Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Directory of Open Access Journals (Sweden)
Tanwiwat Jaikuna
2017-02-01
Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
Faraway, Julian J
2014-01-01
A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.New to the Second EditionReorganiz
Foundations of linear and generalized linear models
Agresti, Alan
2015-01-01
A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,
DEFF Research Database (Denmark)
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....
DEFF Research Database (Denmark)
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....... of these criteria are widely used ones, while the remaining four are ones derived from the H-principle of mathematical modeling. Many examples from practice show that the criteria derived from the H-principle function better than the known and popular criteria for the number of components. We shall briefly review...
Non linear viscoelastic models
DEFF Research Database (Denmark)
Agerkvist, Finn T.
2011-01-01
Viscoelastic eects are often present in loudspeaker suspensions, this can be seen in the displacement transfer function which often shows a frequency dependent value below the resonance frequency. In this paper nonlinear versions of the standard linear solid model (SLS) are investigated....... The simulations show that the nonlinear version of the Maxwell SLS model can result in a time dependent small signal stiness while the Kelvin Voight version does not....
Monahan, John F
2008-01-01
Preface Examples of the General Linear Model Introduction One-Sample Problem Simple Linear Regression Multiple Regression One-Way ANOVA First Discussion The Two-Way Nested Model Two-Way Crossed Model Analysis of Covariance Autoregression Discussion The Linear Least Squares Problem The Normal Equations The Geometry of Least Squares Reparameterization Gram-Schmidt Orthonormalization Estimability and Least Squares Estimators Assumptions for the Linear Mean Model Confounding, Identifiability, and Estimability Estimability and Least Squares Estimators F
Campagnoli, Patrizia; Petris, Giovanni
2009-01-01
State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.
Introduction to generalized linear models
Dobson, Annette J
2008-01-01
Introduction Background Scope Notation Distributions Related to the Normal Distribution Quadratic Forms Estimation Model Fitting Introduction Examples Some Principles of Statistical Modeling Notation and Coding for Explanatory Variables Exponential Family and Generalized Linear Models Introduction Exponential Family of Distributions Properties of Distributions in the Exponential Family Generalized Linear Models Examples Estimation Introduction Example: Failure Times for Pressure Vessels Maximum Likelihood Estimation Poisson Regression Example Inference Introduction Sampling Distribution for Score Statistics Taylor Series Approximations Sampling Distribution for MLEs Log-Likelihood Ratio Statistic Sampling Distribution for the Deviance Hypothesis Testing Normal Linear Models Introduction Basic Results Multiple Linear Regression Analysis of Variance Analysis of Covariance General Linear Models Binary Variables and Logistic Regression Probability Distributions ...
(Non) linear regression modelling
Cizek, P.; Gentle, J.E.; Hardle, W.K.; Mori, Y.
2012-01-01
We will study causal relationships of a known form between random variables. Given a model, we distinguish one or more dependent (endogenous) variables Y = (Y1,…,Yl), l ∈ N, which are explained by a model, and independent (exogenous, explanatory) variables X = (X1,…,Xp),p ∈ N, which explain or
Explorative methods in linear models
DEFF Research Database (Denmark)
Høskuldsson, Agnar
2004-01-01
The author has developed the H-method of mathematical modeling that builds up the model by parts, where each part is optimized with respect to prediction. Besides providing with better predictions than traditional methods, these methods provide with graphic procedures for analyzing different feat...... features in data. These graphic methods extend the well-known methods and results of Principal Component Analysis to any linear model. Here the graphic procedures are applied to linear regression and Ridge Regression....
Generalized, Linear, and Mixed Models
McCulloch, Charles E; Neuhaus, John M
2011-01-01
An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m
Sparse Linear Identifiable Multivariate Modeling
DEFF Research Database (Denmark)
Henao, Ricardo; Winther, Ole
2011-01-01
and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable......In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...
Parameterized Linear Longitudinal Airship Model
Kulczycki, Eric; Elfes, Alberto; Bayard, David; Quadrelli, Marco; Johnson, Joseph
2010-01-01
A parameterized linear mathematical model of the longitudinal dynamics of an airship is undergoing development. This model is intended to be used in designing control systems for future airships that would operate in the atmospheres of Earth and remote planets. Heretofore, the development of linearized models of the longitudinal dynamics of airships has been costly in that it has been necessary to perform extensive flight testing and to use system-identification techniques to construct models that fit the flight-test data. The present model is a generic one that can be relatively easily specialized to approximate the dynamics of specific airships at specific operating points, without need for further system identification, and with significantly less flight testing. The approach taken in the present development is to merge the linearized dynamical equations of an airship with techniques for estimation of aircraft stability derivatives, and to thereby make it possible to construct a linearized dynamical model of the longitudinal dynamics of a specific airship from geometric and aerodynamic data pertaining to that airship. (It is also planned to develop a model of the lateral dynamics by use of the same methods.) All of the aerodynamic data needed to construct the model of a specific airship can be obtained from wind-tunnel testing and computational fluid dynamics
Decomposable log-linear models
DEFF Research Database (Denmark)
Eriksen, Poul Svante
can be characterized by a structured set of conditional independencies between some variables given some other variables. We term the new model class decomposable log-linear models, which is illustrated to be a much richer class than decomposable graphical models.It covers a wide range of non...... The present paper considers discrete probability models with exact computational properties. In relation to contingency tables this means closed form expressions of the maksimum likelihood estimate and its distribution. The model class includes what is known as decomposable graphicalmodels, which......-hierarchical models, models with structural zeroes, models described by quasi independence and models for level merging. Also, they have a very natural interpretation as they may be formulated by a structured set of conditional independencies between two events given some other event. In relation to contingency...
Linear and Generalized Linear Mixed Models and Their Applications
Jiang, Jiming
2007-01-01
This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models, and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it has included recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested
Multicollinearity in hierarchical linear models.
Yu, Han; Jiang, Shanhe; Land, Kenneth C
2015-09-01
This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model. Copyright © 2015 Elsevier Inc. All rights reserved.
Modelling Loudspeaker Non-Linearities
DEFF Research Database (Denmark)
Agerkvist, Finn T.
2007-01-01
This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...
Multivariate covariance generalized linear models
DEFF Research Database (Denmark)
Bonat, W. H.; Jørgensen, Bent
2016-01-01
are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...
Matrix algebra for linear models
Gruber, Marvin H J
2013-01-01
Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f
Nonabelian Gauged Linear Sigma Model
Institute of Scientific and Technical Information of China (English)
Yongbin RUAN
2017-01-01
The gauged linear sigma model (GLSM for short) is a 2d quantum field theory introduced by Witten twenty years ago.Since then,it has been investigated extensively in physics by Hori and others.Recently,an algebro-geometric theory (for both abelian and nonabelian GLSMs) was developed by the author and his collaborators so that he can start to rigorously compute its invariants and check against physical predications.The abelian GLSM was relatively better understood and is the focus of current mathematical investigation.In this article,the author would like to look over the horizon and consider the nonabelian GLSM.The nonabelian case possesses some new features unavailable to the abelian GLSM.To aid the future mathematical development,the author surveys some of the key problems inspired by physics in the nonabelian GLSM.
Multivariate generalized linear mixed models using R
Berridge, Damon Mark
2011-01-01
Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R. A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model...
Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models.
de Jesus, Karla; Ayala, Helon V H; de Jesus, Kelly; Coelho, Leandro Dos S; Medeiros, Alexandre I A; Abraldes, José A; Vaz, Mário A P; Fernandes, Ricardo J; Vilas-Boas, João Paulo
2018-03-01
Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances.
Nonlinear Modeling by Assembling Piecewise Linear Models
Yao, Weigang; Liou, Meng-Sing
2013-01-01
To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.
Linear Logistic Test Modeling with R
Baghaei, Purya; Kubinger, Klaus D.
2015-01-01
The present paper gives a general introduction to the linear logistic test model (Fischer, 1973), an extension of the Rasch model with linear constraints on item parameters, along with eRm (an R package to estimate different types of Rasch models; Mair, Hatzinger, & Mair, 2014) functions to estimate the model and interpret its parameters. The…
Core seismic behaviour: linear and non-linear models
International Nuclear Information System (INIS)
Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.
1981-08-01
The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here
Composite Linear Models | Division of Cancer Prevention
By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty
Actuarial statistics with generalized linear mixed models
Antonio, K.; Beirlant, J.
2007-01-01
Over the last decade the use of generalized linear models (GLMs) in actuarial statistics has received a lot of attention, starting from the actuarial illustrations in the standard text by McCullagh and Nelder [McCullagh, P., Nelder, J.A., 1989. Generalized linear models. In: Monographs on Statistics
Unification of three linear models for the transient visual system
Brinker, den A.C.
1989-01-01
Three different linear filters are considered as a model describing the experimentally determined triphasic impulse responses of discs. These impulse responses arc associated with the transient visual system. Each model reveals a different feature of the system. Unification of the models is
Comparing linear probability model coefficients across groups
DEFF Research Database (Denmark)
Holm, Anders; Ejrnæs, Mette; Karlson, Kristian Bernt
2015-01-01
of the following three components: outcome truncation, scale parameters and distributional shape of the predictor variable. These results point to limitations in using linear probability model coefficients for group comparisons. We also provide Monte Carlo simulations and real examples to illustrate......This article offers a formal identification analysis of the problem in comparing coefficients from linear probability models between groups. We show that differences in coefficients from these models can result not only from genuine differences in effects, but also from differences in one or more...... these limitations, and we suggest a restricted approach to using linear probability model coefficients in group comparisons....
Spaghetti Bridges: Modeling Linear Relationships
Kroon, Cindy D.
2016-01-01
Mathematics and science are natural partners. One of many examples of this partnership occurs when scientific observations are made, thus providing data that can be used for mathematical modeling. Developing mathematical relationships elucidates such scientific principles. This activity describes a data-collection activity in which students employ…
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...
Correlations and Non-Linear Probability Models
DEFF Research Database (Denmark)
Breen, Richard; Holm, Anders; Karlson, Kristian Bernt
2014-01-01
the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....
Nonlinear price impact from linear models
Patzelt, Felix; Bouchaud, Jean-Philippe
2017-12-01
The impact of trades on asset prices is a crucial aspect of market dynamics for academics, regulators, and practitioners alike. Recently, universal and highly nonlinear master curves were observed for price impacts aggregated on all intra-day scales (Patzelt and Bouchaud 2017 arXiv:1706.04163). Here we investigate how well these curves, their scaling, and the underlying return dynamics are captured by linear ‘propagator’ models. We find that the classification of trades as price-changing versus non-price-changing can explain the price impact nonlinearities and short-term return dynamics to a very high degree. The explanatory power provided by the change indicator in addition to the order sign history increases with increasing tick size. To obtain these results, several long-standing technical issues for model calibration and testing are addressed. We present new spectral estimators for two- and three-point cross-correlations, removing the need for previously used approximations. We also show when calibration is unbiased and how to accurately reveal previously overlooked biases. Therefore, our results contribute significantly to understanding both recent empirical results and the properties of a popular class of impact models.
Extended Linear Models with Gaussian Priors
DEFF Research Database (Denmark)
Quinonero, Joaquin
2002-01-01
In extended linear models the input space is projected onto a feature space by means of an arbitrary non-linear transformation. A linear model is then applied to the feature space to construct the model output. The dimension of the feature space can be very large, or even infinite, giving the model...... a very big flexibility. Support Vector Machines (SVM's) and Gaussian processes are two examples of such models. In this technical report I present a model in which the dimension of the feature space remains finite, and where a Bayesian approach is used to train the model with Gaussian priors...... on the parameters. The Relevance Vector Machine, introduced by Tipping, is a particular case of such a model. I give the detailed derivations of the expectation-maximisation (EM) algorithm used in the training. These derivations are not found in the literature, and might be helpful for newcomers....
Linear mixed models for longitudinal data
Molenberghs, Geert
2000-01-01
This paperback edition is a reprint of the 2000 edition. This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, conditional linear mixed models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. However, some other commerc...
Linear mixed models in sensometrics
DEFF Research Database (Denmark)
Kuznetsova, Alexandra
quality of decision making in Danish as well as international food companies and other companies using the same methods. The two open-source R packages lmerTest and SensMixed implement and support the methodological developments in the research papers as well as the ANOVA modelling part of the Consumer...... an open-source software tool ConsumerCheck was developed in this project and now is available for everyone. will represent a major step forward when concerns this important problem in modern consumer driven product development. Standard statistical software packages can be used for some of the purposes......Today’s companies and researchers gather large amounts of data of different kind. In consumer studies the objective is the collection of the data to better understand consumer acceptance of products. In such studies a number of persons (generally not trained) are selected in order to score products...
Linear causal modeling with structural equations
Mulaik, Stanley A
2009-01-01
Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal
Statistical Tests for Mixed Linear Models
Khuri, André I; Sinha, Bimal K
2011-01-01
An advanced discussion of linear models with mixed or random effects. In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models a
Matrix Tricks for Linear Statistical Models
Puntanen, Simo; Styan, George PH
2011-01-01
In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and
Zoladz, Phillip R.; Diamond, David M.
2008-01-01
Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as ...
Modeling digital switching circuits with linear algebra
Thornton, Mitchell A
2014-01-01
Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf
Updating Linear Schedules with Lowest Cost: a Linear Programming Model
Biruk, Sławomir; Jaśkowski, Piotr; Czarnigowska, Agata
2017-10-01
Many civil engineering projects involve sets of tasks repeated in a predefined sequence in a number of work areas along a particular route. A useful graphical representation of schedules of such projects is time-distance diagrams that clearly show what process is conducted at a particular point of time and in particular location. With repetitive tasks, the quality of project performance is conditioned by the ability of the planner to optimize workflow by synchronizing the works and resources, which usually means that resources are planned to be continuously utilized. However, construction processes are prone to risks, and a fully synchronized schedule may expire if a disturbance (bad weather, machine failure etc.) affects even one task. In such cases, works need to be rescheduled, and another optimal schedule should be built for the changed circumstances. This typically means that, to meet the fixed completion date, durations of operations have to be reduced. A number of measures are possible to achieve such reduction: working overtime, employing more resources or relocating resources from less to more critical tasks, but they all come at a considerable cost and affect the whole project. The paper investigates the problem of selecting the measures that reduce durations of tasks of a linear project so that the cost of these measures is kept to the minimum and proposes an algorithm that could be applied to find optimal solutions as the need to reschedule arises. Considering that civil engineering projects, such as road building, usually involve less process types than construction projects, the complexity of scheduling problems is lower, and precise optimization algorithms can be applied. Therefore, the authors put forward a linear programming model of the problem and illustrate its principle of operation with an example.
A linear model of ductile plastic damage
International Nuclear Information System (INIS)
Lemaitre, J.
1983-01-01
A three-dimensional model of isotropic ductile plastic damage based on a continuum damage variable on the effective stress concept and on thermodynamics is derived. As shown by experiments on several metals and alloys, the model, integrated in the case of proportional loading, is linear with respect to the accumulated plastic strain and shows a large influence of stress triaxiality [fr
Ker, H. W.
2014-01-01
Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…
Faraway, Julian J
2005-01-01
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...
Performances Of Estimators Of Linear Models With Autocorrelated ...
African Journals Online (AJOL)
The performances of five estimators of linear models with Autocorrelated error terms are compared when the independent variable is autoregressive. The results reveal that the properties of the estimators when the sample size is finite is quite similar to the properties of the estimators when the sample size is infinite although ...
Performances of estimators of linear auto-correlated error model ...
African Journals Online (AJOL)
The performances of five estimators of linear models with autocorrelated disturbance terms are compared when the independent variable is exponential. The results reveal that for both small and large samples, the Ordinary Least Squares (OLS) compares favourably with the Generalized least Squares (GLS) estimators in ...
Ground Motion Models for Future Linear Colliders
International Nuclear Information System (INIS)
Seryi, Andrei
2000-01-01
Optimization of the parameters of a future linear collider requires comprehensive models of ground motion. Both general models of ground motion and specific models of the particular site and local conditions are essential. Existing models are not completely adequate, either because they are too general, or because they omit important peculiarities of ground motion. The model considered in this paper is based on recent ground motion measurements performed at SLAC and at other accelerator laboratories, as well as on historical data. The issues to be studied for the models to become more predictive are also discussed
Modelling female fertility traits in beef cattle using linear and non-linear models.
Naya, H; Peñagaricano, F; Urioste, J I
2017-06-01
Female fertility traits are key components of the profitability of beef cattle production. However, these traits are difficult and expensive to measure, particularly under extensive pastoral conditions, and consequently, fertility records are in general scarce and somehow incomplete. Moreover, fertility traits are usually dominated by the effects of herd-year environment, and it is generally assumed that relatively small margins are kept for genetic improvement. New ways of modelling genetic variation in these traits are needed. Inspired in the methodological developments made by Prof. Daniel Gianola and co-workers, we assayed linear (Gaussian), Poisson, probit (threshold), censored Poisson and censored Gaussian models to three different kinds of endpoints, namely calving success (CS), number of days from first calving (CD) and number of failed oestrus (FE). For models involving FE and CS, non-linear models overperformed their linear counterparts. For models derived from CD, linear versions displayed better adjustment than the non-linear counterparts. Non-linear models showed consistently higher estimates of heritability and repeatability in all cases (h 2 linear models; h 2 > 0.23 and r > 0.24, for non-linear models). While additive and permanent environment effects showed highly favourable correlations between all models (>0.789), consistency in selecting the 10% best sires showed important differences, mainly amongst the considered endpoints (FE, CS and CD). In consequence, endpoints should be considered as modelling different underlying genetic effects, with linear models more appropriate to describe CD and non-linear models better for FE and CS. © 2017 Blackwell Verlag GmbH.
Modelling point patterns with linear structures
DEFF Research Database (Denmark)
Møller, Jesper; Rasmussen, Jakob Gulddahl
2009-01-01
processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....
Modelling point patterns with linear structures
DEFF Research Database (Denmark)
Møller, Jesper; Rasmussen, Jakob Gulddahl
processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....
Optimal designs for linear mixture models
Mendieta, E.J.; Linssen, H.N.; Doornbos, R.
1975-01-01
In a recent paper Snee and Marquardt [8] considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of this
Optimal designs for linear mixture models
Mendieta, E.J.; Linssen, H.N.; Doornbos, R.
1975-01-01
In a recent paper Snee and Marquardt (1974) considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of
Linear factor copula models and their properties
Krupskii, Pavel; Genton, Marc G.
2018-01-01
We consider a special case of factor copula models with additive common factors and independent components. These models are flexible and parsimonious with O(d) parameters where d is the dimension. The linear structure allows one to obtain closed form expressions for some copulas and their extreme‐value limits. These copulas can be used to model data with strong tail dependencies, such as extreme data. We study the dependence properties of these linear factor copula models and derive the corresponding limiting extreme‐value copulas with a factor structure. We show how parameter estimates can be obtained for these copulas and apply one of these copulas to analyse a financial data set.
Linear factor copula models and their properties
Krupskii, Pavel
2018-04-25
We consider a special case of factor copula models with additive common factors and independent components. These models are flexible and parsimonious with O(d) parameters where d is the dimension. The linear structure allows one to obtain closed form expressions for some copulas and their extreme‐value limits. These copulas can be used to model data with strong tail dependencies, such as extreme data. We study the dependence properties of these linear factor copula models and derive the corresponding limiting extreme‐value copulas with a factor structure. We show how parameter estimates can be obtained for these copulas and apply one of these copulas to analyse a financial data set.
Diagnostics for Linear Models With Functional Responses
Xu, Hongquan; Shen, Qing
2005-01-01
Linear models where the response is a function and the predictors are vectors are useful in analyzing data from designed experiments and other situations with functional observations. Residual analysis and diagnostics are considered for such models. Studentized residuals are defined and their properties are studied. Chi-square quantile-quantile plots are proposed to check the assumption of Gaussian error process and outliers. Jackknife residuals and an associated test are proposed to det...
Non-linear Loudspeaker Unit Modelling
DEFF Research Database (Denmark)
Pedersen, Bo Rohde; Agerkvist, Finn T.
2008-01-01
Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....
[From clinical judgment to linear regression model.
Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O
2013-01-01
When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.
Testing Parametric versus Semiparametric Modelling in Generalized Linear Models
Härdle, W.K.; Mammen, E.; Müller, M.D.
1996-01-01
We consider a generalized partially linear model E(Y|X,T) = G{X'b + m(T)} where G is a known function, b is an unknown parameter vector, and m is an unknown function.The paper introduces a test statistic which allows to decide between a parametric and a semiparametric model: (i) m is linear, i.e.
Modeling of Volatility with Non-linear Time Series Model
Kim Song Yon; Kim Mun Chol
2013-01-01
In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.
Thresholding projection estimators in functional linear models
Cardot, Hervé; Johannes, Jan
2010-01-01
We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squ...
Decomposed Implicit Models of Piecewise - Linear Networks
Directory of Open Access Journals (Sweden)
J. Brzobohaty
1992-05-01
Full Text Available The general matrix form of the implicit description of a piecewise-linear (PWL network and the symbolic block diagram of the corresponding circuit model are proposed. Their decomposed forms enable us to determine quite separately the existence of the individual breakpoints of the resultant PWL characteristic and their coordinates using independent network parameters. For the two-diode and three-diode cases all the attainable types of the PWL characteristic are introduced.
From spiking neuron models to linear-nonlinear models.
Ostojic, Srdjan; Brunel, Nicolas
2011-01-20
Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.
Stochastic linear programming models, theory, and computation
Kall, Peter
2011-01-01
This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...
Zoladz, Phillip R; Diamond, David M
2008-10-16
Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as well as the excitatory effects of several neuromodulators, including corticosteroids, norepinephrine, corticotropin-releasing hormone, acetylcholine and dopamine. We propose that this rapid activation of the amygdala-hippocampus brain memory system results in a linear dose-response relation between emotional strength and memory formation. More prolonged stress, however, leads to an inhibition of hippocampal function, which can be attributed to compensatory cellular responses that protect hippocampal neurons from excitotoxicity. This inhibition of hippocampal functioning in response to prolonged stress is potentially relevant to the well-described curvilinear dose-response relationship between arousal and memory. Our emphasis on the temporal features of stress-brain interactions addresses how stress can activate, as well as impair, hippocampal functioning to produce a hormetic relationship between stress and learning.
Linear accelerator modeling: development and application
International Nuclear Information System (INIS)
Jameson, R.A.; Jule, W.D.
1977-01-01
Most of the parameters of a modern linear accelerator can be selected by simulating the desired machine characteristics in a computer code and observing how the parameters affect the beam dynamics. The code PARMILA is used at LAMPF for the low-energy portion of linacs. Collections of particles can be traced with a free choice of input distributions in six-dimensional phase space. Random errors are often included in order to study the tolerances which should be imposed during manufacture or in operation. An outline is given of the modifications made to the model, the results of experiments which indicate the validity of the model, and the use of the model to optimize the longitudinal tuning of the Alvarez linac
Running vacuum cosmological models: linear scalar perturbations
Energy Technology Data Exchange (ETDEWEB)
Perico, E.L.D. [Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP (Brazil); Tamayo, D.A., E-mail: elduartep@usp.br, E-mail: tamayo@if.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, SP (Brazil)
2017-08-01
In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ( H {sup 2}) or Λ( R ). Such models assume an equation of state for the vacuum given by P-bar {sub Λ} = - ρ-bar {sub Λ}, relating its background pressure P-bar {sub Λ} with its mean energy density ρ-bar {sub Λ} ≡ Λ/8π G . This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely ρ-bar {sub Λ} = Σ {sub i} ρ-bar {sub Λ} {sub i} . Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ( H {sup 2}) scenario the vacuum is coupled with every matter component, whereas the Λ( R ) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.
Linear Parametric Model Checking of Timed Automata
DEFF Research Database (Denmark)
Hune, Tohmas Seidelin; Romijn, Judi; Stoelinga, Mariëlle
2001-01-01
We present an extension of the model checker Uppaal capable of synthesize linear parameter constraints for the correctness of parametric timed automata. The symbolic representation of the (parametric) state-space is shown to be correct. A second contribution of this paper is the identication...... of a subclass of parametric timed automata (L/U automata), for which the emptiness problem is decidable, contrary to the full class where it is know to be undecidable. Also we present a number of lemmas enabling the verication eort to be reduced for L/U automata in some cases. We illustrate our approach...
Aspects of general linear modelling of migration.
Congdon, P
1992-01-01
"This paper investigates the application of general linear modelling principles to analysing migration flows between areas. Particular attention is paid to specifying the form of the regression and error components, and the nature of departures from Poisson randomness. Extensions to take account of spatial and temporal correlation are discussed as well as constrained estimation. The issue of specification bears on the testing of migration theories, and assessing the role migration plays in job and housing markets: the direction and significance of the effects of economic variates on migration depends on the specification of the statistical model. The application is in the context of migration in London and South East England in the 1970s and 1980s." excerpt
Model Selection with the Linear Mixed Model for Longitudinal Data
Ryoo, Ji Hoon
2011-01-01
Model building or model selection with linear mixed models (LMMs) is complicated by the presence of both fixed effects and random effects. The fixed effects structure and random effects structure are codependent, so selection of one influences the other. Most presentations of LMM in psychology and education are based on a multilevel or…
Sahin, Rubina; Tapadia, Kavita
2015-01-01
The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area.
Modeling patterns in data using linear and related models
International Nuclear Information System (INIS)
Engelhardt, M.E.
1996-06-01
This report considers the use of linear models for analyzing data related to reliability and safety issues of the type usually associated with nuclear power plants. The report discusses some of the general results of linear regression analysis, such as the model assumptions and properties of the estimators of the parameters. The results are motivated with examples of operational data. Results about the important case of a linear regression model with one covariate are covered in detail. This case includes analysis of time trends. The analysis is applied with two different sets of time trend data. Diagnostic procedures and tests for the adequacy of the model are discussed. Some related methods such as weighted regression and nonlinear models are also considered. A discussion of the general linear model is also included. Appendix A gives some basic SAS programs and outputs for some of the analyses discussed in the body of the report. Appendix B is a review of some of the matrix theoretic results which are useful in the development of linear models
Electron Model of Linear-Field FFAG
Koscielniak, Shane R
2005-01-01
A fixed-field alternating-gradient accelerator (FFAG) that employs only linear-field elements ushers in a new regime in accelerator design and dynamics. The linear-field machine has the ability to compact an unprecedented range in momenta within a small component aperture. With a tune variation which results from the natural chromaticity, the beam crosses many strong, uncorrec-table, betatron resonances during acceleration. Further, relativistic particles in this machine exhibit a quasi-parabolic time-of-flight that cannot be addressed with a fixed-frequency rf system. This leads to a new concept of bucketless acceleration within a rotation manifold. With a large energy jump per cell, there is possibly strong synchro-betatron coupling. A few-MeV electron model has been proposed to demonstrate the feasibility of these untested acceleration features and to investigate them at length under a wide range of operating conditions. This paper presents a lattice optimized for a 1.3 GHz rf, initial technology choices f...
Linear models in the mathematics of uncertainty
Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A
2013-01-01
The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data is difficult to measure and an assumption of randomness and/or statistical validity is questionable. We apply our methods to real world issues in international relations such as nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...
Generalized Linear Models in Vehicle Insurance
Directory of Open Access Journals (Sweden)
Silvie Kafková
2014-01-01
Full Text Available Actuaries in insurance companies try to find the best model for an estimation of insurance premium. It depends on many risk factors, e.g. the car characteristics and the profile of the driver. In this paper, an analysis of the portfolio of vehicle insurance data using a generalized linear model (GLM is performed. The main advantage of the approach presented in this article is that the GLMs are not limited by inflexible preconditions. Our aim is to predict the relation of annual claim frequency on given risk factors. Based on a large real-world sample of data from 57 410 vehicles, the present study proposed a classification analysis approach that addresses the selection of predictor variables. The models with different predictor variables are compared by analysis of deviance and Akaike information criterion (AIC. Based on this comparison, the model for the best estimate of annual claim frequency is chosen. All statistical calculations are computed in R environment, which contains stats package with the function for the estimation of parameters of GLM and the function for analysis of deviation.
Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.
2009-01-01
This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…
Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots
Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.
2013-01-01
Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…
From linear to generalized linear mixed models: A case study in repeated measures
Compared to traditional linear mixed models, generalized linear mixed models (GLMMs) can offer better correspondence between response variables and explanatory models, yielding more efficient estimates and tests in the analysis of data from designed experiments. Using proportion data from a designed...
Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A
2017-02-01
This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r = 0.71-0.88, RMSE: 1.11-1.61 METs; p > 0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r = 0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r = 0.88, RMSE: 1.10-1.11 METs; p > 0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r = 0.88, RMSE: 1.12 METs. Linear models-correlations: r = 0.86, RMSE: 1.18-1.19 METs; p linear models for the wrist-worn accelerometers (ANN-correlations: r = 0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r = 0.71-0.73, RMSE: 1.55-1.61 METs; p models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh
Evaluating the double Poisson generalized linear model.
Zou, Yaotian; Geedipally, Srinivas Reddy; Lord, Dominique
2013-10-01
The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Yong; Wu, Qiao-Feng; Chen, Chen; Wu, Ling-Yun; Yan, Xian-Zhong; Yu, Shu-Guang; Zhang, Xiang-Sun; Liang, Fan-Rong
2012-01-01
Acupuncture has been practiced in China for thousands of years as part of the Traditional Chinese Medicine (TCM) and has gradually accepted in western countries as an alternative or complementary treatment. However, the underlying mechanism of acupuncture, especially whether there exists any difference between varies acupoints, remains largely unknown, which hinders its widespread use. In this study, we develop a novel Linear Programming based Feature Selection method (LPFS) to understand the mechanism of acupuncture effect, at molecular level, by revealing the metabolite biomarkers for acupuncture treatment. Specifically, we generate and investigate the high-throughput metabolic profiles of acupuncture treatment at several acupoints in human. To select the subsets of metabolites that best characterize the acupuncture effect for each meridian point, an optimization model is proposed to identify biomarkers from high-dimensional metabolic data from case and control samples. Importantly, we use nearest centroid as the prototype to simultaneously minimize the number of selected features and the leave-one-out cross validation error of classifier. We compared the performance of LPFS to several state-of-the-art methods, such as SVM recursive feature elimination (SVM-RFE) and sparse multinomial logistic regression approach (SMLR). We find that our LPFS method tends to reveal a small set of metabolites with small standard deviation and large shifts, which exactly serves our requirement for good biomarker. Biologically, several metabolite biomarkers for acupuncture treatment are revealed and serve as the candidates for further mechanism investigation. Also biomakers derived from five meridian points, Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40), are compared for their similarity and difference, which provide evidence for the specificity of acupoints. Our result demonstrates that metabolic profiling might be a promising method to
Petri Nets as Models of Linear Logic
DEFF Research Database (Denmark)
Engberg, Uffe Henrik; Winskel, Glynn
1990-01-01
The chief purpose of this paper is to appraise the feasibility of Girad's linear logic as a specification language for parallel processes. To this end we propose an interpretation of linear logic in Petri nets, with respect to which we investigate the expressive power of the logic...
Linear approximation model network and its formation via ...
Indian Academy of Sciences (India)
To overcome the deficiency of `local model network' (LMN) techniques, an alternative `linear approximation model' (LAM) network approach is proposed. Such a network models a nonlinear or practical system with multiple linear models fitted along operating trajectories, where individual models are simply networked ...
Linear regression crash prediction models : issues and proposed solutions.
2010-05-01
The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...
Game Theory and its Relationship with Linear Programming Models ...
African Journals Online (AJOL)
Game Theory and its Relationship with Linear Programming Models. ... This paper shows that game theory and linear programming problem are closely related subjects since any computing method devised for ... AJOL African Journals Online.
A Note on the Identifiability of Generalized Linear Mixed Models
DEFF Research Database (Denmark)
Labouriau, Rodrigo
2014-01-01
I present here a simple proof that, under general regularity conditions, the standard parametrization of generalized linear mixed model is identifiable. The proof is based on the assumptions of generalized linear mixed models on the first and second order moments and some general mild regularity...... conditions, and, therefore, is extensible to quasi-likelihood based generalized linear models. In particular, binomial and Poisson mixed models with dispersion parameter are identifiable when equipped with the standard parametrization...
Nguyen, Hung T. T.; Galelli, Stefano
2018-03-01
Catchment dynamics is not often modeled in streamflow reconstruction studies; yet, the streamflow generation process depends on both catchment state and climatic inputs. To explicitly account for this interaction, we contribute a linear dynamic model, in which streamflow is a function of both catchment state (i.e., wet/dry) and paleoclimatic proxies. The model is learned using a novel variant of the Expectation-Maximization algorithm, and it is used with a paleo drought record—the Monsoon Asia Drought Atlas—to reconstruct 406 years of streamflow for the Ping River (northern Thailand). Results for the instrumental period show that the dynamic model has higher accuracy than conventional linear regression; all performance scores improve by 45-497%. Furthermore, the reconstructed trajectory of the state variable provides valuable insights about the catchment history—e.g., regime-like behavior—thereby complementing the information contained in the reconstructed streamflow time series. The proposed technique can replace linear regression, since it only requires information on streamflow and climatic proxies (e.g., tree-rings, drought indices); furthermore, it is capable of readily generating stochastic streamflow replicates. With a marginal increase in computational requirements, the dynamic model brings more desirable features and value to streamflow reconstructions.
