WorldWideScience

Sample records for linear multigrid method

  1. Multigrid for the Galerkin least squares method in linear elasticity: The pure displacement problem

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaechil [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated linear systems. In this work, we prove the convergence of a multigrid (W-cycle) method. This multigrid is robust in that the convergence is uniform as the parameter, v, goes to 1/2 Computational experiments are included.

  2. Multidimensional radiative transfer with multilevel atoms. II. The non-linear multigrid method.

    Science.gov (United States)

    Fabiani Bendicho, P.; Trujillo Bueno, J.; Auer, L.

    1997-08-01

    A new iterative method for solving non-LTE multilevel radiative transfer (RT) problems in 1D, 2D or 3D geometries is presented. The scheme obtains the self-consistent solution of the kinetic and RT equations at the cost of only a few (iteration (Brandt, 1977, Math. Comp. 31, 333; Hackbush, 1985, Multi-Grid Methods and Applications, springer-Verlag, Berlin), an efficient multilevel RT scheme based on Gauss-Seidel iterations (cf. Trujillo Bueno & Fabiani Bendicho, 1995ApJ...455..646T), and accurate short-characteristics formal solution techniques. By combining a valid stopping criterion with a nested-grid strategy a converged solution with the desired true error is automatically guaranteed. Contrary to the current operator splitting methods the very high convergence speed of the new RT method does not deteriorate when the grid spatial resolution is increased. With this non-linear multigrid method non-LTE problems discretized on N grid points are solved in O(N) operations. The nested multigrid RT method presented here is, thus, particularly attractive in complicated multilevel transfer problems where small grid-sizes are required. The properties of the method are analyzed both analytically and with illustrative multilevel calculations for Ca II in 1D and 2D schematic model atmospheres.

  3. Multigrid methods III

    CERN Document Server

    Trottenberg, U; Third European Conference on Multigrid Methods

    1991-01-01

    These proceedings contain a selection of papers presented at the Third European Conference on Multigrid Methods which was held in Bonn on October 1-4, 1990. Following conferences in 1981 and 1985, a platform for the presentation of new Multigrid results was provided for a third time. Multigrid methods no longer have problems being accepted by numerical analysts and users of numerical methods; on the contrary, they have been further developed in such a successful way that they have penetrated a variety of new fields of application. The high number of 154 participants from 18 countries and 76 presented papers show the need to continue the series of the European Multigrid Conferences. The papers of this volume give a survey on the current Multigrid situation; in particular, they correspond to those fields where new developments can be observed. For example, se­ veral papers study the appropriate treatment of time dependent problems. Improvements can also be noticed in the Multigrid approach for semiconductor eq...

  4. Multigrid methods in structural mechanics

    Science.gov (United States)

    Raju, I. S.; Bigelow, C. A.; Taasan, S.; Hussaini, M. Y.

    1986-01-01

    Although the application of multigrid methods to the equations of elasticity has been suggested, few such applications have been reported in the literature. In the present work, multigrid techniques are applied to the finite element analysis of a simply supported Bernoulli-Euler beam, and various aspects of the multigrid algorithm are studied and explained in detail. In this study, six grid levels were used to model half the beam. With linear prolongation and sequential ordering, the multigrid algorithm yielded results which were of machine accuracy with work equivalent to 200 standard Gauss-Seidel iterations on the fine grid. Also with linear prolongation and sequential ordering, the V(1,n) cycle with n greater than 2 yielded better convergence rates than the V(n,1) cycle. The restriction and prolongation operators were derived based on energy principles. Conserving energy during the inter-grid transfers required that the prolongation operator be the transpose of the restriction operator, and led to improved convergence rates. With energy-conserving prolongation and sequential ordering, the multigrid algorithm yielded results of machine accuracy with a work equivalent to 45 Gauss-Seidel iterations on the fine grid. The red-black ordering of relaxations yielded solutions of machine accuracy in a single V(1,1) cycle, which required work equivalent to about 4 iterations on the finest grid level.

  5. Multigrid methods for partial differential equations - a short introduction

    International Nuclear Information System (INIS)

    Linden, J.; Stueben, K.

    1993-01-01

    These notes summarize the multigrid methods and emphasis is laid on the algorithmic concepts of multigrid for solving linear and non-linear partial differential equations. In this paper there is brief description of the basic structure of multigrid methods. Detailed introduction is also contained with applications to VLSI process simulation. (A.B.)

  6. Extending the applicability of multigrid methods

    International Nuclear Information System (INIS)

    Brannick, J; Brezina, M; Falgout, R; Manteuffel, T; McCormick, S; Ruge, J; Sheehan, B; Xu, J; Zikatanov, L

    2006-01-01

    Multigrid methods are ideal for solving the increasingly large-scale problems that arise in numerical simulations of physical phenomena because of their potential for computational costs and memory requirements that scale linearly with the degrees of freedom. Unfortunately, they have been historically limited by their applicability to elliptic-type problems and the need for special handling in their implementation. In this paper, we present an overview of several recent theoretical and algorithmic advances made by the TOPS multigrid partners and their collaborators in extending applicability of multigrid methods. specific examples that are presented include quantum chromodynamics, radiation transport, and electromagnetics

  7. A multigrid method for variational inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, S.; Stewart, D.E.; Wu, W.

    1996-12-31

    Multigrid methods have been used with great success for solving elliptic partial differential equations. Penalty methods have been successful in solving finite-dimensional quadratic programs. In this paper these two techniques are combined to give a fast method for solving obstacle problems. A nonlinear penalized problem is solved using Newton`s method for large values of a penalty parameter. Multigrid methods are used to solve the linear systems in Newton`s method. The overall numerical method developed is based on an exterior penalty function, and numerical results showing the performance of the method have been obtained.

  8. Multigrid

    CERN Document Server

    Trottenberg, Ulrich; Schuller, Anton

    2000-01-01

    Multigrid presents both an elementary introduction to multigrid methods for solving partial differential equations and a contemporary survey of advanced multigrid techniques and real-life applications.Multigrid methods are invaluable to researchers in scientific disciplines including physics, chemistry, meteorology, fluid and continuum mechanics, geology, biology, and all engineering disciplines. They are also becoming increasingly important in economics and financial mathematics.Readers are presented with an invaluable summary covering 25 years of practical experience acquired by the multigrid research group at the Germany National Research Center for Information Technology. The book presents both practical and theoretical points of view.* Covers the whole field of multigrid methods from its elements up to the most advanced applications* Style is essentially elementary but mathematically rigorous* No other book is so comprehensive and written for both practitioners and students

  9. The multigrid method for reactor calculations

    International Nuclear Information System (INIS)

    Douglas, S.R.

    1991-07-01

    Iterative solutions to linear systems of equations are discussed. The emphasis is on the concepts that affect convergence rates of these solution methods. The multigrid method is described, including the smoothing property, restriction, and prolongation. A simple example is used to illustrate the ideas

  10. The multigrid preconditioned conjugate gradient method

    Science.gov (United States)

    Tatebe, Osamu

    1993-01-01

    A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.

  11. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    Science.gov (United States)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for

  12. Investigations on application of multigrid method to MHD equilibrium analysis

    International Nuclear Information System (INIS)

    Ikuno, Soichiro

    2000-01-01

    The potentiality of application for Multi-grid method to MHD equilibrium analysis is investigated. The nonlinear eigenvalue problem often appears when the MHD equilibria are determined by solving the Grad-Shafranov equation numerically. After linearization of the equation, the problem is solved by use of the iterative method. Although the Red-Black SOR method or Gauss-Seidel method is often used for the solution of the linearized equation, it takes much CPU time to solve the problem. The Multi-grid method is compared with the SOR method for the Poisson Problem. The results of computations show that the CPU time required for the Multi-grid method is about 1000 times as small as that for the SOR method. (author)

  13. The Mixed Finite Element Multigrid Method for Stokes Equations

    Science.gov (United States)

    Muzhinji, K.; Shateyi, S.; Motsa, S. S.

    2015-01-01

    The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q 2-Q 1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results. PMID:25945361

  14. Multigrid Methods for EHL Problems

    Science.gov (United States)

    Nurgat, Elyas; Berzins, Martin

    1996-01-01

    In many bearings and contacts, forces are transmitted through thin continuous fluid films which separate two contacting elements. Objects in contact are normally subjected to friction and wear which can be reduced effectively by using lubricants. If the lubricant film is sufficiently thin to prevent the opposing solids from coming into contact and carries the entire load, then we have hydrodynamic lubrication, where the lubricant film is determined by the motion and geometry of the solids. However, for loaded contacts of low geometrical conformity, such as gears, rolling contact bearings and cams, this is not the case due to high pressures and this is referred to as Elasto-Hydrodynamic Lubrication (EHL) In EHL, elastic deformation of the contacting elements and the increase in fluid viscosity with pressure are very significant and cannot be ignored. Since the deformation results in changing the geometry of the lubricating film, which in turn determines the pressure distribution, an EHL mathematical model must simultaneously satisfy the complex elasticity (integral) and the Reynolds lubrication (differential) equations. The nonlinear and coupled nature of the two equations makes numerical calculations computationally intensive. This is especially true for highly loaded problems found in practice. One novel feature of these problems is that the solution may exhibit sharp pressure spikes in the outlet region. To this date both finite element and finite difference methods have been used to solve EHL problems with perhaps greater emphasis on the use of the finite difference approach. In both cases, a major computational difficulty is ensuring convergence of the nonlinear equations solver to a steady state solution. Two successful methods for achieving this are direct iteration and multigrid methods. Direct iteration methods (e.g Gauss Seidel) have long been used in conjunction with finite difference discretizations on regular meshes. Perhaps one of the best examples of

  15. Final report on the Copper Mountain conference on multigrid methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Copper Mountain Conference on Multigrid Methods was held on April 6-11, 1997. It took the same format used in the previous Copper Mountain Conferences on Multigrid Method conferences. Over 87 mathematicians from all over the world attended the meeting. 56 half-hour talks on current research topics were presented. Talks with similar content were organized into sessions. Session topics included: fluids; domain decomposition; iterative methods; basics; adaptive methods; non-linear filtering; CFD; applications; transport; algebraic solvers; supercomputing; and student paper winners.

  16. A multigrid solution method for mixed hybrid finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W. [Universitaet Augsburg (Germany)

    1996-12-31

    We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

  17. Semi-coarsening multigrid methods for parallel computing

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.E.

    1996-12-31

    Standard multigrid methods are not well suited for problems with anisotropic coefficients which can occur, for example, on grids that are stretched to resolve a boundary layer. There are several different modifications of the standard multigrid algorithm that yield efficient methods for anisotropic problems. In the paper, we investigate the parallel performance of these multigrid algorithms. Multigrid algorithms which work well for anisotropic problems are based on line relaxation and/or semi-coarsening. In semi-coarsening multigrid algorithms a grid is coarsened in only one of the coordinate directions unlike standard or full-coarsening multigrid algorithms where a grid is coarsened in each of the coordinate directions. When both semi-coarsening and line relaxation are used, the resulting multigrid algorithm is robust and automatic in that it requires no knowledge of the nature of the anisotropy. This is the basic multigrid algorithm whose parallel performance we investigate in the paper. The algorithm is currently being implemented on an IBM SP2 and its performance is being analyzed. In addition to looking at the parallel performance of the basic semi-coarsening algorithm, we present algorithmic modifications with potentially better parallel efficiency. One modification reduces the amount of computational work done in relaxation at the expense of using multiple coarse grids. This modification is also being implemented with the aim of comparing its performance to that of the basic semi-coarsening algorithm.

  18. Layout optimization with algebraic multigrid methods

    Science.gov (United States)

    Regler, Hans; Ruede, Ulrich

    1993-01-01

    Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.

  19. Multigrid methods for the computation of propagators in gauge fields

    International Nuclear Information System (INIS)

    Kalkreuter, T.

    1992-11-01

    In the present work generalizations of multigrid methods for propagators in gauge fields are investigated. We discuss proper averaging operations for bosons and for staggered fermions. An efficient algorithm for computing C numerically is presented. The averaging kernels C can be used not only in deterministic multigrid computations, but also in multigrid Monte Carlo simulations, and for the definition of block spins and blocked gauge fields in Monte Carlo renormalization group studies of gauge theories. Actual numerical computations of kernels and propagators are performed in compact four-dimensional SU(2) gauge fields. (orig./HSI)

  20. A multigrid Newton-Krylov method for flux-limited radiation diffusion

    International Nuclear Information System (INIS)

    Rider, W.J.; Knoll, D.A.; Olson, G.L.

    1998-01-01

    The authors focus on the integration of radiation diffusion including flux-limited diffusion coefficients. The nonlinear integration is accomplished with a Newton-Krylov method preconditioned with a multigrid Picard linearization of the governing equations. They investigate the efficiency of the linear and nonlinear iterative techniques

  1. New Multigrid Method Including Elimination Algolithm Based on High-Order Vector Finite Elements in Three Dimensional Magnetostatic Field Analysis

    Science.gov (United States)

    Hano, Mitsuo; Hotta, Masashi

    A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.

  2. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    Science.gov (United States)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2011-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.

  3. The development of an algebraic multigrid algorithm for symmetric positive definite linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanek, P.; Mandel, J.; Brezina, M. [Univ. of Colorado, Denver, CO (United States)

    1996-12-31

    An algebraic multigrid algorithm for symmetric, positive definite linear systems is developed based on the concept of prolongation by smoothed aggregation. Coarse levels are generated automatically. We present a set of requirements motivated heuristically by a convergence theory. The algorithm then attempts to satisfy the requirements. Input to the method are the coefficient matrix and zero energy modes, which are determined from nodal coordinates and knowledge of the differential equation. Efficiency of the resulting algorithm is demonstrated by computational results on real world problems from solid elasticity, plate blending, and shells.

  4. Toward robust scalable algebraic multigrid solvers

    International Nuclear Information System (INIS)

    Waisman, Haim; Schroder, Jacob; Olson, Luke; Hiriyur, Badri; Gaidamour, Jeremie; Siefert, Christopher; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2010-01-01

    This talk highlights some multigrid challenges that arise from several application areas including structural dynamics, fluid flow, and electromagnetics. A general framework is presented to help introduce and understand algebraic multigrid methods based on energy minimization concepts. Connections between algebraic multigrid prolongators and finite element basis functions are made to explored. It is shown how the general algebraic multigrid framework allows one to adapt multigrid ideas to a number of different situations. Examples are given corresponding to linear elasticity and specifically in the solution of linear systems associated with extended finite elements for fracture problems.

  5. Primal-Dual Interior Point Multigrid Method for Topology Optimization

    Czech Academy of Sciences Publication Activity Database

    Kočvara, Michal; Mohammed, S.

    2016-01-01

    Roč. 38, č. 5 (2016), B685-B709 ISSN 1064-8275 Grant - others:European Commission - EC(XE) 313781 Institutional support: RVO:67985556 Keywords : topology optimization * multigrid method s * interior point method Subject RIV: BA - General Mathematics Impact factor: 2.195, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0462418.pdf

  6. On several aspects and applications of the multigrid method for solving partial differential equations

    Science.gov (United States)

    Dinar, N.

    1978-01-01

    Several aspects of multigrid methods are briefly described. The main subjects include the development of very efficient multigrid algorithms for systems of elliptic equations (Cauchy-Riemann, Stokes, Navier-Stokes), as well as the development of control and prediction tools (based on local mode Fourier analysis), used to analyze, check and improve these algorithms. Preliminary research on multigrid algorithms for time dependent parabolic equations is also described. Improvements in existing multigrid processes and algorithms for elliptic equations were studied.

  7. Multigrid Methods for the Computation of Propagators in Gauge Fields

    Science.gov (United States)

    Kalkreuter, Thomas

    Multigrid methods were invented for the solution of discretized partial differential equations in order to overcome the slowness of traditional algorithms by updates on various length scales. In the present work generalizations of multigrid methods for propagators in gauge fields are investigated. Gauge fields are incorporated in algorithms in a covariant way. The kernel C of the restriction operator which averages from one grid to the next coarser grid is defined by projection on the ground-state of a local Hamiltonian. The idea behind this definition is that the appropriate notion of smoothness depends on the dynamics. The ground-state projection choice of C can be used in arbitrary dimension and for arbitrary gauge group. We discuss proper averaging operations for bosons and for staggered fermions. The kernels C can also be used in multigrid Monte Carlo simulations, and for the definition of block spins and blocked gauge fields in Monte Carlo renormalization group studies. Actual numerical computations are performed in four-dimensional SU(2) gauge fields. We prove that our proposals for block spins are “good”, using renormalization group arguments. A central result is that the multigrid method works in arbitrarily disordered gauge fields, in principle. It is proved that computations of propagators in gauge fields without critical slowing down are possible when one uses an ideal interpolation kernel. Unfortunately, the idealized algorithm is not practical, but it was important to answer questions of principle. Practical methods are able to outperform the conjugate gradient algorithm in case of bosons. The case of staggered fermions is harder. Multigrid methods give considerable speed-ups compared to conventional relaxation algorithms, but on lattices up to 184 conjugate gradient is superior.

  8. Development of Multigrid Methods for diffusion, Advection, and the incompressible Navier-Stokes Equations

    Energy Technology Data Exchange (ETDEWEB)

    Gjesdal, Thor

    1997-12-31

    This thesis discusses the development and application of efficient numerical methods for the simulation of fluid flows, in particular the flow of incompressible fluids. The emphasis is on practical aspects of algorithm development and on application of the methods either to linear scalar model equations or to the non-linear incompressible Navier-Stokes equations. The first part deals with cell centred multigrid methods and linear correction scheme and presents papers on (1) generalization of the method to arbitrary sized grids for diffusion problems, (2) low order method for advection-diffusion problems, (3) attempt to extend the basic method to advection-diffusion problems, (4) Fourier smoothing analysis of multicolour relaxation schemes, and (5) analysis of high-order discretizations for advection terms. The second part discusses a multigrid based on pressure correction methods, non-linear full approximation scheme, and papers on (1) systematic comparison of the performance of different pressure correction smoothers and some other algorithmic variants, low to moderate Reynolds numbers, and (2) systematic study of implementation strategies for high order advection schemes, high-Re flow. An appendix contains Fortran 90 data structures for multigrid development. 160 refs., 26 figs., 22 tabs.

  9. A first-order multigrid method for bound-constrained convex optimization

    Czech Academy of Sciences Publication Activity Database

    Kočvara, Michal; Mohammed, S.

    2016-01-01

    Roč. 31, č. 3 (2016), s. 622-644 ISSN 1055-6788 R&D Projects: GA ČR(CZ) GAP201/12/0671 Grant - others:European Commission - EC(XE) 313781 Institutional support: RVO:67985556 Keywords : bound-constrained optimization * multigrid methods * linear complementarity problems Subject RIV: BA - General Mathematics Impact factor: 1.023, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0460326.pdf

  10. The Closest Point Method and Multigrid Solvers for Elliptic Equations on Surfaces

    KAUST Repository

    Chen, Yujia

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. Elliptic partial differential equations are important from both application and analysis points of view. In this paper we apply the closest point method to solve elliptic equations on general curved surfaces. Based on the closest point representation of the underlying surface, we formulate an embedding equation for the surface elliptic problem, then discretize it using standard finite differences and interpolation schemes on banded but uniform Cartesian grids. We prove the convergence of the difference scheme for the Poisson\\'s equation on a smooth closed curve. In order to solve the resulting large sparse linear systems, we propose a specific geometric multigrid method in the setting of the closest point method. Convergence studies in both the accuracy of the difference scheme and the speed of the multigrid algorithm show that our approaches are effective.

  11. Multigrid methods for fully implicit oil reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, J.

    1995-12-31

    In this paper, the authors consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations the material balance or continuity equations, and the equation of motion (Darcy`s law). For the numerical solution of this system of nonlinear partial differential equations, there are two approaches: the fully implicit or simultaneous solution method, and the sequential solution method. In this paper, the authors consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations.

  12. Multigrid Algorithms for the Solution of Linear Complementarity Problems Arising from Free Boundary Problems.

    Science.gov (United States)

    1980-10-01

    solving (1.3); PFAS combines the concepts of multigrid algorithms with those of projected SOR. In Section 3, we discuss the implementation of PFAS, and...numerique de la torsion elasto- plastique d’une barre cylindrique. In Approximation et Methodes Iteratives de Resolution d’Inequations Variationelles et

  13. Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method

    Science.gov (United States)

    Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu

    2017-03-01

    To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.

  14. Discrete Fourier analysis of multigrid algorithms

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; Rhebergen, Sander

    2011-01-01

    The main topic of this report is a detailed discussion of the discrete Fourier multilevel analysis of multigrid algorithms. First, a brief overview of multigrid methods is given for discretizations of both linear and nonlinear partial differential equations. Special attention is given to the

  15. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    International Nuclear Information System (INIS)

    McCormick, Stephen F.

    2016-01-01

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/

  16. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

    2016-03-25

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  17. On a multigrid method for the coupled Stokes and porous media flow problem

    Science.gov (United States)

    Luo, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, C. W.

    2017-07-01

    The multigrid solution of coupled porous media and Stokes flow problems is considered. The Darcy equation as the saturated porous medium model is coupled to the Stokes equations by means of appropriate interface conditions. We focus on an efficient multigrid solution technique for the coupled problem, which is discretized by finite volumes on staggered grids, giving rise to a saddle point linear system. Special treatment is required regarding the discretization at the interface. An Uzawa smoother is employed in multigrid, which is a decoupled procedure based on symmetric Gauss-Seidel smoothing for velocity components and a simple Richardson iteration for the pressure field. Since a relaxation parameter is part of a Richardson iteration, Local Fourier Analysis (LFA) is applied to determine the optimal parameters. Highly satisfactory multigrid convergence is reported, and, moreover, the algorithm performs well for small values of the hydraulic conductivity and fluid viscosity, that are relevant for applications.

  18. Parallel multigrid methods: implementation on message-passing computers and applications to fluid dynamics. A draft

    International Nuclear Information System (INIS)

    Solchenbach, K.; Thole, C.A.; Trottenberg, U.

    1987-01-01

    For a wide class of problems in scientific computing, in particular for partial differential equations, the multigrid principle has proved to yield highly efficient numerical methods. However, the principle has to be applied carefully: if the multigrid components are not chosen adequately with respect to the given problem, the efficiency may be much smaller than possible. This has been demonstrated for many practical problems. Unfortunately, the general theories on multigrid convergence do not give much help in constructing really efficient multigrid algorithms. Although some progress has been made in bridging the gap between theory and practice during the last few years, there are still several theoretical approaches which are misleading rather than helpful with respect to the objective of real efficiency. The research in finding highly efficient algorithms for non-model applications therefore is still a sophisticated mixture of theoretical considerations, a transfer of experiences from model to real life problems and systematical experimental work. The emphasis of the practical research activity today lies - among others - in the following fields: - finding efficient multigrid components for really complex problems, - combining the multigrid approach with advanced discretizative techniques: - constructing highly parallel multigrid algorithms. In this paper, we want to deal mainly with the last topic

  19. Is the Multigrid Method Fault Tolerant? The Two-Grid Case

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, Mark [Brown Univ., Providence, RI (United States). Division of Applied Mathematics; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Glusa, Christian [Brown Univ., Providence, RI (United States). Division of Applied Mathematics

    2016-06-30

    The predicted reduced resiliency of next-generation high performance computers means that it will become necessary to take into account the effects of randomly occurring faults on numerical methods. Further, in the event of a hard fault occurring, a decision has to be made as to what remedial action should be taken in order to resume the execution of the algorithm. The action that is chosen can have a dramatic effect on the performance and characteristics of the scheme. Ideally, the resulting algorithm should be subjected to the same kind of mathematical analysis that was applied to the original, deterministic variant. The purpose of this work is to provide an analysis of the behaviour of the multigrid algorithm in the presence of faults. Multigrid is arguably the method of choice for the solution of large-scale linear algebra problems arising from discretization of partial differential equations and it is of considerable importance to anticipate its behaviour on an exascale machine. The analysis of resilience of algorithms is in its infancy and the current work is perhaps the first to provide a mathematical model for faults and analyse the behaviour of a state-of-the-art algorithm under the model. It is shown that the Two Grid Method fails to be resilient to faults. Attention is then turned to identifying the minimal necessary remedial action required to restore the rate of convergence to that enjoyed by the ideal fault-free method.

  20. Monolithic multigrid method for the coupled Stokes flow and deformable porous medium system

    Science.gov (United States)

    Luo, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, C. W.

    2018-01-01

    The interaction between fluid flow and a deformable porous medium is a complicated multi-physics problem, which can be described by a coupled model based on the Stokes and poroelastic equations. A monolithic multigrid method together with either a coupled Vanka smoother or a decoupled Uzawa smoother is employed as an efficient numerical technique for the linear discrete system obtained by finite volumes on staggered grids. A specialty in our modeling approach is that at the interface of the fluid and poroelastic medium, two unknowns from the different subsystems are defined at the same grid point. We propose a special discretization at and near the points on the interface, which combines the approximation of the governing equations and the considered interface conditions. In the decoupled Uzawa smoother, Local Fourier Analysis (LFA) helps us to select optimal values of the relaxation parameter appearing. To implement the monolithic multigrid method, grid partitioning is used to deal with the interface updates when communication is required between two subdomains. Numerical experiments show that the proposed numerical method has an excellent convergence rate. The efficiency and robustness of the method are confirmed in numerical experiments with typically small realistic values of the physical coefficients.

  1. Scalable smoothing strategies for a geometric multigrid method for the immersed boundary equations

    Energy Technology Data Exchange (ETDEWEB)

    Bhalla, Amneet Pal Singh [Univ. of North Carolina, Chapel Hill, NC (United States); Knepley, Matthew G. [Rice Univ., Houston, TX (United States); Adams, Mark F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Guy, Robert D. [Univ. of California, Davis, CA (United States); Griffith, Boyce E. [Univ. of North Carolina, Chapel Hill, NC (United States)

    2016-12-20

    The immersed boundary (IB) method is a widely used approach to simulating fluid-structure interaction (FSI). Although explicit versions of the IB method can suffer from severe time step size restrictions, these methods remain popular because of their simplicity and generality. In prior work (Guy et al., Adv Comput Math, 2015), some of us developed a geometric multigrid preconditioner for a stable semi-implicit IB method under Stokes flow conditions; however, this solver methodology used a Vanka-type smoother that presented limited opportunities for parallelization. This work extends this Stokes-IB solver methodology by developing smoothing techniques that are suitable for parallel implementation. Specifically, we demonstrate that an additive version of the Vanka smoother can yield an effective multigrid preconditioner for the Stokes-IB equations, and we introduce an efficient Schur complement-based smoother that is also shown to be effective for the Stokes-IB equations. We investigate the performance of these solvers for a broad range of material stiffnesses, both for Stokes flows and flows at nonzero Reynolds numbers, and for thick and thin structural models. We show here that linear solver performance degrades with increasing Reynolds number and material stiffness, especially for thin interface cases. Nonetheless, the proposed approaches promise to yield effective solution algorithms, especially at lower Reynolds numbers and at modest-to-high elastic stiffnesses.

  2. Recent Development of Multigrid Algorithms for Mixed and Noncomforming Methods for Second Order Elliptical Problems

    Science.gov (United States)

    Chen, Zhangxin; Ewing, Richard E.

    1996-01-01

    Multigrid algorithms for nonconforming and mixed finite element methods for second order elliptic problems on triangular and rectangular finite elements are considered. The construction of several coarse-to-fine intergrid transfer operators for nonconforming multigrid algorithms is discussed. The equivalence between the nonconforming and mixed finite element methods with and without projection of the coefficient of the differential problems into finite element spaces is described.

  3. Multigrid methods for S/sub N/ problems

    International Nuclear Information System (INIS)

    Nowak, P.F.; Larsen, E.W.; Martin, W.R.

    1987-01-01

    It has long been known that the standard source iteration (SI) method for obtaining iterative solutions of S/sub N/ problems is very slowly converging in optically thick regions with low absorption. The rebalance and diffusion synthetic acceleration (DSA) methods are generalizations of SI that have been developed to accelerate convergence, but neither of these methods has been completely successful. In particular, the rebalance method tends to become unstable in problems where it is needed most (problems with high scattering ratios c = 1), while the DSA method, to be implemented in a stable fashion, requires the solution of a particular system of acceleration equations, and this has been done efficiently in two-dimensional geometries only for the diamond difference S/sub N/ equations. This paper discusses another extension of the SI method, namely, SI combined with the spatial multigrid algorithm (SIMG). This appears to be a viable way to accelerate many S/sub N/ problems in multidimensional geometries, provided the finest mesh consists of cells that are not optically thick

  4. Copper Mountain conference on multigrid methods. Preliminary proceedings -- List of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This report contains abstracts of the papers presented at the conference. Papers cover multigrid algorithms and applications of multigrid methods. Applications include the following: solution of elliptical problems; electric power grids; fluid mechanics; atmospheric data assimilation; thermocapillary effects on weld pool shape; boundary-value problems; prediction of hurricane tracks; modeling multi-dimensional combustion and detailed chemistry; black-oil reservoir simulation; image processing; and others.

  5. The finite volume element (FVE) and multigrid method for the incompressible Navier-Stokes equations

    International Nuclear Information System (INIS)

    Gu Lizhen; Bao Weizhu

    1992-01-01

    The authors apply FVE method to discrete INS equations with the original variable, in which the bilinear square finite element and the square finite volume are chosen. The discrete schemes of INS equations are presented. The FMV multigrid algorithm is applied to solve that discrete system, where DGS iteration is used as smoother, DGS distributive mode for the INS discrete system is also presented. The sample problems for the square cavity flow with Reynolds number Re≤100 are successfully calculated. The numerical solutions show that the results with 1 FMV is satisfactory and when Re is not large, The FVE discrete scheme of the conservative INS equations and that of non-conservative INS equations with linearization both can provide almost same accuracy

  6. Conservative multigrid methods for Cahn-Hilliard fluids

    International Nuclear Information System (INIS)

    Kim, Junseok; Kang, Kyungkeun; Lowengrub, John

    2004-01-01

    We develop a conservative, second-order accurate fully implicit discretization of the Navier-Stokes (NS) and Cahn-Hilliard (CH) system that has an associated discrete energy functional. This system provides a diffuse-interface description of binary fluid flows with compressible or incompressible flow components [R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1998) 2617]. In this work, we focus on the case of flows containing two immiscible, incompressible and density-matched components. The scheme, however, has a straightforward extension to multi-component systems. To efficiently solve the discrete system at the implicit time-level, we develop a nonlinear multigrid method to solve the CH equation which is then coupled to a projection method that is used to solve the NS equation. We demonstrate convergence of our scheme numerically in both the presence and absence of flow and perform simulations of phase separation via spinodal decomposition. We examine the separate effects of surface tension and external flow on the decomposition. We find surface tension driven flow alone increases coalescence rates through the retraction of interfaces. When there is an applied external shear, the evolution of the flow is nontrivial and the flow morphology repeats itself in time as multiple pinchoff and reconnection events occur. Eventually, the periodic motion ceases and the system relaxes to a global equilibrium. The equilibria we observe appears has a similar structure in all cases although the dynamics of the evolution is quite different. We view the work presented in this paper as preparatory for a detailed investigation of liquid-liquid interfaces with surface tension where the interfaces separate two immiscible fluids [On the pinchoff of liquid-liquid jets with surface tension, in preparation]. To this end, we also include a simulation of the pinchoff of a liquid thread under the Rayleigh instability at finite Reynolds number

  7. Multigrid technique and Optimized Schwarz method on block-structured grids with discontinuous interfaces

    DEFF Research Database (Denmark)

    Kolmogorov, Dmitry; Sørensen, Niels N.; Shen, Wen Zhong

    2013-01-01

    An Optimized Schwarz method using Robin boundary conditions for relaxation scheme is presented in the frame of Multigrid method on discontinuous grids. At each iteration the relaxation scheme is performed in two steps: one step with Dirichlet and another step with Robin boundary conditions at inn...

  8. Monolithic multigrid method for the coupled Stokes flow and deformable porous medium system

    NARCIS (Netherlands)

    P. Luo (Peiyao); C. Rodrigo (Carmen); F.J. Gaspar Lorenz (Franscisco); C.W. Oosterlee (Cornelis)

    2018-01-01

    textabstractThe interaction between fluid flow and a deformable porous medium is a complicated multi-physics problem, which can be described by a coupled model based on the Stokes and poroelastic equations. A monolithic multigrid method together with either a coupled Vanka smoother or a decoupled

  9. Analysis and development of stochastic multigrid methods in lattice field theory

    International Nuclear Information System (INIS)

    Grabenstein, M.

    1994-01-01

    We study the relation between the dynamical critical behavior and the kinematics of stochastic multigrid algorithms. The scale dependence of acceptance rates for nonlocal Metropolis updates is analyzed with the help of an approximation formula. A quantitative study of the kinematics of multigrid algorithms in several interacting models is performed. We find that for a critical model with Hamiltonian H(Φ) absence of critical slowing down can only be expected if the expansion of (H(Φ+ψ)) in terms of the shift ψ contains no relevant term (mass term). The predictions of this rule was verified in a multigrid Monte Carlo simulation of the Sine Gordon model in two dimensions. Our analysis can serve as a guideline for the development of new algorithms: We propose a new multigrid method for nonabelian lattice gauge theory, the time slice blocking. For SU(2) gauge fields in two dimensions, critical slowing down is almost completely eliminated by this method, in accordance with the theoretical prediction. The generalization of the time slice blocking to SU(2) in four dimensions is investigated analytically and by numerical simulations. Compared to two dimensions, the local disorder in the four dimensional gauge field leads to kinematical problems. (orig.)

  10. Final Report for 'Implimentation and Evaluation of Multigrid Linear Solvers into Extended Magnetohydrodynamic Codes for Petascale Computing'

    International Nuclear Information System (INIS)

    Vadlamani, Srinath; Kruger, Scott; Austin, Travis

    2008-01-01

    Extended magnetohydrodynamic (MHD) codes are used to model the large, slow-growing instabilities that are projected to limit the performance of International Thermonuclear Experimental Reactor (ITER). The multiscale nature of the extended MHD equations requires an implicit approach. The current linear solvers needed for the implicit algorithm scale poorly because the resultant matrices are so ill-conditioned. A new solver is needed, especially one that scales to the petascale. The most successful scalable parallel processor solvers to date are multigrid solvers. Applying multigrid techniques to a set of equations whose fundamental modes are dispersive waves is a promising solution to CEMM problems. For the Phase 1, we implemented multigrid preconditioners from the HYPRE project of the Center for Applied Scientific Computing at LLNL via PETSc of the DOE SciDAC TOPS for the real matrix systems of the extended MHD code NIMROD which is a one of the primary modeling codes of the OFES-funded Center for Extended Magnetohydrodynamic Modeling (CEMM) SciDAC. We implemented the multigrid solvers on the fusion test problem that allows for real matrix systems with success, and in the process learned about the details of NIMROD data structures and the difficulties of inverting NIMROD operators. The further success of this project will allow for efficient usage of future petascale computers at the National Leadership Facilities: Oak Ridge National Laboratory, Argonne National Laboratory, and National Energy Research Scientific Computing Center. The project will be a collaborative effort between computational plasma physicists and applied mathematicians at Tech-X Corporation, applied mathematicians Front Range Scientific Computations, Inc. (who are collaborators on the HYPRE project), and other computational plasma physicists involved with the CEMM project.

  11. s-Step Krylov Subspace Methods as Bottom Solvers for Geometric Multigrid

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lijewski, Mike [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Almgren, Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Straalen, Brian Van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carson, Erin [Univ. of California, Berkeley, CA (United States); Knight, Nicholas [Univ. of California, Berkeley, CA (United States); Demmel, James [Univ. of California, Berkeley, CA (United States)

    2014-08-14

    Geometric multigrid solvers within adaptive mesh refinement (AMR) applications often reach a point where further coarsening of the grid becomes impractical as individual sub domain sizes approach unity. At this point the most common solution is to use a bottom solver, such as BiCGStab, to reduce the residual by a fixed factor at the coarsest level. Each iteration of BiCGStab requires multiple global reductions (MPI collectives). As the number of BiCGStab iterations required for convergence grows with problem size, and the time for each collective operation increases with machine scale, bottom solves in large-scale applications can constitute a significant fraction of the overall multigrid solve time. In this paper, we implement, evaluate, and optimize a communication-avoiding s-step formulation of BiCGStab (CABiCGStab for short) as a high-performance, distributed-memory bottom solver for geometric multigrid solvers. This is the first time s-step Krylov subspace methods have been leveraged to improve multigrid bottom solver performance. We use a synthetic benchmark for detailed analysis and integrate the best implementation into BoxLib in order to evaluate the benefit of a s-step Krylov subspace method on the multigrid solves found in the applications LMC and Nyx on up to 32,768 cores on the Cray XE6 at NERSC. Overall, we see bottom solver improvements of up to 4.2x on synthetic problems and up to 2.7x in real applications. This results in as much as a 1.5x improvement in solver performance in real applications.

  12. Advanced Algebraic Multigrid Solvers for Subsurface Flow Simulation

    KAUST Repository

    Chen, Meng-Huo; Sun, Shuyu; Salama, Amgad

    2015-01-01

    and issues will be addressed and the corresponding remedies will be studied. As the multigrid methods are used as the linear solver, the simulator can be parallelized (although not trivial) and the high-resolution simulation become feasible, the ultimately

  13. Development of new multigrid schemes for the method of characteristics in neutron transport theory

    International Nuclear Information System (INIS)

    Grassi, G.

    2006-01-01

    This dissertation is based upon our doctoral research that dealt with the conception and development of new non-linear multigrid techniques for the Method of the Characteristics (MOC) within the TDT code. Here we focus upon a two-level scheme consisting of a fine level on which the neutron transport equation is iteratively solved using the MOC algorithm, and a coarse level defined by a more coarsely discretized phase space on which a low-order problem is considered. The solution of this problem is then used in order to correct the angular flux moments resulting from the previous transport iteration. A flux-volume homogenization procedure is employed to evaluate the coarse-level material properties after each transport iteration. This entails the non-linearity of the methods. According to the Generalised Equivalence Theory (GET), additional degrees of freedom are introduced for the low-order problem so that the convergence of the acceleration scheme can be ensured. We present two classes of non-linear methods: transport-like methods and discussion-like methods. Transport-like methods consider a homogenized low-order transport problem on the coarse level. This problem is iteratively solved using the same MOC algorithm as for the transport problem on the fine level. Discontinuity factors are then employed, per region or per surface, in order to reconstruct the currents evaluated by the low-order operator, which ensure the convergence of the acceleration scheme. On the other hand, discussion-like methods consider a low-order problem inspired by diffusion. We studied the non-linear Coarse Mesh Finite Difference (CMFD) method, already present in literature, in the perspective of integrating it into TDT code. Then, we developed a new non-linear method on the model of CMFD. From the latter, we borrowed the idea to establish a simple relation between currents and fluxes in order to obtain a problem involving only coarse fluxes. Finally, those non-linear methods have been

  14. Finite volume multigrid method of the planar contraction flow of a viscoelastic fluid

    Science.gov (United States)

    Moatssime, H. Al; Esselaoui, D.; Hakim, A.; Raghay, S.

    2001-08-01

    This paper reports on a numerical algorithm for the steady flow of viscoelastic fluid. The conservative and constitutive equations are solved using the finite volume method (FVM) with a hybrid scheme for the velocities and first-order upwind approximation for the viscoelastic stress. A non-uniform staggered grid system is used. The iterative SIMPLE algorithm is employed to relax the coupled momentum and continuity equations. The non-linear algebraic equations over the flow domain are solved iteratively by the symmetrical coupled Gauss-Seidel (SCGS) method. In both, the full approximation storage (FAS) multigrid algorithm is used. An Oldroyd-B fluid model was selected for the calculation. Results are reported for planar 4:1 abrupt contraction at various Weissenberg numbers. The solutions are found to be stable and smooth. The solutions show that at high Weissenberg number the domain must be long enough. The convergence of the method has been verified with grid refinement. All the calculations have been performed on a PC equipped with a Pentium III processor at 550 MHz. Copyright

  15. Iterative and multigrid methods in the finite element solution of incompressible and turbulent fluid flow

    Science.gov (United States)

    Lavery, N.; Taylor, C.

    1999-07-01

    Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright

  16. Multilevel local refinement and multigrid methods for 3-D turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C.; Liu, C. [UCD, Denver, CO (United States); Sung, C.H.; Huang, T.T. [David Taylor Model Basin, Bethesda, MD (United States)

    1996-12-31

    A numerical approach based on multigrid, multilevel local refinement, and preconditioning methods for solving incompressible Reynolds-averaged Navier-Stokes equations is presented. 3-D turbulent flow around an underwater vehicle is computed. 3 multigrid levels and 2 local refinement grid levels are used. The global grid is 24 x 8 x 12. The first patch is 40 x 16 x 20 and the second patch is 72 x 32 x 36. 4th order artificial dissipation are used for numerical stability. The conservative artificial compressibility method are used for further improvement of convergence. To improve the accuracy of coarse/fine grid interface of local refinement, flux interpolation method for refined grid boundary is used. The numerical results are in good agreement with experimental data. The local refinement can improve the prediction accuracy significantly. The flux interpolation method for local refinement can keep conservation for a composite grid, therefore further modify the prediction accuracy.

  17. Multigrid Finite Element Method in Calculation of 3D Homogeneous and Composite Solids

    Directory of Open Access Journals (Sweden)

    A.D. Matveev

    2016-12-01

    Full Text Available In the present paper, a method of multigrid finite elements to calculate elastic three-dimensional homogeneous and composite solids under static loading has been suggested. The method has been developed based on the finite element method algorithms using homogeneous and composite three-dimensional multigrid finite elements (MFE. The procedures for construction of MFE of both rectangular parallelepiped and complex shapes have been shown. The advantages of MFE are that they take into account, following the rules of the microapproach, heterogeneous and microhomogeneous structures of the bodies, describe the three-dimensional stress-strain state (without any simplifying hypotheses in homogeneous and composite solids, as well as generate small dimensional discrete models and numerical solutions with a high accuracy.

  18. Analysis of multigrid methods on massively parallel computers: Architectural implications

    Science.gov (United States)

    Matheson, Lesley R.; Tarjan, Robert E.

