WorldWideScience

Sample records for linear mimo systems

  1. Feedback linearizing control of a MIMO power system

    Science.gov (United States)

    Ilyes, Laszlo

    Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.

  2. Efficient linear precoding for massive MIMO systems using truncated polynomial expansion

    KAUST Repository

    Mü ller, Axel; Kammoun, Abla; Bjö rnson, Emil; Debbah, Mé roú ane

    2014-01-01

    Massive multiple-input multiple-output (MIMO) techniques have been proposed as a solution to satisfy many requirements of next generation cellular systems. One downside of massive MIMO is the increased complexity of computing the precoding

  3. Adaptive robust fault-tolerant control for linear MIMO systems with unmatched uncertainties

    Science.gov (United States)

    Zhang, Kangkang; Jiang, Bin; Yan, Xing-Gang; Mao, Zehui

    2017-10-01

    In this paper, two novel fault-tolerant control design approaches are proposed for linear MIMO systems with actuator additive faults, multiplicative faults and unmatched uncertainties. For time-varying multiplicative and additive faults, new adaptive laws and additive compensation functions are proposed. A set of conditions is developed such that the unmatched uncertainties are compensated by actuators in control. On the other hand, for unmatched uncertainties with their projection in unmatched space being not zero, based on a (vector) relative degree condition, additive functions are designed to compensate for the uncertainties from output channels in the presence of actuator faults. The developed fault-tolerant control schemes are applied to two aircraft systems to demonstrate the efficiency of the proposed approaches.

  4. Efficient linear precoding for massive MIMO systems using truncated polynomial expansion

    KAUST Repository

    Müller, Axel

    2014-06-01

    Massive multiple-input multiple-output (MIMO) techniques have been proposed as a solution to satisfy many requirements of next generation cellular systems. One downside of massive MIMO is the increased complexity of computing the precoding, especially since the relatively \\'antenna-efficient\\' regularized zero-forcing (RZF) is preferred to simple maximum ratio transmission. We develop in this paper a new class of precoders for single-cell massive MIMO systems. It is based on truncated polynomial expansion (TPE) and mimics the advantages of RZF, while offering reduced and scalable computational complexity that can be implemented in a convenient parallel fashion. Using random matrix theory we provide a closed-form expression of the signal-to-interference-and-noise ratio under TPE precoding and compare it to previous works on RZF. Furthermore, the sum rate maximizing polynomial coefficients in TPE precoding are calculated. By simulation, we find that to maintain a fixed peruser rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and signal-to-noise ratio. © 2014 IEEE.

  5. Non-Linear Detection for Joint Space-Frequency Block Coding and Spatial Multiplexing in OFDM-MIMO Systems

    DEFF Research Database (Denmark)

    Rahman, Imadur Mohamed; Marchetti, Nicola; Fitzek, Frank

    2005-01-01

    (SIC) receiver where the detection is done on subcarrier by sub-carrier basis based on both Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) nulling criterion for the system. In terms of Frame Error Rate (FER), MMSE based SIC receiver performs better than all other receivers compared......In this work, we have analyzed a joint spatial diversity and multiplexing transmission structure for MIMO-OFDM system, where Orthogonal Space-Frequency Block Coding (OSFBC) is used across all spatial multiplexing branches. We have derived a BLAST-like non-linear Successive Interference Cancellation...... in this paper. We have found that a linear two-stage receiver for the proposed system [1] performs very close to the non-linear receiver studied in this work. Finally, we compared the system performance in spatially correlated scenario. It is found that higher amount of spatial correlation at the transmitter...

  6. BER ANALYSIS OF MIMO-OFDM SYSTEM

    OpenAIRE

    Devarsh Patel*

    2016-01-01

    MIMO is a system where a number of antennas are used at the transmitter and receiver side. A MIMO system takes advantage of the spatial diversity that is obtained by spatially separated antennas in a dense multipath scattering environment. The combination of OFDM systems with MIMO technology has provided us with increase in link reliability and an improvement in spectral efficiency. For 4G communication MIMO-OFDM is one of the most competitive technologies. The combination of OFDM and MIMO se...

  7. Beyond Multiplexing Gain in Large MIMO Systems

    DEFF Research Database (Denmark)

    Cakmak, Burak; Müller, Ralf R.; Fleury, Bernard Henri

    growth (multiplexing gain). Even when the channel entries are i.i.d. the deviation from the linear growth is significant. We also find an additive property of the deviation for a concatenated MIMO system. Finally, we quantify the deviation of the large SNR capacity from the exact capacity and find...

  8. MIMO Based Multimedia Communication System

    OpenAIRE

    Kandar, D.; Dhar, Sourav; Bera, Rabindranath; Sarkar, C. K.

    2009-01-01

    High data rate is required for multimedia communication. But the communication at high data rate is always challenging. In this work we have successfully performed data chatting, Voice chatting and high quality video transmission between two distant units using MIMO adapter, Direct sequence spread spectrum system and MATLAB/SIMULINK platform.

  9. Quasi-minimal active disturbance rejection control of MIMO perturbed linear systems based on differential neural networks and the attractive ellipsoid method.

    Science.gov (United States)

    Salgado, Iván; Mera-Hernández, Manuel; Chairez, Isaac

    2017-11-01

    This study addresses the problem of designing an output-based controller to stabilize multi-input multi-output (MIMO) systems in the presence of parametric disturbances as well as uncertainties in the state model and output noise measurements. The controller design includes a linear state transformation which separates uncertainties matched to the control input and the unmatched ones. A differential neural network (DNN) observer produces a nonlinear approximation of the matched perturbation and the unknown states simultaneously in the transformed coordinates. This study proposes the use of the Attractive Ellipsoid Method (AEM) to optimize the gains of the controller and the gain observer in the DNN structure. As a consequence, the obtained control input minimizes the convergence zone for the estimation error. Moreover, the control design uses the estimated disturbance provided by the DNN to obtain a better performance in the stabilization task in comparison with a quasi-minimal output feedback controller based on a Luenberger observer and a sliding mode controller. Numerical results pointed out the advantages obtained by the nonlinear control based on the DNN observer. The first example deals with the stabilization of an academic linear MIMO perturbed system and the second example stabilizes the trajectories of a DC-motor into a predefined operation point. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Energy efficient downlink MIMO transmission with linear precoding

    Institute of Scientific and Technical Information of China (English)

    XU Jie; LI ShiChao; QIU Ling; SLIMANE Ben S.; YU ChengWen

    2013-01-01

    Energy efficiency (EE) is becoming increasingly important for wireless cellular networks. This paper addresses EE optimization problems in downlink multiuser MIMO systems with linear precoding. Referring to different active transmit/receive antenna sets and transmission schemes as different modes, we propose a joint bandwidth/power optimization and mode switching scheme to maximize EE. With a specific mode, we prove that the optimal bandwidth and transmit power is either full transmit power or full bandwidth. After deriving the optimal bandwidth and transmit power, we further propose mode switching to select the mode with optimal EE. Since the optimal mode switching, i.e. exhaustive search, is too complex to implement, an alternative heuristic method is developed to decrease the complexity through reducing the search size and avoiding the EE calculation during each search. Through simulations, we demonstrate that the proposed methods can significantly improve EE and the performance is similar to the optimal exhaustive search.

  11. Sequential decoders for large MIMO systems

    KAUST Repository

    Ali, Konpal S.

    2014-05-01

    Due to their ability to provide high data rates, multiple-input multiple-output (MIMO) systems have become increasingly popular. Decoding of these systems with acceptable error performance is computationally very demanding. In this paper, we employ the Sequential Decoder using the Fano Algorithm for large MIMO systems. A parameter called the bias is varied to attain different performance-complexity trade-offs. Low values of the bias result in excellent performance but at the expense of high complexity and vice versa for higher bias values. Numerical results are done that show moderate bias values result in a decent performance-complexity trade-off. We also attempt to bound the error by bounding the bias, using the minimum distance of a lattice. The variations in complexity with SNR have an interesting trend that shows room for considerable improvement. Our work is compared against linear decoders (LDs) aided with Element-based Lattice Reduction (ELR) and Complex Lenstra-Lenstra-Lovasz (CLLL) reduction. © 2014 IFIP.

  12. Remote sensing using MIMO systems

    Science.gov (United States)

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  13. Downlink Linear Precoders Based on Statistical CSI for Multicell MIMO-OFDM

    Directory of Open Access Journals (Sweden)

    Ebrahim Baktash

    2017-01-01

    Full Text Available With 5G communication systems on the horizon, efficient interference management in heterogeneous multicell networks is more vital than ever. This paper investigates the linear precoder design for downlink multicell multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM systems, where base stations (BSs coordinate to reduce the interference across space and frequency. In order to minimize the overall feedback overhead in next-generation systems, we consider precoding schemes that require statistical channel state information (CSI only. We apply the random matrix theory to approximate the ergodic weighted sum rate of the system with a closed form expression. After formulating the approximation for general channels, we reduce the results to a more compact form using the Kronecker channel model for which several multicarrier concepts such as frequency selectivity, channel tap correlations, and intercarrier interference (ICI are rigorously represented. We find the local optimal solution for the maximization of the approximate rate using a gradient method that requires only the covariance structure of the MIMO-OFDM channels. Within this covariance structure are the channel tap correlations and ICI information, both of which are taken into consideration in the precoder design. Simulation results show that the rate approximation is very accurate even for very small MIMO-OFDM systems and the proposed method converges rapidly to a near-optimal solution that competes with networked MIMO and precoders based on instantaneous full CSI.

  14. Single-user MIMO versus multi-user MIMO in distributed antenna systems with limited feedback

    Science.gov (United States)

    Schwarz, Stefan; Heath, Robert W.; Rupp, Markus

    2013-12-01

    This article investigates the performance of cellular networks employing distributed antennas in addition to the central antennas of the base station. Distributed antennas are likely to be implemented using remote radio units, which is enabled by a low latency and high bandwidth dedicated link to the base station. This facilitates coherent transmission from potentially all available antennas at the same time. Such distributed antenna system (DAS) is an effective way to deal with path loss and large-scale fading in cellular systems. DAS can apply precoding across multiple transmission points to implement single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO) transmission. The throughput performance of various SU-MIMO and MU-MIMO transmission strategies is investigated in this article, employing a Long-Term evolution (LTE) standard compliant simulation framework. The previously theoretically established cell-capacity improvement of MU-MIMO in comparison to SU-MIMO in DASs is confirmed under the practical constraints imposed by the LTE standard, even under the assumption of imperfect channel state information (CSI) at the base station. Because practical systems will use quantized feedback, the performance of different CSI feedback algorithms for DASs is investigated. It is shown that significant gains in the CSI quantization accuracy and in the throughput of especially MU-MIMO systems can be achieved with relatively simple quantization codebook constructions that exploit the available temporal correlation and channel gain differences.

  15. Diversity and Multiplexing Technologies by 3D Beams in Polarized Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Xin Su

    2016-01-01

    Full Text Available Massive multiple input, multiple output (M-MIMO technologies have been proposed to scale up data rates reaching gigabits per second in the forthcoming 5G mobile communications systems. However, one of crucial constraints is a dimension in space to implement the M-MIMO. To cope with the space constraint and to utilize more flexibility in 3D beamforming (3D-BF, we propose antenna polarization in M-MIMO systems. In this paper, we design a polarized M-MIMO (PM-MIMO system associated with 3D-BF applications, where the system architectures for diversity and multiplexing technologies achieved by polarized 3D beams are provided. Different from the conventional 3D-BF achieved by planar M-MIMO technology to control the downtilted beam in a vertical domain, the proposed PM-MIMO realizes 3D-BF via the linear combination of polarized beams. In addition, an effective array selection scheme is proposed to optimize the beam-width and to enhance system performance by the exploration of diversity and multiplexing gains; and a blind channel estimation (BCE approach is also proposed to avoid pilot contamination in PM-MIMO. Based on the Long Term Evolution-Advanced (LTE-A specification, the simulation results finally confirm the validity of our proposals.

  16. MU-MIMO in LTE Systems

    DEFF Research Database (Denmark)

    Duplicy, Jonathan; Badic, Biljana; Balraj, Rajarajan

    2011-01-01

    A relatively recent idea of extending the benefits of MIMO systems to multi-user scenarios seems promising in the context of achieving high data rates envisioned for future cellular standards after 3G (3rd Generation). Although substantial research has been done on the theoretical front, recent...

  17. Sequential decoders for large MIMO systems

    KAUST Repository

    Ali, Konpal S.; Abediseid, Walid; Alouini, Mohamed-Slim

    2014-01-01

    the Sequential Decoder using the Fano Algorithm for large MIMO systems. A parameter called the bias is varied to attain different performance-complexity trade-offs. Low values of the bias result in excellent performance but at the expense of high complexity

  18. Power Allocation Optimization: Linear Precoding Adapted to NB-LDPC Coded MIMO Transmission

    Directory of Open Access Journals (Sweden)

    Tarek Chehade

    2015-01-01

    Full Text Available In multiple-input multiple-output (MIMO transmission systems, the channel state information (CSI at the transmitter can be used to add linear precoding to the transmitted signals in order to improve the performance and the reliability of the transmission system. This paper investigates how to properly join precoded closed-loop MIMO systems and nonbinary low density parity check (NB-LDPC. The q elements in the Galois field, GF(q, are directly mapped to q transmit symbol vectors. This allows NB-LDPC codes to perfectly fit with a MIMO precoding scheme, unlike binary LDPC codes. The new transmission model is detailed and studied for several linear precoders and various designed LDPC codes. We show that NB-LDPC codes are particularly well suited to be jointly used with precoding schemes based on the maximization of the minimum Euclidean distance (max-dmin criterion. These results are theoretically supported by extrinsic information transfer (EXIT analysis and are confirmed by numerical simulations.

  19. Linear system theory

    Science.gov (United States)

    Callier, Frank M.; Desoer, Charles A.

    1991-01-01

    The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.

  20. Transmitter Layering for Multiuser MIMO Systems

    Directory of Open Access Journals (Sweden)

    Schlegel Christian

    2008-01-01

    Full Text Available Abstract A novel structure for multiple antenna transmissions utilizing space-time dispersion is proposed, where the original data stream is divided into substreams which are modulated onto all available transmit antennas using stream-specific transmit signature sequences. In order to achieve this, the transmit antennas are partitioned into groups of antennas, called partitions. The signals from the data streams are independently interleaved by partition over the entire transmission frame. The interleaved partitions are then added over all substreams prior to transmission over the MIMO channel. At the receiver, a low-complexity iterative detector adapted from recent CDMA multiuser detection research is used. It is shown that with careful substream power assignments this transmission methodology can efficiently utilize the capacity of rank-deficient channels as it can approach the capacity limits of the multiple antenna channel closely over the entire range of available signal-to-noise ratios and system sizes. This transmission methodology and receiver structure are then applied to multiuser MIMO systems where several multiple antenna terminals communicate concurrently to a joint receiver. It is shown that different received power levels from the different MIMO terminals can be beneficial and that higher spectral efficiencies can be achieved than in the single-terminal case.

  1. Transmitter Layering for Multiuser MIMO Systems

    Directory of Open Access Journals (Sweden)

    Zachary Bagley

    2008-03-01

    Full Text Available A novel structure for multiple antenna transmissions utilizing space-time dispersion is proposed, where the original data stream is divided into K substreams which are modulated onto all available transmit antennas using stream-specific transmit signature sequences. In order to achieve this, the transmit antennas are partitioned into M groups of antennas, called partitions. The signals from the K data streams are independently interleaved by partition over the entire transmission frame. The interleaved partitions are then added over all K substreams prior to transmission over the MIMO channel. At the receiver, a low-complexity iterative detector adapted from recent CDMA multiuser detection research is used. It is shown that with careful substream power assignments this transmission methodology can efficiently utilize the capacity of rank-deficient channels as it can approach the capacity limits of the multiple antenna channel closely over the entire range of available signal-to-noise ratios and system sizes. This transmission methodology and receiver structure are then applied to multiuser MIMO systems where several multiple antenna terminals communicate concurrently to a joint receiver. It is shown that different received power levels from the different MIMO terminals can be beneficial and that higher spectral efficiencies can be achieved than in the single-terminal case.

  2. Reliable actuators for twin rotor MIMO system

    Science.gov (United States)

    Rao, Vidya S.; V. I, George; Kamath, Surekha; Shreesha, C.

    2017-11-01

    Twin Rotor MIMO System (TRMS) is a bench mark system to test flight control algorithms. One of the perturbations on TRMS which is likely to affect the control system is actuator failure. Therefore, there is a need for a reliable control system, which includes H infinity controller along with redundant actuators. Reliable control refers to the design of a control system to tolerate failures of a certain set of actuators or sensors while retaining desired control system properties. Output of reliable controller has to be transferred to the redundant actuator effectively to make the TRMS reliable even under actual actuator failure.

  3. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  4. Active fault detection in MIMO systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    The focus in this paper is on active fault detection (AFD) for MIMO systems with parametric faults. The problem of design of auxiliary inputs with respect to detection of parametric faults is investigated. An analysis of the design of auxiliary inputs is given based on analytic transfer functions...... from auxiliary input to residual outputs. The analysis is based on a singular value decomposition of these transfer functions Based on this analysis, it is possible to design auxiliary input as well as design of the associated residual vector with respect to every single parametric fault in the system...... such that it is possible to detect these faults....

  5. Eigenstructures of MIMO Fading Channel Correlation Matrices and Optimum Linear Precoding Designs for Maximum Ergodic Capacity

    Directory of Open Access Journals (Sweden)

    Hamid Reza Bahrami

    2007-01-01

    Full Text Available The ergodic capacity of MIMO frequency-flat and -selective channels depends greatly on the eigenvalue distribution of spatial correlation matrices. Knowing the eigenstructure of correlation matrices at the transmitter is very important to enhance the capacity of the system. This fact becomes of great importance in MIMO wireless systems where because of the fast changing nature of the underlying channel, full channel knowledge is difficult to obtain at the transmitter. In this paper, we first investigate the effect of eigenvalues distribution of spatial correlation matrices on the capacity of frequency-flat and -selective channels. Next, we introduce a practical scheme known as linear precoding that can enhance the ergodic capacity of the channel by changing the eigenstructure of the channel by applying a linear transformation. We derive the structures of precoders using eigenvalue decomposition and linear algebra techniques in both cases and show their similarities from an algebraic point of view. Simulations show the ability of this technique to change the eigenstructure of the channel, and hence enhance the ergodic capacity considerably.

  6. Spatial Correlation Characterization of a Full Dimension Massive MIMO System

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2017-02-07

    Elevation beamforming and Full Dimension MIMO (FD-MIMO) are currently active areas of research and standardization in 3GPP LTE-Advanced. FD-MIMO utilizes an active antenna array system (AAS), that provides the ability of adaptive electronic beam control over the elevation dimension, resulting in a better system performance as compared to the conventional 2D MIMO systems. FD-MIMO is more advantageous when amalgamated with massive MIMO systems, in that it exploits the additional degrees of freedom offered by a large number of antennas in the elevation. To facilitate the evaluation of these systems, a large effort in 3D channel modeling is needed. This paper aims at providing a summary of the recent 3GPP activity around 3D channel modeling. The 3GPP proposed approach to model antenna radiation pattern is compared with the ITU approach. A closed-form expression is then worked out for the spatial correlation function (SCF) for channels constituted by individual antenna elements in the array by exploiting results on spherical harmonics and Legendre polynomials. The proposed expression can be used to obtain correlation coefficients for any arbitrary 3D propagation environment. Simulation results corroborate and study the derived spatial correlation expression. The results are directly applicable to the analysis of future 5G 3D massive MIMO systems.

  7. Capacity analysis of spectrum sharing spatial multiplexing MIMO systems

    KAUST Repository

    Yang, Liang; Qaraqe, Khalid A.; Serpedin, Erchin; Alouini, Mohamed-Slim

    2014-01-01

    This paper considers a spectrum sharing (SS) multiple-input multiple-output (MIMO) system operating in a Rayleigh fading environment. First the capacity of a single-user SS spatial multiplexing system is investigated in two scenarios that assume

  8. 3D Massive MIMO Systems: Channel Modeling and Performance Analysis

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-01-01

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. More recently, the trend is to enhance the system performance by exploiting the channel's degrees of freedom in the elevation

  9. FPGA based Smart Wireless MIMO Control System

    International Nuclear Information System (INIS)

    Ali, Syed M Usman; Hussain, Sajid; Siddiqui, Ali Akber; Arshad, Jawad Ali; Darakhshan, Anjum

    2013-01-01

    In our present work, we have successfully designed, and developed an FPGA based smart wireless MIMO (Multiple Input and Multiple Output) system capable of controlling multiple industrial process parameters such as temperature, pressure, stress and vibration etc. To achieve this task we have used Xilin x Spartan 3E FPGA (Field Programmable Gate Array) instead of conventional microcontrollers. By employing FPGA kit to PC via RF transceivers which has a working range of about 100 meters. The developed smart system is capable of performing the control task assigned to it successfully. We have also provided a provision to our proposed system that can be accessed for monitoring and control through the web and GSM as well. Our proposed system can be equally applied to all the hazardous and rugged industrial environments where a conventional system cannot work effectively

  10. On Lattice Sequential Decoding for Large MIMO Systems

    KAUST Repository

    Ali, Konpal S.

    2014-04-01

    Due to their ability to provide high data rates, Multiple-Input Multiple-Output (MIMO) wireless communication systems have become increasingly popular. Decoding of these systems with acceptable error performance is computationally very demanding. In the case of large overdetermined MIMO systems, we employ the Sequential Decoder using the Fano Algorithm. A parameter called the bias is varied to attain different performance-complexity trade-offs. Low values of the bias result in excellent performance but at the expense of high complexity and vice versa for higher bias values. We attempt to bound the error by bounding the bias, using the minimum distance of a lattice. Also, a particular trend is observed with increasing SNR: a region of low complexity and high error, followed by a region of high complexity and error falling, and finally a region of low complexity and low error. For lower bias values, the stages of the trend are incurred at lower SNR than for higher bias values. This has the important implication that a low enough bias value, at low to moderate SNR, can result in low error and low complexity even for large MIMO systems. Our work is compared against Lattice Reduction (LR) aided Linear Decoders (LDs). Another impressive observation for low bias values that satisfy the error bound is that the Sequential Decoder\\'s error is seen to fall with increasing system size, while it grows for the LR-aided LDs. For the case of large underdetermined MIMO systems, Sequential Decoding with two preprocessing schemes is proposed – 1) Minimum Mean Square Error Generalized Decision Feedback Equalization (MMSE-GDFE) preprocessing 2) MMSE-GDFE preprocessing, followed by Lattice Reduction and Greedy Ordering. Our work is compared against previous work which employs Sphere Decoding preprocessed using MMSE-GDFE, Lattice Reduction and Greedy Ordering. For the case of large systems, this results in high complexity and difficulty in choosing the sphere radius. Our schemes

  11. Channelization Issues with Fairness Considerations for MU-MIMO Precoding Based UTRA-LTE/TDD Systems

    DEFF Research Database (Denmark)

    Rahman, Muhammad Imadur; Wang, Yuanye; Das, Suvra

    2008-01-01

    resource allocation point of view, choice of any technique will require different fairness conditions among users. In this paper, we have studied these different fairness conditions when combined with basic or joint access schemes mentioned above, while applied in a MU-MIMO based UTRA-LTE system. We have...... evaluated the resource allocation fairness issue when two well-known linear MU-MIMO precoding is used on a UTRA-LTE system. User grouping issue is dealt with when SDMA component is considered in the system. The results in this work provides an indicative analysis of the usability of different channelization...

