    Science.gov (United States)

    Sun, Phillip Zhe

    2012-01-01

    Chemical exchange saturation transfer (CEST) MRI is an emerging imaging technique capable of detecting dilute proteins/peptides and microenvironmental properties, with promising in vivo applications. However, CEST MRI contrast is complex, varying not only with the labile proton concentration and exchange rate, but also with experimental conditions such as field strength and RF irradiation scheme. Furthermore, the optimal RF irradiation power depends on the exchange rate, which must be estimated in order to optimize the CEST MRI experiments. Although methods including numerical fitting with modified Bloch-McConnell equations, quantification of exchange rate with RF saturation time and power (QUEST and QUESP), have been proposed to address this relationship, they require multiple-parameter non-linear fitting and accurate relaxation measurement. Our work here extended the QUEST algorithm with ratiometric analysis (QUESTRA) that normalizes the magnetization transfer ratio (MTR) at labile and reference frequencies, which effectively eliminates the confounding relaxation and RF spillover effects. Specifically, the QUESTRA contrast approaches its steady state mono-exponentially at a rate determined by the reverse exchange rate (kws), with little dependence on bulk water T1, T2, RF power and chemical shift. The proposed algorithm was confirmed numerically, and validated experimentally using a tissue-like phantom of serially titrated pH compartments. PMID:21842497

  2. Simplified quantification of labile proton concentration-weighted chemical exchange rate (k(ws) ) with RF saturation time dependent ratiometric analysis (QUESTRA): normalization of relaxation and RF irradiation spillover effects for improved quantitative chemical exchange saturation transfer (CEST) MRI.

    Science.gov (United States)

    Sun, Phillip Zhe

    2012-04-01

    Chemical exchange saturation transfer MRI is an emerging imaging technique capable of detecting dilute proteins/peptides and microenvironmental properties, with promising in vivo applications. However, chemical exchange saturation transfer MRI contrast is complex, varying not only with the labile proton concentration and exchange rate, but also with experimental conditions such as field strength and radiofrequency (RF) irradiation scheme. Furthermore, the optimal RF irradiation power depends on the exchange rate, which must be estimated in order to optimize the chemical exchange saturation transfer MRI experiments. Although methods including numerical fitting with modified Bloch-McConnell equations, quantification of exchange rate with RF saturation time and power (QUEST and QUESP), have been proposed to address this relationship, they require multiple-parameter non-linear fitting and accurate relaxation measurement. Our work extended the QUEST algorithm with ratiometric analysis (QUESTRA) that normalizes the magnetization transfer ratio at labile and reference frequencies, which effectively eliminates the confounding relaxation and RF spillover effects. Specifically, the QUESTRA contrast approaches its steady state mono-exponentially at a rate determined by the reverse exchange rate (k(ws) ), with little dependence on bulk water T(1) , T(2) , RF power and chemical shift. The proposed algorithm was confirmed numerically, and validated experimentally using a tissue-like phantom of serially titrated pH compartments.

  3. Reliability studies on NPN RF power transistors under swift heavy ion irradiation

    Science.gov (United States)

    Pushpa, N.; Praveen, K. C.; Gnana Prakash, A. P.; Naik, P. S.; Cressler, John D.; Gupta, S. K.; Revannasiddaiah, D.

    2012-02-01

    NPN RF power transistors were irradiated with 140 MeV Si 10+ ions, 100 MeV F 8+ ions, 50 MeV Li 3+ ions and Co-60 gamma radiation in the dose range from 100 krad to 100 Mrad. The transistor characteristics are studied before and after irradiation from which the parameters such as Gummel characteristics, excess base current (Δ IB = IBpost - IBpre), dc current gain ( hFE), transconductance ( gm) and collector-saturation current ( ICSat) are determined. The degradation observed in the electrical characteristics is almost the same for different types of ion irradiated NPN RF power transistors with similar total doses although there is a large difference in the linear energy transfer (LET) of the ions. Further, it was observed more degradation in DC I- V characteristics of ion irradiated devices than the Co-60 gamma irradiated devices for higher doses.