    1993-01-01

    We study the potential performance of multigrid algorithms running on massively parallel computers with the intent of discovering whether presently envisioned machines will provide an efficient platform for such algorithms. We consider the domain parallel version of the standard V cycle algorithm on model problems, discretized using finite difference techniques in two and three dimensions on block structured grids of size 10(exp 6) and 10(exp 9), respectively. Our models of parallel computation were developed to reflect the computing characteristics of the current generation of massively parallel multicomputers. These models are based on an interconnection network of 256 to 16,384 message passing, 'workstation size' processors executing in an SPMD mode. The first model accomplishes interprocessor communications through a multistage permutation network. The communication cost is a logarithmic function which is similar to the costs in a variety of different topologies. The second model allows single stage communication costs only. Both models were designed with information provided by machine developers and utilize implementation derived parameters. With the medium grain parallelism of the current generation and the high fixed cost of an interprocessor communication, our analysis suggests an efficient implementation requires the machine to support the efficient transmission of long messages, (up to 1000 words) or the high initiation cost of a communication must be significantly reduced through an alternative optimization technique. Furthermore, with variable length message capability, our analysis suggests the low diameter multistage networks provide little or no advantage over a simple single stage communications network.

  19. Multigrid techniques with non-standard coarsening and group relaxation methods

    International Nuclear Information System (INIS)

    Danaee, A.

    1989-06-01

    In the usual (standard) multigrid methods, doubling of grid sizes with different smoothing iterations (pointwise, or blockwise) has been considered by different authors. Some have indicated that a large coarsening can also be used, but is not beneficial (cf. H3, p.59). In this paper, it is shown that with a suitable blockwise smoothing scheme, some advantages could be achieved even with a factor of H l-1 /h l = 3. (author). 10 refs, 2 figs, 6 tabs

  20. Linearization Method and Linear Complexity

    Science.gov (United States)

    Tanaka, Hidema

    We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.

  1. Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface

    Science.gov (United States)

    Coco, Armando; Russo, Giovanni

    2018-05-01

    In this paper we propose a second-order accurate numerical method to solve elliptic problems with discontinuous coefficients (with general non-homogeneous jumps in the solution and its gradient) in 2D and 3D. The method consists of a finite-difference method on a Cartesian grid in which complex geometries (boundaries and interfaces) are embedded, and is second order accurate in the solution and the gradient itself. In order to avoid the drop in accuracy caused by the discontinuity of the coefficients across the interface, two numerical values are assigned on grid points that are close to the interface: a real value, that represents the numerical solution on that grid point, and a ghost value, that represents the numerical solution extrapolated from the other side of the interface, obtained by enforcing the assigned non-homogeneous jump conditions on the solution and its flux. The method is also extended to the case of matrix coefficient. The linear system arising from the discretization is solved by an efficient multigrid approach. Unlike the 1D case, grid points are not necessarily aligned with the normal derivative and therefore suitable stencils must be chosen to discretize interface conditions in order to achieve second order accuracy in the solution and its gradient. A proper treatment of the interface conditions will allow the multigrid to attain the optimal convergence factor, comparable with the one obtained by Local Fourier Analysis for rectangular domains. The method is robust enough to handle large jump in the coefficients: order of accuracy, monotonicity of the errors and good convergence factor are maintained by the scheme.

  2. Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction.

    Science.gov (United States)

    Gilles, Luc; Vogel, Curtis R; Ellerbroek, Brent L

    2002-09-01

    We introduce a multigrid preconditioned conjugate-gradient (MGCG) iterative scheme for computing open-loop wave-front reconstructors for extreme adaptive optics systems. We present numerical simulations for a 17-m class telescope with n = 48756 sensor measurement grid points within the aperture, which indicate that our MGCG method has a rapid convergence rate for a wide range of subaperture average slope measurement signal-to-noise ratios. The total computational cost is of order n log n. Hence our scheme provides for fast wave-front simulation and control in large-scale adaptive optics systems.

  3. On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics

    NARCIS (Netherlands)

    F.J. Gaspar Lorenz (Franscisco); C. Rodrigo (Carmen)

    2017-01-01

    textabstractThe fixed-stress split method has been widely used as solution method in the coupling of flow and geomechanics. In this work, we analyze the behavior of an inexact version of this algorithm as smoother within a geometric multigrid method, in order to obtain an efficient monolithic solver

  4. Cellular Automaton Modeling of Dendritic Growth Using a Multi-grid Method

    International Nuclear Information System (INIS)

    Natsume, Y; Ohsasa, K

    2015-01-01

    A two-dimensional cellular automaton model with a multi-grid method was developed to simulate dendritic growth. In the present model, we used a triple-grid system for temperature, solute concentration and solid fraction fields as a new approach of the multi-grid method. In order to evaluate the validity of the present model, we carried out simulations of single dendritic growth, secondary dendrite arm growth, multi-columnar dendritic growth and multi-equiaxed dendritic growth. From the results of the grid dependency from the simulation of single dendritic growth, we confirmed that the larger grid can be used in the simulation and that the computational time can be reduced dramatically. In the simulation of secondary dendrite arm growth, the results from the present model were in good agreement with the experimental data and the simulated results from a phase-field model. Thus, the present model can quantitatively simulate dendritic growth. From the simulated results of multi-columnar and multi-equiaxed dendrites, we confirmed that the present model can perform simulations under practical solidification conditions. (paper)

  5. Numerical Evaluation of P-Multigrid Method for the Solution of Discontinuous Galerkin Discretizations of Diffusive Equations

    Science.gov (United States)

    Atkins, H. L.; Helenbrook, B. T.

    2005-01-01

    This paper describes numerical experiments with P-multigrid to corroborate analysis, validate the present implementation, and to examine issues that arise in the implementations of the various combinations of relaxation schemes, discretizations and P-multigrid methods. The two approaches to implement P-multigrid presented here are equivalent for most high-order discretization methods such as spectral element, SUPG, and discontinuous Galerkin applied to advection; however it is discovered that the approach that mimics the common geometric multigrid implementation is less robust, and frequently unstable when applied to discontinuous Galerkin discretizations of di usion. Gauss-Seidel relaxation converges 40% faster than block Jacobi, as predicted by analysis; however, the implementation of Gauss-Seidel is considerably more expensive that one would expect because gradients in most neighboring elements must be updated. A compromise quasi Gauss-Seidel relaxation method that evaluates the gradient in each element twice per iteration converges at rates similar to those predicted for true Gauss-Seidel.

  6. Advanced Algebraic Multigrid Solvers for Subsurface Flow Simulation

    KAUST Repository

    Chen, Meng-Huo

    2015-09-13

    In this research we are particularly interested in extending the robustness of multigrid solvers to encounter complex systems related to subsurface reservoir applications for flow problems in porous media. In many cases, the step for solving the pressure filed in subsurface flow simulation becomes a bottleneck for the performance of the simulator. For solving large sparse linear system arising from MPFA discretization, we choose multigrid methods as the linear solver. The possible difficulties and issues will be addressed and the corresponding remedies will be studied. As the multigrid methods are used as the linear solver, the simulator can be parallelized (although not trivial) and the high-resolution simulation become feasible, the ultimately goal which we desire to achieve.

  7. Design Considerations for a Flexible Multigrid Preconditioning Library

    Directory of Open Access Journals (Sweden)

    Jérémie Gaidamour

    2012-01-01

    Full Text Available MueLu is a library within the Trilinos software project [An overview of Trilinos, Technical Report SAND2003-2927, Sandia National Laboratories, 2003] and provides a framework for parallel multigrid preconditioning methods for large sparse linear systems. While providing efficient implementations of modern multigrid methods based on smoothed aggregation and energy minimization concepts, MueLu is designed to be customized and extended. This article gives an overview of design considerations for the MueLu package: user interfaces, internal design, data management, usage of modern software constructs, leveraging Trilinos capabilities, linear algebra operations and advanced application.

  8. A matrix-free implicit unstructured multigrid finite volume method for simulating structural dynamics and fluid structure interaction

    Science.gov (United States)

    Lv, X.; Zhao, Y.; Huang, X. Y.; Xia, G. H.; Su, X. H.

    2007-07-01

    A new three-dimensional (3D) matrix-free implicit unstructured multigrid finite volume (FV) solver for structural dynamics is presented in this paper. The solver is first validated using classical 2D and 3D cantilever problems. It is shown that very accurate predictions of the fundamental natural frequencies of the problems can be obtained by the solver with fast convergence rates. This method has been integrated into our existing FV compressible solver [X. Lv, Y. Zhao, et al., An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3d unsteady compressible flows with moving objects, Journal of Computational Physics 215(2) (2006) 661-690] based on the immersed membrane method (IMM) [X. Lv, Y. Zhao, et al., as mentioned above]. Results for the interaction between the fluid and an immersed fixed-free cantilever are also presented to demonstrate the potential of this integrated fluid-structure interaction approach.

  9. A survey of parallel multigrid algorithms

    Science.gov (United States)

    Chan, Tony F.; Tuminaro, Ray S.

    1987-01-01

    A typical multigrid algorithm applied to well-behaved linear-elliptic partial-differential equations (PDEs) is described. Criteria for designing and evaluating parallel algorithms are presented. Before evaluating the performance of some parallel multigrid algorithms, consideration is given to some theoretical complexity results for solving PDEs in parallel and for executing the multigrid algorithm. The effect of mapping and load imbalance on the partial efficiency of the algorithm is studied.

  10. An application of multigrid methods for a discrete elastic model for epitaxial systems

    International Nuclear Information System (INIS)

    Caflisch, R.E.; Lee, Y.-J.; Shu, S.; Xiao, Y.-X.; Xu, J.

    2006-01-01

    We apply an efficient and fast algorithm to simulate the atomistic strain model for epitaxial systems, recently introduced by Schindler et al. [Phys. Rev. B 67, 075316 (2003)]. The discrete effects in this lattice statics model are crucial for proper simulation of the influence of strain for thin film epitaxial growth, but the size of the atomistic systems of interest is in general quite large and hence the solution of the discrete elastic equations is a considerable numerical challenge. In this paper, we construct an algebraic multigrid method suitable for efficient solution of the large scale discrete strain model. Using this method, simulations are performed for several representative physical problems, including an infinite periodic step train, a layered nanocrystal, and a system of quantum dots. The results demonstrate the effectiveness and robustness of the method and show that the method attains optimal convergence properties, regardless of the problem size, the geometry and the physical parameters. The effects of substrate depth and of invariance due to traction-free boundary conditions are assessed. For a system of quantum dots, the simulated strain energy density supports the observations that trench formation near the dots provides strain relief

  11. Summary Report: Multigrid for Systems of Elliptic PDEs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Barry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-17

    We are interested in determining if multigrid can be effectively applied to the system. The conclusion that I seem to be drawn to is that it is impossible to develop a blackbox multigrid solver for these general systems. Analysis of the system of PDEs must be conducted first to determine pre-processing procedures on the continuous problem before applying a multigrid method. Determining this pre-processing is currently not incorporated in black-box multigrid strategies. Nevertheless, we characterize some system features that will make the system more amenable to multigrid approaches, techniques that may lead to more amenable systems, and multigrid procedures that are generally more appropriate for these systems.

  12. Multigrid and multilevel domain decomposition for unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.; Smith, B.

    1994-12-31

    Multigrid has proven itself to be a very versatile method for the iterative solution of linear and nonlinear systems of equations arising from the discretization of PDES. In some applications, however, no natural multilevel structure of grids is available, and these must be generated as part of the solution procedure. In this presentation the authors will consider the problem of generating a multigrid algorithm when only a fine, unstructured grid is given. Their techniques generate a sequence of coarser grids by first forming an approximate maximal independent set of the vertices and then applying a Cavendish type algorithm to form the coarser triangulation. Numerical tests indicate that convergence using this approach can be as fast as standard multigrid on a structured mesh, at least in two dimensions.

  13. Aplicação do pré-condicionador Multigrid Algébrico baseado em Wavelet no cálculo de campos magnéticos não lineares

    Directory of Open Access Journals (Sweden)

    Fabio Henrique Pereira

    2009-01-01

    Full Text Available In this work the performance of ¿-cycle wavelet-based algebraic multigrid preconditioner for iterative methods is investigated. The method is applied as a preconditioner for the classical iterative methods Bi-Conjugate Gradient Stabilized (BiCGStab, Generalized Minimum Residual (GMRes and Conjugate Gradient (CG to the solution of non-linear system of algebraic equations from the analysis of a switched reluctance motor with ferromagnetic material the steel S45C and nonlinear magnetization curve, associated with the Newton-Raphson algorithm. Particular attention has been focused in both V- and W-cycle convergence factors, as well as the CPU time. Numerical results show the efficiency of the proposed techniques when compared with classical preconditioner, such as Incomplete Cholesky and Incomplete LU decomposition.

  14. Analysis of a parallel multigrid algorithm

    Science.gov (United States)

    Chan, Tony F.; Tuminaro, Ray S.

    1989-01-01

    The parallel multigrid algorithm of Frederickson and McBryan (1987) is considered. This algorithm uses multiple coarse-grid problems (instead of one problem) in the hope of accelerating convergence and is found to have a close relationship to traditional multigrid methods. Specifically, the parallel coarse-grid correction operator is identical to a traditional multigrid coarse-grid correction operator, except that the mixing of high and low frequencies caused by aliasing error is removed. Appropriate relaxation operators can be chosen to take advantage of this property. Comparisons between the standard multigrid and the new method are made.

  15. An Optimal Order Nonnested Mixed Multigrid Method for Generalized Stokes Problems

    Science.gov (United States)

    Deng, Qingping

    1996-01-01

    A multigrid algorithm is developed and analyzed for generalized Stokes problems discretized by various nonnested mixed finite elements within a unified framework. It is abstractly proved by an element-independent analysis that the multigrid algorithm converges with an optimal order if there exists a 'good' prolongation operator. A technique to construct a 'good' prolongation operator for nonnested multilevel finite element spaces is proposed. Its basic idea is to introduce a sequence of auxiliary nested multilevel finite element spaces and define a prolongation operator as a composite operator of two single grid level operators. This makes not only the construction of a prolongation operator much easier (the final explicit forms of such prolongation operators are fairly simple), but the verification of the approximate properties for prolongation operators is also simplified. Finally, as an application, the framework and technique is applied to seven typical nonnested mixed finite elements.

  16. Iterative linear solvers in a 2D radiation-hydrodynamics code: Methods and performance

    International Nuclear Information System (INIS)

    Baldwin, C.; Brown, P.N.; Falgout, R.; Graziani, F.; Jones, J.

    1999-01-01

    Computer codes containing both hydrodynamics and radiation play a central role in simulating both astrophysical and inertial confinement fusion (ICF) phenomena. A crucial aspect of these codes is that they require an implicit solution of the radiation diffusion equations. The authors present in this paper the results of a comparison of five different linear solvers on a range of complex radiation and radiation-hydrodynamics problems. The linear solvers used are diagonally scaled conjugate gradient, GMRES with incomplete LU preconditioning, conjugate gradient with incomplete Cholesky preconditioning, multigrid, and multigrid-preconditioned conjugate gradient. These problems involve shock propagation, opacities varying over 5--6 orders of magnitude, tabular equations of state, and dynamic ALE (Arbitrary Lagrangian Eulerian) meshes. They perform a problem size scalability study by comparing linear solver performance over a wide range of problem sizes from 1,000 to 100,000 zones. The fundamental question they address in this paper is: Is it more efficient to invert the matrix in many inexpensive steps (like diagonally scaled conjugate gradient) or in fewer expensive steps (like multigrid)? In addition, what is the answer to this question as a function of problem size and is the answer problem dependent? They find that the diagonally scaled conjugate gradient method performs poorly with the growth of problem size, increasing in both iteration count and overall CPU time with the size of the problem and also increasing for larger time steps. For all problems considered, the multigrid algorithms scale almost perfectly (i.e., the iteration count is approximately independent of problem size and problem time step). For pure radiation flow problems (i.e., no hydrodynamics), they see speedups in CPU time of factors of ∼15--30 for the largest problems, when comparing the multigrid solvers relative to diagonal scaled conjugate gradient

  17. Subroutine MLTGRD: a multigrid algorithm based on multiplicative correction and implicit non-stationary iteration

    International Nuclear Information System (INIS)

    Barry, J.M.; Pollard, J.P.

    1986-11-01

    A FORTRAN subroutine MLTGRD is provided to solve efficiently the large systems of linear equations arising from a five-point finite difference discretisation of some elliptic partial differential equations. MLTGRD is a multigrid algorithm which provides multiplicative correction to iterative solution estimates from successively reduced systems of linear equations. It uses the method of implicit non-stationary iteration for all grid levels

  18. Self-correcting Multigrid Solver

    International Nuclear Information System (INIS)

    Lewandowski, Jerome L.V.

    2004-01-01

    A new multigrid algorithm based on the method of self-correction for the solution of elliptic problems is described. The method exploits information contained in the residual to dynamically modify the source term (right-hand side) of the elliptic problem. It is shown that the self-correcting solver is more efficient at damping the short wavelength modes of the algebraic error than its standard equivalent. When used in conjunction with a multigrid method, the resulting solver displays an improved convergence rate with no additional computational work

  19. Two-level Fourier analysis of a multigrid approach for discontinuous Galerkin discretisation

    NARCIS (Netherlands)

    P.W. Hemker (Piet); W. Hoffmann; M.H. van Raalte (Marc)

    2002-01-01

    textabstractIn this paper we study a multigrid method for the solution of a linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods, andwe give a detailed analysis of the convergence for different block-relaxation strategies.We find that point-wise

  20. Nonlinear Multigrid solver exploiting AMGe Coarse Spaces with Approximation Properties

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Villa, Umberto; Engsig-Karup, Allan Peter

    The paper introduces a nonlinear multigrid solver for mixed finite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstructured problems is the guaranteed approximation property of the AMGe coarse...... properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on unstructured meshes has the ability to be as powerful/successful as FAS on geometrically refined meshes. For comparison, Newton’s method and Picard iterations with an inner state-of-the-art linear solver...... are compared to FAS on a nonlinear saddle point problem with applications to porous media flow. It is demonstrated that FAS is faster than Newton’s method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate...

  1. Numerical method for the eigenvalue problem and the singular equation by using the multi-grid method and application to ordinary differential equation

    International Nuclear Information System (INIS)

    Kanki, Takashi; Uyama, Tadao; Tokuda, Shinji.

    1995-07-01

    In the numerical method to compute the matching data which are necessary for resistive MHD stability analyses, it is required to solve the eigenvalue problem and the associated singular equation. An iterative method is developed to solve the eigenvalue problem and the singular equation. In this method, the eigenvalue problem is replaced with an equivalent nonlinear equation and a singular equation is derived from Newton's method for the nonlinear equation. The multi-grid method (MGM), a high speed iterative method, can be applied to this method. The convergence of the eigenvalue and the eigenvector, and the CPU time in this method are investigated for a model equation. It is confirmed from the numerical results that this method is effective for solving the eigenvalue problem and the singular equation with numerical stability and high accuracy. It is shown by improving the MGM that the CPU time for this method is 50 times shorter than that of the direct method. (author)

  2. Application Of Multi-grid Method On China Seas' Temperature Forecast

    Science.gov (United States)

    Li, W.; Xie, Y.; He, Z.; Liu, K.; Han, G.; Ma, J.; Li, D.

    2006-12-01

    Correlation scales have been used in traditional scheme of 3-dimensional variational (3D-Var) data assimilation to estimate the background error covariance for the numerical forecast and reanalysis of atmosphere and ocean for decades. However there are still some drawbacks of this scheme. First, the correlation scales are difficult to be determined accurately. Second, the positive definition of the first-guess error covariance matrix cannot be guaranteed unless the correlation scales are sufficiently small. Xie et al. (2005) indicated that a traditional 3D-Var only corrects some certain wavelength errors and its accuracy depends on the accuracy of the first-guess covariance. And in general, short wavelength error can not be well corrected until long one is corrected and then inaccurate first-guess covariance may mistakenly take long wave error as short wave ones and result in erroneous analysis. For the purpose of quickly minimizing the errors of long and short waves successively, a new 3D-Var data assimilation scheme, called multi-grid data assimilation scheme, is proposed in this paper. By assimilating the shipboard SST and temperature profiles data into a numerical model of China Seas, we applied this scheme in two-month data assimilation and forecast experiment which ended in a favorable result. Comparing with the traditional scheme of 3D-Var, the new scheme has higher forecast accuracy and a lower forecast Root-Mean-Square (RMS) error. Furthermore, this scheme was applied to assimilate the SST of shipboard, AVHRR Pathfinder Version 5.0 SST and temperature profiles at the same time, and a ten-month forecast experiment on sea temperature of China Seas was carried out, in which a successful forecast result was obtained. Particularly, the new scheme is demonstrated a great numerical efficiency in these analyses.

  3. Automatic mesh refinement and local multigrid methods for contact problems: application to the Pellet-Cladding mechanical Interaction

    International Nuclear Information System (INIS)

    Liu, Hao

    2016-01-01

    This Ph.D. work takes place within the framework of studies on Pellet-Cladding mechanical Interaction (PCI) which occurs in the fuel rods of pressurized water reactor. This manuscript focuses on automatic mesh refinement to simulate more accurately this phenomena while maintaining acceptable computational time and memory space for industrial calculations. An automatic mesh refinement strategy based on the combination of the Local Defect Correction multigrid method (LDC) with the Zienkiewicz and Zhu a posteriori error estimator is proposed. The estimated error is used to detect the zones to be refined, where the local sub-grids of the LDC method are generated. Several stopping criteria are studied to end the refinement process when the solution is accurate enough or when the refinement does not improve the global solution accuracy anymore. Numerical results for elastic 2D test cases with pressure discontinuity show the efficiency of the proposed strategy. The automatic mesh refinement in case of unilateral contact problems is then considered. The strategy previously introduced can be easily adapted to the multi-body refinement by estimating solution error on each body separately. Post-processing is often necessary to ensure the conformity of the refined areas regarding the contact boundaries. A variety of numerical experiments with elastic contact (with or without friction, with or without an initial gap) confirms the efficiency and adaptability of the proposed strategy. (author) [fr

  4. Explorative methods in linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2004-01-01

    The author has developed the H-method of mathematical modeling that builds up the model by parts, where each part is optimized with respect to prediction. Besides providing with better predictions than traditional methods, these methods provide with graphic procedures for analyzing different feat...... features in data. These graphic methods extend the well-known methods and results of Principal Component Analysis to any linear model. Here the graphic procedures are applied to linear regression and Ridge Regression....

  5. Linear methods in band theory

    DEFF Research Database (Denmark)

    Andersen, O. Krogh

    1975-01-01

    of Korringa-Kohn-Rostoker, linear-combination-of-atomic-orbitals, and cellular methods; the secular matrix is linear in energy, the overlap integrals factorize as potential parameters and structure constants, the latter are canonical in the sense that they neither depend on the energy nor the cell volume...

  6. Multigrid for Staggered Lattice Fermions

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Richard C. [Boston U.; Clark, M. A. [Unlisted, US; Strelchenko, Alexei [Fermilab; Weinberg, Evan [Boston U.

    2018-01-23

    Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K\\"ahler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD.

  7. Multigrid Reduction in Time for Nonlinear Parabolic Problems

    Energy Technology Data Exchange (ETDEWEB)

    Falgout, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manteuffel, T. A. [Univ. of Colorado, Boulder, CO (United States); O' Neill, B. [Univ. of Colorado, Boulder, CO (United States); Schroder, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-04

    The need for parallel-in-time is being driven by changes in computer architectures, where future speed-ups will be available through greater concurrency, but not faster clock speeds, which are stagnant.This leads to a bottleneck for sequential time marching schemes, because they lack parallelism in the time dimension. Multigrid Reduction in Time (MGRIT) is an iterative procedure that allows for temporal parallelism by utilizing multigrid reduction techniques and a multilevel hierarchy of coarse time grids. MGRIT has been shown to be effective for linear problems, with speedups of up to 50 times. The goal of this work is the efficient solution of nonlinear problems with MGRIT, where efficient is defined as achieving similar performance when compared to a corresponding linear problem. As our benchmark, we use the p-Laplacian, where p = 4 corresponds to a well-known nonlinear diffusion equation and p = 2 corresponds to our benchmark linear diffusion problem. When considering linear problems and implicit methods, the use of optimal spatial solvers such as spatial multigrid imply that the cost of one time step evaluation is fixed across temporal levels, which have a large variation in time step sizes. This is not the case for nonlinear problems, where the work required increases dramatically on coarser time grids, where relatively large time steps lead to worse conditioned nonlinear solves and increased nonlinear iteration counts per time step evaluation. This is the key difficulty explored by this paper. We show that by using a variety of strategies, most importantly, spatial coarsening and an alternate initial guess to the nonlinear time-step solver, we can reduce the work per time step evaluation over all temporal levels to a range similar with the corresponding linear problem. This allows for parallel scaling behavior comparable to the corresponding linear problem.

  8. Linear Methods for Image Interpolation

    OpenAIRE

    Pascal Getreuer

    2011-01-01

    We discuss linear methods for interpolation, including nearest neighbor, bilinear, bicubic, splines, and sinc interpolation. We focus on separable interpolation, so most of what is said applies to one-dimensional interpolation as well as N-dimensional separable interpolation.

  9. A parallel version of a multigrid algorithm for isotropic transport equations

    International Nuclear Information System (INIS)

    Manteuffel, T.; McCormick, S.; Yang, G.; Morel, J.; Oliveira, S.

    1994-01-01

    The focus of this paper is on a parallel algorithm for solving the transport equations in a slab geometry using multigrid. The spatial discretization scheme used is a finite element method called the modified linear discontinuous (MLD) scheme. The MLD scheme represents a lumped version of the standard linear discontinuous (LD) scheme. The parallel algorithm was implemented on the Connection Machine 2 (CM2). Convergence rates and timings for this algorithm on the CM2 and Cray-YMP are shown

  10. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2013-01-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called textbook multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  11. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    KAUST Repository

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-01-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.

  12. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    KAUST Repository

    Adams, Mark F.

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.

  13. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-01-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  14. Comparison of the deflated preconditioned conjugate gradient method and algebraic multigrid for composite materials

    NARCIS (Netherlands)

    Jönsthövel, T.B.; Van Gijzen, M.B.; MacLachlan, S.; Vuik, C.; Scarpas, A.

    2012-01-01

    Many applications in computational science and engineering concern composite materials, which are characterized by large discontinuities in the material properties. Such applications require fine-scale finite-element meshes, which lead to large linear systems that are challenging to solve with

  15. Optimal control linear quadratic methods

    CERN Document Server

    Anderson, Brian D O

    2007-01-01

    This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

  16. Variational linear algebraic equations method

    International Nuclear Information System (INIS)

    Moiseiwitsch, B.L.

    1982-01-01

    A modification of the linear algebraic equations method is described which ensures a variational bound on the phaseshifts for potentials having a definite sign at all points. The method is illustrated by the elastic scattering of s-wave electrons by the static field of atomic hydrogen. (author)

  17. Application of the multigrid amplitude function method for time-dependent transport equation using MOC

    International Nuclear Information System (INIS)

    Tsujita, K.; Endo, T.; Yamamoto, A.

    2013-01-01

    An efficient numerical method for time-dependent transport equation, the mutigrid amplitude function (MAF) method, is proposed. The method of characteristics (MOC) is being widely used for reactor analysis thanks to the advances of numerical algorithms and computer hardware. However, efficient kinetic calculation method for MOC is still desirable since it requires significant computation time. Various efficient numerical methods for solving the space-dependent kinetic equation, e.g., the improved quasi-static (IQS) and the frequency transform methods, have been developed so far mainly for diffusion calculation. These calculation methods are known as effective numerical methods and they offer a way for faster computation. However, they have not been applied to the kinetic calculation method using MOC as the authors' knowledge. Thus, the MAF method is applied to the kinetic calculation using MOC aiming to reduce computation time. The MAF method is a unified numerical framework of conventional kinetic calculation methods, e.g., the IQS, the frequency transform, and the theta methods. Although the MAF method is originally developed for the space-dependent kinetic calculation based on the diffusion theory, it is extended to transport theory in the present study. The accuracy and computational time are evaluated though the TWIGL benchmark problem. The calculation results show the effectiveness of the MAF method. (authors)

  18. Two-Level Adaptive Algebraic Multigrid for a Sequence of Problems with Slowly Varying Random Coefficients [Adaptive Algebraic Multigrid for Sequence of Problems with Slowly Varying Random Coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kalchev, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ketelsen, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, P. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-11-07

    Our paper proposes an adaptive strategy for reusing a previously constructed coarse space by algebraic multigrid to construct a two-level solver for a problem with nearby characteristics. Furthermore, a main target application is the solution of the linear problems that appear throughout a sequence of Markov chain Monte Carlo simulations of subsurface flow with uncertain permeability field. We demonstrate the efficacy of the method with extensive set of numerical experiments.

  19. Preface: Introductory Remarks: Linear Scaling Methods

    Science.gov (United States)

    Bowler, D. R.; Fattebert, J.-L.; Gillan, M. J.; Haynes, P. D.; Skylaris, C.-K.

    2008-07-01

    problems, there was another important theme: extending functionality. The search for greater accuracy has given an implementation of density functional designed to model van der Waals interactions accurately as well as local correlation, TDDFT and QMC and GW methods which, while not explicitly O(N), take advantage of localisation. All speakers at the workshop were invited to contribute to this issue, but not all were able to do this. Hence it is useful to give a complete list of the talks presented, with the names of the sessions; however, many talks fell within more than one area. This is an exciting time for linear scaling methods, which are already starting to contribute significantly to important scientific problems. Applications to nanostructures and biomolecules A DFT study on the structural stability of Ge 3D nanostructures on Si(001) using CONQUEST Tsuyoshi Miyazaki, D R Bowler, M J Gillan, T Otsuka and T Ohno Large scale electronic structure calculation theory and several applications Takeo Fujiwara and Takeo Hoshi ONETEP:Linear-scaling DFT with plane waves Chris-Kriton Skylaris, Peter D Haynes, Arash A Mostofi, Mike C Payne Maximally-localised Wannier functions as building blocks for large-scale electronic structure calculations Arash A Mostofi and Nicola Marzari A linear scaling three dimensional fragment method for ab initio calculations Lin-Wang Wang, Zhengji Zhao, Juan Meza Peta-scalable reactive Molecular dynamics simulation of mechanochemical processes Aiichiro Nakano, Rajiv K. Kalia, Ken-ichi Nomura, Fuyuki Shimojo and Priya Vashishta Recent developments and applications of the real-space multigrid (RMG) method Jerzy Bernholc, M Hodak, W Lu, and F Ribeiro Energy minimisation functionals and algorithms CONQUEST: A linear scaling DFT Code David R Bowler, Tsuyoshi Miyazaki, Antonio Torralba, Veronika Brazdova, Milica Todorovic, Takao Otsuka and Mike Gillan Kernel optimisation and the physical significance of optimised local orbitals in the ONETEP code Peter

  20. New multigrid solver advances in TOPS

    International Nuclear Information System (INIS)

    Falgout, R D; Brannick, J; Brezina, M; Manteuffel, T; McCormick, S

    2005-01-01

    In this paper, we highlight new multigrid solver advances in the Terascale Optimal PDE Simulations (TOPS) project in the Scientific Discovery Through Advanced Computing (SciDAC) program. We discuss two new algebraic multigrid (AMG) developments in TOPS: the adaptive smoothed aggregation method (αSA) and a coarse-grid selection algorithm based on compatible relaxation (CR). The αSA method is showing promising results in initial studies for Quantum Chromodynamics (QCD) applications. The CR method has the potential to greatly improve the applicability of AMG

  1. Some multigrid algorithms for SIMD machines

    Energy Technology Data Exchange (ETDEWEB)

    Dendy, J.E. Jr. [Los Alamos National Lab., NM (United States)

    1996-12-31

    Previously a semicoarsening multigrid algorithm suitable for use on SIMD architectures was investigated. Through the use of new software tools, the performance of this algorithm has been considerably improved. The method has also been extended to three space dimensions. The method performs well for strongly anisotropic problems and for problems with coefficients jumping by orders of magnitude across internal interfaces. The parallel efficiency of this method is analyzed, and its actual performance on the CM-5 is compared with its performance on the CRAY-YMP. A standard coarsening multigrid algorithm is also considered, and we compare its performance on these two platforms as well.

  2. Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations

    Science.gov (United States)

    Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa

    2017-12-01

    Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.

  3. Bayes linear statistics, theory & methods

    CERN Document Server

    Goldstein, Michael

    2007-01-01

    Bayesian methods combine information available from data with any prior information available from expert knowledge. The Bayes linear approach follows this path, offering a quantitative structure for expressing beliefs, and systematic methods for adjusting these beliefs, given observational data. The methodology differs from the full Bayesian methodology in that it establishes simpler approaches to belief specification and analysis based around expectation judgements. Bayes Linear Statistics presents an authoritative account of this approach, explaining the foundations, theory, methodology, and practicalities of this important field. The text provides a thorough coverage of Bayes linear analysis, from the development of the basic language to the collection of algebraic results needed for efficient implementation, with detailed practical examples. The book covers:The importance of partial prior specifications for complex problems where it is difficult to supply a meaningful full prior probability specification...

  4. Multigrid method applied to the solution of an elliptic, generalized eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Alchalabi, R.M. [BOC Group, Murray Hill, NJ (United States); Turinsky, P.J. [North Carolina State Univ., Raleigh, NC (United States)

    1996-12-31

    The work presented in this paper is concerned with the development of an efficient MG algorithm for the solution of an elliptic, generalized eigenvalue problem. The application is specifically applied to the multigroup neutron diffusion equation which is discretized by utilizing the Nodal Expansion Method (NEM). The underlying relaxation method is the Power Method, also known as the (Outer-Inner Method). The inner iterations are completed using Multi-color Line SOR, and the outer iterations are accelerated using Chebyshev Semi-iterative Method. Furthermore, the MG algorithm utilizes the consistent homogenization concept to construct the restriction operator, and a form function as a prolongation operator. The MG algorithm was integrated into the reactor neutronic analysis code NESTLE, and numerical results were obtained from solving production type benchmark problems.

  5. Linear Methods for Image Interpolation

    Directory of Open Access Journals (Sweden)

    Pascal Getreuer

    2011-09-01

    Full Text Available We discuss linear methods for interpolation, including nearest neighbor, bilinear, bicubic, splines, and sinc interpolation. We focus on separable interpolation, so most of what is said applies to one-dimensional interpolation as well as N-dimensional separable interpolation.

  6. The Closest Point Method and Multigrid Solvers for Elliptic Equations on Surfaces

    KAUST Repository

    Chen, Yujia; Macdonald, Colin B.

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. Elliptic partial differential equations are important from both application and analysis points of view. In this paper we apply the closest point method to solve elliptic equations on general

  7. 3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr [LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt (France); Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr [LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt (France); Leblanc, F. [LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, Paris (France); Hess, S. [ONERA, Toulouse (France); Mancini, M. [LUTH, Observatoire Paris-Meudon (France)

    2016-03-15

    We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order to conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.

  8. A non-linear multigrid method for the steady Euler equations

    NARCIS (Netherlands)

    Hemker, P.W.; Koren, B.; Dervieux, A.; Leer, van B.; Periaux, J.; Rizzi, A.

    1989-01-01

    Higher-order accurate Euler-flow solutions are presented for some airfoil test cases. Second-order accurate solutions are computed by an Iterative Defect Correction process. For two test cases even higher accuracy is obtained by the additional use of a ~xtrapolation technique. Finite volume

  9. An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow

    Science.gov (United States)

    Rasthofer, U.; Wall, W. A.; Gravemeier, V.

    2018-04-01

    A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.

  10. Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions

    Science.gov (United States)

    Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel

    2018-04-01

    Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switching technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. We also show that the strategy is efficient and scales optimally with problem size.

  11. Segmental Refinement: A Multigrid Technique for Data Locality

    KAUST Repository

    Adams, Mark F.; Brown, Jed; Knepley, Matt; Samtaney, Ravi

    2016-01-01

    We investigate a domain decomposed multigrid technique, termed segmental refinement, for solving general nonlinear elliptic boundary value problems. We extend the method first proposed in 1994 by analytically and experimentally investigating its complexity. We confirm that communication of traditional parallel multigrid is eliminated on fine grids, with modest amounts of extra work and storage, while maintaining the asymptotic exactness of full multigrid. We observe an accuracy dependence on the segmental refinement subdomain size, which was not considered in the original analysis. We present a communication complexity analysis that quantifies the communication costs ameliorated by segmental refinement and report performance results with up to 64K cores on a Cray XC30.

  12. Segmental Refinement: A Multigrid Technique for Data Locality

    KAUST Repository

    Adams, Mark F.

    2016-08-04

    We investigate a domain decomposed multigrid technique, termed segmental refinement, for solving general nonlinear elliptic boundary value problems. We extend the method first proposed in 1994 by analytically and experimentally investigating its complexity. We confirm that communication of traditional parallel multigrid is eliminated on fine grids, with modest amounts of extra work and storage, while maintaining the asymptotic exactness of full multigrid. We observe an accuracy dependence on the segmental refinement subdomain size, which was not considered in the original analysis. We present a communication complexity analysis that quantifies the communication costs ameliorated by segmental refinement and report performance results with up to 64K cores on a Cray XC30.

  13. Linear Algebraic Method for Non-Linear Map Analysis

    International Nuclear Information System (INIS)

    Yu, L.; Nash, B.

    2009-01-01

    We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

  14. Segmental Refinement: A Multigrid Technique for Data Locality

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Mark [Columbia Univ., New York, NY (United States). Applied Physics and Applied Mathematics Dept.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-27

    We investigate a technique - segmental refinement (SR) - proposed by Brandt in the 1970s as a low memory multigrid method. The technique is attractive for modern computer architectures because it provides high data locality, minimizes network communication, is amenable to loop fusion, and is naturally highly parallel and asynchronous. The network communication minimization property was recognized by Brandt and Diskin in 1994; we continue this work by developing a segmental refinement method for a finite volume discretization of the 3D Laplacian on massively parallel computers. An understanding of the asymptotic complexities, required to maintain textbook multigrid efficiency, are explored experimentally with a simple SR method. A two-level memory model is developed to compare the asymptotic communication complexity of a proposed SR method with traditional parallel multigrid. Performance and scalability are evaluated with a Cray XC30 with up to 64K cores. We achieve modest improvement in scalability from traditional parallel multigrid with a simple SR implementation.

  15. Matrix-dependent multigrid-homogenization for diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Knapek, S. [Institut fuer Informatik tu Muenchen (Germany)

    1996-12-31

    We present a method to approximately determine the effective diffusion coefficient on the coarse scale level of problems with strongly varying or discontinuous diffusion coefficients. It is based on techniques used also in multigrid, like Dendy`s matrix-dependent prolongations and the construction of coarse grid operators by means of the Galerkin approximation. In numerical experiments, we compare our multigrid-homogenization method with homogenization, renormalization and averaging approaches.

  16. A linear iterative unfolding method

    International Nuclear Information System (INIS)

    László, András

    2012-01-01

    A frequently faced task in experimental physics is to measure the probability distribution of some quantity. Often this quantity to be measured is smeared by a non-ideal detector response or by some physical process. The procedure of removing this smearing effect from the measured distribution is called unfolding, and is a delicate problem in signal processing, due to the well-known numerical ill behavior of this task. Various methods were invented which, given some assumptions on the initial probability distribution, try to regularize the unfolding problem. Most of these methods definitely introduce bias into the estimate of the initial probability distribution. We propose a linear iterative method (motivated by the Neumann series / Landweber iteration known in functional analysis), which has the advantage that no assumptions on the initial probability distribution is needed, and the only regularization parameter is the stopping order of the iteration, which can be used to choose the best compromise between the introduced bias and the propagated statistical and systematic errors. The method is consistent: 'binwise' convergence to the initial probability distribution is proved in absence of measurement errors under a quite general condition on the response function. This condition holds for practical applications such as convolutions, calorimeter response functions, momentum reconstruction response functions based on tracking in magnetic field etc. In presence of measurement errors, explicit formulae for the propagation of the three important error terms is provided: bias error (distance from the unknown to-be-reconstructed initial distribution at a finite iteration order), statistical error, and systematic error. A trade-off between these three error terms can be used to define an optimal iteration stopping criterion, and the errors can be estimated there. We provide a numerical C library for the implementation of the method, which incorporates automatic

  17. NONLINEAR MULTIGRID SOLVER EXPLOITING AMGe COARSE SPACES WITH APPROXIMATION PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Max La Cour [Technical Univ. of Denmark, Lyngby (Denmark); Villa, Umberto E. [Univ. of Texas, Austin, TX (United States); Engsig-Karup, Allan P. [Technical Univ. of Denmark, Lyngby (Denmark); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-22

    The paper introduces a nonlinear multigrid solver for mixed nite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstruc- tured problems is the guaranteed approximation property of the AMGe coarse spaces that were developed recently at Lawrence Livermore National Laboratory. These give the ability to derive stable and accurate coarse nonlinear discretization problems. The previous attempts (including ones with the original AMGe method, [5, 11]), were less successful due to lack of such good approximation properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on un- structured meshes should be as powerful/successful as FAS on geometrically re ned meshes. For comparison, Newton's method and Picard iterations with an inner state-of-the-art linear solver is compared to FAS on a nonlinear saddle point problem with applications to porous media ow. It is demonstrated that FAS is faster than Newton's method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate, providing a solver with the potential for mesh-independent convergence on general unstructured meshes.

  18. Neural multigrid for gauge theories and other disordered systems

    International Nuclear Information System (INIS)

    Baeker, M.; Kalkreuter, T.; Mack, G.; Speh, M.

    1992-09-01

    We present evidence that multigrid works for wave equations in disordered systems, e.g. in the presence of gauge fields, no matter how strong the disorder, but one needs to introduce a 'neural computations' point of view into large scale simulations: First, the system must learn how to do the simulations efficiently, then do the simulation (fast). The method can also be used to provide smooth interpolation kernels which are needed in multigrid Monte Carlo updates. (orig.)

  19. Unweighted least squares phase unwrapping by means of multigrid techniques

    Science.gov (United States)

    Pritt, Mark D.

    1995-11-01

    We present a multigrid algorithm for unweighted least squares phase unwrapping. This algorithm applies Gauss-Seidel relaxation schemes to solve the Poisson equation on smaller, coarser grids and transfers the intermediate results to the finer grids. This approach forms the basis of our multigrid algorithm for weighted least squares phase unwrapping, which is described in a separate paper. The key idea of our multigrid approach is to maintain the partial derivatives of the phase data in separate arrays and to correct these derivatives at the boundaries of the coarser grids. This maintains the boundary conditions necessary for rapid convergence to the correct solution. Although the multigrid algorithm is an iterative algorithm, we demonstrate that it is nearly as fast as the direct Fourier-based method. We also describe how to parallelize the algorithm for execution on a distributed-memory parallel processor computer or a network-cluster of workstations.