  12. 3D Massive MIMO Systems: Modeling and Performance Analysis

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Merouane; Alouini, Mohamed-Slim

    2015-01-01

    necessitates the characterization of 3D channels. We present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution

  13. Efficient channel estimation in massive MIMO systems - a distributed approach

    KAUST Repository

    Al-Naffouri, Tareq Y.

    2016-01-01

    We present two efficient algorithms for distributed estimation of channels in massive MIMO systems. The two cases of 1) generic, and 2) sparse channels is considered. The algorithms estimate the impulse response for each channel observed

  14. Multiantenna systems for MIMO communications

    CERN Document Server

    DeFlaviis, Franco

    2008-01-01

    Advanced communication scenarios demand the development of new systemswhere antenna theory, channel propagation and communication models are seen from a common perspective as a way to understand and optimize the system as a whole. In this context, a comprehensive multiantenna formulation for multiple-input multiple-output systems is presented with a special emphasis on the connection of the electromagnetic and communication principles.Starting from the capacity for amultiantenna system, the book reviews radiation, propagation, and communicationmechanisms, paying particular attention to the vec

  15. Prevoting Cancellation-Based Detection for Underdetermined MIMO Systems

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2010-01-01

    Full Text Available Various detection methods including the maximum likelihood (ML detection have been studied for multiple-input multiple-output (MIMO systems. While it is usually assumed that the number of independent data symbols, , to be transmitted by multiple antennas simultaneously is smaller than or equal to that of the receive antennas, , in most cases, there could be cases where , which results in underdetermined MIMO systems. In this paper, we employ the prevoting cancellation based detection for underdetermined MIMO systems and show that the proposed detectors can exploit a full receive diversity. Furthermore, the prevoting vector selection criteria for the proposed detectors are taken into account to improve performance further. We also show that our proposed scheme has a lower computational complexity compared to existing approaches, in particular when slow fading MIMO channels are considered.

  16. A Variational Approach to the Modeling of MIMO Systems

    Directory of Open Access Journals (Sweden)

    Jraifi A

    2007-01-01

    Full Text Available Motivated by the study of the optimization of the quality of service for multiple input multiple output (MIMO systems in 3G (third generation, we develop a method for modeling MIMO channel . This method, which uses a statistical approach, is based on a variational form of the usual channel equation. The proposed equation is given by with scalar variable . Minimum distance of received vectors is used as the random variable to model MIMO channel. This variable is of crucial importance for the performance of the transmission system as it captures the degree of interference between neighbors vectors. Then, we use this approach to compute numerically the total probability of errors with respect to signal-to-noise ratio (SNR and then predict the numbers of antennas. By fixing SNR variable to a specific value, we extract informations on the optimal numbers of MIMO antennas.

  17. Linear precoding based on polynomial expansion: reducing complexity in massive MIMO

    KAUST Repository

    Mueller, Axel

    2016-02-29

    Massive multiple-input multiple-output (MIMO) techniques have the potential to bring tremendous improvements in spectral efficiency to future communication systems. Counterintuitively, the practical issues of having uncertain channel knowledge, high propagation losses, and implementing optimal non-linear precoding are solved more or less automatically by enlarging system dimensions. However, the computational precoding complexity grows with the system dimensions. For example, the close-to-optimal and relatively “antenna-efficient” regularized zero-forcing (RZF) precoding is very complicated to implement in practice, since it requires fast inversions of large matrices in every coherence period. Motivated by the high performance of RZF, we propose to replace the matrix inversion and multiplication by a truncated polynomial expansion (TPE), thereby obtaining the new TPE precoding scheme which is more suitable for real-time hardware implementation and significantly reduces the delay to the first transmitted symbol. The degree of the matrix polynomial can be adapted to the available hardware resources and enables smooth transition between simple maximum ratio transmission and more advanced RZF. By deriving new random matrix results, we obtain a deterministic expression for the asymptotic signal-to-interference-and-noise ratio (SINR) achieved by TPE precoding in massive MIMO systems. Furthermore, we provide a closed-form expression for the polynomial coefficients that maximizes this SINR. To maintain a fixed per-user rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and the signal-to-noise ratio.

  18. Asymptotic Analysis in MIMO MRT/MRC Systems

    Directory of Open Access Journals (Sweden)

    Zhou Quan

    2006-01-01

    Full Text Available Through the analysis of the probability density function of the squared largest singular value of a complex Gaussian matrix at the origin and tail, we obtain two asymptotic results related to the multi-input multi-output (MIMO maximum-ratio-transmission/maximum-ratio-combining (MRT/MRC systems. One is the asymptotic error performance (in terms of SNR in a single-user system, and the other is the asymptotic system capacity (in terms of the number of users in the multiuser scenario when multiuser diversity is exploited. Similar results are also obtained for two other MIMO diversity schemes, space-time block coding and selection combining. Our results reveal a simple connection with system parameters, providing good insights for the design of MIMO diversity systems.

  19. Optimal beamforming in MIMO systems with HPA nonlinearity

    KAUST Repository

    Qi, Jian

    2010-09-01

    In this paper, multiple-input multiple-output (MIMO) transmit beamforming (TB) systems under the consideration of nonlinear high-power amplifiers (HPAs) are investigated. The optimal beamforming scheme, with the optimal beamforming weight vector and combining vector, is proposed for MIMO systems with HPA nonlinearity. The performance of the proposed MIMO beamforming scheme in the presence of HPA nonlinearity is evaluated in terms of average symbol error probability (SEP), outage probability and system capacity, considering transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, namely, parameters of nonlinear HPA, numbers of transmit and receive antennas, and modulation order of phase-shift keying (PSK), on performance. ©2010 IEEE.

  20. Optimal beamforming in MIMO systems with HPA nonlinearity

    KAUST Repository

    Qi, Jian; Aissa, Sonia

    2010-01-01

    In this paper, multiple-input multiple-output (MIMO) transmit beamforming (TB) systems under the consideration of nonlinear high-power amplifiers (HPAs) are investigated. The optimal beamforming scheme, with the optimal beamforming weight vector and combining vector, is proposed for MIMO systems with HPA nonlinearity. The performance of the proposed MIMO beamforming scheme in the presence of HPA nonlinearity is evaluated in terms of average symbol error probability (SEP), outage probability and system capacity, considering transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, namely, parameters of nonlinear HPA, numbers of transmit and receive antennas, and modulation order of phase-shift keying (PSK), on performance. ©2010 IEEE.

  1. The application of LDPC code in MIMO-OFDM system

    Science.gov (United States)

    Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao

    2018-03-01

    The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.

  2. Joint compensation of multiple RF impairments in MIMO STBC systems

    KAUST Repository

    Qi, Jian

    2011-09-01

    In this paper, we propose a compensation method for the joint effect of high-power amplifier (HPA) nonlinearity, in-phase/quadrature-phase (I/Q) imbalance and crosstalk in multiple-input multiple-output (MIMO) orthogonal space-time block coding (OSTBC) systems. The performance of the MIMO OSTBC equipped with the proposed compensation mechanism is evaluated in terms of average symbol error probability and system capacity, in Rayleigh fading channels. Numerical results are provided and show the effects on performance of several system parameters, namely, the HPA parameters, image-leakage ratio, crosstalk, numbers of antennas, and phase-shift keying modulation order. © 2011 IEEE.

  3. Near-Optimal Detection in MIMO Systems using Gibbs Sampling

    DEFF Research Database (Denmark)

    Hansen, Morten; Hassibi, Babak; Dimakis, Georgios Alexandros

    2009-01-01

    In this paper we study a Markov Chain Monte Carlo (MCMC) Gibbs sampler for solving the integer least-squares problem. In digital communication the problem is equivalent to preforming Maximum Likelihood (ML) detection in Multiple-Input Multiple-Output (MIMO) systems. While the use of MCMC methods...... sampler provides a computationally efficient way of achieving approximative ML detection in MIMO systems having a huge number of transmit and receive dimensions. In fact, they further suggest that the Markov chain is rapidly mixing. Thus, it has been observed that even in cases were ML detection using, e...

  4. Performance Evaluation Of Modified V-Blast In Mimo System

    Science.gov (United States)

    Suneetha, Ch.; Harathi, N.; Sudha, K.

    2012-03-01

    The MIMO system (multiple Antennas at the transmitter and receiver)is a capable of very high theoretical capacities, the most popular architecture is so called vertical VBLAST. VBLAST is an effective detection method for MIMO communication system, but has large computational complexity due its successive iteration . In this paper we used modified VBLAST to lessen its computational complexity reducing the number of successive iterations. As a result of this simplification, the computational complexity of the detection is lowered significantly. Simulation results show that the proposed V-BLAST reduces calculation complexity by about 30% while achieving a very close BER performance s the original one.

  5. Full-duplex MIMO system based on antenna cancellation technique

    DEFF Research Database (Denmark)

    Foroozanfard, Ehsan; Franek, Ondrej; Tatomirescu, Alexandru

    2014-01-01

    The performance of an antenna cancellation technique for a multiple-input– multiple-output (MIMO) full-duplex system that is based on null-steering beamforming and antenna polarization diversity is investigated. A practical implementation of a symmetric antenna topology comprising three dual......-polarized patch antennas operating at 2.4 GHz is described. The measurement results show an average of 60 dB self-interference cancellation over 200 MHz bandwidth. Moreover, a decoupling level of up to 22 dB is achieved for MIMO multiplexing using antenna polarization diversity. The performance evaluation...

  6. Diversity-Multiplexing-Nulling Trade-Off Analysis of Multiuser MIMO System for Intercell Interference Coordination

    Directory of Open Access Journals (Sweden)

    Jinwoo Kim

    2017-01-01

    Full Text Available A fundamental performance trade-off of multicell multiuser multiple-input multiple-output (MU-MIMO systems is explored for achieving intercell and intracell interference-free conditions. In particular, we analyze the three-dimensional diversity-multiplexing-nulling trade-off (DMNT among the diversity order (i.e., the slope of the error performance curve, multiplexing order (i.e., the number of users that are simultaneously served by MU-MIMO, and nulling order (i.e., the number of users with zero interference in a victim cell. This trade-off quantifies the performance of MU-MIMO in terms of its diversity and multiplexing order, while nulling the intercell interference toward the victim cell in the neighbor. First, we design a precoding matrix to mitigate both intercell and intracell interference for a linear precoding-based MU-MIMO system. Then, the trade-off relationship is obtained by analyzing the distribution of the signal-to-noise ratio (SNR at the user terminals. Furthermore, we demonstrate how DMNT can be applied to estimate the long-term throughput for each mobile station, which allows for determining the optimal number of multiplexing order and throughput loss due to the interference nulling.

  7. Design of 5G Full Dimension Massive MIMO Systems

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2017-10-13

    This work discusses full-dimension multiple-inputmultiple- output (FD-MIMO) technology, which is currently an active area of research and standardization in wireless communications for evolution towards Fifth Generation (5G) cellular systems. FD-MIMO utilizes an active antenna system (AAS) with a two-dimensional (2D) planar array structure, that not only allows a large number of antenna elements to be packed within feasible base station form factors but also provides the ability of adaptive electronic beamforming in the threedimensional (3D) space. However, the compact structure of largescale planar arrays drastically increases the spatial correlation in FD-MIMO systems. In order to account for its effects, the generalized spatial correlation functions for channels constituted by individual elements and overall antenna ports in the AAS are derived. Exploiting the quasi-static channel covariance matrices of users, the problem of determining the optimal downtilt weight vector for antenna ports, which maximizes the minimum signalto- interference ratio of a multi-user multiple-input-single-output system, is formulated as a fractional optimization problem. A quasi-optimal solution is obtained through the application of semi-definite relaxation and Dinkelbach’s method. Finally, the user-group specific elevation beamforming scenario is devised, which offers significant performance gains as confirmed through simulations. These results have direct application in the analysis of 5G FD-MIMO systems.

  8. Design of 5G Full Dimension Massive MIMO Systems

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Merouane; Alouini, Mohamed-Slim

    2017-01-01

    This work discusses full-dimension multiple-inputmultiple- output (FD-MIMO) technology, which is currently an active area of research and standardization in wireless communications for evolution towards Fifth Generation (5G) cellular systems. FD-MIMO utilizes an active antenna system (AAS) with a two-dimensional (2D) planar array structure, that not only allows a large number of antenna elements to be packed within feasible base station form factors but also provides the ability of adaptive electronic beamforming in the threedimensional (3D) space. However, the compact structure of largescale planar arrays drastically increases the spatial correlation in FD-MIMO systems. In order to account for its effects, the generalized spatial correlation functions for channels constituted by individual elements and overall antenna ports in the AAS are derived. Exploiting the quasi-static channel covariance matrices of users, the problem of determining the optimal downtilt weight vector for antenna ports, which maximizes the minimum signalto- interference ratio of a multi-user multiple-input-single-output system, is formulated as a fractional optimization problem. A quasi-optimal solution is obtained through the application of semi-definite relaxation and Dinkelbach’s method. Finally, the user-group specific elevation beamforming scenario is devised, which offers significant performance gains as confirmed through simulations. These results have direct application in the analysis of 5G FD-MIMO systems.

  9. Energy-Efficient Power Allocation for MIMO-SVD Systems

    KAUST Repository

    Sboui, Lokman; Rezki, Zouheir; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we address the problem of energyefficient power allocation in MIMO systems. In fact, the widely adopted water-filling power allocation does not ensure the maximization of the energy efficiency (EE). Since the EE maximization is a non

  10. Allocation Fairness for MIMO Precoded UTRA-LTE TDD System

    DEFF Research Database (Denmark)

    Wang, Yuanye; Rahman, Muhammad Imadur; Das, Suvra

    2008-01-01

    In future Time Division Duplex (TDD)-based broadband wireless systems, it will be possible to exploit the channel reciprocity to implement Channel State Information (CSI)-based Multi User Multiple Input Multiple Output (MU-MIMO) techniques, which will ensure highly efficient spectrum usage...

  11. Throughput of a MIMO OFDM based WLAN system

    NARCIS (Netherlands)

    Schenk, T.C.W.; Dolmans, G.; Modonesi, I.

    2004-01-01

    In this paper, the system throughput of a wireless local-area-network (WLAN) based on multiple-input multipleoutput orthogonal frequency division multiplexing (MIMO OFDM) is studied. A broadband channel model is derived from indoor channel measurements. This model is used in simulations to evaluate

  12. Scalable System Design for Covert MIMO Communications

    Science.gov (United States)

    2014-06-01

    Vehicles US United States VHDL VHSIC Hardware Description Language VLSI Very Large Scale Integration WARP Wireless open-Access Research Platform WLAN ...communications, satellite radio and Wireless Local Area Network ( WLAN ) OFDM has been utilized for its multi-path resistance. OFDM relies on the...develop hardware specific to the application provides faster computation times, making FPGA development a very powerful tool. 2.5.1 MIMO Receiver Latency

  13. Application of WLF to OFDMA MU-MIMO Systems I: Frequency-Domain Equalization

    OpenAIRE

    Xiao, P; Lin, Z; Wu, Y; Schneider, C

    2013-01-01

    This paper presents a novel iterative receiver strategy incorporating widely linear filtering for uplink Orthogonal Frequency Division Multiple Access (OFDMA) multiuser multiple-input, multiple-output (MIMO) systems. The proposed iterative receiver scheme achieves better performance without the loss of spectrum efficiency compared to the conventional iterative receivers; The superiority of the investigated scheduler coupled with the innovative iterative receiver scheme over conventional solut...

  14. Linear systems optimal and robust control

    CERN Document Server

    Sinha, Alok

    2007-01-01

    Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...

  15. Identification of MIMO systems with sparse transfer function coefficients

    Science.gov (United States)

    Qiu, Wanzhi; Saleem, Syed Khusro; Skafidas, Efstratios

    2012-12-01

    We study the problem of estimating transfer functions of multivariable (multiple-input multiple-output--MIMO) systems with sparse coefficients. We note that subspace identification methods are powerful and convenient tools in dealing with MIMO systems since they neither require nonlinear optimization nor impose any canonical form on the systems. However, subspace-based methods are inefficient for systems with sparse transfer function coefficients since they work on state space models. We propose a two-step algorithm where the first step identifies the system order using the subspace principle in a state space format, while the second step estimates coefficients of the transfer functions via L1-norm convex optimization. The proposed algorithm retains good features of subspace methods with improved noise-robustness for sparse systems.

  16. Characteristic Equation of the Modified Smith predictor to MIMO Systems

    Directory of Open Access Journals (Sweden)

    Jorge A. Herrera-Cuartas

    2013-11-01

    Full Text Available The delay in control systems is a feature frequently in real systems due to the transport of objects or information, a series connection of multiple systems or own processing and sensors delay, among others. Recently there have been several studies to identify the external delay MIMO systems, these works are focused on identification and on-line control of MIMO systems and use a multimodel structure based on modified Smith predictor using different search method. It is clear that for the implementation of the algorithm, and to obtain the convergence and stability analysis, it is necessary to have closed-loop equations of modified Smith predictor. However, in these works is not presented the analytical procedure, not be the main object, displaying only the closed loop equations without the procedure for obtaining it. Therefore, to respond, in this paper, we present an analytical way to derive the closed-loop equations of a modified Smith predictor.  

  17. Capacity analysis of spectrum sharing spatial multiplexing MIMO systems

    KAUST Repository

    Yang, Liang

    2014-12-01

    This paper considers a spectrum sharing (SS) multiple-input multiple-output (MIMO) system operating in a Rayleigh fading environment. First the capacity of a single-user SS spatial multiplexing system is investigated in two scenarios that assume different receivers. To explicitly show the capacity scaling law of SS MIMO systems, some approximate capacity expressions for the two scenarios are derived. Next, we extend our analysis to a multiple user system with zero-forcing receivers (ZF) under spatially-independent scheduling and analyze the sum-rate. Furthermore, we provide an asymptotic sum-rate analysis to investigate the effects of different parameters on the multiuser diversity gain. Our results show that the secondary system with a smaller number of transmit antennas Nt and a larger number of receive antennas Nr can achieve higher capacity at lower interference temperature Q, but at high Q the capacity follows the scaling law of the conventional MIMO systems. However, for a ZF SS spatial multiplexing system, the secondary system with small Nt and large Nr can achieve the highest capacity throughout the entire region of Q. For a ZF SS spatial multiplexing system with scheduling, the asymptotic sum-rate scales like Ntlog2(Q(KNtNp-1)/Nt), where Np denotes the number of antennas of the primary receiver and K represents the number of secondary transmitters.

  18. 3D Massive MIMO Systems: Modeling and Performance Analysis

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-07-30

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. Recently, the trend is to enhance system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the characterization of 3D channels. We present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution of the channel matrix consistent with the prior information on the angles. Based on this model, we provide analytical expression for the cumulative density function (CDF) of the mutual information (MI) for systems with a single receive and finite number of transmit antennas in the general signalto- interference-plus-noise-ratio (SINR) regime. The result is extended to systems with finite receive antennas in the low SINR regime. A Gaussian approximation to the asymptotic behavior of MI distribution is derived for the large number of transmit antennas and paths regime. We corroborate our analysis with simulations that study the performance gains realizable through meticulous selection of the transmit antenna downtilt angles, confirming the potential of elevation beamforming to enhance system performance. The results are directly applicable to the analysis of 5G 3D-Massive MIMO-systems.

  19. Energy-Efficient Channel Estimation in MIMO Systems

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The emergence of MIMO communications systems as practical high-data-rate wireless communications systems has created several technical challenges to be met. On the one hand, there is potential for enhancing system performance in terms of capacity and diversity. On the other hand, the presence of multiple transceivers at both ends has created additional cost in terms of hardware and energy consumption. For coherent detection as well as to do optimization such as water filling and beamforming, it is essential that the MIMO channel is known. However, due to the presence of multiple transceivers at both the transmitter and receiver, the channel estimation problem is more complicated and costly compared to a SISO system. Several solutions have been proposed to minimize the computational cost, and hence the energy spent in channel estimation of MIMO systems. We present a novel method of minimizing the overall energy consumption. Unlike existing methods, we consider the energy spent during the channel estimation phase which includes transmission of training symbols, storage of those symbols at the receiver, and also channel estimation at the receiver. We develop a model that is independent of the hardware or software used for channel estimation, and use a divide-and-conquer strategy to minimize the overall energy consumption.

  20. Highly Compact MIMO Antenna System for LTE/ISM Applications

    Directory of Open Access Journals (Sweden)

    Lingsheng Yang

    2015-01-01

    Full Text Available Planar monopole antenna is proposed as the antenna element to form a compact dual-element multiple-input-multiple-output (MIMO antenna system for LTE2300 (used in Asia and Africa and ISM band operation. The system can cover a 310 MHz (2.20–2.51 GHz operating bandwidth, with the total size of 15.5 mm × 18 mm × 1.6 mm. Measured isolation higher than 16 dB is obtained without any specially designed decoupling structures, while the edge-to-edge element spacing is only 7.8 mm (0.08λ at 2.20 GHz. Radiation characteristics, correlation coefficient, and the performance of the whole system with a metal sheet and a plastic housing show this system is competitive for practical MIMO applications. The antenna element is further used to build an eight-element MIMO antenna system; also good results are achieved.

  1. SABA: A Testbed for a Real-Time MIMO System

    Directory of Open Access Journals (Sweden)

    Brühl Lars

    2006-01-01

    Full Text Available The growing demand for high data rates for wireless communication systems leads to the development of new technologies to increase the channel capacity thus increasing the data rate. MIMO (multiple-input multiple-output systems are best qualified for these applications. In this paper, we present a MIMO test environment for high data rate transmissions in frequency-selective environments. An overview of the testbed is given, including the analyzed algorithms, the digital signal processing with a new highly parallel processor to perform the algorithms in real time, as well as the analog front-ends. A brief overview of the influence of polarization on the channel capacity is given as well.