  4. Realization of an analog predistortion circuit for RF optical fiber links

    Institute of Scientific and Technical Information of China (English)

    Tian Xuenong; Wang Zhigong; Li Wei

    2009-01-01

    This paper presents an analog predistortion circuit for RF optical fiber links. The circuit consists of two source-coupled differential transconductance amplifiers which could provide linear and nonlinear transfer charac-teristics by adjusting the bias voltage and the transistor sizes. The circuit was designed and realized in a standard 0.18-μm CMOS technology of SMIC. The chip occupies 0.48 × 0.24 mm~2. The DC supply is 3.3 V. Using this circuit, the third-order intermodulation distortion (IMD) suppression of a directly modulated RF optical fiber link can be improved by 9-16 dBc at relatively low cost.

  5. Role of rf electric and magnetic fields in heating of micro-protrusions in accelerating structures

    CERN Document Server

    Nusinovich, Gregory S

    2011-01-01

    It is known that high-gradient operation in metallic accelerating structures causes significant deterioration of structure surfaces that, in turn, greatly increases the probability of microwave breakdown. At the same time, the physical reason for this deterioration so far is not well understood. In the present paper, the role of two effects is analyzed, viz. (a) the microwave heating caused by penetration of the rf magnetic field into microprotrusion of a radius on the order of the skin depth and (b) the Joule heating caused by the field emitted current, i.e. the effect of the rf electric field magnified by a sharp protrusion. Corresponding expressions for the power densities of both effects are derived and the criterion for evaluating the dominance of one of these two is formulated. This criterion is analyzed and illustrated by the discussion of an example with parameters typical for recent experiments at the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory.

  6. Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator.

    Science.gov (United States)

    Xu, Longtao; Jin, Shilei; Li, Yifei

    2016-04-18

    We present the first down-conversion intensity modulated-direct detection (IM-DD) RF photonic link that achieves frequency down-conversion using the nonlinear optical phase modulation inside a Mach-Zehnder (MZ) modulator. The nonlinear phase modulation is very sensitive and it can enable high RF-to-IF conversion efficiency. Furthermore, the link linearity is enhanced by canceling the nonlinear distortions from the nonlinear phase modulation and the MZ interferometer. Proof-of-concept measurement was performed. The down-conversion IM-DD link demonstrated 28dB improvement in distortion levels over that of a conventional IM-DD link using a LiNbO3 MZ modulator.

  7. Capture cavity cryomodule for quantum beam experiment at KEK superconducting RF test facility

    Science.gov (United States)

    Tsuchiya, K.; Hara, K.; Hayano, H.; Kako, E.; Kojima, Y.; Kondo, Y.; Nakai, H.; Noguchi, S.; Ohuchi, N.; Terashima, A.; Horikoshi, A.; Semba, T.

    2014-01-01

    A capture cavity cryomodule was fabricated and used in a beam line for quantum beam experiments at the Superconducting RF Test Facility (STF) of the High Energy Accelerator Research Organization in Japan. The cryomodule is about 4 m long and contains two nine-cell cavities. The cross section is almost the same as that of the STF cryomodules that were fabricated to develop superconducting RF cavities for the International Linear Collider. An attempt was made to reduce the large deflection of the helium gas return pipe (GRP) that was observed in the STF cryomodules during cool-down and warm-up. This paper briefly describes the structure and cryogenic performance of the captures cavity cryomodule, and also reports the measured displacement of the GRP and the cavity-containing helium vessels during regular operation.

  8. Capture cavity cryomodule for quantum beam experiment at KEK superconducting RF test facility

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K.; Hara, K.; Hayano, H.; Kako, E.; Kojima, Y.; Kondo, Y.; Nakai, H.; Noguchi, S.; Ohuchi, N.; Terashima, A. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Horikoshi, A.; Semba, T. [Hitachi, Ltd., Hitachi Works, Hitachi, Ibaraki 317-8511 (Japan)

    2014-01-29

    A capture cavity cryomodule was fabricated and used in a beam line for quantum beam experiments at the Superconducting RF Test Facility (STF) of the High Energy Accelerator Research Organization in Japan. The cryomodule is about 4 m long and contains two nine-cell cavities. The cross section is almost the same as that of the STF cryomodules that were fabricated to develop superconducting RF cavities for the International Linear Collider. An attempt was made to reduce the large deflection of the helium gas return pipe (GRP) that was observed in the STF cryomodules during cool-down and warm-up. This paper briefly describes the structure and cryogenic performance of the captures cavity cryomodule, and also reports the measured displacement of the GRP and the cavity-containing helium vessels during regular operation.