  20. Progress with multigrid schemes for hypersonic flow problems

    International Nuclear Information System (INIS)

    Radespiel, R.; Swanson, R.C.

    1995-01-01

    Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial discretization with explicit multistage time stepping. Two-level versions of the various multigrid algorithms are applied to the two-dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 X 10 6 and Mach numbers up to 25. 32 refs., 31 figs., 1 tab

  1. Block-accelerated aggregation multigrid for Markov chains with application to PageRank problems

    Science.gov (United States)

    Shen, Zhao-Li; Huang, Ting-Zhu; Carpentieri, Bruno; Wen, Chun; Gu, Xian-Ming

    2018-06-01

    Recently, the adaptive algebraic aggregation multigrid method has been proposed for computing stationary distributions of Markov chains. This method updates aggregates on every iterative cycle to keep high accuracies of coarse-level corrections. Accordingly, its fast convergence rate is well guaranteed, but often a large proportion of time is cost by aggregation processes. In this paper, we show that the aggregates on each level in this method can be utilized to transfer the probability equation of that level into a block linear system. Then we propose a Block-Jacobi relaxation that deals with the block system on each level to smooth error. Some theoretical analysis of this technique is presented, meanwhile it is also adapted to solve PageRank problems. The purpose of this technique is to accelerate the adaptive aggregation multigrid method and its variants for solving Markov chains and PageRank problems. It also attempts to shed some light on new solutions for making aggregation processes more cost-effective for aggregation multigrid methods. Numerical experiments are presented to illustrate the effectiveness of this technique.

  2. Ground-state projection multigrid for propagators in 4-dimensional SU(2) gauge fields

    International Nuclear Information System (INIS)

    Kalkreuter, T.

    1991-09-01

    The ground-state projection multigrid method is studied for computations of slowly decaying bosonic propagators in 4-dimensional SU(2) lattice gauge theory. The defining eigenvalue equation for the restriction operator is solved exactly. Although the critical exponent z is not reduced in nontrivial gauge fields, multigrid still yields considerable speedup compared with conventional relaxation. Multigrid is also able to outperform the conjugate gradient algorithm. (orig.)

  3. On multigrid solution of the implicit equations of hydrodynamics. Experiments for the compressible Euler equations in general coordinates

    Science.gov (United States)

    Kifonidis, K.; Müller, E.

    2012-08-01

    Aims: We describe and study a family of new multigrid iterative solvers for the multidimensional, implicitly discretized equations of hydrodynamics. Schemes of this class are free of the Courant-Friedrichs-Lewy condition. They are intended for simulations in which widely differing wave propagation timescales are present. A preferred solver in this class is identified. Applications to some simple stiff test problems that are governed by the compressible Euler equations, are presented to evaluate the convergence behavior, and the stability properties of this solver. Algorithmic areas are determined where further work is required to make the method sufficiently efficient and robust for future application to difficult astrophysical flow problems. Methods: The basic equations are formulated and discretized on non-orthogonal, structured curvilinear meshes. Roe's approximate Riemann solver and a second-order accurate reconstruction scheme are used for spatial discretization. Implicit Runge-Kutta (ESDIRK) schemes are employed for temporal discretization. The resulting discrete equations are solved with a full-coarsening, non-linear multigrid method. Smoothing is performed with multistage-implicit smoothers. These are applied here to the time-dependent equations by means of dual time stepping. Results: For steady-state problems, our results show that the efficiency of the present approach is comparable to the best implicit solvers for conservative discretizations of the compressible Euler equations that can be found in the literature. The use of red-black as opposed to symmetric Gauss-Seidel iteration in the multistage-smoother is found to have only a minor impact on multigrid convergence. This should enable scalable parallelization without having to seriously compromise the method's algorithmic efficiency. For time-dependent test problems, our results reveal that the multigrid convergence rate degrades with increasing Courant numbers (i.e. time step sizes). Beyond a

  4. Higher-order differencing method with a multigrid approach for the solution of the incompressible flow equations at high Reynolds numbers

    International Nuclear Information System (INIS)

    Tzanos, C.P.

    1992-01-01

    A higher-order differencing method was recently proposed for the convection-diffusion equation, which even with a coarse mesh gives oscillation-free solutions that are far more accurate than those of the upwind scheme. In this paper, the performance of this method is investigated in conjunction with the performance of different iterative solvers for the solution of the Navier-Stokes equations in the vorticity-streamfunction formulation for incompressible flow at high Reynolds numbers. Flow in a square cavity with a moving lid was chosen as a model problem. Solvers that performed well at low Re numbers either failed to converge or had a computationally prohibitive convergence rate at high Re numbers. The additive correction method of Settari and Aziz and an iterative incomplete lower and upper (ILU) solver were used in a multigrid approach that performed well in the whole range of Re numbers considered (from 1000 to 10,000) and for uniform as well as nonuniform grids. At high Re numbers, point or line Gauss-Seidel solvers converged with uniform grids, but failed to converge with nonuniform grids

  5. Large-Scale Parallel Viscous Flow Computations using an Unstructured Multigrid Algorithm

    Science.gov (United States)

    Mavriplis, Dimitri J.

    1999-01-01

    The development and testing of a parallel unstructured agglomeration multigrid algorithm for steady-state aerodynamic flows is discussed. The agglomeration multigrid strategy uses a graph algorithm to construct the coarse multigrid levels from the given fine grid, similar to an algebraic multigrid approach, but operates directly on the non-linear system using the FAS (Full Approximation Scheme) approach. The scalability and convergence rate of the multigrid algorithm are examined on the SGI Origin 2000 and the Cray T3E. An argument is given which indicates that the asymptotic scalability of the multigrid algorithm should be similar to that of its underlying single grid smoothing scheme. For medium size problems involving several million grid points, near perfect scalability is obtained for the single grid algorithm, while only a slight drop-off in parallel efficiency is observed for the multigrid V- and W-cycles, using up to 128 processors on the SGI Origin 2000, and up to 512 processors on the Cray T3E. For a large problem using 25 million grid points, good scalability is observed for the multigrid algorithm using up to 1450 processors on a Cray T3E, even when the coarsest grid level contains fewer points than the total number of processors.

  6. Multigrid treatment of implicit continuum diffusion

    Science.gov (United States)

    Francisquez, Manaure; Zhu, Ben; Rogers, Barrett

    2017-10-01

    Implicit treatment of diffusive terms of various differential orders common in continuum mechanics modeling, such as computational fluid dynamics, is investigated with spectral and multigrid algorithms in non-periodic 2D domains. In doubly periodic time dependent problems these terms can be efficiently and implicitly handled by spectral methods, but in non-periodic systems solved with distributed memory parallel computing and 2D domain decomposition, this efficiency is lost for large numbers of processors. We built and present here a multigrid algorithm for these types of problems which outperforms a spectral solution that employs the highly optimized FFTW library. This multigrid algorithm is not only suitable for high performance computing but may also be able to efficiently treat implicit diffusion of arbitrary order by introducing auxiliary equations of lower order. We test these solvers for fourth and sixth order diffusion with idealized harmonic test functions as well as a turbulent 2D magnetohydrodynamic simulation. It is also shown that an anisotropic operator without cross-terms can improve model accuracy and speed, and we examine the impact that the various diffusion operators have on the energy, the enstrophy, and the qualitative aspect of a simulation. This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).

  7. Multigrid solution of the convection-diffusion equation with high-Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [George Washington Univ., Washington, DC (United States)

    1996-12-31

    A fourth-order compact finite difference scheme is employed with the multigrid technique to solve the variable coefficient convection-diffusion equation with high-Reynolds number. Scaled inter-grid transfer operators and potential on vectorization and parallelization are discussed. The high-order multigrid method is unconditionally stable and produces solution of 4th-order accuracy. Numerical experiments are included.

  8. Parallel implicit Multigrid Method for Direct Numerical Simulation of Time-Dependent Compressible Turbulent Flow Around Flight Vehicles

    National Research Council Canada - National Science Library

    Liu, Chaoqun

    1999-01-01

    .... Four transitional stages are observed: the linear and weakly nonlinear growth, the appearance of staggered A-vortex patterns, the evolution of A-vortex into hairpin vortex, the breakdown of hairpin vortical structures...

  9. Parallel multigrid smoothing: polynomial versus Gauss-Seidel

    International Nuclear Information System (INIS)

    Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray

    2003-01-01

    Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines

  10. Parallel multigrid smoothing: polynomial versus Gauss-Seidel

    Science.gov (United States)

    Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray

    2003-07-01

    Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines.

  11. Scalable multi-grid preconditioning techniques for the even-parity S_N solver in UNIC

    International Nuclear Information System (INIS)

    Mahadevan, Vijay S.; Smith, Michael A.

    2011-01-01

    The Even-parity neutron transport equation with FE-S_N discretization is solved traditionally using SOR preconditioned CG method at the lowest level of iterations in order to compute the criticality in reactor analysis problems. The use of high order isoparametric finite elements prohibits the formation of the discrete operator explicitly due to memory constraints in peta scale architectures. Hence, a h-p multi-grid preconditioner based on linear tessellation of the higher order mesh is introduced here for the space-angle system and compared against SOR and Algebraic MG black-box solvers. The performance and scalability of the multi-grid scheme was determined for two test problems and found to be competitive in terms of both computational time and memory requirements. The implementation of this preconditioner in an even-parity solver like UNIC from ANL can further enable high fidelity calculations in a scalable manner on peta flop machines. (author)

  12. Two linearization methods for atmospheric remote sensing

    International Nuclear Information System (INIS)

    Doicu, A.; Trautmann, T.

    2009-01-01

    We present two linearization methods for a pseudo-spherical atmosphere and general viewing geometries. The first approach is based on an analytical linearization of the discrete ordinate method with matrix exponential and incorporates two models for matrix exponential calculation: the matrix eigenvalue method and the Pade approximation. The second method referred to as the forward-adjoint approach is based on the adjoint radiative transfer for a pseudo-spherical atmosphere. We provide a compact description of the proposed methods as well as a numerical analysis of their accuracy and efficiency.

  13. Sparsity Prevention Pivoting Method for Linear Programming

    DEFF Research Database (Denmark)

    Li, Peiqiang; Li, Qiyuan; Li, Canbing

    2018-01-01

    When the simplex algorithm is used to calculate a linear programming problem, if the matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper....... The principle of this method is avoided choosing the row which the value of the element in the b vector is zero as the row of the pivot element to make the matrix in linear programming density and ensure that most subsequent steps will improve the value of the objective function. One step following...... this principle is inserted to reselect the pivot element in the existing linear programming algorithm. Both the conditions for inserting this step and the maximum number of allowed insertion steps are determined. In the case study, taking several numbers of linear programming problems as examples, the results...

  14. Sparsity Prevention Pivoting Method for Linear Programming

    DEFF Research Database (Denmark)

    Li, Peiqiang; Li, Qiyuan; Li, Canbing

    2018-01-01

    . The principle of this method is avoided choosing the row which the value of the element in the b vector is zero as the row of the pivot element to make the matrix in linear programming density and ensure that most subsequent steps will improve the value of the objective function. One step following......When the simplex algorithm is used to calculate a linear programming problem, if the matrix is a sparse matrix, it will be possible to lead to many zero-length calculation steps, and even iterative cycle will appear. To deal with the problem, a new pivoting method is proposed in this paper...... this principle is inserted to reselect the pivot element in the existing linear programming algorithm. Both the conditions for inserting this step and the maximum number of allowed insertion steps are determined. In the case study, taking several numbers of linear programming problems as examples, the results...

  15. The linearization method in hydrodynamical stability theory

    CERN Document Server

    Yudovich, V I

    1989-01-01

    This book presents the theory of the linearization method as applied to the problem of steady-state and periodic motions of continuous media. The author proves infinite-dimensional analogues of Lyapunov's theorems on stability, instability, and conditional stability for a large class of continuous media. In addition, semigroup properties for the linearized Navier-Stokes equations in the case of an incompressible fluid are studied, and coercivity inequalities and completeness of a system of small oscillations are proved.

  16. Non-linear M -sequences Generation Method

    Directory of Open Access Journals (Sweden)

    Z. R. Garifullina

    2011-06-01

    Full Text Available The article deals with a new method for modeling a pseudorandom number generator based on R-blocks. The gist of the method is the replacement of a multi digit XOR element by a stochastic adder in a parallel binary linear feedback shift register scheme.

  17. Uzawa method for fuzzy linear system

    OpenAIRE

    Ke Wang

    2013-01-01

    An Uzawa method is presented for solving fuzzy linear systems whose coefficient matrix is crisp and the right-hand side column is arbitrary fuzzy number vector. The explicit iterative scheme is given. The convergence is analyzed with convergence theorems and the optimal parameter is obtained. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.

  18. multi-grids method development for the 3D modeling of the pellet-sheath mechanical interaction. Laboratory internship

    International Nuclear Information System (INIS)

    Leclerc, Willy

    2010-10-01

    In order to use a better approach to understand fuel behaviour by numerical simulation, Adaptive Mesh Refinement methods could become very useful. Today, the use of classical Finite Element methods do not enable a easy study of the different phenomenon undergone by the fuel. Important nodes number and calculus time are the two first reasons making the simulation hard to use and visualize. Moreover results reliability is difficult to ensure with a such kind of method. Adaptive Mesh Refinement methods advantages are important particularly if we need a quick convergence and a better mesh structure. The purpose of our study will be to push the method forward by explaining his qualities and putting into place 2D and 3D pellet/sheath interaction problem. (author) [fr

  19. An evaluation of parallel multigrid as a solver and a preconditioner for singular perturbed problems

    Energy Technology Data Exchange (ETDEWEB)

    Oosterlee, C.W. [Inst. for Algorithms and Scientific Computing, Sankt Augustin (Germany); Washio, T. [C& C Research Lab., Sankt Augustin (Germany)

    1996-12-31

    In this paper we try to achieve h-independent convergence with preconditioned GMRES and BiCGSTAB for 2D singular perturbed equations. Three recently developed multigrid methods are adopted as a preconditioner. They are also used as solution methods in order to compare the performance of the methods as solvers and as preconditioners. Two of the multigrid methods differ only in the transfer operators. One uses standard matrix- dependent prolongation operators from. The second uses {open_quotes}upwind{close_quotes} prolongation operators, developed. Both employ the Galerkin coarse grid approximation and an alternating zebra line Gauss-Seidel smoother. The third method is based on the block LU decomposition of a matrix and on an approximate Schur complement. This multigrid variant is presented in. All three multigrid algorithms are algebraic methods.

  20. The simplex method of linear programming

    CERN Document Server

    Ficken, Frederick A

    1961-01-01

    This concise but detailed and thorough treatment discusses the rudiments of the well-known simplex method for solving optimization problems in linear programming. Geared toward undergraduate students, the approach offers sufficient material for readers without a strong background in linear algebra. Many different kinds of problems further enrich the presentation. The text begins with examinations of the allocation problem, matrix notation for dual problems, feasibility, and theorems on duality and existence. Subsequent chapters address convex sets and boundedness, the prepared problem and boun

  1. Morphology effects on the bandgap of silicon nanocrystals—Numerically modelled by a full multi-grid method

    Science.gov (United States)

    Puthen Veettil, Binesh; König, Dirk; Huang, Shujuan; Patterson, Robert; Conibeer, Gavin

    2017-02-01

    Silicon nanocrystals embedded in a dielectric matrix have been considered a potential candidate for many optoelectronic and photovoltaic applications and have been under vigorous study in recent years. One of the main properties of interest in this application is the absorption bandgap, which is determined by the quantum confinement of silicon nanocrystals. The ability to predict the absorption bandgap is a key step in designing an optimum solar cell using this material. Although several higher level algorithms are available to predict the electronic confinement in these nanocrystals, most of them make regular-shape assumptions for the ease of computation. In this work, we present a model for the accurate prediction of the quantum confinement in silicon nanocrystals of non-regular shape by employing an efficient, self-consistent Full-Multi-Grid method. Confined energies in spherical, elongated, and arbitrarily shaped nanocrystals are calculated. The excited level calculations quantify the wavefunction coupling and energy level splitting arising due to the proximity of dots. The splitting magnitude was found to be as high as 0.1 eV for the 2 nm size silicon quantum dots. The decrease in confinement energy due to the elongation of dots was found to be more than 0.2 eV, and the trend was similar for different dielectric materials. Theoretical predictions were compared to the results from optical and structural characterisation and found to be in agreement. The loss of degeneracy in highly asymmetric quantum dots, such as a "horse-shoe" shaped quantum dot, significantly affects the excited state energies.

  2. h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems

    Science.gov (United States)

    Botti, L.; Colombo, A.; Bassi, F.

    2017-10-01

    In this work we exploit agglomeration based h-multigrid preconditioners to speed-up the iterative solution of discontinuous Galerkin discretizations of the Stokes and Navier-Stokes equations. As a distinctive feature h-coarsened mesh sequences are generated by recursive agglomeration of a fine grid, admitting arbitrarily unstructured grids of complex domains, and agglomeration based discontinuous Galerkin discretizations are employed to deal with agglomerated elements of coarse levels. Both the expense of building coarse grid operators and the performance of the resulting multigrid iteration are investigated. For the sake of efficiency coarse grid operators are inherited through element-by-element L2 projections, avoiding the cost of numerical integration over agglomerated elements. Specific care is devoted to the projection of viscous terms discretized by means of the BR2 dG method. We demonstrate that enforcing the correct amount of stabilization on coarse grids levels is mandatory for achieving uniform convergence with respect to the number of levels. The numerical solution of steady and unsteady, linear and non-linear problems is considered tackling challenging 2D test cases and 3D real life computations on parallel architectures. Significant execution time gains are documented.

  3. Algebraic coarsening methods for linear and nonlinear PDE and systems

    International Nuclear Information System (INIS)

    McWilliams, J C

    2000-01-01

    In [l] Brandt describes a general approach for algebraic coarsening. Given fine-grid equations and a prescribed relaxation method, an approach is presented for defining both the coarse-grid variables and the coarse-grid equations corresponding to these variables. Although, these two tasks are not necessarily related (and, indeed, are often performed independently and with distinct techniques) in the approaches of [1] both revolve around the same underlying observation. To determine whether a given set of coarse-grid variables is appropriate it is suggested that one should employ compatible relaxation. This is a generalization of so-called F-relaxation (e.g., [2]). Suppose that the coarse-grid variables are defined as a subset of the fine-grid variables. Then, F-relaxation simply means relaxing only the F-variables (i.e., fine-grid variables that do not correspond to coarse-grid variables), while leaving the remaining fine-grid variables (C-variables) unchanged. The generalization of compatible relaxation is in allowing the coarse-grid variables to be defined differently, say as linear combinations of fine-grid variables, or even nondeterministically (see examples in [1]). For the present summary it suffices to consider the simple case. The central observation regarding the set of coarse-grid variables is the following [1]: Observation 1--A general measure for the quality of the set of coarse-grid variables is the convergence rate of compatible relaxation. The conclusion is that a necessary condition for efficient multigrid solution (e.g., with convergence rates independent of problem size) is that the compatible-relaxation convergence be bounded away from 1, independently of the number of variables. This is often a sufficient condition, provided that the coarse-grid equations are sufficiently accurate. Therefore, it is suggested in [1] that the convergence rate of compatible relaxation should be used as a criterion for choosing and evaluating the set of coarse

  4. Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems

    Science.gov (United States)

    Bramble, James H.; Kwak, Do Y.; Pasciak, Joseph E.

    1993-01-01

    In this paper, we present an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic problems. In this multigrid method various types of smoothers may be used. One type of smoother which we consider is defined in terms of an associated symmetric problem and includes point and line, Jacobi, and Gauss-Seidel iterations. We also study smoothers based entirely on the original operator. One is based on the normal form, that is, the product of the operator and its transpose. Other smoothers studied include point and line, Jacobi, and Gauss-Seidel. We show that the uniform estimates for symmetric positive definite problems carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is sufficiently fine (but not depending on the number of multigrid levels).

  5. Polarized atomic orbitals for linear scaling methods

    Science.gov (United States)

    Berghold, Gerd; Parrinello, Michele; Hutter, Jürg

    2002-02-01

    We present a modified version of the polarized atomic orbital (PAO) method [M. S. Lee and M. Head-Gordon, J. Chem. Phys. 107, 9085 (1997)] to construct minimal basis sets optimized in the molecular environment. The minimal basis set derives its flexibility from the fact that it is formed as a linear combination of a larger set of atomic orbitals. This approach significantly reduces the number of independent variables to be determined during a calculation, while retaining most of the essential chemistry resulting from the admixture of higher angular momentum functions. Furthermore, we combine the PAO method with linear scaling algorithms. We use the Chebyshev polynomial expansion method, the conjugate gradient density matrix search, and the canonical purification of the density matrix. The combined scheme overcomes one of the major drawbacks of standard approaches for large nonorthogonal basis sets, namely numerical instabilities resulting from ill-conditioned overlap matrices. We find that the condition number of the PAO overlap matrix is independent from the condition number of the underlying extended basis set, and consequently no numerical instabilities are encountered. Various applications are shown to confirm this conclusion and to compare the performance of the PAO method with extended basis-set calculations.

  6. Fourier two-level analysis for discontinuous Galerkin discretization with linear elements

    NARCIS (Netherlands)

    P.W. Hemker (Piet); W. Hoffmann; M.H. van Raalte (Marc)

    2002-01-01

    textabstractIn this paper we study the convergence of a multigrid method for the solution of a linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods, and we give a detailed analysis of the convergence fordifferent block-relaxation strategies. In addition to an

  7. Mathematics and computational methods development in U.S. department of energy-sponsored research (nuclear energy research initiative and nuclear engineering education research). 5. Analysis of Angular V-Cycle Multigrid Formulation for Three-Dimensional Discrete Ordinates Shielding Problems

    International Nuclear Information System (INIS)

    Kucukboyaci, Vefa; Haghighat, Alireza

    2001-01-01

    We have developed new angular multigrid formulations, including the Simplified Angular Multigrid (SAM), Nested Iteration (NI), and V-Cycle schemes, that are compatible with the parallel environment and the adaptive differencing strategy of the PENTRAN three-dimensional parallel S N code. Using the Fourier analysis method for an infinite, homogenous medium, we have investigated the effectiveness of the V-Cycle scheme for different problem parameters including scattering ratio, spatial differencing weights, quadrature order, and mesh size. We have further investigated the effectiveness of the new schemes for practical shielding applications such as the Kobayashi benchmark problem and the boiling water reactor core shroud problem. In this paper, we summarize the angular V-Cycle scheme implemented in the PENTRAN code, the Fourier Analysis of the V-Cycle scheme, and results of convergence analysis of the V-Cycle scheme using different problem parameters. The theoretical analysis reveals that the V-Cycle scheme is effective for a large range of scattering ratios and is insensitive to mesh size. Besides the theoretical analysis, we have applied the new angular multigrid schemes to shielding problems. In comparison to the standard PCR formulation, combinations of the new angular multigrid schemes and PCR (e.g., SAM+V-Cycle+PCR) have proved to be very effective for scattering ratios in a range of 0.6 to 0.9. (authors)

  8. Multi-grid Particle-in-cell Simulations of Plasma Microturbulence

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2003-01-01

    A new scheme to accurately retain kinetic electron effects in particle-in-cell (PIC) simulations for the case of electrostatic drift waves is presented. The splitting scheme, which is based on exact separation between adiabatic and on adiabatic electron responses, is shown to yield more accurate linear growth rates than the standard df scheme. The linear and nonlinear elliptic problems that arise in the splitting scheme are solved using a multi-grid solver. The multi-grid particle-in-cell approach offers an attractive path, both from the physics and numerical points of view, to simulate kinetic electron dynamics in global toroidal plasmas

  9. Higher-order ice-sheet modelling accelerated by multigrid on graphics cards

    Science.gov (United States)

    Brædstrup, Christian; Egholm, David

    2013-04-01

    Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.

  10. New nonlinear methods for linear transport calculations

    International Nuclear Information System (INIS)

    Adams, M.L.

    1993-01-01

    We present a new family of methods for the numerical solution of the linear transport equation. With these methods an iteration consists of an 'S N sweep' followed by an 'S 2 -like' calculation. We show, by analysis as well as numerical results, that iterative convergence is always rapid. We show that this rapid convergence does not depend on a consistent discretization of the S 2 -like equations - they can be discretized independently from the S N equations. We show further that independent discretizations can offer significant advantages over consistent ones. In particular, we find that in a wide range of problems, an accurate discretization of the S 2 -like equation can be combined with a crude discretization of the S N equations to produce an accurate S N answer. We demonstrate this by analysis as well as numerical results. (orig.)

  11. Achieving Textbook Multigrid Efficiency for Hydrostatic Ice Sheet Flow

    KAUST Repository

    Brown, Jed

    2013-03-12

    The hydrostatic equations for ice sheet flow offer improved fidelity compared with the shallow ice approximation and shallow stream approximation popular in today\\'s ice sheet models. Nevertheless, they present a serious bottleneck because they require the solution of a three-dimensional (3D) nonlinear system, as opposed to the two-dimensional system present in the shallow stream approximation. This 3D system is posed on high-aspect domains with strong anisotropy and variation in coefficients, making it expensive to solve with current methods. This paper presents a Newton--Krylov multigrid solver for the hydrostatic equations that demonstrates textbook multigrid efficiency (an order of magnitude reduction in residual per iteration and solution of the fine-level system at a small multiple of the cost of a residual evaluation). Scalability on Blue Gene/P is demonstrated, and the method is compared to various algebraic methods that are in use or have been proposed as viable approaches.

  12. Achieving Textbook Multigrid Efficiency for Hydrostatic Ice Sheet Flow

    KAUST Repository

    Brown, Jed; Smith, Barry; Ahmadia, Aron

    2013-01-01

    The hydrostatic equations for ice sheet flow offer improved fidelity compared with the shallow ice approximation and shallow stream approximation popular in today's ice sheet models. Nevertheless, they present a serious bottleneck because they require the solution of a three-dimensional (3D) nonlinear system, as opposed to the two-dimensional system present in the shallow stream approximation. This 3D system is posed on high-aspect domains with strong anisotropy and variation in coefficients, making it expensive to solve with current methods. This paper presents a Newton--Krylov multigrid solver for the hydrostatic equations that demonstrates textbook multigrid efficiency (an order of magnitude reduction in residual per iteration and solution of the fine-level system at a small multiple of the cost of a residual evaluation). Scalability on Blue Gene/P is demonstrated, and the method is compared to various algebraic methods that are in use or have been proposed as viable approaches.

  13. Modeling of frequency-domain scalar wave equation with the average-derivative optimal scheme based on a multigrid-preconditioned iterative solver

    Science.gov (United States)

    Cao, Jian; Chen, Jing-Bo; Dai, Meng-Xue

    2018-01-01

    An efficient finite-difference frequency-domain modeling of seismic wave propagation relies on the discrete schemes and appropriate solving methods. The average-derivative optimal scheme for the scalar wave modeling is advantageous in terms of the storage saving for the system of linear equations and the flexibility for arbitrary directional sampling intervals. However, using a LU-decomposition-based direct solver to solve its resulting system of linear equations is very costly for both memory and computational requirements. To address this issue, we consider establishing a multigrid-preconditioned BI-CGSTAB iterative solver fit for the average-derivative optimal scheme. The choice of preconditioning matrix and its corresponding multigrid components is made with the help of Fourier spectral analysis and local mode analysis, respectively, which is important for the convergence. Furthermore, we find that for the computation with unequal directional sampling interval, the anisotropic smoothing in the multigrid precondition may affect the convergence rate of this iterative solver. Successful numerical applications of this iterative solver for the homogenous and heterogeneous models in 2D and 3D are presented where the significant reduction of computer memory and the improvement of computational efficiency are demonstrated by comparison with the direct solver. In the numerical experiments, we also show that the unequal directional sampling interval will weaken the advantage of this multigrid-preconditioned iterative solver in the computing speed or, even worse, could reduce its accuracy in some cases, which implies the need for a reasonable control of directional sampling interval in the discretization.

  14. Non-Galerkin Coarse Grids for Algebraic Multigrid

    Energy Technology Data Exchange (ETDEWEB)

    Falgout, Robert D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schroder, Jacob B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-26

    Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. And while AMG has been effectively implemented on large scale parallel machines, challenges remain, especially when moving to exascale. Particularly, stencil sizes (the number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy, and this growth leads to more communication. Therefore, as problem size increases and the number of levels in the hierarchy grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth in stencil size is due to the standard Galerkin coarse grid operator, $P^T A P$, where $P$ is the prolongation (i.e., interpolation) operator. For example, the coarse grid stencil size for a simple three-dimensional (3D) seven-point finite differencing approximation to diffusion can increase into the thousands on present day machines, causing an associated increase in communication costs. We therefore consider algebraically truncating coarse grid stencils to obtain a non-Galerkin coarse grid. First, the sparsity pattern of the non-Galerkin coarse grid is determined by employing a heuristic minimal “safe” pattern together with strength-of-connection ideas. Second, the nonzero entries are determined by collapsing the stencils in the Galerkin operator using traditional AMG techniques. The result is a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG solve phase times.

  15. Efficient relaxed-Jacobi smoothers for multigrid on parallel computers

    Science.gov (United States)

    Yang, Xiang; Mittal, Rajat

    2017-03-01

    In this Technical Note, we present a family of Jacobi-based multigrid smoothers suitable for the solution of discretized elliptic equations. These smoothers are based on the idea of scheduled-relaxation Jacobi proposed recently by Yang & Mittal (2014) [18] and employ two or three successive relaxed Jacobi iterations with relaxation factors derived so as to maximize the smoothing property of these iterations. The performance of these new smoothers measured in terms of convergence acceleration and computational workload, is assessed for multi-domain implementations typical of parallelized solvers, and compared to the lexicographic point Gauss-Seidel smoother. The tests include the geometric multigrid method on structured grids as well as the algebraic grid method on unstructured grids. The tests demonstrate that unlike Gauss-Seidel, the convergence of these Jacobi-based smoothers is unaffected by domain decomposition, and furthermore, they outperform the lexicographic Gauss-Seidel by factors that increase with domain partition count.

  16. A multigrid algorithm for the cell-centered finite difference scheme

    Science.gov (United States)

    Ewing, Richard E.; Shen, Jian

    1993-01-01

    In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.

  17. Studying the method of linearization of exponential calibration curves

    International Nuclear Information System (INIS)

    Bunzh, Z.A.

    1989-01-01

    The results of study of the method for linearization of exponential calibration curves are given. The calibration technique and comparison of the proposed method with piecewise-linear approximation and power series expansion, are given

  18. A logic circuit for solving linear function by digital method

    International Nuclear Information System (INIS)

    Ma Yonghe

    1986-01-01

    A mathematical method for determining the linear relation of physical quantity with rediation intensity is described. A logic circuit has been designed for solving linear function by digital method. Some applications and the circuit function are discussed

  19. Accelerating Lattice QCD Multigrid on GPUs Using Fine-Grained Parallelization

    Energy Technology Data Exchange (ETDEWEB)

    Clark, M. A. [NVIDIA Corp., Santa Clara; Joó, Bálint [Jefferson Lab; Strelchenko, Alexei [Fermilab; Cheng, Michael [Boston U., Ctr. Comp. Sci.; Gambhir, Arjun [William-Mary Coll.; Brower, Richard [Boston U.

    2016-12-22

    The past decade has witnessed a dramatic acceleration of lattice quantum chromodynamics calculations in nuclear and particle physics. This has been due to both significant progress in accelerating the iterative linear solvers using multi-grid algorithms, and due to the throughput improvements brought by GPUs. Deploying hierarchical algorithms optimally on GPUs is non-trivial owing to the lack of parallelism on the coarse grids, and as such, these advances have not proved multiplicative. Using the QUDA library, we demonstrate that by exposing all sources of parallelism that the underlying stencil problem possesses, and through appropriate mapping of this parallelism to the GPU architecture, we can achieve high efficiency even for the coarsest of grids. Results are presented for the Wilson-Clover discretization, where we demonstrate up to 10x speedup over present state-of-the-art GPU-accelerated methods on Titan. Finally, we look to the future, and consider the software implications of our findings.

  20. Analysis of preconditioning and multigrid for Euler flows with low-subsonic regions

    NARCIS (Netherlands)

    Koren, B.; Leer, van B.

    1995-01-01

    For subsonic flows and upwind-discretized, linearized 1-D Euler equations, the smoothing behavior of multigrid-accelerated point Gauss-Seidel relaxation is analyzed. Error decay by convection across domain boundaries is also discussed. A fix to poor convergence rates at low Mach numbers is sought in

  1. A multigrid based 3D space-charge routine in the tracking code GPT

    NARCIS (Netherlands)

    Pöplau, G.; Rienen, van U.; Loos, de M.J.; Geer, van der S.B.; Berz, M.; Makino, K.

    2005-01-01

    Fast calculation of3D non-linear space-charge fields is essential for the simulation ofhigh-brightness charged particle beams. We report on our development of a new 3D spacecharge routine in the General Particle Tracer (GPT) code. The model is based on a nonequidistant multigrid Poisson solver that

  2. Multigrid Computation of Stratified Flow over Two-Dimensional Obstacles

    Science.gov (United States)

    Paisley, M. F.

    1997-09-01

    A robust multigrid method for the incompressible Navier-Stokes equations is presented and applied to the computation of viscous flow over obstacles in a bounded domain under conditions of neutral stability and stable density stratification. Two obstacle shapes have been used, namely a vertical barrier, for which the grid is Cartesian, and a smooth cosine-shaped obstacle, for which a boundary-conforming transformation is incorporated. Results are given for laminar flows at low Reynolds numbers and turbulent flows at a high Reynolds number, when a simple mixing length turbulence model is included. The multigrid algorithm is used to compute steady flows for each obstacle at low and high Reynolds numbers in conditions of weak static stability, defined byK=ND/πU≤ 1, whereU,N, andDare the upstream velocity, bouyancy frequency, and domain height respectively. Results are also presented for the vertical barrier at low and high Reynolds number in conditions of strong static stability,K> 1, when lee wave motions ensure that the flow is unsteady, and the multigrid algorithm is used to compute the flow at each timestep.

  3. A scalable geometric multigrid solver for nonsymmetric elliptic systems with application to variable-density flows

    Science.gov (United States)

    Esmaily, M.; Jofre, L.; Mani, A.; Iaccarino, G.

    2018-03-01

    A geometric multigrid algorithm is introduced for solving nonsymmetric linear systems resulting from the discretization of the variable density Navier-Stokes equations on nonuniform structured rectilinear grids and high-Reynolds number flows. The restriction operation is defined such that the resulting system on the coarser grids is symmetric, thereby allowing for the use of efficient smoother algorithms. To achieve an optimal rate of convergence, the sequence of interpolation and restriction operations are determined through a dynamic procedure. A parallel partitioning strategy is introduced to minimize communication while maintaining the load balance between all processors. To test the proposed algorithm, we consider two cases: 1) homogeneous isotropic turbulence discretized on uniform grids and 2) turbulent duct flow discretized on stretched grids. Testing the algorithm on systems with up to a billion unknowns shows that the cost varies linearly with the number of unknowns. This O (N) behavior confirms the robustness of the proposed multigrid method regarding ill-conditioning of large systems characteristic of multiscale high-Reynolds number turbulent flows. The robustness of our method to density variations is established by considering cases where density varies sharply in space by a factor of up to 104, showing its applicability to two-phase flow problems. Strong and weak scalability studies are carried out, employing up to 30,000 processors, to examine the parallel performance of our implementation. Excellent scalability of our solver is shown for a granularity as low as 104 to 105 unknowns per processor. At its tested peak throughput, it solves approximately 4 billion unknowns per second employing over 16,000 processors with a parallel efficiency higher than 50%.

  4. Methods in half-linear asymptotic theory

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel

    2016-01-01

    Roč. 2016, Č. 267 (2016), s. 1-27 ISSN 1072-6691 Institutional support: RVO:67985840 Keywords : half-linear differential equation * nonoscillatory solution * regular variation Subject RIV: BA - General Mathematics Impact factor: 0.954, year: 2016 http://ejde.math.txstate.edu/Volumes/2016/267/abstr.html

  5. Numerical Methods for Forward and Inverse Problems in Discontinuous Media

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, Timothy P.

    2011-03-08

    The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise to medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.

  6. A Cost-Effective Smoothed Multigrid with Modified Neighborhood-Based Aggregation for Markov Chains

    Directory of Open Access Journals (Sweden)

    Zhao-Li Shen

    2015-01-01

    Full Text Available Smoothed aggregation multigrid method is considered for computing stationary distributions of Markov chains. A judgement which determines whether to implement the whole aggregation procedure is proposed. Through this strategy, a large amount of time in the aggregation procedure is saved without affecting the convergence behavior. Besides this, we explain the shortage and irrationality of the Neighborhood-Based aggregation which is commonly used in multigrid methods. Then a modified version is presented to remedy and improve it. Numerical experiments on some typical Markov chain problems are reported to illustrate the performance of these methods.

  7. Methods in half-linear asymptotic theory

    Directory of Open Access Journals (Sweden)

    Pavel Rehak

    2016-10-01

    Full Text Available We study the asymptotic behavior of eventually positive solutions of the second-order half-linear differential equation $$ (r(t|y'|^{\\alpha-1}\\hbox{sgn} y''=p(t|y|^{\\alpha-1}\\hbox{sgn} y, $$ where r(t and p(t are positive continuous functions on $[a,\\infty$, $\\alpha\\in(1,\\infty$. The aim of this article is twofold. On the one hand, we show applications of a wide variety of tools, like the Karamata theory of regular variation, the de Haan theory, the Riccati technique, comparison theorems, the reciprocity principle, a certain transformation of dependent variable, and principal solutions. On the other hand, we solve open problems posed in the literature and generalize existing results. Most of our observations are new also in the linear case.

  8. Convergence of hybrid methods for solving non-linear partial ...

    African Journals Online (AJOL)

    This paper is concerned with the numerical solution and convergence analysis of non-linear partial differential equations using a hybrid method. The solution technique involves discretizing the non-linear system of PDE to obtain a corresponding non-linear system of algebraic difference equations to be solved at each time ...

  9. Interior Point Method for Solving Fuzzy Number Linear Programming Problems Using Linear Ranking Function

    Directory of Open Access Journals (Sweden)

    Yi-hua Zhong

    2013-01-01

    Full Text Available Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.

  10. A Proposed Method for Solving Fuzzy System of Linear Equations

    Directory of Open Access Journals (Sweden)

    Reza Kargar

    2014-01-01

    Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.

  11. Mathematical methods linear algebra normed spaces distributions integration

    CERN Document Server

    Korevaar, Jacob

    1968-01-01

    Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector

  12. Multigrid on unstructured grids using an auxiliary set of structured grids

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, C.C.; Malhotra, S.; Schultz, M.H. [Yale Univ., New Haven, CT (United States)

    1996-12-31

    Unstructured grids do not have a convenient and natural multigrid framework for actually computing and maintaining a high floating point rate on standard computers. In fact, just the coarsening process is expensive for many applications. Since unstructured grids play a vital role in many scientific computing applications, many modifications have been proposed to solve this problem. One suggested solution is to map the original unstructured grid onto a structured grid. This can be used as a fine grid in a standard multigrid algorithm to precondition the original problem on the unstructured grid. We show that unless extreme care is taken, this mapping can lead to a system with a high condition number which eliminates the usefulness of the multigrid method. Theorems with lower and upper bounds are provided. Simple examples show that the upper bounds are sharp.

  13. Multicloud: Multigrid convergence with a meshless operator

    International Nuclear Information System (INIS)

    Katz, Aaron; Jameson, Antony

    2009-01-01

    The primary objective of this work is to develop and test a new convergence acceleration technique we call multicloud. Multicloud is well-founded in the mathematical basis of multigrid, but relies on a meshless operator on coarse levels. The meshless operator enables extremely simple and automatic coarsening procedures for arbitrary meshes using arbitrary fine level discretization schemes. The performance of multicloud is compared with established multigrid techniques for structured and unstructured meshes for the Euler equations on two-dimensional test cases. Results indicate comparable convergence rates per unit work for multicloud and multigrid. However, because of its mesh and scheme transparency, multicloud may be applied to a wide array of problems with no modification of fine level schemes as is often required with agglomeration techniques. The implication is that multicloud can be implemented in a completely modular fashion, allowing researchers to develop fine level algorithms independent of the convergence accelerator for complex three-dimensional problems.

  14. Conjugate gradient coupled with multigrid for an indefinite problem

    Science.gov (United States)

    Gozani, J.; Nachshon, A.; Turkel, E.

    1984-01-01

    An iterative algorithm for the Helmholtz equation is presented. This scheme was based on the preconditioned conjugate gradient method for the normal equations. The preconditioning is one cycle of a multigrid method for the discrete Laplacian. The smoothing algorithm is red-black Gauss-Seidel and is constructed so it is a symmetric operator. The total number of iterations needed by the algorithm is independent of h. By varying the number of grids, the number of iterations depends only weakly on k when k(3)h(2) is constant. Comparisons with a SSOR preconditioner are presented.

  15. Experiences using multigrid for geothermal simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bullivant, D.P.; O`Sullivan, M.J. [Univ. of Auckland (New Zealand); Yang, Z. [Univ. of New South Wales (Australia)

    1995-03-01

    Experiences of applying multigrid to the calculation of natural states for geothermal simulations are discussed. The modelling of natural states was chosen for this study because they can take a long time to compute and the computation is often dominated by the development of phase change boundaries that take up a small region in the simulation. For the first part of this work a modified version of TOUGH was used for 2-D vertical problems. A {open_quotes}test-bed{close_quotes} program is now being used to investigate some of the problems encountered with implementing multigrid. This is ongoing work. To date, there have been some encouraging but not startling results.

  16. Highly indefinite multigrid for eigenvalue problems

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.; Oliveira, S.

    1996-12-31

    Eigenvalue problems are extremely important in understanding dynamic processes such as vibrations and control systems. Large scale eigenvalue problems can be very difficult to solve, especially if a large number of eigenvalues and the corresponding eigenvectors need to be computed. For solving this problem a multigrid preconditioned algorithm is presented in {open_quotes}The Davidson Algorithm, preconditioning and misconvergence{close_quotes}. Another approach for solving eigenvalue problems is by developing efficient solutions for highly indefinite problems. In this paper we concentrate on the use of new highly indefinite multigrid algorithms for the eigenvalue problem.