  2. Coding for MIMO-OFDM in future wireless systems

    CERN Document Server

    Ahmed, Bannour

    2015-01-01

    This book introduces the reader to the MIMO-OFDM system, in Rayleigh frequency selective-channels. Orthogonal frequency division multiplexing (OFDM) has been adopted in the wireless local-area network standards IEEE 802.11a due to its high spectral efficiency and ability to deal with frequency selective fading. The combination of OFDM with spectral efficient multiple antenna techniques makes the OFDM a good candidate to overcome the frequency selective problems.

  3. Efficient channel estimation in massive MIMO systems - a distributed approach

    KAUST Repository

    Al-Naffouri, Tareq Y.

    2016-01-21

    We present two efficient algorithms for distributed estimation of channels in massive MIMO systems. The two cases of 1) generic, and 2) sparse channels is considered. The algorithms estimate the impulse response for each channel observed by the antennas at the receiver (base station) in a coordinated manner by sharing minimal information among neighboring antennas. Simulations demonstrate the superior performance of the proposed methods as compared to other methods.

  4. Modulation classification for MIMO systems: State of the art and research directions

    International Nuclear Information System (INIS)

    Bahloul, Mohammad Rida; Yusoff, Mohd Zuki; Abdel-Aty, Abdel-Haleem; Saad, M. Naufal M.; Al-Jemeli, Marwan

    2016-01-01

    Blind techniques and algorithms for Multiple-Input Multiple-Output (MIMO) signals interception have recently attracted a great deal of research efforts. This is due to their important applications in the military and civil telecommunications domains. One essential step in the signal interception process is to blindly recognize the modulation scheme of the MIMO signals. This process is formally called Modulation Classification (MC). This paper discusses the modulation classification for MIMO systems and presents a comprehensive and critical literature review of the existing MC algorithms for MIMO systems; where possible, gaps in the knowledge base are identified and future directions for the research work are suggested.

  5. MAX-SLNR Precoding Algorithm for Massive MIMO System

    Directory of Open Access Journals (Sweden)

    Jiang Jing

    2016-01-01

    Full Text Available Pilot Contamination obviously degrades the system performance of Massive MIMO systems. In this paper, a downlink precoding algorithm based on the Signal-to- Leakage-plus-Noise-Ratio (SLNR criterion is put forward. First, the impact of Pilot Contamination on SLNR is analyzed,then the precoding matrix is calculated with the eigenvalues decomposition of SLNR, which not only maximize the array gains of the target user, but also minimize the impact of Pilot Contamination and the leak to the users of other cells. Further, a simplified solution is derived, in which the impact of Pilot Contamination can be suppressed only with the large-scale fading coefficients. Simulation results reveal that: in the scenario of the serious pilot contamination, the proposed algorithm can avoid the performance loss caused by the pilot contamination compared with the conventional Massive MIMO precoding algorithm. Thus the proposed algorithm can acquire the perfect performance gains of Massive MIMO system and has better practical value since the large-scale fading coefficients are easy to measure and feedback.

  6. Joint User Scheduling and MU-MIMO Hybrid Beamforming Algorithm for mmWave FDMA Massive MIMO System

    Directory of Open Access Journals (Sweden)

    Jing Jiang

    2016-01-01

    Full Text Available The large bandwidth and multipath in millimeter wave (mmWave cellular system assure the existence of frequency selective channels; it is necessary that mmWave system remains with frequency division multiple access (FDMA and user scheduling. But for the hybrid beamforming system, the analog beamforming is implemented by the same phase shifts in the entire frequency band, and the wideband phase shifts may not be harmonious with all users scheduled in frequency resources. This paper proposes a joint user scheduling and multiuser hybrid beamforming algorithm for downlink massive multiple input multiple output (MIMO orthogonal frequency division multiple access (OFDMA systems. In the first step of user scheduling, the users with identical optimal beams form an OFDMA user group and multiplex the entire frequency resource. Then base station (BS allocates the frequency resources for each member of OFDMA user group. An OFDMA user group can be regarded as a virtual user; thus it can support arbitrary MU-MIMO user selection and beamforming algorithms. Further, the analog beamforming vectors employ the best beam of each selected MU-MIMO user and the digital beamforming algorithm is solved by weight MMSE to acquire the best performance gain and mitigate the interuser inference. Simulation results show that hybrid beamforming together with user scheduling can greatly improve the performance of mmWave OFDMA massive MU-MIMO system.

  7. A study on the achievable data rate in massive MIMO system

    Science.gov (United States)

    Salh, Adeeb; Audah, Lukman; Shah, Nor Shahida M.; Hamzah, Shipun A.

    2017-09-01

    The achievable high data rates depend on the ability of massive multi-input-multi-output (MIMO) for the fifth-generation (5G) cellular networks, where the massive MIMO systems can support very high energy and spectral efficiencies. A major challenge in mobile broadband networks is how to support the throughput in the future 5G, where the highlight of 5G expected to provide high speed internet for every user. The performance massive MIMO system increase with linear minimum mean square error (MMSE), zero forcing (ZF) and maximum ratio transmission (MRT) when the number of antennas increases to infinity, by deriving the closed-form approximation for achievable data rate expressions. Meanwhile, the high signal-to-noise ratio (SNR) can be mitigated by using MMSE, ZF and MRT, which are used to suppress the inter-cell interference signals between neighboring cells. The achievable sum rate for MMSE is improved based on the distributed users inside cell, mitigated the inter-cell interference caused when send the same signal by other cells. By contrast, MMSE is better than ZF in perfect channel state information (CSI) for approximately 20% of the achievable sum rate.

  8. Downlink Performance of a Multi-Carrier MIMO System in a Bursty Traffic Cellular Network

    DEFF Research Database (Denmark)

    Nguyen, Hung Tuan; Kovacs, Istvan; Wang, Yuanye

    2011-01-01

    In this paper we analyse the downlink performance of a rank adaptive multiple input multiple output (MIMO) system in a busty traffic cellular network. A LTE-Advanced system with multiple component carriers was selected as a study case. To highlight the advantage of using MIMO techniques, we used ...

  9. Linear precoding based on polynomial expansion: reducing complexity in massive MIMO

    KAUST Repository

    Mueller, Axel; Kammoun, Abla; Bjö rnson, Emil; Debbah, Mé rouane

    2016-01-01

    By deriving new random matrix results, we obtain a deterministic expression for the asymptotic signal-to-interference-and-noise ratio (SINR) achieved by TPE precoding in massive MIMO systems. Furthermore, we provide a closed-form expression for the polynomial coefficients that maximizes this SINR. To maintain a fixed per-user rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and the signal-to-noise ratio.

  10. Phase Noise Effect on MIMO-OFDM Systems with Common and Independent Oscillators

    Directory of Open Access Journals (Sweden)

    Xiaoming Chen

    2017-01-01

    Full Text Available The effects of oscillator phase noises (PNs on multiple-input multiple-output (MIMO orthogonal frequency division multiplexing (OFDM systems are studied. It is shown that PNs of common oscillators at the transmitter and at the receiver have the same influence on the performance of (single-stream beamforming MIMO-OFDM systems, yet different influences on spatial multiplexing MIMO-OFDM systems with singular value decomposition (SVD based precoding/decoding. When each antenna is equipped with an independent oscillator, the PNs at the transmitter and at the receiver have different influences on beamforming MIMO-OFDM systems as well as spatial multiplexing MIMO-OFDM systems. Specifically, the PN effect on the transmitter (receiver can be alleviated by having more transmit (receive antennas for the case of independent oscillators. It is found that the independent oscillator case outperforms the common oscillator case in terms of error vector magnitude (EVM.

  11. A Fast Adaptive Receive Antenna Selection Method in MIMO System

    Directory of Open Access Journals (Sweden)

    Chaowei Wang

    2013-01-01

    Full Text Available Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.

  12. Measurement-Based Spatial Correlation and Capacity of Indoor Distributed MIMO System

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-01-01

    Full Text Available Distributed MIMO (D-MIMO system is one of the candidates for future wireless access networks. In this study, the spatial correlation and capacity in indoor D-MIMO system are presented. All results are from the actual channel measurements in typical indoor scenarios, including office and corridor. Based on measured data, spatial correlation coefficients between distributed transmitting antennas are analyzed. Although the literature about D-MIMO system assumes the small scale fading between distributed antennas is independent, we find that spatial correlation may still exist in specific propagation scenario. This correlation can also degrade the performance of D-MIMO system. To mitigate the impact of spatial correlation, one efficient method is to use transmitting antenna selection technique.

  13. Minimum redundancy MIMO radars

    OpenAIRE

    Chen, Chun-Yang; Vaidyanathan, P. P.

    2008-01-01

    The multiple-input multiple-output (MIMO) radar concept has drawn considerable attention recently. In the traditional single-input multiple-output (SIMO) radar system, the transmitter emits scaled versions of a single waveform. However, in the MIMO radar system, the transmitter transmits independent waveforms. It has been shown that the MIMO radar can be used to improve system performance. Most of the MIMO radar research so far has focused on the uniform array. However, i...

  14. Distributive estimation of frequency selective channels for massive MIMO systems

    KAUST Repository

    Zaib, Alam

    2015-12-28

    We consider frequency selective channel estimation in the uplink of massive MIMO-OFDM systems, where our major concern is complexity. A low complexity distributed LMMSE algorithm is proposed that attains near optimal channel impulse response (CIR) estimates from noisy observations at receive antenna array. In proposed method, every antenna estimates the CIRs of its neighborhood followed by recursive sharing of estimates with immediate neighbors. At each step, every antenna calculates the weighted average of shared estimates which converges to near optimal LMMSE solution. The simulation results validate the near optimal performance of proposed algorithm in terms of mean square error (MSE). © 2015 EURASIP.

  15. On the power amplifier nonlinearity in MIMO transmit beamforming systems

    KAUST Repository

    Qi, Jian

    2012-03-01

    In this paper, single-carrier multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of high-power amplifier (HPA) nonlinearity are investigated. Specifically, due to the suboptimality of the conventional maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, we propose the optimal TB scheme with the optimal beamforming weight vector and combining vector, for MIMO systems with nonlinear HPAs. Moreover, an alternative suboptimal but much simpler TB scheme, namely, quantized equal gain transmission (QEGT), is proposed. The latter profits from the property that the elements of the beamforming weight vector have the same constant modulus. The performance of the proposed optimal TB scheme and QEGT/MRC technique in the presence of the HPA nonlinearity is evaluated in terms of the average symbol error probability and mutual information with the Gaussian input, considering the transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects on the performance of several system parameters, namely, the HPA parameters, numbers of antennas, quadrature amplitude modulation modulation order, number of pilot symbols, and cardinality of the beamforming weight vector codebook for QEGT. © 2012 IEEE.

  16. On the power amplifier nonlinearity in MIMO transmit beamforming systems

    KAUST Repository

    Qi, Jian; Aissa, Sonia

    2012-01-01

    In this paper, single-carrier multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of high-power amplifier (HPA) nonlinearity are investigated. Specifically, due to the suboptimality of the conventional maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, we propose the optimal TB scheme with the optimal beamforming weight vector and combining vector, for MIMO systems with nonlinear HPAs. Moreover, an alternative suboptimal but much simpler TB scheme, namely, quantized equal gain transmission (QEGT), is proposed. The latter profits from the property that the elements of the beamforming weight vector have the same constant modulus. The performance of the proposed optimal TB scheme and QEGT/MRC technique in the presence of the HPA nonlinearity is evaluated in terms of the average symbol error probability and mutual information with the Gaussian input, considering the transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects on the performance of several system parameters, namely, the HPA parameters, numbers of antennas, quadrature amplitude modulation modulation order, number of pilot symbols, and cardinality of the beamforming weight vector codebook for QEGT. © 2012 IEEE.

  17. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  18. Efficient optimal joint channel estimation and data detection for massive MIMO systems

    KAUST Repository

    Alshamary, Haider Ali Jasim

    2016-08-15

    In this paper, we propose an efficient optimal joint channel estimation and data detection algorithm for massive MIMO wireless systems. Our algorithm is optimal in terms of the generalized likelihood ratio test (GLRT). For massive MIMO systems, we show that the expected complexity of our algorithm grows polynomially in the channel coherence time. Simulation results demonstrate significant performance gains of our algorithm compared with suboptimal non-coherent detection algorithms. To the best of our knowledge, this is the first algorithm which efficiently achieves GLRT-optimal non-coherent detections for massive MIMO systems with general constellations.

  19. Performance Analysis of 3D Massive MIMO Cellular Systems with Collaborative Base Station

    Directory of Open Access Journals (Sweden)

    Xingwang Li

    2014-01-01

    Full Text Available Massive MIMO have drawn considerable attention as they enable significant capacity and coverage improvement in wireless cellular network. However, pilot contamination is a great challenge in massive MIMO systems. Under this circumstance, cooperation and three-dimensional (3D MIMO are emerging technologies to eliminate the pilot contamination and to enhance the performance relative to the traditional interference-limited implementations. Motivated by this, we investigate the achievable sum rate performance of MIMO systems in the uplink employing cooperative base station (BS and 3D MIMO systems. In our model, we consider the effects of both large-scale and small-scale fading, as well as the spatial correlation and indoor-to-outdoor high-rise propagation environment. In particular, we investigate the cooperative communication model based on 3D MIMO and propose a closed-form lower bound on the sum rate. Utilizing this bound, we pursue a “large-system” analysis and provide the asymptotic expression when the number of antennas at the BS grows large, and when the numbers of antennas at transceiver grow large with a fixed ratio. We demonstrate that the lower bound is very tight and becomes exact in the massive MIMO system limits. Finally, under the sum rate maximization condition, we derive the optimal number of UTs to be served.

  20. Massive MIMO-OFDM indoor visible light communication system downlink architecture design

    Science.gov (United States)

    Lang, Tian; Li, Zening; Chen, Gang

    2014-10-01

    Multiple-input multiple-output (MIMO) technique is now used in most new broadband communication system, and orthogonal frequency division multiplexing (OFDM) is also utilized within current 4th generation (4G) of mobile telecommunication technology. With MIMO and OFDM combined, visible light communication (VLC) system's diversity gain is increase, yet system capacity for dispersive channels is also enhanced. Moreover, with the emerging massive MIMO-OFDM VLC system, there are significant advantages than smaller systems' such as channel hardening, further increasing of energy efficiency (EE) and spectral efficiency (SE) based on law of large number. This paper addresses one of the major technological challenges, system architecture design, which was solved by semispherical beehive structure (SBS) receiver and so that diversity gain can be identified and applied in Massive MIMO VLC system. Simulation results shows that the proposed design clearly presents a spatial diversity over conventional VLC systems.

  1. Channel Estimation and Optimal Training Design for Correlated MIMO Two-Way Relay Systems in Colored Environment

    OpenAIRE

    Wang, Rui; Tao, Meixia; Mehrpouyan, Hani; Hua, Yingbo

    2014-01-01

    In this paper, while considering the impact of antenna correlation and the interference from neighboring users, we analyze channel estimation and training sequence design for multi-input multi-output (MIMO) two-way relay (TWR) systems. To this end, we propose to decompose the bidirectional transmission links into two phases, i.e., the multiple access (MAC) phase and the broadcasting (BC) phase. By considering the Kronecker-structured channel model, we derive the optimal linear minimum mean-sq...

  2. MIMO channel capacity versus mutual coupling in multi antenna element system

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2004-01-01

    In this paper the influence of mutual coupling on the capacity of a multiple-input multiple-output (MIMO) antenna system is demonstrated. No direct relation between the envelope correlation and the actual location and orientation of the antennas is found. Even though being essential for high MIMO...... capacity, configurations with the lowest envelope correlations are not necessarily the most suitable for a MIMO system. A certain bandwidth is required as well. Three planar inverted F-antennas (PIFA) located on the same 40 mm x 100 mm ground plane. The antennas that haves a resonant frequency of 1.8 GHz...

  3. Analysis and Evaluation of Performance Gains and Tradeoffs for Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Saba Qasim Jabbar

    2016-09-01

    Full Text Available Massive MIMO technique offers significant performance gains for the future of wireless communications via improving the spectral efficiency, energy efficiency and the channel quality with simple linear processing such as maximum-ratio transmission (MRT or zero-forcing (ZF by providing each user a large degree of freedom. In this paper, the system performance gains are studied in a multi-cell downlink massive MIMO system under the main considerations such as perfect channel estimation, imperfect channel estimation and the effect of interference among cells due to pilot sequences contamination. Then, mathematical expressions are derived for these gains i.e., spatial multiplexing gain, array gain and spatial diversity gain. After that, essential tradeoffs among these gains are considered under the effect of non-orthogonal interference, these tradeoffs are: spatial diversity gain vs. spatial multiplexing gain and array gain vs. spatial multiplexing gain. Simulation results show that the unbounded number of base station antennas boosts the array gain through concentrating the energy to spatial directions where users are sited, hence diminishing loss in array gain due to pilot contamination. The simulation results reveal also that massive MIMO strengthens the spatial multiplexing gain through increasing the number of served users via the same system resources in spite the effect of inter-cell interference. Finally, the spatial diversity gain is measured in term of outage probability and the simulation results show that raising the number of antennas will improve the outage probability. Meanwhile increasing the number of served users will lead to degrade the outage probability per user due to non-orthogonal interference from other cells.

  4. Optimization of MIMO Systems Capacity Using Large Random Matrix Methods

    Directory of Open Access Journals (Sweden)

    Philippe Loubaton

    2012-11-01

    Full Text Available This paper provides a comprehensive introduction of large random matrix methods for input covariance matrix optimization of mutual information of MIMO systems. It is first recalled informally how large system approximations of mutual information can be derived. Then, the optimization of the approximations is discussed, and important methodological points that are not necessarily covered by the existing literature are addressed, including the strict concavity of the approximation, the structure of the argument of its maximum, the accuracy of the large system approach with regard to the number of antennas, or the justification of iterative water-filling optimization algorithms. While the existing papers have developed methods adapted to a specific model, this contribution tries to provide a unified view of the large system approximation approach.

  5. Impact of Mutual Coupling and Polarization of Antennas on BER Performances of Spatial Multiplexing MIMO Systems

    Directory of Open Access Journals (Sweden)

    Jianfeng Zheng

    2012-01-01

    Full Text Available This paper is aimed at studying the impacts of mutual coupling, matching networks, and polarization of antennas on performances of Multiple-Input Multiple-Output (MIMO systems employing Spatial Multiplexing (SM. In particular, the uncoded average Bit Error Rate (BER of MIMO systems is investigated. An accurate signal analysis framework based on circuit network parameters is presented to describe the transmit/receive characteristics of the matched/unmatched antenna array. The studied arrays consist of matched/unmatched compact copolarization and polarization diversity antenna array. Monte-Carlo numerical simulations are used to study the BER performances of the SM MIMO systems using maximum-likelihood and/or zero-forcing detection schemes. The simulation results demonstrate that the use of matching networks can improve the BER performance of SM MIMO systems significantly, and the BER performance deterioration due to antenna orientation randomness can be compensated by use of polarization diversity antenna arrays.

  6. 3D Massive MIMO Systems: Channel Modeling and Performance Analysis

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-03-01

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. More recently, the trend is to enhance the system performance by exploiting the channel\\'s degrees of freedom in the elevation through the dynamic adaptation of the vertical antenna beam pattern. This necessitates the derivation and characterization of three-dimensional (3D) channels. Over the years, channel models have evolved to address the challenges of wireless communication technologies. In parallel to theoretical studies on channel modeling, many standardized channel models like COST-based models, 3GPP SCM, WINNER, ITU have emerged that act as references for industries and telecommunication companies to assess system-level and link-level performances of advanced signal processing techniques over real-like channels. Given the existing channels are only two dimensional (2D) in nature; a large effort in channel modeling is needed to study the impact of the channel component in the elevation direction. The first part of this work sheds light on the current 3GPP activity around 3D channel modeling and beamforming, an aspect that to our knowledge has not been extensively covered by a research publication. The standardized MIMO channel model is presented, that incorporates both the propagation effects of the environment and the radio effects of the antennas. In order to facilitate future studies on the use of 3D beamforming, the main features of the proposed 3D channel model are discussed. A brief overview of the future 3GPP 3D channel model being outlined for the next generation of wireless networks is also provided. In the subsequent part of this work, we present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution of the channel matrix consistent with the prior information on the angles of departure and

  7. Spectral Subtraction Approach for Interference Reduction of MIMO Channel Wireless Systems

    Directory of Open Access Journals (Sweden)

    Tomohiro Ono

    2005-08-01

    Full Text Available In this paper, a generalized spectral subtraction approach for reducing additive impulsive noise, narrowband signals, white Gaussian noise and DS-CDMA interferences in MIMO channel DS-CDMA wireless communication systems is investigated. The interference noise reduction or suppression is essential problem in wireless mobile communication systems to improve the quality of communication. The spectrum subtraction scheme is applied to the interference noise reduction problems for noisy MIMO channel systems. The interferences in space and time domain signals can effectively be suppressed by selecting threshold values, and the computational load with the FFT is not large. Further, the fading effects of channel are compensated by spectral modification with the spectral subtraction process. In the simulations, the effectiveness of the proposed methods for the MIMO channel DS-CDMA is shown to compare with the conventional MIMO channel DS-CDMA.

  8. The analysis of MAI in large scale MIMO-CDMA system

    Science.gov (United States)

    Berceanu, Madalina-Georgiana; Voicu, Carmen; Halunga, Simona

    2016-12-01

    Recently, technological development imposed a rapid growth in the use of data carried by cellular services, which also implies the necessity of higher data rates and lower latency. To meet the users' demands, it was brought into discussion a series of new data processing techniques. In this paper, we approached the MIMO technology that uses multiple antennas at the receiver and transmitter ends. To study the performances obtained by this technology, we proposed a MIMO-CDMA system, where image transmission has been used instead of random data transmission to take benefit of a larger range of quality indicators. In the simulations we increased the number of antennas, we observed how the performances of the system are modified and, based on that, we were able to make a comparison between a conventional MIMO and a Large Scale MIMO system, in terms of BER and MSSIM index, which is a metric that compares the quality of the image before transmission with the received one.

  9. Covert Communication in MIMO-OFDM System Using Pseudo Random Location of Fake Subcarriers

    Directory of Open Access Journals (Sweden)

    Rizky Pratama Hudhajanto

    2016-08-01

    Full Text Available Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM is the most used wireless transmission scheme in the world. However, its security is the interesting problem to discuss if we want to use this scheme to transmit a sensitive data, such as in the military and commercial communication systems. In this paper, we propose a new method to increase the security of MIMO-OFDM system using the change of location of fake subcarrier. The fake subcarriers’ location is generated per packet of data using Pseudo Random sequence generator. The simulation results show that the proposed scheme does not decrease the performance of conventional MIMO-OFDM. The attacker or eavesdropper gets worse Bit Error Rate (BER than the legal receiver compared to the conventional MIMO-OFDM system.