  9. System considerations and RF front-end design for integration of satellite navigation and mobile standards

    Directory of Open Access Journals (Sweden)

    A. Miskiewicz

    2009-05-01

    Full Text Available The paper presents the challenges involved in a system design of a robust reconfigurable RF front-end for navigation and mobile standards. Receiver architecture is chosen from the point of view of inter-system interference and 130nm CMOS process characteristics. System concept covers the implementation of GPS, Galileo, UMTS, GSM and CDMA2000 using a Zero-IF architecture with reconfigurable analog and digital path. Feasibility studies of the system cover analysis of the wireless regulations and performance criteria, such as overall gain, noise figure (NF, and 1dB compression point (P1dB of the RF chain, phase noise requirements and VCO tuning range [1]. The presented chip was fabricated in 130 nm CMOS technology. System considerations are confirmed with the chip measurements of gain, noise figure, and linearity. Prospects for the future work are presented including technology shrink.

  10. Development of a New RF Finger concept for vacuum beam line interconnections

    CERN Document Server

    Garion, C; Rambeau, H

    2012-01-01

    RF contact fingers are primarily used as a transition element to absorb the thermal expansion of vacuum chambers during bake-out and also to compensate for mechanical tolerances. They have to carry the beam image current to avoid the generation of Higher Order Modes and to reduce beam impedances. They are usually made out of copper beryllium thin sheets and are therefore very fragile and critical components. In this paper, a robust design based on a deformable finger concept is proposed. It allows the compensation of large longitudinal movements and also defaults such as transverse offset, twist or bending. The concept of this new RF fingers is first explained, then the design of the component is presented. The mechanical study based on a highly non-linear Finite Element model is shown as well as preliminary tests, including fatigue assessment, carried out on prototypes.

  11. Monitoring local heating around an interventional MRI antenna with RF radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Ertürk, M. Arcan [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21287 and Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287 (United States); El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A., E-mail: bottoml@mri.jhu.edu [Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287 (United States)

    2015-03-15

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  12. Simultaneous radiofrequency (RF) heating and magnetic resonance (MR) thermal mapping using an intravascular MR imaging/RF heating system.

    Science.gov (United States)

    Qiu, Bensheng; El-Sharkawy, Abdel-Monem; Paliwal, Vaishali; Karmarkar, Parag; Gao, Fabao; Atalar, Ergin; Yang, Xiaoming

    2005-07-01

    Previous studies have confirmed the possibility of using an intravascular MR imaging guidewire (MRIG) as a heating source to enhance vascular gene transfection/expression. This motivated us to develop a new intravascular system that can perform MR imaging, radiofrequncy (RF) heating, and MR temperature monitoring simultaneously in an MR scanner. To validate this concept, a series of mathematical simulations of RF power loss along a 0.032-inch MRIG and RF energy spatial distribution were performed to determine the optimum RF heating frequency. Then, an RF generator/amplifier and a filter box were built. The possibility for simultaneous RF heating and MR thermal mapping of the system was confirmed in vitro using a phantom, and the obtained thermal mapping profile was compared with the simulated RF power distribution. Subsequently, the feasibility of simultaneous RF heating and temperature monitoring was successfully validated in vivo in the aorta of living rabbits. This MR imaging/RF heating system offers a potential tool for intravascular MR-mediated, RF-enhanced vascular gene therapy.