  17. A feasible DY conjugate gradient method for linear equality constraints

    Science.gov (United States)

    LI, Can

    2017-09-01

    In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.

  18. Fast linear method of illumination classification

    Science.gov (United States)

    Cooper, Ted J.; Baqai, Farhan A.

    2003-01-01

    We present a simple method for estimating the scene illuminant for images obtained by a Digital Still Camera (DSC). The proposed method utilizes basis vectors obtained from known memory color reflectance to identify the memory color objects in the image. Once the memory color pixels are identified, we use the ratios of the red/green and blue/green to determine the most likely illuminant in the image. The critical part of the method is to estimate the smallest set of basis vectors that closely represent the memory color reflectances. Basis vectors obtained from both Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are used. We will show that only two ICA basis vectors are needed to get an acceptable estimate.

  19. Interior-Point Methods for Linear Programming: A Review

    Science.gov (United States)

    Singh, J. N.; Singh, D.

    2002-01-01

    The paper reviews some recent advances in interior-point methods for linear programming and indicates directions in which future progress can be made. Most of the interior-point methods belong to any of three categories: affine-scaling methods, potential reduction methods and central path methods. These methods are discussed together with…

  20. Multigrid solution of diffusion equations on distributed memory multiprocessor systems

    International Nuclear Information System (INIS)

    Finnemann, H.

    1988-01-01

    The subject is the solution of partial differential equations for simulation of the reactor core on high-performance computers. The parallelization and implementation of nodal multigrid diffusion algorithms on array and ring configurations of the DIRMU multiprocessor system is outlined. The particular iteration scheme employed in the nodal expansion method appears similarly efficient in serial and parallel environments. The combination of modern multi-level techniques with innovative hardware (vector-multiprocessor systems) provides powerful tools needed for real time simulation of physical systems. The parallel efficiencies range from 70 to 90%. The same performance is estimated for large problems on large multiprocessor systems being designed at present. (orig.) [de

  1. Strong-stability-preserving additive linear multistep methods

    KAUST Repository

    Hadjimichael, Yiannis

    2018-02-20

    The analysis of strong-stability-preserving (SSP) linear multistep methods is extended to semi-discretized problems for which different terms on the right-hand side satisfy different forward Euler (or circle) conditions. Optimal perturbed and additive monotonicity-preserving linear multistep methods are studied in the context of such problems. Optimal perturbed methods attain larger monotonicity-preserving step sizes when the different forward Euler conditions are taken into account. On the other hand, we show that optimal SSP additive methods achieve a monotonicity-preserving step-size restriction no better than that of the corresponding nonadditive SSP linear multistep methods.

  2. Approximate Method for Solving the Linear Fuzzy Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    S. Narayanamoorthy

    2015-01-01

    Full Text Available We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.

  3. Efficient multigrid computation of steady hypersonic flows

    NARCIS (Netherlands)

    Koren, B.; Hemker, P.W.; Murthy, T.K.S.

    1991-01-01

    In steady hypersonic flow computations, Newton iteration as a local relaxation procedure and nonlinear multigrid iteration as an acceleration procedure may both easily fail. In the present chapter, same remedies are presented for overcoming these problems. The equations considered are the steady,

  4. Multi-grid Beam and Warming scheme for the simulation of unsteady ...

    African Journals Online (AJOL)

    In this paper, a multi-grid algorithm is applied to a large-scale block matrix that is produced from a Beam and Warming scheme. The Beam and Warming scheme is used in the simulation of unsteady flow in an open channel. The Gauss-Seidel block-wise iteration method is used for a smoothing process with a few iterations.

  5. Non-linear programming method in optimization of fast reactors

    International Nuclear Information System (INIS)

    Pavelesku, M.; Dumitresku, Kh.; Adam, S.

    1975-01-01

    Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)

  6. Two-dimensional differential transform method for solving linear and non-linear Schroedinger equations

    International Nuclear Information System (INIS)

    Ravi Kanth, A.S.V.; Aruna, K.

    2009-01-01

    In this paper, we propose a reliable algorithm to develop exact and approximate solutions for the linear and nonlinear Schroedinger equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and nonlinear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.

  7. Application of the simplex method of linear programming model to ...

    African Journals Online (AJOL)

    This work discussed how the simplex method of linear programming could be used to maximize the profit of any business firm using Saclux Paint Company as a case study. It equally elucidated the effect variation in the optimal result obtained from linear programming model, will have on any given firm. It was demonstrated ...

  8. Strong-stability-preserving additive linear multistep methods

    KAUST Repository

    Hadjimichael, Yiannis; Ketcheson, David I.

    2018-01-01

    The analysis of strong-stability-preserving (SSP) linear multistep methods is extended to semi-discretized problems for which different terms on the right-hand side satisfy different forward Euler (or circle) conditions. Optimal perturbed

  9. Direct Linear Transformation Method for Three-Dimensional Cinematography

    Science.gov (United States)

    Shapiro, Robert

    1978-01-01

    The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)

  10. Computation of Optimal Monotonicity Preserving General Linear Methods

    KAUST Repository

    Ketcheson, David I.

    2009-07-01

    Monotonicity preserving numerical methods for ordinary differential equations prevent the growth of propagated errors and preserve convex boundedness properties of the solution. We formulate the problem of finding optimal monotonicity preserving general linear methods for linear autonomous equations, and propose an efficient algorithm for its solution. This algorithm reliably finds optimal methods even among classes involving very high order accuracy and that use many steps and/or stages. The optimality of some recently proposed methods is verified, and many more efficient methods are found. We use similar algorithms to find optimal strong stability preserving linear multistep methods of both explicit and implicit type, including methods for hyperbolic PDEs that use downwind-biased operators.

  11. A Multigrid NLS-4DVar Data Assimilation Scheme with Advanced Research WRF (ARW)

    Science.gov (United States)

    Zhang, H.; Tian, X.

    2017-12-01

    The motions of the atmosphere have multiscale properties in space and/or time, and the background error covariance matrix (Β) should thus contain error information at different correlation scales. To obtain an optimal analysis, the multigrid three-dimensional variational data assimilation scheme is used widely when sequentially correcting errors from large to small scales. However, introduction of the multigrid technique into four-dimensional variational data assimilation is not easy, due to its strong dependence on the adjoint model, which has extremely high computational costs in data coding, maintenance, and updating. In this study, the multigrid technique was introduced into the nonlinear least-squares four-dimensional variational assimilation (NLS-4DVar) method, which is an advanced four-dimensional ensemble-variational method that can be applied without invoking the adjoint models. The multigrid NLS-4DVar (MG-NLS-4DVar) scheme uses the number of grid points to control the scale, with doubling of this number when moving from a coarse to a finer grid. Furthermore, the MG-NLS-4DVar scheme not only retains the advantages of NLS-4DVar, but also sufficiently corrects multiscale errors to achieve a highly accurate analysis. The effectiveness and efficiency of the proposed MG-NLS-4DVar scheme were evaluated by several groups of observing system simulation experiments using the Advanced Research Weather Research and Forecasting Model. MG-NLS-4DVar outperformed NLS-4DVar, with a lower computational cost.

  12. Linear regression methods a ccording to objective functions

    OpenAIRE

    Yasemin Sisman; Sebahattin Bektas

    2012-01-01

    The aim of the study is to explain the parameter estimation methods and the regression analysis. The simple linear regressionmethods grouped according to the objective function are introduced. The numerical solution is achieved for the simple linear regressionmethods according to objective function of Least Squares and theLeast Absolute Value adjustment methods. The success of the appliedmethods is analyzed using their objective function values.

  13. Efficient decomposition and linearization methods for the stochastic transportation problem

    International Nuclear Information System (INIS)

    Holmberg, K.

    1993-01-01

    The stochastic transportation problem can be formulated as a convex transportation problem with nonlinear objective function and linear constraints. We compare several different methods based on decomposition techniques and linearization techniques for this problem, trying to find the most efficient method or combination of methods. We discuss and test a separable programming approach, the Frank-Wolfe method with and without modifications, the new technique of mean value cross decomposition and the more well known Lagrangian relaxation with subgradient optimization, as well as combinations of these approaches. Computational tests are presented, indicating that some new combination methods are quite efficient for large scale problems. (authors) (27 refs.)

  14. Local multigrid mesh refinement in view of nuclear fuel 3D modelling in pressurised water reactors

    International Nuclear Information System (INIS)

    Barbie, L.

    2013-01-01

    The aim of this study is to improve the performances, in terms of memory space and computational time, of the current modelling of the Pellet-Cladding mechanical Interaction (PCI), complex phenomenon which may occurs during high power rises in pressurised water reactors. Among the mesh refinement methods - methods dedicated to efficiently treat local singularities - a local multi-grid approach was selected because it enables the use of a black-box solver while dealing few degrees of freedom at each level. The Local Defect Correction (LDC) method, well suited to a finite element discretization, was first analysed and checked in linear elasticity, on configurations resulting from the PCI, since its use in solid mechanics is little widespread. Various strategies concerning the implementation of the multilevel algorithm were also compared. Coupling the LDC method with the Zienkiewicz-Zhu a posteriori error estimator in order to automatically detect the zones to be refined, was then tested. Performances obtained on two-dimensional and three-dimensional cases are very satisfactory, since the algorithm proposed is more efficient than h-adaptive refinement methods. Lastly, the LDC algorithm was extended to nonlinear mechanics. Space/time refinement as well as transmission of the initial conditions during the re-meshing step were looked at. The first results obtained are encouraging and show the interest of using the LDC method for PCI modelling. (author) [fr

  15. A method for evaluating dynamical friction in linear ball bearings.

    Science.gov (United States)

    Fujii, Yusaku; Maru, Koichi; Jin, Tao; Yupapin, Preecha P; Mitatha, Somsak

    2010-01-01

    A method is proposed for evaluating the dynamical friction of linear bearings, whose motion is not perfectly linear due to some play in its internal mechanism. In this method, the moving part of a linear bearing is made to move freely, and the force acting on the moving part is measured as the inertial force given by the product of its mass and the acceleration of its centre of gravity. To evaluate the acceleration of its centre of gravity, the acceleration of two different points on it is measured using a dual-axis optical interferometer.

  16. High Performance Parallel Multigrid Algorithms for Unstructured Grids

    Science.gov (United States)

    Frederickson, Paul O.

    1996-01-01

    We describe a high performance parallel multigrid algorithm for a rather general class of unstructured grid problems in two and three dimensions. The algorithm PUMG, for parallel unstructured multigrid, is related in structure to the parallel multigrid algorithm PSMG introduced by McBryan and Frederickson, for they both obtain a higher convergence rate through the use of multiple coarse grids. Another reason for the high convergence rate of PUMG is its smoother, an approximate inverse developed by Baumgardner and Frederickson.

  17. Hybrid Method for Solving Inventory Problems with a Linear ...

    African Journals Online (AJOL)

    Osagiede and Omosigho (2004) proposed a direct search method for identifying the number of replenishment when the demand pattern is linearly increasing. The main computational task in this direct search method was associated with finding the optimal number of replenishments. To accelerate the use of this method, the ...

  18. Runge-Kutta Methods for Linear Ordinary Differential Equations

    Science.gov (United States)

    Zingg, David W.; Chisholm, Todd T.

    1997-01-01

    Three new Runge-Kutta methods are presented for numerical integration of systems of linear inhomogeneous ordinary differential equations (ODES) with constant coefficients. Such ODEs arise in the numerical solution of the partial differential equations governing linear wave phenomena. The restriction to linear ODEs with constant coefficients reduces the number of conditions which the coefficients of the Runge-Kutta method must satisfy. This freedom is used to develop methods which are more efficient than conventional Runge-Kutta methods. A fourth-order method is presented which uses only two memory locations per dependent variable, while the classical fourth-order Runge-Kutta method uses three. This method is an excellent choice for simulations of linear wave phenomena if memory is a primary concern. In addition, fifth- and sixth-order methods are presented which require five and six stages, respectively, one fewer than their conventional counterparts, and are therefore more efficient. These methods are an excellent option for use with high-order spatial discretizations.

  19. Generalization of the linear algebraic method to three dimensions

    International Nuclear Information System (INIS)

    Lynch, D.L.; Schneider, B.I.

    1991-01-01

    We present a numerical method for the solution of the Lippmann-Schwinger equation for electron-molecule collisions. By performing a three-dimensional numerical quadrature, this approach avoids both a basis-set representation of the wave function and a partial-wave expansion of the scattering potential. The resulting linear equations, analogous in form to the one-dimensional linear algebraic method, are solved with the direct iteration-variation method. Several numerical examples are presented. The prospect for using this numerical quadrature scheme for electron-polyatomic molecules is discussed

  20. Comments on new iterative methods for solving linear systems

    Directory of Open Access Journals (Sweden)

    Wang Ke

    2017-06-01

    Full Text Available Some new iterative methods were presented by Du, Zheng and Wang for solving linear systems in [3], where it is shown that the new methods, comparing to the classical Jacobi or Gauss-Seidel method, can be applied to more systems and have faster convergence. This note shows that their methods are suitable for more matrices than positive matrices which the authors suggested through further analysis and numerical examples.

  1. New Implicit General Linear Method | Ibrahim | Journal of the ...

    African Journals Online (AJOL)

    A New implicit general linear method is designed for the numerical olution of stiff differential Equations. The coefficients matrix is derived from the stability function. The method combines the single-implicitness or diagonal implicitness with property that the first two rows are implicit and third and fourth row are explicit.

  2. Linearly convergent stochastic heavy ball method for minimizing generalization error

    KAUST Repository

    Loizou, Nicolas; Richtarik, Peter

    2017-01-01

    In this work we establish the first linear convergence result for the stochastic heavy ball method. The method performs SGD steps with a fixed stepsize, amended by a heavy ball momentum term. In the analysis, we focus on minimizing the expected loss

  3. Sodium flow rate measurement method of annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo

    2011-01-01

    This report describes a method for measuring sodium flow rate of annular linear induction pumps arranged in parallel and its verification result obtained through an experiment and a numerical analysis. In the method, the leaked magnetic field is measured with measuring coils at the stator end on the outlet side and is correlated with the sodium flow rate. The experimental data and the numerical result indicate that the leaked magnetic field at the stator edge keeps almost constant when the sodium flow rate changes and that the leaked magnetic field change arising from the flow rate change is small compared with the overall leaked magnetic field. It is shown that the correlation between the leaked magnetic field and the sodium flow rate is almost linear due to this feature of the leaked magnetic field, which indicates the applicability of the method to small-scale annular linear induction pumps. (author)

  4. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.

    Science.gov (United States)

    Lian, Yao; Ge, Meng; Pan, Xian-Ming

    2014-12-19

    B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task. In this work, based on the antigen's primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728. We have presented a reliable method for the identification of linear B cell epitope using antigen's primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/ .

  5. Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...

  6. On a linear method in bootstrap confidence intervals

    Directory of Open Access Journals (Sweden)

    Andrea Pallini

    2007-10-01

    Full Text Available A linear method for the construction of asymptotic bootstrap confidence intervals is proposed. We approximate asymptotically pivotal and non-pivotal quantities, which are smooth functions of means of n independent and identically distributed random variables, by using a sum of n independent smooth functions of the same analytical form. Errors are of order Op(n-3/2 and Op(n-2, respectively. The linear method allows a straightforward approximation of bootstrap cumulants, by considering the set of n independent smooth functions as an original random sample to be resampled with replacement.

  7. Relaxation Methods for Strictly Convex Regularizations of Piecewise Linear Programs

    International Nuclear Information System (INIS)

    Kiwiel, K. C.

    1998-01-01

    We give an algorithm for minimizing the sum of a strictly convex function and a convex piecewise linear function. It extends several dual coordinate ascent methods for large-scale linearly constrained problems that occur in entropy maximization, quadratic programming, and network flows. In particular, it may solve exact penalty versions of such (possibly inconsistent) problems, and subproblems of bundle methods for nondifferentiable optimization. It is simple, can exploit sparsity, and in certain cases is highly parallelizable. Its global convergence is established in the recent framework of B -functions (generalized Bregman functions)

  8. Lattice Boltzmann methods for global linear instability analysis

    Science.gov (United States)

    Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis

    2017-12-01

    Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.

  9. The Embedding Method for Linear Partial Differential Equations

    Indian Academy of Sciences (India)

    The recently suggested embedding method to solve linear boundary value problems is here extended to cover situations where the domain of interest is unbounded or multiply connected. The extensions involve the use of complete sets of exterior and interior eigenfunctions on canonical domains. Applications to typical ...

  10. Preconditioned Iterative Methods for Solving Weighted Linear Least Squares Problems

    Czech Academy of Sciences Publication Activity Database

    Bru, R.; Marín, J.; Mas, J.; Tůma, Miroslav

    2014-01-01

    Roč. 36, č. 4 (2014), A2002-A2022 ISSN 1064-8275 Institutional support: RVO:67985807 Keywords : preconditioned iterative methods * incomplete decompositions * approximate inverses * linear least squares Subject RIV: BA - General Mathematics Impact factor: 1.854, year: 2014

  11. A General Linear Method for Equating with Small Samples

    Science.gov (United States)

    Albano, Anthony D.

    2015-01-01

    Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…

  12. Sodium flow rate measurement method of annular linear induction pumps

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.

    2012-01-01

    Highlights: ► We found a new method of flow rate monitoring of electromagnetic pump. ► The method is very simple and does not require a large space. ► The method was verified with an experiment and a numerical analysis. ► The experimental data and the numerical results are in good agreement. - Abstract: The present paper proposes a method for measuring sodium flow rate of annular linear induction pumps. The feature of the method lies in measuring the leaked magnetic field with measuring coils near the stator end on the outlet side and in correlating it with the sodium flow rate. This method is verified through an experiment and a numerical analysis. The data obtained in the experiment reveals that the correlation between the leaked magnetic field and the sodium flow rate is almost linear. The result of the numerical analysis agrees with the experimental data. The present method will be particularly effective to sodium flow rate monitoring of each one of plural annular linear induction pumps arranged in parallel in a vessel which forms a large-scale pump unit.

  13. Multigrid solution of the Navier-Stokes equations at low speeds with large temperature variations

    International Nuclear Information System (INIS)

    Sockol, Peter M.

    2003-01-01

    Multigrid methods for the Navier-Stokes equations at low speeds and large temperature variations are investigated. The compressible equations with time-derivative preconditioning and preconditioned flux-difference splitting of the inviscid terms are used. Three implicit smoothers have been incorporated into a common multigrid procedure. Both full coarsening and semi-coarsening with directional fine-grid defect correction have been studied. The resulting methods have been tested on four 2D laminar problems over a range of Reynolds numbers on both uniform and highly stretched grids. Two of the three methods show efficient and robust performance over the entire range of conditions. In addition, none of the methods has any difficulty with the large temperature variations

  14. A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations

    Science.gov (United States)

    White, J. A.; Morrison, J. H.

    1999-01-01

    A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.

  15. Linearly convergent stochastic heavy ball method for minimizing generalization error

    KAUST Repository

    Loizou, Nicolas

    2017-10-30

    In this work we establish the first linear convergence result for the stochastic heavy ball method. The method performs SGD steps with a fixed stepsize, amended by a heavy ball momentum term. In the analysis, we focus on minimizing the expected loss and not on finite-sum minimization, which is typically a much harder problem. While in the analysis we constrain ourselves to quadratic loss, the overall objective is not necessarily strongly convex.

  16. Linear algebraic methods applied to intensity modulated radiation therapy.

    Science.gov (United States)

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  17. Linear density response function in the projector augmented wave method

    DEFF Research Database (Denmark)

    Yan, Jun; Mortensen, Jens Jørgen; Jacobsen, Karsten Wedel

    2011-01-01

    We present an implementation of the linear density response function within the projector-augmented wave method with applications to the linear optical and dielectric properties of both solids, surfaces, and interfaces. The response function is represented in plane waves while the single...... functions of Si, C, SiC, AlP, and GaAs compare well with previous calculations. While optical properties of semiconductors, in particular excitonic effects, are generally not well described by ALDA, we obtain excellent agreement with experiments for the surface loss function of graphene and the Mg(0001...

  18. An extended GS method for dense linear systems

    Science.gov (United States)

    Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi

    2009-09-01

    Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.

  19. Multi-grid and ICCG for problems with interfaces

    International Nuclear Information System (INIS)

    Dendy, J.E.; Hyman, J.M.

    1980-01-01

    Computation times for the multi-grid (MG) algorithm, the incomplete Cholesky conjugate gradient (ICCG) algorithm [J. Comp. Phys. 26, 43-65 (1978); Math. Comp. 31, 148-162 (1977)], and the modified ICCG (MICCG) algorithm [BIT 18, 142-156 (1978)] to solve elliptic partial differential equations are compared. The MICCG and ICCG algorithms are more robust than the MG for general positive definite systems. A major advantage of the MG algorithm is that the structure of the problem can be exploited to reduce the solution time significantly. Five example problems are discussed. For problems with little structure and for one-shot calculations ICCG is recommended over MG, and MICCG, over ICCG. For problems that are done many times, it is worth investing the effort to study methods like MG. 1 table

  20. Solution methods for large systems of linear equations in BACCHUS

    International Nuclear Information System (INIS)

    Homann, C.; Dorr, B.

    1993-05-01

    The computer programme BACCHUS is used to describe steady state and transient thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor. In such computer programmes generally large systems of linear equations with sparse matrices of coefficients, resulting from discretization of coolant conservation equations, must be solved thousands of times giving rise to large demands of main storage and CPU time. Direct and iterative solution methods of the systems of linear equations, available in BACCHUS, are described, giving theoretical details and experience with their use in the programme. Besides use of a method of lines, a Runge-Kutta-method, for solution of the partial differential equation is outlined. (orig.) [de

  1. Linear finite element method for one-dimensional diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Michele A.; Dominguez, Dany S.; Iglesias, Susana M., E-mail: micheleabrandao@gmail.com, E-mail: dany@labbi.uesc.br, E-mail: smiglesias@uesc.br [Universidade Estadual de Santa Cruz (LCC/DCET/UESC), Ilheus, BA (Brazil). Departamento de Ciencias Exatas e Tecnologicas. Laboratorio de Computacao Cientifica

    2011-07-01

    We describe in this paper the fundamentals of Linear Finite Element Method (LFEM) applied to one-speed diffusion problems in slab geometry. We present the mathematical formulation to solve eigenvalue and fixed source problems. First, we discretized a calculus domain using a finite set of elements. At this point, we obtain the spatial balance equations for zero order and first order spatial moments inside each element. Then, we introduce the linear auxiliary equations to approximate neutron flux and current inside the element and architect a numerical scheme to obtain the solution. We offer numerical results for fixed source typical model problems to illustrate the method's accuracy for coarse-mesh calculations in homogeneous and heterogeneous domains. Also, we compare the accuracy and computational performance of LFEM formulation with conventional Finite Difference Method (FDM). (author)

  2. Linear-scaling quantum mechanical methods for excited states.

    Science.gov (United States)

    Yam, ChiYung; Zhang, Qing; Wang, Fan; Chen, GuanHua

    2012-05-21

    The poor scaling of many existing quantum mechanical methods with respect to the system size hinders their applications to large systems. In this tutorial review, we focus on latest research on linear-scaling or O(N) quantum mechanical methods for excited states. Based on the locality of quantum mechanical systems, O(N) quantum mechanical methods for excited states are comprised of two categories, the time-domain and frequency-domain methods. The former solves the dynamics of the electronic systems in real time while the latter involves direct evaluation of electronic response in the frequency-domain. The localized density matrix (LDM) method is the first and most mature linear-scaling quantum mechanical method for excited states. It has been implemented in time- and frequency-domains. The O(N) time-domain methods also include the approach that solves the time-dependent Kohn-Sham (TDKS) equation using the non-orthogonal localized molecular orbitals (NOLMOs). Besides the frequency-domain LDM method, other O(N) frequency-domain methods have been proposed and implemented at the first-principles level. Except one-dimensional or quasi-one-dimensional systems, the O(N) frequency-domain methods are often not applicable to resonant responses because of the convergence problem. For linear response, the most efficient O(N) first-principles method is found to be the LDM method with Chebyshev expansion for time integration. For off-resonant response (including nonlinear properties) at a specific frequency, the frequency-domain methods with iterative solvers are quite efficient and thus practical. For nonlinear response, both on-resonance and off-resonance, the time-domain methods can be used, however, as the time-domain first-principles methods are quite expensive, time-domain O(N) semi-empirical methods are often the practical choice. Compared to the O(N) frequency-domain methods, the O(N) time-domain methods for excited states are much more mature and numerically stable, and

  3. Galerkin projection methods for solving multiple related linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.F.; Ng, M.; Wan, W.L.

    1996-12-31

    We consider using Galerkin projection methods for solving multiple related linear systems A{sup (i)}x{sup (i)} = b{sup (i)} for 1 {le} i {le} s, where A{sup (i)} and b{sup (i)} are different in general. We start with the special case where A{sup (i)} = A and A is symmetric positive definite. The method generates a Krylov subspace from a set of direction vectors obtained by solving one of the systems, called the seed system, by the CG method and then projects the residuals of other systems orthogonally onto the generated Krylov subspace to get the approximate solutions. The whole process is repeated with another unsolved system as a seed until all the systems are solved. We observe in practice a super-convergence behaviour of the CG process of the seed system when compared with the usual CG process. We also observe that only a small number of restarts is required to solve all the systems if the right-hand sides are close to each other. These two features together make the method particularly effective. In this talk, we give theoretical proof to justify these observations. Furthermore, we combine the advantages of this method and the block CG method and propose a block extension of this single seed method. The above procedure can actually be modified for solving multiple linear systems A{sup (i)}x{sup (i)} = b{sup (i)}, where A{sup (i)} are now different. We can also extend the previous analytical results to this more general case. Applications of this method to multiple related linear systems arising from image restoration and recursive least squares computations are considered as examples.

  4. Adaptive tree multigrids and simplified spherical harmonics approximation in deterministic neutral and charged particle transport

    International Nuclear Information System (INIS)

    Kotiluoto, P.

    2007-05-01

    A new deterministic three-dimensional neutral and charged particle transport code, MultiTrans, has been developed. In the novel approach, the adaptive tree multigrid technique is used in conjunction with simplified spherical harmonics approximation of the Boltzmann transport equation. The development of the new radiation transport code started in the framework of the Finnish boron neutron capture therapy (BNCT) project. Since the application of the MultiTrans code to BNCT dose planning problems, the testing and development of the MultiTrans code has continued in conventional radiotherapy and reactor physics applications. In this thesis, an overview of different numerical radiation transport methods is first given. Special features of the simplified spherical harmonics method and the adaptive tree multigrid technique are then reviewed. The usefulness of the new MultiTrans code has been indicated by verifying and validating the code performance for different types of neutral and charged particle transport problems, reported in separate publications. (orig.)

  5. Seismic analysis of equipment system with non-linearities such as gap and friction using equivalent linearization method

    International Nuclear Information System (INIS)

    Murakami, H.; Hirai, T.; Nakata, M.; Kobori, T.; Mizukoshi, K.; Takenaka, Y.; Miyagawa, N.

    1989-01-01

    Many of the equipment systems of nuclear power plants contain a number of non-linearities, such as gap and friction, due to their mechanical functions. It is desirable to take such non-linearities into account appropriately for the evaluation of the aseismic soundness. However, in usual design works, linear analysis method with rough assumptions is applied from engineering point of view. An equivalent linearization method is considered to be one of the effective analytical techniques to evaluate non-linear responses, provided that errors to a certain extent are tolerated, because it has greater simplicity in analysis and economization in computing time than non-linear analysis. The objective of this paper is to investigate the applicability of the equivalent linearization method to evaluate the maximum earthquake response of equipment systems such as the CANDU Fuelling Machine which has multiple non- linearities

  6. Deterministic operations research models and methods in linear optimization

    CERN Document Server

    Rader, David J

    2013-01-01

    Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations resear

  7. Optimal overlapping of waveform relaxation method for linear differential equations

    International Nuclear Information System (INIS)

    Yamada, Susumu; Ozawa, Kazufumi

    2000-01-01

    Waveform relaxation (WR) method is extremely suitable for solving large systems of ordinary differential equations (ODEs) on parallel computers, but the convergence of the method is generally slow. In order to accelerate the convergence, the methods which decouple the system into many subsystems with overlaps some of the components between the adjacent subsystems have been proposed. The methods, in general, converge much faster than the ones without overlapping, but the computational cost per iteration becomes larger due to the increase of the dimension of each subsystem. In this research, the convergence of the WR method for solving constant coefficients linear ODEs is investigated and the strategy to determine the number of overlapped components which minimizes the cost of the parallel computations is proposed. Numerical experiments on an SR2201 parallel computer show that the estimated number of the overlapped components by the proposed strategy is reasonable. (author)

  8. A Lagrangian meshfree method applied to linear and nonlinear elasticity.

    Science.gov (United States)

    Walker, Wade A

    2017-01-01

    The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.

  9. Exact solution of some linear matrix equations using algebraic methods

    Science.gov (United States)

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  10. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Science.gov (United States)

    Zhuang, Kelin; North, Gerald R.; Stevens, Mark J.

    A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land-sea-ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  11. Comparison of equivalent linear and non linear methods on ground response analysis: case study at West Bangka site

    International Nuclear Information System (INIS)

    Eko Rudi Iswanto; Eric Yee

    2016-01-01

    Within the framework of identifying NPP sites, site surveys are performed in West Bangka (WB), Bangka-Belitung Island Province. Ground response analysis of a potential site has been carried out using peak strain profiles and peak ground acceleration. The objective of this research is to compare Equivalent Linear (EQL) and Non Linear (NL) methods of ground response analysis on the selected NPP site (West Bangka) using Deep Soil software. Equivalent linear method is widely used because requires soil data in simple way and short time of computational process. On the other hand, non linear method is capable of representing the actual soil behaviour by considering non linear soil parameter. The results showed that EQL method has similar trends to NL method. At surface layer, the acceleration values for EQL and NL methods are resulted as 0.425 g and 0.375 g respectively. NL method is more reliable in capturing higher frequencies of spectral acceleration compared to EQL method. (author)

  12. Linear augmented plane wave method for self-consistent calculations

    International Nuclear Information System (INIS)

    Takeda, T.; Kuebler, J.

    1979-01-01

    O.K. Andersen has recently introduced a linear augmented plane wave method (LAPW) for the calculation of electronic structure that was shown to be computationally fast. A more general formulation of an LAPW method is presented here. It makes use of a freely disposable number of eigenfunctions of the radial Schroedinger equation. These eigenfunctions can be selected in a self-consistent way. The present formulation also results in a computationally fast method. It is shown that Andersen's LAPW is obtained in a special limit from the present formulation. Self-consistent test calculations for copper show the present method to be remarkably accurate. As an application, scalar-relativistic self-consistent calculations are presented for the band structure of FCC lanthanum. (author)

  13. Multigrid for refined triangle meshes

    Energy Technology Data Exchange (ETDEWEB)

    Shapira, Yair

    1997-02-01

    A two-level preconditioning method for the solution of (locally) refined finite element schemes using triangle meshes is introduced. In the isotropic SPD case, it is shown that the condition number of the preconditioned stiffness matrix is bounded uniformly for all sufficiently regular triangulations. This is also verified numerically for an isotropic diffusion problem with highly discontinuous coefficients.

  14. Nonlinear Multigrid for Reservoir Simulation

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Eskildsen, Klaus Langgren; Engsig-Karup, Allan Peter

    2016-01-01

    efficiency for a black-oil model. Furthermore, the use of the FAS method enables a significant reduction in memory usage compared with conventional techniques, which suggests new possibilities for improved large-scale reservoir simulation and numerical efficiency. Last, nonlinear multilevel preconditioning...

  15. Multigrid preconditioning of the generator two-phase mixture balance equations in the Genepi software

    International Nuclear Information System (INIS)

    Belliard, M.; Grandotto, M.

    2003-01-01

    In the framework of the two-phase fluid simulations of the steam generators of pressurized water nuclear reactors, we present in this paper a geometric version of a pseudo-Full MultiGrid (pseudo- FMG) Full Approximation Storage (FAS) preconditioning of balance equations in the GENEPI code. In our application, the 3D steady state flow is reached by a transient computation using a semi-implicit fractional step algorithm for the averaged two-phase mixture balance equations (mass, momentum and energy for the secondary flow). Our application, running on workstation clusters, is based on a CEA code-linker and the PVM package. The difficulties to apply the geometric FAS multigrid method to the momentum and mass balance equations are addressed. The use of a sequential pseudo-FMG FAS twogrid method for both energy and mass/momentum balance equations, using dynamic multigrid cycles, leads to perceptibly improvements in the computation convergences. An original parallel red-black pseudo-FMG FAS three-grid algorithm is presented too. The numerical tests (steam generator mockup simulations) underline the sizable increase in speed of convergence of the computations, essentially for the ones involving a large number of freedom degrees (about 100 thousand cells). The two-phase mixture balance equation residuals are quickly reduced: the reached speed-up stands between 2 and 3 following the number of grids. The effects on the convergence behavior of the numerical parameters are investigated

  16. A METHOD FOR SOLVING LINEAR PROGRAMMING PROBLEMS WITH FUZZY PARAMETERS BASED ON MULTIOBJECTIVE LINEAR PROGRAMMING TECHNIQUE

    OpenAIRE

    M. ZANGIABADI; H. R. MALEKI

    2007-01-01

    In the real-world optimization problems, coefficients of the objective function are not known precisely and can be interpreted as fuzzy numbers. In this paper we define the concepts of optimality for linear programming problems with fuzzy parameters based on those for multiobjective linear programming problems. Then by using the concept of comparison of fuzzy numbers, we transform a linear programming problem with fuzzy parameters to a multiobjective linear programming problem. To this end, w...

  17. An improved partial bundle method for linearly constrained minimax problems

    Directory of Open Access Journals (Sweden)

    Chunming Tang

    2016-02-01

    Full Text Available In this paper, we propose an improved partial bundle method for solving linearly constrained minimax problems. In order to reduce the number of component function evaluations, we utilize a partial cutting-planes model to substitute for the traditional one. At each iteration, only one quadratic programming subproblem needs to be solved to obtain a new trial point. An improved descent test criterion is introduced to simplify the algorithm. The method produces a sequence of feasible trial points, and ensures that the objective function is monotonically decreasing on the sequence of stability centers. Global convergence of the algorithm is established. Moreover, we utilize the subgradient aggregation strategy to control the size of the bundle and therefore overcome the difficulty of computation and storage. Finally, some preliminary numerical results show that the proposed method is effective.

  18. Electrostatic Discharge Current Linear Approach and Circuit Design Method

    Directory of Open Access Journals (Sweden)

    Pavlos K. Katsivelis

    2010-11-01

    Full Text Available The Electrostatic Discharge phenomenon is a great threat to all electronic devices and ICs. An electric charge passing rapidly from a charged body to another can seriously harm the last one. However, there is a lack in a linear mathematical approach which will make it possible to design a circuit capable of producing such a sophisticated current waveform. The commonly accepted Electrostatic Discharge current waveform is the one set by the IEC 61000-4-2. However, the over-simplified circuit included in the same standard is incapable of producing such a waveform. Treating the Electrostatic Discharge current waveform of the IEC 61000-4-2 as reference, an approximation method, based on Prony’s method, is developed and applied in order to obtain a linear system’s response. Considering a known input, a method to design a circuit, able to generate this ESD current waveform in presented. The circuit synthesis assumes ideal active elements. A simulation is carried out using the PSpice software.

  19. Discrete linear canonical transform computation by adaptive method.

    Science.gov (United States)

    Zhang, Feng; Tao, Ran; Wang, Yue

    2013-07-29

    The linear canonical transform (LCT) describes the effect of quadratic phase systems on a wavefield and generalizes many optical transforms. In this paper, the computation method for the discrete LCT using the adaptive least-mean-square (LMS) algorithm is presented. The computation approaches of the block-based discrete LCT and the stream-based discrete LCT using the LMS algorithm are derived, and the implementation structures of these approaches by the adaptive filter system are considered. The proposed computation approaches have the inherent parallel structures which make them suitable for efficient VLSI implementations, and are robust to the propagation of possible errors in the computation process.

  20. Alternating direction transport sweeps for linear discontinuous SN method

    International Nuclear Information System (INIS)

    Yavuz, M.; Aykanat, C.

    1993-01-01

    The performance of Alternating Direction Transport Sweep (ADTS) method is investigated for spatially differenced Linear Discontinuous S N (LD-S N ) problems on a MIMD multicomputer, Intel IPSC/2. The method consists of dividing a transport problem spatially into sub-problems, assigning each sub-problem to a separate processor. Then, the problem is solved by performing transport sweeps iterating on the scattering source and interface fluxes between the sub-problems. In each processor, the order of transport sweeps is scheduled such that a processor completing its computation in a quadrant of a transport sweep is able to use the most recent information (exiting fluxes of neighboring processor) as its incoming fluxes to start the next quadrant calculation. Implementation of this method on the Intel IPSC/2 multicomputer displays significant speedups over the one-processor method. Also, the performance of the method is compared with those reported previously for the Diamond Differenced S N (DD-S N ) method. Our experimental experience illustrates that the parallel performance of both the ADTS LD- and DD-S N methods is the same. (orig.)

  1. Deep Learning Methods for Improved Decoding of Linear Codes

    Science.gov (United States)

    Nachmani, Eliya; Marciano, Elad; Lugosch, Loren; Gross, Warren J.; Burshtein, David; Be'ery, Yair

    2018-02-01

    The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the large example space. Similar improvements are obtained for the min-sum algorithm. It is also shown that tying the parameters of the decoders across iterations, so as to form a recurrent neural network architecture, can be implemented with comparable results. The advantage is that significantly less parameters are required. We also introduce a recurrent neural decoder architecture based on the method of successive relaxation. Improvements over standard belief propagation are also observed on sparser Tanner graph representations of the codes. Furthermore, we demonstrate that the neural belief propagation decoder can be used to improve the performance, or alternatively reduce the computational complexity, of a close to optimal decoder of short BCH codes.

  2. Linear source approximation scheme for method of characteristics

    International Nuclear Information System (INIS)

    Tang Chuntao

    2011-01-01

    Method of characteristics (MOC) for solving neutron transport equation based on unstructured mesh has already become one of the fundamental methods for lattice calculation of nuclear design code system. However, most of MOC codes are developed with flat source approximation called step characteristics (SC) scheme, which is another basic assumption for MOC. A linear source (LS) characteristics scheme and its corresponding modification for negative source distribution were proposed. The OECD/NEA C5G7-MOX 2D benchmark and a self-defined BWR mini-core problem were employed to validate the new LS module of PEACH code. Numerical results indicate that the proposed LS scheme employs less memory and computational time compared with SC scheme at the same accuracy. (authors)

  3. Adaptive discontinuous Galerkin methods for non-linear reactive flows

    CERN Document Server

    Uzunca, Murat

    2016-01-01

    The focus of this monograph is the development of space-time adaptive methods to solve the convection/reaction dominated non-stationary semi-linear advection diffusion reaction (ADR) equations with internal/boundary layers in an accurate and efficient way. After introducing the ADR equations and discontinuous Galerkin discretization, robust residual-based a posteriori error estimators in space and time are derived. The elliptic reconstruction technique is then utilized to derive the a posteriori error bounds for the fully discrete system and to obtain optimal orders of convergence. As coupled surface and subsurface flow over large space and time scales is described by (ADR) equation the methods described in this book are of high importance in many areas of Geosciences including oil and gas recovery, groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases or radioactive waste in the subsurface.

  4. Non linear permanent magnets modelling with the finite element method

    International Nuclear Information System (INIS)

    Chavanne, J.; Meunier, G.; Sabonnadiere, J.C.

    1989-01-01

    In order to perform the calculation of permanent magnets with the finite element method, it is necessary to take into account the anisotropic behaviour of hard magnetic materials (Ferrites, NdFeB, SmCo5). In linear cases, the permeability of permanent magnets is a tensor. This one is fully described with the permeabilities parallel and perpendicular to the easy axis of the magnet. In non linear cases, the model uses a texture function which represents the distribution of the local easy axis of the cristallytes of the magnet. This function allows a good representation of the angular dependance of the coercitive field of the magnet. As a result, it is possible to express the magnetic induction B and the tensor as functions of the field and the texture parameter. This model has been implemented in the software FLUX3D where the tensor is used for the Newton-Raphson procedure. 3D demagnetization of a ferrite magnet by a NdFeB magnet is a suitable representative example. They analyze the results obtained for an ideally oriented ferrite magnet and a real one using a measured texture parameter

  5. Linear Strength Vortex Panel Method for NACA 4412 Airfoil

    Science.gov (United States)

    Liu, Han

    2018-03-01

    The objective of this article is to formulate numerical models for two-dimensional potential flow over the NACA 4412 Airfoil using linear vortex panel methods. By satisfying the no penetration boundary condition and Kutta condition, the circulation density on each boundary points (end point of every panel) are obtained and according to which, surface pressure distribution and lift coefficients of the airfoil are predicted and validated by Xfoil, an interactive program for the design and analysis of airfoil. The sensitivity of results to the number of panels is also investigated in the end, which shows that the results are sensitive to the number of panels when panel number ranges from 10 to 160. With the increasing panel number (N>160), the results become relatively insensitive to it.

  6. Mapping robust parallel multigrid algorithms to scalable memory architectures

    Science.gov (United States)

    Overman, Andrea; Vanrosendale, John

    1993-01-01

    The convergence rate of standard multigrid algorithms degenerates on problems with stretched grids or anisotropic operators. The usual cure for this is the use of line or plane relaxation. However, multigrid algorithms based on line and plane relaxation have limited and awkward parallelism and are quite difficult to map effectively to highly parallel architectures. Newer multigrid algorithms that overcome anisotropy through the use of multiple coarse grids rather than relaxation are better suited to massively parallel architectures because they require only simple point-relaxation smoothers. In this paper, we look at the parallel implementation of a V-cycle multiple semicoarsened grid (MSG) algorithm on distributed-memory architectures such as the Intel iPSC/860 and Paragon computers. The MSG algorithms provide two levels of parallelism: parallelism within the relaxation or interpolation on each grid and across the grids on each multigrid level. Both levels of parallelism must be exploited to map these algorithms effectively to parallel architectures. This paper describes a mapping of an MSG algorithm to distributed-memory architectures that demonstrates how both levels of parallelism can be exploited. The result is a robust and effective multigrid algorithm for distributed-memory machines.