  10. Robust Transceiver with Tomlinson-Harashima Precoding for Amplify-and-Forward MIMO Relaying Systems

    KAUST Repository

    Xing, Chengwen

    2012-09-01

    In this paper, robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplifyand-forward (AF) multiple-input multiple-output (MIMO) relaying systems is investigated. At source node, THP is adopted to mitigate the spatial intersymbol interference. However, due to its nonlinear nature, THP is very sensitive to channel estimationerrors. In order to reduce the effects of channel estimation errors, a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. With novel applications of elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the transceiver design problem reduces to a much simpler one with only scalar variables which can be efficiently solved. Finally, the performance advantage of the proposed robust design over non-robust design is demonstrated by simulation results.

  11. UE Antenna Properties and Their Influence on Massive MIMO System Performance

    OpenAIRE

    Bengtsson, Erik; Tufvesson, Fredrik; Edfors, Ove

    2015-01-01

    The use of large-scale antenna arrays can bring substantial improvements both in energy and spectral efficiency. This paper presents an initial study of user equipment (UE) antenna performance based on prototypes for a massive MIMO test bed. Most publications in the massive MIMO area have assumed isotropic or dipole antenna behavior at the UE side. It is, however, of greatest interest to evaluate the impact of realistic antenna implementations and user loading on such systems. Antennas are in...

  12. MimoSA: a system for minimotif annotation

    Directory of Open Access Journals (Sweden)

    Kundeti Vamsi

    2010-06-01

    Full Text Available Abstract Background Minimotifs are short peptide sequences within one protein, which are recognized by other proteins or molecules. While there are now several minimotif databases, they are incomplete. There are reports of many minimotifs in the primary literature, which have yet to be annotated, while entirely novel minimotifs continue to be published on a weekly basis. Our recently proposed function and sequence syntax for minimotifs enables us to build a general tool that will facilitate structured annotation and management of minimotif data from the biomedical literature. Results We have built the MimoSA application for minimotif annotation. The application supports management of the Minimotif Miner database, literature tracking, and annotation of new minimotifs. MimoSA enables the visualization, organization, selection and editing functions of minimotifs and their attributes in the MnM database. For the literature components, Mimosa provides paper status tracking and scoring of papers for annotation through a freely available machine learning approach, which is based on word correlation. The paper scoring algorithm is also available as a separate program, TextMine. Form-driven annotation of minimotif attributes enables entry of new minimotifs into the MnM database. Several supporting features increase the efficiency of annotation. The layered architecture of MimoSA allows for extensibility by separating the functions of paper scoring, minimotif visualization, and database management. MimoSA is readily adaptable to other annotation efforts that manually curate literature into a MySQL database. Conclusions MimoSA is an extensible application that facilitates minimotif annotation and integrates with the Minimotif Miner database. We have built MimoSA as an application that integrates dynamic abstract scoring with a high performance relational model of minimotif syntax. MimoSA's TextMine, an efficient paper-scoring algorithm, can be used to

  13. Energy-Efficient Power Allocation for MIMO-SVD Systems

    KAUST Repository

    Sboui, Lokman

    2017-05-24

    In this paper, we address the problem of energyefficient power allocation in MIMO systems. In fact, the widely adopted water-filling power allocation does not ensure the maximization of the energy efficiency (EE). Since the EE maximization is a non-convex problem, numerical methods based on fractional programming were introduced to find the optimal power solutions. In this paper, we present a novel and simple power allocation scheme based on the explicit expressions of the optimal power. We also present a low-complexity algorithm that complements the proposed scheme for low circuit-power regime. Furthermore, we analyze power-constrained and rate-constrained systems and present the corresponding optimal power control. In the numerical results, we show that the presented analytical expressions are accurate and that the algorithm converges within two iterations. We also show that as the number of antenna increases, the system becomes more energy-efficient. Also, a saturation of the EE is observed at high power budget and low minimal rate regimes.

  14. A System View on Iterative MIMO Detection: Dynamic Sphere Detection versus Fixed Effort List Detection

    Directory of Open Access Journals (Sweden)

    Christina Gimmler-Dumont

    2012-01-01

    reliability information is fed back from the channel decoder to the MIMO detector. In this paper, we derive a basic framework to compare different soft-input soft-output MIMO detectors in open- and closed-loop systems. Within this framework, we analyze a depth-first sphere detector and a breadth-first fixed effort detector for different application scenarios and their effects on area and energy efficiency on the whole system. We present all system components under open- and closed-loop system aspects and determine the overall implementation cost for changing an open-loop system in a closed-loop system.

  15. Compensation for HPA nonlinearity and I/Q imbalance in MIMO beamforming systems

    KAUST Repository

    Qi, Jian; Aissa, Sonia

    2010-01-01

    In this paper, we investigate the effects of high-power amplifier (HPA) nonlinearity and in-phase and quadrature-phase (I/Q) imbalance on the performance of multiple-input multiple-output (MIMO) transmit beamforming (TB) systems. Specifically, we propose a compensation method for HPA nonlinearity and I/Q imbalance together in MIMO TB systems. The performance of the MIMO TB system under study is evaluated in terms of the average symbol error probability (SEP) and system capacity, considering transmission over uncorrelated frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, such as the HPA parameters, image-leakage ratio, numbers of transmit and receive antennas, length of pilot symbols, and modulation order of phase-shift keying (PSK), on performance. © 2010 IEEE.

  16. Compensation for HPA nonlinearity and I/Q imbalance in MIMO beamforming systems

    KAUST Repository

    Qi, Jian

    2010-10-01

    In this paper, we investigate the effects of high-power amplifier (HPA) nonlinearity and in-phase and quadrature-phase (I/Q) imbalance on the performance of multiple-input multiple-output (MIMO) transmit beamforming (TB) systems. Specifically, we propose a compensation method for HPA nonlinearity and I/Q imbalance together in MIMO TB systems. The performance of the MIMO TB system under study is evaluated in terms of the average symbol error probability (SEP) and system capacity, considering transmission over uncorrelated frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, such as the HPA parameters, image-leakage ratio, numbers of transmit and receive antennas, length of pilot symbols, and modulation order of phase-shift keying (PSK), on performance. © 2010 IEEE.

  17. Two-Dimensional DOA Estimation Using Arbitrary Arrays for Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Alban Doumtsop Lonkeng

    2017-01-01

    Full Text Available With the quick advancement of wireless communication networks, the need for massive multiple-input-multiple-output (MIMO to offer adequate network capacity has turned out to be apparent. As a portion of array signal processing, direction-of-arrival (DOA estimation is of indispensable significance to acquire directional data of sources and to empower the 3D beamforming. In this paper, the performance of DOA estimation for massive MIMO systems is analyzed and compared using a low-complexity algorithm. To be exact, the 2D Fourier domain line search (FDLS MUSIC algorithm is studied to mutually estimate elevation and azimuth angle, and arbitrary array geometry is utilized to represent massive MIMO systems. To avoid the computational burden in estimating the data covariance matrix and its eigenvalue decomposition (EVD due to the large-scale sensors involved in massive MIMO systems, the reduced-dimension data matrix is applied on the signals received by the array. The performance is examined and contrasted with the 2D MUSIC algorithm for different types of antenna configuration. Finally, the array resolution is selected to investigate the performance of elevation and azimuth estimation. The effectiveness and advantage of the proposed technique have been proven by detailed simulations for different types of MIMO array configuration.

  18. MMSE-NP-RISIC-Based Channel Equalization for MIMO-SC-FDE Troposcatter Communication Systems

    Directory of Open Access Journals (Sweden)

    Zedong Xie

    2016-01-01

    Full Text Available The impact of intersymbol interference (ISI on single-carrier frequency-domain equalization with multiple input multiple output (MIMO-SC-FDE troposcatter communication systems is severe. Most of the channel equalization methods fail to solve it completely. In this paper, given the disadvantages of the noise-predictive (NP MMSE-based and the residual intersymbol interference cancellation (RISIC equalization in the single input single output (SISO system, we focus on the combination of both equalization schemes mentioned above. After extending both of them into MIMO system for the first time, we introduce a novel MMSE-NP-RISIC equalization method for MIMO-SC-FDE troposcatter communication systems. Analysis and simulation results validate the performance of the proposed method in time-varying frequency-selective troposcatter channel at an acceptable computational complexity cost.

  19. Diversity and MIMO Performance Evaluation of Common Phase Center Multi Element Antenna Systems

    Directory of Open Access Journals (Sweden)

    V. Papamichael

    2008-06-01

    Full Text Available The diversity and Multiple Input Multiple Output (MIMO performance provided by common phase center multi element antenna (CPCMEA systems is evaluated using two practical methods which make use of the realized active element antenna patterns. These patterns include both the impact of the mutual coupling and the mismatch power loss at antenna ports. As a case study, two and four printed Inverted F Antenna (IFA systems are evaluated by means of Effective Diversity Gain (EDG and Capacity (C. EDG is measured in terms of the signal-to-noise ratio (SNR enhancement at a specific outage probability and in terms of the SNR reduction for achieving a desired average bit error rate (BER. The concept of receive antenna selection in MIMO systems is also investigated and the simulation results show a 43% improvement in the 1% outage C of a reconfigurable 2x2 MIMO system over a fixed 2x2 one.

  20. Low Complexity Precoder and Receiver Design for Massive MIMO Systems: A Large System Analysis using Random Matrix Theory

    KAUST Repository

    Sifaou, Houssem

    2016-05-01

    Massive MIMO systems are shown to be a promising technology for next generations of wireless communication networks. The realization of the attractive merits promised by massive MIMO systems requires advanced linear precoding and receiving techniques in order to mitigate the interference in downlink and uplink transmissions. This work considers the precoder and receiver design in massive MIMO systems. We first consider the design of the linear precoder and receiver that maximize the minimum signal-to-interference-plus-noise ratio (SINR) subject to a given power constraint. The analysis is carried out under the asymptotic regime in which the number of the BS antennas and that of the users grow large with a bounded ratio. This allows us to leverage tools from random matrix theory in order to approximate the parameters of the optimal linear precoder and receiver by their deterministic approximations. Such a result is of valuable practical interest, as it provides a handier way to implement the optimal precoder and receiver. To reduce further the complexity, we propose to apply the truncated polynomial expansion (TPE) concept on a per-user basis to approximate the inverse of large matrices that appear on the expressions of the optimal linear transceivers. Using tools from random matrix theory, we determine deterministic approximations of the SINR and the transmit power in the asymptotic regime. Then, the optimal per-user weight coe cients that solve the max-min SINR problem are derived. The simulation results show that the proposed precoder and receiver provide very close to optimal performance while reducing signi cantly the computational complexity. As a second part of this work, the TPE technique in a per-user basis is applied to the optimal linear precoding that minimizes the transmit power while satisfying a set of target SINR constraints. Due to the emerging research eld of green cellular networks, such a problem is receiving increasing interest nowadays. Closed

  1. Power efficient low complexity precoding for massive MIMO systems

    KAUST Repository

    Sifaou, Houssem

    2014-12-01

    This work aims at designing a low-complexity precoding technique in the downlink of a large-scale multiple-input multiple-output (MIMO) system in which the base station (BS) is equipped with M antennas to serve K single-antenna user equipments. This is motivated by the high computational complexity required by the widely used zero-forcing or regularized zero-forcing precoding techniques, especially when K grows large. To reduce the computational burden, we adopt a precoding technique based on truncated polynomial expansion (TPE) and make use of the asymptotic analysis to compute the deterministic equivalents of its corresponding signal-to-interference-plus-noise ratios (SINRs) and transmit power. The asymptotic analysis is conducted in the regime in which M and K tend to infinity with the same pace under the assumption that imperfect channel state information is available at the BS. The results are then used to compute the TPE weights that minimize the asymptotic transmit power while meeting a set of target SINR constraints. Numerical simulations are used to validate the theoretical analysis. © 2014 IEEE.

  2. Comparison of Semidefinite Relaxation Detectors for High-Order Modulation MIMO Systems

    Directory of Open Access Journals (Sweden)

    Z. Y. Shao

    2014-01-01

    Full Text Available Multiple-input multiple-output (MIMO system is considered to be one of the key technologies of LTE since it achieves requirements of high throughput and spectral efficiency. The semidefinite relaxation (SDR detection for MIMO systems is an attractive alternative to the optimum maximum likelihood (ML decoding because it is very computationally efficient. We propose a new SDR detector for 256-QAM MIMO system and compare its performance with two other SDR detectors, namely, BC-SDR detector and VA-SDR detector. The tightness and complexity of these three SDR detectors are analyzed. Both theoretical analysis and simulation results demonstrate that the proposed SDR can provide the best BLER performance among the three detectors, while the BC-SDR detector and the VA-SDR detector provide identical BLER performance. Moreover, the BC-SDR has the lowest computational complexity and the VA-SDR has the highest computational complexity, while the proposed SDR is in between.

  3. A novel mirror diversity receiver for indoor MIMO visible light communication systems

    KAUST Repository

    Park, Kihong

    2016-12-24

    In this paper, we propose and study a non-imaging receiver design reducing the correlation of channel matrix for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems. Contrary to previous works, our proposed mirror diversity receiver (MDR) not only blocks the reception of light on one specific direction but also improves the channel gain on the other direction by receiving the light reflected by a mirror deployed between the photodetectors. We analyze the channel capacity and optimal height of mirror in terms of maximum channel capacity for a 2 × 2 MIMO-VLC system in a 2-dimensional geometric model. We prove that this constructive and destructive effects in channel matrix resulting from our proposed MDR are more beneficial to obtain well-conditioned channel matrix which is suitable for implementing spatial-multiplexing MIMO-VLC systems in order to support high data rate.

  4. On the BER and capacity analysis of MIMO MRC systems with channel estimation error

    KAUST Repository

    Yang, Liang

    2011-10-01

    In this paper, we investigate the effect of channel estimation error on the capacity and bit-error rate (BER) of a multiple-input multiple-output (MIMO) transmit maximal ratio transmission (MRT) and receive maximal ratio combining (MRC) systems over uncorrelated Rayleigh fading channels. We first derive the ergodic (average) capacity expressions for such systems when power adaptation is applied at the transmitter. The exact capacity expression for the uniform power allocation case is also presented. Furthermore, to investigate the diversity order of MIMO MRT-MRC scheme, we derive the BER performance under a uniform power allocation policy. We also present an asymptotic BER performance analysis for the MIMO MRT-MRC system with multiuser diversity. The numerical results are given to illustrate the sensitivity of the main performance to the channel estimation error and the tightness of the approximate cutoff value. © 2011 IEEE.

  5. Reduced complexity and latency for a massive MIMO system using a parallel detection algorithm

    Directory of Open Access Journals (Sweden)

    Shoichi Higuchi

    2017-09-01

    Full Text Available In recent years, massive MIMO systems have been widely researched to realize high-speed data transmission. Since massive MIMO systems use a large number of antennas, these systems require huge complexity to detect the signal. In this paper, we propose a novel detection method for massive MIMO using parallel detection with maximum likelihood detection with QR decomposition and M-algorithm (QRM-MLD to reduce the complexity and latency. The proposed scheme obtains an R matrix after permutation of an H matrix and QR decomposition. The R matrix is also eliminated using a Gauss–Jordan elimination method. By using a modified R matrix, the proposed method can detect the transmitted signal using parallel detection. From the simulation results, the proposed scheme can achieve a reduced complexity and latency with a little degradation of the bit error rate (BER performance compared with the conventional method.

  6. On the transfer matrix of a MIMO system

    DEFF Research Database (Denmark)

    Bentosela, Francois; Cornean, Horia; Fleury, Bernard Henri

    2011-01-01

    We develop a deterministic ab initio model for the input–output relationship of a multiple-input multiple-output (MIMO) wireless channel, starting from the Maxwell equations combined with Ohm's law. The main technical tools are scattering and geometric perturbation theories. The derived relations...

  7. Capacity of fully correlated MIMO system using character expansion of groups

    Directory of Open Access Journals (Sweden)

    Ejaz Khan

    2005-09-01

    Full Text Available It is well known that the use of antenna arrays at both sides of communication link can result in high channel capacities provided that the propagation medium is rich scattering. In most previous works presented on MIMO wireless structures, Rayleigh fading conditions were considered. In this work, the capacity of MIMO systems under fully correlated (i.e., correlations between rows and columns of channel matrix fading is considered. We use replica method and character expansions to calculate the capacity of correlated MIMO channel in closed form. In our calculations, it is assumed that the receiver has perfect channel state information (CSI but no such information is available at the transmitter.

  8. Suppression of EM Fields using Active Control Algorithms and MIMO Antenna System

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2004-09-01

    Full Text Available Active methods for attenuating acoustic pressure fields have beensuccessfully used in many applications. In this paper we investigatesome of these active control methods in combination with a MIMO antennasystem in order to assess their validity and performance when appliedto electromagnetic fields. The application that we evaluated in thispaper is a model of a mobile phone equipped with one ordinarytransmitting antenna and two actuator-antennas which purpose is toreduce the electromagnetic field at a specific area in space (e.g. atthe human head. Simulation results show the promise of using theadaptive active control algorithms and MIMO system to attenuate theelectromagnetic field power density.

  9. Multi-user MIMO and carrier aggregation in 4G systems

    DEFF Research Database (Denmark)

    Cattoni, Andrea Fabio; Nguyen, Hung Tuan; Duplicy, Jonathan

    2012-01-01

    The market success of broadband multimediaenabled devices such as smart phones, tablets, and laptops is increasing the demand for wireless data capacity in mobile cellular systems. In order to meet such requirements, the introduction of advanced techniques for increasing the efficiency in spectrum...... usage was required. Multi User -Multiple Input Multiple Output (MU-MIMO) and Carrier Aggregation (CA) are two important techniques addressed by 3GPP for LTE and LTE-Advanced. The aim of the EU FP7 project on ”Spectrum Aggregation and Multiuser-MIMO: real-World Impact” (SAMURAI) is to investigate...

  10. Study on a resource allocation scheme in multi-hop MIMO-OFDM systems over lognormal-rayleigh compound channels

    Directory of Open Access Journals (Sweden)

    LIU Jun

    2015-10-01

    Full Text Available For new generation wireless communication networks,this paper studies the optimization of the capacity and end-to-end throughput of the MIMO-OFDM based multi-hop relay systems.A water-filling power allocation method is proposed to improve the channel capacity and the throughput of the MIMO-OFDM system based multi-hop relay system in the Lognormal-Rayleigh shadowing compound channels.Simulations on the capacity and throughput show that the water-filling algorithm can improve the system throughput effectively in the MIMO-OFDM multi-hop relay system.

  11. Precoding Design for Single-RF Massive MIMO Systems: A Large System Analysis

    KAUST Repository

    Sifaou, Houssem

    2016-08-26

    This work revisits a recently proposed precoding design for massive multiple-input multiple output (MIMO) systems that is based on the use of an instantaneous total power constraint. The main advantages of this technique lie in its suitability to the recently proposed single radio frequency (RF) MIMO transmitter coupled with a very-high power efficiency. Such features have been proven using simulations for uncorrelated channels. Based on tools from random matrix theory, we propose in this work to analyze the performance of this precoder for more involved channels accounting for spatial correlation. The obtained expressions are then optimized in order to maximize the signalto- interference-plus-noise ratio (SINR). Simulation results are provided in order to illustrate the performance of the optimized precoder in terms of peak-to-average power ratio (PAPR) and signal-to-interference-plus-noise ratio (SINR). © 2012 IEEE.

  12. System Level Evaluation of Innovative Coded MIMO-OFDM Systems for Broadcasting Digital TV

    Directory of Open Access Journals (Sweden)

    Y. Nasser

    2008-01-01

    Full Text Available Single-frequency networks (SFNs for broadcasting digital TV is a topic of theoretical and practical interest for future broadcasting systems. Although progress has been made in the characterization of its description, there are still considerable gaps in its deployment with MIMO technique. The contribution of this paper is multifold. First, we investigate the possibility of applying a space-time (ST encoder between the antennas of two sites in SFN. Then, we introduce a 3D space-time-space block code for future terrestrial digital TV in SFN architecture. The proposed 3D code is based on a double-layer structure designed for intercell and intracell space time-coded transmissions. Eventually, we propose to adapt a technique called effective exponential signal-to-noise ratio (SNR mapping (EESM to predict the bit error rate (BER at the output of the channel decoder in the MIMO systems. The EESM technique as well as the simulations results will be used to doubly check the efficiency of our 3D code. This efficiency is obtained for equal and unequal received powers whatever is the location of the receiver by adequately combining ST codes. The 3D code is then a very promising candidate for SFN architecture with MIMO transmission.

  13. On the BER and capacity analysis of MIMO MRC systems with channel estimation error

    KAUST Repository

    Yang, Liang; Alouini, Mohamed-Slim

    2011-01-01

    In this paper, we investigate the effect of channel estimation error on the capacity and bit-error rate (BER) of a multiple-input multiple-output (MIMO) transmit maximal ratio transmission (MRT) and receive maximal ratio combining (MRC) systems over

  14. On the throughput of cognitive radio MIMO systems assisted with UAV relays

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2017-01-01

    We analyze the achievable rates of a cognitive radio MIMO system assisted by an unmanned aerial vehicle (UAV) relay. The primary user (PU) and the secondary user (SU) aim to communicate to the closest primary base station (BS) via a multi

  15. Phase Noise Effect on MIMO-OFDM Systems with Common and Independent Oscillators

    DEFF Research Database (Denmark)

    Chen, Xiaoming; Wang, Hua; Fan, Wei

    2018-01-01

    In this paper, the effects of oscillator phase noises (PNs) on multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems are studied. It is shown that PNs of common oscillators at the transmitter and at the receiver have the same influence on the performance ...

  16. Low complexity variational bayes iterative reviver for MIMO-OFDM systems

    DEFF Research Database (Denmark)

    Xiong, Chunlin; Wang, Hua; Zhang, Xiaoying

    2009-01-01

    A low complexity iterative receiver is proposed in this paper for MIMO-OFDM systems in time-varying multi-path channel based on the variational Bayes (VB) method. According to the VB method, the estimation algorithms of the signal distribution and the channel distribution are derived for the rece...