Linear control theory for gene network modeling.
Shin, Yong-Jun; Bleris, Leonidas
2010-09-16
Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.
LINEAR MODEL FOR NON ISOSCELES ABSORBERS.
Energy Technology Data Exchange (ETDEWEB)
BERG,J.S.
2003-05-12
Previous analyses have assumed that wedge absorbers are triangularly shaped with equal angles for the two faces. In this case, to linear order, the energy loss depends only on the position in the direction of the face tilt, and is independent of the incoming angle. One can instead construct an absorber with entrance and exit faces facing rather general directions. In this case, the energy loss can depend on both the position and the angle of the particle in question. This paper demonstrates that and computes the effect to linear order.
Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.
Ovesy, Marzieh; Nazari, Mohammad Ali; Mahdavian, Mohammad
2016-02-01
In the current research, the muscle equivalent linear damping coefficient which is introduced as the force-velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force-stiffness relationship (Hill-type model) and a nonlinear one have been implemented. The OpenSim platform was used for verification of the model. The isometric activation has been used for the simulation. The equivalent linear damping and the time constant of each model were extracted by using the results obtained from the simulation. The results provide a better insight into the characteristics of each model. It is found that the nonlinear models had a response rate closer to the reality compared to the Hill-type models.
An online re-linearization scheme suited for Model Predictive and Linear Quadratic Control
DEFF Research Database (Denmark)
Henriksen, Lars Christian; Poulsen, Niels Kjølstad
This technical note documents the equations for primal-dual interior-point quadratic programming problem solver used for MPC. The algorithm exploits the special structure of the MPC problem and is able to reduce the computational burden such that the computational burden scales with prediction...... horizon length in a linear way rather than cubic, which would be the case if the structure was not exploited. It is also shown how models used for design of model-based controllers, e.g. linear quadratic and model predictive, can be linearized both at equilibrium and non-equilibrium points, making...
Tried and True: Springing into Linear Models
Darling, Gerald
2012-01-01
In eighth grade, students usually learn about forces in science class and linear relationships in math class, crucial topics that form the foundation for further study in science and engineering. An activity that links these two fundamental concepts involves measuring the distance a spring stretches as a function of how much weight is suspended…
Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems
Directory of Open Access Journals (Sweden)
Bambang Riyanto
2005-11-01
Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.
Ordinal Log-Linear Models for Contingency Tables
Directory of Open Access Journals (Sweden)
Brzezińska Justyna
2016-12-01
Full Text Available A log-linear analysis is a method providing a comprehensive scheme to describe the association for categorical variables in a contingency table. The log-linear model specifies how the expected counts depend on the levels of the categorical variables for these cells and provide detailed information on the associations. The aim of this paper is to present theoretical, as well as empirical, aspects of ordinal log-linear models used for contingency tables with ordinal variables. We introduce log-linear models for ordinal variables: linear-by-linear association, row effect model, column effect model and RC Goodman’s model. Algorithm, advantages and disadvantages will be discussed in the paper. An empirical analysis will be conducted with the use of R.
Recent Updates to the GEOS-5 Linear Model
Holdaway, Dan; Kim, Jong G.; Errico, Ron; Gelaro, Ronald; Mahajan, Rahul
2014-01-01
Global Modeling and Assimilation Office (GMAO) is close to having a working 4DVAR system and has developed a linearized version of GEOS-5.This talk outlines a series of improvements made to the linearized dynamics, physics and trajectory.Of particular interest is the development of linearized cloud microphysics, which provides the framework for 'all-sky' data assimilation.
Moortgat-Pick, G.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, Tyler McMillan; Dreiner, H.K.; Eberl, H.; Ellis, John R.; Flottmann, K.; Fraas, H.; Franco-Sollova, F.; Franke, F.; Freitas, A.; Goodson, J.; Gray, J.; Han, A.; Heinemeyer, S.; Hesselbach, S.; Hirose, T.; Hohenwarter-Sodek, K.; Juste, A.; Kalinowski, J.; Kernreiter, T.; Kittel, O.; Kraml, S.; Langenfeld, U.; Majerotto, W.; Martinez, A.; Martyn, H.U.; Mikhailichenko, A.; Milstene, C.; Menges, W.; Meyners, N.; Monig, K.; Moffeit, K.; Moretti, S.; Nachtmann, O.; Nagel, F.; Nakanishi, T.; Nauenberg, U.; Nowak, H.; Omori, T.; Osland, P.; Pankov, A.A.; Paver, N.; Pitthan, R.; Poschl, R.; Porod, W.; Proulx, J.; Richardson, P.; Riemann, S.; Rindani, S.D.; Rizzo, T.G.; Schalicke, A.; Schuler, P.; Schwanenberger, C.; Scott, D.; Sheppard, J.; Singh, R.K.; Sopczak, A.; Spiesberger, H.; Stahl, A.; Steiner, H.; Wagner, A.; Weber, A.M.; Weiglein, G.; Wilson, G.W.; Woods, M.; Zerwas, P.; Zhang, J.; Zomer, F.
2008-01-01
The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.
Energy Technology Data Exchange (ETDEWEB)
Moortgat-Pick, G.; /CERN /Durham U., IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke,; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv
2005-07-01
The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.
Energy Technology Data Exchange (ETDEWEB)
Moortgat-Pick, G.; /CERN /Durham U., IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke,; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv
2005-07-06
The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.
International Nuclear Information System (INIS)
Moortgat-Pick, G.; CERN, Durham U. IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.
2005-01-01
The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization
Double generalized linear compound poisson models to insurance claims data
DEFF Research Database (Denmark)
Andersen, Daniel Arnfeldt; Bonat, Wagner Hugo
2017-01-01
This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution...... implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances....
Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis
Luo, Wen; Azen, Razia
2013-01-01
Dominance analysis (DA) is a method used to evaluate the relative importance of predictors that was originally proposed for linear regression models. This article proposes an extension of DA that allows researchers to determine the relative importance of predictors in hierarchical linear models (HLM). Commonly used measures of model adequacy in…
Thurstonian models for sensory discrimination tests as generalized linear models
DEFF Research Database (Denmark)
Brockhoff, Per B.; Christensen, Rune Haubo Bojesen
2010-01-01
as a so-called generalized linear model. The underlying sensory difference 6 becomes directly a parameter of the statistical model and the estimate d' and it's standard error becomes the "usual" output of the statistical analysis. The d' for the monadic A-NOT A method is shown to appear as a standard......Sensory discrimination tests such as the triangle, duo-trio, 2-AFC and 3-AFC tests produce binary data and the Thurstonian decision rule links the underlying sensory difference 6 to the observed number of correct responses. In this paper it is shown how each of these four situations can be viewed...
Linear control theory for gene network modeling.
Directory of Open Access Journals (Sweden)
Yong-Jun Shin
Full Text Available Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain and linear state-space (time domain can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.
Forecasting Volatility of Dhaka Stock Exchange: Linear Vs Non-linear models
Directory of Open Access Journals (Sweden)
Masudul Islam
2012-10-01
Full Text Available Prior information about a financial market is very essential for investor to invest money on parches share from the stock market which can strengthen the economy. The study examines the relative ability of various models to forecast daily stock indexes future volatility. The forecasting models that employed from simple to relatively complex ARCH-class models. It is found that among linear models of stock indexes volatility, the moving average model ranks first using root mean square error, mean absolute percent error, Theil-U and Linex loss function criteria. We also examine five nonlinear models. These models are ARCH, GARCH, EGARCH, TGARCH and restricted GARCH models. We find that nonlinear models failed to dominate linear models utilizing different error measurement criteria and moving average model appears to be the best. Then we forecast the next two months future stock index price volatility by the best (moving average model.
DEFF Research Database (Denmark)
Andersen, Per Kragh; Klein, John P.; Rosthøj, Susanne
2003-01-01
Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model......Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model...
Linear and non-linear autoregressive models for short-term wind speed forecasting
International Nuclear Information System (INIS)
Lydia, M.; Suresh Kumar, S.; Immanuel Selvakumar, A.; Edwin Prem Kumar, G.
2016-01-01
Highlights: • Models for wind speed prediction at 10-min intervals up to 1 h built on time-series wind speed data. • Four different multivariate models for wind speed built based on exogenous variables. • Non-linear models built using three data mining algorithms outperform the linear models. • Autoregressive models based on wind direction perform better than other models. - Abstract: Wind speed forecasting aids in estimating the energy produced from wind farms. The soaring energy demands of the world and minimal availability of conventional energy sources have significantly increased the role of non-conventional sources of energy like solar, wind, etc. Development of models for wind speed forecasting with higher reliability and greater accuracy is the need of the hour. In this paper, models for predicting wind speed at 10-min intervals up to 1 h have been built based on linear and non-linear autoregressive moving average models with and without external variables. The autoregressive moving average models based on wind direction and annual trends have been built using data obtained from Sotavento Galicia Plc. and autoregressive moving average models based on wind direction, wind shear and temperature have been built on data obtained from Centre for Wind Energy Technology, Chennai, India. While the parameters of the linear models are obtained using the Gauss–Newton algorithm, the non-linear autoregressive models are developed using three different data mining algorithms. The accuracy of the models has been measured using three performance metrics namely, the Mean Absolute Error, Root Mean Squared Error and Mean Absolute Percentage Error.
Applicability of linear and non-linear potential flow models on a Wavestar float
DEFF Research Database (Denmark)
Bozonnet, Pauline; Dupin, Victor; Tona, Paolino
2017-01-01
as a model based on non-linear potential flow theory and weakscatterer hypothesis are successively considered. Simple tests, such as dip tests, decay tests and captive tests enable to highlight the improvements obtained with the introduction of nonlinearities. Float motion under wave actions and without...... control action, limited to small amplitude motion with a single float, is well predicted by the numerical models, including the linear one. Still, float velocity is better predicted by accounting for non-linear hydrostatic and Froude-Krylov forces.......Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...
A linear model of population dynamics
Lushnikov, A. A.; Kagan, A. I.
2016-08-01
The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).
A test for the parameters of multiple linear regression models ...
African Journals Online (AJOL)
A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...
Modeling Non-Linear Material Properties in Composite Materials
2016-06-28
Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions
Reliability modelling and simulation of switched linear system ...
African Journals Online (AJOL)
Reliability modelling and simulation of switched linear system control using temporal databases. ... design of fault-tolerant real-time switching systems control and modelling embedded micro-schedulers for complex systems maintenance.
Multivariate statistical modelling based on generalized linear models
Fahrmeir, Ludwig
1994-01-01
This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...
Approximating chiral quark models with linear σ-models
International Nuclear Information System (INIS)
Broniowski, Wojciech; Golli, Bojan
2003-01-01
We study the approximation of chiral quark models with simpler models, obtained via gradient expansion. The resulting Lagrangian of the type of the linear σ-model contains, at the lowest level of the gradient-expanded meson action, an additional term of the form ((1)/(2))A(σ∂ μ σ+π∂ μ π) 2 . We investigate the dynamical consequences of this term and its relevance to the phenomenology of the soliton models of the nucleon. It is found that the inclusion of the new term allows for a more efficient approximation of the underlying quark theory, especially in those cases where dynamics allows for a large deviation of the chiral fields from the chiral circle, such as in quark models with non-local regulators. This is of practical importance, since the σ-models with valence quarks only are technically much easier to treat and simpler to solve than the quark models with the full-fledged Dirac sea
Latent log-linear models for handwritten digit classification.
Deselaers, Thomas; Gass, Tobias; Heigold, Georg; Ney, Hermann
2012-06-01
We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain competitive results with models proposed in the literature.
Casellas, J; Bach, R
2012-06-01
Lambing interval is a relevant reproductive indicator for sheep populations under continuous mating systems, although there is a shortage of selection programs accounting for this trait in the sheep industry. Both the historical assumption of small genetic background and its unorthodox distribution pattern have limited its implementation as a breeding objective. In this manuscript, statistical performances of 3 alternative parametrizations [i.e., symmetric Gaussian mixed linear (GML) model, skew-Gaussian mixed linear (SGML) model, and piecewise Weibull proportional hazard (PWPH) model] have been compared to elucidate the preferred methodology to handle lambing interval data. More specifically, flock-by-flock analyses were performed on 31,986 lambing interval records (257.3 ± 0.2 d) from 6 purebred Ripollesa flocks. Model performances were compared in terms of deviance information criterion (DIC) and Bayes factor (BF). For all flocks, PWPH models were clearly preferred; they generated a reduction of 1,900 or more DIC units and provided BF estimates larger than 100 (i.e., PWPH models against linear models). These differences were reduced when comparing PWPH models with different number of change points for the baseline hazard function. In 4 flocks, only 2 change points were required to minimize the DIC, whereas 4 and 6 change points were needed for the 2 remaining flocks. These differences demonstrated a remarkable degree of heterogeneity across sheep flocks that must be properly accounted for in genetic evaluation models to avoid statistical biases and suboptimal genetic trends. Within this context, all 6 Ripollesa flocks revealed substantial genetic background for lambing interval with heritabilities ranging between 0.13 and 0.19. This study provides the first evidence of the suitability of PWPH models for lambing interval analysis, clearly discarding previous parametrizations focused on mixed linear models.
Linear Regression Models for Estimating True Subsurface ...
Indian Academy of Sciences (India)
47
The objective is to minimize the processing time and computer memory required. 10 to carry out inversion .... to the mainland by two long bridges. .... term. In this approach, the model converges when the squared sum of the differences. 143.
Numerical modelling in non linear fracture mechanics
Directory of Open Access Journals (Sweden)
Viggo Tvergaard
2007-07-01
Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.
Random effect selection in generalised linear models
DEFF Research Database (Denmark)
Denwood, Matt; Houe, Hans; Forkman, Björn
We analysed abattoir recordings of meat inspection codes with possible relevance to onfarm animal welfare in cattle. Random effects logistic regression models were used to describe individual-level data obtained from 461,406 cattle slaughtered in Denmark. Our results demonstrate that the largest...
Model Order Reduction for Non Linear Mechanics
Pinillo, Rubén
2017-01-01
Context: Automotive industry is moving towards a new generation of cars. Main idea: Cars are furnished with radars, cameras, sensors, etc… providing useful information about the environment surrounding the car. Goals: Provide an efficient model for the radar input/output. Reducing computational costs by means of big data techniques.
Identification of Influential Points in a Linear Regression Model
Directory of Open Access Journals (Sweden)
Jan Grosz
2011-03-01
Full Text Available The article deals with the detection and identification of influential points in the linear regression model. Three methods of detection of outliers and leverage points are described. These procedures can also be used for one-sample (independentdatasets. This paper briefly describes theoretical aspects of several robust methods as well. Robust statistics is a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. A simulation model of the simple linear regression is presented.
Heterotic sigma models and non-linear strings
International Nuclear Information System (INIS)
Hull, C.M.
1986-01-01
The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)
Linear latent variable models: the lava-package
DEFF Research Database (Denmark)
Holst, Klaus Kähler; Budtz-Jørgensen, Esben
2013-01-01
are implemented including robust standard errors for clustered correlated data, multigroup analyses, non-linear parameter constraints, inference with incomplete data, maximum likelihood estimation with censored and binary observations, and instrumental variable estimators. In addition an extensive simulation......An R package for specifying and estimating linear latent variable models is presented. The philosophy of the implementation is to separate the model specification from the actual data, which leads to a dynamic and easy way of modeling complex hierarchical structures. Several advanced features...
On-line control models for the Stanford Linear Collider
International Nuclear Information System (INIS)
Sheppard, J.C.; Helm, R.H.; Lee, M.J.; Woodley, M.D.
1983-03-01
Models for computer control of the SLAC three-kilometer linear accelerator and damping rings have been developed as part of the control system for the Stanford Linear Collider. Some of these models have been tested experimentally and implemented in the control program for routine linac operations. This paper will describe the development and implementation of these models, as well as some of the operational results
Bayesian Subset Modeling for High-Dimensional Generalized Linear Models
Liang, Faming
2013-06-01
This article presents a new prior setting for high-dimensional generalized linear models, which leads to a Bayesian subset regression (BSR) with the maximum a posteriori model approximately equivalent to the minimum extended Bayesian information criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening and consistency with the existing sure independence screening (SIS) and iterative sure independence screening (ISIS) procedures. However, since the proposed procedure makes use of joint information from all predictors, it generally outperforms SIS and ISIS in real applications. This article also makes extensive comparisons of BSR with the popular penalized likelihood methods, including Lasso, elastic net, SIS, and ISIS. The numerical results indicate that BSR can generally outperform the penalized likelihood methods. The models selected by BSR tend to be sparser and, more importantly, of higher prediction ability. In addition, the performance of the penalized likelihood methods tends to deteriorate as the number of predictors increases, while this is not significant for BSR. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Zhang, Chao; Yao, Huajian; Liu, Qinya; Zhang, Ping; Yuan, Yanhua O.; Feng, Jikun; Fang, Lihua
2018-01-01
We present a 2-D ambient noise adjoint tomography technique for a linear array with a significant reduction in computational cost and show its application to an array in North China. We first convert the observed data for 3-D media, i.e., surface-wave empirical Green's functions (EGFs) to the reconstructed EGFs (REGFs) for 2-D media using a 3-D/2-D transformation scheme. Different from the conventional steps of measuring phase dispersion, this technology refines 2-D shear wave speeds along the profile directly from REGFs. With an initial model based on traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime delays between the REGFs and synthetic Green functions calculated by the spectral-element method. The multitaper traveltime difference measurement is applied in four-period bands: 20-35 s, 15-30 s, 10-20 s, and 6-15 s. The recovered model shows detailed crustal structures including pronounced low-velocity anomalies in the lower crust and a gradual crust-mantle transition zone beneath the northern Trans-North China Orogen, which suggest the possible intense thermo-chemical interactions between mantle-derived upwelling melts and the lower crust, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of this region. To our knowledge, it is the first time that ambient noise adjoint tomography is implemented for a 2-D medium. Compared with the intensive computational cost and storage requirement of 3-D adjoint tomography, this method offers a computationally efficient and inexpensive alternative to imaging fine-scale crustal structures beneath linear arrays.
Generalized Linear Models with Applications in Engineering and the Sciences
Myers, Raymond H; Vining, G Geoffrey; Robinson, Timothy J
2012-01-01
Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities."-Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Ma
Modelling a linear PM motor including magnetic saturation
Polinder, H.; Slootweg, J.G.; Compter, J.C.; Hoeijmakers, M.J.
2002-01-01
The use of linear permanent-magnet (PM) actuators increases in a wide variety of applications because of the high force density, robustness and accuracy. The paper describes the modelling of a linear PM motor applied in, for example, wafer steppers, including magnetic saturation. This is important
Application of the simplex method of linear programming model to ...
African Journals Online (AJOL)
This work discussed how the simplex method of linear programming could be used to maximize the profit of any business firm using Saclux Paint Company as a case study. It equally elucidated the effect variation in the optimal result obtained from linear programming model, will have on any given firm. It was demonstrated ...
Genetic parameters for racing records in trotters using linear and generalized linear models.
Suontama, M; van der Werf, J H J; Juga, J; Ojala, M
2012-09-01
Heritability and repeatability and genetic and phenotypic correlations were estimated for trotting race records with linear and generalized linear models using 510,519 records on 17,792 Finnhorses and 513,161 records on 25,536 Standardbred trotters. Heritability and repeatability were estimated for single racing time and earnings traits with linear models, and logarithmic scale was used for racing time and fourth-root scale for earnings to correct for nonnormality. Generalized linear models with a gamma distribution were applied for single racing time and with a multinomial distribution for single earnings traits. In addition, genetic parameters for annual earnings were estimated with linear models on the observed and fourth-root scales. Racing success traits of single placings, winnings, breaking stride, and disqualifications were analyzed using generalized linear models with a binomial distribution. Estimates of heritability were greatest for racing time, which ranged from 0.32 to 0.34. Estimates of heritability were low for single earnings with all distributions, ranging from 0.01 to 0.09. Annual earnings were closer to normal distribution than single earnings. Heritability estimates were moderate for annual earnings on the fourth-root scale, 0.19 for Finnhorses and 0.27 for Standardbred trotters. Heritability estimates for binomial racing success variables ranged from 0.04 to 0.12, being greatest for winnings and least for breaking stride. Genetic correlations among racing traits were high, whereas phenotypic correlations were mainly low to moderate, except correlations between racing time and earnings were high. On the basis of a moderate heritability and moderate to high repeatability for racing time and annual earnings, selection of horses for these traits is effective when based on a few repeated records. Because of high genetic correlations, direct selection for racing time and annual earnings would also result in good genetic response in racing success.
Linear approximation model network and its formation via ...
Indian Academy of Sciences (India)
niques, an alternative `linear approximation model' (LAM) network approach is .... network is LPV, existing LTI theory is difficult to apply (Kailath 1980). ..... Beck J V, Arnold K J 1977 Parameter estimation in engineering and science (New York: ...
Sphaleron in a non-linear sigma model
International Nuclear Information System (INIS)
Sogo, Kiyoshi; Fujimoto, Yasushi.
1989-08-01
We present an exact classical saddle point solution in a non-linear sigma model. It has a topological charge 1/2 and mediates the vacuum transition. The quantum fluctuations and the transition rate are also examined. (author)
On D-branes from gauged linear sigma models
International Nuclear Information System (INIS)
Govindarajan, S.; Jayaraman, T.; Sarkar, T.
2001-01-01
We study both A-type and B-type D-branes in the gauged linear sigma model by considering worldsheets with boundary. The boundary conditions on the matter and vector multiplet fields are first considered in the large-volume phase/non-linear sigma model limit of the corresponding Calabi-Yau manifold, where we find that we need to add a contact term on the boundary. These considerations enable to us to derive the boundary conditions in the full gauged linear sigma model, including the addition of the appropriate boundary contact terms, such that these boundary conditions have the correct non-linear sigma model limit. Most of the analysis is for the case of Calabi-Yau manifolds with one Kaehler modulus (including those corresponding to hypersurfaces in weighted projective space), though we comment on possible generalisations
Optimization for decision making linear and quadratic models
Murty, Katta G
2010-01-01
While maintaining the rigorous linear programming instruction required, Murty's new book is unique in its focus on developing modeling skills to support valid decision-making for complex real world problems, and includes solutions to brand new algorithms.
Study of linear induction motor characteristics : the Mosebach model
1976-05-31
This report covers the Mosebach theory of the double-sided linear induction motor, starting with the ideallized model and accompanying assumptions, and ending with relations for thrust, airgap power, and motor efficiency. Solutions of the magnetic in...
Study of linear induction motor characteristics : the Oberretl model
1975-05-30
The Oberretl theory of the double-sided linear induction motor (LIM) is examined, starting with the idealized model and accompanying assumptions, and ending with relations for predicted thrust, airgap power, and motor efficiency. The effect of varyin...
Optimization Research of Generation Investment Based on Linear Programming Model
Wu, Juan; Ge, Xueqian
Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.
Generalized linear mixed models modern concepts, methods and applications
Stroup, Walter W
2012-01-01
PART I The Big PictureModeling BasicsWhat Is a Model?Two Model Forms: Model Equation and Probability DistributionTypes of Model EffectsWriting Models in Matrix FormSummary: Essential Elements for a Complete Statement of the ModelDesign MattersIntroductory Ideas for Translating Design and Objectives into ModelsDescribing ""Data Architecture"" to Facilitate Model SpecificationFrom Plot Plan to Linear PredictorDistribution MattersMore Complex Example: Multiple Factors with Different Units of ReplicationSetting the StageGoals for Inference with Models: OverviewBasic Tools of InferenceIssue I: Data
A comparison of linear tyre models for analysing shimmy
Besselink, I.J.M.; Maas, J.W.L.H.; Nijmeijer, H.
2011-01-01
A comparison is made between three linear, dynamic tyre models using low speed step responses and yaw oscillation tests. The match with the measurements improves with increasing complexity of the tyre model. Application of the different tyre models to a two degree of freedom trailing arm suspension
A BEHAVIORAL-APPROACH TO LINEAR EXACT MODELING
ANTOULAS, AC; WILLEMS, JC
1993-01-01
The behavioral approach to system theory provides a parameter-free framework for the study of the general problem of linear exact modeling and recursive modeling. The main contribution of this paper is the solution of the (continuous-time) polynomial-exponential time series modeling problem. Both
Linearized models for a new magnetic control in MAST
Energy Technology Data Exchange (ETDEWEB)
Artaserse, G., E-mail: giovanni.artaserse@enea.it [Associazione Euratom-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Maviglia, F.; Albanese, R. [Associazione Euratom-ENEA-CREATE sulla Fusione, Via Claudio 21, I-80125 Napoli (Italy); McArdle, G.J.; Pangione, L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)
2013-10-15
Highlights: ► We applied linearized models for a new magnetic control on MAST tokamak. ► A suite of procedures, conceived to be machine independent, have been used. ► We carried out model-based simulations, taking into account eddy currents effects. ► Comparison with the EFIT flux maps and the experimental magnetic signals are shown. ► A current driven model for the dynamic simulations of the experimental data have been performed. -- Abstract: The aim of this work is to provide reliable linearized models for the design and assessment of a new magnetic control system for MAST (Mega Ampère Spherical Tokamak) using rtEFIT, which can easily be exported to MAST Upgrade. Linearized models for magnetic control have been obtained using the 2D axisymmetric finite element code CREATE L. MAST linearized models include equivalent 2D axisymmetric schematization of poloidal field (PF) coils, vacuum vessel, and other conducting structures. A plasmaless and a double null configuration have been chosen as benchmark cases for the comparison with experimental data and EFIT reconstructions. Good agreement has been found with the EFIT flux map and the experimental signals coming from magnetic probes with only few mismatches probably due to broken sensors. A suite of procedures (equipped with a user friendly interface to be run even remotely) to provide linearized models for magnetic control is now available on the MAST linux machines. A new current driven model has been used to obtain a state space model having the PF coil currents as inputs. Dynamic simulations of experimental data have been carried out using linearized models, including modelling of the effects of the passive structures, showing a fair agreement. The modelling activity has been useful also to reproduce accurately the interaction between plasma current and radial position control loops.
Linearized models for a new magnetic control in MAST
International Nuclear Information System (INIS)
Artaserse, G.; Maviglia, F.; Albanese, R.; McArdle, G.J.; Pangione, L.
2013-01-01
Highlights: ► We applied linearized models for a new magnetic control on MAST tokamak. ► A suite of procedures, conceived to be machine independent, have been used. ► We carried out model-based simulations, taking into account eddy currents effects. ► Comparison with the EFIT flux maps and the experimental magnetic signals are shown. ► A current driven model for the dynamic simulations of the experimental data have been performed. -- Abstract: The aim of this work is to provide reliable linearized models for the design and assessment of a new magnetic control system for MAST (Mega Ampère Spherical Tokamak) using rtEFIT, which can easily be exported to MAST Upgrade. Linearized models for magnetic control have been obtained using the 2D axisymmetric finite element code CREATE L. MAST linearized models include equivalent 2D axisymmetric schematization of poloidal field (PF) coils, vacuum vessel, and other conducting structures. A plasmaless and a double null configuration have been chosen as benchmark cases for the comparison with experimental data and EFIT reconstructions. Good agreement has been found with the EFIT flux map and the experimental signals coming from magnetic probes with only few mismatches probably due to broken sensors. A suite of procedures (equipped with a user friendly interface to be run even remotely) to provide linearized models for magnetic control is now available on the MAST linux machines. A new current driven model has been used to obtain a state space model having the PF coil currents as inputs. Dynamic simulations of experimental data have been carried out using linearized models, including modelling of the effects of the passive structures, showing a fair agreement. The modelling activity has been useful also to reproduce accurately the interaction between plasma current and radial position control loops
H∞ /H2 model reduction through dilated linear matrix inequalities
DEFF Research Database (Denmark)
Adegas, Fabiano Daher; Stoustrup, Jakob
2012-01-01
This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the $H_{infty}$ and $H_{2}$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order $n$ to be reduced to an order $r=n/s$ where $n,r,s in field{N}$. Arb......This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the $H_{infty}$ and $H_{2}$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order $n$ to be reduced to an order $r=n/s$ where $n,r,s in field...
Non-linear Growth Models in Mplus and SAS
Grimm, Kevin J.; Ram, Nilam
2013-01-01
Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134
Variance Function Partially Linear Single-Index Models1.
Lian, Heng; Liang, Hua; Carroll, Raymond J
2015-01-01
We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.
A comparison of linear interpolation models for iterative CT reconstruction.
Hahn, Katharina; Schöndube, Harald; Stierstorfer, Karl; Hornegger, Joachim; Noo, Frédéric
2016-12-01
Recent reports indicate that model-based iterative reconstruction methods may improve image quality in computed tomography (CT). One difficulty with these methods is the number of options available to implement them, including the selection of the forward projection model and the penalty term. Currently, the literature is fairly scarce in terms of guidance regarding this selection step, whereas these options impact image quality. Here, the authors investigate the merits of three forward projection models that rely on linear interpolation: the distance-driven method, Joseph's method, and the bilinear method. The authors' selection is motivated by three factors: (1) in CT, linear interpolation is often seen as a suitable trade-off between discretization errors and computational cost, (2) the first two methods are popular with manufacturers, and (3) the third method enables assessing the importance of a key assumption in the other methods. One approach to evaluate forward projection models is to inspect their effect on discretized images, as well as the effect of their transpose on data sets, but significance of such studies is unclear since the matrix and its transpose are always jointly used in iterative reconstruction. Another approach is to investigate the models in the context they are used, i.e., together with statistical weights and a penalty term. Unfortunately, this approach requires the selection of a preferred objective function and does not provide clear information on features that are intrinsic to the model. The authors adopted the following two-stage methodology. First, the authors analyze images that progressively include components of the singular value decomposition of the model in a reconstructed image without statistical weights and penalty term. Next, the authors examine the impact of weights and penalty on observed differences. Image quality metrics were investigated for 16 different fan-beam imaging scenarios that enabled probing various aspects
Comparison between linear quadratic and early time dose models
International Nuclear Information System (INIS)
Chougule, A.A.; Supe, S.J.
1993-01-01
During the 70s, much interest was focused on fractionation in radiotherapy with the aim of improving tumor control rate without producing unacceptable normal tissue damage. To compare the radiobiological effectiveness of various fractionation schedules, empirical formulae such as Nominal Standard Dose, Time Dose Factor, Cumulative Radiation Effect and Tumour Significant Dose, were introduced and were used despite many shortcomings. It has been claimed that a recent linear quadratic model is able to predict the radiobiological responses of tumours as well as normal tissues more accurately. We compared Time Dose Factor and Tumour Significant Dose models with the linear quadratic model for tumour regression in patients with carcinomas of the cervix. It was observed that the prediction of tumour regression estimated by the Tumour Significant Dose and Time Dose factor concepts varied by 1.6% from that of the linear quadratic model prediction. In view of the lack of knowledge of the precise values of the parameters of the linear quadratic model, it should be applied with caution. One can continue to use the Time Dose Factor concept which has been in use for more than a decade as its results are within ±2% as compared to that predicted by the linear quadratic model. (author). 11 refs., 3 figs., 4 tabs
Phylogenetic mixtures and linear invariants for equal input models.
Casanellas, Marta; Steel, Mike
2017-04-01
The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).
Non-linear calibration models for near infrared spectroscopy
DEFF Research Database (Denmark)
Ni, Wangdong; Nørgaard, Lars; Mørup, Morten
2014-01-01
by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear...... models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS......-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration...
Estimation and variable selection for generalized additive partial linear models
Wang, Li
2011-08-01
We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.
Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure
Yang, Zhi; Hemar, Yacine; Hilliou, loic; Gilbert, Elliot P.; McGillivray, Duncan James; Williams, Martin A. K.; Chaieb, Saharoui
2015-01-01
We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.
Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure
Yang, Zhi
2015-12-14
We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.