  7. HP-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part I. Multilevel Analysis

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; Rhebergen, Sander

    2011-01-01

    The hp-Multigrid as Smoother algorithm (hp-MGS) for the solution of higher order accurate space-(time) discontinuous Galerkin discretizations of advection dominated flows is presented. This algorithm combines p-multigrid with h-multigrid at all p-levels, where the h-multigrid acts as smoother in the

  8. Lithographic linear motor, lithographic apparatus, and device manufacturing method

    NARCIS (Netherlands)

    2006-01-01

    A linear motor having a high driving force, high efficiency and low normal force comprises two opposed magnet tracks and an armature comprising three open coil sets. The linear motor may be used to drive a stage, such as, for example, a mask or wafer stage, in a lithographic apparatus.

  9. Mathematical and Numerical Methods for Non-linear Beam Dynamics

    International Nuclear Information System (INIS)

    Herr, W

    2014-01-01

    Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most important aspects are well described by methods established in other areas of physics and mathematics. The treatment will be focused on the problems in accelerators used for particle physics experiments. Although the main emphasis will be on accelerator physics issues, some of the aspects of more general interest will be discussed. In particular, we demonstrate that in recent years a framework has been built to handle the complex problems in a consistent form, technically superior and conceptually simpler than the traditional techniques. The need to understand the stability of particle beams has substantially contributed to the development of new techniques and is an important source of examples which can be verified experimentally. Unfortunately, the documentation of these developments is often poor or even unpublished, in many cases only available as lectures or conference proceedings

  10. Angular Multigrid Preconditioner for Krylov-Based Solution Techniques Applied to the Sn Equations with Highly Forward-Peaked Scattering

    Science.gov (United States)

    Turcksin, Bruno; Ragusa, Jean C.; Morel, Jim E.

    2012-01-01

    It is well known that the diffusion synthetic acceleration (DSA) methods for the Sn equations become ineffective in the Fokker-Planck forward-peaked scattering limit. In response to this deficiency, Morel and Manteuffel (1991) developed an angular multigrid method for the 1-D Sn equations. This method is very effective, costing roughly twice as much as DSA per source iteration, and yielding a maximum spectral radius of approximately 0.6 in the Fokker-Planck limit. Pautz, Adams, and Morel (PAM) (1999) later generalized the angular multigrid to 2-D, but it was found that the method was unstable with sufficiently forward-peaked mappings between the angular grids. The method was stabilized via a filtering technique based on diffusion operators, but this filtering also degraded the effectiveness of the overall scheme. The spectral radius was not bounded away from unity in the Fokker-Planck limit, although the method remained more effective than DSA. The purpose of this article is to recast the multidimensional PAM angular multigrid method without the filtering as an Sn preconditioner and use it in conjunction with the Generalized Minimal RESidual (GMRES) Krylov method. The approach ensures stability and our computational results demonstrate that it is also significantly more efficient than an analogous DSA-preconditioned Krylov method.

  11. Linearized versus non-linear inverse methods for seismic localization of underground sources

    DEFF Research Database (Denmark)

    Oh, Geok Lian; Jacobsen, Finn

    2013-01-01

    The problem of localization of underground sources from seismic measurements detected by several geophones located on the ground surface is addressed. Two main approaches to the solution of the problem are considered: a beamforming approach that is derived from the linearized inversion problem, a...

  12. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods.

    Science.gov (United States)

    Ho, Yuh-Shan

    2006-01-01

    A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.

  13. Extension of the linear nodal method to large concrete building calculations

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.

    1985-01-01

    The implementation of the linear nodal method in the TORT code is described, and the results of a mesh refinement study to test the effectiveness of the linear nodal and weighted diamond difference methods available in TORT are presented

  14. Adaptive Algebraic Multigrid for Finite Element Elliptic Equations with Random Coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kalchev, D

    2012-04-02

    This thesis presents a two-grid algorithm based on Smoothed Aggregation Spectral Element Agglomeration Algebraic Multigrid (SA-{rho}AMGe) combined with adaptation. The aim is to build an efficient solver for the linear systems arising from discretization of second-order elliptic partial differential equations (PDEs) with stochastic coefficients. Examples include PDEs that model subsurface flow with random permeability field. During a Markov Chain Monte Carlo (MCMC) simulation process, that draws PDE coefficient samples from a certain distribution, the PDE coefficients change, hence the resulting linear systems to be solved change. At every such step the system (discretized PDE) needs to be solved and the computed solution used to evaluate some functional(s) of interest that then determine if the coefficient sample is acceptable or not. The MCMC process is hence computationally intensive and requires the solvers used to be efficient and fast. This fact that at every step of MCMC the resulting linear system changes, makes an already existing solver built for the old problem perhaps not as efficient for the problem corresponding to the new sampled coefficient. This motivates the main goal of our study, namely, to adapt an already existing solver to handle the problem (with changed coefficient) with the objective to achieve this goal to be faster and more efficient than building a completely new solver from scratch. Our approach utilizes the local element matrices (for the problem with changed coefficients) to build local problems associated with constructed by the method agglomerated elements (a set of subdomains that cover the given computational domain). We solve a generalized eigenproblem for each set in a subspace spanned by the previous local coarse space (used for the old solver) and a vector, component of the error, that the old solver cannot handle. A portion of the spectrum of these local eigen-problems (corresponding to eigenvalues close to zero) form the

  15. Method and apparatus of highly linear optical modulation

    Science.gov (United States)

    DeRose, Christopher; Watts, Michael R.

    2016-05-03

    In a new optical intensity modulator, a nonlinear change in refractive index is used to balance the nonlinearities in the optical transfer function in a way that leads to highly linear optical intensity modulation.

  16. A Cost-effective Method for Resolution Increase of the Twostage Piecewise Linear ADC Used for Sensor Linearization

    Directory of Open Access Journals (Sweden)

    Jovanović Jelena

    2016-02-01

    Full Text Available A cost-effective method for resolution increase of a two-stage piecewise linear analog-to-digital converter used for sensor linearization is proposed in this paper. In both conversion stages flash analog-to-digital converters are employed. Resolution increase by one bit per conversion stage is performed by introducing one additional comparator in front of each of two flash analog-to-digital converters, while the converters’ resolutions remain the same. As a result, the number of employed comparators, as well as the circuit complexity and the power consumption originating from employed comparators are for almost 50 % lower in comparison to the same parameters referring to the linearization circuit of the conventional design and of the same resolution. Since the number of employed comparators is significantly reduced according to the proposed method, special modifications of the linearization circuit are needed in order to properly adjust reference voltages of employed comparators.

  17. Adaptive parallel multigrid for Euler and incompressible Navier-Stokes equations

    Energy Technology Data Exchange (ETDEWEB)

    Trottenberg, U.; Oosterlee, K.; Ritzdorf, H. [and others

    1996-12-31

    The combination of (1) very efficient solution methods (Multigrid), (2) adaptivity, and (3) parallelism (distributed memory) clearly is absolutely necessary for future oriented numerics but still regarded as extremely difficult or even unsolved. We show that very nice results can be obtained for real life problems. Our approach is straightforward (based on {open_quotes}MLAT{close_quotes}). But, of course, reasonable refinement and load-balancing strategies have to be used. Our examples are 2D, but 3D is on the way.

  18. An implementation analysis of the linear discontinuous finite element method

    International Nuclear Information System (INIS)

    Becker, T. L.

    2013-01-01

    This paper provides an implementation analysis of the linear discontinuous finite element method (LD-FEM) that spans the space of (l, x, y, z). A practical implementation of LD includes 1) selecting a computationally efficient algorithm to solve the 4 x 4 matrix system Ax = b that describes the angular flux in a mesh element, and 2) choosing how to store the data used to construct the matrix A and the vector b to either reduce memory consumption or increase computational speed. To analyze the first of these, three algorithms were selected to solve the 4 x 4 matrix equation: Cramer's rule, a streamlined implementation of Gaussian elimination, and LAPACK's Gaussian elimination subroutine dgesv. The results indicate that Cramer's rule and the streamlined Gaussian elimination algorithm perform nearly equivalently and outperform LAPACK's implementation of Gaussian elimination by a factor of 2. To analyze the second implementation detail, three formulations of the discretized LD-FEM equations were provided for implementation in a transport solver: 1) a low-memory formulation, which relies heavily on 'on-the-fly' calculations and less on the storage of pre-computed data, 2) a high-memory formulation, which pre-computes much of the data used to construct A and b, and 3) a reduced-memory formulation, which lies between the low - and high-memory formulations. These three formulations were assessed in the Jaguar transport solver based on relative memory footprint and computational speed for increasing mesh size and quadrature order. The results indicated that the memory savings of the low-memory formulation were not sufficient to warrant its implementation. The high-memory formulation resulted in a significant speed advantage over the reduced-memory option (10-50%), but also resulted in a proportional increase in memory consumption (5-45%) for increasing quadrature order and mesh count; therefore, the practitioner should weigh the system memory constraints against any

  19. An implementation analysis of the linear discontinuous finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Becker, T. L. [Bechtel Marine Propulsion Corporation, Knolls Atomic Power Laboratory, P.O. Box 1072, Schenectady, NY 12301-1072 (United States)

    2013-07-01

    This paper provides an implementation analysis of the linear discontinuous finite element method (LD-FEM) that spans the space of (l, x, y, z). A practical implementation of LD includes 1) selecting a computationally efficient algorithm to solve the 4 x 4 matrix system Ax = b that describes the angular flux in a mesh element, and 2) choosing how to store the data used to construct the matrix A and the vector b to either reduce memory consumption or increase computational speed. To analyze the first of these, three algorithms were selected to solve the 4 x 4 matrix equation: Cramer's rule, a streamlined implementation of Gaussian elimination, and LAPACK's Gaussian elimination subroutine dgesv. The results indicate that Cramer's rule and the streamlined Gaussian elimination algorithm perform nearly equivalently and outperform LAPACK's implementation of Gaussian elimination by a factor of 2. To analyze the second implementation detail, three formulations of the discretized LD-FEM equations were provided for implementation in a transport solver: 1) a low-memory formulation, which relies heavily on 'on-the-fly' calculations and less on the storage of pre-computed data, 2) a high-memory formulation, which pre-computes much of the data used to construct A and b, and 3) a reduced-memory formulation, which lies between the low - and high-memory formulations. These three formulations were assessed in the Jaguar transport solver based on relative memory footprint and computational speed for increasing mesh size and quadrature order. The results indicated that the memory savings of the low-memory formulation were not sufficient to warrant its implementation. The high-memory formulation resulted in a significant speed advantage over the reduced-memory option (10-50%), but also resulted in a proportional increase in memory consumption (5-45%) for increasing quadrature order and mesh count; therefore, the practitioner should weigh the system memory

  20. Proposal of Realization Restricted Quantum Game with Linear Optic Method

    International Nuclear Information System (INIS)

    Zhao Haijun; Fang Ximing

    2006-01-01

    We present a quantum game with the restricted strategic space and its realization with linear optical system, which can be played by two players who are separated remotely. This game can also be realized on any other quantum computers. We find that the constraint brings some interesting properties that are useful for making game models.

  1. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Directory of Open Access Journals (Sweden)

    Kelin Zhuang

    2017-01-01

    Full Text Available A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land–sea–ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  2. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation

    Science.gov (United States)

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-01

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  3. On multigrid-CG for efficient topology optimization

    DEFF Research Database (Denmark)

    Amir, Oded; Aage, Niels; Lazarov, Boyan Stefanov

    2014-01-01

    reduction is obtained by exploiting specific characteristics of a multigrid preconditioned conjugate gradients (MGCG) solver. In particular, the number of MGCG iterations is reduced by relating it to the geometric parameters of the problem. At the same time, accurate outcome of the optimization process...

  4. Improved Methods for Pitch Synchronous Linear Prediction Analysis of Speech

    OpenAIRE

    劉, 麗清

    2015-01-01

    Linear prediction (LP) analysis has been applied to speech system over the last few decades. LP technique is well-suited for speech analysis due to its ability to model speech production process approximately. Hence LP analysis has been widely used for speech enhancement, low-bit-rate speech coding in cellular telephony, speech recognition, characteristic parameter extraction (vocal tract resonances frequencies, fundamental frequency called pitch) and so on. However, the performance of the co...

  5. A general method for enclosing solutions of interval linear equations

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří

    2012-01-01

    Roč. 6, č. 4 (2012), s. 709-717 ISSN 1862-4472 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval linear equations * solution set * enclosure * absolute value inequality Subject RIV: BA - General Mathematics Impact factor: 1.654, year: 2012

  6. Locally linear approximation for Kernel methods : the Railway Kernel

    OpenAIRE

    Muñoz, Alberto; González, Javier

    2008-01-01

    In this paper we present a new kernel, the Railway Kernel, that works properly for general (nonlinear) classification problems, with the interesting property that acts locally as a linear kernel. In this way, we avoid potential problems due to the use of a general purpose kernel, like the RBF kernel, as the high dimension of the induced feature space. As a consequence, following our methodology the number of support vectors is much lower and, therefore, the generalization capab...

  7. Second derivative continuous linear multistep methods for the ...

    African Journals Online (AJOL)

    step methods (LMM), with properties that embed the characteristics of LMM and hybrid methods. This paper gives a continuous reformulation of the Enright [5] second derivative methods. The motivation lies in the fact that the new formulation ...

  8. Leapfrog variants of iterative methods for linear algebra equations

    Science.gov (United States)

    Saylor, Paul E.

    1988-01-01

    Two iterative methods are considered, Richardson's method and a general second order method. For both methods, a variant of the method is derived for which only even numbered iterates are computed. The variant is called a leapfrog method. Comparisons between the conventional form of the methods and the leapfrog form are made under the assumption that the number of unknowns is large. In the case of Richardson's method, it is possible to express the final iterate in terms of only the initial approximation, a variant of the iteration called the grand-leap method. In the case of the grand-leap variant, a set of parameters is required. An algorithm is presented to compute these parameters that is related to algorithms to compute the weights and abscissas for Gaussian quadrature. General algorithms to implement the leapfrog and grand-leap methods are presented. Algorithms for the important special case of the Chebyshev method are also given.

  9. Generalized linear mixed models modern concepts, methods and applications

    CERN Document Server

    Stroup, Walter W

    2012-01-01

    PART I The Big PictureModeling BasicsWhat Is a Model?Two Model Forms: Model Equation and Probability DistributionTypes of Model EffectsWriting Models in Matrix FormSummary: Essential Elements for a Complete Statement of the ModelDesign MattersIntroductory Ideas for Translating Design and Objectives into ModelsDescribing ""Data Architecture"" to Facilitate Model SpecificationFrom Plot Plan to Linear PredictorDistribution MattersMore Complex Example: Multiple Factors with Different Units of ReplicationSetting the StageGoals for Inference with Models: OverviewBasic Tools of InferenceIssue I: Data

  10. One testing method of dynamic linearity of an accelerometer

    Directory of Open Access Journals (Sweden)

    Lei Jing-Yu

    2015-01-01

    Full Text Available To effectively test dynamic linearity of an accelerometer over a wide rang of 104 g to about 20 × 104g, one published patent technology is first experimentally verified and analysed, and its deficient is presented, then based on stress wave propagation theory on the thin long bar, the relation between the strain signal and the corresponding acceleration signal is obtained, one special link of two coaxial projectile is developed. These two coaxial metal cylinders (inner cylinder and circular tube are used as projectiles, to prevent their mutual slip inside the gun barrel during movement, the one end of two projectiles is always fastened by small screws. Ti6-AL4-V bar with diameter of 30 mm is used to propagate loading stress pulse. The resultant compression wave can be measured by the strain gauges on the bar, and a half –sine strain pulse is obtained. The measuring accelerometer is attached on the other end of the bar by a vacuum clamp. In this clamp, the accelerometer only bear compression wave, the reflected tension pulse make the accelerometer off the bar. Using this system, dynamic linearity measurement of accelerometer can be easily tested in wider range of acceleration values. And a really measuring results are presented.

  11. Approximate inverse preconditioning of iterative methods for nonsymmetric linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Benzi, M. [Universita di Bologna (Italy); Tuma, M. [Inst. of Computer Sciences, Prague (Czech Republic)

    1996-12-31

    A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods.

  12. A simple finite element method for linear hyperbolic problems

    International Nuclear Information System (INIS)

    Mu, Lin; Ye, Xiu

    2017-01-01

    Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.

  13. Linear and kernel methods for multi- and hypervariate change detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Canty, Morton J.

    2010-01-01

    . Principal component analysis (PCA) as well as maximum autocorrelation factor (MAF) and minimum noise fraction (MNF) analyses of IR-MAD images, both linear and kernel-based (which are nonlinear), may further enhance change signals relative to no-change background. The kernel versions are based on a dual...... formulation, also termed Q-mode analysis, in which the data enter into the analysis via inner products in the Gram matrix only. In the kernel version the inner products of the original data are replaced by inner products between nonlinear mappings into higher dimensional feature space. Via kernel substitution......, also known as the kernel trick, these inner products between the mappings are in turn replaced by a kernel function and all quantities needed in the analysis are expressed in terms of the kernel function. This means that we need not know the nonlinear mappings explicitly. Kernel principal component...

  14. Linear and kernel methods for multivariate change detection

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg

    2012-01-01

    ), as well as maximum autocorrelation factor (MAF) and minimum noise fraction (MNF) analyses of IR-MAD images, both linear and kernel-based (nonlinear), may further enhance change signals relative to no-change background. IDL (Interactive Data Language) implementations of IR-MAD, automatic radiometric...... normalization, and kernel PCA/MAF/MNF transformations are presented that function as transparent and fully integrated extensions of the ENVI remote sensing image analysis environment. The train/test approach to kernel PCA is evaluated against a Hebbian learning procedure. Matlab code is also available...... that allows fast data exploration and experimentation with smaller datasets. New, multiresolution versions of IR-MAD that accelerate convergence and that further reduce no-change background noise are introduced. Computationally expensive matrix diagonalization and kernel image projections are programmed...

  15. On some properties of the block linear multi-step methods | Chollom ...

    African Journals Online (AJOL)

    The convergence, stability and order of Block linear Multistep methods have been determined in the past based on individual members of the block. In this paper, methods are proposed to examine the properties of the entire block. Some Block Linear Multistep methods have been considered, their convergence, stability and ...

  16. Krylov subspace methods for solving large unsymmetric linear systems

    International Nuclear Information System (INIS)

    Saad, Y.

    1981-01-01

    Some algorithms based upon a projection process onto the Krylov subspace K/sub m/ = Span(r 0 , Ar 0 ,...,A/sup m/-1r 0 ) are developed, generalizing the method of conjugate gradients to unsymmetric systems. These methods are extensions of Arnoldi's algorithm for solving eigenvalue problems. The convergence is analyzed in terms of the distance of the solution to the subspace K/sub m/ and some error bounds are established showing, in particular, a similarity with the conjugate gradient method (for symmetric matrices) when the eigenvalues are real. Several numerical experiments are described and discussed

  17. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    Science.gov (United States)

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  18. Compiler generation and autotuning of communication-avoiding operators for geometric multigrid

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Protonu [Univ. of Utah, Salt Lake City, UT (United States); Venkat, Anand [Univ. of Utah, Salt Lake City, UT (United States); Hall, Mary [Univ. of Utah, Salt Lake City, UT (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Van Straalen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-04-17

    This paper describes a compiler approach to introducing communication-avoiding optimizations in geometric multigrid (GMG), one of the most popular methods for solving partial differential equations. Communication-avoiding optimizations reduce vertical communication through the memory hierarchy and horizontal communication across processes or threads, usually at the expense of introducing redundant computation. We focus on applying these optimizations to the smooth operator, which successively reduces the error and accounts for the largest fraction of the GMG execution time. Our compiler technology applies both novel and known transformations to derive an implementation comparable to manually-tuned code. To make the approach portable, an underlying autotuning system explores the tradeoff between reduced communication and increased computation, as well as tradeoffs in threading schemes, to automatically identify the best implementation for a particular architecture and at each computation phase. Results show that we are able to quadruple the performance of the smooth operation on the finest grids while attaining performance within 94% of manually-tuned code. Overall we improve the overall multigrid solve time by 2.5× without sacrificing programer productivity.

  19. Method for validating radiobiological samples using a linear accelerator

    International Nuclear Information System (INIS)

    Brengues, Muriel; Liu, David; Korn, Ronald; Zenhausern, Frederic

    2014-01-01

    There is an immediate need for rapid triage of the population in case of a large scale exposure to ionizing radiation. Knowing the dose absorbed by the body will allow clinicians to administer medical treatment for the best chance of recovery for the victim. In addition, today's radiotherapy treatment could benefit from additional information regarding the patient's sensitivity to radiation before starting the treatment. As of today, there is no system in place to respond to this demand. This paper will describe specific procedures to mimic the effects of human exposure to ionizing radiation creating the tools for optimization of administered radiation dosimetry for radiotherapy and/or to estimate the doses of radiation received accidentally during a radiation event that could pose a danger to the public. In order to obtain irradiated biological samples to study ionizing radiation absorbed by the body, we performed ex-vivo irradiation of human blood samples using the linear accelerator (LINAC). The LINAC was implemented and calibrated for irradiating human whole blood samples. To test the calibration, a 2 Gy test run was successfully performed on a tube filled with water with an accuracy of 3% in dose distribution. To validate our technique the blood samples were ex-vivo irradiated and the results were analyzed using a gene expression assay to follow the effect of the ionizing irradiation by characterizing dose responsive biomarkers from radiobiological assays. The response of 5 genes was monitored resulting in expression increase with the dose of radiation received. The blood samples treated with the LINAC can provide effective irradiated blood samples suitable for molecular profiling to validate radiobiological measurements via the gene-expression based biodosimetry tools. (orig.)

  20. Method for validating radiobiological samples using a linear accelerator.

    Science.gov (United States)

    Brengues, Muriel; Liu, David; Korn, Ronald; Zenhausern, Frederic

    2014-04-29

    There is an immediate need for rapid triage of the population in case of a large scale exposure to ionizing radiation. Knowing the dose absorbed by the body will allow clinicians to administer medical treatment for the best chance of recovery for the victim. In addition, today's radiotherapy treatment could benefit from additional information regarding the patient's sensitivity to radiation before starting the treatment. As of today, there is no system in place to respond to this demand. This paper will describe specific procedures to mimic the effects of human exposure to ionizing radiation creating the tools for optimization of administered radiation dosimetry for radiotherapy and/or to estimate the doses of radiation received accidentally during a radiation event that could pose a danger to the public. In order to obtain irradiated biological samples to study ionizing radiation absorbed by the body, we performed ex-vivo irradiation of human blood samples using the linear accelerator (LINAC). The LINAC was implemented and calibrated for irradiating human whole blood samples. To test the calibration, a 2 Gy test run was successfully performed on a tube filled with water with an accuracy of 3% in dose distribution. To validate our technique the blood samples were ex-vivo irradiated and the results were analyzed using a gene expression assay to follow the effect of the ionizing irradiation by characterizing dose responsive biomarkers from radiobiological assays. The response of 5 genes was monitored resulting in expression increase with the dose of radiation received. The blood samples treated with the LINAC can provide effective irradiated blood samples suitable for molecular profiling to validate radiobiological measurements via the gene-expression based biodosimetry tools.

  1. Nonstandard Finite Difference Method Applied to a Linear Pharmacokinetics Model

    Directory of Open Access Journals (Sweden)

    Oluwaseun Egbelowo

    2017-05-01

    Full Text Available We extend the nonstandard finite difference method of solution to the study of pharmacokinetic–pharmacodynamic models. Pharmacokinetic (PK models are commonly used to predict drug concentrations that drive controlled intravenous (I.V. transfers (or infusion and oral transfers while pharmacokinetic and pharmacodynamic (PD interaction models are used to provide predictions of drug concentrations affecting the response of these clinical drugs. We structure a nonstandard finite difference (NSFD scheme for the relevant system of equations which models this pharamcokinetic process. We compare the results obtained to standard methods. The scheme is dynamically consistent and reliable in replicating complex dynamic properties of the relevant continuous models for varying step sizes. This study provides assistance in understanding the long-term behavior of the drug in the system, and validation of the efficiency of the nonstandard finite difference scheme as the method of choice.

  2. Interpolation from Grid Lines: Linear, Transfinite and Weighted Method

    DEFF Research Database (Denmark)

    Lindberg, Anne-Sofie Wessel; Jørgensen, Thomas Martini; Dahl, Vedrana Andersen

    2017-01-01

    When two sets of line scans are acquired orthogonal to each other, intensity values are known along the lines of a grid. To view these values as an image, intensities need to be interpolated at regularly spaced pixel positions. In this paper we evaluate three methods for interpolation from grid l...

  3. Huffman and linear scanning methods with statistical language models.

    Science.gov (United States)

    Roark, Brian; Fried-Oken, Melanie; Gibbons, Chris

    2015-03-01

    Current scanning access methods for text generation in AAC devices are limited to relatively few options, most notably row/column variations within a matrix. We present Huffman scanning, a new method for applying statistical language models to binary-switch, static-grid typing AAC interfaces, and compare it to other scanning options under a variety of conditions. We present results for 16 adults without disabilities and one 36-year-old man with locked-in syndrome who presents with complex communication needs and uses AAC scanning devices for writing. Huffman scanning with a statistical language model yielded significant typing speedups for the 16 participants without disabilities versus any of the other methods tested, including two row/column scanning methods. A similar pattern of results was found with the individual with locked-in syndrome. Interestingly, faster typing speeds were obtained with Huffman scanning using a more leisurely scan rate than relatively fast individually calibrated scan rates. Overall, the results reported here demonstrate great promise for the usability of Huffman scanning as a faster alternative to row/column scanning.

  4. Construction of extended exponential general linear methods 524 ...

    African Journals Online (AJOL)

    This paper introduces a new approach for constructing higher order of EEGLM which have become very popular and novel due to its enviable stability properties. This paper also shows that methods 524 is stable with its characteristics root lies in a unit circle. Numerical experiments indicate that Extended Exponential ...

  5. A fast method for linear waves based on geometrical optics

    NARCIS (Netherlands)

    Stolk, C.C.

    2009-01-01

    We develop a fast method for solving the one-dimensional wave equation based on geometrical optics. From geometrical optics (e.g., Fourier integral operator theory or WKB approximation) it is known that high-frequency waves split into forward and backward propagating parts, each propagating with the

  6. Numerical method for solving linear Fredholm fuzzy integral equations of the second kind

    Energy Technology Data Exchange (ETDEWEB)

    Abbasbandy, S. [Department of Mathematics, Imam Khomeini International University, P.O. Box 288, Ghazvin 34194 (Iran, Islamic Republic of)]. E-mail: saeid@abbasbandy.com; Babolian, E. [Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618 (Iran, Islamic Republic of); Alavi, M. [Department of Mathematics, Arak Branch, Islamic Azad University, Arak 38135 (Iran, Islamic Republic of)

    2007-01-15

    In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.

  7. The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.

    Science.gov (United States)

    Narayanamoorthy, S; Kalyani, S

    2015-01-01

    An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.

  8. The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem

    Directory of Open Access Journals (Sweden)

    S. Narayanamoorthy

    2015-01-01

    Full Text Available An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.

  9. Towards a multigrid scheme in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Gutbrod, F.

    1992-12-01

    The task of constructing a viable updating multigrid scheme for SU(2) lattice gauge theory is discussed in connection with the classical eigenvalue problem. For a nonlocal overrelaxation Monte Carlo update step, the central numerical problem is the search for the minimum of a quadratic approximation to the action under nonlocal constraints. Here approximate eigenfunctions are essential to reduce the numerical work, and these eigenfunctions are to be constructed with multigrid techniques. A simple implementation on asymmetric lattices is described, where the grids are restricted to 3-dimensional hyperplanes. The scheme is shown to be moderately successful in the early stages of the updating history (starting from a cold configuration). The main results of another, less asymmetric scheme are presented briefly. (orig.)

  10. Linear electron accelerator body and method of its manufacture

    International Nuclear Information System (INIS)

    Landa, V.; Maresova, V.; Lucek, J.; Prusa, F.

    1988-01-01

    The accelerator body consists of a hollow casing made of a high electric conductivity metal. The inside is partitioned with a system of resonators. The resonator body is made of one piece of the same metal as the casing or a related one (e.g., copper -coper, silver-copper, copper-copper alloy). The accelerator body is manufactured using the cathodic process on the periphery of a system of metal partitions and negative models of resonator cavities fitted to a metal pin. The pin is then removed from the system and the soluble models of the cavities are dissolved in a solvent. The advantage of the design and the method of manufacture is that the result is a compact, perfectly tight body with a perfectly lustre surface. The casing wall can be very thin, which improves accelerator performance. The claimed method can also be used in manufacturing miniature accelerators. (E.J.). 1 fig

  11. Non-linear methods for the quantification of cyclic motion

    OpenAIRE

    Quintana Duque, Juan Carlos

    2016-01-01

    Traditional methods of human motion analysis assume that fluctuations in cycles (e.g. gait motion) and repetitions (e.g. tennis shots) arise solely from noise. However, the fluctuations may have enough information to describe the properties of motion. Recently, the fluctuations in motion have been analysed based on the concepts of variability and stability, but they are not used uniformly. On the one hand, these concepts are often mixed in the existing literature, while on the other hand, the...

  12. Linear facility location in three dimensions - Models and solution methods

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2002-01-01

    We consider the problem of locating a line or a line segment in three-dimensional space, such that the sum of distances from the facility represented by the line (segment) to a given set of points is minimized. An example is planning the drilling of a mine shaft, with access to ore deposits through...... horizontal tunnels connecting the deposits and the shaft. Various models of the problem are developed and analyzed, and efficient solution methods are given....

  13. Analysis of blood pressure signal in patients with different ventricular ejection fraction using linear and non-linear methods.

    Science.gov (United States)

    Arcentales, Andres; Rivera, Patricio; Caminal, Pere; Voss, Andreas; Bayes-Genis, Antonio; Giraldo, Beatriz F

    2016-08-01

    Changes in the left ventricle function produce alternans in the hemodynamic and electric behavior of the cardiovascular system. A total of 49 cardiomyopathy patients have been studied based on the blood pressure signal (BP), and were classified according to the left ventricular ejection fraction (LVEF) in low risk (LR: LVEF>35%, 17 patients) and high risk (HR: LVEF≤35, 32 patients) groups. We propose to characterize these patients using a linear and a nonlinear methods, based on the spectral estimation and the recurrence plot, respectively. From BP signal, we extracted each systolic time interval (STI), upward systolic slope (BPsl), and the difference between systolic and diastolic BP, defined as pulse pressure (PP). After, the best subset of parameters were obtained through the sequential feature selection (SFS) method. According to the results, the best classification was obtained using a combination of linear and nonlinear features from STI and PP parameters. For STI, the best combination was obtained considering the frequency peak and the diagonal structures of RP, with an area under the curve (AUC) of 79%. The same results were obtained when comparing PP values. Consequently, the use of combined linear and nonlinear parameters could improve the risk stratification of cardiomyopathy patients.

  14. Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library

    Energy Technology Data Exchange (ETDEWEB)

    2017-10-24

    ParELAG is a parallel C++ library for numerical upscaling of finite element discretizations and element-based algebraic multigrid solvers. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured meshes. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

  15. Multigrid time-accurate integration of Navier-Stokes equations

    Science.gov (United States)

    Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.

    1993-01-01

    Efficient acceleration techniques typical of explicit steady-state solvers are extended to time-accurate calculations. Stability restrictions are greatly reduced by means of a fully implicit time discretization. A four-stage Runge-Kutta scheme with local time stepping, residual smoothing, and multigridding is used instead of traditional time-expensive factorizations. Some applications to natural and forced unsteady viscous flows show the capability of the procedure.

  16. Fundamental solution of the problem of linear programming and method of its determination

    Science.gov (United States)

    Petrunin, S. V.

    1978-01-01

    The idea of a fundamental solution to a problem in linear programming is introduced. A method of determining the fundamental solution and of applying this method to the solution of a problem in linear programming is proposed. Numerical examples are cited.

  17. Linear feature selection in texture analysis - A PLS based method

    DEFF Research Database (Denmark)

    Marques, Joselene; Igel, Christian; Lillholm, Martin

    2013-01-01

    We present a texture analysis methodology that combined uncommitted machine-learning techniques and partial least square (PLS) in a fully automatic framework. Our approach introduces a robust PLS-based dimensionality reduction (DR) step to specifically address outliers and high-dimensional feature...... and considering all CV groups, the methods selected 36 % of the original features available. The diagnosis evaluation reached a generalization area-under-the-ROC curve of 0.92, which was higher than established cartilage-based markers known to relate to OA diagnosis....

  18. Excited-state lifetime measurements: Linearization of the Foerster equation by the phase-plane method

    International Nuclear Information System (INIS)

    Love, J.C.; Demas, J.N.

    1983-01-01

    The Foerster equation describes excited-state decay curves involving resonance intermolecular energy transfer. A linearized solution based on the phase-plane method has been developed. The new method is quick, insensitive to the fitting region, accurate, and precise

  19. Strong Stability Preserving Explicit Linear Multistep Methods with Variable Step Size

    KAUST Repository

    Hadjimichael, Yiannis; Ketcheson, David I.; Loczi, Lajos; Né meth, Adriá n

    2016-01-01

    Strong stability preserving (SSP) methods are designed primarily for time integration of nonlinear hyperbolic PDEs, for which the permissible SSP step size varies from one step to the next. We develop the first SSP linear multistep methods (of order

  20. Optimal Homotopy Asymptotic Method for Solving the Linear Fredholm Integral Equations of the First Kind

    Directory of Open Access Journals (Sweden)

    Mohammad Almousa

    2013-01-01

    Full Text Available The aim of this study is to present the use of a semi analytical method called the optimal homotopy asymptotic method (OHAM for solving the linear Fredholm integral equations of the first kind. Three examples are discussed to show the ability of the method to solve the linear Fredholm integral equations of the first kind. The results indicated that the method is very effective and simple.

  1. Solution of linear ordinary differential equations by means of the method of variation of arbitrary constants

    DEFF Research Database (Denmark)

    Mejlbro, Leif

    1997-01-01

    An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians.......An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians....

  2. The separation-combination method of linear structures in remote sensing image interpretation and its application

    International Nuclear Information System (INIS)

    Liu Linqin

    1991-01-01

    The separation-combination method a new kind of analysis method of linear structures in remote sensing image interpretation is introduced taking northwestern Fujian as the example, its practical application is examined. The practice shows that application results not only reflect intensities of linear structures in overall directions at different locations, but also contribute to the zonation of linear structures and display their space distribution laws. Based on analyses of linear structures, it can provide more information concerning remote sensing on studies of regional mineralization laws and the guide to ore-finding combining with mineralization

  3. DL_MG: A Parallel Multigrid Poisson and Poisson-Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution.

    Science.gov (United States)

    Womack, James C; Anton, Lucian; Dziedzic, Jacek; Hasnip, Phil J; Probert, Matt I J; Skylaris, Chris-Kriton

    2018-03-13

    The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential-a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼10 9 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein-ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.

  4. Effect of chamber enclosure time on soil respiration flux: A comparison of linear and non-linear flux calculation methods

    DEFF Research Database (Denmark)

    Kandel, Tanka P; Lærke, Poul Erik; Elsgaard, Lars

    2016-01-01

    One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre-deployment flu......One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre...... was placed on fixed collars, and CO2 concentration in the chamber headspace were recorded at 1-s intervals for 45 min. Fluxes were measured in different soil types (sandy, sandy loam and organic soils), and for various manipulations (tillage, rain and drought) and soil conditions (temperature and moisture......) to obtain a range of fluxes with different shapes of flux curves. The linear method provided more stable flux results during short enclosure times (few min) but underestimated initial fluxes by 15–300% after 45 min deployment time. Non-linear models reduced the underestimation as average underestimation...

  5. Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices

    Science.gov (United States)

    Freund, Roland

    1989-01-01

    We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  6. Solution of systems of linear algebraic equations by the method of summation of divergent series

    International Nuclear Information System (INIS)

    Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.

    2015-01-01

    A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru

  7. Environmental impact assessment methods of the radiation generated by the runing medical linear accelerator

    International Nuclear Information System (INIS)

    Yin haihua; Yao Zhigang

    2014-01-01

    This article describes the environmental impact assessment methods of the radiation generated by the runing. medical linear accelerator. The material and thickness of shielding wall and protective doors of the linear accelerator were already knew, therefore we can evaluate the radiation by the runing. medical linear accelerator whether or not in the normal range of national standard by calculating the annual effective radiation dose of the surrounding personnel suffered. (authors)

  8. Chosen interval methods for solving linear interval systems with special type of matrix

    Science.gov (United States)

    Szyszka, Barbara

    2013-10-01

    The paper is devoted to chosen direct interval methods for solving linear interval systems with special type of matrix. This kind of matrix: band matrix with a parameter, from finite difference problem is obtained. Such linear systems occur while solving one dimensional wave equation (Partial Differential Equations of hyperbolic type) by using the central difference interval method of the second order. Interval methods are constructed so as the errors of method are enclosed in obtained results, therefore presented linear interval systems contain elements that determining the errors of difference method. The chosen direct algorithms have been applied for solving linear systems because they have no errors of method. All calculations were performed in floating-point interval arithmetic.

  9. Uzawa smoother in multigrid for the coupleD porous medium and stokes flow system

    NARCIS (Netherlands)

    P. Luo (Peiyao); C. Rodrigo (Carmen); F.J. Gaspar Lorenz (Franscisco); C.W. Oosterlee (Kees)

    2017-01-01

    textabstractThe multigrid solution of coupled porous media and Stokes flow problems is considered. The Darcy equation as the saturated porous medium model is coupled to the Stokes equations by means of appropriate interface conditions. We focus on an efficient multigrid solution technique for the

  10. Multigrid for high dimensional elliptic partial differential equations on non-equidistant grids

    NARCIS (Netherlands)

    bin Zubair, H.; Oosterlee, C.E.; Wienands, R.

    2006-01-01

    This work presents techniques, theory and numbers for multigrid in a general d-dimensional setting. The main focus is the multigrid convergence for high-dimensional partial differential equations (PDEs). As a model problem we have chosen the anisotropic diffusion equation, on a unit hypercube. We

  11. A Linear Birefringence Measurement Method for an Optical Fiber Current Sensor.

    Science.gov (United States)

    Xu, Shaoyi; Shao, Haiming; Li, Chuansheng; Xing, Fangfang; Wang, Yuqiao; Li, Wei

    2017-07-03

    In this work, a linear birefringence measurement method is proposed for an optical fiber current sensor (OFCS). First, the optical configuration of the measurement system is presented. Then, the elimination method of the effect of the azimuth angles between the sensing fiber and the two polarizers is demonstrated. Moreover, the relationship of the linear birefringence, the Faraday rotation angle and the final output is determined. On these bases, the multi-valued problem on the linear birefringence is simulated and its solution is illustrated when the linear birefringence is unknown. Finally, the experiments are conducted to prove the feasibility of the proposed method. When the numbers of turns of the sensing fiber in the OFCS are about 15, 19, 23, 27, 31, 35, and 39, the measured linear birefringence obtained by the proposed method are about 1.3577, 1.8425, 2.0983, 2.5914, 2.7891, 3.2003 and 3.5198 rad. Two typical methods provide the references for the proposed method. The proposed method is proven to be suitable for the linear birefringence measurement in the full range without the limitation that the linear birefringence must be smaller than π/2.

  12. Hierarchical and Non-Hierarchical Linear and Non-Linear Clustering Methods to “Shakespeare Authorship Question”

    Directory of Open Access Journals (Sweden)

    Refat Aljumily

    2015-09-01

    Full Text Available A few literary scholars have long claimed that Shakespeare did not write some of his best plays (history plays and tragedies and proposed at one time or another various suspect authorship candidates. Most modern-day scholars of Shakespeare have rejected this claim, arguing that strong evidence that Shakespeare wrote the plays and poems being his name appears on them as the author. This has caused and led to an ongoing scholarly academic debate for quite some long time. Stylometry is a fast-growing field often used to attribute authorship to anonymous or disputed texts. Stylometric attempts to resolve this literary puzzle have raised interesting questions over the past few years. The following paper contributes to “the Shakespeare authorship question” by using a mathematically-based methodology to examine the hypothesis that Shakespeare wrote all the disputed plays traditionally attributed to him. More specifically, the mathematically based methodology used here is based on Mean Proximity, as a linear hierarchical clustering method, and on Principal Components Analysis, as a non-hierarchical linear clustering method. It is also based, for the first time in the domain, on Self-Organizing Map U-Matrix and Voronoi Map, as non-linear clustering methods to cover the possibility that our data contains significant non-linearities. Vector Space Model (VSM is used to convert texts into vectors in a high dimensional space. The aim of which is to compare the degrees of similarity within and between limited samples of text (the disputed plays. The various works and plays assumed to have been written by Shakespeare and possible authors notably, Sir Francis Bacon, Christopher Marlowe, John Fletcher, and Thomas Kyd, where “similarity” is defined in terms of correlation/distance coefficient measure based on the frequency of usage profiles of function words, word bi-grams, and character triple-grams. The claim that Shakespeare authored all the disputed

  13. Copper Mountain conference on iterative methods: Proceedings: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This volume (the second of two) contains information presented during the last two days of the Copper Mountain Conference on Iterative Methods held April 9-13, 1996 at Copper Mountain, Colorado. Topics of the sessions held these two days include domain decomposition, Krylov methods, computational fluid dynamics, Markov chains, sparse and parallel basic linear algebra subprograms, multigrid methods, applications of iterative methods, equation systems with multiple right-hand sides, projection methods, and the Helmholtz equation. Selected papers indexed separately for the Energy Science and Technology Database.

  14. Libraries for spectrum identification: Method of normalized coordinates versus linear correlation

    International Nuclear Information System (INIS)

    Ferrero, A.; Lucena, P.; Herrera, R.G.; Dona, A.; Fernandez-Reyes, R.; Laserna, J.J.