  17. Sum-rate performance of large centralized and distributed MU-MIMO systems in indoor WLAN

    NARCIS (Netherlands)

    Wang, Q.; Debbarma, D.; Lo, A.; Niemegeers, I.; Heemstra, Sonia

    2015-01-01

    Large MIMO systems are recognized as an effective technique for increasing the spectral and energy efficiency of wireless networks. The attractiveness of this technique for WLAN is that it can be an alternative approach to cell densification for providing high data rate wireless access. Here we

  18. A best-first tree-searching approach for ML decoding in MIMO system

    KAUST Repository

    Shen, Chung-An; Eltawil, Ahmed M.; Mondal, Sudip; Salama, Khaled N.

    2012-01-01

    In MIMO communication systems maximum-likelihood (ML) decoding can be formulated as a tree-searching problem. This paper presents a tree-searching approach that combines the features of classical depth-first and breadth-first approaches to achieve

  19. A robust and scalable neuromorphic communication system by combining synaptic time multiplexing and MIMO-OFDM.

    Science.gov (United States)

    Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna

    2014-03-01

    This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware.

  20. Polynomial expansion of the precoder for power minimization in large-scale MIMO systems

    KAUST Repository

    Sifaou, Houssem

    2016-07-26

    This work focuses on the downlink of a single-cell large-scale MIMO system in which the base station equipped with M antennas serves K single-antenna users. In particular, we are interested in reducing the implementation complexity of the optimal linear precoder (OLP) that minimizes the total power consumption while ensuring target user rates. As most precoding schemes, a major difficulty towards the implementation of OLP is that it requires fast inversions of large matrices at every new channel realizations. To overcome this issue, we aim at designing a linear precoding scheme providing the same performance of OLP but with lower complexity. This is achieved by applying the truncated polynomial expansion (TPE) concept on a per-user basis. To get a further leap in complexity reduction and allow for closed-form expressions of the per-user weighting coefficients, we resort to the asymptotic regime in which M and K grow large with a bounded ratio. Numerical results are used to show that the proposed TPE precoding scheme achieves the same performance of OLP with a significantly lower implementation complexity. © 2016 IEEE.

  1. Degree-of-Freedom Strengthened Cascade Array for DOD-DOA Estimation in MIMO Array Systems.

    Science.gov (United States)

    Yao, Bobin; Dong, Zhi; Zhang, Weile; Wang, Wei; Wu, Qisheng

    2018-05-14

    In spatial spectrum estimation, difference co-array can provide extra degrees-of-freedom (DOFs) for promoting parameter identifiability and parameter estimation accuracy. For the sake of acquiring as more DOFs as possible with a given number of physical sensors, we herein design a novel sensor array geometry named cascade array. This structure is generated by systematically connecting a uniform linear array (ULA) and a non-uniform linear array, and can provide more DOFs than some exist array structures but less than the upper-bound indicated by minimum redundant array (MRA). We further apply this cascade array into multiple input multiple output (MIMO) array systems, and propose a novel joint direction of departure (DOD) and direction of arrival (DOA) estimation algorithm, which is based on a reduced-dimensional weighted subspace fitting technique. The algorithm is angle auto-paired and computationally efficient. Theoretical analysis and numerical simulations prove the advantages and effectiveness of the proposed array structure and the related algorithm.

  2. Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training with Memory

    OpenAIRE

    Choi, Junil; Love, David J.; Bidigare, Patrick

    2013-01-01

    The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standar...

  3. Precoding Design of MIMO Amplify-and-Forward Communication System With an Energy Harvesting Relay and Possibly Imperfect CSI

    KAUST Repository

    Benkhelifa, Fatma; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) in a Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication system where the relay is an energy harvesting (EH) node

  4. An Integrated 4-element Slot-Based MIMO and an UWB Sensing Antenna System for CR Platforms

    KAUST Repository

    Hussain, Rifaqat; Sharawi, Mohammad S.; Shamim, Atif

    2017-01-01

    This paper presents a novel integrated antenna system for cognitive radio (CR) applications. The design consists of a compact 4- element reconfigurable annular slot based multiple-input-multiple-output (MIMO) antenna system integrated within an ultra-wide-band (UWB) sensing antenna. All the antenna elements are planar in structure and designed on a single substrate (RO-4350) with dimensions 60×120×1.5 mm3. The frequency reconfigurable slot based MIMO antenna system is tuned over a wide frequency band from 1.77 GHz to 2.51 GHz while the UWB sensing antenna is covering from 0.75~7.65 GHz The proposed antenna system is suitable for CR enabled wireless devices. The envelope correlation coefficient (ECC) did not exceed 0.248 in the entire operating band of the MIMO antenna part. The maximum measured gain of the MIMO antenna is 3.2 dBi with maximum efficiency of 81%.

  5. A Novel Mirror-Aided Non-imaging Receiver for Indoor 2x2 MIMO Visible Light Communication Systems

    KAUST Repository

    Park, Kihong; Oubei, Hassan M.; Alheadary, Wael Ghazy; Ooi, Boon S.; Alouini, Mohamed-Slim

    2017-01-01

    Indoor visible light communication (VLC) systems are now possible because of advances in light emitting diode and laser diode technologies. These lighting technologies provide the foundation for multiple-input multiple-output (MIMO) data

  6. An Integrated 4-element Slot-Based MIMO and an UWB Sensing Antenna System for CR Platforms

    KAUST Repository

    Hussain, Rifaqat

    2017-12-08

    This paper presents a novel integrated antenna system for cognitive radio (CR) applications. The design consists of a compact 4- element reconfigurable annular slot based multiple-input-multiple-output (MIMO) antenna system integrated within an ultra-wide-band (UWB) sensing antenna. All the antenna elements are planar in structure and designed on a single substrate (RO-4350) with dimensions 60×120×1.5 mm3. The frequency reconfigurable slot based MIMO antenna system is tuned over a wide frequency band from 1.77 GHz to 2.51 GHz while the UWB sensing antenna is covering from 0.75~7.65 GHz The proposed antenna system is suitable for CR enabled wireless devices. The envelope correlation coefficient (ECC) did not exceed 0.248 in the entire operating band of the MIMO antenna part. The maximum measured gain of the MIMO antenna is 3.2 dBi with maximum efficiency of 81%.

  7. Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system.

    Science.gov (United States)

    He, Jiale; Li, Borui; Deng, Lei; Tang, Ming; Gan, Lin; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2016-06-13

    In this paper, the feasibility of space division multiplexing for optical wireless fronthaul systems is experimentally demonstrated by implementing high speed MIMO-OFDM/OQAM radio signals over 20km 7-core fiber and 0.4m wireless link. Moreover, the impact of optical inter-core crosstalk in multicore fibers on the proposed MIMO-OFDM/OQAM radio over fiber system is experimentally evaluated in both SISO and MIMO configurations for comparison. The experimental results show that the inter-core crosstalk tolerance of the proposed radio over fiber system can be relaxed to -10 dB by using the proposed MIMO-OFDM/OQAM processing. These results could guide high density multicore fiber design to support a large number of antenna modules and a higher density of radio-access points for potential applications in 5G cellular system.

  8. On the mutual information of 3D massive MIMO systems: An asymptotic approach

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-10-01

    Motivated by the recent interest in 3D beamforming to enhance system performance, we present an information-theoretic channel model for multiple-input multiple-output (MIMO) systems, that can support the elevation dimension. The principle of maximum entropy is used to determine the distribution of the channel matrix consistent with the prior angular information. We provide an explicit expression for the cumulative density function (CDF) of the mutual information in the large number of transmit antennas and paths regime. The derived Gaussian approximation is quite accurate even for realistic system dimensions. The simulation results study the achievable performance through the meticulous selection of the transmit antenna downtilt angles. The results are directly applicable to the analysis of 5G 3D massive MIMO systems. © 2015 IEEE.

  9. Achievable Rates of UAV-Relayed Cooperative Cognitive Radio MIMO Systems

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2017-01-01

    We study the achievable rate of an uplink MIMO cognitive radio system where the primary user (PU) and the secondary user (SU) aim to communicate to the closest primary base station (BS) via a multi-access channel through the same unmanned aerial vehicle (UAV) relay. The SU message is then forwarded from the primary BS to the secondary network with a certain incentive reward as a part of the cooperation protocol between both networks. A special linear precoding scheme is proposed to enable the SU to exploit the PU free eigenmodes. We analyze two scenarios in which the UAV relay gain matrix is either fixed or optimized. We derive the optimal power allocation that maximizes the achievable rate of the SU respecting power budget, interference, and relay power constraints. Numerical results highlight the cognitive rate gain of our proposed scheme with respect to various problem parameters. We also highlight the effect of UAV altitude on the SU and PU rates. Finally, when the relay matrix is optimized, we show that the PU rate is remarkably enhanced and that the SU rate is only improved at high power regime.

  10. Achievable Rates of UAV-Relayed Cooperative Cognitive Radio MIMO Systems

    KAUST Repository

    Sboui, Lokman

    2017-04-19

    We study the achievable rate of an uplink MIMO cognitive radio system where the primary user (PU) and the secondary user (SU) aim to communicate to the closest primary base station (BS) via a multi-access channel through the same unmanned aerial vehicle (UAV) relay. The SU message is then forwarded from the primary BS to the secondary network with a certain incentive reward as a part of the cooperation protocol between both networks. A special linear precoding scheme is proposed to enable the SU to exploit the PU free eigenmodes. We analyze two scenarios in which the UAV relay gain matrix is either fixed or optimized. We derive the optimal power allocation that maximizes the achievable rate of the SU respecting power budget, interference, and relay power constraints. Numerical results highlight the cognitive rate gain of our proposed scheme with respect to various problem parameters. We also highlight the effect of UAV altitude on the SU and PU rates. Finally, when the relay matrix is optimized, we show that the PU rate is remarkably enhanced and that the SU rate is only improved at high power regime.

  11. On the throughput of cognitive radio MIMO systems assisted with UAV relays

    KAUST Repository

    Sboui, Lokman

    2017-07-20

    We analyze the achievable rates of a cognitive radio MIMO system assisted by an unmanned aerial vehicle (UAV) relay. The primary user (PU) and the secondary user (SU) aim to communicate to the closest primary base station (BS) via a multi-access channel through the same UAV relay. The SU message is then forwarded from the primary BS to the secondary network with a certain incentive reward as a part of the cooperation protocol between both networks. We propose a special linear precoding scheme to enable the SU to exploit the PU free eigenmodes. We, also, present the expression of the power maximizing both primary and secondary rates under power budget, relay power, and interference constraints. In the numerical results, we evaluate the PU and SU rates of proposed scheme with respect to various problem parameters. We also highlight the effect of the UAV altitude on the SU and PU rates. Finally, we show that the relay matrix variation affects both rates that reach their peaks at different values of the matrix.

  12. A Practical, Hardware Friendly MMSE Detector for MIMO-OFDM-Based Systems

    Directory of Open Access Journals (Sweden)

    Babak Daneshrad

    2008-04-01

    Full Text Available Design and implementation of a highly optimized MIMO (multiple-input multiple-output detector requires cooptimization of the algorithm with the underlying hardware architecture. Special attention must be paid to application requirements such as throughput, latency, and resource constraints. In this work, we focus on a highly optimized matrix inversion free 4×4 MMSE (minimum mean square error MIMO detector implementation. The work has resulted in a real-time field-programmable gate array-based implementation (FPGA- on a Xilinx Virtex-2 6000 using only 9003 logic slices, 66 multipliers, and 24 Block RAMs (less than 33% of the overall resources of this part. The design delivers over 420 Mbps sustained throughput with a small 2.77-microsecond latency. The designed 4×4 linear MMSE MIMO detector is capable of complying with the proposed IEEE 802.11n standard.

  13. REVIEW OF WIRELESS MIMO CHANNEL MODELS

    African Journals Online (AJOL)

    user

    MIMO wireless system, the transmitted signal interacts ... delay spread information, power delay profile, angle of arrival and ... With the advent of the MIMO wireless systems, there arose a ..... associated with channel transmission and reception.

  14. A virtually blind spectrum efficient channel estimation technique for mimo-ofdm system

    International Nuclear Information System (INIS)

    Ullah, M.O.

    2015-01-01

    Multiple-Input Multiple-Output antennas in conjunction with Orthogonal Frequency-Division Multiplexing is a dominant air interface for 4G and 5G cellular communication systems. Additionally, MIMO- OFDM based air interface is the foundation for latest wireless Local Area Networks, wireless Personal Area Networks, and digital multimedia broadcasting. Whether it is a single antenna or a multi-antenna OFDM system, accurate channel estimation is required for coherent reception. Training-based channel estimation methods require multiple pilot symbols and therefore waste a significant portion of channel bandwidth. This paper describes a virtually blind spectrum efficient channel estimation scheme for MIMO-OFDM systems which operates well below the Nyquist criterion. (author)

  15. Max-min SINR low complexity transceiver design for single cell massive MIMO

    KAUST Repository

    Sifaou, Houssem; Kammoun, Abla; Sanguinetti, Luca; Debbah, Mé rouane; Alouini, Mohamed-Slim

    2016-01-01

    This work focuses on large scale multi-user MIMO systems in which the base station (BS) outfitted with M antennas communicates with K single antenna user equipments (UEs). In particular, we aim at designing the linear precoder and receiver

  16. Analogue MIMO Detection

    Directory of Open Access Journals (Sweden)

    McNamara Darren

    2006-01-01

    Full Text Available In this contribution we propose an analogue receiver that can perform turbo detection in MIMO systems. We present the case for a receiver that is built from nonlinear analogue devices, which perform detection in a "free-flow" network (no notion of iterations. This contribution can be viewed as an extension of analogue turbo decoder concepts to include MIMO detection. These first analogue implementations report reductions of few orders of magnitude in the number of required transistors and in consumed energy, and the same order of improvement in processing speed. It is anticipated that such analogue MIMO decoder could bring about the same advantages, when compared to traditional digital implementations.

  17. MIMO Fading Emulator Development with FPGA and Its Application to Performance Evaluation of Mobile Radio Systems

    Directory of Open Access Journals (Sweden)

    Yoshio Karasawa

    2017-01-01

    Full Text Available We present four new developments for a multiple-input multiple-output (MIMO over-the-air measurement system based on our previous studies. The first two developments relate to the channel model for multipath environment generation. One is a further simplification of the circuit configuration without performance degradation by reducing the number of delay generation units, which dominate the performance limit when implementing the circuit on a field-programmable gate array (FPGA. The other is to realize spatial correlation characteristics among the input ports on the transmission side, whereas the previously proposed channel model did not consider this correlation. The third development involves the details of implementing the MIMO fading emulator on an FPGA as a two-stage scheme. The fourth is the demonstration of application examples of the developed system.

  18. On the Performance Evaluation of a MIMO-WCDMA Transmission Architecture for Building Management Systems.

    Science.gov (United States)

    Tsampasis, Eleftherios; Gkonis, Panagiotis K; Trakadas, Panagiotis; Zahariadis, Theodοre

    2018-01-08

    The goal of this study was to investigate the performance of a realistic wireless sensor nodes deployment in order to support modern building management systems (BMSs). A three-floor building orientation is taken into account, where each node is equipped with a multi-antenna system while a central base station (BS) collects and processes all received information. The BS is also equipped with multiple antennas; hence, a multiple input-multiple output (MIMO) system is formulated. Due to the multiple reflections during transmission in the inner of the building, a wideband code division multiple access (WCDMA) physical layer protocol has been considered, which has already been adopted for third-generation (3G) mobile networks. Results are presented for various MIMO orientations, where the mean transmission power per node is considered as an output metric for a specific signal-to-noise ratio (SNR) requirement and number of resolvable multipath components. In the first set of presented results, the effects of multiple access interference on overall transmission power are highlighted. As the number of mobile nodes per floor or the requested transmission rate increases, MIMO systems of a higher order should be deployed in order to maintain transmission power at adequate levels. In the second set of results, a comparison is performed among transmission in diversity combining and spatial multiplexing mode, which clearly indicate that the first case is the most appropriate solution for indoor communications.

  19. Reduced Complexity Detection in MIMO Systems with SC-FDE Modulations and Iterative DFE Receivers

    Directory of Open Access Journals (Sweden)

    Filipe Casal Ribeiro

    2018-04-01

    Full Text Available This paper considers a Multiple-Input Multiple-Output (MIMO system with P transmitting and R receiving antennas and different overall noise characteristics on the different receiver antennas (e.g., due to nonlinear effects at the receiver side. Each communication link employs a Single-Carrier with Frequency-Domain Equalization (SC-FDE modulation scheme, and the receiver is based on robust iterative frequency-domain multi-user detectors based on the Iterative Block Decision Feedback Equalization (IB-DFE concept. We present low complexity efficient receivers that can employ low resolution Analog-to-Digital Converters (ADCs and require the inversion of matrices with reduced dimension when the number of receive antennas is larger than the number of independent data streams. The advantages of the proposed techniques are particularly high for highly unbalanced MIMO systems, such as in the uplink of Base Station (BS cooperation systems that aim for Single-Frequency Network (SFN operation or massive MIMO systems with much more antennas at the receiver side.

  20. Efficient Bayesian Compressed Sensing-based Channel Estimation Techniques for Massive MIMO-OFDM Systems

    OpenAIRE

    Al-Salihi, Hayder Qahtan Kshash; Nakhai, Mohammad Reza

    2017-01-01

    Efficient and highly accurate channel state information (CSI) at the base station (BS) is essential to achieve the potential benefits of massive multiple input multiple output (MIMO) systems. However, the achievable accuracy that is attainable is limited in practice due to the problem of pilot contamination. It has recently been shown that compressed sensing (CS) techniques can address the pilot contamination problem. However, CS-based channel estimation requires prior knowledge of channel sp...

  1. Phase-Shift Cyclic-Delay Diversity for MIMO OFDM Systems

    Directory of Open Access Journals (Sweden)

    Young-Han Nam

    2010-01-01

    Full Text Available Phase-shift cyclic-delay diversity (PS CDD scheme and space-frequency-block-code (SFBC PS CDD are developed for multiple-input-multiple-output (MIMO orthogonal frequency division multiplexing (OFDM systems. The proposed PS CDD scheme preserves the diversity advantage of traditional CDD in uncorrelated multiantenna channels, and furthermore removes frequency-selective nulling problem of the traditional CDD in correlated multiantenna channels.

  2. A MU-MIMO CQI estimation method for MU-MIMO UEs in LTE systems

    DEFF Research Database (Denmark)

    Nguyen, Hung Tuan; Kovacs, Istvan

    2012-01-01

    Abstract—This paper addresses a method to estimate the multi user channel quality indicator (CQI) from the reported rank 1 single user CQI in LTE systems. We investigate the relationship between the multi user CQI and the channel condition. Based on that, we propose an updating mechanism where th...

  3. A novel power and offset allocation method for spatial multiplexing MIMO Systems in optical wireless channels

    KAUST Repository

    Park, Kihong

    2011-12-01

    We consider optical wireless communication which can be utilized for illumination and communication by relying on lighting devices. Due to the limited bandwidth of optical sources, it is challenging to achieve high data rate in optical wireless systems. In order to obtain a multiplexing gain and high spectral efficiency, we design an optical multi-input multi-output (MIMO) system utilizing a singular value decomposition-based spatial multiplexing and adaptive modulation. We note that the conventional allocation method in radio frequency MIMO channels cannot be applied directly to the optical intensity channels. In this paper, we generalize the result of power allocation method in [1] for arbitrary number of transmit and receive antennas in optical wireless MIMO systems. Based on three constraints, namely, the nonnegativity, the aggregate optical power, and the bit error rate requirement, we propose a novel method to allocate the optical power, the offset value, and the modulation size for maximum sum rate. From some selected simulation results, we show that our proposed allocation method gives a better spectral efficiency than the method that allocates the optical power equally for each data stream. © 2011 IEEE.

  4. On the MIMO Capacity for Distributed System under Composite Rayleigh/Rician Fading and Shadowing

    Directory of Open Access Journals (Sweden)

    Santiago González-Aurioles

    2015-01-01

    Full Text Available Wireless channels are commonly affected by short-term fading and long-term fading (shadowing. The shadowing effects must be taken into account also when mobility is present in the wireless scenario. Using a composite fading model, the total channel capacity can be studied for a scenario with short-term Rayleigh fading along with shadowing. This work provides quantitative results for these kinds of scenarios with Rayleigh fading and shadowing, considering also multiple-input and multiple-output systems, which have not been previously reported. In addition, the channel capacity has been studied in depth in its relation with the shadowing level, signal to noise ratio, and the number of elements in the multiple-input and multiple-output system. Moreover, the channel performance with shadowing has been compared to the one without it. Furthermore, Rician model with shadowing is studied and its results are reported. In addition, correlated and experimental results are provided. It is identified that the distributed MIMO systems can benefit from shadowing in Rician channels. This advantage has not been reported previously. This type of fading is proposed for massive MIMO by others and our results open the door to emulate massive MIMO on a reverberation chamber.

  5. Distributed Channel Estimation and Pilot Contamination Analysis for Massive MIMO-OFDM Systems

    KAUST Repository

    Zaib, Alam

    2016-07-22

    By virtue of large antenna arrays, massive MIMO systems have a potential to yield higher spectral and energy efficiency in comparison with the conventional MIMO systems. This paper addresses uplink channel estimation in massive MIMO-OFDM systems with frequency selective channels. We propose an efficient distributed minimum mean square error (MMSE) algorithm that can achieve near optimal channel estimates at low complexity by exploiting the strong spatial correlation among antenna array elements. The proposed method involves solving a reduced dimensional MMSE problem at each antenna followed by a repetitive sharing of information through collaboration among neighboring array elements. To further enhance the channel estimates and/or reduce the number of reserved pilot tones, we propose a data-aided estimation technique that relies on finding a set of most reliable data carriers. Furthermore, we use stochastic geometry to quantify the pilot contamination, and in turn use this information to analyze the effect of pilot contamination on channel MSE. The simulation results validate our analysis and show near optimal performance of the proposed estimation algorithms.

  6. Energy Efficiency Analysis of Antenna Selection Techniques in Massive MIMO-OFDM System with Hardware Impairments

    Directory of Open Access Journals (Sweden)

    Anuj Singal

    2018-01-01

    Full Text Available In massive multiple-input multiple-output (M-MIMO systems, a large number of antennas increase system complexity as well as the cost of hardware. In this paper, we propose an M-MIMO-OFDM model using per-subcarrier antenna selection and bulk antenna selection schemes to mitigate these problems. Also, we derive a new uplink and downlink energy efficiency (EE equation for the M-MIMO-OFDM system by taking into consideration the antenna selection schemes, power scaling factor (g=0.25,  0.5, and a range of hardware impairments {κBS, κUEϵ (0, 0.052, 0.12}. In addition, we investigate a trend of EE by varying various parameters like number of base station antennas (BSAs, SNR, level of hardware impairments, total circuit power consumption, power optimization, antenna selection schemes, and power scaling factor in the proposed M-MIMO-OFDM model. The simulation results thus obtained show that the EE increases with increase in the value of SNR. Also, it increases abruptly up to 100 number of BSA. However, the increase in the EE is not significant in the range of 125 to 400 number of BSA. Further, the bulk antenna selection technique has comparatively more EE than the per-subcarrier antenna selection. Moreover, EE gaps between antenna selection schemes decrease with increase in the value of hardware impairments and power scaling factor. However, as the hardware degradation effect increases, the EE of the bulk antenna selection scheme suffers more degradation as compared to the Per-subcarrier antenna selection scheme. It has also been observed that EE performance is inversely proportional to the total circuit power consumption (λ+γ and it increases with the power optimization.