Matrix model and time-like linear dila ton matter
International Nuclear Information System (INIS)
Takayanagi, Tadashi
2004-01-01
We consider a matrix model description of the 2d string theory whose matter part is given by a time-like linear dilaton CFT. This is equivalent to the c=1 matrix model with a deformed, but very simple Fermi surface. Indeed, after a Lorentz transformation, the corresponding 2d spacetime is a conventional linear dila ton background with a time-dependent tachyon field. We show that the tree level scattering amplitudes in the matrix model perfectly agree with those computed in the world-sheet theory. The classical trajectories of fermions correspond to the decaying D-boranes in the time-like linear dilaton CFT. We also discuss the ground ring structure. Furthermore, we study the properties of the time-like Liouville theory by applying this matrix model description. We find that its ground ring structure is very similar to that of the minimal string. (author)
Vortices, semi-local vortices in gauged linear sigma model
International Nuclear Information System (INIS)
Kim, Namkwon
1998-11-01
We consider the static (2+1)D gauged linear sigma model. By analyzing the governing system of partial differential equations, we investigate various aspects of the model. We show the existence of energy finite vortices under a partially broken symmetry on R 2 with the necessary condition suggested by Y. Yang. We also introduce generalized semi-local vortices and show the existence of energy finite semi-local vortices under a certain condition. The vacuum manifold for the semi-local vortices turns out to be graded. Besides, with a special choice of a representation, we show that the O(3) sigma model of which target space is nonlinear is a singular limit of the gauged linear sigma model of which target space is linear. (author)
TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS
Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.
2017-01-01
Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971
Linear mixed models a practical guide using statistical software
West, Brady T; Galecki, Andrzej T
2006-01-01
Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-navigate reference details the use of procedures for fitting LMMs in five popular statistical software packages: SAS, SPSS, Stata, R/S-plus, and HLM. The authors introduce basic theoretical concepts, present a heuristic approach to fitting LMMs based on bo
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
Optical linear algebra processors - Noise and error-source modeling
Casasent, D.; Ghosh, A.
1985-01-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Optical linear algebra processors: noise and error-source modeling.
Casasent, D; Ghosh, A
1985-06-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
CONTRIBUTIONS TO THE FINITE ELEMENT MODELING OF LINEAR ULTRASONIC MOTORS
Directory of Open Access Journals (Sweden)
Oana CHIVU
2013-05-01
Full Text Available The present paper is concerned with the main modeling elements as produced by means of thefinite element method of linear ultrasonic motors. Hence, first the model is designed and then a modaland harmonic analysis are carried out in view of outlining the main outcomes
Linear and Nonlinear Career Models: Metaphors, Paradigms, and Ideologies.
Buzzanell, Patrice M.; Goldzwig, Steven R.
1991-01-01
Examines the linear or bureaucratic career models (dominant in career research, metaphors, paradigms, and ideologies) which maintain career myths of flexibility and individualized routes to success in organizations incapable of offering such versatility. Describes nonlinear career models which offer suggestive metaphors for re-visioning careers…
Low-energy limit of the extended Linear Sigma Model
Energy Technology Data Exchange (ETDEWEB)
Divotgey, Florian [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Kovacs, Peter [Wigner Research Center for Physics, Hungarian Academy of Sciences, Institute for Particle and Nuclear Physics, Budapest (Hungary); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute, Darmstadt (Germany); Giacosa, Francesco [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Jan-Kochanowski University, Institute of Physics, Kielce (Poland); Rischke, Dirk H. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); University of Science and Technology of China, Interdisciplinary Center for Theoretical Study and Department of Modern Physics, Hefei, Anhui (China)
2018-01-15
The extended Linear Sigma Model is an effective hadronic model based on the linear realization of chiral symmetry SU(N{sub f}){sub L} x SU(N{sub f}){sub R}, with (pseudo)scalar and (axial-)vector mesons as degrees of freedom. In this paper, we study the low-energy limit of the extended Linear Sigma Model (eLSM) for N{sub f} = flavors by integrating out all fields except for the pions, the (pseudo-)Nambu-Goldstone bosons of chiral symmetry breaking. The resulting low-energy effective action is identical to Chiral Perturbation Theory (ChPT) after choosing a representative for the coset space generated by chiral symmetry breaking and expanding it in powers of (derivatives of) the pion fields. The tree-level values of the coupling constants of the effective low-energy action agree remarkably well with those of ChPT. (orig.)
Linear Power-Flow Models in Multiphase Distribution Networks: Preprint
Energy Technology Data Exchange (ETDEWEB)
Bernstein, Andrey; Dall' Anese, Emiliano
2017-05-26
This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.
Generation companies decision-making modeling by linear control theory
International Nuclear Information System (INIS)
Gutierrez-Alcaraz, G.; Sheble, Gerald B.
2010-01-01
This paper proposes four decision-making procedures to be employed by electric generating companies as part of their bidding strategies when competing in an oligopolistic market: naive, forward, adaptive, and moving average expectations. Decision-making is formulated in a dynamic framework by using linear control theory. The results reveal that interactions among all GENCOs affect market dynamics. Several numerical examples are reported, and conclusions are presented. (author)
Modelling and measurement of a moving magnet linear compressor performance
International Nuclear Information System (INIS)
Liang, Kun; Stone, Richard; Davies, Gareth; Dadd, Mike; Bailey, Paul
2014-01-01
A novel moving magnet linear compressor with clearance seals and flexure bearings has been designed and constructed. It is suitable for a refrigeration system with a compact heat exchanger, such as would be needed for CPU cooling. The performance of the compressor has been experimentally evaluated with nitrogen and a mathematical model has been developed to evaluate the performance of the linear compressor. The results from the compressor model and the measurements have been compared in terms of cylinder pressure, the ‘P–V’ loop, stroke, mass flow rate and shaft power. The cylinder pressure was not measured directly but was derived from the compressor dynamics and the motor magnetic force characteristics. The comparisons indicate that the compressor model is well validated and can be used to study the performance of this type of compressor, to help with design optimization and the identification of key parameters affecting the system transients. The electrical and thermodynamic losses were also investigated, particularly for the design point (stroke of 13 mm and pressure ratio of 3.0), since a full understanding of these can lead to an increase in compressor efficiency. - Highlights: • Model predictions of the performance of a novel moving magnet linear compressor. • Prototype linear compressor performance measurements using nitrogen. • Reconstruction of P–V loops using a model of the dynamics and electromagnetics. • Close agreement between the model and measurements for the P–V loops. • The design point motor efficiency was 74%, with potential improvements identified
The minimal linear σ model for the Goldstone Higgs
International Nuclear Information System (INIS)
Feruglio, F.; Gavela, M.B.; Kanshin, K.; Machado, P.A.N.; Rigolin, S.; Saa, S.
2016-01-01
In the context of the minimal SO(5) linear σ-model, a complete renormalizable Lagrangian -including gauge bosons and fermions- is considered, with the symmetry softly broken to SO(4). The scalar sector describes both the electroweak Higgs doublet and the singlet σ. Varying the σ mass would allow to sweep from the regime of perturbative ultraviolet completion to the non-linear one assumed in models in which the Higgs particle is a low-energy remnant of some strong dynamics. We analyze the phenomenological implications and constraints from precision observables and LHC data. Furthermore, we derive the d≤6 effective Lagrangian in the limit of heavy exotic fermions.
A variational formulation for linear models in coupled dynamic thermoelasticity
International Nuclear Information System (INIS)
Feijoo, R.A.; Moura, C.A. de.
1981-07-01
A variational formulation for linear models in coupled dynamic thermoelasticity which quite naturally motivates the design of a numerical scheme for the problem, is studied. When linked to regularization or penalization techniques, this algorithm may be applied to more general models, namely, the ones that consider non-linear constraints associated to variational inequalities. The basic postulates of Mechanics and Thermodynamics as well as some well-known mathematical techniques are described. A thorough description of the algorithm implementation with the finite-element method is also provided. Proofs for existence and uniqueness of solutions and for convergence of the approximations are presented, and some numerical results are exhibited. (Author) [pt
DEFF Research Database (Denmark)
Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian
2014-01-01
In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...
Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables
Henson, Robert A.; Templin, Jonathan L.; Willse, John T.
2009-01-01
This paper uses log-linear models with latent variables (Hagenaars, in "Loglinear Models with Latent Variables," 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for…
Revealing the equivalence of two clonal survival models by principal component analysis
International Nuclear Information System (INIS)
Lachet, Bernard; Dufour, Jacques
1976-01-01
The principal component analysis of 21 chlorella cell survival curves, adjusted by one-hit and two-hit target models, lead to quite similar projections on the principal plan: the homologous parameters of these models are linearly correlated; the reason for the statistical equivalence of these two models, in the present state of experimental inaccuracy, is revealed [fr
Functional linear models for association analysis of quantitative traits.
Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao
2013-11-01
Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY
Practical likelihood analysis for spatial generalized linear mixed models
DEFF Research Database (Denmark)
Bonat, W. H.; Ribeiro, Paulo Justiniano
2016-01-01
We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are......, respectively, examples of binomial and count datasets modeled by spatial generalized linear mixed models. Our results show that the Laplace approximation provides similar estimates to Markov Chain Monte Carlo likelihood, Monte Carlo expectation maximization, and modified Laplace approximation. Some advantages...... of Laplace approximation include the computation of the maximized log-likelihood value, which can be used for model selection and tests, and the possibility to obtain realistic confidence intervals for model parameters based on profile likelihoods. The Laplace approximation also avoids the tuning...
Stochastic modeling of mode interactions via linear parabolized stability equations
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo
2017-11-01
Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.
Linear modeling of possible mechanisms for parkinson tremor generation
Lohnberg, P.
1978-01-01
The power of Parkinson tremor is expressed in terms of possibly changed frequency response functions between relevant variables in the neuromuscular system. The derivation starts out from a linear loopless equivalent model of mechanisms for general tremor generation. Hypothetical changes in this
Current algebra of classical non-linear sigma models
International Nuclear Information System (INIS)
Forger, M.; Laartz, J.; Schaeper, U.
1992-01-01
The current algebra of classical non-linear sigma models on arbitrary Riemannian manifolds is analyzed. It is found that introducing, in addition to the Noether current j μ associated with the global symmetry of the theory, a composite scalar field j, the algebra closes under Poisson brackets. (orig.)
Mathematical modelling and linear stability analysis of laser fusion cutting
International Nuclear Information System (INIS)
Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich
2016-01-01
A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.
Non Linear signa models probing the string structure
International Nuclear Information System (INIS)
Abdalla, E.
1987-01-01
The introduction of a term depending on the extrinsic curvature to the string action, and related non linear sigma models defined on a symmetric space SO(D)/SO(2) x SO(d-2) is descussed . Coupling to fermions are also treated. (author) [pt
Confidence Intervals for Assessing Heterogeneity in Generalized Linear Mixed Models
Wagler, Amy E.
2014-01-01
Generalized linear mixed models are frequently applied to data with clustered categorical outcomes. The effect of clustering on the response is often difficult to practically assess partly because it is reported on a scale on which comparisons with regression parameters are difficult to make. This article proposes confidence intervals for…
Penalized Estimation in Large-Scale Generalized Linear Array Models
DEFF Research Database (Denmark)
Lund, Adam; Vincent, Martin; Hansen, Niels Richard
2017-01-01
Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...
Expressions for linearized perturbations in ideal-fluid cosmological models
International Nuclear Information System (INIS)
Ratra, B.
1988-01-01
We present closed-form solutions of the relativistic linear perturbation equations (in synchronous gauge) that govern the evolution of inhomogeneities in homogeneous, spatially flat, ideal-fluid, cosmological models. These expressions, which are valid for irregularities on any scale, allow one to analytically interpolate between the known approximate solutions which are valid at early times and at late times
S-AMP for non-linear observation models
DEFF Research Database (Denmark)
Cakmak, Burak; Winther, Ole; Fleury, Bernard H.
2015-01-01
Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...
Plane answers to complex questions the theory of linear models
Christensen, Ronald
1987-01-01
This book was written to rigorously illustrate the practical application of the projective approach to linear models. To some, this may seem contradictory. I contend that it is possible to be both rigorous and illustrative and that it is possible to use the projective approach in practical applications. Therefore, unlike many other books on linear models, the use of projections and sub spaces does not stop after the general theory. They are used wherever I could figure out how to do it. Solving normal equations and using calculus (outside of maximum likelihood theory) are anathema to me. This is because I do not believe that they contribute to the understanding of linear models. I have similar feelings about the use of side conditions. Such topics are mentioned when appropriate and thenceforward avoided like the plague. On the other side of the coin, I just as strenuously reject teaching linear models with a coordinate free approach. Although Joe Eaton assures me that the issues in complicated problems freq...
A simulation model of a coordinated decentralized linear supply chain
Ashayeri, Jalal; Cannella, S.; Lopez Campos, M.; Miranda, P.A.
2015-01-01
This paper presents a simulation-based study of a coordinated, decentralized linear supply chain (SC) system. In the proposed model, any supply tier considers its successors as part of its inventory system and generates replenishment orders on the basis of its partners’ operational information. We
Mathematical modelling and linear stability analysis of laser fusion cutting
Energy Technology Data Exchange (ETDEWEB)
Hermanns, Torsten; Schulz, Wolfgang [RWTH Aachen University, Chair for Nonlinear Dynamics, Steinbachstr. 15, 52047 Aachen (Germany); Vossen, Georg [Niederrhein University of Applied Sciences, Chair for Applied Mathematics and Numerical Simulations, Reinarzstr.. 49, 47805 Krefeld (Germany); Thombansen, Ulrich [RWTH Aachen University, Chair for Laser Technology, Steinbachstr. 15, 52047 Aachen (Germany)
2016-06-08
A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.
A non-linear dissipative model of magnetism
Czech Academy of Sciences Publication Activity Database
Durand, P.; Paidarová, Ivana
2010-01-01
Roč. 89, č. 6 (2010), s. 67004 ISSN 1286-4854 R&D Projects: GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : non-linear dissipative model of magnetism * thermodynamics * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry http://epljournal.edpsciences.org/
Modeling and verifying non-linearities in heterodyne displacement interferometry
Cosijns, S.J.A.G.; Haitjema, H.; Schellekens, P.H.J.
2002-01-01
The non-linearities in a heterodyne laser interferometer system occurring from the phase measurement system of the interferometer andfrom non-ideal polarization effects of the optics are modeled into one analytical expression which includes the initial polarization state ofthe laser source, the
DEFF Research Database (Denmark)
Holst, René; Jørgensen, Bent
2015-01-01
The paper proposes a versatile class of multiplicative generalized linear longitudinal mixed models (GLLMM) with additive dispersion components, based on explicit modelling of the covariance structure. The class incorporates a longitudinal structure into the random effects models and retains...... a marginal as well as a conditional interpretation. The estimation procedure is based on a computationally efficient quasi-score method for the regression parameters combined with a REML-like bias-corrected Pearson estimating function for the dispersion and correlation parameters. This avoids...... the multidimensional integral of the conventional GLMM likelihood and allows an extension of the robust empirical sandwich estimator for use with both association and regression parameters. The method is applied to a set of otholit data, used for age determination of fish....
Identifiability Results for Several Classes of Linear Compartment Models.
Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa
2015-08-01
Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.
Finite element modeling of nanotube structures linear and non-linear models
Awang, Mokhtar; Muhammad, Ibrahim Dauda
2016-01-01
This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.
Linear Dynamics Model for Steam Cooled Fast Power Reactors
Energy Technology Data Exchange (ETDEWEB)
Vollmer, H
1968-04-15
A linear analytical dynamic model is developed for steam cooled fast power reactors. All main components of such a plant are investigated on a general though relatively simple basis. The model is distributed in those parts concerning the core but lumped as to the external plant components. Coolant is considered as compressible and treated by the actual steam law. Combined use of analogue and digital computer seems most attractive.
Deterministic operations research models and methods in linear optimization
Rader, David J
2013-01-01
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations resear
One-loop dimensional reduction of the linear σ model
International Nuclear Information System (INIS)
Malbouisson, A.P.C.; Silva-Neto, M.B.; Svaiter, N.F.
1997-05-01
We perform the dimensional reduction of the linear σ model at one-loop level. The effective of the reduced theory obtained from the integration over the nonzero Matsubara frequencies is exhibited. Thermal mass and coupling constant renormalization constants are given, as well as the thermal renormalization group which controls the dependence of the counterterms on the temperature. We also recover, for the reduced theory, the vacuum instability of the model for large N. (author)
Artificial Neural Network versus Linear Models Forecasting Doha Stock Market
Yousif, Adil; Elfaki, Faiz
2017-12-01
The purpose of this study is to determine the instability of Doha stock market and develop forecasting models. Linear time series models are used and compared with a nonlinear Artificial Neural Network (ANN) namely Multilayer Perceptron (MLP) Technique. It aims to establish the best useful model based on daily and monthly data which are collected from Qatar exchange for the period starting from January 2007 to January 2015. Proposed models are for the general index of Qatar stock exchange and also for the usages in other several sectors. With the help of these models, Doha stock market index and other various sectors were predicted. The study was conducted by using various time series techniques to study and analyze data trend in producing appropriate results. After applying several models, such as: Quadratic trend model, double exponential smoothing model, and ARIMA, it was concluded that ARIMA (2,2) was the most suitable linear model for the daily general index. However, ANN model was found to be more accurate than time series models.
A linearized dispersion relation for orthorhombic pseudo-acoustic modeling
Song, Xiaolei; Alkhalifah, Tariq Ali
2012-01-01
Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen's parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.
Non-linear sigma model on the fuzzy supersphere
International Nuclear Information System (INIS)
Kurkcuoglu, Seckin
2004-01-01
In this note we develop fuzzy versions of the supersymmetric non-linear sigma model on the supersphere S (2,2) . In hep-th/0212133 Bott projectors have been used to obtain the fuzzy C P 1 model. Our approach utilizes the use of supersymmetric extensions of these projectors. Here we obtain these (super)-projectors and quantize them in a fashion similar to the one given in hep-th/0212133. We discuss the interpretation of the resulting model as a finite dimensional matrix model. (author)
Revealing Linear Aggregates of Light Harvesting Antenna Proteins in Photosynthetic Membranes
He, Yufan; Zeng, Xiaohua; Mukherjee, Saptarshi; Rajapaksha, Suneth; Kaplan, Samuel; Lu, H. Peter
2010-01-01
How light energy is harvested in a natural photosynthetic membrane through energy transfer is closely related to the stoichiometry and arrangement of light harvesting antenna proteins in the membrane. The specific photosynthetic architecture facilitates a rapid and efficient energy transfer among the light harvesting proteins (LH2 and LH1) and to the reaction center. Here we report the identification of linear aggregates of light harvesting proteins, LH2, in the photosynthetic membranes under...
Optimal difference-based estimation for partially linear models
Zhou, Yuejin; Cheng, Yebin; Dai, Wenlin; Tong, Tiejun
2017-01-01
Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.
Modeling and analysis of linear hyperbolic systems of balance laws
Bartecki, Krzysztof
2016-01-01
This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...
Optimal difference-based estimation for partially linear models
Zhou, Yuejin
2017-12-16
Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.
Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.
Kawashima, Issaku; Kumano, Hiroaki
2017-01-01
Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.
Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling
Directory of Open Access Journals (Sweden)
Issaku Kawashima
2017-07-01
Full Text Available Mind-wandering (MW, task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.
A penalized framework for distributed lag non-linear models.
Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G
2017-09-01
Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.
General mirror pairs for gauged linear sigma models
Energy Technology Data Exchange (ETDEWEB)
Aspinwall, Paul S.; Plesser, M. Ronen [Departments of Mathematics and Physics, Duke University,Box 90320, Durham, NC 27708-0320 (United States)
2015-11-05
We carefully analyze the conditions for an abelian gauged linear σ-model to exhibit nontrivial IR behavior described by a nonsingular superconformal field theory determining a superstring vacuum. This is done without reference to a geometric phase, by associating singular behavior to a noncompact space of (semi-)classical vacua. We find that models determined by reflexive combinatorial data are nonsingular for generic values of their parameters. This condition has the pleasant feature that the mirror of a nonsingular gauged linear σ-model is another such model, but it is clearly too strong and we provide an example of a non-reflexive mirror pair. We discuss a weaker condition inspired by considering extremal transitions, which is also mirror symmetric and which we conjecture to be sufficient. We apply these ideas to extremal transitions and to understanding the way in which both Berglund-Hübsch mirror symmetry and the Vafa-Witten mirror orbifold with discrete torsion can be seen as special cases of the general combinatorial duality of gauged linear σ-models. In the former case we encounter an example showing that our weaker condition is still not necessary.
General mirror pairs for gauged linear sigma models
International Nuclear Information System (INIS)
Aspinwall, Paul S.; Plesser, M. Ronen
2015-01-01
We carefully analyze the conditions for an abelian gauged linear σ-model to exhibit nontrivial IR behavior described by a nonsingular superconformal field theory determining a superstring vacuum. This is done without reference to a geometric phase, by associating singular behavior to a noncompact space of (semi-)classical vacua. We find that models determined by reflexive combinatorial data are nonsingular for generic values of their parameters. This condition has the pleasant feature that the mirror of a nonsingular gauged linear σ-model is another such model, but it is clearly too strong and we provide an example of a non-reflexive mirror pair. We discuss a weaker condition inspired by considering extremal transitions, which is also mirror symmetric and which we conjecture to be sufficient. We apply these ideas to extremal transitions and to understanding the way in which both Berglund-Hübsch mirror symmetry and the Vafa-Witten mirror orbifold with discrete torsion can be seen as special cases of the general combinatorial duality of gauged linear σ-models. In the former case we encounter an example showing that our weaker condition is still not necessary.
Robust Linear Models for Cis-eQTL Analysis.
Rantalainen, Mattias; Lindgren, Cecilia M; Holmes, Christopher C
2015-01-01
Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives), and to some extent also type I errors (false positives). Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.
International Nuclear Information System (INIS)
Anh, N.D.; Hieu, N.N.; Chung, P.N.; Anh, N.T.
2016-01-01
Highlights: • Linearization criteria are presented for a single-node model of satellite thermal. • A nonlinear algebraic system for linearization coefficients is obtained. • The temperature evolutions obtained from different methods are explored. • The temperature mean and amplitudes versus the heat capacity are discussed. • The dual criterion approach yields smaller errors than other approximate methods. - Abstract: In this paper, the method of equivalent linearization is extended to the thermal analysis of satellite using both conventional and dual criteria of linearization. These criteria are applied to a differential nonlinear equation of single-node model of the heat transfer of a small satellite in the Low Earth Orbit. A system of nonlinear algebraic equations for linearization coefficients is obtained in the closed form and then solved by the iteration method. The temperature evolution, average values and amplitudes versus the heat capacity obtained by various approaches including Runge–Kutta algorithm, conventional and dual criteria of equivalent linearization, and Grande's approach are compared together. Numerical results reveal that temperature responses obtained from the method of linearization and Grande's approach are quite close to those obtained from the Runge–Kutta method. The dual criterion yields smaller errors than those of the remaining methods when the nonlinearity of the system increases, namely, when the heat capacity varies in the range [1.0, 3.0] × 10 4 J K −1 .
Assessing Asset Pricing Models Using Revealed Preference
Jonathan B. Berk; Jules H. van Binsbergen
2014-01-01
We propose a new method of testing asset pricing models that relies on using quantities rather than prices or returns. We use the capital flows into and out of mutual funds to infer which risk model investors use. We derive a simple test statistic that allows us to infer, from a set of candidate models, the model that is closest to the model that investors use in making their capital allocation decisions. Using this methodology, we find that of the models most commonly used in the literature,...
Linear models for joint association and linkage QTL mapping
Directory of Open Access Journals (Sweden)
Fernando Rohan L
2009-09-01
Full Text Available Abstract Background Populational linkage disequilibrium and within-family linkage are commonly used for QTL mapping and marker assisted selection. The combination of both results in more robust and accurate locations of the QTL, but models proposed so far have been either single marker, complex in practice or well fit to a particular family structure. Results We herein present linear model theory to come up with additive effects of the QTL alleles in any member of a general pedigree, conditional to observed markers and pedigree, accounting for possible linkage disequilibrium among QTLs and markers. The model is based on association analysis in the founders; further, the additive effect of the QTLs transmitted to the descendants is a weighted (by the probabilities of transmission average of the substitution effects of founders' haplotypes. The model allows for non-complete linkage disequilibrium QTL-markers in the founders. Two submodels are presented: a simple and easy to implement Haley-Knott type regression for half-sib families, and a general mixed (variance component model for general pedigrees. The model can use information from all markers. The performance of the regression method is compared by simulation with a more complex IBD method by Meuwissen and Goddard. Numerical examples are provided. Conclusion The linear model theory provides a useful framework for QTL mapping with dense marker maps. Results show similar accuracies but a bias of the IBD method towards the center of the region. Computations for the linear regression model are extremely simple, in contrast with IBD methods. Extensions of the model to genomic selection and multi-QTL mapping are straightforward.
A Graphical User Interface to Generalized Linear Models in MATLAB
Directory of Open Access Journals (Sweden)
Peter Dunn
1999-07-01
Full Text Available Generalized linear models unite a wide variety of statistical models in a common theoretical framework. This paper discusses GLMLAB-software that enables such models to be fitted in the popular mathematical package MATLAB. It provides a graphical user interface to the powerful MATLAB computational engine to produce a program that is easy to use but with many features, including offsets, prior weights and user-defined distributions and link functions. MATLAB's graphical capacities are also utilized in providing a number of simple residual diagnostic plots.
MAGDM linear-programming models with distinct uncertain preference structures.
Xu, Zeshui S; Chen, Jian
2008-10-01
Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.
DEFF Research Database (Denmark)
Kooths, Stefan; Mitze, Timo Friedel; Ringhut, Eric
2004-01-01
This paper compares the predictive power of linear econometric and non-linear computational models for forecasting the inflation rate in the European Monetary Union (EMU). Various models of both types are developed using different monetary and real activity indicators. They are compared according...
Modelling of Asphalt Concrete Stiffness in the Linear Viscoelastic Region
Mazurek, Grzegorz; Iwański, Marek
2017-10-01
Stiffness modulus is a fundamental parameter used in the modelling of the viscoelastic behaviour of bituminous mixtures. On the basis of the master curve in the linear viscoelasticity range, the mechanical properties of asphalt concrete at different loading times and temperatures can be predicted. This paper discusses the construction of master curves under rheological mathematical models i.e. the sigmoidal function model (MEPDG), the fractional model, and Bahia and co-workers’ model in comparison to the results from mechanistic rheological models i.e. the generalized Huet-Sayegh model, the generalized Maxwell model and the Burgers model. For the purposes of this analysis, the reference asphalt concrete mix (denoted as AC16W) intended for the binder coarse layer and for traffic category KR3 (5×105 controlled strain mode. The fixed strain level was set at 25με to guarantee that the stiffness modulus of the asphalt concrete would be tested in a linear viscoelasticity range. The master curve was formed using the time-temperature superposition principle (TTSP). The stiffness modulus of asphalt concrete was determined at temperatures 10°C, 20°C and 40°C and at loading times (frequency) of 0.1, 0.3, 1, 3, 10, 20 Hz. The model parameters were fitted to the rheological models using the original programs based on the nonlinear least squares sum method. All the rheological models under analysis were found to be capable of predicting changes in the stiffness modulus of the reference asphalt concrete to satisfactory accuracy. In the cases of the fractional model and the generalized Maxwell model, their accuracy depends on a number of elements in series. The best fit was registered for Bahia and co-workers model, generalized Maxwell model and fractional model. As for predicting the phase angle parameter, the largest discrepancies between experimental and modelled results were obtained using the fractional model. Except the Burgers model, the model matching quality was
A Non-Gaussian Spatial Generalized Linear Latent Variable Model
Irincheeva, Irina
2012-08-03
We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.
Linear Model for Optimal Distributed Generation Size Predication
Directory of Open Access Journals (Sweden)
Ahmed Al Ameri
2017-01-01
Full Text Available This article presents a linear model predicting optimal size of Distributed Generation (DG that addresses the minimum power loss. This method is based fundamentally on strong coupling between active power and voltage angle as well as between reactive power and voltage magnitudes. This paper proposes simplified method to calculate the total power losses in electrical grid for different distributed generation sizes and locations. The method has been implemented and tested on several IEEE bus test systems. The results show that the proposed method is capable of predicting approximate optimal size of DG when compared with precision calculations. The method that linearizes a complex model showed a good result, which can actually reduce processing time required. The acceptable accuracy with less time and memory required can help the grid operator to assess power system integrated within large-scale distribution generation.
A non-linear model of economic production processes
Ponzi, A.; Yasutomi, A.; Kaneko, K.
2003-06-01
We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.
A Non-Gaussian Spatial Generalized Linear Latent Variable Model
Irincheeva, Irina; Cantoni, Eva; Genton, Marc G.
2012-01-01
We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.
NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS
Directory of Open Access Journals (Sweden)
Hasan YILDIZ
2004-03-01
Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.
Dynamic generalized linear models for monitoring endemic diseases
DEFF Research Database (Denmark)
Lopes Antunes, Ana Carolina; Jensen, Dan; Hisham Beshara Halasa, Tariq
2016-01-01
The objective was to use a Dynamic Generalized Linear Model (DGLM) based on abinomial distribution with a linear trend, for monitoring the PRRS (Porcine Reproductive and Respiratory Syndrome sero-prevalence in Danish swine herds. The DGLM was described and its performance for monitoring control...... and eradication programmes based on changes in PRRS sero-prevalence was explored. Results showed a declining trend in PRRS sero-prevalence between 2007 and 2014 suggesting that Danish herds are slowly eradicating PRRS. The simulation study demonstrated the flexibility of DGLMs in adapting to changes intrends...... in sero-prevalence. Based on this, it was possible to detect variations in the growth model component. This study is a proof-of-concept, demonstrating the use of DGLMs for monitoring endemic diseases. In addition, the principles stated might be useful in general research on monitoring and surveillance...
Estimation and Inference for Very Large Linear Mixed Effects Models
Gao, K.; Owen, A. B.
2016-01-01
Linear mixed models with large imbalanced crossed random effects structures pose severe computational problems for maximum likelihood estimation and for Bayesian analysis. The costs can grow as fast as $N^{3/2}$ when there are N observations. Such problems arise in any setting where the underlying factors satisfy a many to many relationship (instead of a nested one) and in electronic commerce applications, the N can be quite large. Methods that do not account for the correlation structure can...
Using Quartile-Quartile Lines as Linear Models
Gordon, Sheldon P.
2015-01-01
This article introduces the notion of the quartile-quartile line as an alternative to the regression line and the median-median line to produce a linear model based on a set of data. It is based on using the first and third quartiles of a set of (x, y) data. Dynamic spreadsheets are used as exploratory tools to compare the different approaches and…
NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS
International Nuclear Information System (INIS)
TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.
2004-01-01
For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability
Electromagnetic axial anomaly in a generalized linear sigma model
Fariborz, Amir H.; Jora, Renata
2017-06-01
We construct the electromagnetic anomaly effective term for a generalized linear sigma model with two chiral nonets, one with a quark-antiquark structure, the other one with a four-quark content. We compute in the leading order of this framework the decays into two photons of six pseudoscalars: π0(137 ), π0(1300 ), η (547 ), η (958 ), η (1295 ) and η (1760 ). Our results agree well with the available experimental data.
Comparison of Linear Prediction Models for Audio Signals
Directory of Open Access Journals (Sweden)
2009-03-01
Full Text Available While linear prediction (LP has become immensely popular in speech modeling, it does not seem to provide a good approach for modeling audio signals. This is somewhat surprising, since a tonal signal consisting of a number of sinusoids can be perfectly predicted based on an (all-pole LP model with a model order that is twice the number of sinusoids. We provide an explanation why this result cannot simply be extrapolated to LP of audio signals. If noise is taken into account in the tonal signal model, a low-order all-pole model appears to be only appropriate when the tonal components are uniformly distributed in the Nyquist interval. Based on this observation, different alternatives to the conventional LP model can be suggested. Either the model should be changed to a pole-zero, a high-order all-pole, or a pitch prediction model, or the conventional LP model should be preceded by an appropriate frequency transform, such as a frequency warping or downsampling. By comparing these alternative LP models to the conventional LP model in terms of frequency estimation accuracy, residual spectral flatness, and perceptual frequency resolution, we obtain several new and promising approaches to LP-based audio modeling.
A quasi-linear gyrokinetic transport model for tokamak plasmas
International Nuclear Information System (INIS)
Casati, A.
2009-10-01
After a presentation of some basics around nuclear fusion, this research thesis introduces the framework of the tokamak strategy to deal with confinement, hence the main plasma instabilities which are responsible for turbulent transport of energy and matter in such a system. The author also briefly introduces the two principal plasma representations, the fluid and the kinetic ones. He explains why the gyro-kinetic approach has been preferred. A tokamak relevant case is presented in order to highlight the relevance of a correct accounting of the kinetic wave-particle resonance. He discusses the issue of the quasi-linear response. Firstly, the derivation of the model, called QuaLiKiz, and its underlying hypotheses to get the energy and the particle turbulent flux are presented. Secondly, the validity of the quasi-linear response is verified against the nonlinear gyro-kinetic simulations. The saturation model that is assumed in QuaLiKiz, is presented and discussed. Then, the author qualifies the global outcomes of QuaLiKiz. Both the quasi-linear energy and the particle flux are compared to the expectations from the nonlinear simulations, across a wide scan of tokamak relevant parameters. Therefore, the coupling of QuaLiKiz within the integrated transport solver CRONOS is presented: this procedure allows the time-dependent transport problem to be solved, hence the direct application of the model to the experiment. The first preliminary results regarding the experimental analysis are finally discussed
Linear theory for filtering nonlinear multiscale systems with model error.