  13. Non-linear beam dynamics tests in the LHC: LHC dynamic aperture MD on Beam 2 (24th of June 2012)

    CERN Document Server

    Maclean, E H; Persson, T H B; Redaelli, S; Schmidt, F; Tomas, R; Uythoven, J

    2013-01-01

    This MD note summarizes measurements performed on LHC Beam 2 during the non-linear machine development (MD) of 24 June 2012. The aim of the measurement was to observe the dynamic aperture of LHC Beam 2, and obtain turn-by-turn (TbT) betatron oscillation data, enabling the study of amplitude detuning and resonance driving terms (RDTs). The regular injections required by the MD also represented an opportunity to test a new coupling feedback routine based on the analysis of injection oscillation data. Initial measurements were performed on the nominal state of the LHC at injection. On completion of this study the Landau octupoles were turned off and corrections for higher-order chromaticities were implemented to reduce the non-linearity of the machine as far as possible. A second set of measurements were then performed. All studies were performed using the LHC aperture kicker (MKA).

  14. Wave induced density modification in RF sheaths and close to wave launchers

    Energy Technology Data Exchange (ETDEWEB)

    Van Eester, D., E-mail: d.van.eester@fz-juelich.de [Laboratory for Plasma Physics, ERM/KMS, EUROfusion Consortium Member, Brussels (Belgium); Crombé, K. [Laboratory for Plasma Physics, ERM/KMS, EUROfusion Consortium Member, Brussels (Belgium); Department of Applied Physics, Ghent University, Ghent (Belgium); Lu, Ling-Feng [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2015-12-10

    With the return to full metal walls - a necessary step towards viable fusion machines - and due to the high power densities of current-day ICRH (Ion Cyclotron Resonance Heating) or RF (radio frequency) antennas, there is ample renewed interest in exploring the reasons for wave-induced sputtering and formation of hot spots. Moreover, there is experimental evidence on various machines that RF waves influence the density profile close to the wave launchers so that waves indirectly influence their own coupling efficiency. The present study presents a return to first principles and describes the wave-particle interaction using a 2-time scale model involving the equation of motion, the continuity equation and the wave equation on each of the time scales. Through the changing density pattern, the fast time scale dynamics is affected by the slow time scale events. In turn, the slow time scale density and flows are modified by the presence of the RF waves through quasilinear terms. Although finite zero order flows are identified, the usual cold plasma dielectric tensor - ignoring such flows - is adopted as a first approximation to describe the wave response to the RF driver. The resulting set of equations is composed of linear and nonlinear equations and is tackled in 1D in the present paper. Whereas the former can be solved using standard numerical techniques, the latter require special handling. At the price of multiple iterations, a simple ’derivative switch-on’ procedure allows to reformulate the nonlinear problem as a sequence of linear problems. Analytical expressions allow a first crude assessment - revealing that the ponderomotive potential plays a role similar to that of the electrostatic potential arising from charge separation - but numerical implementation is required to get a feeling of the full dynamics. A few tentative examples are provided to illustrate the phenomena involved.

  15. Wave induced density modification in RF sheaths and close to wave launchers

    Science.gov (United States)

    Van Eester, D.; Crombé, K.; Lu, Ling-Feng

    2015-12-01

    With the return to full metal walls - a necessary step towards viable fusion machines - and due to the high power densities of current-day ICRH (Ion Cyclotron Resonance Heating) or RF (radio frequency) antennas, there is ample renewed interest in exploring the reasons for wave-induced sputtering and formation of hot spots. Moreover, there is experimental evidence on various machines that RF waves influence the density profile close to the wave launchers so that waves indirectly influence their own coupling efficiency. The present study presents a return to first principles and describes the wave-particle interaction using a 2-time scale model involving the equation of motion, the continuity equation and the wave equation on each of the time scales. Through the changing density pattern, the fast time scale dynamics is affected by the slow time scale events. In turn, the slow time scale density and flows are modified by the presence of the RF waves through quasilinear terms. Although finite zero order flows are identified, the usual cold plasma dielectric tensor - ignoring such flows - is adopted as a first approximation to describe the wave response to the RF driver. The resulting set of equations is composed of linear and nonlinear equations and is tackled in 1D in the present paper. Whereas the former can be solved using standard numerical techniques, the latter require special handling. At the price of multiple iterations, a simple 'derivative switch-on' procedure allows to reformulate the nonlinear problem as a sequence of linear problems. Analytical expressions allow a first crude assessment - revealing that the ponderomotive potential plays a role similar to that of the electrostatic potential arising from charge separation - but numerical implementation is required to get a feeling of the full dynamics. A few tentative examples are provided to illustrate the phenomena involved.