  7. Design and Implementation of a FPGA and DSP Based MIMO Radar Imaging System

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-06-01

    Full Text Available The work presented in this paper is aimed at the implementation of a real-time multiple-input multiple-output (MIMO imaging radar used for area surveillance. In this radar, the equivalent virtual array method and time-division technique are applied to make 16 virtual elements synthesized from the MIMO antenna array. The chirp signal generater is based on a combination of direct digital synthesizer (DDS and phase locked loop (PLL. A signal conditioning circuit is used to deal with the coupling effect within the array. The signal processing platform is based on an efficient field programmable gates array (FPGA and digital signal processor (DSP pipeline where a robust beamforming imaging algorithm is running on. The radar system was evaluated through a real field experiment. Imaging capability and real-time performance shown in the results demonstrate the practical feasibility of the implementation.

  8. A High-Speed and Low-Energy-Consumption Processor for SVD-MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Hiroki Iwaizumi

    2013-01-01

    Full Text Available A processor design for singular value decomposition (SVD and compression/decompression of feedback matrices, which are mandatory operations for SVD multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM systems, is proposed and evaluated. SVD-MIMO is a transmission method for suppressing multistream interference and improving communication quality by beamforming. An application specific instruction-set processor (ASIP architecture is adopted to achieve flexibility in terms of operations and matrix size. The proposed processor realizes a high-speed/low-power design and real-time processing by the parallelization of floating-point units (FPUs and arithmetic instructions specialized in complex matrix operations.

  9. Leakage based precoding for multi-user MIMO-OFDM systems

    KAUST Repository

    Sadek, Mirette

    2011-08-01

    In downlink multi-user multiple-input multiple-output (MIMO) transmissions, several precoding schemes have been proposed to decrease interference among users. Notable among these precoding schemes is one that uses the signal-to-leakage-plus-noise ratio (SLNR) as an optimization criterion. In this paper, leveraging the efficiency of the SLNR optimization, we generalize this precoding scheme to MIMO orthogonal frequency division multiplexing (OFDM) multi-user systems where the OFDM is used to overcome the inter-symbol- interference (ISI) introduced by multipath channels. We also introduce a channel compensation technique that reconstructs the channel at the transmitter for every time instant given a significantly lower channel feedback rate by the receiver. © 2006 IEEE.

  10. A multiband dual-standard MIMO antenna system based on monopoles (4G) and connected slots (5G) for future smart phones

    KAUST Repository

    Ikram, M.

    2018-04-24

    In this work, a 4G/5G multiple-input multiple-output (MIMO) antenna system is presented for smart phone applications. The 4G antenna operates from 1900 to 3212 MHz and 3517 to 3712 MHz with 1312 (69%) and 195 (5.5%) MHz measured bandwidths, respectively. The 5G antenna covers 25.7–30.50 GHz band with 4.8 GHz (18.7%) measured bandwidth. The 4G MIMO antenna system is based on 4-element wideband monopoles, while the 5G one is based on 2-element linear connected arrays (LCA). Four slots are etched to improve the isolation between the 4G MIMO antenna elements and then a 4 × 1 power divider/combiner is used to excite two of these slots to act as a LCA at mm-waves. The concept of dual function ground slots is very useful to implement 4G and 5G MIMO antenna systems on the single substrate. The proposed design is fabricated on RO4350B substrate with a height of 0.76 mm and dielectric constant of 3.5. The overall size of the substrate is 115 × 65 × 0.76 mm. The integrated wideband 4G/5G antenna system is a compact, low profile, and suitable for future smart phone applications. Isolation obtained was at least 15 dB and the envelope correlation coefficient (ECC) values did not exceed 0.16 between all elements.

  11. Optimization of an Angle-Aided Mirror Diversity Receiver for Indoor MIMO-VLC Systems

    KAUST Repository

    Park, Kihong

    2017-02-07

    In this paper, we investigate the channel correlation problem which affects the performance of indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems. More specifically, in order to reduce the high correlation of channel matrix in MIMO-VLC intensity channel, we propose a non-imaging receiver called angle-aided mirror diversity receiver (AMDR) which utilizes not only a mirror placement but also a variation of orientation angle for the photodetector (PD) plane. Deploying a mirror helps reducing the correlation by blocking the reception of the light in one specific direction and by receiving additional light reflected in the mirror in another direction, while orienting the angle of PD plane into specific direction enables the directional reception of light. Applying a zero-forcing decorrelator at the receiver, we analyze the bit error rate (BER) performance for a 2×2 multiplexing MIMO-VLC system using a 2-dimensional geometric model. In particular, we formulate a min-max BER problem and find the optimal height of mirror and elevation angle of PD plane. Some selected numerical results validate our proposed optimal solution to our min-max BER problem and show that the BER performance of our proposed AMDR outperforms that of the previous non-imaging receivers.

  12. Optimization of an Angle-Aided Mirror Diversity Receiver for Indoor MIMO-VLC Systems

    KAUST Repository

    Park, Kihong; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we investigate the channel correlation problem which affects the performance of indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems. More specifically, in order to reduce the high correlation of channel matrix in MIMO-VLC intensity channel, we propose a non-imaging receiver called angle-aided mirror diversity receiver (AMDR) which utilizes not only a mirror placement but also a variation of orientation angle for the photodetector (PD) plane. Deploying a mirror helps reducing the correlation by blocking the reception of the light in one specific direction and by receiving additional light reflected in the mirror in another direction, while orienting the angle of PD plane into specific direction enables the directional reception of light. Applying a zero-forcing decorrelator at the receiver, we analyze the bit error rate (BER) performance for a 2×2 multiplexing MIMO-VLC system using a 2-dimensional geometric model. In particular, we formulate a min-max BER problem and find the optimal height of mirror and elevation angle of PD plane. Some selected numerical results validate our proposed optimal solution to our min-max BER problem and show that the BER performance of our proposed AMDR outperforms that of the previous non-imaging receivers.

  13. Performance Analysis of Dual-Polarized Massive MIMO System with Human-Care IoT Devices for Cellular Networks

    Directory of Open Access Journals (Sweden)

    Jun-Ki Hong

    2018-01-01

    Full Text Available The performance analysis of the dual-polarized massive multiple-input multiple-output (MIMO system with Internet of things (IoT devices is studied when outdoor human-care IoT devices are connected to a cellular network via a dual-polarized massive MIMO system. The research background of the performance analysis of dual-polarized massive MIMO system with IoT devices is that recently the data usage of outdoor human-care IoT devices has increased. Therefore, the outdoor human-care IoT devices are necessary to connect with 5G cellular networks which can expect 1000 times higher performance compared with 4G cellular networks. Moreover, in order to guarantee the safety of the patient for emergency cases, a human-care Iot device must be connected to cellular networks which offer more stable communication for outdoors compared to short-range communication technologies such as Wi-Fi, Zigbee, and Bluetooth. To analyze the performance of the dual-polarized massive MIMO system for human-care IoT devices, a dual-polarized MIMO spatial channel model (SCM is proposed which considers depolarization effect between the dual-polarized transmit-antennas and the receive-antennas. The simulation results show that the performance of the dual-polarized massive MIMO system is improved about 16% to 92% for 20 to 150 IoT devices compared to conventional single-polarized massive MIMO system for identical size of the transmit array.

  14. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  15. Performance and Complexity Evaluation of Iterative Receiver for Coded MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Rida El Chall

    2016-01-01

    Full Text Available Multiple-input multiple-output (MIMO technology in combination with channel coding technique is a promising solution for reliable high data rate transmission in future wireless communication systems. However, these technologies pose significant challenges for the design of an iterative receiver. In this paper, an efficient receiver combining soft-input soft-output (SISO detection based on low-complexity K-Best (LC-K-Best decoder with various forward error correction codes, namely, LTE turbo decoder and LDPC decoder, is investigated. We first investigate the convergence behaviors of the iterative MIMO receivers to determine the required inner and outer iterations. Consequently, the performance of LC-K-Best based receiver is evaluated in various LTE channel environments and compared with other MIMO detection schemes. Moreover, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared with different modulation orders and coding rates. Simulation results show that LC-K-Best based receiver achieves satisfactory performance-complexity trade-offs.

  16. Novel Robust Optimization and Power Allocation of Time Reversal-MIMO-UWB Systems in an Imperfect CSI

    Directory of Open Access Journals (Sweden)

    Sajjad Alizadeh

    2013-03-01

    Full Text Available Time Reversal (TR technique is an attractive solution for a scenario where the transmission system employs low complexity receivers with multiple antennas at both transmitter and receiver sides. The TR technique can be combined with a high data rate MIMO-UWB system as TR-MIMO-UWB system. In spite of TR's good performance in MIMO-UWB systems, it suffers from performance degradation in an imperfect Channel State Information (CSI case. In this paper, at first a robust TR pre-filter is designed together with a MMSE equalizer in TR-MIMO-UWB system where is robust against channel imperfection conditions. We show that the robust pre-filter optimization technique, considerably improves the BER performance of TR-MIMO-UWB system in imperfect CSI, where temporal focusing of the TR technique is kept, especially for high SNR values. Then, in order to improve the system performance more than ever, a power loading scheme is developed by minimizing the average symbol error rate in an imperfect CSI. Numerical and simulation results are presented to confirm the performance advantage attained by the proposed robust optimization and power loading in an imperfect CSI scenario.

  17. Distributed User Selection in Network MIMO Systems with Limited Feedback

    KAUST Repository

    Elkhalil, Khalil; Eltayeb, Mohammed E.; Dahrouj, Hayssam; Al-Naffouri, Tareq Y.

    2015-01-01

    We propose a distributed user selection strategy in a network MIMO setting with M base stations serving K users. Each base station is equipped with L antennas, where LM ≪ K. The conventional selection strategy is based on a well known technique called semi-orthogonal user selection when the zero-forcing beamforming (ZFBF) is adopted. Such technique, however, requires perfect channel state information at the transmitter (CSIT), which might not be available or need large feedback overhead. This paper proposes an alternative distributed user selection technique where each user sets a timer that is inversely proportional to his channel quality indicator (CQI), as a means to reduce the feedback overhead. The proposed strategy allows only the user with the highest CQI to respond with a feedback. Such technique, however, remains collision free only if the transmission time is shorter than the difference between the strongest user timer and the second strongest user timer. To overcome the situation of longer transmission times, the paper proposes another feedback strategy that is based on the theory of compressive sensing, where collision is allowed and all users encode their feedback information and send it back to the base-stations simultaneously. The paper shows that the problem can be formulated as a block sparse recovery problem which is agnostic on the transmission time, which makes it a good alternative to the timer approach when collision is dominant.

  18. Distributed User Selection in Network MIMO Systems with Limited Feedback

    KAUST Repository

    Elkhalil, Khalil

    2015-09-06

    We propose a distributed user selection strategy in a network MIMO setting with M base stations serving K users. Each base station is equipped with L antennas, where LM ≪ K. The conventional selection strategy is based on a well known technique called semi-orthogonal user selection when the zero-forcing beamforming (ZFBF) is adopted. Such technique, however, requires perfect channel state information at the transmitter (CSIT), which might not be available or need large feedback overhead. This paper proposes an alternative distributed user selection technique where each user sets a timer that is inversely proportional to his channel quality indicator (CQI), as a means to reduce the feedback overhead. The proposed strategy allows only the user with the highest CQI to respond with a feedback. Such technique, however, remains collision free only if the transmission time is shorter than the difference between the strongest user timer and the second strongest user timer. To overcome the situation of longer transmission times, the paper proposes another feedback strategy that is based on the theory of compressive sensing, where collision is allowed and all users encode their feedback information and send it back to the base-stations simultaneously. The paper shows that the problem can be formulated as a block sparse recovery problem which is agnostic on the transmission time, which makes it a good alternative to the timer approach when collision is dominant.

  19. Linear open-loop and closed-loop control theory. Modelling of control paths, robust stability, design of robust controllers, trajectory control with follow-up contorl, polynomial description of MIMO systems, time discrete control loops and scanning control loops; Lineare Regelungs- und Steuerungstheorie. Modellierung von Regelstrecken, Robuste Stabilitaet und Entwurf robuster Regler, Trajektoriensteuerung mit Folgeregelung, Polynomiale Beschreibung von MIMO-Systemen, Zeitdiskrete und Abtastregelkreise

    Energy Technology Data Exchange (ETDEWEB)

    Reinschke, K. [Technische Univ. Dresden (Germany). Inst. fuer Regelungs- und Streuerungstheorie

    2006-07-01

    After the introduction of bachelor and master studies in Germany, new training concepts are required. In the field of engineering, there is a lack of research-oriented German-language textbooks which are also suited for further training of professionally experienced engineers. The author addresses readers with good prior knowledge of mathematics and application-oriented basic training in open-loop and control-loop engineering who intend to deepen their knowledge of the methods of control of linear time-continuous processes. The reader is enabled to apply the mathematical tools of linear system theory for control purposes. Unavoidable uncertainties in the modelling of control paths are considered. The focus is on function theoretical and algebraic aspects which enable the design of robust stabilising controllers as well as trajectory control and follow-up control and also the time-continuous treatment of scanning control loops. There are many examples to illustrate the general laws that are presented. (orig.) [German] Die Einfuehrung von gestuften Bachelor- und Master-Studiengaengen erfordert neue Ausbildungskonzepte. Fuer die Master- und Promotionsstudiengaenge der Ingenieure mangelt es bisher an forschungsorientierten deutschsprachigen Lehrwerken, die zugleich auch zur Fortbildung von berufserfahrenen Ingenieuren geeignet sind. Dieses Buch traegt zur Behebung dieses Mangels bei. Der Autor wendet sich an Leser, die eine gute mathematische Vorbildung und eine anwendungsorientierte Grundausbildung in Regelungs- und Steuerungstechnik abgeschlossen haben und nun tiefer in die Methoden der Regelung und Steuerung von linearen zeitkontinuierlichen Prozessen eindringen wollen. Der Leser wird befaehigt, die mathematischen Werkzeuge der linearen Systemtheorie fuer regelungstechnische Zwecke einzusetzen. Bei der Modellierung von Regelstrecken werden die unvermeidlichen Unbestimmtheiten beruecksichtigt. Im Zentrum stehen die funktionentheoretischen und algebraischen

  20. Investigation of Doppler Effects on high mobility OFDM-MIMO systems with the support of High Altitude Platforms (HAPs)

    Science.gov (United States)

    Mohammed, H. A.; Sibley, M. J. N.; Mather, P. J.

    2012-05-01

    The merging of Orthogonal Frequency Division Multiplexing (OFDM) with Multiple-input multiple-output (MIMO) is a promising mobile air interface solution for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. This paper details the design of a highly robust and efficient OFDM-MIMO system to support permanent accessibility and higher data rates to users moving at high speeds, such as users travelling on trains. It has high relevance for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. The paper begins with a comprehensive literature review focused on both technologies. This is followed by the modelling of the OFDM-MIMO physical layer based on Simulink/Matlab that takes into consideration high vehicular mobility. Then the entire system is simulated and analysed under different encoding and channel estimation algorithms. The use of High Altitude Platform system (HAPs) technology is considered and analysed.

  1. Investigation of Doppler Effects on high mobility OFDM-MIMO systems with the support of High Altitude Platforms (HAPs)

    International Nuclear Information System (INIS)

    Mohammed, H A; Sibley, M J N; Mather, P J

    2012-01-01

    The merging of Orthogonal Frequency Division Multiplexing (OFDM) with Multiple-input multiple-output (MIMO) is a promising mobile air interface solution for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. This paper details the design of a highly robust and efficient OFDM-MIMO system to support permanent accessibility and higher data rates to users moving at high speeds, such as users travelling on trains. It has high relevance for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. The paper begins with a comprehensive literature review focused on both technologies. This is followed by the modelling of the OFDM-MIMO physical layer based on Simulink/Matlab that takes into consideration high vehicular mobility. Then the entire system is simulated and analysed under different encoding and channel estimation algorithms. The use of High Altitude Platform system (HAPs) technology is considered and analysed.

  2. Robotic Mobile System's Performance-Based MIMO-OFDM Technology

    Directory of Open Access Journals (Sweden)

    Omar Alani

    2009-10-01

    Full Text Available In this paper, a predistortion neural network (PDNN architecture has been imposed to the Sniffer Mobile Robot (SNFRbot that is based on spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM transmission technology. This proposal is used to improve the system performance by combating one of the main drawbacks that is encountered by OFDM technology; Peak-to-Average Power Ratio (PAPR. Simulation results show that using PDNN resulted in better PAPR performance than the previously published work that is based on linear coding, such as Low Density Parity Check (LDPC codes and turbo encoding whether using flat fading channel or a Doppler spread channel.

  3. Impact of Non-Idealities System on Spatial Correlation in a Multi-Probe Based MIMO OTA Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Nielsen, Jesper Ødum; Carreño, Xavier

    2013-01-01

    MIMO OTA testing methodologies are being intensively investigated by CTIA and 3GPP, where a multi-probe anechoic chamber based solution is an important candidate for future standardized testing. In this paper, the probes located on an OTA ring are used to reproduce the channel spatial information....... This paper investigates the extent to which we can emulate the channel spatial characteristics inside the test zone where the device under test is located. The focus is on performance deterioration introduced by system non-idealities on spatial correlation emulation in practical MIMO OTA test systems....

  4. Downlink Radio Resource Management for LTE-Advanced System with Combined MU-MIMO and Carrier Aggregation Features

    DEFF Research Database (Denmark)

    Nguyen, Hung Tuan; Kovacs, Istvan

    2012-01-01

    In this paper we study the performance enhancement of a downlink LTE-Advanced system with a combination of the multi-user MIMO and carrier aggregation transmission techniques. Radio resource management for the systems with the combined features are proposed, and the system performance is evaluate...

  5. The PARAFAC-MUSIC Algorithm for DOA Estimation with Doppler Frequency in a MIMO Radar System

    Directory of Open Access Journals (Sweden)

    Nan Wang

    2014-01-01

    Full Text Available The PARAFAC-MUSIC algorithm is proposed to estimate the direction-of-arrival (DOA of the targets with Doppler frequency in a monostatic MIMO radar system in this paper. To estimate the Doppler frequency, the PARAFAC (parallel factor algorithm is firstly utilized in the proposed algorithm, and after the compensation of Doppler frequency, MUSIC (multiple signal classification algorithm is applied to estimate the DOA. By these two steps, the DOA of moving targets can be estimated successfully. Simulation results show that the proposed PARAFAC-MUSIC algorithm has a higher accuracy than the PARAFAC algorithm and the MUSIC algorithm in DOA estimation.

  6. Low complexity symbol-wise beamforming for MIMO-OFDM systems

    KAUST Repository

    Lee, Hyun Ho

    2011-12-01

    In this paper, we consider a low complexity symbol-wise beamforming for MIMO-OFDM systems. We propose a non-iterative algorithm for the symbol-wise beamforming, which can provide the performance approaching that of the conventional symbol-wise beamforming based on the iterative algorithm. We demonstrate that our proposed scheme can reduce the computational complexity significantly. From our simulation results, it is evident that our proposed scheme leads to a negligible performance loss compared to the conventional symbol-wise beamforming regardless of spatial correlation or presence of co-channel interference. © 2011 IEEE.

  7. Fast convergent frequency-domain MIMO equalizer for few-mode fiber communication systems

    Science.gov (United States)

    He, Xuan; Weng, Yi; Wang, Junyi; Pan, Z.

    2018-02-01

    Space division multiplexing using few-mode fibers has been extensively explored to sustain the continuous traffic growth. In few-mode fiber optical systems, both spatial and polarization modes are exploited to transmit parallel channels, thus increasing the overall capacity. However, signals on spatial channels inevitably suffer from the intrinsic inter-modal coupling and large accumulated differential mode group delay (DMGD), which causes spatial modes de-multiplex even harder. Many research articles have demonstrated that frequency domain adaptive multi-input multi-output (MIMO) equalizer can effectively compensate the DMGD and demultiplex the spatial channels with digital signal processing (DSP). However, the large accumulated DMGD usually requires a large number of training blocks for the initial convergence of adaptive MIMO equalizers, which will decrease the overall system efficiency and even degrade the equalizer performance in fast-changing optical channels. Least mean square (LMS) algorithm is always used in MIMO equalization to dynamically demultiplex the spatial signals. We have proposed to use signal power spectral density (PSD) dependent method and noise PSD directed method to improve the convergence speed of adaptive frequency domain LMS algorithm. We also proposed frequency domain recursive least square (RLS) algorithm to further increase the convergence speed of MIMO equalizer at cost of greater hardware complexity. In this paper, we will compare the hardware complexity and convergence speed of signal PSD dependent and noise power directed algorithms against the conventional frequency domain LMS algorithm. In our numerical study of a three-mode 112 Gbit/s PDM-QPSK optical system with 3000 km transmission, the noise PSD directed and signal PSD dependent methods could improve the convergence speed by 48.3% and 36.1% respectively, at cost of 17.2% and 10.7% higher hardware complexity. We will also compare the frequency domain RLS algorithm against

  8. Efficient Sphere Detector Algorithm for Massive MIMO using GPU Hardware Accelerator

    KAUST Repository

    Arfaoui, Mohamed-Amine

    2016-06-01

    To further enhance the capacity of next generation wireless communication systems, massive MIMO has recently appeared as a necessary enabling technology to achieve high performance signal processing for large-scale multiple antennas. However, massive MIMO systems inevitably generate signal processing overheads, which translate into ever-increasing rate of complexity, and therefore, such system may not maintain the inherent real-time requirement of wireless systems. We redesign the non-linear sphere decoder method to increase the performance of the system, cast most memory-bound computations into compute-bound operations to reduce the overall complexity, and maintain the real-time processing thanks to the GPU computational power. We show a comprehensive complexity and performance analysis on an unprecedented MIMO system scale, which can ease the design phase toward simulating future massive MIMO wireless systems.

  9. Efficient Sphere Detector Algorithm for Massive MIMO using GPU Hardware Accelerator

    KAUST Repository

    Arfaoui, Mohamed-Amine; Ltaief, Hatem; Rezki, Zouheir; Alouini, Mohamed-Slim; Keyes, David E.