Berry, Tyrus; Harlim, John
2014-07-08
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering
Technical note: A linear model for predicting δ13 Cprotein.
Pestle, William J; Hubbe, Mark; Smith, Erin K; Stevenson, Joseph M
2015-08-01
Development of a model for the prediction of δ(13) Cprotein from δ(13) Ccollagen and Δ(13) Cap-co . Model-generated values could, in turn, serve as "consumer" inputs for multisource mixture modeling of paleodiet. Linear regression analysis of previously published controlled diet data facilitated the development of a mathematical model for predicting δ(13) Cprotein (and an experimentally generated error term) from isotopic data routinely generated during the analysis of osseous remains (δ(13) Cco and Δ(13) Cap-co ). Regression analysis resulted in a two-term linear model (δ(13) Cprotein (%) = (0.78 × δ(13) Cco ) - (0.58× Δ(13) Cap-co ) - 4.7), possessing a high R-value of 0.93 (r(2) = 0.86, P analysis of human osseous remains. These predicted values are ideal for use in multisource mixture modeling of dietary protein source contribution. © 2015 Wiley Periodicals, Inc.
Neutron stars in non-linear coupling models
International Nuclear Information System (INIS)
Taurines, Andre R.; Vasconcellos, Cesar A.Z.; Malheiro, Manuel; Chiapparini, Marcelo
2001-01-01
We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, ∼ 0.72M s un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)
Neutron stars in non-linear coupling models
Energy Technology Data Exchange (ETDEWEB)
Taurines, Andre R.; Vasconcellos, Cesar A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil); Malheiro, Manuel [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Chiapparini, Marcelo [Universidade do Estado, Rio de Janeiro, RJ (Brazil)
2001-07-01
We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, {approx} 0.72M{sub s}un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)
Modelling of Rotational Capacity in Reinforced Linear Elements
DEFF Research Database (Denmark)
Hestbech, Lars; Hagsten, Lars German; Fisker, Jakob
2011-01-01
on the rotational capacity of the plastic hinges. The documentation of ductility can be a difficult task as modelling of rotational capacity in plastic hinges of frames is not fully developed. On the basis of the Theory of Plasticity a model is developed to determine rotational capacity in plastic hinges in linear......The Capacity Design Method forms the basis of several seismic design codes. This design philosophy allows plastic deformations in order to decrease seismic demands in structures. However, these plastic deformations must be localized in certain zones where ductility requirements can be documented...... reinforced concrete elements. The model is taking several important parameters into account. Empirical values is avoided which is considered an advantage compared to previous models. Furthermore, the model includes force variations in the reinforcement due to moment distributions and shear as well...
Network Traffic Monitoring Using Poisson Dynamic Linear Models
Energy Technology Data Exchange (ETDEWEB)
Merl, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2011-05-09
In this article, we discuss an approach for network forensics using a class of nonstationary Poisson processes with embedded dynamic linear models. As a modeling strategy, the Poisson DLM (PoDLM) provides a very flexible framework for specifying structured effects that may influence the evolution of the underlying Poisson rate parameter, including diurnal and weekly usage patterns. We develop a novel particle learning algorithm for online smoothing and prediction for the PoDLM, and demonstrate the suitability of the approach to real-time deployment settings via a new application to computer network traffic monitoring.
On the chiral phase transition in the linear sigma model
International Nuclear Information System (INIS)
Tran Huu Phat; Nguyen Tuan Anh; Le Viet Hoa
2003-01-01
The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)
Bayesian Subset Modeling for High-Dimensional Generalized Linear Models
Liang, Faming; Song, Qifan; Yu, Kai
2013-01-01
criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening
Application of linearized model to the stability analysis of the pressurized water reactor
International Nuclear Information System (INIS)
Li Haipeng; Huang Xiaojin; Zhang Liangju
2008-01-01
A Linear Time-Invariant model of the Pressurized Water Reactor is formulated through the linearization of the nonlinear model. The model simulation results show that the linearized model agrees well with the nonlinear model under small perturbation. Based upon the Lyapunov's First Method, the linearized model is applied to the stability analysis of the Pressurized Water Reactor. The calculation results show that the methodology of linearization to stability analysis is conveniently feasible. (authors)
Esteley, Cristina B.; Villarreal, Monica E.; Alagia, Humberto R.
2010-01-01
Over the past several years, we have been exploring and researching a phenomenon that occurs among undergraduate students that we called extension of linear models to non-linear contexts or overgeneralization of linear models. This phenomenon appears when some students use linear representations in situations that are non-linear. In a first phase,…
A Linear Viscoelastic Model Calibration of Sylgard 184.
Energy Technology Data Exchange (ETDEWEB)
Long, Kevin Nicholas; Brown, Judith Alice
2017-04-01
We calibrate a linear thermoviscoelastic model for solid Sylgard 184 (90-10 formulation), a lightly cross-linked, highly flexible isotropic elastomer for use both in Sierra / Solid Mechanics via the Universal Polymer Model as well as in Sierra / Structural Dynamics (Salinas) for use as an isotropic viscoelastic material. Material inputs for the calibration in both codes are provided. The frequency domain master curve of oscillatory shear was obtained from a report from Los Alamos National Laboratory (LANL). However, because the form of that data is different from the constitutive models in Sierra, we also present the mapping of the LANL data onto Sandia’s constitutive models. Finally, blind predictions of cyclic tension and compression out to moderate strains of 40 and 20% respectively are compared with Sandia’s legacy cure schedule material. Although the strain rate of the data is unknown, the linear thermoviscoelastic model accurately predicts the experiments out to moderate strains for the slower strain rates, which is consistent with the expectation that quasistatic test procedures were likely followed. This good agreement comes despite the different cure schedules between the Sandia and LANL data.
Predicting Madura cattle growth curve using non-linear model
Widyas, N.; Prastowo, S.; Widi, T. S. M.; Baliarti, E.
2018-03-01
Madura cattle is Indonesian native. It is a composite breed that has undergone hundreds of years of selection and domestication to reach nowadays remarkable uniformity. Crossbreeding has reached the isle of Madura and the Madrasin, a cross between Madura cows and Limousine semen emerged. This paper aimed to compare the growth curve between Madrasin and one type of pure Madura cows, the common Madura cattle (Madura) using non-linear models. Madura cattles are kept traditionally thus reliable records are hardly available. Data were collected from small holder farmers in Madura. Cows from different age classes (5years) were observed, and body measurements (chest girth, body length and wither height) were taken. In total 63 Madura and 120 Madrasin records obtained. Linear model was built with cattle sub-populations and age as explanatory variables. Body weights were estimated based on the chest girth. Growth curves were built using logistic regression. Results showed that within the same age, Madrasin has significantly larger body compared to Madura (plogistic models fit better for Madura and Madrasin cattle data; with the estimated MSE for these models were 39.09 and 759.28 with prediction accuracy of 99 and 92% for Madura and Madrasin, respectively. Prediction of growth curve using logistic regression model performed well in both types of Madura cattle. However, attempts to administer accurate data on Madura cattle are necessary to better characterize and study these cattle.
A non-linear model of information seeking behaviour
Directory of Open Access Journals (Sweden)
Allen E. Foster
2005-01-01
Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.
Effect Displays in R for Generalised Linear Models
Directory of Open Access Journals (Sweden)
John Fox
2003-07-01
Full Text Available This paper describes the implementation in R of a method for tabular or graphical display of terms in a complex generalised linear model. By complex, I mean a model that contains terms related by marginality or hierarchy, such as polynomial terms, or main effects and interactions. I call these tables or graphs effect displays. Effect displays are constructed by identifying high-order terms in a generalised linear model. Fitted values under the model are computed for each such term. The lower-order "relatives" of a high-order term (e.g., main effects marginal to an interaction are absorbed into the term, allowing the predictors appearing in the high-order term to range over their values. The values of other predictors are fixed at typical values: for example, a covariate could be fixed at its mean or median, a factor at its proportional distribution in the data, or to equal proportions in its several levels. Variations of effect displays are also described, including representation of terms higher-order to any appearing in the model.
Global numerical modeling of magnetized plasma in a linear device
DEFF Research Database (Denmark)
Magnussen, Michael Løiten
Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion dev...... with simulations performed at different ionization levels, using a simple model for plasma interaction with neutrals. It is found that the steady state and the saturated state of the system bifurcates when the neutral interaction dominates the electron-ion collisions.......Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion...... devices, and are easier to diagnose due to lower temperatures and a better access to the plasma. In order to gain greater insight into this complex turbulent behavior, numerical simulations of plasma in a linear device are performed in this thesis. Here, a three-dimensional drift-fluid model is derived...
Predicting birth weight with conditionally linear transformation models.
Möst, Lisa; Schmid, Matthias; Faschingbauer, Florian; Hothorn, Torsten
2016-12-01
Low and high birth weight (BW) are important risk factors for neonatal morbidity and mortality. Gynecologists must therefore accurately predict BW before delivery. Most prediction formulas for BW are based on prenatal ultrasound measurements carried out within one week prior to birth. Although successfully used in clinical practice, these formulas focus on point predictions of BW but do not systematically quantify uncertainty of the predictions, i.e. they result in estimates of the conditional mean of BW but do not deliver prediction intervals. To overcome this problem, we introduce conditionally linear transformation models (CLTMs) to predict BW. Instead of focusing only on the conditional mean, CLTMs model the whole conditional distribution function of BW given prenatal ultrasound parameters. Consequently, the CLTM approach delivers both point predictions of BW and fetus-specific prediction intervals. Prediction intervals constitute an easy-to-interpret measure of prediction accuracy and allow identification of fetuses subject to high prediction uncertainty. Using a data set of 8712 deliveries at the Perinatal Centre at the University Clinic Erlangen (Germany), we analyzed variants of CLTMs and compared them to standard linear regression estimation techniques used in the past and to quantile regression approaches. The best-performing CLTM variant was competitive with quantile regression and linear regression approaches in terms of conditional coverage and average length of the prediction intervals. We propose that CLTMs be used because they are able to account for possible heteroscedasticity, kurtosis, and skewness of the distribution of BWs. © The Author(s) 2014.
Wavefront Sensing for WFIRST with a Linear Optical Model
Jurling, Alden S.; Content, David A.
2012-01-01
In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.
A linearized dispersion relation for orthorhombic pseudo-acoustic modeling
Song, Xiaolei
2012-11-04
Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen\\'s parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.
Linearized vector radiative transfer model MCC++ for a spherical atmosphere
International Nuclear Information System (INIS)
Postylyakov, O.V.
2004-01-01
Application of radiative transfer models has shown that optical remote sensing requires extra characteristics of radiance field in addition to the radiance intensity itself. Simulation of spectral measurements, analysis of retrieval errors and development of retrieval algorithms are in need of derivatives of radiance with respect to atmospheric constituents under investigation. The presented vector spherical radiative transfer model MCC++ was linearized, which allows the calculation of derivatives of all elements of the Stokes vector with respect to the volume absorption coefficient simultaneously with radiance calculation. The model MCC++ employs Monte Carlo algorithm for radiative transfer simulation and takes into account aerosol and molecular scattering, gas and aerosol absorption, and Lambertian surface albedo. The model treats a spherically symmetrical atmosphere. Relation of the estimated derivatives with other forms of radiance derivatives: the weighting functions used in gas retrieval and the air mass factors used in the DOAS retrieval algorithms, is obtained. Validation of the model against other radiative models is overviewed. The computing time of the intensity for the MCC++ model is about that for radiative models treating sphericity of the atmosphere approximately and is significantly shorter than that for the full spherical models used in the comparisons. The simultaneous calculation of all derivatives (i.e. with respect to absorption in all model atmosphere layers) and the intensity is only 1.2-2 times longer than the calculation of the intensity only
Hamid, Ka; Yusoff, An; Rahman, Mza; Mohamad, M; Hamid, Aia
2012-04-01
This fMRI study is about modelling the effective connectivity between Heschl's gyrus (HG) and the superior temporal gyrus (STG) in human primary auditory cortices. MATERIALS #ENTITYSTARTX00026; Ten healthy male participants were required to listen to white noise stimuli during functional magnetic resonance imaging (fMRI) scans. Statistical parametric mapping (SPM) was used to generate individual and group brain activation maps. For input region determination, two intrinsic connectivity models comprising bilateral HG and STG were constructed using dynamic causal modelling (DCM). The models were estimated and inferred using DCM while Bayesian Model Selection (BMS) for group studies was used for model comparison and selection. Based on the winning model, six linear and six non-linear causal models were derived and were again estimated, inferred, and compared to obtain a model that best represents the effective connectivity between HG and the STG, balancing accuracy and complexity. Group results indicated significant asymmetrical activation (p(uncorr) Model comparison results showed strong evidence of STG as the input centre. The winning model is preferred by 6 out of 10 participants. The results were supported by BMS results for group studies with the expected posterior probability, r = 0.7830 and exceedance probability, ϕ = 0.9823. One-sample t-tests performed on connection values obtained from the winning model indicated that the valid connections for the winning model are the unidirectional parallel connections from STG to bilateral HG (p model comparison between linear and non-linear models using BMS prefers non-linear connection (r = 0.9160, ϕ = 1.000) from which the connectivity between STG and the ipsi- and contralateral HG is gated by the activity in STG itself. We are able to demonstrate that the effective connectivity between HG and STG while listening to white noise for the respective participants can be explained by a non-linear dynamic causal model with
Exactly soluble two-state quantum models with linear couplings
International Nuclear Information System (INIS)
Torosov, B T; Vitanov, N V
2008-01-01
A class of exact analytic solutions of the time-dependent Schroedinger equation is presented for a two-state quantum system coherently driven by a nonresonant external field. The coupling is a linear function of time with a finite duration and the detuning is constant. Four special models are considered in detail, namely the shark, double-shark, tent and zigzag models. The exact solution is derived by rotation of the Landau-Zener propagator at an angle of π/4 and is expressed in terms of Weber's parabolic cylinder function. Approximations for the transition probabilities are derived for all four models by using the asymptotics of the Weber function; these approximations demonstrate various effects of physical interest for each model
Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling
Directory of Open Access Journals (Sweden)
Samar Hayat Khan Tareen
2015-07-01
Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model
Linear models for multivariate, time series, and spatial data
Christensen, Ronald
1991-01-01
This is a companion volume to Plane Answers to Complex Questions: The Theory 0/ Linear Models. It consists of six additional chapters written in the same spirit as the last six chapters of the earlier book. Brief introductions are given to topics related to linear model theory. No attempt is made to give a comprehensive treatment of the topics. Such an effort would be futile. Each chapter is on a topic so broad that an in depth discussion would require a book-Iength treatment. People need to impose structure on the world in order to understand it. There is a limit to the number of unrelated facts that anyone can remem ber. If ideas can be put within a broad, sophisticatedly simple structure, not only are they easier to remember but often new insights become avail able. In fact, sophisticatedly simple models of the world may be the only ones that work. I have often heard Arnold Zellner say that, to the best of his knowledge, this is true in econometrics. The process of modeling is fundamental to understand...
Linear mixed models a practical guide using statistical software
West, Brady T; Galecki, Andrzej T
2014-01-01
Highly recommended by JASA, Technometrics, and other journals, the first edition of this bestseller showed how to easily perform complex linear mixed model (LMM) analyses via a variety of software programs. Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition continues to lead readers step by step through the process of fitting LMMs. This second edition covers additional topics on the application of LMMs that are valuable for data analysts in all fields. It also updates the case studies using the latest versions of the software procedures and provides up-to-date information on the options and features of the software procedures available for fitting LMMs in SAS, SPSS, Stata, R/S-plus, and HLM.New to the Second Edition A new chapter on models with crossed random effects that uses a case study to illustrate software procedures capable of fitting these models Power analysis methods for longitudinal and clustered study designs, including software options for power analyses and suggest...
Linear and nonlinear models for predicting fish bioconcentration factors for pesticides.
Yuan, Jintao; Xie, Chun; Zhang, Ting; Sun, Jinfang; Yuan, Xuejie; Yu, Shuling; Zhang, Yingbiao; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu
2016-08-01
This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structure-property relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macrochirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the obtained models was assessed by cross-validation and external validation using test set. Outliers were also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved the most accurate predictions. This study offers useful models and information for BCF prediction, risk assessment, and pesticide formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing
2018-05-01
We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.
Metzen, D.; Sheridan, G. J.; Benyon, R. G.; Bolstad, P. V.; Nyman, P.; Lane, P. N. J.
2017-12-01
Large areas of forest are often treated as being homogeneous just because they fall in a single climate category. However, we observe strong vegetation patterns in relation to topography in SE Australian forests and thus hypothesise that ET will vary spatially as well. Spatial heterogeneity evolves over different temporal scales in response to climatic forcing with increasing time lag from soil moisture (sub-yearly), to vegetation (10s -100s of years) to soil properties and topography (>100s of years). Most importantly, these processes and time scales are not independent, creating feedbacks that result in "co-evolved stable states" which yield the current spatial terrain, vegetation and ET patterns. We used up-scaled sap flux and understory ET measurements from water-balance plots, as well as LiDAR derived terrain and vegetation information, to infer links between spatio-temporal energy and water fluxes, topography and vegetation patterns at small catchment scale. Topography caused variations in aridity index between polar and equatorial-facing slopes (1.3 vs 1.8), which in turn manifested in significant differences in sapwood area index (6.9 vs 5.8), overstory LAI (3.0 vs 2.3), understory LAI (0.5 vs 0.4), sub-canopy radiation load (4.6 vs 6.8 MJ m-2 d-1), overstory transpiration (501 vs 347 mm a-1) and understory ET (79 vs 155 mm a-1). Large spatial variation in overstory transpiration (195 to 891 mm a-1) was observed over very short distances (100s m); a range representative of diverse forests such as arid open woodlands and wet mountain ash forests. Contrasting, non-linear overstory and understory ET patterns were unveiled between aspects, and topographic thresholds were lower for overstory than understory ET. While ET partitioning remained stable on polar-facing slopes regardless of slope position, overstory contribution gradually decreased with increasing slope inclination on equatorial aspects. Further, we show that ET patterns and controls underlie strong
Bayesian uncertainty quantification in linear models for diffusion MRI.
Sjölund, Jens; Eklund, Anders; Özarslan, Evren; Herberthson, Magnus; Bånkestad, Maria; Knutsson, Hans
2018-03-29
Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification. Copyright © 2018 Elsevier Inc. All rights reserved.
Modelling non-linear effects of dark energy
Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis
2018-04-01
We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.
Directory of Open Access Journals (Sweden)
Rachid Darnag
2017-02-01
Full Text Available Support vector machines (SVM represent one of the most promising Machine Learning (ML tools that can be applied to develop a predictive quantitative structure–activity relationship (QSAR models using molecular descriptors. Multiple linear regression (MLR and artificial neural networks (ANNs were also utilized to construct quantitative linear and non linear models to compare with the results obtained by SVM. The prediction results are in good agreement with the experimental value of HIV activity; also, the results reveal the superiority of the SVM over MLR and ANN model. The contribution of each descriptor to the structure–activity relationships was evaluated.
Spatial generalised linear mixed models based on distances.
Melo, Oscar O; Mateu, Jorge; Melo, Carlos E
2016-10-01
Risk models derived from environmental data have been widely shown to be effective in delineating geographical areas of risk because they are intuitively easy to understand. We present a new method based on distances, which allows the modelling of continuous and non-continuous random variables through distance-based spatial generalised linear mixed models. The parameters are estimated using Markov chain Monte Carlo maximum likelihood, which is a feasible and a useful technique. The proposed method depends on a detrending step built from continuous or categorical explanatory variables, or a mixture among them, by using an appropriate Euclidean distance. The method is illustrated through the analysis of the variation in the prevalence of Loa loa among a sample of village residents in Cameroon, where the explanatory variables included elevation, together with maximum normalised-difference vegetation index and the standard deviation of normalised-difference vegetation index calculated from repeated satellite scans over time. © The Author(s) 2013.
Linear system identification via backward-time observer models
Juang, Jer-Nan; Phan, Minh
1993-01-01
This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.
Linear mixing model applied to AVHRR LAC data
Holben, Brent N.; Shimabukuro, Yosio E.
1993-01-01
A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55 - 3.93 microns channel was extracted and used with the two reflective channels 0.58 - 0.68 microns and 0.725 - 1.1 microns to run a Constraine Least Squares model to generate vegetation, soil, and shade fraction images for an area in the Western region of Brazil. The Landsat Thematic Mapper data covering the Emas National park region was used for estimating the spectral response of the mixture components and for evaluating the mixing model results. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse resolution data for global studies.
Accelerating transient simulation of linear reduced order models.
Energy Technology Data Exchange (ETDEWEB)
Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad
2011-10-01
Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.
Behavioral modeling of the dominant dynamics in input-output transfer of linear(ized) circuits
Beelen, T.G.J.; Maten, ter E.J.W.; Sihaloho, H.J.; Eijndhoven, van S.J.L.
2010-01-01
We present a powerful procedure for determining both the dominant dynamics of the inputoutput transfer and the corresponding most influential circuit parameters of a linear(ized) circuit. The procedure consists of several steps in which a specific (sub)problem is solved and its solution is used in
Non Linear Modelling and Control of Hydraulic Actuators
Directory of Open Access Journals (Sweden)
B. Šulc
2002-01-01
Full Text Available This paper deals with non-linear modelling and control of a differential hydraulic actuator. The nonlinear state space equations are derived from basic physical laws. They are more powerful than the transfer function in the case of linear models, and they allow the application of an object oriented approach in simulation programs. The effects of all friction forces (static, Coulomb and viscous have been modelled, and many phenomena that are usually neglected are taken into account, e.g., the static term of friction, the leakage between the two chambers and external space. Proportional Differential (PD and Fuzzy Logic Controllers (FLC have been applied in order to make a comparison by means of simulation. Simulation is performed using Matlab/Simulink, and some of the results are compared graphically. FLC is tuned in a such way that it produces a constant control signal close to its maximum (or minimum, where possible. In the case of PD control the occurrence of peaks cannot be avoided. These peaks produce a very high velocity that oversteps the allowed values.
Modeling Pan Evaporation for Kuwait by Multiple Linear Regression
Almedeij, Jaber
2012-01-01
Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values. PMID:23226984
A linear model for flow over complex terrain
Energy Technology Data Exchange (ETDEWEB)
Frank, H P [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1999-03-01
A linear flow model similar to WA{sup s}P or LINCOM has been developed. Major differences are an isentropic temperature equation which allows internal gravity waves, and vertical advection of the shear of the mean flow. The importance of these effects are illustrated by examples. Resource maps are calculated from a distribution of geostrophic winds and stratification for Pyhaetunturi Fell in northern Finland and Acqua Spruzza in Italy. Stratification becomes important if the inverse Froude number formulated with the width of the hill becomes of order one or greater. (au) EU-JOULE-3. 16 refs.
Linear-quadratic model predictions for tumor control probability
International Nuclear Information System (INIS)
Yaes, R.J.
1987-01-01
Sigmoid dose-response curves for tumor control are calculated from the linear-quadratic model parameters α and Β, obtained from human epidermoid carcinoma cell lines, and are much steeper than the clinical dose-response curves for head and neck cancers. One possible explanation is the presence of small radiation-resistant clones arising from mutations in an initially homogeneous tumor. Using the mutation theory of Delbruck and Luria and of Goldie and Coldman, the authors discuss the implications of such radiation-resistant clones for clinical radiation therapy
Inventory model using bayesian dynamic linear model for demand forecasting
Directory of Open Access Journals (Sweden)
Marisol Valencia-Cárdenas
2014-12-01
Full Text Available An important factor of manufacturing process is the inventory management of terminated product. Constantly, industry is looking for better alternatives to establish an adequate plan of production and stored quantities, with optimal cost, getting quantities in a time horizon, which permits to define resources and logistics with anticipation, needed to distribute products on time. Total absence of historical data, required by many statistical models to forecast, demands the search for other kind of accurate techniques. This work presents an alternative that not only permits to forecast, in an adjusted way, but also, to provide optimal quantities to produce and store with an optimal cost, using Bayesian statistics. The proposal is illustrated with real data. Palabras clave: estadística bayesiana, optimización, modelo de inventarios, modelo lineal dinámico bayesiano. Keywords: Bayesian statistics, opti
On the analysis of clonogenic survival data: Statistical alternatives to the linear-quadratic model
International Nuclear Information System (INIS)
Unkel, Steffen; Belka, Claus; Lauber, Kirsten
2016-01-01
The most frequently used method to quantitatively describe the response to ionizing irradiation in terms of clonogenic survival is the linear-quadratic (LQ) model. In the LQ model, the logarithm of the surviving fraction is regressed linearly on the radiation dose by means of a second-degree polynomial. The ratio of the estimated parameters for the linear and quadratic term, respectively, represents the dose at which both terms have the same weight in the abrogation of clonogenic survival. This ratio is known as the α/β ratio. However, there are plausible scenarios in which the α/β ratio fails to sufficiently reflect differences between dose-response curves, for example when curves with similar α/β ratio but different overall steepness are being compared. In such situations, the interpretation of the LQ model is severely limited. Colony formation assays were performed in order to measure the clonogenic survival of nine human pancreatic cancer cell lines and immortalized human pancreatic ductal epithelial cells upon irradiation at 0-10 Gy. The resulting dataset was subjected to LQ regression and non-linear log-logistic regression. Dimensionality reduction of the data was performed by cluster analysis and principal component analysis. Both the LQ model and the non-linear log-logistic regression model resulted in accurate approximations of the observed dose-response relationships in the dataset of clonogenic survival. However, in contrast to the LQ model the non-linear regression model allowed the discrimination of curves with different overall steepness but similar α/β ratio and revealed an improved goodness-of-fit. Additionally, the estimated parameters in the non-linear model exhibit a more direct interpretation than the α/β ratio. Dimensionality reduction of clonogenic survival data by means of cluster analysis was shown to be a useful tool for classifying radioresistant and sensitive cell lines. More quantitatively, principal component analysis allowed
Phenomenology of non-minimal supersymmetric models at linear colliders
International Nuclear Information System (INIS)
Porto, Stefano
2015-06-01
The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics
Non-Linear Slosh Damping Model Development and Validation
Yang, H. Q.; West, Jeff
2015-01-01
Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can
Radio-over-fiber linearization with optimized genetic algorithm CPWL model.
Mateo, Carlos; Carro, Pedro L; García-Dúcar, Paloma; De Mingo, Jesús; Salinas, Íñigo
2017-02-20
This article proposes an optimized version of a canonical piece-wise-linear (CPWL) digital predistorter in order to enhance the linearity of a radio-over-fiber (RoF) LTE mobile fronthaul. In this work, we propose a threshold allocation optimization process carried out by a genetic algorithm (GA) in order to optimize the CPWL model (GA-CPWL). Firstly, experiments show how the CPWL model outperforms the classical memory polynomial DPD in an intensity modulation/direct detection (IM/DD) RoF link. Then, the GA-CPWL predistorter is compared with the CPWL model in several scenarios, in order to verify that the proposed DPD offers better performance in different optical transmission conditions. Experimental results reveal that with a proper threshold allocation, the GA-CPWL predistorter offers very promising outcomes.
Non linear permanent magnets modelling with the finite element method
International Nuclear Information System (INIS)
Chavanne, J.; Meunier, G.; Sabonnadiere, J.C.
1989-01-01
In order to perform the calculation of permanent magnets with the finite element method, it is necessary to take into account the anisotropic behaviour of hard magnetic materials (Ferrites, NdFeB, SmCo5). In linear cases, the permeability of permanent magnets is a tensor. This one is fully described with the permeabilities parallel and perpendicular to the easy axis of the magnet. In non linear cases, the model uses a texture function which represents the distribution of the local easy axis of the cristallytes of the magnet. This function allows a good representation of the angular dependance of the coercitive field of the magnet. As a result, it is possible to express the magnetic induction B and the tensor as functions of the field and the texture parameter. This model has been implemented in the software FLUX3D where the tensor is used for the Newton-Raphson procedure. 3D demagnetization of a ferrite magnet by a NdFeB magnet is a suitable representative example. They analyze the results obtained for an ideally oriented ferrite magnet and a real one using a measured texture parameter
Linear collider signal of anomaly mediated supersymmetry breaking model
International Nuclear Information System (INIS)
Ghosh Dilip Kumar; Kundu, Anirban; Roy, Probir; Roy, Sourov
2001-01-01
Though the minimal model of anomaly mediated supersymmetry breaking has been significantly constrained by recent experimental and theoretical work, there are still allowed regions of the parameter space for moderate to large values of tan β. We show that these regions will be comprehensively probed in a √s = 1 TeV e + e - linear collider. Diagnostic signals to this end are studied by zeroing in on a unique and distinct feature of a large class of models in this genre: a neutral winolike Lightest Supersymmetric Particle closely degenerate in mass with a winolike chargino. The pair production processes e + e - → e tilde L ± e tilde L ± , e tilde R ± e tilde R ± , e tilde L ± e tilde R ± , ν tilde anti ν tilde, χ tilde 1 0 χ tilde 2 0 , χ tilde 2 0 χ tilde 2 0 are all considered at √s = 1 TeV corresponding to the proposed TESLA linear collider in two natural categories of mass ordering in the sparticle spectra. The signals analysed comprise multiple combinations of fast charged leptons (any of which can act as the trigger) plus displaced vertices X D (any of which can be identified by a heavy ionizing track terminating in the detector) and/or associated soft pions with characteristic momentum distributions. (author)
Linear versus quadratic portfolio optimization model with transaction cost
Razak, Norhidayah Bt Ab; Kamil, Karmila Hanim; Elias, Siti Masitah
2014-06-01
Optimization model is introduced to become one of the decision making tools in investment. Hence, it is always a big challenge for investors to select the best model that could fulfill their goal in investment with respect to risk and return. In this paper we aims to discuss and compare the portfolio allocation and performance generated by quadratic and linear portfolio optimization models namely of Markowitz and Maximin model respectively. The application of these models has been proven to be significant and popular among others. However transaction cost has been debated as one of the important aspects that should be considered for portfolio reallocation as portfolio return could be significantly reduced when transaction cost is taken into consideration. Therefore, recognizing the importance to consider transaction cost value when calculating portfolio' return, we formulate this paper by using data from Shariah compliant securities listed in Bursa Malaysia. It is expected that, results from this paper will effectively justify the advantage of one model to another and shed some lights in quest to find the best decision making tools in investment for individual investors.
Probabilistic model of ligaments and tendons: Quasistatic linear stretching
Bontempi, M.
2009-03-01
Ligaments and tendons have a significant role in the musculoskeletal system and are frequently subjected to injury. This study presents a model of collagen fibers, based on the study of a statistical distribution of fibers when they are subjected to quasistatic linear stretching. With respect to other methodologies, this model is able to describe the behavior of the bundle using less ad hoc hypotheses and is able to describe all the quasistatic stretch-load responses of the bundle, including the yield and failure regions described in the literature. It has two other important results: the first is that it is able to correlate the mechanical behavior of the bundle with its internal structure, and it suggests a methodology to deduce the fibers population distribution directly from the tensile-test data. The second is that it can follow fibers’ structure evolution during the stretching and it is possible to study the internal adaptation of fibers in physiological and pathological conditions.
Linear mixing model applied to coarse resolution satellite data
Holben, Brent N.; Shimabukuro, Yosio E.
1992-01-01
A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.
Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics
Wang, John T.
2010-01-01
The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.
Locally supersymmetric D=3 non-linear sigma models
International Nuclear Information System (INIS)
Wit, B. de; Tollsten, A.K.; Nicolai, H.
1993-01-01
We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is riemannian or Kaehler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it generally decomposes, into two separate quaternionic spaces, associated with inequivalent supermultiplets. For N=5, 6, 8 there is a unique (symmetric) space for any given number of supermultiplets. Beyond that there are only theories based on a single supermultiplet for N=9, 10, 12 and 16, associated with coset spaces with the exceptional isometry groups F 4(-20) , E 6(-14) , E 7(-5) and E 8(+8) , respectively. For N=3 and N ≥ 5 the D=2 theories obtained by dimensional reduction are two-loop finite. (orig.)
Explicit estimating equations for semiparametric generalized linear latent variable models
Ma, Yanyuan
2010-07-05
We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.
Synthetic Domain Theory and Models of Linear Abadi & Plotkin Logic
DEFF Research Database (Denmark)
Møgelberg, Rasmus Ejlers; Birkedal, Lars; Rosolini, Guiseppe
2008-01-01
Plotkin suggested using a polymorphic dual intuitionistic/linear type theory (PILLY) as a metalanguage for parametric polymorphism and recursion. In recent work the first two authors and R.L. Petersen have defined a notion of parametric LAPL-structure, which are models of PILLY, in which one can...... reason using parametricity and, for example, solve a large class of domain equations, as suggested by Plotkin.In this paper, we show how an interpretation of a strict version of Bierman, Pitts and Russo's language Lily into synthetic domain theory presented by Simpson and Rosolini gives rise...... to a parametric LAPL-structure. This adds to the evidence that the notion of LAPL-structure is a general notion, suitable for treating many different parametric models, and it provides formal proofs of consequences of parametricity expected to hold for the interpretation. Finally, we show how these results...