    2008-01-01

    In this work it is proposed that an easy solution based directly on linear algebra in order to obtain the relation between a spectrum and a spectrum base. This solution is based on the algebraic determination of an unknown spectrum coordinates with respect to a spectral library base. The identification capacity comparison between this algebraic method and the linear correlation method has been shown using experimental spectra of polymers. Unlike the linear correlation (where the presence of impurities may decrease the discrimination capacity), this method allows to detect quantitatively the existence of a mixture of several substances in a sample and, consequently, to beer in mind impurities for improving the identification

  15. Infeasible Interior-Point Methods for Linear Optimization Based on Large Neighborhood

    NARCIS (Netherlands)

    Asadi, A.R.; Roos, C.

    2015-01-01

    In this paper, we design a class of infeasible interior-point methods for linear optimization based on large neighborhood. The algorithm is inspired by a full-Newton step infeasible algorithm with a linear convergence rate in problem dimension that was recently proposed by the second author.

  16. A Comparison of Traditional Worksheet and Linear Programming Methods for Teaching Manure Application Planning.

    Science.gov (United States)

    Schmitt, M. A.; And Others

    1994-01-01

    Compares traditional manure application planning techniques calculated to meet agronomic nutrient needs on a field-by-field basis with plans developed using computer-assisted linear programming optimization methods. Linear programming provided the most economical and environmentally sound manure application strategy. (Contains 15 references.) (MDH)

  17. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    Science.gov (United States)

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  18. An Evaluation of Five Linear Equating Methods for the NEAT Design

    Science.gov (United States)

    Mroch, Andrew A.; Suh, Youngsuk; Kane, Michael T.; Ripkey, Douglas R.

    2009-01-01

    This study uses the results of two previous papers (Kane, Mroch, Suh, & Ripkey, this issue; Suh, Mroch, Kane, & Ripkey, this issue) and the literature on linear equating to evaluate five linear equating methods along several dimensions, including the plausibility of their assumptions and their levels of bias and root mean squared difference…

  19. Genomic prediction based on data from three layer lines: a comparison between linear methods

    NARCIS (Netherlands)

    Calus, M.P.L.; Huang, H.; Vereijken, J.; Visscher, J.; Napel, ten J.; Windig, J.J.

    2014-01-01

    Background The prediction accuracy of several linear genomic prediction models, which have previously been used for within-line genomic prediction, was evaluated for multi-line genomic prediction. Methods Compared to a conventional BLUP (best linear unbiased prediction) model using pedigree data, we

  20. Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics

    Science.gov (United States)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-02-01

    Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

  1. An introduction to fuzzy linear programming problems theory, methods and applications

    CERN Document Server

    Kaur, Jagdeep

    2016-01-01

    The book presents a snapshot of the state of the art in the field of fully fuzzy linear programming. The main focus is on showing current methods for finding the fuzzy optimal solution of fully fuzzy linear programming problems in which all the parameters and decision variables are represented by non-negative fuzzy numbers. It presents new methods developed by the authors, as well as existing methods developed by others, and their application to real-world problems, including fuzzy transportation problems. Moreover, it compares the outcomes of the different methods and discusses their advantages/disadvantages. As the first work to collect at one place the most important methods for solving fuzzy linear programming problems, the book represents a useful reference guide for students and researchers, providing them with the necessary theoretical and practical knowledge to deal with linear programming problems under uncertainty.

  2. Improvement of linear reactivity methods and application to long range fuel management

    International Nuclear Information System (INIS)

    Woehlke, R.A.; Quan, B.L.

    1982-01-01

    The original development of the linear reactivity theory assumes flat burnup, batch by batch. The validity of this assumption is explored using multicycle burnup data generated with a detailed 3-D SIMULATE model. The results show that the linear reactivity method can be improved by correcting for batchwise power sharing. The application of linear reactivity to long range fuel management is demonstrated in several examples. Correcting for batchwise power sharing improves the accuracy of the analysis. However, with regard to the sensitivity of fuel cost to changes in various parameters, the corrected and uncorrected linear reactivity theories give remarkably similar results

  3. On Extended Exponential General Linear Methods PSQ with S>Q ...

    African Journals Online (AJOL)

    This paper is concerned with the construction and Numerical Analysis of Extended Exponential General Linear Methods. These methods, in contrast to other methods in literatures, consider methods with the step greater than the stage order (S>Q).Numerical experiments in this study, indicate that Extended Exponential ...

  4. Electric field control methods for foil coils in high-voltage linear actuators

    NARCIS (Netherlands)

    Beek, van T.A.; Jansen, J.W.; Lomonova, E.A.

    2015-01-01

    This paper describes multiple electric field control methods for foil coils in high-voltage coreless linear actuators. The field control methods are evaluated using 2-D and 3-D boundary element methods. A comparison is presented between the field control methods and their ability to mitigate

  5. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    Science.gov (United States)

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  6. Comparison of boundedness and monotonicity properties of one-leg and linear multistep methods

    KAUST Repository

    Mozartova, A.; Savostianov, I.; Hundsdorfer, W.

    2015-01-01

    © 2014 Elsevier B.V. All rights reserved. One-leg multistep methods have some advantage over linear multistep methods with respect to storage of the past results. In this paper boundedness and monotonicity properties with arbitrary (semi-)norms or convex functionals are analyzed for such multistep methods. The maximal stepsize coefficient for boundedness and monotonicity of a one-leg method is the same as for the associated linear multistep method when arbitrary starting values are considered. It will be shown, however, that combinations of one-leg methods and Runge-Kutta starting procedures may give very different stepsize coefficients for monotonicity than the linear multistep methods with the same starting procedures. Detailed results are presented for explicit two-step methods.

  7. Comparison of boundedness and monotonicity properties of one-leg and linear multistep methods

    KAUST Repository

    Mozartova, A.

    2015-05-01

    © 2014 Elsevier B.V. All rights reserved. One-leg multistep methods have some advantage over linear multistep methods with respect to storage of the past results. In this paper boundedness and monotonicity properties with arbitrary (semi-)norms or convex functionals are analyzed for such multistep methods. The maximal stepsize coefficient for boundedness and monotonicity of a one-leg method is the same as for the associated linear multistep method when arbitrary starting values are considered. It will be shown, however, that combinations of one-leg methods and Runge-Kutta starting procedures may give very different stepsize coefficients for monotonicity than the linear multistep methods with the same starting procedures. Detailed results are presented for explicit two-step methods.

  8. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    Science.gov (United States)

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  9. A method for computing the stationary points of a function subject to linear equality constraints

    International Nuclear Information System (INIS)

    Uko, U.L.

    1989-09-01

    We give a new method for the numerical calculation of stationary points of a function when it is subject to equality constraints. An application to the solution of linear equations is given, together with a numerical example. (author). 5 refs

  10. Contractivity properties of a class of linear multistep methods for nonlinear neutral delay differential equations

    International Nuclear Information System (INIS)

    Wang Wansheng; Li Shoufu; Wang Wenqiang

    2009-01-01

    In this paper, we show that under identical conditions which guarantee the contractivity of the theoretical solutions of general nonlinear NDDEs, the numerical solutions obtained by a class of linear multistep methods are also contractive.

  11. Linearized method: A new approach for kinetic analysis of central dopamine D2 receptor specific binding

    International Nuclear Information System (INIS)

    Watabe, Hiroshi; Hatazawa, Jun; Ishiwata, Kiichi; Ido, Tatsuo; Itoh, Masatoshi; Iwata, Ren; Nakamura, Takashi; Takahashi, Toshihiro; Hatano, Kentaro

    1995-01-01

    The authors proposed a new method (Linearized method) to analyze neuroleptic ligand-receptor specific binding in a human brain using positron emission tomography (PET). They derived the linear equation to solve four rate constants, k 3 , k 4 , k 5 , k 6 from PET data. This method does not demand radioactivity curve in plasma as an input function to brain, and can do fast calculations in order to determine rate constants. They also tested Nonlinearized method including nonlinear equations which is conventional analysis using plasma radioactivity corrected for ligand metabolites as an input function. The authors applied these methods to evaluate dopamine D 2 receptor specific binding of [ 11 C] YM-09151-2. The value of B max /K d = k 3 k 4 obtained by Linearized method was 5.72 ± 3.1 which was consistent with the value of 5.78 ± 3.4 obtained by Nonlinearized method

  12. Linear, Transfinite and Weighted Method for Interpolation from Grid Lines Applied to OCT Images

    DEFF Research Database (Denmark)

    Lindberg, Anne-Sofie Wessel; Jørgensen, Thomas Martini; Dahl, Vedrana Andersen

    2018-01-01

    of a square grid, but are unknown inside each square. To view these values as an image, intensities need to be interpolated at regularly spaced pixel positions. In this paper we evaluate three methods for interpolation from grid lines: linear, transfinite and weighted. The linear method does not preserve...... and the stability of the linear method further away. An important parameter influencing the performance of the interpolation methods is the upsampling rate. We perform an extensive evaluation of the three interpolation methods across a range of upsampling rates. Our statistical analysis shows significant difference...... in the performance of the three methods. We find that the transfinite interpolation works well for small upsampling rates and the proposed weighted interpolation method performs very well for all upsampling rates typically used in practice. On the basis of these findings we propose an approach for combining two OCT...

  13. MAPCUMBA: A fast iterative multi-grid map-making algorithm for CMB experiments

    Science.gov (United States)

    Doré, O.; Teyssier, R.; Bouchet, F. R.; Vibert, D.; Prunet, S.

    2001-07-01

    The data analysis of current Cosmic Microwave Background (CMB) experiments like BOOMERanG or MAXIMA poses severe challenges which already stretch the limits of current (super-) computer capabilities, if brute force methods are used. In this paper we present a practical solution for the optimal map making problem which can be used directly for next generation CMB experiments like ARCHEOPS and TopHat, and can probably be extended relatively easily to the full PLANCK case. This solution is based on an iterative multi-grid Jacobi algorithm which is both fast and memory sparing. Indeed, if there are Ntod data points along the one dimensional timeline to analyse, the number of operations is of O (Ntod \\ln Ntod) and the memory requirement is O (Ntod). Timing and accuracy issues have been analysed on simulated ARCHEOPS and TopHat data, and we discuss as well the issue of the joint evaluation of the signal and noise statistical properties.

  14. Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative

    Directory of Open Access Journals (Sweden)

    Ai-Min Yang

    2014-01-01

    Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.

  15. Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems

    Science.gov (United States)

    Wang, Xue-Zhong; Huang, Ting-Zhu; Fu, Ying-Ding

    2007-09-01

    In this paper, we present some comparison theorems on preconditioned iterative method for solving Z-matrices linear systems, Comparison results show that the rate of convergence of the Gauss-Seidel-type method is faster than the rate of convergence of the SOR-type iterative method.

  16. A Fifth Order Hybrid Linear Multistep method For the Direct Solution ...

    African Journals Online (AJOL)

    A linear multistep hybrid method (LMHM)with continuous coefficients isconsidered and directly applied to solve third order initial and boundary value problems (IBVPs). The continuous method is used to obtain Multiple Finite Difference Methods (MFDMs) (each of order 5) which are combined as simultaneous numerical ...

  17. Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator

    International Nuclear Information System (INIS)

    Babich, R.; Brower, R. C.; Rebbi, C.; Brannick, J.; Clark, M. A.; Manteuffel, T. A.; McCormick, S. F.; Osborn, J. C.

    2010-01-01

    We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called γ 5 -Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume.

  18. A Parallel Algebraic Multigrid Solver on Graphics Processing Units

    KAUST Repository

    Haase, Gundolf

    2010-01-01

    The paper presents a multi-GPU implementation of the preconditioned conjugate gradient algorithm with an algebraic multigrid preconditioner (PCG-AMG) for an elliptic model problem on a 3D unstructured grid. An efficient parallel sparse matrix-vector multiplication scheme underlying the PCG-AMG algorithm is presented for the many-core GPU architecture. A performance comparison of the parallel solver shows that a singe Nvidia Tesla C1060 GPU board delivers the performance of a sixteen node Infiniband cluster and a multi-GPU configuration with eight GPUs is about 100 times faster than a typical server CPU core. © 2010 Springer-Verlag.

  19. Fast multigrid solution of the advection problem with closed characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yavneh, I. [Israel Inst. of Technology, Haifa (Israel); Venner, C.H. [Univ. of Twente, Enschede (Netherlands); Brandt, A. [Weizmann Inst. of Science, Rehovot (Israel)

    1996-12-31

    The numerical solution of the advection-diffusion problem in the inviscid limit with closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is demonstrated by a heuristic analysis and numerical calculations that using upstream discretization with downstream relaxation-ordering and appropriate residual weighting in a simple multigrid V cycle produces an efficient solution process. We also derive upstream finite-difference approximations to the advection operator, whose truncation terms approximate {open_quotes}physical{close_quotes} (Laplacian) viscosity, thus avoiding spurious solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity.

  20. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    Science.gov (United States)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  1. Development of pre-critical excore detector linear subchannel calibration method

    International Nuclear Information System (INIS)

    Choi, Yoo Sun; Goo, Bon Seung; Cha, Kyun Ho; Lee, Chang Seop; Kim, Yong Hee; Ahn, Chul Soo; Kim, Man Soo

    2001-01-01

    The improved pre-critical excore detector linear subchannel calibration method has been developed to improve the applicability of pre-critical calibration method. The existing calibration method does not always guarantee the accuracy of pre-critical calibration because the calibration results of the previous cycle are not reflected into the current cycle calibration. The developed method has a desirable feature that calibration error would not be propagated in the following cycles since the calibration data determined in previous cycle is incorporated in the current cycle calibration. The pre-critical excore detector linear calibration is tested for YGN unit 3 and UCN unit 3 to evaluate its characteristics and accuracy

  2. Novel methods for Solving Economic Dispatch of Security-Constrained Unit Commitment Based on Linear Programming

    Science.gov (United States)

    Guo, Sangang

    2017-09-01

    There are two stages in solving security-constrained unit commitment problems (SCUC) within Lagrangian framework: one is to obtain feasible units’ states (UC), the other is power economic dispatch (ED) for each unit. The accurate solution of ED is more important for enhancing the efficiency of the solution to SCUC for the fixed feasible units’ statues. Two novel methods named after Convex Combinatorial Coefficient Method and Power Increment Method respectively based on linear programming problem for solving ED are proposed by the piecewise linear approximation to the nonlinear convex fuel cost functions. Numerical testing results show that the methods are effective and efficient.

  3. An introduction to linear ordinary differential equations using the impulsive response method and factorization

    CERN Document Server

    Camporesi, Roberto

    2016-01-01

    This book presents a method for solving linear ordinary differential equations based on the factorization of the differential operator. The approach for the case of constant coefficients is elementary, and only requires a basic knowledge of calculus and linear algebra. In particular, the book avoids the use of distribution theory, as well as the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The case of variable coefficients is addressed using Mammana’s result for the factorization of a real linear ordinary differential operator into a product of first-order (complex) factors, as well as a recent generalization of this result to the case of complex-valued coefficients.

  4. An explicit method in non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1981-01-01

    The explicit method of analysis in the time domain is ideally suited for the solution of transient dynamic non-linear problems. Though the method is not new, its application to seismic soil-structure interaction is relatively new and deserving of public discussion. This paper describes the principles of the explicit approach in soil-structure interaction and it presents a simple algorithm that can be used in the development of explicit computer codes. The paper also discusses some of the practical considerations like non-reflecting boundaries and time steps. The practicality of the method is demonstrated using a computer code, PRESS, which is used to compare the treatment of strain-dependent properties using average strain levels over the whole time history (the equivalent linear method) and using the actual strain levels at every time step to modify the soil properties (non-linear method). (orig.)

  5. Uniform irradiation using rotational-linear scanning method for narrow synchrotron radiation beam

    International Nuclear Information System (INIS)

    Nariyama, N.; Ohnishi, S.; Odano, N.

    2004-01-01

    At SPring-8, photon intensity monitors for synchrotron radiation have been developed. Using these monitors, the responses of radiation detectors and dosimeters to monoenergetic photons can be measured. In most cases, uniform irradiation to the sample is necessary. Here, two scanning methods are proposed. One is an XZ-linear scanning method, which moves the sample simultaneously in both the X and Z direction, that is, in zigzag fashion. The other is a rotational-linear scanning method, which rotates the sample moving in the X direction. To investigate the validity of the two methods, thermoluminescent dosimeters were irradiated with a broad synchrotron-radiation beam, and the readings from the two methods were compared with that of the dosimeters fixed in the beam. The results for both scanning methods virtually agreed with that of the fixed method. The advantages of the rotational-linear scanning method are that low- and medium-dose irradiation is possible, uniformity is excellent and the load to the scanning equipment is light: hence, this method is superior to the XZ-linear scanning method for most applications. (author)

  6. Higher-order schemes for the Laplace transformation method for parabolic problems

    KAUST Repository

    Douglas, C.

    2011-01-01

    In this paper we solve linear parabolic problems using the three stage noble algorithms. First, the time discretization is approximated using the Laplace transformation method, which is both parallel in time (and can be in space, too) and extremely high order convergent. Second, higher-order compact schemes of order four and six are used for the the spatial discretization. Finally, the discretized linear algebraic systems are solved using multigrid to show the actual convergence rate for numerical examples, which are compared to other numerical solution methods. © 2011 Springer-Verlag.

  7. Numerical Methods for Solution of the Extended Linear Quadratic Control Problem

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Frison, Gianluca; Gade-Nielsen, Nicolai Fog

    2012-01-01

    In this paper we present the extended linear quadratic control problem, its efficient solution, and a discussion of how it arises in the numerical solution of nonlinear model predictive control problems. The extended linear quadratic control problem is the optimal control problem corresponding...... to the Karush-Kuhn-Tucker system that constitute the majority of computational work in constrained nonlinear and linear model predictive control problems solved by efficient MPC-tailored interior-point and active-set algorithms. We state various methods of solving the extended linear quadratic control problem...... and discuss instances in which it arises. The methods discussed in the paper have been implemented in efficient C code for both CPUs and GPUs for a number of test examples....

  8. Equivalent linearization method for limit cycle flutter analysis of plate-type structure in axial flow

    International Nuclear Information System (INIS)

    Lu Li; Yang Yiren

    2009-01-01

    The responses and limit cycle flutter of a plate-type structure with cubic stiffness in viscous flow were studied. The continuous system was dispersed by utilizing Galerkin Method. The equivalent linearization concept was performed to predict the ranges of limit cycle flutter velocities. The coupled map of flutter amplitude-equivalent linear stiffness-critical velocity was used to analyze the stability of limit cycle flutter. The theoretical results agree well with the results of numerical integration, which indicates that the equivalent linearization concept is available to the analysis of limit cycle flutter of plate-type structure. (authors)

  9. A complex linear least-squares method to derive relative and absolute orientations of seismic sensors

    OpenAIRE

    F. Grigoli; Simone Cesca; Torsten Dahm; L. Krieger

    2012-01-01

    Determining the relative orientation of the horizontal components of seismic sensors is a common problem that limits data analysis and interpretation for several acquisition setups, including linear arrays of geophones deployed in borehole installations or ocean bottom seismometers deployed at the seafloor. To solve this problem we propose a new inversion method based on a complex linear algebra approach. Relative orientation angles are retrieved by minimizing, in a least-squares sense, the l...

  10. General methods for determining the linear stability of coronal magnetic fields

    Science.gov (United States)

    Craig, I. J. D.; Sneyd, A. D.; Mcclymont, A. N.

    1988-01-01

    A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak.

  11. Non-linear shape functions over time in the space-time finite element method

    Directory of Open Access Journals (Sweden)

    Kacprzyk Zbigniew

    2017-01-01

    Full Text Available This work presents a generalisation of the space-time finite element method proposed by Kączkowski in his seminal of 1970’s and early 1980’s works. Kączkowski used linear shape functions in time. The recurrence formula obtained by Kączkowski was conditionally stable. In this paper, non-linear shape functions in time are proposed.

  12. Treating experimental data of inverse kinetic method by unitary linear regression analysis

    International Nuclear Information System (INIS)

    Zhao Yusen; Chen Xiaoliang

    2009-01-01

    The theory of treating experimental data of inverse kinetic method by unitary linear regression analysis was described. Not only the reactivity, but also the effective neutron source intensity could be calculated by this method. Computer code was compiled base on the inverse kinetic method and unitary linear regression analysis. The data of zero power facility BFS-1 in Russia were processed and the results were compared. The results show that the reactivity and the effective neutron source intensity can be obtained correctly by treating experimental data of inverse kinetic method using unitary linear regression analysis and the precision of reactivity measurement is improved. The central element efficiency can be calculated by using the reactivity. The result also shows that the effect to reactivity measurement caused by external neutron source should be considered when the reactor power is low and the intensity of external neutron source is strong. (authors)

  13. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Directory of Open Access Journals (Sweden)

    Gyungho Khim

    2015-01-01

    Full Text Available We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement.

  14. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Science.gov (United States)

    Khim, Gyungho; Park, Chun Hong; Oh, Jeong Seok

    2015-01-01

    We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement. PMID:25705715

  15. On a new iterative method for solving linear systems and comparison results

    Science.gov (United States)

    Jing, Yan-Fei; Huang, Ting-Zhu

    2008-10-01

    In Ujevic [A new iterative method for solving linear systems, Appl. Math. Comput. 179 (2006) 725-730], the author obtained a new iterative method for solving linear systems, which can be considered as a modification of the Gauss-Seidel method. In this paper, we show that this is a special case from a point of view of projection techniques. And a different approach is established, which is both theoretically and numerically proven to be better than (at least the same as) Ujevic's. As the presented numerical examples show, in most cases, the convergence rate is more than one and a half that of Ujevic.

  16. Shifted Legendre method with residual error estimation for delay linear Fredholm integro-differential equations

    Directory of Open Access Journals (Sweden)

    Şuayip Yüzbaşı

    2017-03-01

    Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.

  17. Methods of measurement of integral and differential linearity distortions of spectrometry sets

    International Nuclear Information System (INIS)

    Fuan, Jacques; Grimont, Bernard; Marin, Roland; Richard, Jean-Pierre

    1969-05-01

    The objective of this document is to describe different measurement methods, and more particularly to present a software for the processing of obtained results in order to avoid interpretation by the investigator. In a first part, the authors define the parameters of integral and differential linearity, outlines their importance in measurements performed by spectrometry, and describe the use of these parameters. In the second part, they propose various methods of measurement of these linearity parameters, report experimental applications of these methods and compare the obtained results

  18. Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers

    Science.gov (United States)

    Liu, Chaoqun; Liu, Zhining

    1993-01-01

    A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.

  19. Novel method of interpolation and extrapolation of functions by a linear initial value problem

    CSIR Research Space (South Africa)

    Shatalov, M

    2008-09-01

    Full Text Available A novel method of function approximation using an initial value, linear, ordinary differential equation (ODE) is presented. The main advantage of this method is to obtain the approximation expressions in a closed form. This technique can be taught...

  20. More on Generalizations and Modifications of Iterative Methods for Solving Large Sparse Indefinite Linear Systems

    Directory of Open Access Journals (Sweden)

    Jen-Yuan Chen

    2014-01-01

    Full Text Available Continuing from the works of Li et al. (2014, Li (2007, and Kincaid et al. (2000, we present more generalizations and modifications of iterative methods for solving large sparse symmetric and nonsymmetric indefinite systems of linear equations. We discuss a variety of iterative methods such as GMRES, MGMRES, MINRES, LQ-MINRES, QR MINRES, MMINRES, MGRES, and others.

  1. An Introduction to Graphical and Mathematical Methods for Detecting Heteroscedasticity in Linear Regression.

    Science.gov (United States)

    Thompson, Russel L.

    Homoscedasticity is an important assumption of linear regression. This paper explains what it is and why it is important to the researcher. Graphical and mathematical methods for testing the homoscedasticity assumption are demonstrated. Sources of homoscedasticity and types of homoscedasticity are discussed, and methods for correction are…

  2. Experimental validation for calcul methods of structures having shock non-linearity

    International Nuclear Information System (INIS)

    Brochard, D.; Buland, P.

    1987-01-01

    For the seismic analysis of non-linear structures, numerical methods have been developed which need to be validated on experimental results. The aim of this paper is to present the design method of a test program which results will be used for this purpose. Some applications to nuclear components will illustrate this presentation [fr

  3. Calculation of U, Ra, Th and K contents in uranium ore by multiple linear regression method

    International Nuclear Information System (INIS)

    Lin Chao; Chen Yingqiang; Zhang Qingwen; Tan Fuwen; Peng Guanghui

    1991-01-01

    A multiple linear regression method was used to compute γ spectra of uranium ore samples and to calculate contents of U, Ra, Th, and K. In comparison with the inverse matrix method, its advantage is that no standard samples of pure U, Ra, Th and K are needed for obtaining response coefficients

  4. Effective linear two-body method for many-body problems in atomic and nuclear physics

    International Nuclear Information System (INIS)

    Kim, Y.E.; Zubarev, A.L.

    2000-01-01

    We present an equivalent linear two-body method for the many body problem, which is based on an approximate reduction of the many-body Schroedinger equation by the use of a variational principle. The method is applied to several problems in atomic and nuclear physics. (author)

  5. Engineered high expansion glass-ceramics having near linear thermal strain and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu; Rodriguez, Mark A.; Lyon, Nathanael L.

    2018-01-30

    The present invention relates to glass-ceramic compositions, as well as methods for forming such composition. In particular, the compositions include various polymorphs of silica that provide beneficial thermal expansion characteristics (e.g., a near linear thermal strain). Also described are methods of forming such compositions, as well as connectors including hermetic seals containing such compositions.

  6. A block Krylov subspace time-exact solution method for linear ordinary differential equation systems

    NARCIS (Netherlands)

    Bochev, Mikhail A.

    2013-01-01

    We propose a time-exact Krylov-subspace-based method for solving linear ordinary differential equation systems of the form $y'=-Ay+g(t)$ and $y"=-Ay+g(t)$, where $y(t)$ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of

  7. A study on linear and nonlinear Schrodinger equations by the variational iteration method

    International Nuclear Information System (INIS)

    Wazwaz, Abdul-Majid

    2008-01-01

    In this work, we introduce a framework to obtain exact solutions to linear and nonlinear Schrodinger equations. The He's variational iteration method (VIM) is used for analytic treatment of these equations. Numerical examples are tested to show the pertinent features of this method

  8. Linear Discontinuous Expansion Method using the Subcell Balances for Unstructured Geometry SN Transport

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Kim, Jong Woon; Lee, Young Ouk; Kim, Kyo Youn

    2010-01-01

    The subcell balance methods have been developed for one- and two-dimensional SN transport calculations. In this paper, a linear discontinuous expansion method using sub-cell balances (LDEM-SCB) is developed for neutral particle S N transport calculations in 3D unstructured geometrical problems. At present, this method is applied to the tetrahedral meshes. As the name means, this method assumes the linear distribution of the particle flux in each tetrahedral mesh and uses the balance equations for four sub-cells of each tetrahedral mesh to obtain the equations for the four sub-cell average fluxes which are unknowns. This method was implemented in the computer code MUST (Multi-group Unstructured geometry S N Transport). The numerical tests show that this method gives more robust solution than DFEM (Discontinuous Finite Element Method)

  9. Strong Stability Preserving Explicit Linear Multistep Methods with Variable Step Size

    KAUST Repository

    Hadjimichael, Yiannis

    2016-09-08

    Strong stability preserving (SSP) methods are designed primarily for time integration of nonlinear hyperbolic PDEs, for which the permissible SSP step size varies from one step to the next. We develop the first SSP linear multistep methods (of order two and three) with variable step size, and prove their optimality, stability, and convergence. The choice of step size for multistep SSP methods is an interesting problem because the allowable step size depends on the SSP coefficient, which in turn depends on the chosen step sizes. The description of the methods includes an optimal step-size strategy. We prove sharp upper bounds on the allowable step size for explicit SSP linear multistep methods and show the existence of methods with arbitrarily high order of accuracy. The effectiveness of the methods is demonstrated through numerical examples.

  10. Accelerated Cyclic Reduction: A Distributed-Memory Fast Solver for Structured Linear Systems

    KAUST Repository

    Chávez, Gustavo

    2017-12-15

    We present Accelerated Cyclic Reduction (ACR), a distributed-memory fast solver for rank-compressible block tridiagonal linear systems arising from the discretization of elliptic operators, developed here for three dimensions. Algorithmic synergies between Cyclic Reduction and hierarchical matrix arithmetic operations result in a solver that has O(kNlogN(logN+k2)) arithmetic complexity and O(k Nlog N) memory footprint, where N is the number of degrees of freedom and k is the rank of a block in the hierarchical approximation, and which exhibits substantial concurrency. We provide a baseline for performance and applicability by comparing with the multifrontal method with and without hierarchical semi-separable matrices, with algebraic multigrid and with the classic cyclic reduction method. Over a set of large-scale elliptic systems with features of nonsymmetry and indefiniteness, the robustness of the direct solvers extends beyond that of the multigrid solver, and relative to the multifrontal approach ACR has lower or comparable execution time and size of the factors, with substantially lower numerical ranks. ACR exhibits good strong and weak scaling in a distributed context and, as with any direct solver, is advantageous for problems that require the solution of multiple right-hand sides. Numerical experiments show that the rank k patterns are of O(1) for the Poisson equation and of O(n) for the indefinite Helmholtz equation. The solver is ideal in situations where low-accuracy solutions are sufficient, or otherwise as a preconditioner within an iterative method.

  11. Accelerated Cyclic Reduction: A Distributed-Memory Fast Solver for Structured Linear Systems

    KAUST Repository

    Chá vez, Gustavo; Turkiyyah, George; Zampini, Stefano; Ltaief, Hatem; Keyes, David E.

    2017-01-01

    We present Accelerated Cyclic Reduction (ACR), a distributed-memory fast solver for rank-compressible block tridiagonal linear systems arising from the discretization of elliptic operators, developed here for three dimensions. Algorithmic synergies between Cyclic Reduction and hierarchical matrix arithmetic operations result in a solver that has O(kNlogN(logN+k2)) arithmetic complexity and O(k Nlog N) memory footprint, where N is the number of degrees of freedom and k is the rank of a block in the hierarchical approximation, and which exhibits substantial concurrency. We provide a baseline for performance and applicability by comparing with the multifrontal method with and without hierarchical semi-separable matrices, with algebraic multigrid and with the classic cyclic reduction method. Over a set of large-scale elliptic systems with features of nonsymmetry and indefiniteness, the robustness of the direct solvers extends beyond that of the multigrid solver, and relative to the multifrontal approach ACR has lower or comparable execution time and size of the factors, with substantially lower numerical ranks. ACR exhibits good strong and weak scaling in a distributed context and, as with any direct solver, is advantageous for problems that require the solution of multiple right-hand sides. Numerical experiments show that the rank k patterns are of O(1) for the Poisson equation and of O(n) for the indefinite Helmholtz equation. The solver is ideal in situations where low-accuracy solutions are sufficient, or otherwise as a preconditioner within an iterative method.

  12. A discrete homotopy perturbation method for non-linear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    H. A. Wahab

    2015-12-01

    Full Text Available A general analysis is made by homotopy perturbation method while taking the advantages of the initial guess, appearance of the embedding parameter, different choices of the linear operator to the approximated solution to the non-linear Schrodinger equation. We are not dependent upon the Adomian polynomials and find the linear forms of the components without these calculations. The discretised forms of the nonlinear Schrodinger equation allow us whether to apply any numerical technique on the discritisation forms or proceed for perturbation solution of the problem. The discretised forms obtained by constructed homotopy provide the linear parts of the components of the solution series and hence a new discretised form is obtained. The general discretised form for the NLSE allows us to choose any initial guess and the solution in the closed form.

  13. Analytical study of dynamic aperture for storage ring by using successive linearization method

    International Nuclear Information System (INIS)

    Yang Jiancheng; Xia Jiawen; Wu Junxia; Xia Guoxing; Liu Wei; Yin Xuejun

    2004-01-01

    The determination of dynamic aperture is a critical issue in circular accelerator. In this paper, authors solved the equation of motion including non-linear forces by using successive linearization method and got a criterion for the determining of the dynamic aperture of the machine. Applying this criterion, a storage ring with FODO lattice has been studied. The results are agree well with the tracking results in a large range of linear turn (Q). The purpose is to improve our understanding of the mechanisms driving the particle motion in the presence of non-linear forces and got another mechanism driving instability of particle in storage ring-parametric resonance caused by 'fluctuating transfer matrices' at small amplification

  14. Recent development of the Multi-Grid detector for large area neutron scattering instruments

    International Nuclear Information System (INIS)

    Guerard, Bruno

    2015-01-01

    Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, 3 He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using 3 He PSDs mounted side by side to cover tens of m 2 . As a result of the so-called ' 3 He shortage crisis , the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternative techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B 4 C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with standard equipment. Prototypes of

  15. Recent development of the Multi-Grid detector for large area neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Guerard, Bruno [ILL-ESS-LiU collaboration, CRISP project, Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, {sup 3}He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using {sup 3}He PSDs mounted side by side to cover tens of m{sup 2}. As a result of the so-called '{sup 3}He shortage crisis{sup ,} the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternative techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B{sub 4}C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with standard

  16. A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2013-01-01

    Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.

  17. A penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography.

    Science.gov (United States)

    Shang, Shang; Bai, Jing; Song, Xiaolei; Wang, Hongkai; Lau, Jaclyn

    2007-01-01

    Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.

  18. Performance study of Active Queue Management methods: Adaptive GRED, REDD, and GRED-Linear analytical model

    Directory of Open Access Journals (Sweden)

    Hussein Abdel-jaber

    2015-10-01

    Full Text Available Congestion control is one of the hot research topics that helps maintain the performance of computer networks. This paper compares three Active Queue Management (AQM methods, namely, Adaptive Gentle Random Early Detection (Adaptive GRED, Random Early Dynamic Detection (REDD, and GRED Linear analytical model with respect to different performance measures. Adaptive GRED and REDD are implemented based on simulation, whereas GRED Linear is implemented as a discrete-time analytical model. Several performance measures are used to evaluate the effectiveness of the compared methods mainly mean queue length, throughput, average queueing delay, overflow packet loss probability, and packet dropping probability. The ultimate aim is to identify the method that offers the highest satisfactory performance in non-congestion or congestion scenarios. The first comparison results that are based on different packet arrival probability values show that GRED Linear provides better mean queue length; average queueing delay and packet overflow probability than Adaptive GRED and REDD methods in the presence of congestion. Further and using the same evaluation measures, Adaptive GRED offers a more satisfactory performance than REDD when heavy congestion is present. When the finite capacity of queue values varies the GRED Linear model provides the highest satisfactory performance with reference to mean queue length and average queueing delay and all the compared methods provide similar throughput performance. However, when the finite capacity value is large, the compared methods have similar results in regard to probabilities of both packet overflowing and packet dropping.

  19. Method for linearizing the potentiometric curves of precipitation titration in nonaqueous and aqueous-organic solutions

    International Nuclear Information System (INIS)

    Bykova, L.N.; Chesnokova, O.Ya.; Orlova, M.V.

    1995-01-01

    The method for linearizing the potentiometric curves of precipitation titration is studied for its application in the determination of halide ions (Cl - , Br - , I - ) in dimethylacetamide, dimethylformamide, in which titration is complicated by additional equilibrium processes. It is found that the method of linearization permits the determination of the titrant volume at the end point of titration to high accuracy in the case of titration curves without a potential jump in the proximity of the equivalent point (5 x 10 -5 M). 3 refs., 2 figs., 3 tabs

  20. First-order systems of linear partial differential equations: normal forms, canonical systems, transform methods

    Directory of Open Access Journals (Sweden)

    Heinz Toparkus

    2014-04-01

    Full Text Available In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial value problems in appropriate basic areas, and you can try to achieve a solution of these problems by means of transform methods.

  1. Krylov subspace method with communication avoiding technique for linear system obtained from electromagnetic analysis

    International Nuclear Information System (INIS)

    Ikuno, Soichiro; Chen, Gong; Yamamoto, Susumu; Itoh, Taku; Abe, Kuniyoshi; Nakamura, Hiroaki

    2016-01-01

    Krylov subspace method and the variable preconditioned Krylov subspace method with communication avoiding technique for a linear system obtained from electromagnetic analysis are numerically investigated. In the k−skip Krylov method, the inner product calculations are expanded by Krylov basis, and the inner product calculations are transformed to the scholar operations. k−skip CG method is applied for the inner-loop solver of Variable Preconditioned Krylov subspace methods, and the converged solution of electromagnetic problem is obtained using the method. (author)

  2. Linear regression based on Minimum Covariance Determinant (MCD) and TELBS methods on the productivity of phytoplankton

    Science.gov (United States)

    Gusriani, N.; Firdaniza

    2018-03-01

    The existence of outliers on multiple linear regression analysis causes the Gaussian assumption to be unfulfilled. If the Least Square method is forcedly used on these data, it will produce a model that cannot represent most data. For that, we need a robust regression method against outliers. This paper will compare the Minimum Covariance Determinant (MCD) method and the TELBS method on secondary data on the productivity of phytoplankton, which contains outliers. Based on the robust determinant coefficient value, MCD method produces a better model compared to TELBS method.

  3. Fibonacci collocation method with a residual error Function to solve linear Volterra integro differential equations

    Directory of Open Access Journals (Sweden)

    Salih Yalcinbas

    2016-01-01

    Full Text Available In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear Volterra integro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation.

  4. Measurements of linear attenuation coefficients of irregular shaped samples by two media method

    International Nuclear Information System (INIS)

    Singh, Sukhpal; Kumar, Ashok; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The linear attenuation coefficient values of regular and irregular shaped flyash materials have been measured without knowing the thickness of a sample using a new technique namely 'two media method'. These values have also been measured with a standard gamma ray transmission method and obtained theoretically with winXCOM computer code. From the comparison it is reported that the two media method has given accurate results of attenuation coefficients of flyash materials

  5. Domain decomposition multigrid for unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Shapira, Yair

    1997-01-01

    A two-level preconditioning method for the solution of elliptic boundary value problems using finite element schemes on possibly unstructured meshes is introduced. It is based on a domain decomposition and a Galerkin scheme for the coarse level vertex unknowns. For both the implementation and the analysis, it is not required that the curves of discontinuity in the coefficients of the PDE match the interfaces between subdomains. Generalizations to nonmatching or overlapping grids are made.

  6. A simple method for identifying parameter correlations in partially observed linear dynamic models.

    Science.gov (United States)

    Li, Pu; Vu, Quoc Dong

    2015-12-14

    Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a

  7. Multigrid and defect correction for the steady Navier-Stokes equations : application to aerodynamics

    NARCIS (Netherlands)

    Koren, B.

    1991-01-01

    Theoretical and expcrimental convergence results are presented for nonlinear multigrid and iterative defect correction applied to finite volume discretizations of the full, steady, 2D, compressible NavierStokes equations. lterative defect correction is introduced for circumventing the difficulty in

  8. Multigrid and defect correction for the steady Navier-Stokes equations

    NARCIS (Netherlands)

    Koren, B.

    1990-01-01

    Theoretical and experimental convergence results are presented for nonlinear multigrid and iterative defect correction applied to finite volume discretizations of the full, steady, 2D, compressible Navier-Stokes equations. Iterative defect correction is introduced for circumventing the difficulty in

  9. Two new modified Gauss-Seidel methods for linear system with M-matrices

    Science.gov (United States)

    Zheng, Bing; Miao, Shu-Xin

    2009-12-01

    In 2002, H. Kotakemori et al. proposed the modified Gauss-Seidel (MGS) method for solving the linear system with the preconditioner [H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner () J. Comput. Appl. Math. 145 (2002) 373-378]. Since this preconditioner is constructed by only the largest element on each row of the upper triangular part of the coefficient matrix, the preconditioning effect is not observed on the nth row. In the present paper, to deal with this drawback, we propose two new preconditioners. The convergence and comparison theorems of the modified Gauss-Seidel methods with these two preconditioners for solving the linear system are established. The convergence rates of the new proposed preconditioned methods are compared. In addition, numerical experiments are used to show the effectiveness of the new MGS methods.

  10. Local linearization methods for the numerical integration of ordinary differential equations: An overview

    International Nuclear Information System (INIS)

    Jimenez, J.C.

    2009-06-01

    Local Linearization (LL) methods conform a class of one-step explicit integrators for ODEs derived from the following primary and common strategy: the vector field of the differential equation is locally (piecewise) approximated through a first-order Taylor expansion at each time step, thus obtaining successive linear equations that are explicitly integrated. Hereafter, the LL approach may include some additional strategies to improve that basic affine approximation. Theoretical and practical results have shown that the LL integrators have a number of convenient properties. These include arbitrary order of convergence, A-stability, linearization preserving, regularity under quite general conditions, preservation of the dynamics of the exact solution around hyperbolic equilibrium points and periodic orbits, integration of stiff and high-dimensional equations, low computational cost, and others. In this paper, a review of the LL methods and their properties is presented. (author)

  11. Comparison of different methods for the solution of sets of linear equations

    International Nuclear Information System (INIS)

    Bilfinger, T.; Schmidt, F.

    1978-06-01

    The application of the conjugate-gradient methods as novel general iterative methods for the solution of sets of linear equations with symmetrical systems matrices led to this paper, where a comparison of these methods with the conventional differently accelerated Gauss-Seidel iteration was carried out. In additon, the direct Cholesky method was also included in the comparison. The studies referred mainly to memory requirement, computing time, speed of convergence, and accuracy of different conditions of the systems matrices, by which also the sensibility of the methods with respect to the influence of truncation errors may be recognized. (orig.) 891 RW [de

  12. Robust fault detection of linear systems using a computationally efficient set-membership method

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Bak, Thomas

    2014-01-01

    In this paper, a computationally efficient set-membership method for robust fault detection of linear systems is proposed. The method computes an interval outer-approximation of the output of the system that is consistent with the model, the bounds on noise and disturbance, and the past measureme...... is trivially parallelizable. The method is demonstrated for fault detection of a hydraulic pitch actuator of a wind turbine. We show the effectiveness of the proposed method by comparing our results with two zonotope-based set-membership methods....

  13. An overview of solution methods for multi-objective mixed integer linear programming programs

    DEFF Research Database (Denmark)

    Andersen, Kim Allan; Stidsen, Thomas Riis

    Multiple objective mixed integer linear programming (MOMIP) problems are notoriously hard to solve to optimality, i.e. finding the complete set of non-dominated solutions. We will give an overview of existing methods. Among those are interactive methods, the two phases method and enumeration...... methods. In particular we will discuss the existing branch and bound approaches for solving multiple objective integer programming problems. Despite the fact that branch and bound methods has been applied successfully to integer programming problems with one criterion only a few attempts has been made...