    2016-01-01

    To further enhance the capacity of next generation wireless communication systems, massive MIMO has recently appeared as a necessary enabling technology to achieve high performance signal processing for large-scale multiple antennas. However, massive MIMO systems inevitably generate signal processing overheads, which translate into ever-increasing rate of complexity, and therefore, such system may not maintain the inherent real-time requirement of wireless systems. We redesign the non-linear sphere decoder method to increase the performance of the system, cast most memory-bound computations into compute-bound operations to reduce the overall complexity, and maintain the real-time processing thanks to the GPU computational power. We show a comprehensive complexity and performance analysis on an unprecedented MIMO system scale, which can ease the design phase toward simulating future massive MIMO wireless systems.

  10. MIMO wireless networks channels, techniques and standards for multi-antenna, multi-user and multi-cell systems

    CERN Document Server

    Clerckx, Bruno

    2013-01-01

    This book is unique in presenting channels, techniques and standards for the next generation of MIMO wireless networks. Through a unified framework, it emphasizes how propagation mechanisms impact the system performance under realistic power constraints. Combining a solid mathematical analysis with a physical and intuitive approach to space-time signal processing, the book progressively derives innovative designs for space-time coding and precoding as well as multi-user and multi-cell techniques, taking into consideration that MIMO channels are often far from ideal. Reflecting developments

  11. Space-Frequency Block Code with Matched Rotation for MIMO-OFDM System with Limited Feedback

    Directory of Open Access Journals (Sweden)

    Thushara D. Abhayapala

    2009-01-01

    Full Text Available This paper presents a novel matched rotation precoding (MRP scheme to design a rate one space-frequency block code (SFBC and a multirate SFBC for MIMO-OFDM systems with limited feedback. The proposed rate one MRP and multirate MRP can always achieve full transmit diversity and optimal system performance for arbitrary number of antennas, subcarrier intervals, and subcarrier groupings, with limited channel knowledge required by the transmit antennas. The optimization process of the rate one MRP is simple and easily visualized so that the optimal rotation angle can be derived explicitly, or even intuitively for some cases. The multirate MRP has a complex optimization process, but it has a better spectral efficiency and provides a relatively smooth balance between system performance and transmission rate. Simulations show that the proposed SFBC with MRP can overcome the diversity loss for specific propagation scenarios, always improve the system performance, and demonstrate flexible performance with large performance gain. Therefore the proposed SFBCs with MRP demonstrate flexibility and feasibility so that it is more suitable for a practical MIMO-OFDM system with dynamic parameters.

  12. BER PERFORMANCE COMPARISON OF MIMO SYSTEMS USING OSTBC WITH ZF AND ML DECODING

    Directory of Open Access Journals (Sweden)

    Zenitha Rehman

    2014-12-01

    Full Text Available Multiple Input Multiple Output (MIMO systems with multiple antenna elements at both transmitter and receiver ends are an efficient solution for wireless communication systems. They provide high data rates by exploiting the spatial domain under the constraints of limited bandwidth and transmit power. Space-Time Block Coding (STBC is a MIMO transmit strategy which exploits transmit diversity and provides high reliability. Implementation of orthogonal space-time block codes (OSTBCs for a two transmitter–two receiver system under AWGN (Additive White Gaussian Noise channel and flat fading channel is performed. Alamouti code is employed for the STBC. The modulation techniques used are BPSK, QPSK and 16-QAM. Decoding is done using the Zero Forcing (ZF algorithm and Maximum Likelihood (ML algorithm. The BER Performance of each modulation scheme is compared with the un-coded version of the same. Performance comparison between the two decoding techniques is also done. It is found that ML detection offers a slightly better performance for BPSK and QPSK system than ZF detection.

  13. Highly miniaturised semi-loop meandered dual-band MIMO antenna system

    KAUST Repository

    Jehangir, Syed S.; Sharawi, Mohammad S.; Shamim, Atif

    2017-01-01

    A novel dual-band two-element directional multiple-input-multiple-output (MIMO) antenna system is presented with 68% miniaturisation, which is achieved using a semi-loop meandered driven element and a small ground plane. The centre frequency of operation is 2 GHz. The antenna system covers two bands: the telemetry L-band 1.27-1.43 GHz and the global system for mobile communications/long-term evolution band 1.8-2.133 GHz. The simulation and measurement results are in good agreement. The proposed antenna system mimics the quasi-Yagi antenna configuration with a measured front-to-back ratio of around 15 dB at 1.35 GHz and 17 dB at 2 GHz, which is achieved without using a large ground plane, extra metallic structures, multiple reflector elements, or any complex technique. A gain of more than 5 dBi is measured for the single element with a total radiation efficiency of around 85% in both bands. The measured isolation of the proposed MIMO antenna is more than 15 dB with < 0.0785 measured envelope correlation coefficient values in both bands.

  14. Highly miniaturised semi-loop meandered dual-band MIMO antenna system

    KAUST Repository

    Jehangir, Syed S.

    2017-12-05

    A novel dual-band two-element directional multiple-input-multiple-output (MIMO) antenna system is presented with 68% miniaturisation, which is achieved using a semi-loop meandered driven element and a small ground plane. The centre frequency of operation is 2 GHz. The antenna system covers two bands: the telemetry L-band 1.27-1.43 GHz and the global system for mobile communications/long-term evolution band 1.8-2.133 GHz. The simulation and measurement results are in good agreement. The proposed antenna system mimics the quasi-Yagi antenna configuration with a measured front-to-back ratio of around 15 dB at 1.35 GHz and 17 dB at 2 GHz, which is achieved without using a large ground plane, extra metallic structures, multiple reflector elements, or any complex technique. A gain of more than 5 dBi is measured for the single element with a total radiation efficiency of around 85% in both bands. The measured isolation of the proposed MIMO antenna is more than 15 dB with < 0.0785 measured envelope correlation coefficient values in both bands.

  15. On the capacity of MIMO-OFDM based diversity and spatial multiplexing in Radio-over-Fiber system

    Science.gov (United States)

    El Yahyaoui, Moussa; El Moussati, Ali; El Zein, Ghaïs

    2017-11-01

    This paper proposes a realistic and global simulation to predict the behavior of a Radio over Fiber (RoF) system before its realization. In this work we consider a 2 × 2 Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) RoF system at 60 GHz. This system is based on Spatial Diversity (SD) which increases reliability (decreases probability of error) and Spatial Multiplexing (SMX) which increases data rate, but not necessarily reliability. The 60 GHz MIMO channel model employed in this work based on a lot of measured data and statistical analysis named Triple-S and Valenzuela (TSV) model. To the authors best knowledge; it is the first time that this type of TSV channel model has been employed for 60 GHz MIMO-RoF system. We have evaluated and compared the performance of this system according to the diversity technique, modulation schemes, and channel coding rate for Line-Of-Sight (LOS) desktop environment. The SMX coded is proposed as an intermediate system to improve the Signal to Noise Ratio (SNR) and the data rate. The resulting 2 × 2 MIMO-OFDM SMX system achieves a higher data rate up to 70 Gb/s with 64QAM and Forward Error Correction (FEC) limit of 10-3 over 25-km fiber transmission followed by 3-m wireless transmission using 7 GHz bandwidth of millimeter wave band.

  16. A MIMO System with Backward Compatibility for OFDM-Based WLANs

    Directory of Open Access Journals (Sweden)

    Liu Jianhua

    2004-01-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM has been selected as the basis for the new IEEE 802.11a standard for high-speed wireless local area networks (WLANs. We consider doubling the transmission data rate of the IEEE 802.11a system by using two transmit and two receive antennas. We propose a preamble design for this multi-input multi-output (MIMO system that is backward compatible with its single-input single-output (SISO counterpart as specified by the IEEE 802.11a standard. Based on this preamble design, we devise a sequential method for the estimation of the carrier frequency offset (CFO, symbol timing, and MIMO channel response. We also provide a simple soft detector based on the unstructured least square approach to obtain the soft information for the Viterbi decoder. This soft detector is very simple since it decouples the multidimensional QAM symbol detection into multiple one-dimensional QAM symbol—and further PAM symbol—detections. Both the sequential parameter estimation method and the soft detector can provide excellent overall system performance and are ideally suited for real-time implementations. The effectiveness of our methods is demonstrated via numerical examples.

  17. Switched-Observer-Based Adaptive Neural Control of MIMO Switched Nonlinear Systems With Unknown Control Gains.

    Science.gov (United States)

    Long, Lijun; Zhao, Jun

    2017-07-01

    In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.

  18. Optimal Superimposed Training Sequences for Channel Estimation in MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Ratnam V. Raja Kumar

    2010-01-01

    Full Text Available In this work an iterative time domain Least Squares (LS based channel estimation method using superimposed training (ST for a Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM system over time varying frequency selective fading channels is proposed. The performance of the channel estimator is analyzed in terms of the Mean Square Estimation Error (MSEE and its impact on the uncoded Bit Error Rate (BER of the MIMO-OFDM system is studied. A new selection criterion for the training sequences that jointly optimizes the MSEE and the BER of the OFDM system is proposed. Chirp based sequences are proposed and shown to satisfy the same. These are compared with the other sequences proposed in the literature and are found to yield a superior performance. The sequences, one for each transmitting antenna, offers fairness through providing equal interference in all the data carriers unlike earlier proposals. The effectiveness of the mathematical analysis presented is demonstrated through a comparison with the simulation studies. Experimental studies are carried out to study and validate the improved performance of the proposed scheme. The scheme is applied to the IEEE 802.16e OFDM standard and a case is made with the required design of the sequence.

  19. Alternate MIMO AF relaying networks with interference alignment: Spectral efficient protocol and linear filter design

    KAUST Repository

    Park, Kihong

    2013-02-01

    In this paper, we study a two-hop relaying network consisting of one source, one destination, and three amplify-and-forward (AF) relays with multiple antennas. To compensate for the capacity prelog factor loss of 1/2$ due to the half-duplex relaying, alternate transmission is performed among three relays, and the inter-relay interference due to the alternate relaying is aligned to make additional degrees of freedom. In addition, suboptimal linear filter designs at the nodes are proposed to maximize the achievable sum rate for different fading scenarios when the destination utilizes a minimum mean-square error filter. © 1967-2012 IEEE.

  20. High-resolution imaging using a wideband MIMO radar system with two distributed arrays.

    Science.gov (United States)

    Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi

    2010-05-01

    Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method.

  1. Analysis and compensation for the joint effects of HPA nonlinearity, I/Q imbalance and crosstalk in MIMO beamforming systems

    KAUST Repository

    Qi, Jian; Aissa, Sonia

    2011-01-01

    In this paper, we investigate the joint effects of high-power amplifier (HPA) nonlinearity, in-phase/quadrature-phase (I/Q) imbalance and crosstalk, on the performance of multiple-input multiple-output (MIMO) transmit beamforming (TB) systems

  2. Sum-rate analysis of spectrum sharing spatial multiplexing MIMO systems with zero-forcing and multiuser diversity

    KAUST Repository

    Yang, Liang; Qaraqe, Khalid A.; Serpedin, Erchin; Alouini, Mohamed-Slim

    2013-01-01

    This paper considers a multiuser spectrum sharing (SS) multiple-input multiple-output (MIMO) system with zero-forcing (ZF) operating in a Rayleigh fading environment. We provide an asymptotic sum-rate analysis to investigate the effects of different

  3. 2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Zhao, Ying

    2012-01-01

    We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training-based...

  4. A Modal Approach to Compact MIMO Antenna Design

    Science.gov (United States)

    Yang, Binbin

    MIMO (Multiple-Input Multiple-Output) technology offers new possibilities for wireless communication through transmission over multiple spatial channels, and enables linear increases in spectral efficiency as the number of the transmitting and receiving antennas increases. However, the physical implementation of such systems in compact devices encounters many physical constraints mainly from the design of multi-antennas. First, an antenna's bandwidth decreases dramatically as its electrical size reduces, a fact known as antenna Q limit; secondly, multiple antennas closely spaced tend to couple with each other, undermining MIMO performance. Though different MIMO antenna designs have been proposed in the literature, there is still a lack of a systematic design methodology and knowledge of performance limits. In this dissertation, we employ characteristic mode theory (CMT) as a powerful tool for MIMO antenna analysis and design. CMT allows us to examine each physical mode of the antenna aperture, and to access its many physical parameters without even exciting the antenna. For the first time, we propose efficient circuit models for MIMO antennas of arbitrary geometry using this modal decomposition technique. Those circuit models demonstrate the powerful physical insight of CMT for MIMO antenna modeling, and simplify MIMO antenna design problem to just the design of specific antenna structural modes and a modal feed network, making possible the separate design of antenna aperture and feeds. We therefore develop a feed-independent shape synthesis technique for optimization of broadband multi-mode apertures. Combining the shape synthesis and circuit modeling techniques for MIMO antennas, we propose a shape-first feed-next design methodology for MIMO antennas, and designed and fabricated two planar MIMO antennas, each occupying an aperture much smaller than the regular size of lambda/2 x lambda/2. Facilitated by the newly developed source formulation for antenna stored

  5. Printed MIMO antenna engineering

    CERN Document Server

    Sharawi, Mohammad S

    2014-01-01

    Wireless communications has made a huge leap during the past two decades. The multiple-input-multiple-output (MIMO) technology was proposed in the 1990's as a viable solution that can overcome the data rate limit experienced by single-input-single-output (SISO) systems. This resource is focused on printed MIMO antenna system design. Printed antennas are widely used in mobile and handheld terminals due to their conformity with the device, low cost, good integration within the device elements and mechanical parts, as well as ease of fabrication.A perfect design companion for practicing engineers

  6. Performance Analysis of Capacity of MIMO Systems under Multiuser Interference Based on Worst-Case Noise Behavior

    Directory of Open Access Journals (Sweden)

    Jorswieck E. A.

    2004-01-01

    Full Text Available The capacity of a cellular multiuser MIMO system depends on various parameters, for example, the system structure, the transmit and receive strategies, the channel state information at the transmitter and the receiver, and the channel properties. Recently, the main focus of research was on single-user MIMO systems, their channel capacity, and their error performance with space-time coding. In general, the capacity of a cellular multiuser MIMO system is limited by additive white Gaussian noise, intracell interference from other users within the cell, and intercell interference from users outside the considered cell. We study one point-to-point link, on which interference acts. The interference models the different system scenarios and various parameters. Therefore, we consider three scenarios in which the noise is subject to different constraints. A general trace constraint is used in the first scenario. The noise covariance matrix eigenvalues are kept fixed in the second scenario, and in the third scenario the entries on the diagonal of the noise covariance matrix are kept fixed. We assume that the receiver as well as the transmitter have perfect channel state information. We solve the corresponding minimax programming problems and characterize the worst-case noise and the optimal transmit strategy. In all scenarios, the achievable capacity of the MIMO system with worst-case noise is equal to the capacity of some MIMO system in which either the channels are orthogonal or the transmit antennas are not allowed to cooperate or in which no channel state information is available at the transmitter. Furthermore, the minimax expressions fulfill a saddle point property. All theoretical results are illustrated by examples and numerical simulations.

  7. A Robust Pre-Filter and Power Loading Design for Time Reversal UWB Systems over Time-Correlated MIMO Channels

    Directory of Open Access Journals (Sweden)

    Sajjad Alizadeh

    2014-04-01

    Full Text Available Conventional Time Reversal (TR technique suffers from performance degradation in time varying Multiple-Input Multiple-Output Ultra-Wideband (MIMO-UWB systems due to outdating Channel State Information (CSI over time progressions. That is, the outdated CSI degrades the TR performance significantly in time varying channels. The correlation property of time correlated channels can improve the TR performance against other traditional TR designs. Based on this property, at first, we propose a robust TR-MIMO-UWB system design for a time-varying channel in which the CSI is updated only at the beginning of each block of data where the CSI is assumed to be known. As the channel varies over time, pre-processor blindly pre-equalizes the channel during the next symbol time by using the correlation property. Then, a novel recursive power allocation strategy is derived over time-correlated time-varying TR-MIMO-UWB channels. We show that the proposed power loading technique, considerably improves the BER performance of TR-MIMO-UWB system in imperfect CSI with robust pre-filter. The proposed algorithms lead to a cost-efficient CSI updating procedure for the TR optimization. Simulation results are provided to confirm the new design performance against traditional method.

  8. Spatial correlation characterization of a uniform circular array in 3D MIMO systems

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2016-08-11

    In this paper, we consider a uniform circular array (UCA) of directional antennas at the base station (BS) and the mobile station (MS) and derive an exact closed-form expression for the spatial correlation present in the 3D multiple-input multiple-output (MIMO) channel constituted by these arrays. The underlying method leverages the mathematical convenience of the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. In contrast to the existing results, this generalized closed-form expression is independent of the form of the underlying angular distributions and antenna patterns. Moreover, the incorporation of the elevation dimension into the antenna pattern and channel model renders the proposed expression extremely useful for the performance evaluation of 3D MIMO systems in the future. Verification is achieved with the help of simulation results, which highlight the dependence of the spatial correlation on channel and array parameters. An interesting interplay between the mean angle of departure (AoD), angular spread and the positioning of antennas in the array is demonstrated. © 2016 IEEE.

  9. Practical 3-D Beam Pattern Based Channel Modeling for Multi-Polarized Massive MIMO Systems.

    Science.gov (United States)

    Aghaeinezhadfirouzja, Saeid; Liu, Hui; Balador, Ali

    2018-04-12

    In this paper, a practical non-stationary three-dimensional (3-D) channel models for massive multiple-input multiple-output (MIMO) systems, considering beam patterns for different antenna elements, is proposed. The beam patterns using dipole antenna elements with different phase excitation toward the different direction of travels (DoTs) contributes various correlation weights for rays related towards/from the cluster, thus providing different elevation angle of arrivals (EAoAs) and elevation angle of departures (EAoDs) for each antenna element. These include the movements of the user that makes our channel to be a non-stationary model of clusters at the receiver (RX) on both the time and array axes. In addition, their impacts on 3-D massive MIMO channels are investigated via statistical properties including received spatial correlation. Additionally, the impact of elevation/azimuth angles of arrival on received spatial correlation is discussed. Furthermore, experimental validation of the proposed 3-D channel models on azimuth and elevation angles of the polarized antenna are specifically evaluated and compared through simulations. The proposed 3-D generic models are verified using relevant measurement data.

  10. Spatial correlation characterization of a uniform circular array in 3D MIMO systems

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Merouane; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we consider a uniform circular array (UCA) of directional antennas at the base station (BS) and the mobile station (MS) and derive an exact closed-form expression for the spatial correlation present in the 3D multiple-input multiple-output (MIMO) channel constituted by these arrays. The underlying method leverages the mathematical convenience of the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. In contrast to the existing results, this generalized closed-form expression is independent of the form of the underlying angular distributions and antenna patterns. Moreover, the incorporation of the elevation dimension into the antenna pattern and channel model renders the proposed expression extremely useful for the performance evaluation of 3D MIMO systems in the future. Verification is achieved with the help of simulation results, which highlight the dependence of the spatial correlation on channel and array parameters. An interesting interplay between the mean angle of departure (AoD), angular spread and the positioning of antennas in the array is demonstrated. © 2016 IEEE.

  11. A cross-layer resource allocation scheme for spatial multiplexing-based MIMO-OFDMA systems

    Directory of Open Access Journals (Sweden)

    Al-Shatri Hussein

    2011-01-01

    Full Text Available Abstract We investigate the resource allocation problem for the downlink of a multiple-input multiple-output orthogonal frequency division multiple access (MIMO-OFDMA system. The sum rate maximization itself cannot cope with fairness among users. Hence, we address this problem in the context of the utility-based resource allocation presented in earlier papers. This resource allocation method allows to enhance the efficiency and guarantee fairness among users by exploiting multiuser diversity, frequency diversity, as well as time diversity. In this paper, we treat the overall utility as the quality of service indicator and design utility functions with respect to the average transmission rate in order to simultaneously provide two services, real-time and best-effort. Since the optimal solutions are extremely computationally complex to obtain, we propose a suboptimal joint subchannel and power control algorithm that converges very fast and simplifies the MIMO resource allocation problem into a single-input single-output resource allocation problem. Simulation results indicate that using the proposed method achieves near-optimum solutions, and the available resources are distributed more fairly among users.

  12. VLSI architecture of a K-best detector for MIMO-OFDM wireless communication systems

    International Nuclear Information System (INIS)

    Jian Haifang; Shi Yin

    2009-01-01

    The K-best detector is considered as a promising technique in the MIMO-OFDM detection because of its good performance and low complexity. In this paper, a new K-best VLSI architecture is presented. In the proposed architecture, the metric computation units (MCUs) expand each surviving path only to its partial branches, based on the novel expansion scheme, which can predetermine the branches' ascending order by their local distances. Then a distributed sorter sorts out the new K surviving paths from the expanded branches in pipelines. Compared to the conventional K-best scheme, the proposed architecture can approximately reduce fundamental operations by 50% and 75% for the 16-QAM and the 64-QAM cases, respectively, and, consequently, lower the demand on the hardware resource significantly. Simulation results prove that the proposed architecture can achieve a performance very similar to conventional K-best detectors. Hence, it is an efficient solution to the K-best detector's VLSI implementation for high-throughput MIMO-OFDM systems.

  13. VLSI architecture of a K-best detector for MIMO-OFDM wireless communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Jian Haifang; Shi Yin, E-mail: jhf@semi.ac.c [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2009-07-15

    The K-best detector is considered as a promising technique in the MIMO-OFDM detection because of its good performance and low complexity. In this paper, a new K-best VLSI architecture is presented. In the proposed architecture, the metric computation units (MCUs) expand each surviving path only to its partial branches, based on the novel expansion scheme, which can predetermine the branches' ascending order by their local distances. Then a distributed sorter sorts out the new K surviving paths from the expanded branches in pipelines. Compared to the conventional K-best scheme, the proposed architecture can approximately reduce fundamental operations by 50% and 75% for the 16-QAM and the 64-QAM cases, respectively, and, consequently, lower the demand on the hardware resource significantly. Simulation results prove that the proposed architecture can achieve a performance very similar to conventional K-best detectors. Hence, it is an efficient solution to the K-best detector's VLSI implementation for high-throughput MIMO-OFDM systems.

  14. Radio-over-optical waveguide system-on-wafer for massive delivery capacity 5G MIMO access networks

    Science.gov (United States)

    Binh, Le N.