Solving large mixed linear models using preconditioned conjugate gradient iteration.
Strandén, I; Lidauer, M
1999-12-01
Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.
Linear mixed-effects modeling approach to FMRI group analysis.
Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W
2013-06-01
Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity
Direction of Effects in Multiple Linear Regression Models.
Wiedermann, Wolfgang; von Eye, Alexander
2015-01-01
Previous studies analyzed asymmetric properties of the Pearson correlation coefficient using higher than second order moments. These asymmetric properties can be used to determine the direction of dependence in a linear regression setting (i.e., establish which of two variables is more likely to be on the outcome side) within the framework of cross-sectional observational data. Extant approaches are restricted to the bivariate regression case. The present contribution extends the direction of dependence methodology to a multiple linear regression setting by analyzing distributional properties of residuals of competing multiple regression models. It is shown that, under certain conditions, the third central moments of estimated regression residuals can be used to decide upon direction of effects. In addition, three different approaches for statistical inference are discussed: a combined D'Agostino normality test, a skewness difference test, and a bootstrap difference test. Type I error and power of the procedures are assessed using Monte Carlo simulations, and an empirical example is provided for illustrative purposes. In the discussion, issues concerning the quality of psychological data, possible extensions of the proposed methods to the fourth central moment of regression residuals, and potential applications are addressed.
Linear model applied to the evaluation of pharmaceutical stability data
Directory of Open Access Journals (Sweden)
Renato Cesar Souza
2013-09-01
Full Text Available The expiry date on the packaging of a product gives the consumer the confidence that the product will retain its identity, content, quality and purity throughout the period of validity of the drug. The definition of this term in the pharmaceutical industry is based on stability data obtained during the product registration. By the above, this work aims to apply the linear regression according to the guideline ICH Q1E, 2003, to evaluate some aspects of a product undergoing in a registration phase in Brazil. With this propose, the evaluation was realized with the development center of a multinational company in Brazil, with samples of three different batches composed by two active principal ingredients in two different packages. Based on the preliminary results obtained, it was possible to observe the difference of degradation tendency of the product in two different packages and the relationship between the variables studied, added knowledge so new models of linear equations can be applied and developed for other products.
Fourth standard model family neutrino at future linear colliders
International Nuclear Information System (INIS)
Ciftci, A.K.; Ciftci, R.; Sultansoy, S.
2005-01-01
It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac (ν 4 ) and Majorana (N 1 ) neutrinos at future linear colliders with √(s)=500 GeV, 1 TeV, and 3 TeV are considered. The cross section for the process e + e - →ν 4 ν 4 (N 1 N 1 ) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels (ν 4 (N 1 )→μ ± W ± ) provide cleanest signature at e + e - colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at √(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures
Influence of the void fraction in the linear reactivity model
International Nuclear Information System (INIS)
Castillo, J.A.; Ramirez, J.R.; Alonso, G.
2003-01-01
The linear reactivity model allows the multicycle analysis in pressurized water reactors in a simple and quick way. In the case of the Boiling water reactors the void fraction it varies axially from 0% of voids in the inferior part of the fuel assemblies until approximately 70% of voids to the exit of the same ones. Due to this it is very important the determination of the average void fraction during different stages of the reactor operation to predict the burnt one appropriately of the same ones to inclination of the pattern of linear reactivity. In this work a pursuit is made of the profile of power for different steps of burnt of a typical operation cycle of a Boiling water reactor. Starting from these profiles it builds an algorithm that allows to determine the voids profile and this way to obtain the average value of the same one. The results are compared against those reported by the CM-PRESTO code that uses another method to carry out this calculation. Finally, the range in which is the average value of the void fraction during a typical cycle is determined and an estimate of the impact that it would have the use of this value in the prediction of the reactivity produced by the fuel assemblies is made. (Author)
Characteristics and Properties of a Simple Linear Regression Model
Directory of Open Access Journals (Sweden)
Kowal Robert
2016-12-01
Full Text Available A simple linear regression model is one of the pillars of classic econometrics. Despite the passage of time, it continues to raise interest both from the theoretical side as well as from the application side. One of the many fundamental questions in the model concerns determining derivative characteristics and studying the properties existing in their scope, referring to the first of these aspects. The literature of the subject provides several classic solutions in that regard. In the paper, a completely new design is proposed, based on the direct application of variance and its properties, resulting from the non-correlation of certain estimators with the mean, within the scope of which some fundamental dependencies of the model characteristics are obtained in a much more compact manner. The apparatus allows for a simple and uniform demonstration of multiple dependencies and fundamental properties in the model, and it does it in an intuitive manner. The results were obtained in a classic, traditional area, where everything, as it might seem, has already been thoroughly studied and discovered.
A simple non-linear model of immune response
International Nuclear Information System (INIS)
Gutnikov, Sergei; Melnikov, Yuri
2003-01-01
It is still unknown why the adaptive immune response in the natural immune system based on clonal proliferation of lymphocytes requires interaction of at least two different cell types with the same antigen. We present a simple mathematical model illustrating that the system with separate types of cells for antigen recognition and patogen destruction provides more robust adaptive immunity than the system where just one cell type is responsible for both recognition and destruction. The model is over-simplified as we did not have an intention of describing the natural immune system. However, our model provides a tool for testing the proposed approach through qualitative analysis of the immune system dynamics in order to construct more sophisticated models of the immune systems that exist in the living nature. It also opens a possibility to explore specific features of highly non-linear dynamics in nature-inspired computational paradigms like artificial immune systems and immunocomputing . We expect this paper to be of interest not only for mathematicians but also for biologists; therefore we made effort to explain mathematics in sufficient detail for readers without professional mathematical background
Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.
Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J
2016-10-03
Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.
Rapakoulia, Trisevgeni
2017-08-09
Motivation: Drug combination therapy for treatment of cancers and other multifactorial diseases has the potential of increasing the therapeutic effect, while reducing the likelihood of drug resistance. In order to reduce time and cost spent in comprehensive screens, methods are needed which can model additive effects of possible drug combinations. Results: We here show that the transcriptional response to combinatorial drug treatment at promoters, as measured by single molecule CAGE technology, is accurately described by a linear combination of the responses of the individual drugs at a genome wide scale. We also find that the same linear relationship holds for transcription at enhancer elements. We conclude that the described approach is promising for eliciting the transcriptional response to multidrug treatment at promoters and enhancers in an unbiased genome wide way, which may minimize the need for exhaustive combinatorial screens.
Bruno, Delia Evelina; Barca, Emanuele; Goncalves, Rodrigo Mikosz; de Araujo Queiroz, Heithor Alexandre; Berardi, Luigi; Passarella, Giuseppe
2018-01-01
In this paper, the Evolutionary Polynomial Regression data modelling strategy has been applied to study small scale, short-term coastal morphodynamics, given its capability for treating a wide database of known information, non-linearly. Simple linear and multilinear regression models were also applied to achieve a balance between the computational load and reliability of estimations of the three models. In fact, even though it is easy to imagine that the more complex the model, the more the prediction improves, sometimes a "slight" worsening of estimations can be accepted in exchange for the time saved in data organization and computational load. The models' outcomes were validated through a detailed statistical, error analysis, which revealed a slightly better estimation of the polynomial model with respect to the multilinear model, as expected. On the other hand, even though the data organization was identical for the two models, the multilinear one required a simpler simulation setting and a faster run time. Finally, the most reliable evolutionary polynomial regression model was used in order to make some conjecture about the uncertainty increase with the extension of extrapolation time of the estimation. The overlapping rate between the confidence band of the mean of the known coast position and the prediction band of the estimated position can be a good index of the weakness in producing reliable estimations when the extrapolation time increases too much. The proposed models and tests have been applied to a coastal sector located nearby Torre Colimena in the Apulia region, south Italy.
A Non-linear Stochastic Model for an Office Building with Air Infiltration
DEFF Research Database (Denmark)
Thavlov, Anders; Madsen, Henrik
2015-01-01
This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model...
Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A
2011-01-01
The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.
Study of the 'non-Abelian' current algebra of a non-linear σ-model
International Nuclear Information System (INIS)
Ghosh, Subir
2006-01-01
A particular form of non-linear σ-model, having a global gauge invariance, is studied. The detailed discussion on current algebra structures reveals the non-Abelian nature of the invariance, with field dependent structure functions. Reduction of the field theory to a point particle framework yields a non-linear harmonic oscillator, which is a special case of similar models studied before in [J.F. Carinena et al., Nonlinearity 17 (2004) 1941, math-ph/0406002; J.F. Carinena et al., in: Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, 2004, p. 39, math-ph/0505028; J.F. Carinena et al., Rep. Math. Phys. 54 (2004) 285, hep-th/0501106]. The connection with non-commutative geometry is also established
Distributing Correlation Coefficients of Linear Structure-Activity/Property Models
Directory of Open Access Journals (Sweden)
Sorana D. BOLBOACA
2011-12-01
Full Text Available Quantitative structure-activity/property relationships are mathematical relationships linking chemical structure and activity/property in a quantitative manner. These in silico approaches are frequently used to reduce animal testing and risk-assessment, as well as to increase time- and cost-effectiveness in characterization and identification of active compounds. The aim of our study was to investigate the pattern of correlation coefficients distribution associated to simple linear relationships linking the compounds structure with their activities. A set of the most common ordnance compounds found at naval facilities with a limited data set with a range of toxicities on aquatic ecosystem and a set of seven properties was studied. Statistically significant models were selected and investigated. The probability density function of the correlation coefficients was investigated using a series of possible continuous distribution laws. Almost 48% of the correlation coefficients proved fit Beta distribution, 40% fit Generalized Pareto distribution, and 12% fit Pert distribution.
Modeling and analysis of linearized wheel-rail contact dynamics
International Nuclear Information System (INIS)
Soomro, Z.
2014-01-01
The dynamics of the railway vehicles are nonlinear and depend upon several factors including vehicle speed, normal load and adhesion level. The presence of contaminants on the railway track makes them unpredictable too. Therefore in order to develop an effective control strategy it is important to analyze the effect of each factor on dynamic response thoroughly. In this paper a linearized model of a railway wheel-set is developed and is later analyzed by varying the speed and adhesion level by keeping the normal load constant. A wheel-set is the wheel-axle assembly of a railroad car. Patch contact is the study of the deformation of solids that touch each other at one or more points. (author)
Human visual modeling and image deconvolution by linear filtering
International Nuclear Information System (INIS)
Larminat, P. de; Barba, D.; Gerber, R.; Ronsin, J.
1978-01-01
The problem is the numerical restoration of images degraded by passing through a known and spatially invariant linear system, and by the addition of a stationary noise. We propose an improvement of the Wiener's filter to allow the restoration of such images. This improvement allows to reduce the important drawbacks of classical Wiener's filter: the voluminous data processing, the lack of consideration of the vision's characteristivs which condition the perception by the observer of the restored image. In a first paragraph, we describe the structure of the visual detection system and a modelling method of this system. In the second paragraph we explain a restoration method by Wiener filtering that takes the visual properties into account and that can be adapted to the local properties of the image. Then the results obtained on TV images or scintigrams (images obtained by a gamma-camera) are commented [fr
Convergence diagnostics for Eigenvalue problems with linear regression model
International Nuclear Information System (INIS)
Shi, Bo; Petrovic, Bojan
2011-01-01
Although the Monte Carlo method has been extensively used for criticality/Eigenvalue problems, a reliable, robust, and efficient convergence diagnostics method is still desired. Most methods are based on integral parameters (multiplication factor, entropy) and either condense the local distribution information into a single value (e.g., entropy) or even disregard it. We propose to employ the detailed cycle-by-cycle local flux evolution obtained by using mesh tally mechanism to assess the source and flux convergence. By applying a linear regression model to each individual mesh in a mesh tally for convergence diagnostics, a global convergence criterion can be obtained. We exemplify this method on two problems and obtain promising diagnostics results. (author)
A Dynamic Linear Modeling Approach to Public Policy Change
DEFF Research Database (Denmark)
Loftis, Matthew; Mortensen, Peter Bjerre
2017-01-01
Theories of public policy change, despite their differences, converge on one point of strong agreement. The relationship between policy and its causes can and does change over time. This consensus yields numerous empirical implications, but our standard analytical tools are inadequate for testing...... them. As a result, the dynamic and transformative relationships predicted by policy theories have been left largely unexplored in time-series analysis of public policy. This paper introduces dynamic linear modeling (DLM) as a useful statistical tool for exploring time-varying relationships in public...... policy. The paper offers a detailed exposition of the DLM approach and illustrates its usefulness with a time series analysis of U.S. defense policy from 1957-2010. The results point the way for a new attention to dynamics in the policy process and the paper concludes with a discussion of how...
Baryon and meson phenomenology in the extended Linear Sigma Model
Energy Technology Data Exchange (ETDEWEB)
Giacosa, Francesco; Habersetzer, Anja; Teilab, Khaled; Eshraim, Walaa; Divotgey, Florian; Olbrich, Lisa; Gallas, Susanna; Wolkanowski, Thomas; Janowski, Stanislaus; Heinz, Achim; Deinet, Werner; Rischke, Dirk H. [Institute for Theoretical Physics, J. W. Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Kovacs, Peter; Wolf, Gyuri [Institute for Particle and Nuclear Physics, Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525 Budapest (Hungary); Parganlija, Denis [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)
2014-07-01
The vacuum phenomenology obtained within the so-called extended Linear Sigma Model (eLSM) is presented. The eLSM Lagrangian is constructed by including from the very beginning vector and axial-vector d.o.f., and by requiring dilatation invariance and chiral symmetry. After a general introduction of the approach, particular attention is devoted to the latest results. In the mesonic sector the strong decays of the scalar and the pseudoscalar glueballs, the weak decays of the tau lepton into vector and axial-vector mesons, and the description of masses and decays of charmed mesons are shown. In the baryonic sector the omega production in proton-proton scattering and the inclusion of baryons with strangeness are described.
Examining secular trend and seasonality in count data using dynamic generalized linear modelling
DEFF Research Database (Denmark)
Lundbye-Christensen, Søren; Dethlefsen, Claus; Gorst-Rasmussen, Anders
series regression model for Poisson counts. It differs in allowing the regression coefficients to vary gradually over time in a random fashion. Data In the period January 1980 to 1999, 17,989 incidents of acute myocardial infarction were recorded in the county of Northern Jutland, Denmark. Records were......Aims Time series of incidence counts often show secular trends and seasonal patterns. We present a model for incidence counts capable of handling a possible gradual change in growth rates and seasonal patterns, serial correlation and overdispersion. Methods The model resembles an ordinary time...... updated daily. Results The model with a seasonal pattern and an approximately linear trend was fitted to the data, and diagnostic plots indicate a good model fit. The analysis with the dynamic model revealed peaks coinciding with influenza epidemics. On average the peak-to-trough ratio is estimated...
Non Abelian T-duality in Gauged Linear Sigma Models
Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto
2018-04-01
Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.
DEFF Research Database (Denmark)
Benninger, Richard K P; Vanherberghen, Bruno; Young, Stephen
2009-01-01
We have applied fluorescence imaging of two-photon linear dichroism to measure the subresolution organization of the cell membrane during formation of the activating (cytolytic) natural killer (NK) cell immune synapse (IS). This approach revealed that the NK cell plasma membrane is convoluted...... into ruffles at the periphery, but not in the center of a mature cytolytic NK cell IS. Time-lapse imaging showed that the membrane ruffles formed at the initial point of contact between NK cells and target cells and then spread radialy across the intercellular contact as the size of the IS increased, becoming...... absent from the center of the mature synapse. Understanding the role of such extensive membrane ruffling in the assembly of cytolytic synapses is an intriguing new goal....
Optimizing Biorefinery Design and Operations via Linear Programming Models
Energy Technology Data Exchange (ETDEWEB)
Talmadge, Michael; Batan, Liaw; Lamers, Patrick; Hartley, Damon; Biddy, Mary; Tao, Ling; Tan, Eric
2017-03-28
The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LP models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with $4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for
The Accuracy and Reproducibility of Linear Measurements Made on CBCT-derived Digital Models.
Maroua, Ahmad L; Ajaj, Mowaffak; Hajeer, Mohammad Y
2016-04-01
To evaluate the accuracy and reproducibility of linear measurements made on cone-beam computed tomography (CBCT)-derived digital models. A total of 25 patients (44% female, 18.7 ± 4 years) who had CBCT images for diagnostic purposes were included. Plaster models were obtained and digital models were extracted from CBCT scans. Seven linear measurements from predetermined landmarks were measured and analyzed on plaster models and the corresponding digital models. The measurements included arch length and width at different sites. Paired t test and Bland-Altman analysis were used to evaluate the accuracy of measurements on digital models compared to the plaster models. Also, intraclass correlation coefficients (ICCs) were used to evaluate the reproducibility of the measurements in order to assess the intraobserver reliability. The statistical analysis showed significant differences on 5 out of 14 variables, and the mean differences ranged from -0.48 to 0.51 mm. The Bland-Altman analysis revealed that the mean difference between variables was (0.14 ± 0.56) and (0.05 ± 0.96) mm and limits of agreement between the two methods ranged from -1.2 to 0.96 and from -1.8 to 1.9 mm in the maxilla and the mandible, respectively. The intraobserver reliability values were determined for all 14 variables of two types of models separately. The mean ICC value for the plaster models was 0.984 (0.924-0.999), while it was 0.946 for the CBCT models (range from 0.850 to 0.985). Linear measurements obtained from the CBCT-derived models appeared to have a high level of accuracy and reproducibility.
Linear models for sound from supersonic reacting mixing layers
Chary, P. Shivakanth; Samanta, Arnab
2016-12-01
We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.
DEFF Research Database (Denmark)
Østergaard, Jacob; Kramer, Mark A.; Eden, Uri T.
2018-01-01
current. We then fit these spike train datawith a statistical model (a generalized linear model, GLM, with multiplicative influences of past spiking). For different levels of noise, we show how the GLM captures both the deterministic features of the Izhikevich neuron and the variability driven...... by the noise. We conclude that the GLM captures essential features of the simulated spike trains, but for near-deterministic spike trains, goodness-of-fit analyses reveal that the model does not fit very well in a statistical sense; the essential random part of the GLM is not captured....... are separately applied; understanding the relationships between these modeling approaches remains an area of active research. In this letter, we examine this relationship using simulation. To do so, we first generate spike train data from a well-known dynamical model, the Izhikevich neuron, with a noisy input...
Linear programming model can explain respiration of fermentation products
Möller, Philip; Liu, Xiaochen; Schuster, Stefan
2018-01-01
Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the “Warburg effect”. The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited. PMID:29415045
Linear programming model can explain respiration of fermentation products.
Möller, Philip; Liu, Xiaochen; Schuster, Stefan; Boley, Daniel
2018-01-01
Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the "Warburg effect". The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited.
Transport coefficients from SU(3) Polyakov linear-σ model
International Nuclear Information System (INIS)
Tawfik, A.; Diab, A.
2015-01-01
In the mean field approximation, the grand potential of SU(3) Polyakov linear-σ model (PLSM) is analyzed for the order parameter of the light and strange chiral phase-transitions, σ l and σ s , respectively, and for the deconfinement order parameters φ and φ*. Furthermore, the subtracted condensate Δ l,s and the chiral order-parameters M b are compared with lattice QCD calculations. By using the dynamical quasiparticle model (DQPM), which can be considered as a system of noninteracting massive quasiparticles, we have evaluated the decay width and the relaxation time of quarks and gluons. In the framework of LSM and with Polyakov loop corrections included, the interaction measure Δ/T 4 , the specific heat c v and speed of sound squared c s 2 have been determined, as well as the temperature dependence of the normalized quark number density n q /T 3 and the quark number susceptibilities χ q /T 2 at various values of the baryon chemical potential. The electric and heat conductivity, σ e and κ, and the bulk and shear viscosities normalized to the thermal entropy, ζ/s and η/s, are compared with available results of lattice QCD calculations.
Generalized Functional Linear Models With Semiparametric Single-Index Interactions
Li, Yehua
2010-06-01
We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.
Sparse linear models: Variational approximate inference and Bayesian experimental design
International Nuclear Information System (INIS)
Seeger, Matthias W
2009-01-01
A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.
Sparse linear models: Variational approximate inference and Bayesian experimental design
Energy Technology Data Exchange (ETDEWEB)
Seeger, Matthias W [Saarland University and Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbruecken (Germany)
2009-12-01
A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.
Generalized Functional Linear Models With Semiparametric Single-Index Interactions
Li, Yehua; Wang, Naisyin; Carroll, Raymond J.
2010-01-01
We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.
Modeling containment of large wildfires using generalized linear mixed-model analysis
Mark Finney; Isaac C. Grenfell; Charles W. McHugh
2009-01-01
Billions of dollars are spent annually in the United States to contain large wildland fires, but the factors contributing to suppression success remain poorly understood. We used a regression model (generalized linear mixed-model) to model containment probability of individual fires, assuming that containment was a repeated-measures problem (fixed effect) and...
Stochastic linear hybrid systems: Modeling, estimation, and application
Seah, Chze Eng
Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS
Identification of an Equivalent Linear Model for a Non-Linear Time-Variant RC-Structure
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune
are investigated and compared with ARMAX models used on a running window. The techniques are evaluated using simulated data generated by the non-linear finite element program SARCOF modeling a 10-storey 3-bay concrete structure subjected to amplitude modulated Gaussian white noise filtered through a Kanai......This paper considers estimation of the maximum softening for a RC-structure subjected to earthquake excitation. The so-called Maximum Softening damage indicator relates the global damage state of the RC-structure to the relative decrease of the fundamental eigenfrequency in an equivalent linear...
Ho, Yuh-Shan
2006-01-01
A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.
Leary, Alison; Cook, Rob; Jones, Sarahjane; Smith, Judith; Gough, Malcolm; Maxwell, Elaine; Punshon, Geoffrey; Radford, Mark
2016-12-16
Nursing is a safety critical activity but not easily quantified. This makes the building of predictive staffing models a challenge. The aim of this study was to determine if relationships between registered and non-registered nurse staffing levels and clinical outcomes could be discovered through the mining of routinely collected clinical data. The secondary aim was to examine the feasibility and develop the use of 'big data' techniques commonly used in industry for this area of healthcare and examine future uses. The data were obtained from 1 large acute National Health Service hospital trust in England. Routinely collected physiological, signs and symptom data from a clinical database were extracted, imported and mined alongside a bespoke staffing and outcomes database using Mathmatica V.10. The physiological data consisted of 120 million patient entries over 6 years, the bespoke database consisted of 9 years of daily data on staffing levels and safety factors such as falls. To discover patterns in these data or non-linear relationships that would contribute to modelling. To examine feasibility of this technique in this field. After mining, 40 correlations (pdata (such as the presence or absence of nausea) and staffing factors. Several inter-related factors demonstrated step changes where registered nurse availability appeared to relate to physiological parameters or outcomes such as falls and the management of symptoms. Data extraction proved challenging as some commercial databases were not built for extraction of the massive data sets they contain. The relationship between staffing and outcomes appears to exist. It appears to be non-linear but calculable and a data-driven model appears possible. These findings could be used to build an initial mathematical model for acute staffing which could be further tested. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Behavioral and macro modeling using piecewise linear techniques
Kruiskamp, M.W.; Leenaerts, D.M.W.; Antao, B.
1998-01-01
In this paper we will demonstrate that most digital, analog as well as behavioral components can be described using piecewise linear approximations of their real behavior. This leads to several advantages from the viewpoint of simulation. We will also give a method to store the resulting linear
Simultaneous Balancing and Model Reduction of Switched Linear Systems
Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.
2011-01-01
In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not
Genomic prediction based on data from three layer lines using non-linear regression models.
Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L
2014-11-06
Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional
Sampled-data models for linear and nonlinear systems
Yuz, Juan I
2014-01-01
Sampled-data Models for Linear and Nonlinear Systems provides a fresh new look at a subject with which many researchers may think themselves familiar. Rather than emphasising the differences between sampled-data and continuous-time systems, the authors proceed from the premise that, with modern sampling rates being as high as they are, it is becoming more appropriate to emphasise connections and similarities. The text is driven by three motives: · the ubiquity of computers in modern control and signal-processing equipment means that sampling of systems that really evolve continuously is unavoidable; · although superficially straightforward, sampling can easily produce erroneous results when not treated properly; and · the need for a thorough understanding of many aspects of sampling among researchers and engineers dealing with applications to which they are central. The authors tackle many misconceptions which, although appearing reasonable at first sight, are in fact either p...
Dynamics of edge currents in a linearly quenched Haldane model
Mardanya, Sougata; Bhattacharya, Utso; Agarwal, Amit; Dutta, Amit
2018-03-01
In a finite-time quantum quench of the Haldane model, the Chern number determining the topology of the bulk remains invariant, as long as the dynamics is unitary. Nonetheless, the corresponding boundary attribute, the edge current, displays interesting dynamics. For the case of sudden and adiabatic quenches the postquench edge current is solely determined by the initial and the final Hamiltonians, respectively. However for a finite-time (τ ) linear quench in a Haldane nanoribbon, we show that the evolution of the edge current from the sudden to the adiabatic limit is not monotonic in τ and has a turning point at a characteristic time scale τ =τ0 . For small τ , the excited states lead to a huge unidirectional surge in the edge current of both edges. On the other hand, in the limit of large τ , the edge current saturates to its expected equilibrium ground-state value. This competition between the two limits lead to the observed nonmonotonic behavior. Interestingly, τ0 seems to depend only on the Semenoff mass and the Haldane flux. A similar dynamics for the edge current is also expected in other systems with topological phases.
Parameter estimation and hypothesis testing in linear models
Koch, Karl-Rudolf
1999-01-01
The necessity to publish the second edition of this book arose when its third German edition had just been published. This second English edition is there fore a translation of the third German edition of Parameter Estimation and Hypothesis Testing in Linear Models, published in 1997. It differs from the first English edition by the addition of a new chapter on robust estimation of parameters and the deletion of the section on discriminant analysis, which has been more completely dealt with by the author in the book Bayesian In ference with Geodetic Applications, Springer-Verlag, Berlin Heidelberg New York, 1990. Smaller additions and deletions have been incorporated, to im prove the text, to point out new developments or to eliminate errors which became apparent. A few examples have been also added. I thank Springer-Verlag for publishing this second edition and for the assistance in checking the translation, although the responsibility of errors remains with the author. I also want to express my thanks...
Linear multivariate evaluation models for spatial perception of soundscape.
Deng, Zhiyong; Kang, Jian; Wang, Daiwei; Liu, Aili; Kang, Joe Zhengyu
2015-11-01
Soundscape is a sound environment that emphasizes the awareness of auditory perception and social or cultural understandings. The case of spatial perception is significant to soundscape. However, previous studies on the auditory spatial perception of the soundscape environment have been limited. Based on 21 native binaural-recorded soundscape samples and a set of auditory experiments for subjective spatial perception (SSP), a study of the analysis among semantic parameters, the inter-aural-cross-correlation coefficient (IACC), A-weighted-equal sound-pressure-level (L(eq)), dynamic (D), and SSP is introduced to verify the independent effect of each parameter and to re-determine some of their possible relationships. The results show that the more noisiness the audience perceived, the worse spatial awareness they received, while the closer and more directional the sound source image variations, dynamics, and numbers of sound sources in the soundscape are, the better the spatial awareness would be. Thus, the sensations of roughness, sound intensity, transient dynamic, and the values of Leq and IACC have a suitable range for better spatial perception. A better spatial awareness seems to promote the preference slightly for the audience. Finally, setting SSPs as functions of the semantic parameters and Leq-D-IACC, two linear multivariate evaluation models of subjective spatial perception are proposed.
Form factors in the projected linear chiral sigma model
International Nuclear Information System (INIS)
Alberto, P.; Coimbra Univ.; Bochum Univ.; Ruiz Arriola, E.; Fiolhais, M.; Urbano, J.N.; Coimbra Univ.; Goeke, K.; Gruemmer, F.; Bochum Univ.
1990-01-01
Several nucleon form factors are computed within the framework of the linear chiral soliton model. To this end variational means and projection techniques applied to generalized hedgehog quark-boson Fock states are used. In this procedure the Goldberger-Treiman relation and a virial theorem for the pion-nucleon form factor are well fulfilled demonstrating the consistency of the treatment. Both proton and neutron charge form factors are correctly reproduced, as well as the proton magnetic one. The shapes of the neutron magnetic and of the axial form factors are good but their absolute values at the origin are too large. The slopes of all the form factors at zero momentum transfer are in good agreement with the experimental data. The pion-nucleon form factor exhibits to great extent a monopole shape with a cut-off mass of Λ=690 MeV. Electromagnetic form factors for the vertex γNΔ and the nucleon spin distribution are also evaluated and discussed. (orig.)
Non-linear auto-regressive models for cross-frequency coupling in neural time series
Tallot, Lucille; Grabot, Laetitia; Doyère, Valérie; Grenier, Yves; Gramfort, Alexandre
2017-01-01
We address the issue of reliably detecting and quantifying cross-frequency coupling (CFC) in neural time series. Based on non-linear auto-regressive models, the proposed method provides a generative and parametric model of the time-varying spectral content of the signals. As this method models the entire spectrum simultaneously, it avoids the pitfalls related to incorrect filtering or the use of the Hilbert transform on wide-band signals. As the model is probabilistic, it also provides a score of the model “goodness of fit” via the likelihood, enabling easy and legitimate model selection and parameter comparison; this data-driven feature is unique to our model-based approach. Using three datasets obtained with invasive neurophysiological recordings in humans and rodents, we demonstrate that these models are able to replicate previous results obtained with other metrics, but also reveal new insights such as the influence of the amplitude of the slow oscillation. Using simulations, we demonstrate that our parametric method can reveal neural couplings with shorter signals than non-parametric methods. We also show how the likelihood can be used to find optimal filtering parameters, suggesting new properties on the spectrum of the driving signal, but also to estimate the optimal delay between the coupled signals, enabling a directionality estimation in the coupling. PMID:29227989
Directory of Open Access Journals (Sweden)
R. Barbiero
2007-05-01
Full Text Available Model Output Statistics (MOS refers to a method of post-processing the direct outputs of numerical weather prediction (NWP models in order to reduce the biases introduced by a coarse horizontal resolution. This technique is especially useful in orographically complex regions, where large differences can be found between the NWP elevation model and the true orography. This study carries out a comparison of linear and non-linear MOS methods, aimed at the prediction of minimum temperatures in a fruit-growing region of the Italian Alps, based on the output of two different NWPs (ECMWF T511–L60 and LAMI-3. Temperature, of course, is a particularly important NWP output; among other roles it drives the local frost forecast, which is of great interest to agriculture. The mechanisms of cold air drainage, a distinctive aspect of mountain environments, are often unsatisfactorily captured by global circulation models. The simplest post-processing technique applied in this work was a correction for the mean bias, assessed at individual model grid points. We also implemented a multivariate linear regression on the output at the grid points surrounding the target area, and two non-linear models based on machine learning techniques: Neural Networks and Random Forest. We compare the performance of all these techniques on four different NWP data sets. Downscaling the temperatures clearly improved the temperature forecasts with respect to the raw NWP output, and also with respect to the basic mean bias correction. Multivariate methods generally yielded better results, but the advantage of using non-linear algorithms was small if not negligible. RF, the best performing method, was implemented on ECMWF prognostic output at 06:00 UTC over the 9 grid points surrounding the target area. Mean absolute errors in the prediction of 2 m temperature at 06:00 UTC were approximately 1.2°C, close to the natural variability inside the area itself.
Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses
Martinez-Luaces, Victor
2009-01-01
In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…
An improved robust model predictive control for linear parameter-varying input-output models
Abbas, H.S.; Hanema, J.; Tóth, R.; Mohammadpour, J.; Meskin, N.
2018-01-01
This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal
A non-linear state space approach to model groundwater fluctuations
Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.
2006-01-01
A non-linear state space model is developed for describing groundwater fluctuations. Non-linearity is introduced by modeling the (unobserved) degree of water saturation of the root zone. The non-linear relations are based on physical concepts describing the dependence of both the actual
Half-trek criterion for generic identifiability of linear structural equation models
Foygel, R.; Draisma, J.; Drton, M.
2012-01-01
A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations
Half-trek criterion for generic identifiability of linear structural equation models
Foygel, R.; Draisma, J.; Drton, M.
2011-01-01
A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations
On-line validation of linear process models using generalized likelihood ratios
International Nuclear Information System (INIS)
Tylee, J.L.