  14. A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants

    Science.gov (United States)

    Cooper, Paul D.

    2010-01-01

    A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…

  15. Linear shrinkage test: justification for its reintroduction as a standard South African test method

    CSIR Research Space (South Africa)

    Sampson, LR

    2009-06-04

    Full Text Available Several problems with the linear shrinkage test specified in Method A4 of the THM 1 1979 were addressed as part of this investigation in an effort to improve the alleged poor reproducibility of the test and justify its reintroduction into THM 1. A...

  16. Asymptotic method for non-linear magnetosonic waves in an isothermal plasma with a finite conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Fusco, D [Messina Univ. (Italy). Instituto de Matematica

    1979-01-01

    The paper is concerned with a three-dimensional theory of non-linear magnetosonic waves in a turbulent plasma. A perturbation method is used that allows a transport equation, like Burgers equation but with a variable coefficient to be obtained.

  17. Engineering method of calculation and choice of main parameters of the linear induction accelerator inductors

    Directory of Open Access Journals (Sweden)

    В.Т. Чемерис

    2006-04-01

    Full Text Available  There is a method of simplified calculation and design parameters choice elaborated in this article with corresponding basing for the induction system of electron-beam sterilizer on the base of linear induction accelerator taking into account the parameters of magnetic material for production of cores and parameters of pulsed voltage.

  18. The H-N method for solving linear transport equation: theory and application

    International Nuclear Information System (INIS)

    Kaskas, A.; Gulecyuz, M.C.; Tezcan, C.

    2002-01-01

    The system of singular integral equation which is obtained from the integro-differential form of the linear transport equation as a result of Placzec lemma is solved. Application are given using the exit distributions and the infinite medium Green's function. The same theoretical results are also obtained with the use of the singular eigenfunction of the method of elementary solutions

  19. Slab albedo for linearly and quadratically anisotropic scattering kernel with modified F{sub N} method

    Energy Technology Data Exchange (ETDEWEB)

    Tuereci, R. Goekhan [Kirikkale Univ. (Turkey). Kirikkale Vocational School; Tuereci, D. [Ministry of Education, Ankara (Turkey). 75th year Anatolia High School

    2017-11-15

    One speed, time independent and homogeneous medium neutron transport equation is solved with the anisotropic scattering which includes both the linearly and the quadratically anisotropic scattering kernel. Having written Case's eigenfunctions and the orthogonality relations among of these eigenfunctions, slab albedo problem is investigated as numerically by using Modified F{sub N} method. Selected numerical results are presented in tables.

  20. An Empirical Comparison of Five Linear Equating Methods for the NEAT Design

    Science.gov (United States)

    Suh, Youngsuk; Mroch, Andrew A.; Kane, Michael T.; Ripkey, Douglas R.

    2009-01-01

    In this study, a data base containing the responses of 40,000 candidates to 90 multiple-choice questions was used to mimic data sets for 50-item tests under the "nonequivalent groups with anchor test" (NEAT) design. Using these smaller data sets, we evaluated the performance of five linear equating methods for the NEAT design with five levels of…

  1. Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.

    Science.gov (United States)

    Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger

    2016-11-01

    In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.

  2. A Revised Piecewise Linear Recursive Convolution FDTD Method for Magnetized Plasmas

    International Nuclear Information System (INIS)

    Liu Song; Zhong Shuangying; Liu Shaobin

    2005-01-01

    The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) but retains their advantages in speed and efficiency. This paper describes a revised piecewise linear recursive convolution PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time, enabling the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations of the reflection and transmission coefficients through a magnetized plasma layer. The results show that the revised PLRC-FDTD method has improved the accuracy over the original RC FDTD method and JEC FDTD method

  3. A Simple Linear Regression Method for Quantitative Trait Loci Linkage Analysis With Censored Observations

    OpenAIRE

    Anderson, Carl A.; McRae, Allan F.; Visscher, Peter M.

    2006-01-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using...

  4. Interior-Point Method for Non-Linear Non-Convex Optimization

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan

    2004-01-01

    Roč. 11, č. 5-6 (2004), s. 431-453 ISSN 1070-5325 R&D Projects: GA AV ČR IAA1030103 Institutional research plan: CEZ:AV0Z1030915 Keywords : non-linear programming * interior point methods * indefinite systems * indefinite preconditioners * preconditioned conjugate gradient method * merit functions * algorithms * computational experiments Subject RIV: BA - General Mathematics Impact factor: 0.727, year: 2004

  5. Method for solving fully fuzzy linear programming problems using deviation degree measure

    Institute of Scientific and Technical Information of China (English)

    Haifang Cheng; Weilai Huang; Jianhu Cai

    2013-01-01

    A new ful y fuzzy linear programming (FFLP) prob-lem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crispδ-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the δ-fuzzy optimal so-lution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the va-lues of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to il ustrate the proposed method.

  6. Study on non-linear bistable dynamics model based EEG signal discrimination analysis method.

    Science.gov (United States)

    Ying, Xiaoguo; Lin, Han; Hui, Guohua

    2015-01-01

    Electroencephalogram (EEG) is the recording of electrical activity along the scalp. EEG measures voltage fluctuations generating from ionic current flows within the neurons of the brain. EEG signal is looked as one of the most important factors that will be focused in the next 20 years. In this paper, EEG signal discrimination based on non-linear bistable dynamical model was proposed. EEG signals were processed by non-linear bistable dynamical model, and features of EEG signals were characterized by coherence index. Experimental results showed that the proposed method could properly extract the features of different EEG signals.

  7. Restoring the missing features of the corrupted speech using linear interpolation methods

    Science.gov (United States)

    Rassem, Taha H.; Makbol, Nasrin M.; Hasan, Ali Muttaleb; Zaki, Siti Syazni Mohd; Girija, P. N.

    2017-10-01

    One of the main challenges in the Automatic Speech Recognition (ASR) is the noise. The performance of the ASR system reduces significantly if the speech is corrupted by noise. In spectrogram representation of a speech signal, after deleting low Signal to Noise Ratio (SNR) elements, the incomplete spectrogram is obtained. In this case, the speech recognizer should make modifications to the spectrogram in order to restore the missing elements, which is one direction. In another direction, speech recognizer should be able to restore the missing elements due to deleting low SNR elements before performing the recognition. This is can be done using different spectrogram reconstruction methods. In this paper, the geometrical spectrogram reconstruction methods suggested by some researchers are implemented as a toolbox. In these geometrical reconstruction methods, the linear interpolation along time or frequency methods are used to predict the missing elements between adjacent observed elements in the spectrogram. Moreover, a new linear interpolation method using time and frequency together is presented. The CMU Sphinx III software is used in the experiments to test the performance of the linear interpolation reconstruction method. The experiments are done under different conditions such as different lengths of the window and different lengths of utterances. Speech corpus consists of 20 males and 20 females; each one has two different utterances are used in the experiments. As a result, 80% recognition accuracy is achieved with 25% SNR ratio.

  8. Generalization of Asaoka method to linearly anisotropic scattering: benchmark data in cylindrical geometry

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1975-11-01

    The Integral Transform Method for the neutron transport equation has been developed in last years by Asaoka and others. The method uses Fourier transform techniques in solving isotropic one-dimensional transport problems in homogeneous media. The method has been extended to linearly anisotropic transport in one-dimensional homogeneous media. Series expansions were also obtained using Hembd techniques for the new anisotropic matrix elements in cylindrical geometry. Carlvik spatial-spherical harmonics method was generalized to solve the same problem. By applying a relation between the isotropic and anisotropic one-dimensional kernels, it was demonstrated that anisotropic matrix elements can be calculated by a linear combination of a few isotropic matrix elements. This means in practice that the anisotropic problem of order N with the N+2 isotropic matrix for the plane and spherical geometries, and N+1 isotropic matrix for cylindrical geometries can be solved. A method of solving linearly anisotropic one-dimensional transport problems in homogeneous media was defined by applying Mika and Stankiewicz observations: isotropic matrix elements were computed by Hembd series and anisotropic matrix elements then calculated from recursive relations. The method has been applied to albedo and critical problems in cylindrical geometries. Finally, a number of results were computed with 12-digit accuracy for use as benchmarks [fr

  9. Fuzzy Linear Regression for the Time Series Data which is Fuzzified with SMRGT Method

    Directory of Open Access Journals (Sweden)

    Seçil YALAZ

    2016-10-01

    Full Text Available Our work on regression and classification provides a new contribution to the analysis of time series used in many areas for years. Owing to the fact that convergence could not obtained with the methods used in autocorrelation fixing process faced with time series regression application, success is not met or fall into obligation of changing the models’ degree. Changing the models’ degree may not be desirable in every situation. In our study, recommended for these situations, time series data was fuzzified by using the simple membership function and fuzzy rule generation technique (SMRGT and to estimate future an equation has created by applying fuzzy least square regression (FLSR method which is a simple linear regression method to this data. Although SMRGT has success in determining the flow discharge in open channels and can be used confidently for flow discharge modeling in open canals, as well as in pipe flow with some modifications, there is no clue about that this technique is successful in fuzzy linear regression modeling. Therefore, in order to address the luck of such a modeling, a new hybrid model has been described within this study. In conclusion, to demonstrate our methods’ efficiency, classical linear regression for time series data and linear regression for fuzzy time series data were applied to two different data sets, and these two approaches performances were compared by using different measures.

  10. A linear multiple balance method for discrete ordinates neutron transport equations

    International Nuclear Information System (INIS)

    Park, Chang Je; Cho, Nam Zin

    2000-01-01

    A linear multiple balance method (LMB) is developed to provide more accurate and positive solutions for the discrete ordinates neutron transport equations. In this multiple balance approach, one mesh cell is divided into two subcells with quadratic approximation of angular flux distribution. Four multiple balance equations are used to relate center angular flux with average angular flux by Simpson's rule. From the analysis of spatial truncation error, the accuracy of the linear multiple balance scheme is ο(Δ 4 ) whereas that of diamond differencing is ο(Δ 2 ). To accelerate the linear multiple balance method, we also describe a simplified additive angular dependent rebalance factor scheme which combines a modified boundary projection acceleration scheme and the angular dependent rebalance factor acceleration schme. It is demonstrated, via fourier analysis of a simple model problem as well as numerical calculations, that the additive angular dependent rebalance factor acceleration scheme is unconditionally stable with spectral radius < 0.2069c (c being the scattering ration). The numerical results tested so far on slab-geometry discrete ordinates transport problems show that the solution method of linear multiple balance is effective and sufficiently efficient

  11. Solutions of First-Order Volterra Type Linear Integrodifferential Equations by Collocation Method

    Directory of Open Access Journals (Sweden)

    Olumuyiwa A. Agbolade

    2017-01-01

    Full Text Available The numerical solutions of linear integrodifferential equations of Volterra type have been considered. Power series is used as the basis polynomial to approximate the solution of the problem. Furthermore, standard and Chebyshev-Gauss-Lobatto collocation points were, respectively, chosen to collocate the approximate solution. Numerical experiments are performed on some sample problems already solved by homotopy analysis method and finite difference methods. Comparison of the absolute error is obtained from the present method and those from aforementioned methods. It is also observed that the absolute errors obtained are very low establishing convergence and computational efficiency.

  12. Exact solution to the Coulomb wave using the linearized phase-amplitude method

    Directory of Open Access Journals (Sweden)

    Shuji Kiyokawa

    2015-08-01

    Full Text Available The author shows that the amplitude equation from the phase-amplitude method of calculating continuum wave functions can be linearized into a 3rd-order differential equation. Using this linearized equation, in the case of the Coulomb potential, the author also shows that the amplitude function has an analytically exact solution represented by means of an irregular confluent hypergeometric function. Furthermore, it is shown that the exact solution for the Coulomb potential reproduces the wave function for free space expressed by the spherical Bessel function. The amplitude equation for the large component of the Dirac spinor is also shown to be the linearized 3rd-order differential equation.

  13. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, S. R.; Wilson, P. P. H. [Engineering Physics Department, University of Wisconsin - Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Evans, T. M. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830 (United States)

    2013-07-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  14. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    International Nuclear Information System (INIS)

    Slattery, S. R.; Wilson, P. P. H.; Evans, T. M.

    2013-01-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  15. Linear least-squares method for global luminescent oil film skin friction field analysis

    Science.gov (United States)

    Lee, Taekjin; Nonomura, Taku; Asai, Keisuke; Liu, Tianshu

    2018-06-01

    A data analysis method based on the linear least-squares (LLS) method was developed for the extraction of high-resolution skin friction fields from global luminescent oil film (GLOF) visualization images of a surface in an aerodynamic flow. In this method, the oil film thickness distribution and its spatiotemporal development are measured by detecting the luminescence intensity of the thin oil film. From the resulting set of GLOF images, the thin oil film equation is solved to obtain an ensemble-averaged (steady) skin friction field as an inverse problem. In this paper, the formulation of a discrete linear system of equations for the LLS method is described, and an error analysis is given to identify the main error sources and the relevant parameters. Simulations were conducted to evaluate the accuracy of the LLS method and the effects of the image patterns, image noise, and sample numbers on the results in comparison with the previous snapshot-solution-averaging (SSA) method. An experimental case is shown to enable the comparison of the results obtained using conventional oil flow visualization and those obtained using both the LLS and SSA methods. The overall results show that the LLS method is more reliable than the SSA method and the LLS method can yield a more detailed skin friction topology in an objective way.

  16. Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow

    KAUST Repository

    Kou, Jisheng

    2017-12-06

    In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multi-component two-phase compressible flow with a realistic equation of state (e.g. Peng-Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass balance equations. We prove that the methods have the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.

  17. An Online Method for Interpolating Linear Parametric Reduced-Order Models

    KAUST Repository

    Amsallem, David; Farhat, Charbel

    2011-01-01

    A two-step online method is proposed for interpolating projection-based linear parametric reduced-order models (ROMs) in order to construct a new ROM for a new set of parameter values. The first step of this method transforms each precomputed ROM into a consistent set of generalized coordinates. The second step interpolates the associated linear operators on their appropriate matrix manifold. Real-time performance is achieved by precomputing inner products between the reduced-order bases underlying the precomputed ROMs. The proposed method is illustrated by applications in mechanical and aeronautical engineering. In particular, its robustness is demonstrated by its ability to handle the case where the sampled parameter set values exhibit a mode veering phenomenon. © 2011 Society for Industrial and Applied Mathematics.

  18. Two media method for linear attenuation coefficient determination of irregular soil samples

    International Nuclear Information System (INIS)

    Vici, Carlos Henrique Georges

    2004-01-01

    In several situations of nuclear applications, the knowledge of gamma-ray linear attenuation coefficient for irregular samples is necessary, such as in soil physics and geology. This work presents the validation of a methodology for the determination of the linear attenuation coefficient (μ) of irregular shape samples, in such a way that it is not necessary to know the thickness of the considered sample. With this methodology irregular soil samples (undeformed field samples) from Londrina region, north of Parana were studied. It was employed the two media method for the μ determination. It consists of the μ determination through the measurement of a gamma-ray beam attenuation by the sample sequentially immersed in two different media, with known and appropriately chosen attenuation coefficients. For comparison, the theoretical value of μ was calculated by the product of the mass attenuation coefficient, obtained by the WinXcom code, and the measured value of the density sample. This software employs the chemical composition of the samples and supplies a table of the mass attenuation coefficients versus the photon energy. To verify the validity of the two media method, compared with the simple gamma ray transmission method, regular pome stone samples were used. With these results for the attenuation coefficients and their respective deviations, it was possible to compare the two methods. In this way we concluded that the two media method is a good tool for the determination of the linear attenuation coefficient of irregular materials, particularly in the study of soils samples. (author)

  19. The linear characteristic method for spatially discretizing the discrete ordinates equations in (x,y)-geometry

    International Nuclear Information System (INIS)

    Larsen, E.W.; Alcouffe, R.E.

    1981-01-01

    In this article a new linear characteristic (LC) spatial differencing scheme for the discrete ordinates equations in (x,y)-geometry is described and numerical comparisons are given with the diamond difference (DD) method. The LC method is more stable with mesh size and is generally much more accurate than the DD method on both fine and coarse meshes, for eigenvalue and deep penetration problems. The LC method is based on computations involving the exact solution of a cell problem which has spatially linear boundary conditions and interior source. The LC method is coupled to the diffusion synthetic acceleration (DSA) algorithm in that the linear variations of the source are determined in part by the results of the DSA calculation from the previous inner iteration. An inexpensive negative-flux fixup is used which has very little effect on the accuracy of the solution. The storage requirements for LC are essentially the same as that for DD, while the computational times for LC are generally less than twice the DD computational times for the same mesh. This increase in computational cost is offset if one computes LC solutions on somewhat coarser meshes than DD; the resulting LC solutions are still generally much more accurate than the DD solutions. (orig.) [de

  20. Non-linear analysis of skew thin plate by finite difference method

    International Nuclear Information System (INIS)

    Kim, Chi Kyung; Hwang, Myung Hwan

    2012-01-01

    This paper deals with a discrete analysis capability for predicting the geometrically nonlinear behavior of skew thin plate subjected to uniform pressure. The differential equations are discretized by means of the finite difference method which are used to determine the deflections and the in-plane stress functions of plates and reduced to several sets of linear algebraic simultaneous equations. For the geometrically non-linear, large deflection behavior of the plate, the non-linear plate theory is used for the analysis. An iterative scheme is employed to solve these quasi-linear algebraic equations. Several problems are solved which illustrate the potential of the method for predicting the finite deflection and stress. For increasing lateral pressures, the maximum principal tensile stress occurs at the center of the plate and migrates toward the corners as the load increases. It was deemed important to describe the locations of the maximum principal tensile stress as it occurs. The load-deflection relations and the maximum bending and membrane stresses for each case are presented and discussed

  1. A method for fitting regression splines with varying polynomial order in the linear mixed model.

    Science.gov (United States)

    Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W

    2006-02-15

    The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.

  2. Linear and nonlinear methods in modeling the aqueous solubility of organic compounds.

    Science.gov (United States)

    Catana, Cornel; Gao, Hua; Orrenius, Christian; Stouten, Pieter F W

    2005-01-01

    Solubility data for 930 diverse compounds have been analyzed using linear Partial Least Square (PLS) and nonlinear PLS methods, Continuum Regression (CR), and Neural Networks (NN). 1D and 2D descriptors from MOE package in combination with E-state or ISIS keys have been used. The best model was obtained using linear PLS for a combination between 22 MOE descriptors and 65 ISIS keys. It has a correlation coefficient (r2) of 0.935 and a root-mean-square error (RMSE) of 0.468 log molar solubility (log S(w)). The model validated on a test set of 177 compounds not included in the training set has r2 0.911 and RMSE 0.475 log S(w). The descriptors were ranked according to their importance, and at the top of the list have been found the 22 MOE descriptors. The CR model produced results as good as PLS, and because of the way in which cross-validation has been done it is expected to be a valuable tool in prediction besides PLS model. The statistics obtained using nonlinear methods did not surpass those got with linear ones. The good statistic obtained for linear PLS and CR recommends these models to be used in prediction when it is difficult or impossible to make experimental measurements, for virtual screening, combinatorial library design, and efficient leads optimization.

  3. Alpins and thibos vectorial astigmatism analyses: proposal of a linear regression model between methods

    Directory of Open Access Journals (Sweden)

    Giuliano de Oliveira Freitas

    2013-10-01

    Full Text Available PURPOSE: To determine linear regression models between Alpins descriptive indices and Thibos astigmatic power vectors (APV, assessing the validity and strength of such correlations. METHODS: This case series prospectively assessed 62 eyes of 31 consecutive cataract patients with preoperative corneal astigmatism between 0.75 and 2.50 diopters in both eyes. Patients were randomly assorted among two phacoemulsification groups: one assigned to receive AcrySof®Toric intraocular lens (IOL in both eyes and another assigned to have AcrySof Natural IOL associated with limbal relaxing incisions, also in both eyes. All patients were reevaluated postoperatively at 6 months, when refractive astigmatism analysis was performed using both Alpins and Thibos methods. The ratio between Thibos postoperative APV and preoperative APV (APVratio and its linear regression to Alpins percentage of success of astigmatic surgery, percentage of astigmatism corrected and percentage of astigmatism reduction at the intended axis were assessed. RESULTS: Significant negative correlation between the ratio of post- and preoperative Thibos APVratio and Alpins percentage of success (%Success was found (Spearman's ρ=-0.93; linear regression is given by the following equation: %Success = (-APVratio + 1.00x100. CONCLUSION: The linear regression we found between APVratio and %Success permits a validated mathematical inference concerning the overall success of astigmatic surgery.

  4. A Novel Method of Robust Trajectory Linearization Control Based on Disturbance Rejection

    Directory of Open Access Journals (Sweden)

    Xingling Shao

    2014-01-01

    Full Text Available A novel method of robust trajectory linearization control for a class of nonlinear systems with uncertainties based on disturbance rejection is proposed. Firstly, on the basis of trajectory linearization control (TLC method, a feedback linearization based control law is designed to transform the original tracking error dynamics to the canonical integral-chain form. To address the issue of reducing the influence made by uncertainties, with tracking error as input, linear extended state observer (LESO is constructed to estimate the tracking error vector, as well as the uncertainties in an integrated manner. Meanwhile, the boundedness of the estimated error is investigated by theoretical analysis. In addition, decoupled controller (which has the characteristic of well-tuning and simple form based on LESO is synthesized to realize the output tracking for closed-loop system. The closed-loop stability of the system under the proposed LESO-based control structure is established. Also, simulation results are presented to illustrate the effectiveness of the control strategy.

  5. A Globally Convergent Matrix-Free Method for Constrained Equations and Its Linear Convergence Rate

    Directory of Open Access Journals (Sweden)

    Min Sun

    2014-01-01

    Full Text Available A matrix-free method for constrained equations is proposed, which is a combination of the well-known PRP (Polak-Ribière-Polyak conjugate gradient method and the famous hyperplane projection method. The new method is not only derivative-free, but also completely matrix-free, and consequently, it can be applied to solve large-scale constrained equations. We obtain global convergence of the new method without any differentiability requirement on the constrained equations. Compared with the existing gradient methods for solving such problem, the new method possesses linear convergence rate under standard conditions, and a relax factor γ is attached in the update step to accelerate convergence. Preliminary numerical results show that it is promising in practice.

  6. A simple method for HPLC retention time prediction: linear calibration using two reference substances.

    Science.gov (United States)

    Sun, Lei; Jin, Hong-Yu; Tian, Run-Tao; Wang, Ming-Juan; Liu, Li-Na; Ye, Liu-Ping; Zuo, Tian-Tian; Ma, Shuang-Cheng

    2017-01-01

    Analysis of related substances in pharmaceutical chemicals and multi-components in traditional Chinese medicines needs bulk of reference substances to identify the chromatographic peaks accurately. But the reference substances are costly. Thus, the relative retention (RR) method has been widely adopted in pharmacopoeias and literatures for characterizing HPLC behaviors of those reference substances unavailable. The problem is it is difficult to reproduce the RR on different columns due to the error between measured retention time (t R ) and predicted t R in some cases. Therefore, it is useful to develop an alternative and simple method for prediction of t R accurately. In the present study, based on the thermodynamic theory of HPLC, a method named linear calibration using two reference substances (LCTRS) was proposed. The method includes three steps, procedure of two points prediction, procedure of validation by multiple points regression and sequential matching. The t R of compounds on a HPLC column can be calculated by standard retention time and linear relationship. The method was validated in two medicines on 30 columns. It was demonstrated that, LCTRS method is simple, but more accurate and more robust on different HPLC columns than RR method. Hence quality standards using LCTRS method are easy to reproduce in different laboratories with lower cost of reference substances.

  7. Direct integral linear least square regression method for kinetic evaluation of hepatobiliary scintigraphy

    International Nuclear Information System (INIS)

    Shuke, Noriyuki

    1991-01-01

    In hepatobiliary scintigraphy, kinetic model analysis, which provides kinetic parameters like hepatic extraction or excretion rate, have been done for quantitative evaluation of liver function. In this analysis, unknown model parameters are usually determined using nonlinear least square regression method (NLS method) where iterative calculation and initial estimate for unknown parameters are required. As a simple alternative to NLS method, direct integral linear least square regression method (DILS method), which can determine model parameters by a simple calculation without initial estimate, is proposed, and tested the applicability to analysis of hepatobiliary scintigraphy. In order to see whether DILS method could determine model parameters as good as NLS method, or to determine appropriate weight for DILS method, simulated theoretical data based on prefixed parameters were fitted to 1 compartment model using both DILS method with various weightings and NLS method. The parameter values obtained were then compared with prefixed values which were used for data generation. The effect of various weights on the error of parameter estimate was examined, and inverse of time was found to be the best weight to make the error minimum. When using this weight, DILS method could give parameter values close to those obtained by NLS method and both parameter values were very close to prefixed values. With appropriate weighting, the DILS method could provide reliable parameter estimate which is relatively insensitive to the data noise. In conclusion, the DILS method could be used as a simple alternative to NLS method, providing reliable parameter estimate. (author)

  8. Sparse contrast-source inversion using linear-shrinkage-enhanced inexact Newton method

    KAUST Repository

    Desmal, Abdulla

    2014-07-01

    A contrast-source inversion scheme is proposed for microwave imaging of domains with sparse content. The scheme uses inexact Newton and linear shrinkage methods to account for the nonlinearity and ill-posedness of the electromagnetic inverse scattering problem, respectively. Thresholded shrinkage iterations are accelerated using a preconditioning technique. Additionally, during Newton iterations, the weight of the penalty term is reduced consistently with the quadratic convergence of the Newton method to increase accuracy and efficiency. Numerical results demonstrate the applicability of the proposed method.

  9. A Projected Non-linear Conjugate Gradient Method for Interactive Inverse Kinematics

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten; Erleben, Kenny

    2009-01-01

    Inverse kinematics is the problem of posing an articulated figure to obtain a wanted goal, without regarding inertia and forces. Joint limits are modeled as bounds on individual degrees of freedom, leading to a box-constrained optimization problem. We present A projected Non-linear Conjugate...... Gradient optimization method suitable for box-constrained optimization problems for inverse kinematics. We show application on inverse kinematics positioning of a human figure. Performance is measured and compared to a traditional Jacobian Transpose method. Visual quality of the developed method...

  10. Sparse contrast-source inversion using linear-shrinkage-enhanced inexact Newton method

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2014-01-01

    A contrast-source inversion scheme is proposed for microwave imaging of domains with sparse content. The scheme uses inexact Newton and linear shrinkage methods to account for the nonlinearity and ill-posedness of the electromagnetic inverse scattering problem, respectively. Thresholded shrinkage iterations are accelerated using a preconditioning technique. Additionally, during Newton iterations, the weight of the penalty term is reduced consistently with the quadratic convergence of the Newton method to increase accuracy and efficiency. Numerical results demonstrate the applicability of the proposed method.

  11. Pseudoinverse preconditioners and iterative methods for large dense linear least-squares problems

    Directory of Open Access Journals (Sweden)

    Oskar Cahueñas

    2013-05-01

    Full Text Available We address the issue of approximating the pseudoinverse of the coefficient matrix for dynamically building preconditioning strategies for the numerical solution of large dense linear least-squares problems. The new preconditioning strategies are embedded into simple and well-known iterative schemes that avoid the use of the, usually ill-conditioned, normal equations. We analyze a scheme to approximate the pseudoinverse, based on Schulz iterative method, and also different iterative schemes, based on extensions of Richardson's method, and the conjugate gradient method, that are suitable for preconditioning strategies. We present preliminary numerical results to illustrate the advantages of the proposed schemes.

  12. Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals

    International Nuclear Information System (INIS)

    Kutepov, A. L.

    2017-01-01

    We present a code implementing the linearized self-consistent quasiparticle GW method (QSGW) in the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency which differs it from the existing implementations of the QSGW method. The linearization allows us to use Matsubara frequencies instead of working on the real axis. This results in efficiency gains by switching to the imaginary time representation in the same way as in the space time method. The all electron LAPW basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as its N 3 scaling with the system size N, as well as its shortcomings. We apply our approach to study the electronic properties of selected semiconductors, insulators, and simple metals and show that our code produces the results very close to the previously published QSGW data. Our implementation is a good platform for further many body diagrammatic resummations such as the vertex-corrected GW approach and the GW+DMFT method.

  13. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    International Nuclear Information System (INIS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-01-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results. (paper)

  14. First-order system least squares for the pure traction problem in planar linear elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Z.; Manteuffel, T.; McCormick, S.; Parter, S.

    1996-12-31

    This talk will develop two first-order system least squares (FOSLS) approaches for the solution of the pure traction problem in planar linear elasticity. Both are two-stage algorithms that first solve for the gradients of displacement, then for the displacement itself. One approach, which uses L{sup 2} norms to define the FOSLS functional, is shown under certain H{sup 2} regularity assumptions to admit optimal H{sup 1}-like performance for standard finite element discretization and standard multigrid solution methods that is uniform in the Poisson ratio for all variables. The second approach, which is based on H{sup -1} norms, is shown under general assumptions to admit optimal uniform performance for displacement flux in an L{sup 2} norm and for displacement in an H{sup 1} norm. These methods do not degrade as other methods generally do when the material properties approach the incompressible limit.

  15. Modifications of Steepest Descent Method and Conjugate Gradient Method Against Noise for Ill-posed Linear Systems

    Directory of Open Access Journals (Sweden)

    Chein-Shan Liu

    2012-04-01

    Full Text Available It is well known that the numerical algorithms of the steepest descent method (SDM, and the conjugate gradient method (CGM are effective for solving well-posed linear systems. However, they are vulnerable to noisy disturbance for solving ill-posed linear systems. We propose the modifications of SDM and CGM, namely the modified steepest descent method (MSDM, and the modified conjugate gradient method (MCGM. The starting point is an invariant manifold defined in terms of a minimum functional and a fictitious time-like variable; however, in the final stage we can derive a purely iterative algorithm including an acceleration parameter. Through the Hopf bifurcation, this parameter indeed plays a major role to switch the situation of slow convergence to a new situation that the functional is stepwisely decreased very fast. Several numerical examples are examined and compared with exact solutions, revealing that the new algorithms of MSDM and MCGM have good computational efficiency and accuracy, even for the highly ill-conditioned linear equations system with a large noise being imposed on the given data.

  16. Linear programming models and methods of matrix games with payoffs of triangular fuzzy numbers

    CERN Document Server

    Li, Deng-Feng

    2016-01-01

    This book addresses two-person zero-sum finite games in which the payoffs in any situation are expressed with fuzzy numbers. The purpose of this book is to develop a suite of effective and efficient linear programming models and methods for solving matrix games with payoffs in fuzzy numbers. Divided into six chapters, it discusses the concepts of solutions of matrix games with payoffs of intervals, along with their linear programming models and methods. Furthermore, it is directly relevant to the research field of matrix games under uncertain economic management. The book offers a valuable resource for readers involved in theoretical research and practical applications from a range of different fields including game theory, operational research, management science, fuzzy mathematical programming, fuzzy mathematics, industrial engineering, business and social economics. .

  17. Simple estimating method of damages of concrete gravity dam based on linear dynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T.; Kanenawa, K.; Yamaguchi, Y. [Public Works Research Institute, Tsukuba, Ibaraki (Japan). Hydraulic Engineering Research Group

    2004-07-01

    Due to the occurrence of large earthquakes like the Kobe Earthquake in 1995, there is a strong need to verify seismic resistance of dams against much larger earthquake motions than those considered in the present design standard in Japan. Problems exist in using nonlinear analysis to evaluate the safety of dams including: that the influence which the set material properties have on the results of nonlinear analysis is large, and that the results of nonlinear analysis differ greatly according to the damage estimation models or analysis programs. This paper reports the evaluation indices based on a linear dynamic analysis method and the characteristics of the progress of cracks in concrete gravity dams with different shapes using a nonlinear dynamic analysis method. The study concludes that if simple linear dynamic analysis is appropriately conducted to estimate tensile stress at potential locations of initiating cracks, the damage due to cracks would be predicted roughly. 4 refs., 1 tab., 13 figs.

  18. A Low-Complexity ESPRIT-Based DOA Estimation Method for Co-Prime Linear Arrays.

    Science.gov (United States)

    Sun, Fenggang; Gao, Bin; Chen, Lizhen; Lan, Peng

    2016-08-25

    The problem of direction-of-arrival (DOA) estimation is investigated for co-prime array, where the co-prime array consists of two uniform sparse linear subarrays with extended inter-element spacing. For each sparse subarray, true DOAs are mapped into several equivalent angles impinging on the traditional uniform linear array with half-wavelength spacing. Then, by applying the estimation of signal parameters via rotational invariance technique (ESPRIT), the equivalent DOAs are estimated, and the candidate DOAs are recovered according to the relationship among equivalent and true DOAs. Finally, the true DOAs are estimated by combining the results of the two subarrays. The proposed method achieves a better complexity-performance tradeoff as compared to other existing methods.

  19. Acceleration of step and linear discontinuous schemes for the method of characteristics in DRAGON5

    Directory of Open Access Journals (Sweden)

    Alain Hébert

    2017-09-01

    Full Text Available The applicability of the algebraic collapsing acceleration (ACA technique to the method of characteristics (MOC in cases with scattering anisotropy and/or linear sources was investigated. Previously, the ACA was proven successful in cases with isotropic scattering and uniform (step sources. A presentation is first made of the MOC implementation, available in the DRAGON5 code. Two categories of schemes are available for integrating the propagation equations: (1 the first category is based on exact integration and leads to the classical step characteristics (SC and linear discontinuous characteristics (LDC schemes and (2 the second category leads to diamond differencing schemes of various orders in space. The acceleration of these MOC schemes using a combination of the generalized minimal residual [GMRES(m] method preconditioned with the ACA technique was focused on. Numerical results are provided for a two-dimensional (2D eight-symmetry pressurized water reactor (PWR assembly mockup in the context of the DRAGON5 code.

  20. Stability of numerical method for semi-linear stochastic pantograph differential equations

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-01-01

    Full Text Available Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 $h>0$ . Numerical examples further illustrate the obtained theoretical results.

  1. Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables

    Science.gov (United States)

    Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.

    2018-02-01

    In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.

  2. Stochastic Least-Squares Petrov--Galerkin Method for Parameterized Linear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kookjin [Univ. of Maryland, College Park, MD (United States). Dept. of Computer Science; Carlberg, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Elman, Howard C. [Univ. of Maryland, College Park, MD (United States). Dept. of Computer Science and Inst. for Advanced Computer Studies

    2018-03-29

    Here, we consider the numerical solution of parameterized linear systems where the system matrix, the solution, and the right-hand side are parameterized by a set of uncertain input parameters. We explore spectral methods in which the solutions are approximated in a chosen finite-dimensional subspace. It has been shown that the stochastic Galerkin projection technique fails to minimize any measure of the solution error. As a remedy for this, we propose a novel stochatic least-squares Petrov--Galerkin (LSPG) method. The proposed method is optimal in the sense that it produces the solution that minimizes a weighted $\\ell^2$-norm of the residual over all solutions in a given finite-dimensional subspace. Moreover, the method can be adapted to minimize the solution error in different weighted $\\ell^2$-norms by simply applying a weighting function within the least-squares formulation. In addition, a goal-oriented seminorm induced by an output quantity of interest can be minimized by defining a weighting function as a linear functional of the solution. We establish optimality and error bounds for the proposed method, and extensive numerical experiments show that the weighted LSPG method outperforms other spectral methods in minimizing corresponding target weighted norms.

  3. Linearized Alternating Direction Method of Multipliers for Constrained Nonconvex Regularized Optimization

    Science.gov (United States)

    2016-11-22

    structure of the graph, we replace the ℓ1- norm by the nonconvex Capped -ℓ1 norm , and obtain the Generalized Capped -ℓ1 regularized logistic regression...X. M. Yuan. Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. Mathematics of Computation, 82(281):301...better approximations of ℓ0- norm theoretically and computationally beyond ℓ1- norm , for example, the compressive sensing (Xiao et al., 2011). The

  4. The regression-calibration method for fitting generalized linear models with additive measurement error

    OpenAIRE

    James W. Hardin; Henrik Schmeidiche; Raymond J. Carroll

    2003-01-01

    This paper discusses and illustrates the method of regression calibration. This is a straightforward technique for fitting models with additive measurement error. We present this discussion in terms of generalized linear models (GLMs) following the notation defined in Hardin and Carroll (2003). Discussion will include specified measurement error, measurement error estimated by replicate error-prone proxies, and measurement error estimated by instrumental variables. The discussion focuses on s...

  5. An enhanced finite volume method to model 2D linear elastic structures

    CSIR Research Space (South Africa)

    Suliman, Ridhwaan

    2014-04-01

    Full Text Available . Suliman) Preprint submitted to Applied Mathematical Modelling July 22, 2013 Keywords: finite volume, finite element, locking, error analysis 1. Introduction Since the 1960s, the finite element method has mainly been used for modelling the mechanics... formulation provides higher accuracy 2 for displacement solutions. It is well known that the linear finite element formulation suffers from sensitivity to element aspect ratio or shear locking when subjected to bend- ing [16]. Fallah [8] and Wheel [6] present...

  6. Solution of second order linear fuzzy difference equation by Lagrange's multiplier method

    Directory of Open Access Journals (Sweden)

    Sankar Prasad Mondal

    2016-06-01

    Full Text Available In this paper we execute the solution procedure for second order linear fuzzy difference equation by Lagrange's multiplier method. In crisp sense the difference equation are easy to solve, but when we take in fuzzy sense it forms a system of difference equation which is not so easy to solve. By the help of Lagrange's multiplier we can solved it easily. The results are illustrated by two different numerical examples and followed by two applications.

  7. Linear motion device and method for inserting and withdrawing control rods

    Science.gov (United States)

    Smith, J.E.

    Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  8. Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals

    Science.gov (United States)

    Kutepov, A. L.; Oudovenko, V. S.; Kotliar, G.

    2017-10-01

    We present a code implementing the linearized quasiparticle self-consistent GW method (LQSGW) in the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency which differs it from the existing implementations of the QSGW method. The linearization allows us to use Matsubara frequencies instead of working on the real axis. This results in efficiency gains by switching to the imaginary time representation in the same way as in the space time method. The all electron LAPW basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as its N3 scaling with the system size N, as well as its shortcomings. We apply our approach to study the electronic properties of selected semiconductors, insulators, and simple metals and show that our code produces the results very close to the previously published QSGW data. Our implementation is a good platform for further many body diagrammatic resummations such as the vertex-corrected GW approach and the GW+DMFT method. Program Files doi:http://dx.doi.org/10.17632/cpchkfty4w.1 Licensing provisions: GNU General Public License Programming language: Fortran 90 External routines/libraries: BLAS, LAPACK, MPI (optional) Nature of problem: Direct implementation of the GW method scales as N4 with the system size, which quickly becomes prohibitively time consuming even in the modern computers. Solution method: We implemented the GW approach using a method that switches between real space and momentum space representations. Some operations are faster in real space, whereas others are more computationally efficient in the reciprocal space. This makes our approach scale as N3. Restrictions: The limiting factor is usually the memory available in a computer. Using 10 GB/core of memory allows us to study the systems up to 15 atoms per unit cell.

  9. On the economical solution method for a system of linear algebraic equations

    Directory of Open Access Journals (Sweden)

    Jan Awrejcewicz

    2004-01-01

    Full Text Available The present work proposes a novel optimal and exact method of solving large systems of linear algebraic equations. In the approach under consideration, the solution of a system of algebraic linear equations is found as a point of intersection of hyperplanes, which needs a minimal amount of computer operating storage. Two examples are given. In the first example, the boundary value problem for a three-dimensional stationary heat transfer equation in a parallelepiped in ℝ3 is considered, where boundary value problems of first, second, or third order, or their combinations, are taken into account. The governing differential equations are reduced to algebraic ones with the help of the finite element and boundary element methods for different meshes applied. The obtained results are compared with known analytical solutions. The second example concerns computation of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to transversal uniformly distributed load. The partial differential equations are reduced to a system of nonlinear algebraic equations with the error of O(hx12+hx22. The linearization process is realized through either Newton method or differentiation with respect to a parameter. In consequence, the relations of the boundary condition variations along the shell side and the conditions for the solution matching are reported.

  10. Linear time delay methods and stability analyses of the human spine. Effects of neuromuscular reflex response.

    Science.gov (United States)

    Franklin, Timothy C; Granata, Kevin P; Madigan, Michael L; Hendricks, Scott L

    2008-08-01

    Linear stability methods were applied to a biomechanical model of the human musculoskeletal spine to investigate effects of reflex gain and reflex delay on stability. Equations of motion represented a dynamic 18 degrees-of-freedom rigid-body model with time-delayed reflexes. Optimal muscle activation levels were identified by minimizing metabolic power with the constraints of equilibrium and stability with zero reflex time delay. Muscle activation levels and associated muscle forces were used to find the delay margin, i.e., the maximum reflex delay for which the system was stable. Results demonstrated that stiffness due to antagonistic co-contraction necessary for stability declined with increased proportional reflex gain. Reflex delay limited the maximum acceptable proportional reflex gain, i.e., long reflex delay required smaller maximum reflex gain to avoid instability. As differential reflex gain increased, there was a small increase in acceptable reflex delay. However, differential reflex gain with values near intrinsic damping caused the delay margin to approach zero. Forward-dynamic simulations of the fully nonlinear time-delayed system verified the linear results. The linear methods accurately found the delay margin below which the nonlinear system was asymptotically stable. These methods may aid future investigations in the role of reflexes in musculoskeletal stability.

  11. An Improved Method for Solving Multiobjective Integer Linear Fractional Programming Problem

    Directory of Open Access Journals (Sweden)

    Meriem Ait Mehdi

    2014-01-01

    Full Text Available We describe an improvement of Chergui and Moulaï’s method (2008 that generates the whole efficient set of a multiobjective integer linear fractional program based on the branch and cut concept. The general step of this method consists in optimizing (maximizing without loss of generality one of the fractional objective functions over a subset of the original continuous feasible set; then if necessary, a branching process is carried out until obtaining an integer feasible solution. At this stage, an efficient cut is built from the criteria’s growth directions in order to discard a part of the feasible domain containing only nonefficient solutions. Our contribution concerns firstly the optimization process where a linear program that we define later will be solved at each step rather than a fractional linear program. Secondly, local ideal and nadir points will be used as bounds to prune some branches leading to nonefficient solutions. The computational experiments show that the new method outperforms the old one in all the treated instances.