  16. EM modeling of RF drive in DTL tank 4

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, Sergey S. [Los Alamos National Laboratory

    2012-06-19

    A 3-D MicroWave Studio model for the RF drive in the LANSCE DTL tank 4 has been built. Both eigensolver and time-domain modeling are used to evaluate maximal fields in the drive module and RF coupling. The LANSCE DTL tank 4 has recently been experiencing RF problems, which may or may not be related to its replaced RF coupler. This situation stimulated a request by Dan Rees to provide EM modeling of the RF drive in the DTL tank 4 (T4). Jim O'Hara provided a CAD model that was imported into the CST Microwave Studio (MWS) and after some modifications became a part of a simplified MWS model of the T4 RF drive. This technical note describes the model and presents simulation results.

  17. Accelerating Rf System Of Microtron-recuperator For Fel

    CERN Document Server

    Arbuzov, V S; Gorniker, E I; Kendjebulatov, E K; Kolobanov, E I; Kondakov, A A; Krutikhin, S A; Kuptsov, I V; Kurkin, G Ya; Medvedev, L E; Motygin, S V; Osipov, V N; Petrov, V M; Pilan, Andrey M; Popov, A M; Sedlyarov, I K; Tribendis, A G

    2004-01-01

    FEL (Free Electron Laser) for the Siberian Centre of Photochemical Research is constructed in Novosibirsk. Parameters and last results received on a RF system of the race-track microtron-recuperator for FEL are given in the report. The frequency of the RF system is 180.4 MHz. The RF system operates in continuous mode. The 16 cavities are used in accelerating system of the microtron-recuperator. The RF system is consists of two channels. Each of two 600kW generators drives 8 cavities. Each channel was tested at 7500 kV on the gaps of 8 cavities. The RF power was 630 kW per channel. Now, the accelerating RF system operates at 13600 kV on 16 cavities. Total power of generators is 1100kW.

  18. Multi-MW 22.8 GHz Harmonic Multiplier - RF Power Source for High-Gradient Accelerator R&D

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-07-26

    Electrodynamic and particle simulation studies have been carried out to optimize design of a two-cavity harmonic frequency multiplier, in which a linear electron beam is energized by rotating fields near cyclotron resonance in a TE111 cavity in a uniform magnetic field, and in which the beam then radiates coherently at the nth harmonic into a TEn11 output cavity. Examples are worked out in detail for 7th and 2nd harmonic converters, showing RF-to-RF conversion efficiencies of 45% and 88%, respectively at 19.992 GHz (K-band) and 5.712 GHz (C-band), for a drive frequency of 2.856 GHz. Details are shown of RF infrastructure (S-band klystron, modulator) and harmonic converter components (drive cavity, output cavities, electron beam source and modulator, beam collector) for the two harmonic converters to be tested. Details are also given for the two-frequency (S- and C-band) coherent multi-MW test stand for RF breakdown and RF gun studies.

  19. High Efficiency, High Linearity, Switch Mode Power Amplifiers for Varying envelop Signal Applications

    DEFF Research Database (Denmark)

    Tong, Tian; Sira, Daniel; Nielsen, Michael;

    2009-01-01

    using switch-mode power amplifier aided by various linearization techniques can present a feasible way to achieve both high linearity and high power efficiency. In this paper two different implementations of the switch-mode power amplifier a re p resented for varying envelop applications: the RF pulse...

  20. Conceptual SPL RF Main Power Coupler design

    CERN Document Server

    Montesinos, Eric

    2011-01-01

    While the upgrade plans of the LHC injectors had to be reduced in scope in 2010, the Superconducting Proton Linac (SPL) remains a fundamental element of plans for a possible future neutrino facility. Prototyping work is therefore continuing at CERN and the current focus is on the test of a first four cavity SPL-like cryomodule with full power. This report summarizes the parameters for the Main Power Coupler design as discussed and approved within the ‘Review of SPL RF power couplers’, held at CERN in March 2010.