1981-12-01
A real-time method for testing the validity of linear models of nonlinear processes is described and evaluated. Using generalized likelihood ratios, the model dynamics are continually monitored to see if the process has moved far enough away from the nominal linear model operating point to justify generation of a new linear model. The method is demonstrated using a seventh-order model of a natural circulation steam generator
Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William
2016-01-01
Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19
Fisher, Karl B.
1995-08-01
The relation between the galaxy correlation functions in real-space and redshift-space is derived in the linear regime by an appropriate averaging of the joint probability distribution of density and velocity. The derivation recovers the familiar linear theory result on large scales but has the advantage of clearly revealing the dependence of the redshift distortions on the underlying peculiar velocity field; streaming motions give rise to distortions of θ(Ω0.6/b) while variations in the anisotropic velocity dispersion yield terms of order θ(Ω1.2/b2). This probabilistic derivation of the redshift-space correlation function is similar in spirit to the derivation of the commonly used "streaming" model, in which the distortions are given by a convolution of the real-space correlation function with a velocity distribution function. The streaming model is often used to model the redshift-space correlation function on small, highly nonlinear, scales. There have been claims in the literature, however, that the streaming model is not valid in the linear regime. Our analysis confirms this claim, but we show that the streaming model can be made consistent with linear theory provided that the model for the streaming has the functional form predicted by linear theory and that the velocity distribution is chosen to be a Gaussian with the correct linear theory dispersion.
Simultaneous Balancing and Model Reduction of Switched Linear Systems
Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.
2011-01-01
In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not limited to a certain type of balancing, and they are applicable for different types of balancing corresponding to different equations, like Lyapunov or Riccati equations. The results obtained are ...
Linear models for assessing mechanisms of sperm competition: the trouble with transformations.
Eggert, Anne-Katrin; Reinhardt, Klaus; Sakaluk, Scott K
2003-01-01
Although sperm competition is a pervasive selective force shaping the reproductive tactics of males, the mechanisms underlying different patterns of sperm precedence remain obscure. Parker et al. (1990) developed a series of linear models designed to identify two of the more basic mechanisms: sperm lotteries and sperm displacement; the models can be tested experimentally by manipulating the relative numbers of sperm transferred by rival males and determining the paternity of offspring. Here we show that tests of the model derived for sperm lotteries can result in misleading inferences about the underlying mechanism of sperm precedence because the required inverse transformations may lead to a violation of fundamental assumptions of linear regression. We show that this problem can be remedied by reformulating the model using the actual numbers of offspring sired by each male, and log-transforming both sides of the resultant equation. Reassessment of data from a previous study (Sakaluk and Eggert 1996) using the corrected version of the model revealed that we should not have excluded a simple sperm lottery as a possible mechanism of sperm competition in decorated crickets, Gryllodes sigillatus.
Developing ontological model of computational linear algebra - preliminary considerations
Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Lirkov, I.
2013-10-01
The aim of this paper is to propose a method for application of ontologically represented domain knowledge to support Grid users. The work is presented in the context provided by the Agents in Grid system, which aims at development of an agent-semantic infrastructure for efficient resource management in the Grid. Decision support within the system should provide functionality beyond the existing Grid middleware, specifically, help the user to choose optimal algorithm and/or resource to solve a problem from a given domain. The system assists the user in at least two situations. First, for users without in-depth knowledge about the domain, it should help them to select the method and the resource that (together) would best fit the problem to be solved (and match the available resources). Second, if the user explicitly indicates the method and the resource configuration, it should "verify" if her choice is consistent with the expert recommendations (encapsulated in the knowledge base). Furthermore, one of the goals is to simplify the use of the selected resource to execute the job; i.e., provide a user-friendly method of submitting jobs, without required technical knowledge about the Grid middleware. To achieve the mentioned goals, an adaptable method of expert knowledge representation for the decision support system has to be implemented. The selected approach is to utilize ontologies and semantic data processing, supported by multicriterial decision making. As a starting point, an area of computational linear algebra was selected to be modeled, however, the paper presents a general approach that shall be easily extendable to other domains.
Symmetry conservation in the linear chiral soliton model
International Nuclear Information System (INIS)
Goeke, K.
1988-01-01
The linear chiral soliton model with quark fields and elementary pion- and sigma-fields is solved in order to describe static properties of the nucleon and the delta resonance. To this end a Fock-state of the system is constructed consisting out of three valence quarks in a first orbit with a generalized hedgehog spin-flavour configuration. Coherent states are used to provide a quantum description for the mesonic parts of the total wave function. The corresponding classical pion field also exhibit a generalized hedgehog structure. In a pure mean field approximation the variation of the total energy results in the ordinary hedgehog form. In a quantized approach the generalized hedgehog-baryon is projected onto states with good spin and isospin and then noticeable deviations from the simple hedgehog form, if the relevant degrees of freedom of the wave function are varied after the projection. Various nucleon properties are calculated. These include proton and neutron charge radii, and the magnetic moment of the proton for which good agreement with experiment is obtained. The absolute value of the neutron magnetic moment comes out too large, similarly as the axial vector coupling constant and the pion-nucleon-nucleon coupling constant.To the generalization of the hedgehog the Goldberger-Treiman relation and a corresponding virial theorem are fulfilled. Variation of the quark-meson coupling parameter g and the sigma mass m σ shows that the g A is always at least 40 % too large compared to experiment. Hence it is concluded that either the inclusion of the polarization of the Dirac sea and/or further mesons with may be vector character or the consideration of intrinsic deformation is necessary. The concepts and results of the projections are compared with the semiclassical collective quantization method. 6 tabs., 14 figs., 43 refs
Kallehauge, Jesper F; Sourbron, Steven; Irving, Benjamin; Tanderup, Kari; Schnabel, Julia A; Chappell, Michael A
2017-06-01
Fitting tracer kinetic models using linear methods is much faster than using their nonlinear counterparts, although this comes often at the expense of reduced accuracy and precision. The aim of this study was to derive and compare the performance of the linear compartmental tissue uptake (CTU) model with its nonlinear version with respect to their percentage error and precision. The linear and nonlinear CTU models were initially compared using simulations with varying noise and temporal sampling. Subsequently, the clinical applicability of the linear model was demonstrated on 14 patients with locally advanced cervical cancer examined with dynamic contrast-enhanced magnetic resonance imaging. Simulations revealed equal percentage error and precision when noise was within clinical achievable ranges (contrast-to-noise ratio >10). The linear method was significantly faster than the nonlinear method, with a minimum speedup of around 230 across all tested sampling rates. Clinical analysis revealed that parameters estimated using the linear and nonlinear CTU model were highly correlated (ρ ≥ 0.95). The linear CTU model is computationally more efficient and more stable against temporal downsampling, whereas the nonlinear method is more robust to variations in noise. The two methods may be used interchangeably within clinical achievable ranges of temporal sampling and noise. Magn Reson Med 77:2414-2423, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Log-normal frailty models fitted as Poisson generalized linear mixed models.
Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver
2016-12-01
The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The Linearity of Optical Tomography: Sensor Model and Experimental Verification
Directory of Open Access Journals (Sweden)
Siti Zarina MOHD. MUJI
2011-09-01
Full Text Available The aim of this paper is to show the linearization of optical sensor. Linearity of the sensor response is a must in optical tomography application, which affects the tomogram result. Two types of testing are used namely, testing using voltage parameter and testing with time unit parameter. For the former, the testing is by measuring the voltage when the obstacle is placed between transmitter and receiver. The obstacle diameters are between 0.5 until 3 mm. The latter is also the same testing but the obstacle is bigger than the former which is 59.24 mm and the testing purpose is to measure the time unit spend for the ball when it cut the area of sensing circuit. Both results show a linear relation that proves the optical sensors is suitable for process tomography application.
Robust Comparison of the Linear Model Structures in Self-tuning Adaptive Control
DEFF Research Database (Denmark)
Zhou, Jianjun; Conrad, Finn
1989-01-01
The Generalized Predictive Controller (GPC) is extended to the systems with a generalized linear model structure which contains a number of choices of linear model structures. The Recursive Prediction Error Method (RPEM) is used to estimate the unknown parameters of the linear model structures...... to constitute a GPC self-tuner. Different linear model structures commonly used are compared and evaluated by applying them to the extended GPC self-tuner as well as to the special cases of the GPC, the GMV and MV self-tuners. The simulation results show how the choice of model structure affects the input......-output behaviour of self-tuning controllers....
Generating synthetic wave climates for coastal modelling: a linear mixed modelling approach
Thomas, C.; Lark, R. M.
2013-12-01
Numerical coastline morphological evolution models require wave climate properties to drive morphological change through time. Wave climate properties (typically wave height, period and direction) may be temporally fixed, culled from real wave buoy data, or allowed to vary in some way defined by a Gaussian or other pdf. However, to examine sensitivity of coastline morphologies to wave climate change, it seems desirable to be able to modify wave climate time series from a current to some new state along a trajectory, but in a way consistent with, or initially conditioned by, the properties of existing data, or to generate fully synthetic data sets with realistic time series properties. For example, mean or significant wave height time series may have underlying periodicities, as revealed in numerous analyses of wave data. Our motivation is to develop a simple methodology to generate synthetic wave climate time series that can change in some stochastic way through time. We wish to use such time series in a coastline evolution model to test sensitivities of coastal landforms to changes in wave climate over decadal and centennial scales. We have worked initially on time series of significant wave height, based on data from a Waverider III buoy located off the coast of Yorkshire, England. The statistical framework for the simulation is the linear mixed model. The target variable, perhaps after transformation (Box-Cox), is modelled as a multivariate Gaussian, the mean modelled as a function of a fixed effect, and two random components, one of which is independently and identically distributed (iid) and the second of which is temporally correlated. The model was fitted to the data by likelihood methods. We considered the option of a periodic mean, the period either fixed (e.g. at 12 months) or estimated from the data. We considered two possible correlation structures for the second random effect. In one the correlation decays exponentially with time. In the second
DEFF Research Database (Denmark)
Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan
This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set...... of moment restrictions for estimation and apply the results to estimation of panel smooth transition models with fixed effects, where the transition may be determined endogenously. The performance of the GMM estimator, both in terms of estimation precision and forecasting performance, is examined in a Monte...
A wild model of linear arithmetic and discretely ordered modules
Czech Academy of Sciences Publication Activity Database
Glivický, Petr; Pudlák, Pavel
2017-01-01
Roč. 63, č. 6 (2017), s. 501-508 ISSN 0942-5616 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : linear arithmetics Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.250, year: 2016
Evaluation of linear induction motor characteristics : the Yamamura model
1975-04-30
The Yamamura theory of the double-sided linear induction motor (LIM) excited by a constant current source is discussed in some detail. The report begins with a derivation of thrust and airgap power using the method of vector potentials and theorem of...
Model structure learning: A support vector machine approach for LPV linear-regression models
Toth, R.; Laurain, V.; Zheng, W-X.; Poolla, K.
2011-01-01
Accurate parametric identification of Linear Parameter-Varying (LPV) systems requires an optimal prior selection of a set of functional dependencies for the parametrization of the model coefficients. Inaccurate selection leads to structural bias while over-parametrization results in a variance
Beardsell, Alec; Collier, William; Han, Tao
2016-09-01
There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.
Directory of Open Access Journals (Sweden)
Shangli Zhang
2009-01-01
Full Text Available By using the methods of linear algebra and matrix inequality theory, we obtain the characterization of admissible estimators in the general multivariate linear model with respect to inequality restricted parameter set. In the classes of homogeneous and general linear estimators, the necessary and suffcient conditions that the estimators of regression coeffcient function are admissible are established.
Preisach hysteresis model for non-linear 2D heat diffusion
International Nuclear Information System (INIS)
Jancskar, Ildiko; Ivanyi, Amalia
2006-01-01
This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way
Study of the critical behavior of the O(N) linear and nonlinear sigma models
International Nuclear Information System (INIS)
Graziani, F.R.
1983-01-01
A study of the large N behavior of both the O(N) linear and nonlinear sigma models is presented. The purpose is to investigate the relationship between the disordered (ordered) phase of the linear and nonlinear sigma models. Utilizing operator product expansions and stability analyses, it is shown that for 2 - (lambda/sub R/(M) is the dimensionless renormalized quartic coupling and lambda* is the IR fixed point) limit of the linear sigma model which yields the nonlinear sigma model. It is also shown that stable large N linear sigma models with lambda 0) and nonlinear models are trivial. This result (i.e., triviality) is well known but only for one and two component models. Interestingly enough, the lambda< d = 4 linear sigma model remains nontrivial and tachyonic free
Non-linear nuclear engineering models as genetic programming application
International Nuclear Information System (INIS)
Domingos, Roberto P.; Schirru, Roberto; Martinez, Aquilino S.
1997-01-01
This work presents a Genetic Programming paradigm and a nuclear application. A field of Artificial Intelligence, based on the concepts of Species Evolution and Natural Selection, can be understood as a self-programming process where the computer is the main agent responsible for the discovery of a program able to solve a given problem. In the present case, the problem was to find a mathematical expression in symbolic form, able to express the existent relation between equivalent ratio of a fuel cell, the enrichment of fuel elements and the multiplication factor. Such expression would avoid repeatedly reactor physics codes execution for core optimization. The results were compared with those obtained by different techniques such as Neural Networks and Linear Multiple Regression. Genetic Programming has shown to present a performance as good as, and under some features superior to Neural Network and Linear Multiple Regression. (author). 10 refs., 8 figs., 1 tabs
AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S
Klumpp, A. R.
1994-01-01
This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
A Comparison of Alternative Estimators of Linearly Aggregated Macro Models
Directory of Open Access Journals (Sweden)
Fikri Akdeniz
2012-07-01
Full Text Available Normal 0 false false false TR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman","serif"; mso-ansi-language:TR; mso-fareast-language:TR;} This paper deals with the linear aggregation problem. For the true underlying micro relations, which explain the micro behavior of the individuals, no restrictive rank conditions are assumed. Thus the analysis is presented in a framework utilizing generalized inverses of singular matrices. We investigate several estimators for certain linear transformations of the systematic part of the corresponding macro relations. Homogeneity of micro parameters is discussed. Best linear unbiased estimation for micro parameters is described.
Mixed models, linear dependency, and identification in age-period-cohort models.
O'Brien, Robert M
2017-07-20
This paper examines the identification problem in age-period-cohort models that use either linear or categorically coded ages, periods, and cohorts or combinations of these parameterizations. These models are not identified using the traditional fixed effect regression model approach because of a linear dependency between the ages, periods, and cohorts. However, these models can be identified if the researcher introduces a single just identifying constraint on the model coefficients. The problem with such constraints is that the results can differ substantially depending on the constraint chosen. Somewhat surprisingly, age-period-cohort models that specify one or more of ages and/or periods and/or cohorts as random effects are identified. This is the case without introducing an additional constraint. I label this identification as statistical model identification and show how statistical model identification comes about in mixed models and why which effects are treated as fixed and which are treated as random can substantially change the estimates of the age, period, and cohort effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.
Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko
2016-03-01
In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Muayad Al-Qaisy
2015-02-01
Full Text Available In this article, multi-input multi-output (MIMO linear model predictive controller (LMPC based on state space model and nonlinear model predictive controller based on neural network (NNMPC are applied on a continuous stirred tank reactor (CSTR. The idea is to have a good control system that will be able to give optimal performance, reject high load disturbance, and track set point change. In order to study the performance of the two model predictive controllers, MIMO Proportional-Integral-Derivative controller (PID strategy is used as benchmark. The LMPC, NNMPC, and PID strategies are used for controlling the residual concentration (CA and reactor temperature (T. NNMPC control shows a superior performance over the LMPC and PID controllers by presenting a smaller overshoot and shorter settling time.
Can a Linear Sigma Model Describe Walking Gauge Theories at Low Energies?
Gasbarro, Andrew
2018-03-01
In recent years, many investigations of confining Yang Mills gauge theories near the edge of the conformal window have been carried out using lattice techniques. These studies have revealed that the spectrum of hadrons in nearly conformal ("walking") gauge theories differs significantly from the QCD spectrum. In particular, a light singlet scalar appears in the spectrum which is nearly degenerate with the PNGBs at the lightest currently accessible quark masses. This state is a viable candidate for a composite Higgs boson. Presently, an acceptable effective field theory (EFT) description of the light states in walking theories has not been established. Such an EFT would be useful for performing chiral extrapolations of lattice data and for serving as a bridge between lattice calculations and phenomenology. It has been shown that the chiral Lagrangian fails to describe the IR dynamics of a theory near the edge of the conformal window. Here we assess a linear sigma model as an alternate EFT description by performing explicit chiral fits to lattice data. In a combined fit to the Goldstone (pion) mass and decay constant, a tree level linear sigma model has a Χ2/d.o.f. = 0.5 compared to Χ2/d.o.f. = 29.6 from fitting nextto-leading order chiral perturbation theory. When the 0++ (σ) mass is included in the fit, Χ2/d.o.f. = 4.9. We remark on future directions for providing better fits to the σ mass.
Utility of low-order linear nuclear-power-plant models in plant diagnostics and control
International Nuclear Information System (INIS)
Tylee, J.L.
1981-01-01
A low-order, linear model of a pressurized water reactor (PWR) plant is described and evaluated. The model consists of 23 linear, first-order difference equations and simulates all subsystems of both the primary and secondary sides of the plant. Comparisons between the calculated model response and available test data show the model to be an adequate representation of the actual plant dynamics. Suggested use for the model in an on-line digital plant diagnostics and control system are presented
Some computer simulations based on the linear relative risk model
International Nuclear Information System (INIS)
Gilbert, E.S.
1991-10-01
This report presents the results of computer simulations designed to evaluate and compare the performance of the likelihood ratio statistic and the score statistic for making inferences about the linear relative risk mode. The work was motivated by data on workers exposed to low doses of radiation, and the report includes illustration of several procedures for obtaining confidence limits for the excess relative risk coefficient based on data from three studies of nuclear workers. The computer simulations indicate that with small sample sizes and highly skewed dose distributions, asymptotic approximations to the score statistic or to the likelihood ratio statistic may not be adequate. For testing the null hypothesis that the excess relative risk is equal to zero, the asymptotic approximation to the likelihood ratio statistic was adequate, but use of the asymptotic approximation to the score statistic rejected the null hypothesis too often. Frequently the likelihood was maximized at the lower constraint, and when this occurred, the asymptotic approximations for the likelihood ratio and score statistics did not perform well in obtaining upper confidence limits. The score statistic and likelihood ratio statistics were found to perform comparably in terms of power and width of the confidence limits. It is recommended that with modest sample sizes, confidence limits be obtained using computer simulations based on the score statistic. Although nuclear worker studies are emphasized in this report, its results are relevant for any study investigating linear dose-response functions with highly skewed exposure distributions. 22 refs., 14 tabs
Partially linear varying coefficient models stratified by a functional covariate
Maity, Arnab; Huang, Jianhua Z.
2012-01-01
We consider the problem of estimation in semiparametric varying coefficient models where the covariate modifying the varying coefficients is functional and is modeled nonparametrically. We develop a kernel-based estimator of the nonparametric
A linear time layout algorithm for business process models
Gschwind, T.; Pinggera, J.; Zugal, S.; Reijers, H.A.; Weber, B.
2014-01-01
The layout of a business process model influences how easily it can beunderstood. Existing layout features in process modeling tools often rely on graph representations, but do not take the specific properties of business process models into account. In this paper, we propose an algorithm that is
Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime
Debayle, A.; Masson-Laborde, P.-E.; Ruyer, C.; Casanova, M.; Loiseau, P.
2018-05-01
We present an extensive numerical study by means of particle-in-cell simulations of the energy transfer that occurs during the crossing of two laser beams. In the linear regime, when ions are not trapped in the potential well induced by the laser interference pattern, a very good agreement is obtained with a simple linear stationary model, provided the laser intensity is sufficiently smooth. These comparisons include different plasma compositions to cover the strong and weak Landau damping regimes as well as the multispecies case. The correct evaluation of the linear Landau damping at the phase velocity imposed by the laser interference pattern is essential to estimate the energy transfer rate between the laser beams, once the stationary regime is reached. The transient evolution obtained in kinetic simulations is also analysed by means of a full analytical formula that includes 3D beam energy exchange coupled with the ion acoustic wave response. Specific attention is paid to the energy transfer when the laser presents small-scale inhomogeneities. In particular, the energy transfer is reduced when the laser inhomogeneities are comparable with the Landau damping characteristic length of the ion acoustic wave.
Free-piston engine linear generator for hybrid vehicles modeling study
Callahan, T. J.; Ingram, S. K.
1995-05-01
Development of a free piston engine linear generator was investigated for use as an auxiliary power unit for a hybrid electric vehicle. The main focus of the program was to develop an efficient linear generator concept to convert the piston motion directly into electrical power. Computer modeling techniques were used to evaluate five different designs for linear generators. These designs included permanent magnet generators, reluctance generators, linear DC generators, and two and three-coil induction generators. The efficiency of the linear generator was highly dependent on the design concept. The two-coil induction generator was determined to be the best design, with an efficiency of approximately 90 percent.
Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It
Grünwald, P.; van Ommen, T.
2017-01-01
We empirically show that Bayesian inference can be inconsistent under misspecification in simple linear regression problems, both in a model averaging/selection and in a Bayesian ridge regression setting. We use the standard linear model, which assumes homoskedasticity, whereas the data are
Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.
2006-01-01
Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…
Genomic prediction based on data from three layer lines using non-linear regression models
Huang, H.; Windig, J.J.; Vereijken, A.; Calus, M.P.L.
2014-01-01
Background - Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. Methods - In an attempt to alleviate
Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon
2012-01-01
Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…
Inconsistency of Bayesian inference for misspecified linear models, and a proposal for repairing it
P.D. Grünwald (Peter); T. van Ommen (Thijs)
2017-01-01
textabstractWe empirically show that Bayesian inference can be inconsistent under misspecification in simple linear regression problems, both in a model averaging/selection and in a Bayesian ridge regression setting. We use the standard linear model, which assumes homoskedasticity, whereas the data
Non-linear characterisation of the physical model of an ancient masonry bridge
International Nuclear Information System (INIS)
Fragonara, L Zanotti; Ceravolo, R; Matta, E; Quattrone, A; De Stefano, A; Pecorelli, M
2012-01-01
This paper presents the non-linear investigations carried out on a scaled model of a two-span masonry arch bridge. The model has been built in order to study the effect of the central pile settlement due to riverbank erosion. Progressive damage was induced in several steps by applying increasing settlements at the central pier. For each settlement step, harmonic shaker tests were conducted under different excitation levels, this allowing for the non-linear identification of the progressively damaged system. The shaker tests have been performed at resonance with the modal frequency of the structure, which were determined from a previous linear identification. Estimated non-linearity parameters, which result from the systematic application of restoring force based identification algorithms, can corroborate models to be used in the reassessment of existing structures. The method used for non-linear identification allows monitoring the evolution of non-linear parameters or indicators which can be used in damage and safety assessment.
Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming
Energy Technology Data Exchange (ETDEWEB)
Cardoso, Goncalo; Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; DeForest, Nicholas; Barbosa-Povoa, Ana; Ferrao, Paulo
2013-05-23
This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6percent.
Seol, Hyon-Woo; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun; Kim, Shin-Koo
2015-01-01
To analyze the axial displacement of external and internal implant-abutment connection after cyclic loading. Three groups of external abutments (Ext group), an internal tapered one-piece-type abutment (Int-1 group), and an internal tapered two-piece-type abutment (Int-2 group) were prepared. Cyclic loading was applied to implant-abutment assemblies at 150 N with a frequency of 3 Hz. The amount of axial displacement, the Periotest values (PTVs), and the removal torque values(RTVs) were measured. Both a repeated measures analysis of variance and pattern analysis based on the linear mixed model were used for statistical analysis. Scanning electron microscopy (SEM) was used to evaluate the surface of the implant-abutment connection. The mean axial displacements after 1,000,000 cycles were 0.6 μm in the Ext group, 3.7 μm in the Int-1 group, and 9.0 μm in the Int-2 group. Pattern analysis revealed a breakpoint at 171 cycles. The Ext group showed no declining pattern, and the Int-1 group showed no declining pattern after the breakpoint (171 cycles). However, the Int-2 group experienced continuous axial displacement. After cyclic loading, the PTV decreased in the Int-2 group, and the RTV decreased in all groups. SEM imaging revealed surface wear in all groups. Axial displacement and surface wear occurred in all groups. The PTVs remained stable, but the RTVs decreased after cyclic loading. Based on linear mixed model analysis, the Ext and Int-1 groups' axial displacements plateaued after little cyclic loading. The Int-2 group's rate of axial displacement slowed after 100,000 cycles.
Cheng, Guang; Zhou, Lan; Huang, Jianhua Z.
2014-01-01
We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based
International Nuclear Information System (INIS)
Littlefield, R.J.; Maschhoff, K.J.
1991-04-01
Many linear algebra algorithms utilize an array of processors across which matrices are distributed. Given a particular matrix size and a maximum number of processors, what configuration of processors, i.e., what size and shape array, will execute the fastest? The answer to this question depends on tradeoffs between load balancing, communication startup and transfer costs, and computational overhead. In this paper we analyze in detail one algorithm: the blocked factored Jacobi method for solving dense eigensystems. A performance model is developed to predict execution time as a function of the processor array and matrix sizes, plus the basic computation and communication speeds of the underlying computer system. In experiments on a large hypercube (up to 512 processors), this model has been found to be highly accurate (mean error ∼ 2%) over a wide range of matrix sizes (10 x 10 through 200 x 200) and processor counts (1 to 512). The model reveals, and direct experiment confirms, that the tradeoffs mentioned above can be surprisingly complex and counterintuitive. We propose decision procedures based directly on the performance model to choose configurations for fastest execution. The model-based decision procedures are compared to a heuristic strategy and shown to be significantly better. 7 refs., 8 figs., 1 tab
Sanz, Luis; Alonso, Juan Antonio
2017-12-01
In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-12-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.
Modeling exposure–lag–response associations with distributed lag non-linear models
Gasparrini, Antonio
2014-01-01
In biomedical research, a health effect is frequently associated with protracted exposures of varying intensity sustained in the past. The main complexity of modeling and interpreting such phenomena lies in the additional temporal dimension needed to express the association, as the risk depends on both intensity and timing of past exposures. This type of dependency is defined here as exposure–lag–response association. In this contribution, I illustrate a general statistical framework for such associations, established through the extension of distributed lag non-linear models, originally developed in time series analysis. This modeling class is based on the definition of a cross-basis, obtained by the combination of two functions to flexibly model linear or nonlinear exposure-responses and the lag structure of the relationship, respectively. The methodology is illustrated with an example application to cohort data and validated through a simulation study. This modeling framework generalizes to various study designs and regression models, and can be applied to study the health effects of protracted exposures to environmental factors, drugs or carcinogenic agents, among others. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24027094
Linear regression models for quantitative assessment of left ...
African Journals Online (AJOL)
Changes in left ventricular structures and function have been reported in cardiomyopathies. No prediction models have been established in this environment. This study established regression models for prediction of left ventricular structures in normal subjects. A sample of normal subjects was drawn from a large urban ...
Non-linear modeling of active biohybrid materials
Paetsch, C.; Dorfmann, A.
2013-01-01
, such as those of Manduca sexta. In this study, we propose a model to assist in the analysis of biohybrid constructs by generalizing a recently proposed constitutive law for Manduca muscle tissue. The continuum model accounts (i) for the stimulation of muscle
Nonstandard Finite Difference Method Applied to a Linear Pharmacokinetics Model
Directory of Open Access Journals (Sweden)
Oluwaseun Egbelowo
2017-05-01
Full Text Available We extend the nonstandard finite difference method of solution to the study of pharmacokinetic–pharmacodynamic models. Pharmacokinetic (PK models are commonly used to predict drug concentrations that drive controlled intravenous (I.V. transfers (or infusion and oral transfers while pharmacokinetic and pharmacodynamic (PD interaction models are used to provide predictions of drug concentrations affecting the response of these clinical drugs. We structure a nonstandard finite difference (NSFD scheme for the relevant system of equations which models this pharamcokinetic process. We compare the results obtained to standard methods. The scheme is dynamically consistent and reliable in replicating complex dynamic properties of the relevant continuous models for varying step sizes. This study provides assistance in understanding the long-term behavior of the drug in the system, and validation of the efficiency of the nonstandard finite difference scheme as the method of choice.
Nonlinearity measure and internal model control based linearization in anti-windup design
Energy Technology Data Exchange (ETDEWEB)
Perev, Kamen [Systems and Control Department, Technical University of Sofia, 8 Cl. Ohridski Blvd., 1756 Sofia (Bulgaria)
2013-12-18
This paper considers the problem of internal model control based linearization in anti-windup design. The nonlinearity measure concept is used for quantifying the control system degree of nonlinearity. The linearizing effect of a modified internal model control structure is presented by comparing the nonlinearity measures of the open-loop and closed-loop systems. It is shown that the linearization properties are improved by increasing the control system local feedback gain. However, it is emphasized that at the same time the stability of the system deteriorates. The conflicting goals of stability and linearization are resolved by solving the design problem in different frequency ranges.
DEFF Research Database (Denmark)
Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik
2004-01-01
The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...
Partially linear varying coefficient models stratified by a functional covariate
Maity, Arnab
2012-10-01
We consider the problem of estimation in semiparametric varying coefficient models where the covariate modifying the varying coefficients is functional and is modeled nonparametrically. We develop a kernel-based estimator of the nonparametric component and a profiling estimator of the parametric component of the model and derive their asymptotic properties. Specifically, we show the consistency of the nonparametric functional estimates and derive the asymptotic expansion of the estimates of the parametric component. We illustrate the performance of our methodology using a simulation study and a real data application.
Modeling results for a linear simulator of a divertor
International Nuclear Information System (INIS)
Hooper, E.B.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Jackson, M.C.; Kaiser, T.B.; Molvik, A.W.; Nevins, W.M.; Nilson, D.G.; Pearlstein, L.D.; Rognlien, T.D.
1993-01-01
A divertor simulator, IDEAL, has been proposed by S. Cohen to study the difficult power-handling requirements of the tokamak program in general and the ITER program in particular. Projections of the power density in the ITER divertor reach ∼ 1 Gw/m 2 along the magnetic fieldlines and > 10 MW/m 2 on a surface inclined at a shallow angle to the fieldlines. These power densities are substantially greater than can be handled reliably on the surface, so new techniques are required to reduce the power density to a reasonable level. Although the divertor physics must be demonstrated in tokamaks, a linear device could contribute to the development because of its flexibility, the easy access to the plasma and to tested components, and long pulse operation (essentially cw). However, a decision to build a simulator requires not just the recognition of its programmatic value, but also confidence that it can meet the required parameters at an affordable cost. Accordingly, as reported here, it was decided to examine the physics of the proposed device, including kinetic effects resulting from the intense heating required to reach the plasma parameters, and to conduct an independent cost estimate. The detailed role of the simulator in a divertor program is not explored in this report
A Multiphase Non-Linear Mixed Effects Model: An Application to Spirometry after Lung Transplantation
Rajeswaran, Jeevanantham; Blackstone, Eugene H.
2014-01-01
In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time varying coefficients. PMID:24919830
Roth, Aurora; Hock, Regine; Schuler, Thomas V.; Bieniek, Peter A.; Pelto, Mauri; Aschwanden, Andy
2018-03-01
Assessing and modeling precipitation in mountainous areas remains a major challenge in glacier mass balance modeling. Observations are typically scarce and reanalysis data and similar climate products are too coarse to accurately capture orographic effects. Here we use the linear theory of orographic precipitation model (LT model) to downscale winter precipitation from a regional climate model over the Juneau Icefield, one of the largest ice masses in North America (>4000 km2), for the period 1979-2013. The LT model is physically-based yet computationally efficient, combining airflow dynamics and simple cloud microphysics. The resulting 1 km resolution precipitation fields show substantially reduced precipitation on the northeastern portion of the icefield compared to the southwestern side, a pattern that is not well captured in the coarse resolution (20 km) WRF data. Net snow accumulation derived from the LT model precipitation agrees well with point observations across the icefield. To investigate the robustness of the LT model results, we perform a series of sensitivity experiments varying hydrometeor fall speeds, the horizontal resolution of the underlying grid, and the source of the meteorological forcing data. The resulting normalized spatial precipitation pattern is similar for all sensitivity experiments, but local precipitation amounts vary strongly, with greatest sensitivity to variations in snow fall speed. Results indicate that the LT model has great potential to provide improved spatial patterns of winter precipitation for glacier mass balance modeling purposes in complex terrain, but ground observations are necessary to constrain model parameters to match total amounts.
Non-linear modeling of active biohybrid materials
Paetsch, C.