  12. Standard test method for linear thermal expansion of glaze frits and ceramic whiteware materials by the interferometric method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method covers the interferometric determination of linear thermal expansion of premelted glaze frits and fired ceramic whiteware materials at temperatures lower than 1000°C (1830°F). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  13. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Evaluation of Equivalent Linearization Method

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferraioli

    2016-01-01

    Full Text Available Although the most commonly used isolation systems exhibit nonlinear inelastic behaviour, the equivalent linear elastic analysis is commonly used in the design and assessment of seismic-isolated structures. The paper investigates if the linear elastic model is suitable for the analysis of a seismically isolated multiple building structure. To this aim, its computed responses were compared with those calculated by nonlinear dynamic analysis. A common base isolation plane connects the isolation bearings supporting the adjacent structures. In this situation, the conventional equivalent linear elastic analysis may have some problems of accuracy because this method is calibrated on single base-isolated structures. Moreover, the torsional characteristics of the combined system are significantly different from those of separate isolated buildings. A number of numerical simulations and parametric studies under earthquake excitations were performed. The accuracy of the dynamic response obtained by the equivalent linear elastic model was calculated by the magnitude of the error with respect to the corresponding response considering the nonlinear behaviour of the isolation system. The maximum displacements at the isolation level, the maximum interstorey drifts, and the peak absolute acceleration were selected as the most important response measures. The influence of mass eccentricity, torsion, and high-modes effects was finally investigated.

  14. An Improved Isotropic Periodic Sum Method That Uses Linear Combinations of Basis Potentials

    KAUST Repository

    Takahashi, Kazuaki Z.

    2012-11-13

    Isotropic periodic sum (IPS) is a technique that calculates long-range interactions differently than conventional lattice sum methods. The difference between IPS and lattice sum methods lies in the shape and distribution of remote images for long-range interaction calculations. The images used in lattice sum calculations are identical to those generated from periodic boundary conditions and are discretely positioned at lattice points in space. The images for IPS calculations are "imaginary", which means they do not explicitly exist in a simulation system and are distributed isotropically and periodically around each particle. Two different versions of the original IPS method exist. The IPSn method is applied to calculations for point charges, whereas the IPSp method calculates polar molecules. However, both IPSn and IPSp have their advantages and disadvantages in simulating bulk water or water-vapor interfacial systems. In bulk water systems, the cutoff radius effect of IPSn strongly affects the configuration, whereas IPSp does not provide adequate estimations of water-vapor interfacial systems unless very long cutoff radii are used. To extend the applicability of the IPS technique, an improved IPS method, which has better accuracy in both homogeneous and heterogeneous systems has been developed and named the linear-combination-based isotropic periodic sum (LIPS) method. This improved IPS method uses linear combinations of basis potentials. We performed molecular dynamics (MD) simulations of bulk water and water-vapor interfacial systems to evaluate the accuracy of the LIPS method. For bulk water systems, the LIPS method has better accuracy than IPSn in estimating thermodynamic and configurational properties without the countercharge assumption, which is used for IPSp. For water-vapor interfacial systems, LIPS has better accuracy than IPSp and properly estimates thermodynamic and configurational properties. In conclusion, the LIPS method can successfully estimate

  15. An Improved Isotropic Periodic Sum Method That Uses Linear Combinations of Basis Potentials

    KAUST Repository

    Takahashi, Kazuaki Z.; Narumi, Tetsu; Suh, Donguk; Yasuoka, Kenji

    2012-01-01

    Isotropic periodic sum (IPS) is a technique that calculates long-range interactions differently than conventional lattice sum methods. The difference between IPS and lattice sum methods lies in the shape and distribution of remote images for long-range interaction calculations. The images used in lattice sum calculations are identical to those generated from periodic boundary conditions and are discretely positioned at lattice points in space. The images for IPS calculations are "imaginary", which means they do not explicitly exist in a simulation system and are distributed isotropically and periodically around each particle. Two different versions of the original IPS method exist. The IPSn method is applied to calculations for point charges, whereas the IPSp method calculates polar molecules. However, both IPSn and IPSp have their advantages and disadvantages in simulating bulk water or water-vapor interfacial systems. In bulk water systems, the cutoff radius effect of IPSn strongly affects the configuration, whereas IPSp does not provide adequate estimations of water-vapor interfacial systems unless very long cutoff radii are used. To extend the applicability of the IPS technique, an improved IPS method, which has better accuracy in both homogeneous and heterogeneous systems has been developed and named the linear-combination-based isotropic periodic sum (LIPS) method. This improved IPS method uses linear combinations of basis potentials. We performed molecular dynamics (MD) simulations of bulk water and water-vapor interfacial systems to evaluate the accuracy of the LIPS method. For bulk water systems, the LIPS method has better accuracy than IPSn in estimating thermodynamic and configurational properties without the countercharge assumption, which is used for IPSp. For water-vapor interfacial systems, LIPS has better accuracy than IPSp and properly estimates thermodynamic and configurational properties. In conclusion, the LIPS method can successfully estimate

  16. One step linear reconstruction method for continuous wave diffuse optical tomography

    Science.gov (United States)

    Ukhrowiyah, N.; Yasin, M.

    2017-09-01

    The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.

  17. A Posteriori Error Estimation for Finite Element Methods and Iterative Linear Solvers

    Energy Technology Data Exchange (ETDEWEB)

    Melboe, Hallgeir

    2001-10-01

    This thesis addresses a posteriori error estimation for finite element methods and iterative linear solvers. Adaptive finite element methods have gained a lot of popularity over the last decades due to their ability to produce accurate results with limited computer power. In these methods a posteriori error estimates play an essential role. Not only do they give information about how large the total error is, they also indicate which parts of the computational domain should be given a more sophisticated treatment in order to reduce the error. A posteriori error estimates are traditionally aimed at estimating the global error, but more recently so called goal oriented error estimators have been shown a lot of interest. The name reflects the fact that they estimate the error in user-defined local quantities. In this thesis the main focus is on global error estimators for highly stretched grids and goal oriented error estimators for flow problems on regular grids. Numerical methods for partial differential equations, such as finite element methods and other similar techniques, typically result in a linear system of equations that needs to be solved. Usually such systems are solved using some iterative procedure which due to a finite number of iterations introduces an additional error. Most such algorithms apply the residual in the stopping criterion, whereas the control of the actual error may be rather poor. A secondary focus in this thesis is on estimating the errors that are introduced during this last part of the solution procedure. The thesis contains new theoretical results regarding the behaviour of some well known, and a few new, a posteriori error estimators for finite element methods on anisotropic grids. Further, a goal oriented strategy for the computation of forces in flow problems is devised and investigated. Finally, an approach for estimating the actual errors associated with the iterative solution of linear systems of equations is suggested. (author)

  18. A Robust Non-Gaussian Data Assimilation Method for Highly Non-Linear Models

    Directory of Open Access Journals (Sweden)

    Elias D. Nino-Ruiz

    2018-03-01

    Full Text Available In this paper, we propose an efficient EnKF implementation for non-Gaussian data assimilation based on Gaussian Mixture Models and Markov-Chain-Monte-Carlo (MCMC methods. The proposed method works as follows: based on an ensemble of model realizations, prior errors are estimated via a Gaussian Mixture density whose parameters are approximated by means of an Expectation Maximization method. Then, by using an iterative method, observation operators are linearized about current solutions and posterior modes are estimated via a MCMC implementation. The acceptance/rejection criterion is similar to that of the Metropolis-Hastings rule. Experimental tests are performed on the Lorenz 96 model. The results show that the proposed method can decrease prior errors by several order of magnitudes in a root-mean-square-error sense for nearly sparse or dense observational networks.

  19. Variance analysis of the Monte-Carlo perturbation source method in inhomogeneous linear particle transport problems

    International Nuclear Information System (INIS)

    Noack, K.

    1982-01-01

    The perturbation source method may be a powerful Monte-Carlo means to calculate small effects in a particle field. In a preceding paper we have formulated this methos in inhomogeneous linear particle transport problems describing the particle fields by solutions of Fredholm integral equations and have derived formulae for the second moment of the difference event point estimator. In the present paper we analyse the general structure of its variance, point out the variance peculiarities, discuss the dependence on certain transport games and on generation procedures of the auxiliary particles and draw conclusions to improve this method

  20. Method for the mechanical axis alignment of the linear induction accelerator

    International Nuclear Information System (INIS)

    Li Hong; China Academy of Engineering Physics, Mianyang; Yao Jin; Liu Yunlong; Zhang Linwen; Deng Jianjun

    2004-01-01

    Accurate mechanical axis alignment is a basic requirement for assembling a linear induction accelerator (LIA). The total length of an LIA is usually over thirty or fifty meters, and it consists of many induction cells. By using a laser tracker a new method of mechanical axis alignment for LIA is established to achieve the high accuracy. This paper introduces the method and gives implementation step and point position measure errors of the mechanical axis alignment. During the alignment process a 55 m-long alignment control survey net is built, and the theoretic revision of the coordinate of the control survey net is presented. (authors)

  1. Reproducing kernel method with Taylor expansion for linear Volterra integro-differential equations

    Directory of Open Access Journals (Sweden)

    Azizallah Alvandi

    2017-06-01

    Full Text Available This research aims of the present a new and single algorithm for linear integro-differential equations (LIDE. To apply the reproducing Hilbert kernel method, there is made an equivalent transformation by using Taylor series for solving LIDEs. Shown in series form is the analytical solution in the reproducing kernel space and the approximate solution $ u_{N} $ is constructed by truncating the series to $ N $ terms. It is easy to prove the convergence of $ u_{N} $ to the analytical solution. The numerical solutions from the proposed method indicate that this approach can be implemented easily which shows attractive features.

  2. Model-independent separation of poorly resolved hypperfine split spectra by a linear combination method

    International Nuclear Information System (INIS)

    Nagy, D.L.; Dengler, J.; Ritter, G.

    1988-01-01

    A model-independent evaluation of the components of poorly resolved Moessbauer spectra based on a linear combination method is possible if there is a parameter as a function of which the shape of the individual components do not but their intensities do change and the dependence of the intensities on this parameter is known. The efficiency of the method is demonstrated on the example of low temperature magnetically split spectra of the high-T c superconductor YBa 2 (Cu 0.9 Fe 0 .1 ) 3 O 7-y . (author)

  3. Linear dynamic analysis of arbitrary thin shells modal superposition by using finite element method

    International Nuclear Information System (INIS)

    Goncalves Filho, O.J.A.

    1978-11-01

    The linear dynamic behaviour of arbitrary thin shells by the Finite Element Method is studied. Plane triangular elements with eighteen degrees of freedom each are used. The general equations of movement are obtained from the Hamilton Principle and solved by the Modal Superposition Method. The presence of a viscous type damping can be considered by means of percentages of the critical damping. An automatic computer program was developed to provide the vibratory properties and the dynamic response to several types of deterministic loadings, including temperature effects. The program was written in FORTRAN IV for the Burroughs B-6700 computer. (author)

  4. A Bayes linear Bayes method for estimation of correlated event rates.

    Science.gov (United States)

    Quigley, John; Wilson, Kevin J; Walls, Lesley; Bedford, Tim

    2013-12-01

    Typically, full Bayesian estimation of correlated event rates can be computationally challenging since estimators are intractable. When estimation of event rates represents one activity within a larger modeling process, there is an incentive to develop more efficient inference than provided by a full Bayesian model. We develop a new subjective inference method for correlated event rates based on a Bayes linear Bayes model under the assumption that events are generated from a homogeneous Poisson process. To reduce the elicitation burden we introduce homogenization factors to the model and, as an alternative to a subjective prior, an empirical method using the method of moments is developed. Inference under the new method is compared against estimates obtained under a full Bayesian model, which takes a multivariate gamma prior, where the predictive and posterior distributions are derived in terms of well-known functions. The mathematical properties of both models are presented. A simulation study shows that the Bayes linear Bayes inference method and the full Bayesian model provide equally reliable estimates. An illustrative example, motivated by a problem of estimating correlated event rates across different users in a simple supply chain, shows how ignoring the correlation leads to biased estimation of event rates. © 2013 Society for Risk Analysis.

  5. Thin Cloud Detection Method by Linear Combination Model of Cloud Image

    Science.gov (United States)

    Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.

    2018-04-01

    The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.

  6. A linear complementarity method for the solution of vertical vehicle-track interaction

    Science.gov (United States)

    Zhang, Jian; Gao, Qiang; Wu, Feng; Zhong, Wan-Xie

    2018-02-01

    A new method is proposed for the solution of the vertical vehicle-track interaction including a separation between wheel and rail. The vehicle is modelled as a multi-body system using rigid bodies, and the track is treated as a three-layer beam model in which the rail is considered as an Euler-Bernoulli beam and both the sleepers and the ballast are represented by lumped masses. A linear complementarity formulation is directly established using a combination of the wheel-rail normal contact condition and the generalised-α method. This linear complementarity problem is solved using the Lemke algorithm, and the wheel-rail contact force can be obtained. Then the dynamic responses of the vehicle and the track are solved without iteration based on the generalised-α method. The same equations of motion for the vehicle and track are adopted at the different wheel-rail contact situations. This method can remove some restrictions, that is, time-dependent mass, damping and stiffness matrices of the coupled system, multiple equations of motion for the different contact situations and the effect of the contact stiffness. Numerical results demonstrate that the proposed method is effective for simulating the vehicle-track interaction including a separation between wheel and rail.

  7. An Optimal DEM Reconstruction Method for Linear Array Synthetic Aperture Radar Based on Variational Model

    Directory of Open Access Journals (Sweden)

    Shi Jun

    2015-02-01

    Full Text Available Downward-looking Linear Array Synthetic Aperture Radar (LASAR has many potential applications in the topographic mapping, disaster monitoring and reconnaissance applications, especially in the mountainous area. However, limited by the sizes of platforms, its resolution in the linear array direction is always far lower than those in the range and azimuth directions. This disadvantage leads to the blurring of Three-Dimensional (3D images in the linear array direction, and restricts the application of LASAR. To date, the research on 3D SAR image enhancement has focused on the sparse recovery technique. In this case, the one-to-one mapping of Digital Elevation Model (DEM brakes down. To overcome this, an optimal DEM reconstruction method for LASAR based on the variational model is discussed in an effort to optimize the DEM and the associated scattering coefficient map, and to minimize the Mean Square Error (MSE. Using simulation experiments, it is found that the variational model is more suitable for DEM enhancement applications to all kinds of terrains compared with the Orthogonal Matching Pursuit (OMPand Least Absolute Shrinkage and Selection Operator (LASSO methods.

  8. A METHOD FOR SELF-CALIBRATION IN SATELLITE WITH HIGH PRECISION OF SPACE LINEAR ARRAY CAMERA

    Directory of Open Access Journals (Sweden)

    W. Liu

    2016-06-01

    Full Text Available At present, the on-orbit calibration of the geometric parameters of a space surveying camera is usually processed by data from a ground calibration field after capturing the images. The entire process is very complicated and lengthy and cannot monitor and calibrate the geometric parameters in real time. On the basis of a large number of on-orbit calibrations, we found that owing to the influence of many factors, e.g., weather, it is often difficult to capture images of the ground calibration field. Thus, regular calibration using field data cannot be ensured. This article proposes a real time self-calibration method for a space linear array camera on a satellite using the optical auto collimation principle. A collimating light source and small matrix array CCD devices are installed inside the load system of the satellite; these use the same light path as the linear array camera. We can extract the location changes of the cross marks in the matrix array CCD to determine the real-time variations in the focal length and angle parameters of the linear array camera. The on-orbit status of the camera is rapidly obtained using this method. On one hand, the camera’s change regulation can be mastered accurately and the camera’s attitude can be adjusted in a timely manner to ensure optimal photography; in contrast, self-calibration of the camera aboard the satellite can be realized quickly, which improves the efficiency and reliability of photogrammetric processing.

  9. A second-order virtual node algorithm for nearly incompressible linear elasticity in irregular domains

    Science.gov (United States)

    Zhu, Yongning; Wang, Yuting; Hellrung, Jeffrey; Cantarero, Alejandro; Sifakis, Eftychios; Teran, Joseph M.

    2012-08-01

    We present a cut cell method in R2 for enforcing Dirichlet and Neumann boundary conditions with nearly incompressible linear elastic materials in irregular domains. Virtual nodes on cut uniform grid cells are used to provide geometric flexibility in the domain boundary shape without sacrificing accuracy. We use a mixed formulation utilizing a MAC-type staggered grid with piecewise bilinear displacements centered at cell faces and piecewise constant pressures at cell centers. These discretization choices provide the necessary stability in the incompressible limit and the necessary accuracy in cut cells. Numerical experiments suggest second order accuracy in L∞. We target high-resolution problems and present a class of geometric multigrid methods for solving the discrete equations for displacements and pressures that achieves nearly optimal convergence rates independent of grid resolution.

  10. Comments on the comparison of global methods for linear two-point boundary value problems

    International Nuclear Information System (INIS)

    de Boor, C.; Swartz, B.

    1977-01-01

    A more careful count of the operations involved in solving the linear system associated with collocation of a two-point boundary value problem using a rough splines reverses results recently reported by others in this journal. In addition, it is observed that the use of the technique of ''condensation of parameters'' can decrease the computer storage required. Furthermore, the use of a particular highly localized basis can also reduce the setup time when the mesh is irregular. Finally, operation counts are roughly estimated for the solution of certain linear system associated with two competing collocation methods; namely, collocation with smooth splines and collocation of the equivalent first order system with continuous piecewise polynomials

  11. Sparse linear systems: Theory of decomposition, methods, technology, applications and implementation in Wolfram Mathematica

    International Nuclear Information System (INIS)

    Pilipchuk, L. A.; Pilipchuk, A. S.

    2015-01-01

    In this paper we propose the theory of decomposition, methods, technologies, applications and implementation in Wol-fram Mathematica for the constructing the solutions of the sparse linear systems. One of the applications is the Sensor Location Problem for the symmetric graph in the case when split ratios of some arc flows can be zeros. The objective of that application is to minimize the number of sensors that are assigned to the nodes. We obtain a sparse system of linear algebraic equations and research its matrix rank. Sparse systems of these types appear in generalized network flow programming problems in the form of restrictions and can be characterized as systems with a large sparse sub-matrix representing the embedded network structure

  12. A Fast Condensing Method for Solution of Linear-Quadratic Control Problems

    DEFF Research Database (Denmark)

    Frison, Gianluca; Jørgensen, John Bagterp

    2013-01-01

    consider a condensing (or state elimination) method to solve an extended version of the LQ control problem, and we show how to exploit the structure of this problem to both factorize the dense Hessian matrix and solve the system. Furthermore, we present two efficient implementations. The first......In both Active-Set (AS) and Interior-Point (IP) algorithms for Model Predictive Control (MPC), sub-problems in the form of linear-quadratic (LQ) control problems need to be solved at each iteration. The solution of these sub-problems is usually the main computational effort. In this paper we...... implementation is formally identical to the Riccati recursion based solver and has a computational complexity that is linear in the control horizon length and cubic in the number of states. The second implementation has a computational complexity that is quadratic in the control horizon length as well...

  13. Sparse linear systems: Theory of decomposition, methods, technology, applications and implementation in Wolfram Mathematica

    Energy Technology Data Exchange (ETDEWEB)

    Pilipchuk, L. A., E-mail: pilipchik@bsu.by [Belarussian State University, 220030 Minsk, 4, Nezavisimosti avenue, Republic of Belarus (Belarus); Pilipchuk, A. S., E-mail: an.pilipchuk@gmail.com [The Natural Resources and Environmental Protestion Ministry of the Republic of Belarus, 220004 Minsk, 10 Kollektornaya Street, Republic of Belarus (Belarus)

    2015-11-30

    In this paper we propose the theory of decomposition, methods, technologies, applications and implementation in Wol-fram Mathematica for the constructing the solutions of the sparse linear systems. One of the applications is the Sensor Location Problem for the symmetric graph in the case when split ratios of some arc flows can be zeros. The objective of that application is to minimize the number of sensors that are assigned to the nodes. We obtain a sparse system of linear algebraic equations and research its matrix rank. Sparse systems of these types appear in generalized network flow programming problems in the form of restrictions and can be characterized as systems with a large sparse sub-matrix representing the embedded network structure.

  14. KEELE, Minimization of Nonlinear Function with Linear Constraints, Variable Metric Method

    International Nuclear Information System (INIS)

    Westley, G.W.

    1975-01-01

    1 - Description of problem or function: KEELE is a linearly constrained nonlinear programming algorithm for locating a local minimum of a function of n variables with the variables subject to linear equality and/or inequality constraints. 2 - Method of solution: A variable metric procedure is used where the direction of search at each iteration is obtained by multiplying the negative of the gradient vector by a positive definite matrix which approximates the inverse of the matrix of second partial derivatives associated with the function. 3 - Restrictions on the complexity of the problem: Array dimensions limit the number of variables to 20 and the number of constraints to 50. These can be changed by the user

  15. Sensitivity-based virtual fields for the non-linear virtual fields method

    Science.gov (United States)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2017-09-01

    The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.

  16. Mehar Methods for Fuzzy Optimal Solution and Sensitivity Analysis of Fuzzy Linear Programming with Symmetric Trapezoidal Fuzzy Numbers

    Directory of Open Access Journals (Sweden)

    Sukhpreet Kaur Sidhu

    2014-01-01

    Full Text Available The drawbacks of the existing methods to obtain the fuzzy optimal solution of such linear programming problems, in which coefficients of the constraints are represented by real numbers and all the other parameters as well as variables are represented by symmetric trapezoidal fuzzy numbers, are pointed out, and to resolve these drawbacks, a new method (named as Mehar method is proposed for the same linear programming problems. Also, with the help of proposed Mehar method, a new method, much easy as compared to the existing methods, is proposed to deal with the sensitivity analysis of the same type of linear programming problems.

  17. Dual linear structured support vector machine tracking method via scale correlation filter

    Science.gov (United States)

    Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen

    2018-01-01

    Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.

  18. The method of varying amplitudes for solving (non)linear problems involving strong parametric excitation

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    2015-01-01

    Parametrically excited systems appear in many fields of science and technology, intrinsically or imposed purposefully; e.g. spatially periodic structures represent an important class of such systems [4]. When the parametric excitation can be considered weak, classical asymptotic methods like...... the method of averaging [2] or multiple scales [6] can be applied. However, with many practically important applications this simplification is inadequate, e.g. with spatially periodic structures it restricts the possibility to affect their effective dynamic properties by a structural parameter modulation...... of considerable magnitude. Approximate methods based on Floquet theory [4] for analyzing problems involving parametric excitation, e.g. the classical Hill’s method of infinite determinants [3,4], can be employed also in cases of strong excitation; however, with Floquet theory being applicable only for linear...

  19. Assessment of Two Analytical Methods in Solving the Linear and Nonlinear Elastic Beam Deformation Problems

    DEFF Research Database (Denmark)

    Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari

    2010-01-01

    and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However......, as with other analytical techniques, certain limitations restrict the wide application of perturbation methods, most important of which is the dependence of these methods on the existence of a small parameter in the equation. Disappointingly, the majority of nonlinear problems have no small parameter at all......Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...

  20. Comparing performance of standard and iterative linear unmixing methods for hyperspectral signatures

    Science.gov (United States)

    Gault, Travis R.; Jansen, Melissa E.; DeCoster, Mallory E.; Jansing, E. David; Rodriguez, Benjamin M.

    2016-05-01

    Linear unmixing is a method of decomposing a mixed signature to determine the component materials that are present in sensor's field of view, along with the abundances at which they occur. Linear unmixing assumes that energy from the materials in the field of view is mixed in a linear fashion across the spectrum of interest. Traditional unmixing methods can take advantage of adjacent pixels in the decomposition algorithm, but is not the case for point sensors. This paper explores several iterative and non-iterative methods for linear unmixing, and examines their effectiveness at identifying the individual signatures that make up simulated single pixel mixed signatures, along with their corresponding abundances. The major hurdle addressed in the proposed method is that no neighboring pixel information is available for the spectral signature of interest. Testing is performed using two collections of spectral signatures from the Johns Hopkins University Applied Physics Laboratory's Signatures Database software (SigDB): a hand-selected small dataset of 25 distinct signatures from a larger dataset of approximately 1600 pure visible/near-infrared/short-wave-infrared (VIS/NIR/SWIR) spectra. Simulated spectra are created with three and four material mixtures randomly drawn from a dataset originating from SigDB, where the abundance of one material is swept in 10% increments from 10% to 90%with the abundances of the other materials equally divided amongst the remainder. For the smaller dataset of 25 signatures, all combinations of three or four materials are used to create simulated spectra, from which the accuracy of materials returned, as well as the correctness of the abundances, is compared to the inputs. The experiment is expanded to include the signatures from the larger dataset of almost 1600 signatures evaluated using a Monte Carlo scheme with 5000 draws of three or four materials to create the simulated mixed signatures. The spectral similarity of the inputs to the

  1. Method validation using weighted linear regression models for quantification of UV filters in water samples.

    Science.gov (United States)

    da Silva, Claudia Pereira; Emídio, Elissandro Soares; de Marchi, Mary Rosa Rodrigues

    2015-01-01

    This paper describes the validation of a method consisting of solid-phase extraction followed by gas chromatography-tandem mass spectrometry for the analysis of the ultraviolet (UV) filters benzophenone-3, ethylhexyl salicylate, ethylhexyl methoxycinnamate and octocrylene. The method validation criteria included evaluation of selectivity, analytical curve, trueness, precision, limits of detection and limits of quantification. The non-weighted linear regression model has traditionally been used for calibration, but it is not necessarily the optimal model in all cases. Because the assumption of homoscedasticity was not met for the analytical data in this work, a weighted least squares linear regression was used for the calibration method. The evaluated analytical parameters were satisfactory for the analytes and showed recoveries at four fortification levels between 62% and 107%, with relative standard deviations less than 14%. The detection limits ranged from 7.6 to 24.1 ng L(-1). The proposed method was used to determine the amount of UV filters in water samples from water treatment plants in Araraquara and Jau in São Paulo, Brazil. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. APPLYING ROBUST RANKING METHOD IN TWO PHASE FUZZY OPTIMIZATION LINEAR PROGRAMMING PROBLEMS (FOLPP

    Directory of Open Access Journals (Sweden)

    Monalisha Pattnaik

    2014-12-01

    Full Text Available Background: This paper explores the solutions to the fuzzy optimization linear program problems (FOLPP where some parameters are fuzzy numbers. In practice, there are many problems in which all decision parameters are fuzzy numbers, and such problems are usually solved by either probabilistic programming or multi-objective programming methods. Methods: In this paper, using the concept of comparison of fuzzy numbers, a very effective method is introduced for solving these problems. This paper extends linear programming based problem in fuzzy environment. With the problem assumptions, the optimal solution can still be theoretically solved using the two phase simplex based method in fuzzy environment. To handle the fuzzy decision variables can be initially generated and then solved and improved sequentially using the fuzzy decision approach by introducing robust ranking technique. Results and conclusions: The model is illustrated with an application and a post optimal analysis approach is obtained. The proposed procedure was programmed with MATLAB (R2009a version software for plotting the four dimensional slice diagram to the application. Finally, numerical example is presented to illustrate the effectiveness of the theoretical results, and to gain additional managerial insights. 

  3. The application of the fall-vector method in decomposition schemes for the solution of integer linear programming problems

    International Nuclear Information System (INIS)

    Sergienko, I.V.; Golodnikov, A.N.

    1984-01-01

    This article applies the methods of decompositions, which are used to solve continuous linear problems, to integer and partially integer problems. The fall-vector method is used to solve the obtained coordinate problems. An algorithm of the fall-vector is described. The Kornai-Liptak decomposition principle is used to reduce the integer linear programming problem to integer linear programming problems of a smaller dimension and to a discrete coordinate problem with simple constraints

  4. Non-linear triangle-based polynomial expansion nodal method for hexagonal core analysis

    International Nuclear Information System (INIS)

    Cho, Jin Young; Cho, Byung Oh; Joo, Han Gyu; Zee, Sung Qunn; Park, Sang Yong

    2000-09-01

    This report is for the implementation of triangle-based polynomial expansion nodal (TPEN) method to MASTER code in conjunction with the coarse mesh finite difference(CMFD) framework for hexagonal core design and analysis. The TPEN method is a variation of the higher order polynomial expansion nodal (HOPEN) method that solves the multi-group neutron diffusion equation in the hexagonal-z geometry. In contrast with the HOPEN method, only two-dimensional intranodal expansion is considered in the TPEN method for a triangular domain. The axial dependence of the intranodal flux is incorporated separately here and it is determined by the nodal expansion method (NEM) for a hexagonal node. For the consistency of node geometry of the MASTER code which is based on hexagon, TPEN solver is coded to solve one hexagonal node which is composed of 6 triangular nodes directly with Gauss elimination scheme. To solve the CMFD linear system efficiently, stabilized bi-conjugate gradient(BiCG) algorithm and Wielandt eigenvalue shift method are adopted. And for the construction of the efficient preconditioner of BiCG algorithm, the incomplete LU(ILU) factorization scheme which has been widely used in two-dimensional problems is used. To apply the ILU factorization scheme to three-dimensional problem, a symmetric Gauss-Seidel Factorization scheme is used. In order to examine the accuracy of the TPEN solution, several eigenvalue benchmark problems and two transient problems, i.e., a realistic VVER1000 and VVER440 rod ejection benchmark problems, were solved and compared with respective references. The results of eigenvalue benchmark problems indicate that non-linear TPEN method is very accurate showing less than 15 pcm of eigenvalue errors and 1% of maximum power errors, and fast enough to solve the three-dimensional VVER-440 problem within 5 seconds on 733MHz PENTIUM-III. In the case of the transient problems, the non-linear TPEN method also shows good results within a few minute of

  5. A consensus successive projections algorithm--multiple linear regression method for analyzing near infrared spectra.

    Science.gov (United States)

    Liu, Ke; Chen, Xiaojing; Li, Limin; Chen, Huiling; Ruan, Xiukai; Liu, Wenbin

    2015-02-09

    The successive projections algorithm (SPA) is widely used to select variables for multiple linear regression (MLR) modeling. However, SPA used only once may not obtain all the useful information of the full spectra, because the number of selected variables cannot exceed the number of calibration samples in the SPA algorithm. Therefore, the SPA-MLR method risks the loss of useful information. To make a full use of the useful information in the spectra, a new method named "consensus SPA-MLR" (C-SPA-MLR) is proposed herein. This method is the combination of consensus strategy and SPA-MLR method. In the C-SPA-MLR method, SPA-MLR is used to construct member models with different subsets of variables, which are selected from the remaining variables iteratively. A consensus prediction is obtained by combining the predictions of the member models. The proposed method is evaluated by analyzing the near infrared (NIR) spectra of corn and diesel. The results of C-SPA-MLR method showed a better prediction performance compared with the SPA-MLR and full-spectra PLS methods. Moreover, these results could serve as a reference for combination the consensus strategy and other variable selection methods when analyzing NIR spectra and other spectroscopic techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Self-Consistency Method to Evaluate a Linear Expansion Thermal Coefficient of Composite with Dispersed Inclusions

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available The rational use of composites as structural materials, while perceiving the thermal and mechanical loads, to a large extent determined by their thermoelastic properties. From the presented review of works devoted to the analysis of thermoelastic characteristics of composites, it follows that the problem of estimating these characteristics is important. Among the thermoelastic properties of composites occupies an important place its temperature coefficient of linear expansion.Along with fiber composites are widely used in the technique of dispersion hardening composites, in which the role of inclusions carry particles of high-strength and high-modulus materials, including nanostructured elements. Typically, the dispersed particles have similar dimensions in all directions, which allows the shape of the particles in the first approximation the ball.In an article for the composite with isotropic spherical inclusions of a plurality of different materials by the self-produced design formulas relating the temperature coefficient of linear expansion with volume concentration of inclusions and their thermoelastic characteristics, as well as the thermoelastic properties of the matrix of the composite. Feature of the method is the self-accountability thermomechanical interaction of a single inclusion or matrix particles with a homogeneous isotropic medium having the desired temperature coefficient of linear expansion. Averaging over the volume of the composite arising from such interaction perturbation strain and stress in the inclusions and the matrix particles and makes it possible to obtain such calculation formulas.For the validation of the results of calculations of the temperature coefficient of linear expansion of the composite of this type used two-sided estimates that are based on the dual variational formulation of linear thermoelasticity problem in an inhomogeneous solid containing two alternative functional (such as Lagrange and Castigliano

  7. On summary measure analysis of linear trend repeated measures data: performance comparison with two competing methods.

    Science.gov (United States)

    Vossoughi, Mehrdad; Ayatollahi, S M T; Towhidi, Mina; Ketabchi, Farzaneh

    2012-03-22

    The summary measure approach (SMA) is sometimes the only applicable tool for the analysis of repeated measurements in medical research, especially when the number of measurements is relatively large. This study aimed to describe techniques based on summary measures for the analysis of linear trend repeated measures data and then to compare performances of SMA, linear mixed model (LMM), and unstructured multivariate approach (UMA). Practical guidelines based on the least squares regression slope and mean of response over time for each subject were provided to test time, group, and interaction effects. Through Monte Carlo simulation studies, the efficacy of SMA vs. LMM and traditional UMA, under different types of covariance structures, was illustrated. All the methods were also employed to analyze two real data examples. Based on the simulation and example results, it was found that the SMA completely dominated the traditional UMA and performed convincingly close to the best-fitting LMM in testing all the effects. However, the LMM was not often robust and led to non-sensible results when the covariance structure for errors was misspecified. The results emphasized discarding the UMA which often yielded extremely conservative inferences as to such data. It was shown that summary measure is a simple, safe and powerful approach in which the loss of efficiency compared to the best-fitting LMM was generally negligible. The SMA is recommended as the first choice to reliably analyze the linear trend data with a moderate to large number of measurements and/or small to moderate sample sizes.

  8. Machine learning-based methods for prediction of linear B-cell epitopes.

    Science.gov (United States)

    Wang, Hsin-Wei; Pai, Tun-Wen

    2014-01-01

    B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.

  9. A New Class of Non-Linear, Finite-Volume Methods for Vlasov Simulation

    International Nuclear Information System (INIS)

    Banks, J.W.; Hittinger, J.A.

    2010-01-01

    Methods for the numerical discretization of the Vlasov equation should efficiently use the phase space discretization and should introduce only enough numerical dissipation to promote stability and control oscillations. A new high-order, non-linear, finite-volume algorithm for the Vlasov equation that discretely conserves particle number and controls oscillations is presented. The method is fourth-order in space and time in well-resolved regions, but smoothly reduces to a third-order upwind scheme as features become poorly resolved. The new scheme is applied to several standard problems for the Vlasov-Poisson system, and the results are compared with those from other finite-volume approaches, including an artificial viscosity scheme and the Piecewise Parabolic Method. It is shown that the new scheme is able to control oscillations while preserving a higher degree of fidelity of the solution than the other approaches.

  10. An improved method to accurately calibrate the gantry angle indicators of the radiotherapy linear accelerators

    International Nuclear Information System (INIS)

    Chang Liyun; Ho, S.-Y.; Du, Y.-C.; Lin, C.-M.; Chen Tainsong

    2007-01-01

    The calibration of the gantry angle indicator is an important and basic quality assurance (QA) item for the radiotherapy linear accelerator. In this study, we propose a new and practical method, which uses only the digital level, V-film, and general solid phantoms. By taking the star shot only, we can accurately calculate the true gantry angle according to the geometry of the film setup. The results on our machine showed that the gantry angle was shifted by -0.11 deg. compared with the digital indicator, and the standard deviation was within 0.05 deg. This method can also be used for the simulator. In conclusion, this proposed method could be adopted as an annual QA item for mechanical QA of the accelerator

  11. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations.

    Science.gov (United States)

    Zhang, Ling

    2017-01-01

    The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  12. Technique of Critical Current Density Measurement of Bulk Superconductor with Linear Extrapolation Method

    International Nuclear Information System (INIS)

    Adi, Wisnu Ari; Sukirman, Engkir; Winatapura, Didin S.

    2000-01-01

    Technique of critical current density measurement (Jc) of HTc bulk ceramic superconductor has been performed by using linear extrapolation with four-point probes method. The measurement of critical current density HTc bulk ceramic superconductor usually causes damage in contact resistance. In order to decrease this damage factor, we introduce extrapolation method. The extrapolating data show that the critical current density Jc for YBCO (123) and BSCCO (2212) at 77 K are 10,85(6) Amp.cm - 2 and 14,46(6) Amp.cm - 2, respectively. This technique is easier, simpler, and the use of the current flow is low, so it will not damage the contact resistance of the sample. We expect that the method can give a better solution for bulk superconductor application. Key words. : superconductor, critical temperature, and critical current density

  13. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2017-10-01

    Full Text Available Abstract The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs. It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order 1 2 $\\frac{1}{2}$ to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  14. Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of fracture toughness (KIc) of metallic materials under predominantly linear-elastic, plane-strain conditions using fatigue precracked specimens having a thickness of 1.6 mm (0.063 in.) or greater subjected to slowly, or in special (elective) cases rapidly, increasing crack-displacement force. Details of test apparatus, specimen configuration, and experimental procedure are given in the Annexes. Note 1—Plane-strain fracture toughness tests of thinner materials that are sufficiently brittle (see 7.1) can be made using other types of specimens (1). There is no standard test method for such thin materials. 1.2 This test method is divided into two parts. The first part gives general recommendations and requirements for KIc testing. The second part consists of Annexes that give specific information on displacement gage and loading fixture design, special requirements for individual specimen configurations, and detailed procedures for fatigue precracking. Additional a...

  15. An implicit multigrid algorithm for computing hypersonic, chemically reacting viscous flows

    International Nuclear Information System (INIS)

    Edwards, J.R.

    1996-01-01

    An implicit algorithm for computing viscous flows in chemical nonequilibrium is presented. Emphasis is placed on the numerical efficiency of the time integration scheme, both in terms of periteration workload and overall convergence rate. In this context, several techniques are introduced, including a stable, O(m 2 ) approximate factorization of the chemical source Jacobian and implementations of V-cycle and filtered multigrid acceleration methods. A five species-seventeen reaction air model is used to calculate hypersonic viscous flow over a cylinder at conditions corresponding to flight at 5 km/s, 60 km altitude and at 11.36 km/s, 76.42 km altitude. Inviscid calculations using an eleven-species reaction mechanism including ionization are presented for a case involving 11.37 km/s flow at an altitude of 84.6 km. Comparisons among various options for the implicit treatment of the chemical source terms and among different multilevel approaches for convergence acceleration are presented for all simulations

  16. Comparative Performance Analysis of Coarse Solvers for Algebraic Multigrid on Multicore and Manycore Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Druinsky, A; Ghysels, P; Li, XS; Marques, O; Williams, S; Barker, A; Kalchev, D; Vassilevski, P

    2016-04-02

    In this paper, we study the performance of a two-level algebraic-multigrid algorithm, with a focus on the impact of the coarse-grid solver on performance. We consider two algorithms for solving the coarse-space systems: the preconditioned conjugate gradient method and a new robust HSS-embedded low-rank sparse-factorization algorithm. Our test data comes from the SPE Comparative Solution Project for oil-reservoir simulations. We contrast the performance of our code on one 12-core socket of a Cray XC30 machine with performance on a 60-core Intel Xeon Phi coprocessor. To obtain top performance, we optimized the code to take full advantage of fine-grained parallelism and made it thread-friendly for high thread count. We also developed a bounds-and-bottlenecks performance model of the solver which we used to guide us through the optimization effort, and also carried out performance tuning in the solver’s large parameter space. Finally, as a result, significant speedups were obtained on both machines.

  17. Multigrid solution of incompressible turbulent flows by using two-equation turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.; Liu, C. [Front Range Scientific Computations, Inc., Denver, CO (United States); Sung, C.H. [David Taylor Model Basin, Bethesda, MD (United States)

    1996-12-31

    Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.

  18. Quadratic temporal finite element method for linear elastic structural dynamics based on mixed convolved action

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, Dong Keon

    2016-01-01

    A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics

  19. Integrated structural analysis tool using the linear matching method part 1 – Software development

    International Nuclear Information System (INIS)

    Ure, James; Chen, Haofeng; Tipping, David

    2014-01-01

    A number of direct methods based upon the Linear Matching Method (LMM) framework have been developed to address structural integrity issues for components subjected to cyclic thermal and mechanical load conditions. This paper presents a new integrated structural analysis tool using the LMM framework for the assessment of load carrying capacity, shakedown limit, ratchet limit and steady state cyclic response of structures. First, the development of the LMM for the evaluation of design limits in plasticity is introduced. Second, preliminary considerations for the development of the LMM into a tool which can be used on a regular basis by engineers are discussed. After the re-structuring of the LMM subroutines for multiple central processing unit (CPU) solution, the LMM software tool for the assessment of design limits in plasticity is implemented by developing an Abaqus CAE plug-in with graphical user interfaces. Further demonstration of this new LMM analysis tool including practical application and verification is presented in an accompanying paper. - Highlights: • A new structural analysis tool using the Linear Matching Method (LMM) is developed. • The software tool is able to evaluate the design limits in plasticity. • Able to assess limit load, shakedown, ratchet limit and steady state cyclic response. • Re-structuring of the LMM subroutines for multiple CPU solution is conducted. • The software tool is implemented by developing an Abaqus CAE plug-in with GUI

  20. Deriving the probability of a linear opinion pooling method being superior to a set of alternatives

    International Nuclear Information System (INIS)

    Bolger, Donnacha; Houlding, Brett

    2017-01-01

    Linear opinion pools are a common method for combining a set of distinct opinions into a single succinct opinion, often to be used in a decision making task. In this paper we consider a method, termed the Plug-in approach, for determining the weights to be assigned in this linear pool, in a manner that can be deemed as rational in some sense, while incorporating multiple forms of learning over time into its process. The environment that we consider is one in which every source in the pool is herself a decision maker (DM), in contrast to the more common setting in which expert judgments are amalgamated for use by a single DM. We discuss a simulation study that was conducted to show the merits of our technique, and demonstrate how theoretical probabilistic arguments can be used to exactly quantify the probability of this technique being superior (in terms of a probability density metric) to a set of alternatives. Illustrations are given of simulated proportions converging to these true probabilities in a range of commonly used distributional cases. - Highlights: • A novel context for combination of expert opinion is provided. • A dynamic reliability assessment method is stated, justified by properties and a data study. • The theoretical grounding underlying the data-driven justification is explored. • We conclude with areas for expansion and further relevant research.