2013-11-01
Recent advances in engineered muscle tissue attached to a synthetic substrate motivate the development of appropriate constitutive and numerical models. Applications of active materials can be expanded by using robust, non-mammalian muscle cells, such as those of Manduca sexta. In this study, we propose a model to assist in the analysis of biohybrid constructs by generalizing a recently proposed constitutive law for Manduca muscle tissue. The continuum model accounts (i) for the stimulation of muscle fibers by introducing multiple stress-free reference configurations for the active and passive states and (ii) for the hysteretic response by specifying a pseudo-elastic energy function. A simple example representing uniaxial loading-unloading is used to validate and verify the characteristics of the model. Then, based on experimental data of muscular thin films, a more complex case shows the qualitative potential of Manduca muscle tissue in active biohybrid constructs. © 2013 Elsevier Ltd. All rights reserved.
Eddy current modeling in linear and nonlinear multifilamentary composite materials
Menana, Hocine; Farhat, Mohamad; Hinaje, Melika; Berger, Kevin; Douine, Bruno; Lévêque, Jean
2018-04-01
In this work, a numerical model is developed for a rapid computation of eddy currents in composite materials, adaptable for both carbon fiber reinforced polymers (CFRPs) for NDT applications and multifilamentary high temperature superconductive (HTS) tapes for AC loss evaluation. The proposed model is based on an integro-differential formulation in terms of the electric vector potential in the frequency domain. The high anisotropy and the nonlinearity of the considered materials are easily handled in the frequency domain.
Operator-based linearization for efficient modeling of geothermal processes
Khait, M.; Voskov, D.V.
2018-01-01
Numerical simulation is one of the most important tools required for financial and operational management of geothermal reservoirs. The modern geothermal industry is challenged to run large ensembles of numerical models for uncertainty analysis, causing simulation performance to become a critical issue. Geothermal reservoir modeling requires the solution of governing equations describing the conservation of mass and energy. The robust, accurate and computationally efficient implementation of ...
Evaluating significance in linear mixed-effects models in R.
Luke, Steven G
2017-08-01
Mixed-effects models are being used ever more frequently in the analysis of experimental data. However, in the lme4 package in R the standards for evaluating significance of fixed effects in these models (i.e., obtaining p-values) are somewhat vague. There are good reasons for this, but as researchers who are using these models are required in many cases to report p-values, some method for evaluating the significance of the model output is needed. This paper reports the results of simulations showing that the two most common methods for evaluating significance, using likelihood ratio tests and applying the z distribution to the Wald t values from the model output (t-as-z), are somewhat anti-conservative, especially for smaller sample sizes. Other methods for evaluating significance, including parametric bootstrapping and the Kenward-Roger and Satterthwaite approximations for degrees of freedom, were also evaluated. The results of these simulations suggest that Type 1 error rates are closest to .05 when models are fitted using REML and p-values are derived using the Kenward-Roger or Satterthwaite approximations, as these approximations both produced acceptable Type 1 error rates even for smaller samples.
Linear and quadrature models for data from treshold measurements of the transient visual system
Brinker, den A.C.
1986-01-01
III this paper two models are considered for the transient visual system at threshold. One is a linear model and the other a model contain ing a quadrature element. Both models are commonly used on evidence from different experimental sources. It is shown that both models act in a similar fashion
A versatile curve-fit model for linear to deeply concave rank abundance curves
Neuteboom, J.H.; Struik, P.C.
2005-01-01
A new, flexible curve-fit model for linear to concave rank abundance curves was conceptualized and validated using observational data. The model links the geometric-series model and log-series model and can also fit deeply concave rank abundance curves. The model is based ¿ in an unconventional way
Testing the dual-route model of perceived gaze direction: Linear combination of eye and head cues.
Otsuka, Yumiko; Mareschal, Isabelle; Clifford, Colin W G
2016-06-01
We have recently proposed a dual-route model of the effect of head orientation on perceived gaze direction (Otsuka, Mareschal, Calder, & Clifford, 2014; Otsuka, Mareschal, & Clifford, 2015), which computes perceived gaze direction as a linear combination of eye orientation and head orientation. By parametrically manipulating eye orientation and head orientation, we tested the adequacy of a linear model to account for the effect of horizontal head orientation on perceived direction of gaze. Here, participants adjusted an on-screen pointer toward the perceived gaze direction in two image conditions: Normal condition and Wollaston condition. Images in the Normal condition included a change in the visible part of the eye along with the change in head orientation, while images in the Wollaston condition were manipulated to have identical eye regions across head orientations. Multiple regression analysis with explanatory variables of eye orientation and head orientation revealed that linear models account for most of the variance both in the Normal condition and in the Wollaston condition. Further, we found no evidence that the model with a nonlinear term explains significantly more variance. Thus, the current study supports the dual-route model that computes the perceived gaze direction as a linear combination of eye orientation and head orientation.
Genetic demixing and evolution in linear stepping stone models
Korolev, K. S.; Avlund, Mikkel; Hallatschek, Oskar; Nelson, David R.
2010-04-01
Results for mutation, selection, genetic drift, and migration in a one-dimensional continuous population are reviewed and extended. The population is described by a continuous limit of the stepping stone model, which leads to the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation with additional terms describing mutations. Although the stepping stone model was first proposed for population genetics, it is closely related to “voter models” of interest in nonequilibrium statistical mechanics. The stepping stone model can also be regarded as an approximation to the dynamics of a thin layer of actively growing pioneers at the frontier of a colony of micro-organisms undergoing a range expansion on a Petri dish. The population tends to segregate into monoallelic domains. This segregation slows down genetic drift and selection because these two evolutionary forces can only act at the boundaries between the domains; the effects of mutation, however, are not significantly affected by the segregation. Although fixation in the neutral well-mixed (or “zero-dimensional”) model occurs exponentially in time, it occurs only algebraically fast in the one-dimensional model. An unusual sublinear increase is also found in the variance of the spatially averaged allele frequency with time. If selection is weak, selective sweeps occur exponentially fast in both well-mixed and one-dimensional populations, but the time constants are different. The relatively unexplored problem of evolutionary dynamics at the edge of an expanding circular colony is studied as well. Also reviewed are how the observed patterns of genetic diversity can be used for statistical inference and the differences are highlighted between the well-mixed and one-dimensional models. Although the focus is on two alleles or variants, q -allele Potts-like models of gene segregation are considered as well. Most of the analytical results are checked with simulations and could be tested against recent spatial
Shah, A A; Xing, W W; Triantafyllidis, V
2017-04-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.
A new approach to modeling linear accelerator systems
International Nuclear Information System (INIS)
Gillespie, G.H.; Hill, B.W.; Jameson, R.A.
1994-01-01
A novel computer code is being developed to generate system level designs of radiofrequency ion accelerators with specific applications to machines of interest to Accelerator Driven Transmutation Technologies (ADTT). The goal of the Accelerator System Model (ASM) code is to create a modeling and analysis tool that is easy to use, automates many of the initial design calculations, supports trade studies used in accessing alternate designs and yet is flexible enough to incorporate new technology concepts as they emerge. Hardware engineering parameters and beam dynamics are to be modeled at comparable levels of fidelity. Existing scaling models of accelerator subsystems were used to produce a prototype of ASM (version 1.0) working within the Shell for Particle Accelerator Related Code (SPARC) graphical user interface. A small user group has been testing and evaluating the prototype for about a year. Several enhancements and improvements are now being developed. The current version of ASM is described and examples of the modeling and analysis capabilities are illustrated. The results of an example study, for an accelerator concept typical of ADTT applications, is presented and sample displays from the computer interface are shown
Electricity consumption forecasting in Italy using linear regression models
Energy Technology Data Exchange (ETDEWEB)
Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio [DIAM, Seconda Universita degli Studi di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy)
2009-09-15
The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of {+-}1% for the best case and {+-}11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)
Diet models with linear goal programming: impact of achievement functions.
Gerdessen, J C; de Vries, J H M
2015-11-01
Diet models based on goal programming (GP) are valuable tools in designing diets that comply with nutritional, palatability and cost constraints. Results derived from GP models are usually very sensitive to the type of achievement function that is chosen.This paper aims to provide a methodological insight into several achievement functions. It describes the extended GP (EGP) achievement function, which enables the decision maker to use either a MinSum achievement function (which minimizes the sum of the unwanted deviations) or a MinMax achievement function (which minimizes the largest unwanted deviation), or a compromise between both. An additional advantage of EGP models is that from one set of data and weights multiple solutions can be obtained. We use small numerical examples to illustrate the 'mechanics' of achievement functions. Then, the EGP achievement function is demonstrated on a diet problem with 144 foods, 19 nutrients and several types of palatability constraints, in which the nutritional constraints are modeled with fuzzy sets. Choice of achievement function affects the results of diet models. MinSum achievement functions can give rise to solutions that are sensitive to weight changes, and that pile all unwanted deviations on a limited number of nutritional constraints. MinMax achievement functions spread the unwanted deviations as evenly as possible, but may create many (small) deviations. EGP comprises both types of achievement functions, as well as compromises between them. It can thus, from one data set, find a range of solutions with various properties.
Electricity consumption forecasting in Italy using linear regression models
International Nuclear Information System (INIS)
Bianco, Vincenzo; Manca, Oronzio; Nardini, Sergio
2009-01-01
The influence of economic and demographic variables on the annual electricity consumption in Italy has been investigated with the intention to develop a long-term consumption forecasting model. The time period considered for the historical data is from 1970 to 2007. Different regression models were developed, using historical electricity consumption, gross domestic product (GDP), gross domestic product per capita (GDP per capita) and population. A first part of the paper considers the estimation of GDP, price and GDP per capita elasticities of domestic and non-domestic electricity consumption. The domestic and non-domestic short run price elasticities are found to be both approximately equal to -0.06, while long run elasticities are equal to -0.24 and -0.09, respectively. On the contrary, the elasticities of GDP and GDP per capita present higher values. In the second part of the paper, different regression models, based on co-integrated or stationary data, are presented. Different statistical tests are employed to check the validity of the proposed models. A comparison with national forecasts, based on complex econometric models, such as Markal-Time, was performed, showing that the developed regressions are congruent with the official projections, with deviations of ±1% for the best case and ±11% for the worst. These deviations are to be considered acceptable in relation to the time span taken into account. (author)
Linear summation of outputs in a balanced network model of motor cortex.
Capaday, Charles; van Vreeswijk, Carl
2015-01-01
Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis.
Downscaling of rainfall in Peru using Generalised Linear Models
Bergin, E.; Buytaert, W.; Onof, C.; Wheater, H.
2012-04-01
The assessment of water resources in the Peruvian Andes is particularly important because the Peruvian economy relies heavily on agriculture. Much of the agricultural land is situated near to the coast and relies on large quantities of water for irrigation. The simulation of synthetic rainfall series is thus important to evaluate the reliability of water supplies for current and future scenarios of climate change. In addition to water resources concerns, there is also a need to understand extreme heavy rainfall events, as there was significant flooding in Machu Picchu in 2010. The region exhibits a reduction of rainfall in 1983, associated with El Nino Southern Oscillation (SOI). NCEP Reanalysis 1 data was used to provide weather variable data. Correlations were calculated for several weather variables using raingauge data in the Andes. These were used to evaluate teleconnections and provide suggested covariates for the downscaling model. External covariates used in the model include sea level pressure and sea surface temperature over the region of the Humboldt Current. Relative humidity and temperature data over the region are also included. The SOI teleconnection is also used. Covariates are standardised using observations for 1960-1990. The GlimClim downscaling model was used to fit a stochastic daily rainfall model to 13 sites in the Peruvian Andes. Results indicate that the model is able to reproduce rainfall statistics well, despite the large area used. Although the correlation between individual rain gauges is generally quite low, all sites are affected by similar weather patterns. This is an assumption of the GlimClim downscaling model. Climate change scenarios are considered using several GCM outputs for the A1B scenario. GCM data was corrected for bias using 1960-1990 outputs from the 20C3M scenario. Rainfall statistics for current and future scenarios are compared. The region shows an overall decrease in mean rainfall but with an increase in variance.
Estimation of group means when adjusting for covariates in generalized linear models.
Qu, Yongming; Luo, Junxiang
2015-01-01
Generalized linear models are commonly used to analyze categorical data such as binary, count, and ordinal outcomes. Adjusting for important prognostic factors or baseline covariates in generalized linear models may improve the estimation efficiency. The model-based mean for a treatment group produced by most software packages estimates the response at the mean covariate, not the mean response for this treatment group for the studied population. Although this is not an issue for linear models, the model-based group mean estimates in generalized linear models could be seriously biased for the true group means. We propose a new method to estimate the group mean consistently with the corresponding variance estimation. Simulation showed the proposed method produces an unbiased estimator for the group means and provided the correct coverage probability. The proposed method was applied to analyze hypoglycemia data from clinical trials in diabetes. Copyright © 2014 John Wiley & Sons, Ltd.
A Linear Mixed-Effects Model of Wireless Spectrum Occupancy
Directory of Open Access Journals (Sweden)
Pagadarai Srikanth
2010-01-01
Full Text Available We provide regression analysis-based statistical models to explain the usage of wireless spectrum across four mid-size US cities in four frequency bands. Specifically, the variations in spectrum occupancy across space, time, and frequency are investigated and compared between different sites within the city as well as with other cities. By applying the mixed-effects models, several conclusions are drawn that give the occupancy percentage and the ON time duration of the licensed signal transmission as a function of several predictor variables.
Hossain, Ahmed; Beyene, Joseph
2014-01-01
This article compares baseline, average, and longitudinal data analysis methods for identifying genetic variants in genome-wide association study using the Genetic Analysis Workshop 18 data. We apply methods that include (a) linear mixed models with baseline measures, (b) random intercept linear mixed models with mean measures outcome, and (c) random intercept linear mixed models with longitudinal measurements. In the linear mixed models, covariates are included as fixed effects, whereas relatedness among individuals is incorporated as the variance-covariance structure of the random effect for the individuals. The overall strategy of applying linear mixed models decorrelate the data is based on Aulchenko et al.'s GRAMMAR. By analyzing systolic and diastolic blood pressure, which are used separately as outcomes, we compare the 3 methods in identifying a known genetic variant that is associated with blood pressure from chromosome 3 and simulated phenotype data. We also analyze the real phenotype data to illustrate the methods. We conclude that the linear mixed model with longitudinal measurements of diastolic blood pressure is the most accurate at identifying the known single-nucleotide polymorphism among the methods, but linear mixed models with baseline measures perform best with systolic blood pressure as the outcome.
von Secker, Clare Elaine
The study of students at risk is a major topic of science education policy and discussion. Much research has focused on describing conditions and problems associated with the statistical risk of low science achievement among individuals who are members of groups characterized by problems such as poverty and social disadvantage. But outcomes attributed to these factors do not explain the nature and extent of mechanisms that account for differences in performance among individuals at risk. There is ample theoretical and empirical evidence that demographic differences should be conceptualized as social contexts, or collections of variables, that alter the psychological significance and social demands of life events, and affect subsequent relationships between risk and resilience. The hierarchical linear growth models used in this dissertation provide greater specification of the role of social context and the protective effects of attitude, expectations, parenting practices, peer influences, and learning opportunities on science achievement. While the individual influences of these protective factors on science achievement were small, their cumulative effect was substantial. Meta-analysis conducted on the effects associated with psychological and environmental processes that mediate risk mechanisms in sixteen social contexts revealed twenty-two significant differences between groups of students. Positive attitudes, high expectations, and more intense science course-taking had positive effects on achievement of all students, although these factors were not equally protective in all social contexts. In general, effects associated with authoritative parenting and peer influences were negative, regardless of social context. An evaluation comparing the performance and stability of hierarchical linear growth models with traditional repeated measures models is included as well.
Integrative modelling reveals mechanisms linking productivity and plant species richness.
Grace, James B; Anderson, T Michael; Seabloom, Eric W; Borer, Elizabeth T; Adler, Peter B; Harpole, W Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M; Pärtel, Meelis; Bakker, Jonathan D; Buckley, Yvonne M; Crawley, Michael J; Damschen, Ellen I; Davies, Kendi F; Fay, Philip A; Firn, Jennifer; Gruner, Daniel S; Hector, Andy; Knops, Johannes M H; MacDougall, Andrew S; Melbourne, Brett A; Morgan, John W; Orrock, John L; Prober, Suzanne M; Smith, Melinda D
2016-01-21
How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.
Identification of linear error-models with projected dynamical systems
Czech Academy of Sciences Publication Activity Database
Krejčí, Pavel; Kuhnen, K.
2004-01-01
Roč. 10, č. 1 (2004), s. 59-91 ISSN 1387-3954 Keywords : identification * error models * projected dynamical systems Subject RIV: BA - General Mathematics Impact factor: 0.292, year: 2004 http://www.informaworld.com/smpp/content~db=all~content=a713682517
Operator-based linearization for efficient modeling of geothermal processes
Khait, M.; Voskov, D.V.
2018-01-01
Numerical simulation is one of the most important tools required for financial and operational management of geothermal reservoirs. The modern geothermal industry is challenged to run large ensembles of numerical models for uncertainty analysis, causing simulation performance to become a critical
Linearity and Misspecification Tests for Vector Smooth Transition Regression Models
DEFF Research Database (Denmark)
Teräsvirta, Timo; Yang, Yukai
The purpose of the paper is to derive Lagrange multiplier and Lagrange multiplier type specification and misspecification tests for vector smooth transition regression models. We report results from simulation studies in which the size and power properties of the proposed asymptotic tests in small...
Solving large linear systems in an implicit thermohaline ocean model
de Niet, Arie Christiaan
2007-01-01
The climate on earth is largely determined by the global ocean circulation. Hence it is important to predict how the flow will react to perturbation by for example melting icecaps. To answer questions about the stability of the global ocean flow, a computer model has been developed that is able to
Adjoint based model adaptation for a linear problem
Cnossen, J.M.; Bijl, H.; Koren, B.; Brummelen, van E.H.
2004-01-01
In aerospace engineering CFD is often applied to obtain values for quantities of interest which are global functionals of the solution. To optimise the balance between accuracy of the computed functional and CPU time we focus on dual-weighted adaptive hierarchical modelling of fluid flow. In this
Multiple Linear Regression Model for Estimating the Price of a ...
African Journals Online (AJOL)
Ghana Mining Journal ... In the modeling, the Ordinary Least Squares (OLS) normality assumption which could introduce errors in the statistical analyses was dealt with by log transformation of the data, ensuring the data is normally ... The resultant MLRM is: Ŷi MLRM = (X'X)-1X'Y(xi') where X is the sample data matrix.
Revisited global drift fluid model for linear devices
International Nuclear Information System (INIS)
Reiser, Dirk
2012-01-01
The problem of energy conserving global drift fluid simulations is revisited. It is found that for the case of cylindrical plasmas in a homogenous magnetic field, a straightforward reformulation is possible avoiding simplifications leading to energetic inconsistencies. The particular new feature is the rigorous treatment of the polarisation drift by a generalization of the vorticity equation. The resulting set of model equations contains previous formulations as limiting cases and is suitable for efficient numerical techniques. Examples of applications on studies of plasma blobs and its impact on plasma target interaction are presented. The numerical studies focus on the appearance of plasma blobs and intermittent transport and its consequences on the release of sputtered target materials in the plasma. Intermittent expulsion of particles in radial direction can be observed and it is found that although the neutrals released from the target show strong fluctuations in their propagation into the plasma column, the overall effect on time averaged profiles is negligible for the conditions considered. In addition, the numerical simulations are utilised to perform an a-posteriori assessment of the magnitude of energetic inconsistencies in previously used simplified models. It is found that certain popular approximations, in particular by the use of simplified vorticity equations, do not significantly affect energetics. However, popular model simplifications with respect to parallel advection are found to provide significant deterioration of the model consistency.
Performances of some estimators of linear model with ...
African Journals Online (AJOL)
The estimators are compared by examing the finite properties of estimators namely; sum of biases, sum of absolute biases, sum of variances and sum of the mean squared error of the estimated parameter of the model. Results show that when the autocorrelation level is small (ρ=0.4), the MLGD estimator is best except when ...
Ng, Kar Yong; Awang, Norhashidah
2018-01-06
Frequent haze occurrences in Malaysia have made the management of PM 10 (particulate matter with aerodynamic less than 10 μm) pollution a critical task. This requires knowledge on factors associating with PM 10 variation and good forecast of PM 10 concentrations. Hence, this paper demonstrates the prediction of 1-day-ahead daily average PM 10 concentrations based on predictor variables including meteorological parameters and gaseous pollutants. Three different models were built. They were multiple linear regression (MLR) model with lagged predictor variables (MLR1), MLR model with lagged predictor variables and PM 10 concentrations (MLR2) and regression with time series error (RTSE) model. The findings revealed that humidity, temperature, wind speed, wind direction, carbon monoxide and ozone were the main factors explaining the PM 10 variation in Peninsular Malaysia. Comparison among the three models showed that MLR2 model was on a same level with RTSE model in terms of forecasting accuracy, while MLR1 model was the worst.
A fuzzy Bi-linear management model in reverse logistic chains
Directory of Open Access Journals (Sweden)
Tadić Danijela
2016-01-01
Full Text Available The management of the electrical and electronic waste (WEEE problem in the uncertain environment has a critical effect on the economy and environmental protection of each region. The considered problem can be stated as a fuzzy non-convex optimization problem with linear objective function and a set of linear and non-linear constraints. The original problem is reformulated by using linear relaxation into a fuzzy linear programming problem. The fuzzy rating of collecting point capacities and fix costs of recycling centers are modeled by triangular fuzzy numbers. The optimal solution of the reformulation model is found by using optimality concept. The proposed model is verified through an illustrative example with real-life data. The obtained results represent an input for future research which should include a good benchmark base for tested reverse logistic chains and their continuous improvement. [Projekat Ministarstva nauke Republike Srbije, br. 035033: Sustainable development technology and equipment for the recycling of motor vehicles
Portfolio optimization by using linear programing models based on genetic algorithm
Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.
2018-01-01
In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.
Stochastic Modelling of Linear Programming Application to Brewing Operational Systems
Directory of Open Access Journals (Sweden)
Akanbi O.P.
2014-07-01
Full Text Available System where a large number of interrelated operations exist, technically-based operational mechanism is always required to achieve potential. An intuitive solution, which is common practice in most of the breweries, perhaps may not uncover the optimal solution, as there is hardly any guarantee to satisfy the best policy application. There is always high foreign exchange involved in procurement of imported raw materials and thus increases the cost of production, abandonment and poor utilization of available locally-sourced raw materials. This study focuses on the approaches which highlight the steps and mechanisms involved in optimizing the wort extract by the use of different types of adjuncts and formulating wort production models which are useful in proffering expected solutions. Optimization techniques, the generalized models and an overview of typical brewing processes were considered.
Linear facility location in three dimensions - Models and solution methods
DEFF Research Database (Denmark)
Brimberg, Jack; Juel, Henrik; Schöbel, Anita
2002-01-01
We consider the problem of locating a line or a line segment in three-dimensional space, such that the sum of distances from the facility represented by the line (segment) to a given set of points is minimized. An example is planning the drilling of a mine shaft, with access to ore deposits through...... horizontal tunnels connecting the deposits and the shaft. Various models of the problem are developed and analyzed, and efficient solution methods are given....
Xiang, Zhaowei; Yin, Ming; Dong, Guanhua; Mei, Xiaoqin; Yin, Guofu
2018-06-01
A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM) is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM.
Perfect observables for the hierarchical non-linear O(N)-invariant σ-model
International Nuclear Information System (INIS)
Wieczerkowski, C.; Xylander, Y.
1995-05-01
We compute moving eigenvalues and the eigenvectors of the linear renormalization group transformation for observables along the renormalized trajectory of the hierarchical non-linear O(N)-invariant σ-model by means of perturbation theory in the running coupling constant. Moving eigenvectors are defined as solutions to a Callan-Symanzik type equation. (orig.)
Modelling reveals kinetic advantages of co-transcriptional splicing.
Directory of Open Access Journals (Sweden)
Stuart Aitken
2011-10-01
Full Text Available Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.
Modelling reveals kinetic advantages of co-transcriptional splicing.
Aitken, Stuart; Alexander, Ross D; Beggs, Jean D
2011-10-01
Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.
2013-01-01
This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.
Delta-tilde interpretation of standard linear mixed model results
DEFF Research Database (Denmark)
Brockhoff, Per Bruun; Amorim, Isabel de Sousa; Kuznetsova, Alexandra
2016-01-01
effects relative to the residual error and to choose the proper effect size measure. For multi-attribute bar plots of F-statistics this amounts, in balanced settings, to a simple transformation of the bar heights to get them transformed into depicting what can be seen as approximately the average pairwise...... data set and compared to actual d-prime calculations based on Thurstonian regression modeling through the ordinal package. For more challenging cases we offer a generic "plug-in" implementation of a version of the method as part of the R-package SensMixed. We discuss and clarify the bias mechanisms...
lmerTest Package: Tests in Linear Mixed Effects Models
DEFF Research Database (Denmark)
Kuznetsova, Alexandra; Brockhoff, Per B.; Christensen, Rune Haubo Bojesen
2017-01-01
One of the frequent questions by users of the mixed model function lmer of the lme4 package has been: How can I get p values for the F and t tests for objects returned by lmer? The lmerTest package extends the 'lmerMod' class of the lme4 package, by overloading the anova and summary functions...... by providing p values for tests for fixed effects. We have implemented the Satterthwaite's method for approximating degrees of freedom for the t and F tests. We have also implemented the construction of Type I - III ANOVA tables. Furthermore, one may also obtain the summary as well as the anova table using...
Modelling time course gene expression data with finite mixtures of linear additive models.
Grün, Bettina; Scharl, Theresa; Leisch, Friedrich
2012-01-15
A model class of finite mixtures of linear additive models is presented. The component-specific parameters in the regression models are estimated using regularized likelihood methods. The advantages of the regularization are that (i) the pre-specified maximum degrees of freedom for the splines is less crucial than for unregularized estimation and that (ii) for each component individually a suitable degree of freedom is selected in an automatic way. The performance is evaluated in a simulation study with artificial data as well as on a yeast cell cycle dataset of gene expression levels over time. The latest release version of the R package flexmix is available from CRAN (http://cran.r-project.org/).
Huitzing, Hiddo A.
2004-01-01
This article shows how set covering with item sampling (SCIS) methods can be used in the analysis and preanalysis of linear programming models for test assembly (LPTA). LPTA models can construct tests, fulfilling a set of constraints set by the test assembler. Sometimes, no solution to the LPTA model exists. The model is then said to be…
The Simulation and Correction to the Brain Deformation Based on the Linear Elastic Model in IGS
Institute of Scientific and Technical Information of China (English)
MU Xiao-lan; SONG Zhi-jian
2004-01-01
@@ The brain deformation is a vital factor affecting the precision of the IGS and it becomes a hotspot to simulate and correct the brain deformation recently.The research organizations, which firstly resolved the brain deformation with the physical models, have the Image Processing and Analysis department of Yale University, Biomedical Modeling Lab of Vanderbilt University and so on. The former uses the linear elastic model; the latter uses the consolidation model.The linear elastic model only needs to drive the model using the surface displacement of exposed brain cortex,which is more convenient to be measured in the clinic.
Non-linear σ-models and string theories
International Nuclear Information System (INIS)
Sen, A.
1986-10-01
The connection between σ-models and string theories is discussed, as well as how the σ-models can be used as tools to prove various results in string theories. Closed bosonic string theory in the light cone gauge is very briefly introduced. Then, closed bosonic string theory in the presence of massless background fields is discussed. The light cone gauge is used, and it is shown that in order to obtain a Lorentz invariant theory, the string theory in the presence of background fields must be described by a two-dimensional conformally invariant theory. The resulting constraints on the background fields are found to be the equations of motion of the string theory. The analysis is extended to the case of the heterotic string theory and the superstring theory in the presence of the massless background fields. It is then shown how to use these results to obtain nontrivial solutions to the string field equations. Another application of these results is shown, namely to prove that the effective cosmological constant after compactification vanishes as a consequence of the classical equations of motion of the string theory. 34 refs
Huffman and linear scanning methods with statistical language models.
Roark, Brian; Fried-Oken, Melanie; Gibbons, Chris
2015-03-01
Current scanning access methods for text generation in AAC devices are limited to relatively few options, most notably row/column variations within a matrix. We present Huffman scanning, a new method for applying statistical language models to binary-switch, static-grid typing AAC interfaces, and compare it to other scanning options under a variety of conditions. We present results for 16 adults without disabilities and one 36-year-old man with locked-in syndrome who presents with complex communication needs and uses AAC scanning devices for writing. Huffman scanning with a statistical language model yielded significant typing speedups for the 16 participants without disabilities versus any of the other methods tested, including two row/column scanning methods. A similar pattern of results was found with the individual with locked-in syndrome. Interestingly, faster typing speeds were obtained with Huffman scanning using a more leisurely scan rate than relatively fast individually calibrated scan rates. Overall, the results reported here demonstrate great promise for the usability of Huffman scanning as a faster alternative to row/column scanning.
Modeling and non-linear responses of MEMS capacitive accelerometer
Directory of Open Access Journals (Sweden)
Sri Harsha C.
2014-01-01
Full Text Available A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.
Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit
2017-02-01
To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
How linear response shaped models of neural circuits and the quest for alternatives.
Herfurth, Tim; Tchumatchenko, Tatjana
2017-10-01
In the past decades, many mathematical approaches to solve complex nonlinear systems in physics have been successfully applied to neuroscience. One of these tools is the concept of linear response functions. However, phenomena observed in the brain emerge from fundamentally nonlinear interactions and feedback loops rather than from a composition of linear filters. Here, we review the successes achieved by applying the linear response formalism to topics, such as rhythm generation and synchrony and by incorporating it into models that combine linear and nonlinear transformations. We also discuss the challenges encountered in the linear response applications and argue that new theoretical concepts are needed to tackle feedback loops and non-equilibrium dynamics which are experimentally observed in neural networks but are outside of the validity regime of the linear response formalism. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reflexion on linear regression trip production modelling method for ensuring good model quality
Suprayitno, Hitapriya; Ratnasari, Vita
2017-11-01
Transport Modelling is important. For certain cases, the conventional model still has to be used, in which having a good trip production model is capital. A good model can only be obtained from a good sample. Two of the basic principles of a good sampling is having a sample capable to represent the population characteristics and capable to produce an acceptable error at a certain confidence level. It seems that this principle is not yet quite understood and used in trip production modeling. Therefore, investigating the Trip Production Modelling practice in Indonesia and try to formulate a better modeling method for ensuring the Model Quality is necessary. This research result is presented as follows. Statistics knows a method to calculate span of prediction value at a certain confidence level for linear regression, which is called Confidence Interval of Predicted Value. The common modeling practice uses R2 as the principal quality measure, the sampling practice varies and not always conform to the sampling principles. An experiment indicates that small sample is already capable to give excellent R2 value and sample composition can significantly change the model. Hence, good R2 value, in fact, does not always mean good model quality. These lead to three basic ideas for ensuring good model quality, i.e. reformulating quality measure, calculation procedure, and sampling method. A quality measure is defined as having a good R2 value and a good Confidence Interval of Predicted Value. Calculation procedure must incorporate statistical calculation method and appropriate statistical tests needed. A good sampling method must incorporate random well distributed stratified sampling with a certain minimum number of samples. These three ideas need to be more developed and tested.
Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets
International Nuclear Information System (INIS)
Yang, Jinxin; Jia, Li; Cui, Yaokui; Zhou, Jie; Menenti, Massimo
2014-01-01
A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR (Thermal Infra-Red) images over vegetable and orchard canopies. A whole thermal camera image was treated as a pixel of a satellite image to evaluate the model with the two-component system, i.e. soil and vegetation. The evaluation included two parts: evaluation of the linear mixing model and evaluation of the inversion of the model to retrieve component temperatures. For evaluation of the linear mixing model, the RMSE is 0.2 K between the observed and modelled brightness temperatures, which indicates that the linear mixing model works well under most conditions. For evaluation of the model inversion, the RMSE between the model retrieved and the observed vegetation temperatures is 1.6K, correspondingly, the RMSE between the observed and retrieved soil temperatures is 2.0K. According to the evaluation of the sensitivity of retrieved component temperatures on fractional cover, the linear mixing model gives more accurate retrieval accuracies for both soil and vegetation temperatures under intermediate fractional cover conditions
An R2 statistic for fixed effects in the linear mixed model.
Edwards, Lloyd J; Muller, Keith E; Wolfinger, Russell D; Qaqish, Bahjat F; Schabenberger, Oliver
2008-12-20
Statisticians most often use the linear mixed model to analyze Gaussian longitudinal data. The value and familiarity of the R(2) statistic in the linear univariate model naturally creates great interest in extending it to the linear mixed model. We define and describe how to compute a model R(2) statistic for the linear mixed model by using only a single model. The proposed R(2) statistic measures multivariate association between the repeated outcomes and the fixed effects in the linear mixed model. The R(2) statistic arises as a 1-1 function of an appropriate F statistic for testing all fixed effects (except typically the intercept) in a full model. The statistic compares the full model with a null model with all fixed effects deleted (except typically the intercept) while retaining exactly the same covariance structure. Furthermore, the R(2) statistic leads immediately to a natural definition of a partial R(2) statistic. A mixed model in which ethnicity gives a very small p-value as a longitudinal predictor of blood pressure (BP) compellingly illustrates the value of the statistic. In sharp contrast to the extreme p-value, a very small R(2) , a measure of statistical and scientific importance, indicates that ethnicity has an almost negligible association with the repeated BP outcomes for the study.
1995-08-01
A linear model structure applicable to identification of the UH-60 flight : dynamics in hover and forward flight without rotor-state data is developed. The : structure of the model is determined through consideration of the important : dynamic modes ...
ANALISIS MODEL REGRESI NONPARAMETRIK SIRKULAR-LINEAR BERGANDA
Directory of Open Access Journals (Sweden)
KOMANG CANDRA IVAN
2016-05-01
Full Text Available Circular data are data which the value in form of vector is circular data. Statistic analysis that is used in analyzing circular data is circular statistics analysis. In regression analysis, if any of predictor or response variables or both are circular then the regression analysis used is called circular regression analysis. Observation data in circular statistic which use direction and time units usually don’t satisfy all of the parametric assumptions, thus making nonparametric regression as a good solution. Nonparametric regression function estimation is using epanechnikov kernel estimator for the linier variables and von Mises kernel estimator for the circular variable. This study showed that the result of circular analysis by using circular descriptive statistic is better than common statistic. Multiple circular-linier nonparametric regressions with Epanechnikov and von Mises kernel estimator didn’t create estimation model explicitly as parametric regression does, but create estimation from its observation knots instead.
A Linear Algorithm for Black Scholes Economic Model
Directory of Open Access Journals (Sweden)
Dumitru FANACHE
2008-01-01
Full Text Available The pricing of options is a very important problem encountered in financial domain. The famous Black-Scholes model provides explicit closed form solution for the values of certain (European style call and put options. But for many other options, either there are no closed form solution, or if such closed form solutions exist, the formulas exhibiting them are complicated and difficult to evaluate accurately by conventional methods. The aim of this paper is to study the possibility of obtaining the numerical solution for the Black-Scholes equation in parallel, by means of several processors, using the finite difference method. A comparison between the complexity of the parallel algorithm and the serial one is given.
A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.
Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S
2017-06-01
The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were
Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells
Mueller, Nikola S.; Krumsiek, Jan; Theis, Fabian J.; Böhm, Christian; Meyer-Bäse, Anke
2011-06-01
Advances in high-throughput measurements of biological specimens necessitate the development of biologically driven computational techniques. To understand the molecular level of many human diseases, such as cancer, lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations. The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance biomedical research on novel gene therapies.
A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield
Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan
2018-04-01
In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.
Manzoor, Ali; Rafique, Sajid; Usman Iftikhar, Muhammad; Mahmood Ul Hassan, Khalid; Nasir, Ali
2017-08-01
Piezoelectric vibration energy harvester (PVEH) consists of a cantilever bimorph with piezoelectric layers pasted on its top and bottom, which can harvest power from vibrations and feed to low power wireless sensor nodes through some power conditioning circuit. In this paper, a non-linear conditioning circuit, consisting of a full-bridge rectifier followed by a buck-boost converter, is employed to investigate the issues of electrical side of the energy harvesting system. An integrated mathematical model of complete electromechanical system has been developed. Previously, researchers have studied PVEH with sophisticated piezo-beam models but employed simplistic linear circuits, such as resistor, as electrical load. In contrast, other researchers have worked on more complex non-linear circuits but with over-simplified piezo-beam models. Such models neglect different aspects of the system which result from complex interactions of its electrical and mechanical subsystems. In this work, authors have integrated the distributed parameter-based model of piezo-beam presented in literature with a real world non-linear electrical load. Then, the developed integrated model is employed to analyse the stability of complete energy harvesting system. This work provides a more realistic and useful electromechanical model having realistic non-linear electrical load unlike the simplistic linear circuit elements employed by many researchers.
Energy Technology Data Exchange (ETDEWEB)
Yavari, M., E-mail: yavari@iaukashan.ac.ir [Islamic Azad University, Kashan Branch (Iran, Islamic Republic of)
2016-06-15
We generalize the results of Nesterenko [13, 14] and Gogilidze and Surovtsev [15] for DNA structures. Using the generalized Hamiltonian formalism, we investigate solutions of the equilibrium shape equations for the linear free energy model.
Development of demand functions and their inclusion in linear programming forecasting models
International Nuclear Information System (INIS)
Chamberlin, J.H.
1976-05-01
The purpose of the paper is to present a method for including demand directly within a linear programming model, and to use this method to analyze the effect of the Liquid Metal Fast Breeder Reactor upon the nuclear energy system
As a fast and effective technique, the multiple linear regression (MLR) method has been widely used in modeling and prediction of beach bacteria concentrations. Among previous works on this subject, however, several issues were insufficiently or inconsistently addressed. Those is...
Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.
Lin, Huiming; Fu, Bo; Qin, Guoyou; Zhu, Zhongyi
2017-12-01
We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed method and use simulation studies to compare its finite sample performance with that of Qu's method, the complete-case generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated using data from a longitudinal cohort study. © 2017, The International Biometric Society.
A Linear Programming Approach to Complex Games: An Application to Nuclear Exchange Models
National Research Council Canada - National Science Library
Oelrich, I
2002-01-01
.... Like the MESA model, the exchange is cast in terms of game theory, using linear approximations and an optimal allocation defined by a user-specified objective function Solutions are better using...
Risk evaluations of aging phenomena: The linear aging reliability model and its extensions
International Nuclear Information System (INIS)
Vesely, W.E.; Wolford, A.J.
1988-01-01
A model for component failure rates due to aging mechanisms is developed from basic phenomenological considerations. In the treatment, the occurrences of deterioration are modeled as following a Poisson process. The severity of damage is allowed to have any distribution, however the damage is assumed to accumulate independently. Finally, the failure rate is modeled as being proportional to the accumulated damage. Using this treatment, the linear aging failure rate model is obtained. The applicability of the linear aging model to various mechanisms is discussed. Extensions of the model to cover nonlinear and dependent aging phenomena are also described. The implementability of the linear aging model is demonstrated by applying it to the aging data collected in the U.S. NRC Nuclear Plant Aging Research (NPAR) Program. (orig./HP)
Risk evaluations of aging phenomena: the linear aging reliability model and its extensions
International Nuclear Information System (INIS)
Vesely, W.E.
1987-01-01
A model for component failure rates due to aging mechanisms has been developed from basic phenomenological considerations. In the treatment, the occurrences of deterioration are modeled as following a Poisson process. The severity of damage is allowed to have any distribution, however the damage is assumed to accumulate independently. Finally, the failure rate is modeled as being proportional to the accumulated damage. Using this treatment, the linear aging failure rate model is obtained. The applicability of the linear aging model to various mechanisms is discussed. The model can be extended to cover nonlinear and dependent aging phenomena. The implementability of the linear aging model is demonstrated by applying it to the aging data collected in NRC's Nuclear Plant Aging Research (NPAR) Program. The applications show that aging as observed in collected data have significant effects on the component failure probability and component reliability when aging is not effectively detected and controlled by testing and maintenance
Risk evaluations of aging phenomena: The linear aging reliability model and its extensions
International Nuclear Information System (INIS)
Vesely, W.E.
1986-01-01
A model for component failure rates due to aging mechanisms has been developed from basic phenomenological considerations. In the treatment, the occurrences of deterioration are modeled as following a Poisson process. The severity of damage is allowed to have any distribution, however the damage is assumed to accumulate independently. Finally, the failure rate is modeled as being proportional to the accumulated damage. Using this treatment, the linear aging failure rate model is obtained. The applicability of the linear aging model to various mechanisms is discussed. The model can be extended to cover nonlinear and dependent aging phenomena. The implementability of the linear aging model is demonstrated by applying it of the aging data collected in NRC's Nuclear Plant Aging Research (NPAR) Program. The applications show that aging as observed in collected data have significant effects on the component failure probability and component reliability when aging is not effectively detected and controlled by testing and maintenance
A national-scale model of linear features improves predictions of farmland biodiversity.
Sullivan, Martin J P; Pearce-Higgins, James W; Newson, Stuart E; Scholefield, Paul; Brereton, Tom; Oliver, Tom H
2017-12-01
Modelling species distribution and abundance is important for many conservation applications, but it is typically performed using relatively coarse-scale environmental variables such as the area of broad land-cover types. Fine-scale environmental data capturing the most biologically relevant variables have the potential to improve these models. For example, field studies have demonstrated the importance of linear features, such as hedgerows, for multiple taxa, but the absence of large-scale datasets of their extent prevents their inclusion in large-scale modelling studies.We assessed whether a novel spatial dataset mapping linear and woody-linear features across the UK improves the performance of abundance models of 18 bird and 24 butterfly species across 3723 and 1547 UK monitoring sites, respectively.Although improvements in explanatory power were small, the inclusion of linear features data significantly improved model predictive performance for many species. For some species, the importance of linear features depended on landscape context, with greater importance in agricultural areas. Synthesis and applications . This study demonstrates that a national-scale model of the extent and distribution of linear features improves predictions of farmland biodiversity. The ability to model spatial variability in the role of linear features such as hedgerows will be important in targeting agri-environment schemes to maximally deliver biodiversity benefits. Although this study focuses on farmland, data on the extent of different linear features are likely to improve species distribution and abundance models in a wide range of systems and also can potentially be used to assess habitat connectivity.
A componential model of human interaction with graphs: 1. Linear regression modeling
Gillan, Douglas J.; Lewis, Robert
1994-01-01
Task analyses served as the basis for developing the Mixed Arithmetic-Perceptual (MA-P) model, which proposes (1) that people interacting with common graphs to answer common questions apply a set of component processes-searching for indicators, encoding the value of indicators, performing arithmetic operations on the values, making spatial comparisons among indicators, and repsonding; and (2) that the type of graph and user's task determine the combination and order of the components applied (i.e., the processing steps). Two experiments investigated the prediction that response time will be linearly related to the number of processing steps according to the MA-P model. Subjects used line graphs, scatter plots, and stacked bar graphs to answer comparison questions and questions requiring arithmetic calculations. A one-parameter version of the model (with equal weights for all components) and a two-parameter version (with different weights for arithmetic and nonarithmetic processes) accounted for 76%-85% of individual subjects' variance in response time and 61%-68% of the variance taken across all subjects. The discussion addresses possible modifications in the MA-P model, alternative models, and design implications from the MA-P model.
Linear and nonlinear modeling of light propagation in hollow-core photonic crystal fiber
DEFF Research Database (Denmark)
Roberts, John; Lægsgaard, Jesper
2009-01-01
Hollow core photonic crystal fibers (HC-PCFs) find applications which include quantum and non-linear optics, gas detection and short high-intensity laser pulse delivery. Central to most applications is an understanding of the linear and nonlinear optical properties. These require careful modeling....... The intricacies of modeling various forms of HC-PCF are reviewed. An example of linear dispersion engineering, aimed at reducing and flattening the group velocity dispersion, is then presented. Finally, a study of short high intensity pulse delivery using HC-PCF in both dispersive and nonlinear (solitonic...
A gauge model describing N relativistic particles bound by linear forces
International Nuclear Information System (INIS)
Filippov, A.T.
1988-01-01
A relativistic model of N particles bound by linear forces is obtained by applying the gauging procedure to the linear canonical symmteries of a simple (rudimentary) nonrelativistic N-particle Lagrangian extended to relativistic phase space. The new (gauged) Lagrangian is formally Poincare invariant, the Hamiltonian is a linear combination of first-class constraints which are closed with respect to Pisson brackets and generate the localized canonical symmteries. The gauge potentials appear as the Lagrange multipliers of the constraints. Gauge fixing and quantization of the model are also briefly discussed. 11 refs
Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model
Chen, Huaizhen; Zhang, Guangzhi
2018-03-01
Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.
Predicting musically induced emotions from physiological inputs: linear and neural network models.
Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M
2013-01-01
Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.
International Nuclear Information System (INIS)
Fujii, Akira; Kluemper, Andreas
1999-01-01
We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation
Mathematical Modelling and the Learning Trajectory: Tools to Support the Teaching of Linear Algebra
Cárcamo Bahamonde, Andrea Dorila; Fortuny Aymemí, Josep Maria; Gómez i Urgellés, Joan Vicenç
2017-01-01
In this article we present a didactic proposal for teaching linear algebra based on two compatible theoretical models: emergent models and mathematical modelling. This proposal begins with a problematic situation related to the creation and use of secure passwords, which leads students toward the construction of the concepts of spanning set and…
Chapman, Robin S.; Hesketh, Linda J.; Kistler, Doris J.
2002-01-01
Longitudinal change in syntax comprehension and production skill, measured over six years, was modeled in 31 individuals (ages 5-20) with Down syndrome. The best fitting Hierarchical Linear Modeling model of comprehension uses age and visual and auditory short-term memory as predictors of initial status, and age for growth trajectory. (Contains…
Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer
2013-01-01
Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…
Subedi, Bidya Raj; Reese, Nancy; Powell, Randy
2015-01-01
This study explored significant predictors of student's Grade Point Average (GPA) and truancy (days absent), and also determined teacher effectiveness based on proportion of variance explained at teacher level model. We employed a two-level hierarchical linear model (HLM) with student and teacher data at level-1 and level-2 models, respectively.…
Matzke, Orville R.
The purpose of this study was to formulate a linear programming model to simulate a foundation type support program and to apply this model to a state support program for the public elementary and secondary school districts in the State of Iowa. The model was successful in producing optimal solutions to five objective functions proposed for…
The effect of workload constraints in linear programming models for production planning
Jansen, M.M.; Kok, de A.G.; Adan, I.J.B.F.
2011-01-01
Linear programming (LP) models for production planning incorporate a model of the manufacturing system that is necessarily deterministic. Although these deterministic models are the current state-of-the-art, it should be recognized that they are used in an environment that is inherently stochastic.
Modeling of non-linear CHP efficiency curves in distributed energy systems
DEFF Research Database (Denmark)
Milan, Christian; Stadler, Michael; Cardoso, Gonçalo
2015-01-01
Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...
Linearization of the interaction principle: Analytic Jacobians in the 'Radiant' model
International Nuclear Information System (INIS)
Spurr, R.J.D.; Christi, M.J.
2007-01-01
In this paper we present a new linearization of the Radiant radiative transfer model. Radiant uses discrete ordinates for solving the radiative transfer equation in a multiply-scattering anisotropic medium with solar and thermal sources, but employs the adding method (interaction principle) for the stacking of reflection and transmission matrices in a multilayer atmosphere. For the linearization, we show that the entire radiation field is analytically differentiable with respect to any surface or atmospheric parameter for which we require Jacobians (derivatives of the radiance field). Derivatives of the discrete ordinate solutions are based on existing methods developed for the LIDORT radiative transfer models. Linearization of the interaction principle is completely new and constitutes the major theme of the paper. We discuss the application of the Radiant model and its linearization in the Level 2 algorithm for the retrieval of columns of carbon dioxide as the main target of the Orbiting Carbon Observatory (OCO) mission
Effect of Process Parameters on Friction Model in Computer Simulation of Linear Friction Welding
Directory of Open Access Journals (Sweden)
A. Yamileva
2014-07-01
Full Text Available The friction model is important part of a numerical model of linear friction welding. Its selection determines the accuracy of the results. Existing models employ the classical law of Amonton-Coulomb where the friction coefficient is either constant or linearly dependent on a single parameter. Determination of the coefficient of friction is a time consuming process that requires a lot of experiments. So the feasibility of determinating the complex dependence should be assessing by analysis of effect of approximating law for friction model on simulation results.
New classical r-matrices from integrable non-linear sigma-models
International Nuclear Information System (INIS)
Laartz, J.; Bordemann, M.; Forger, M.; Schaper, U.
1993-01-01
Non-linear sigma models on Riemannian symmetric spaces constitute the most general class of classical non-linear sigma models which are known to be integrable. Using the current algebra structure of these models their canonical structure is analyzed and it is shown that their non-ultralocal fundamental Poisson bracket relation is governed by a field dependent non antisymmetric r-matrix obeying a dynamical Yang Baxter equation. The fundamental Poisson bracket relations and the r-matrix are derived explicitly and a new kind of algebra is found that is supposed to replace the classical Yang Baxter algebra governing the canonical structure of ultralocal models. (Author) 9 refs
The Relationship between Economic Growth and Money Laundering – a Linear Regression Model
Directory of Open Access Journals (Sweden)
Daniel Rece
2009-09-01
Full Text Available This study provides an overview of the relationship between economic growth and money laundering modeled by a least squares function. The report analyzes statistically data collected from USA, Russia, Romania and other eleven European countries, rendering a linear regression model. The study illustrates that 23.7% of the total variance in the regressand (level of money laundering is “explained” by the linear regression model. In our opinion, this model will provide critical auxiliary judgment and decision support for anti-money laundering service systems.
Iterated non-linear model predictive control based on tubes and contractive constraints.
Murillo, M; Sánchez, G; Giovanini, L
2016-05-01
This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Available pressure amplitude of linear compressor based on phasor triangle model
Duan, C. X.; Jiang, X.; Zhi, X. Q.; You, X. K.; Qiu, L. M.
2017-12-01
The linear compressor for cryocoolers possess the advantages of long-life operation, high efficiency, low vibration and compact structure. It is significant to study the match mechanisms between the compressor and the cold finger, which determines the working efficiency of the cryocooler. However, the output characteristics of linear compressor are complicated since it is affected by many interacting parameters. The existing matching methods are simplified and mainly focus on the compressor efficiency and output acoustic power, while neglecting the important output parameter of pressure amplitude. In this study, a phasor triangle model basing on analyzing the forces of the piston is proposed. It can be used to predict not only the output acoustic power, the efficiency, but also the pressure amplitude of the linear compressor. Calculated results agree well with the measurement results of the experiment. By this phasor triangle model, the theoretical maximum output pressure amplitude of the linear compressor can be calculated simply based on a known charging pressure and operating frequency. Compared with the mechanical and electrical model of the linear compressor, the new model can provide an intuitionistic understanding on the match mechanism with faster computational process. The model can also explain the experimental phenomenon of the proportional relationship between the output pressure amplitude and the piston displacement in experiments. By further model analysis, such phenomenon is confirmed as an expression of the unmatched design of the compressor. The phasor triangle model may provide an alternative method for the compressor design and matching with the cold finger.
Wireless Positioning Based on a Segment-Wise Linear Approach for Modeling the Target Trajectory
DEFF Research Database (Denmark)
Figueiras, Joao; Pedersen, Troels; Schwefel, Hans-Peter
2008-01-01
Positioning solutions in infrastructure-based wireless networks generally operate by exploiting the channel information of the links between the Wireless Devices and fixed networking Access Points. The major challenge of such solutions is the modeling of both the noise properties of the channel...... measurements and the user mobility patterns. One class of typical human being movement patterns is the segment-wise linear approach, which is studied in this paper. Current tracking solutions, such as the Constant Velocity model, hardly handle such segment-wise linear patterns. In this paper we propose...... a segment-wise linear model, called the Drifting Points model. The model results in an increased performance when compared with traditional solutions....
Internal Physical Features of a Land Surface Model Employing a Tangent Linear Model
Yang, Runhua; Cohn, Stephen E.; daSilva, Arlindo; Joiner, Joanna; Houser, Paul R.
1997-01-01
The Earth's land surface, including its biomass, is an integral part of the Earth's weather and climate system. Land surface heterogeneity, such as the type and amount of vegetative covering., has a profound effect on local weather variability and therefore on regional variations of the global climate. Surface conditions affect local weather and climate through a number of mechanisms. First, they determine the re-distribution of the net radiative energy received at the surface, through the atmosphere, from the sun. A certain fraction of this energy increases the surface ground temperature, another warms the near-surface atmosphere, and the rest evaporates surface water, which in turn creates clouds and causes precipitation. Second, they determine how much rainfall and snowmelt can be stored in the soil and how much instead runs off into waterways. Finally, surface conditions influence the near-surface concentration and distribution of greenhouse gases such as carbon dioxide. The processes through which these mechanisms interact with the atmosphere can be modeled mathematically, to within some degree of uncertainty, on the basis of underlying physical principles. Such a land surface model provides predictive capability for surface variables including ground temperature, surface humidity, and soil moisture and temperature. This information is important for agriculture and industry, as well as for addressing fundamental scientific questions concerning global and local climate change. In this study we apply a methodology known as tangent linear modeling to help us understand more deeply, the behavior of the Mosaic land surface model, a model that has been developed over the past several years at NASA/GSFC. This methodology allows us to examine, directly and quantitatively, the dependence of prediction errors in land surface variables upon different vegetation conditions. The work also highlights the importance of accurate soil moisture information. Although surface
Godin, Bruno; Mayer, Frédéric; Agneessens, Richard; Gerin, Patrick; Dardenne, Pierre; Delfosse, Philippe; Delcarte, Jérôme
2015-01-01
The reliability of different models to predict the biochemical methane potential (BMP) of various plant biomasses using a multispecies dataset was compared. The most reliable prediction models of the BMP were those based on the near infrared (NIR) spectrum compared to those based on the chemical composition. The NIR predictions of local (specific regression and non-linear) models were able to estimate quantitatively, rapidly, cheaply and easily the BMP. Such a model could be further used for biomethanation plant management and optimization. The predictions of non-linear models were more reliable compared to those of linear models. The presentation form (green-dried, silage-dried and silage-wet form) of biomasses to the NIR spectrometer did not influence the performances of the NIR prediction models. The accuracy of the BMP method should be improved to enhance further the BMP prediction models. Copyright © 2014 Elsevier Ltd. All rights reserved.
Valid statistical approaches for analyzing sholl data: Mixed effects versus simple linear models.
Wilson, Machelle D; Sethi, Sunjay; Lein, Pamela J; Keil, Kimberly P
2017-03-01
The Sholl technique is widely used to quantify dendritic morphology. Data from such studies, which typically sample multiple neurons per animal, are often analyzed using simple linear models. However, simple linear models fail to account for intra-class correlation that occurs with clustered data, which can lead to faulty inferences. Mixed effects models account for intra-class correlation that occurs with clustered data; thus, these models more accurately estimate the standard deviation of the parameter estimate, which produces more accurate p-values. While mixed models are not new, their use in neuroscience has lagged behind their use in other disciplines. A review of the published literature illustrates common mistakes in analyses of Sholl data. Analysis of Sholl data collected from Golgi-stained pyramidal neurons in the hippocampus of male and female mice using both simple linear and mixed effects models demonstrates that the p-values and standard deviations obtained using the simple linear models are biased downwards and lead to erroneous rejection of the null hypothesis in some analyses. The mixed effects approach more accurately models the true variability in the data set, which leads to correct inference. Mixed effects models avoid faulty inference in Sholl analysis of data sampled from multiple neurons per animal by accounting for intra-class correlation. Given the widespread practice in neuroscience of obtaining multiple measurements per subject, there is a critical need to apply mixed effects models more widely. Copyright © 2017 Elsevier B.V. All rights reserved.
Linear models of income patterns in consumer demand for foods and evaluation of its elasticity
Directory of Open Access Journals (Sweden)
Pavel Syrovátka
2005-01-01
Full Text Available The paper is focused on the use of the linear constructions for developing of Engel’s demand models in the field of the food-consumer demand. In the theoretical part of the paper, the linear approximations of this demand models are analysed on the bases of the linear interpolation. In the same part of this text, the hyperbolic elasticity function was defined for the linear Engel model. The behaviour of the hyperbolic elasticity function and its properties were consequently investigated too. The behaviour of the determined elasticity function was investigated according to the values of the intercept point and the direction parameter in the original linear Engel model. The obtained theoretical findings were tested using the real data of Czech Statistical Office. The developed linear Engel model was explicitly dynamised, because the achieved database was formed into the time series. With respect to the two variables definitions of the hyperbolic function in the theoretical part of the text, the determined dynamic model of the Engel demand for food was transformed into the form with parametric intercept point:ret* = At + 0.0946 · rmt*,where the values of absolute member are defined as:At = 1773.0973 + 9.3064 · t – 0.3023 · t2; (t = 1, 2, ... 32.The value of At in the parametric linear model of Engel consumer demand for food was during the observed period (1995–2002 always positive. Thus, the hyperbolic elasticity function achieved the elasticity coefficients from the interval:ηt ∈〈+0; +1.Within quantitative analysis of Engel demand for food in the Czech Republic during the given time period, it was founded, that income elasticity of food expenditures of the average Czech household was moved between +0.4080 and +0.4511. The Czech-household demand for food is thus income inelastic with the normal income reactions.
Directory of Open Access Journals (Sweden)
Zhaowei Xiang
2018-06-01
Full Text Available A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM. Keywords: Selective laser melting, Volume shrinkage, Powder-to-dense process, Numerical modeling, Thermal analysis, Linear energy density
Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi
2012-01-01
The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.
Alkhalifah, Tariq Ali
2012-09-25
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Alkhalifah, Tariq Ali; Choi, Yun Seok
2012-01-01
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Förner, K.; Polifke, W.
2017-10-01
The nonlinear acoustic behavior of Helmholtz resonators is characterized by a data-based reduced-order model, which is obtained by a combination of high-resolution CFD simulation and system identification. It is shown that even in the nonlinear regime, a linear model is capable of describing the reflection behavior at a particular amplitude with quantitative accuracy. This observation motivates to choose a local-linear model structure for this study, which consists of a network of parallel linear submodels. A so-called fuzzy-neuron layer distributes the input signal over the linear submodels, depending on the root mean square of the particle velocity at the resonator surface. The resulting model structure is referred to as an local-linear neuro-fuzzy network. System identification techniques are used to estimate the free parameters of this model from training data. The training data are generated by CFD simulations of the resonator, with persistent acoustic excitation over a wide range of frequencies and sound pressure levels. The estimated nonlinear, reduced-order models show good agreement with CFD and experimental data over a wide range of amplitudes for several test cases.
Directory of Open Access Journals (Sweden)
Yohannes S.M. Simamora
2014-09-01
Full Text Available A simple approach of active surge control of compression systems is presented. Specifically, nonlinear components of the pressure ratio and rotating speed states of the Moore-Greitzer model are transferred into the input vectors. Subsequently, the compressor characteristic is linearized into two modes, which describe the stable region and the unstable region respectively. As a result, the system’s state and input matrices both appear linear, to which linear realization and analysis are applicable. A linear quadratic regulator plus integrator is then chosen as closed-loop controller. By simulation it was shown that the modified model and characteristics can describe surge behavior, while the closed-loop controller can stabilize the system in the unstable operating region. The last-mentioned was achieved when massflow was 5.38 per cent less than the surge point.
An axisymmetrical non-linear finite element model for induction heating in injection molding tools
DEFF Research Database (Denmark)
Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano
2016-01-01
To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed......, including the non-linear temperature dependent magnetic data described by a three-parameter modified Frohlich equation fitted to the magnetic saturation curve, and solved with an iterative procedure. The numerical calculations are compared with experiments conducted with two types of induction coils, built...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear permeability to use...
su(1,2) Algebraic Structure of XYZ Antiferromagnetic Model in Linear Spin-Wave Frame
International Nuclear Information System (INIS)
Jin Shuo; Xie Binghao; Yu Zhaoxian; Hou Jingmin
2008-01-01
The XYZ antiferromagnetic model in linear spin-wave frame is shown explicitly to have an su(1,2) algebraic structure: the Hamiltonian can be written as a linear function of the su(1,2) algebra generators. Based on it, the energy eigenvalues are obtained by making use of the similar transformations, and the algebraic diagonalization method is investigated. Some numerical solutions are given, and the results indicate that only one group solution could be accepted in physics
Model-Checking of Linear-Time Properties in Multi-Valued Systems
Li, Yongming; Droste, Manfred; Lei, Lihui
2012-01-01
In this paper, we study model-checking of linear-time properties in multi-valued systems. Safety property, invariant property, liveness property, persistence and dual-persistence properties in multi-valued logic systems are introduced. Some algorithms related to the above multi-valued linear-time properties are discussed. The verification of multi-valued regular safety properties and multi-valued $\\omega$-regular properties using lattice-valued automata are thoroughly studied. Since the law o...
Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet
Frisch, J; Decker, V; Hendrickson, L; Markiewicz, T W; Partridge, R; Seryi, Andrei
2004-01-01
The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.
Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet
International Nuclear Information System (INIS)
Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; SLAC
2006-01-01
The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system
Renormalization a la BRS of the non-linear σ-model
International Nuclear Information System (INIS)
Blasi, A.; Collina, R.
1987-01-01
We characterize the non-linear O(N+1) σ-model in an arbitrary parametrization with a nihilpotent BRS operator obtained from the symmetry transformation by the use of anticommuting parameters. The identity can be made compatible with the presence of a mass term in the model, so we can analyze its stability and prove that the model is anomaly free. This procedure avoids many problems encountered in the conventional analysis; in particular the introduction of an infinite number of sources coupled to the successive variations of the field is not necessary and the linear O(N) symmetry is respected as a consequence of the identity. The approach may provide useful in discussing the renormalizability of a wider class of models with non-linear symmetries. (orig.)
Finiteness of Ricci flat supersymmetric non-linear sigma-models
International Nuclear Information System (INIS)
Alvarez-Gaume, L.; Ginsparg, P.
1985-01-01
Combining the constraints of Kaehler differential geometry with the universality of the normal coordinate expansion in the background field method, we study the ultraviolet behavior of 2-dimensional supersymmetric non-linear sigma-models with target space an arbitrary riemannian manifold M. We show that the constraint of N=2 supersymmetry requires that all counterterms to the metric beyond one-loop order are cohomologically trivial. It follows that such supersymmetric non-linear sigma-models defined on locally symmetric spaces are super-renormalizable and that N=4 models are on-shell ultraviolet finite to all orders of perturbation theory. (orig.)
A quantitative analysis of instabilities in the linear chiral sigma model
International Nuclear Information System (INIS)
Nemes, M.C.; Nielsen, M.; Oliveira, M.M. de; Providencia, J. da
1990-08-01
We present a method to construct a complete set of stationary states corresponding to small amplitude motion which naturally includes the continuum solution. The energy wheighted sum rule (EWSR) is shown to provide for a quantitative criterium on the importance of instabilities which is known to occur in nonasymptotically free theories. Out results for the linear σ model showed be valid for a large class of models. A unified description of baryon and meson properties in terms of the linear σ model is also given. (author)
Glass, Alexis; Fukudome, Kimitoshi
2004-12-01
A sound recording of a plucked string instrument is encoded and resynthesized using two stages of prediction. In the first stage of prediction, a simple physical model of a plucked string is estimated and the instrument excitation is obtained. The second stage of prediction compensates for the simplicity of the model in the first stage by encoding either the instrument excitation or the model error using warped linear prediction. These two methods of compensation are compared with each other, and to the case of single-stage warped linear prediction, adjustments are introduced, and their applications to instrument synthesis and MPEG4's audio compression within the structured audio format are discussed.
Analysis of an inventory model for both linearly decreasing demand and holding cost
Malik, A. K.; Singh, Parth Raj; Tomar, Ajay; Kumar, Satish; Yadav, S. K.
2016-03-01
This study proposes the analysis of an inventory model for linearly decreasing demand and holding cost for non-instantaneous deteriorating items. The inventory model focuses on commodities having linearly decreasing demand without shortages. The holding cost doesn't remain uniform with time due to any form of variation in the time value of money. Here we consider that the holding cost decreases with respect to time. The optimal time interval for the total profit and the optimal order quantity are determined. The developed inventory model is pointed up through a numerical example. It also includes the sensitivity analysis.
DEFF Research Database (Denmark)
Chon, K H; Cohen, R J; Holstein-Rathlou, N H
1997-01-01
A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving...... average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre...
International Nuclear Information System (INIS)
Adcock, T. A. A.; Taylor, P. H.
2016-01-01
The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum
A simple method for identifying parameter correlations in partially observed linear dynamic models.
Li, Pu; Vu, Quoc Dong
2015-12-14
Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a
Non-linear models for the detection of impaired cerebral blood flow autoregulation.
Chacón, Max; Jara, José Luis; Miranda, Rodrigo; Katsogridakis, Emmanuel; Panerai, Ronney B
2018-01-01
The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model's derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired.
Material model for non-linear finite element analyses of large concrete structures
Engen, Morten; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik; Beushausen, H.
2016-01-01
A fully triaxial material model for concrete was implemented in a commercial finite element code. The only required input parameter was the cylinder compressive strength. The material model was suitable for non-linear finite element analyses of large concrete structures. The importance of including
The linear stability analysis of MHD models in axisymmetric toroidal geometry
International Nuclear Information System (INIS)
Manickam, J.; Grimm, R.C.; Dewar, R.L.
1981-01-01
A computational model to analyze the linear stability properties of general toroidal systems in the ideal magnetohydrodynamic limits is presented. This model includes an explicit treatment of the asymptotic singular behaviour at rational surfaces. It is verified through applications to internal kink modes. (orig.)