    2017-01-01

    Delivering maximum information capacity over MIMO antennae systems beam steering is critical so as to achieve the flexibility via beam steering, maximizing the number of users or community of users in Gb/s rate per user over distributed cloud-based optical-wireless access networks. This paper gives an overview of (i) demands of optical - wireless delivery with high flexibility, especially the beam steering of multi-Tbps information channels to information hungry community of users via virtualized beam steering MIMO antenna systems at the free-license mmW region; (ii) Proposing a novel photonic planar integrated waveguide systems composing several passive and active, passive and amplification photonic devices so as to generate mmW carrier and embedded baseband information channels to feed to antenna elements; (iii) Integration techniques to generate a radio over optical waveguide (RoOW) system-on-wafer (SoW) comprising MIMO planar antenna elements and associate photonic integrated circuits for both up- and down- links; (iv) Challenges encountered in the implementation of the SoW in both wireless and photonic domains; (v) Photonic modulation techniques to achieve maximum transmission capacity per wavelength per MIMO antenna system. (vi) A view on control-feedback systems for fast and accurate generation of phase pattern for MIMO beam steering via a bank of optical phase modulators to mmW carrier phases and their preservation in the converted mmW domain . (vi) The overall operational principles of the novel techniques and technologies based on the coherent mixing of two lightwave channels The entire SoW can be implemented on SOI Si-photonic technology or via hybrid integration. These technological developments and their pros- and cons- will be discussed to achieve 50Tera-bps over the extended 110 channel Cband single mode fiber with mmW centered at 58.6GHz and 7GHz free-license band.

  15. Performance of Antenna Selection in MIMO System Using Channel Reciprocity with Measured Data

    Directory of Open Access Journals (Sweden)

    Peerapong Uthansakul

    2011-01-01

    Full Text Available The channel capacity of MIMO system increases as a function of antenna pairs between transmitter and receiver but it suffers from multiple expensive RF chains. To reduce cost of RF chains, antenna selection (AS method can offer a good tradeoff between expense and performance. For a transmitting AS system, channel state information (CSI feedback is required to choose the best subset of available antennas. However, the delay and error in feedback channel are the most dominant factors to degrade performances. In this paper, the concept of AS method using reciprocal CSI instead of feedback channel is proposed. The capacity performance of proposed system is investigated by own developing Testbed. The obtained results indicate that the reciprocity technique offers a capacity close to a system with perfect CSI and gains a higher capacity than a system without AS method. This benefit is from 0.9 to 2.2 bps/Hz at SNR 10 dB.

  16. Key Technologies in Massive MIMO

    Directory of Open Access Journals (Sweden)

    Hu Qiang

    2018-01-01

    Full Text Available The explosive growth of wireless data traffic in the future fifth generation mobile communication system (5G has led researchers to develop new disruptive technologies. As an extension of traditional MIMO technology, massive MIMO can greatly improve the throughput rate and energy efficiency, and can effectively improve the link reliability and data transmission rate, which is an important research direction of 5G wireless communication. Massive MIMO technology is nearly three years to get a new technology of rapid development and it through a lot of increasing the number of antenna communication, using very duplex communication mode, make the system spectrum efficiency to an unprecedented height.

  17. Fuzzy Controller Design Using Evolutionary Techniques for Twin Rotor MIMO System: A Comparative Study

    Directory of Open Access Journals (Sweden)

    H. A. Hashim

    2015-01-01

    Full Text Available This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO system (TRMS considering most promising evolutionary techniques. These are gravitational search algorithm (GSA, particle swarm optimization (PSO, artificial bee colony (ABC, and differential evolution (DE. In this study, the gains of four fuzzy proportional derivative (PD controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed.

  18. Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation

    Science.gov (United States)

    Huang, Aiping; Tao, Linwei; Niu, Yilong

    2018-04-01

    In this paper, we investigate the performance of underwater wireless optical multiple-input multiple-output communication system combining spatial modulation (SM-UOMIMO) with flag dual amplitude pulse position modulation (FDAPPM). Channel impulse response for coastal and harbor ocean water links are obtained by Monte Carlo (MC) simulation. Moreover, we obtain the closed-form and upper bound average bit error rate (BER) expressions for receiver diversity including optical combining, equal gain combining and selected combining. And a novel adaptive power allocation algorithm (PAA) is proposed to minimize the average BER of SM-UOMIMO system. Our numeric results indicate an excellent match between the analytical results and numerical simulations, which confirms the accuracy of our derived expressions. Furthermore, the results show that adaptive PAA outperforms conventional fixed factor PAA and equal PAA obviously. Multiple-input single-output system with adaptive PAA obtains even better BER performance than MIMO one, at the same time reducing receiver complexity effectively.

  19. Performance of Cross-Layer Design with Antenna Selection and Imperfect Feedback Information in MIMO Systems

    Directory of Open Access Journals (Sweden)

    Xiaoyu Dang

    2012-01-01

    Full Text Available By combining adaptive modulation and automatic repeat request, a cross-layer design (CLD scheme for MIMO system with antenna selection (AS and imperfect feedback is presented, and the corresponding performance is studied. Subject to a target packet loss rate and fixed power constraint, the variable switching thresholds of fading gain are derived. According to these results, and using mathematical manipulation, the average spectrum efficiency (SE and packet error rate (PER of the system are further derived. As a result, closed-form expressions of the average SE and PER are obtained, respectively. These expressions include the expressions under perfect channel state information as special cases and provide good performance evaluation for the system. Numerical results show that the proposed CLD scheme with antenna selection has higher SE than the existing CLD scheme with space-time block coding, and the CLD scheme with variable switching thresholds outperforms that with conventional-fixed switching thresholds.

  20. Sum Rate Maximization using Linear Precoding and Decoding in the Multiuser MIMO Downlink

    OpenAIRE

    Tenenbaum, Adam J.; Adve, Raviraj S.

    2008-01-01

    We propose an algorithm to maximize the instantaneous sum data rate transmitted by a base station in the downlink of a multiuser multiple-input, multiple-output system. The transmitter and the receivers may each be equipped with multiple antennas and each user may receive more than one data stream. We show that maximizing the sum rate is closely linked to minimizing the product of mean squared errors (PMSE). The algorithm employs an uplink/downlink duality to iteratively design transmit-recei...

  1. On stabilisability of 2-D MIMO shift-invariant systems

    Czech Academy of Sciences Publication Activity Database

    Augusta, Petr; Augustová, Petra

    2013-01-01

    Roč. 350, č. 10 (2013), s. 2949-2966 ISSN 0016-0032 R&D Projects: GA ČR GPP103/12/P494 Institutional support: RVO:67985556 Keywords : spatially invariant system * stabilisation * multiple-input-multiple-output system, * positive polynomial Subject RIV: BC - Control Systems Theory Impact factor: 2.260, year: 2013 http://library.utia.cas.cz/separaty/2013/TR/augusta-0398772.pdf

  2. High Throughput Line-of-Sight MIMO Systems for Next Generation Backhaul Applications

    Science.gov (United States)

    Song, Xiaohang; Cvetkovski, Darko; Hälsig, Tim; Rave, Wolfgang; Fettweis, Gerhard; Grass, Eckhard; Lankl, Berthold

    2017-09-01

    The evolution to ultra-dense next generation networks requires a massive increase in throughput and deployment flexibility. Therefore, novel wireless backhaul solutions that can support these demands are needed. In this work we present an approach for a millimeter wave line-of-sight MIMO backhaul design, targeting transmission rates in the order of 100 Gbit/s. We provide theoretical foundations for the concept showcasing its potential, which are confirmed through channel measurements. Furthermore, we provide insights into the system design with respect to antenna array setup, baseband processing, synchronization, and channel equalization. Implementation in a 60 GHz demonstrator setup proves the feasibility of the system concept for high throughput backhauling in next generation networks.

  3. A Practical Scheme for Frequency Offset Estimation in MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Morelli Michele

    2009-01-01

    Full Text Available This paper deals with training-assisted carrier frequency offset (CFO estimation in multiple-input multiple-output (MIMO orthogonal frequency-division multiplexing (OFDM systems. The exact maximum likelihood (ML solution to this problem is computationally demanding as it involves a line search over the CFO uncertainty range. To reduce the system complexity, we divide the CFO into an integer part plus a fractional part and select the pilot subcarriers such that the training sequences have a repetitive structure in the time domain. In this way, the fractional CFO is efficiently computed through a correlation-based approach, while ML methods are employed to estimate the integer CFO. Simulations indicate that the proposed scheme is superior to the existing alternatives in terms of both estimation accuracy and processing load.

  4. A Practical Scheme for Frequency Offset Estimation in MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available This paper deals with training-assisted carrier frequency offset (CFO estimation in multiple-input multiple-output (MIMO orthogonal frequency-division multiplexing (OFDM systems. The exact maximum likelihood (ML solution to this problem is computationally demanding as it involves a line search over the CFO uncertainty range. To reduce the system complexity, we divide the CFO into an integer part plus a fractional part and select the pilot subcarriers such that the training sequences have a repetitive structure in the time domain. In this way, the fractional CFO is efficiently computed through a correlation-based approach, while ML methods are employed to estimate the integer CFO. Simulations indicate that the proposed scheme is superior to the existing alternatives in terms of both estimation accuracy and processing load.

  5. Performance improvement on a MIMO radio-over-fiber system by probabilistic shaping

    Science.gov (United States)

    Kong, Miao; Yu, Jianjun

    2018-01-01

    As we know, probabilistic shaping (PS), as a typical one of modulation format optimization technologies, becomes a promising technology and attracts more and more attention, because of its higher transmission capacity and lower computation complexity. In this paper, we experimentally demonstrated a reliable 8 Gbaud-rate delivery of polarization multiplexed PS 16-QAM single carrier signal in a MIMO radio-over-fiber system with 20-km SMF-28 wire link and 2.5-m wireless link at 60 GHz. The BER performance of PS 16-QAM signals at different baud rate was also evaluated. What is more, PS 16-QAM was also experimentally compared with uniform 16-QAM, and it can be concluded that PS 16-QAM brings a better compromise between effectiveness and reliability performance and a higher capacity than uniform 16-QAM for the radio-over-fiber system.

  6. Outage and Capacity Performance Evaluation of Distributed MIMO Systems over a Composite Fading Channel

    Directory of Open Access Journals (Sweden)

    Wenjie Peng

    2014-01-01

    Full Text Available The exact closed-form expressions regarding the outage probability and capacity of distributed MIMO (DMIMO systems over a composite fading channel are derived. This is achieved firstly by using a lognormal approximation to a gamma-lognormal distribution when a mobile station (MS in the cell is in a fixed position, and the so-called maximum ratio transmission/selected combining (MRT-SC and selected transmission/maximum ratio combining (ST-MRC schemes are adopted in uplink and downlink, respectively. Then, based on a newly proposed nonuniform MS cell distribution model, which is more consistent with the MS cell hotspot distribution in an actual communication environment, the average outage probability and capacity formulas are further derived. Finally, the accuracy of the approximation method and the rationality of the corresponding theoretical analysis regarding the system performance are proven and illustrated by computer simulations.

  7. Joint optimization of CQI calculation and interference mitigation for user scheduling in MIMO-OFDM systems

    KAUST Repository

    Sadek, Mirette; Aï ssa, Sonia

    2011-01-01

    In MIMO-OFDM multiuser systems, user scheduling is employed as a means of multiple access. In a downlink scenario, users that share the same subcarriers of an OFDM symbol are separated through precoding in order to achieve space division multiple access (SDMA). User scheduling techniques rely on channel knowledge at the transmitter, namely, the so-called channel quality indicator (CQI). In this paper, we implement a leakage-based precoding algorithm whose purpose is twofold. First, it is used to compute a reliable CQI based on a group of precoding vectors that are adapted to the channel. Then, it implements user scheduling through using the optimum vectors for precoding, thus minimizing interference among users. We also introduce the concept of resource block size adaptivity. The resource block (RB) is defined as the least unit in an OFDM symbol that a user can be assigned to. We propose a variable RB size that adapts to the channel conditions. © 2011 IEEE.

  8. An Approach to Optimum Joint Beamforming Design in a MIMO-OFDM Multiuser System

    Directory of Open Access Journals (Sweden)

    Pascual-Iserte Antonio

    2004-01-01

    Full Text Available This paper describes a multiuser scenario with several terminals acceding simultaneously to the same frequency channel. The objective is to design an optimal multiuser system that may be used as a comparative framework when evaluating other suboptimal solutions and to contribute to the already published works on this topic. The present work assumes that a centralized manager knows perfectly all the channel responses between all the terminals. According to this, the transmitters and receivers, using antenna arrays and leading to the so-called multiple-input-multiple-output (MIMO channels, are designed in a joint beamforming approach, attempting to minimize the total transmit power subject to quality of service (QoS constraints. Since this optimization problem is not convex, the use of the simulated annealing (SA technique is proposed to find the optimum solution.

  9. Simultaneous Wireless Information and Power Transfer for Decode-and-Forward MIMO Relay Communication Systems

    KAUST Repository

    Benkhelifa, Fatma

    2015-05-01

    In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) for a decode-and-forward (DF) multiple-input multiple-output (MIMO) relay system where the relay is an energy harvesting node. We consider the ideal scenario where both the energy harvesting (EH) receiver and information decoding (ID) receiver at the relay have access to the whole received signal and its energy. The relay harvests the energy while receiving the signal from the source and uses the harvested power to forward the signal to the destination. We obtain the optimal precoders at the source and the relay to maximize the achievable throughput rate of the overall link. In the numerical results, the effect of the transmit power at the source and the position of the relay between the source and the destination on the maximum achievable rate are investigated. © 2015 IEEE.

  10. Simultaneous Wireless Information and Power Transfer for MIMO Amplify-and-Forward Relay Systems

    KAUST Repository

    Benkhelifa, Fatma; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) for the two-hop Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication systems with the multiantenna energy harvesting relay. We derive the optimal source and relay covariance matrices to characterize the achievable region between the sourcedestination rate and the harvested energy at the relay, namely Rate-Energy (R-E) region. In this context, we consider the ideal scenario where the energy harvester (EH) receiver and the information decoder (ID) receiver at the relay can simultaneously decode the information and harvest the energy at the relay. Then, we consider more practical schemes which are the power splitting (PS) and the time switching (TS) which separate the EH and ID transfer over the power domain and the time domain, respectively.

  11. Simultaneous Wireless Information and Power Transfer for MIMO Amplify-and-Forward Relay Systems

    KAUST Repository

    Benkhelifa, Fatma

    2016-01-06

    In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) for the two-hop Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication systems with the multiantenna energy harvesting relay. We derive the optimal source and relay covariance matrices to characterize the achievable region between the sourcedestination rate and the harvested energy at the relay, namely Rate-Energy (R-E) region. In this context, we consider the ideal scenario where the energy harvester (EH) receiver and the information decoder (ID) receiver at the relay can simultaneously decode the information and harvest the energy at the relay. Then, we consider more practical schemes which are the power splitting (PS) and the time switching (TS) which separate the EH and ID transfer over the power domain and the time domain, respectively.

  12. A best-first tree-searching approach for ML decoding in MIMO system

    KAUST Repository

    Shen, Chung-An

    2012-07-28

    In MIMO communication systems maximum-likelihood (ML) decoding can be formulated as a tree-searching problem. This paper presents a tree-searching approach that combines the features of classical depth-first and breadth-first approaches to achieve close to ML performance while minimizing the number of visited nodes. A detailed outline of the algorithm is given, including the required storage. The effects of storage size on BER performance and complexity in terms of search space are also studied. Our result demonstrates that with a proper choice of storage size the proposed method visits 40% fewer nodes than a sphere decoding algorithm at signal to noise ratio (SNR) = 20dB and by an order of magnitude at 0 dB SNR.

  13. PERFORMANCE OF THE ZERO FORCING PRECODING MIMO BROADCAST SYSTEMS WITH CHANNEL ESTIMATION ERRORS

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Liu Zhanli; Wang Yan; You Xiaohu

    2007-01-01

    In this paper, the effect of channel estimation errors upon the Zero Forcing (ZF) precoding Multiple Input Multiple Output Broadcast (MIMO BC) systems was studied. Based on the two kinds of Gaussian estimation error models, the performance analysis is conducted under different power allocation strategies. Analysis and simulation show that if the covariance of channel estimation errors is independent of the received Signal to Noise Ratio (SNR), imperfect channel knowledge deteriorates the sum capacity and the Bit Error Rate (BER) performance severely. However, under the situation of orthogonal training and the Minimum Mean Square Error (MMSE) channel estimation, the sum capacity and BER performance are consistent with those of the perfect Channel State Information (CSI)with only a performance degradation.

  14. Joint optimization of CQI calculation and interference mitigation for user scheduling in MIMO-OFDM systems

    KAUST Repository

    Sadek, Mirette

    2011-05-01

    In MIMO-OFDM multiuser systems, user scheduling is employed as a means of multiple access. In a downlink scenario, users that share the same subcarriers of an OFDM symbol are separated through precoding in order to achieve space division multiple access (SDMA). User scheduling techniques rely on channel knowledge at the transmitter, namely, the so-called channel quality indicator (CQI). In this paper, we implement a leakage-based precoding algorithm whose purpose is twofold. First, it is used to compute a reliable CQI based on a group of precoding vectors that are adapted to the channel. Then, it implements user scheduling through using the optimum vectors for precoding, thus minimizing interference among users. We also introduce the concept of resource block size adaptivity. The resource block (RB) is defined as the least unit in an OFDM symbol that a user can be assigned to. We propose a variable RB size that adapts to the channel conditions. © 2011 IEEE.

  15. PILOT DECONTAMINATION THROUGH PILOT SEQUENCE HOPPING IN MASSIVE MIMO SYSTEMS

    DEFF Research Database (Denmark)

    2015-01-01

    path between one of the users and one of the base stations define one of the channels. The system comprises a pilot generation unit configured to assign pilot sequences randomly among the users and a pilot processing unit configured to filter the pilot sequences received from a user of interest so...... that the channel coefficient of the channel of the user of interest is determined. The pilot sequences received from the user of interest are contaminated by other non-orthogonal or identical pilot sequences from other users of the cell of interest or other cells. The filter is configured so that the contamination...... caused by the other non-orthogonal or identical pilot sequences from the other users is reduced....

  16. Iterative MMSE Detection for MIMO/BLAST DS-CDMA Systems in Frequency Selective Fading Channels - Achieving High Performance in Fully Loaded Systems

    Science.gov (United States)

    Silva, João Carlos; Souto, Nuno; Cercas, Francisco; Dinis, Rui

    A MMSE (Minimum Mean Square Error) DS-CDMA (Direct Sequence-Code Division Multiple Access) receiver coupled with a low-complexity iterative interference suppression algorithm was devised for a MIMO/BLAST (Multiple Input, Multiple Output / Bell Laboratories Layered Space Time) system in order to improve system performance, considering frequency selective fading channels. The scheme is compared against the simple MMSE receiver, for both QPSK and 16QAM modulations, under SISO (Single Input, Single Output) and MIMO systems, the latter with 2Tx by 2Rx and 4Tx by 4Rx (MIMO order 2 and 4 respectively) antennas. To assess its performance in an existing system, the uncoded UMTS HSDPA (High Speed Downlink Packet Access) standard was considered.

  17. Analysis and compensation for the joint effects of HPA nonlinearity, I/Q imbalance and crosstalk in MIMO beamforming systems

    KAUST Repository

    Qi, Jian

    2011-03-01

    In this paper, we investigate the joint effects of high-power amplifier (HPA) nonlinearity, in-phase/quadrature-phase (I/Q) imbalance and crosstalk, on the performance of multiple-input multiple-output (MIMO) transmit beamforming (TB) systems, and propose a compensation method for the three impairments together. The performance of the MIMO TB system equipped with the proposed compensation scheme is evaluated in terms of average symbol error probability and capacity when transmissions are performed over uncorrelated Rayleigh fading channels. Numerical results are provided and show the effects on performance of several system parameters, namely, the HPA parameters, image-leakage ratio, crosstalk, numbers of antennas, length of pilot symbols and phase-shift keying modulation order. © 2011 IEEE.

  18. A Novel Mirror-Aided Non-imaging Receiver for Indoor 2x2 MIMO Visible Light Communication Systems

    KAUST Repository

    Park, Kihong

    2017-06-07

    Indoor visible light communication (VLC) systems are now possible because of advances in light emitting diode and laser diode technologies. These lighting technologies provide the foundation for multiple-input multiple-output (MIMO) data transmission through visible light. However, the channel matrix can be strongly correlated in indoor MIMO-VLC systems, preventing parallel data streams from being decoded. Here, in $2\\\\times 2$ MIMO-VLC systems, we describe a mirror diversity receiver (MDR) design that reduces the channel correlation by both blocking the reception of light from one specific direction and improving the channel gain from light from another direction by utilizing a double-sided mirror deployed between the receiver\\'s photodetectors. We report on the channel capacity of the MDR system and the optimal height of its mirrors in terms of maximum channel capacity. We also derived analytic results on the effect of rotation on MDR\\'s performance. Based on numerical and experimental results, we show that the double-sided mirror has both constructive and destructive effects on the channel matrix. Our design can be used with previously described non-imaging systems to improve the performance of indoor VLC systems.

  19. Joint Linear Processing for an Amplify-and-Forward MIMO Relay Channel with Imperfect Channel State Information

    Directory of Open Access Journals (Sweden)

    Vandendorpe Luc

    2010-01-01

    Full Text Available The problem of jointly optimizing the source precoder, relay transceiver, and destination equalizer has been considered in this paper for a multiple-input-multiple-output (MIMO amplify-and-forward (AF relay channel, where the channel estimates of all links are assumed to be imperfect. The considered joint optimization problem is nonconvex and does not offer closed-form solutions. However, it has been shown that the optimization of one variable when others are fixed is a convex optimization problem which can be efficiently solved using interior-point algorithms. In this context, an iterative technique with the guaranteed convergence has been proposed for the AF MIMO relay channel that includes the direct link. It has been also shown that, for the double-hop relay case without the receive-side antenna correlations in each hop, the global optimality can be confirmed since the structures of the source precoder, relay transceiver, and destination equalizer have closed forms and the remaining joint power allocation can be solved using Geometric Programming (GP technique under high signal-to-noise ratio (SNR approximation. In the latter case, the performance of the iterative technique and the GP method has been compared with simulations to ensure that the iterative approach gives reasonably good solutions with an acceptable complexity. Moreover, simulation results verify the robustness of the proposed design when compared to the nonrobust design that assumes estimated channels as actual channels.

  20. Channel Characteristics and Performance of MIMO E-SDM Systems in an Indoor Time-Varying Fading Environment

    Directory of Open Access Journals (Sweden)

    Huu Phu Bui

    2010-01-01

    Full Text Available Multiple-input multiple-output (MIMO systems employ advanced signal processing techniques. However, the performance is affected by propagation environments and antenna characteristics. The main contributions of the paper are to investigate Doppler spectrum based on measured data in a typical meeting room and to evaluate the performance of MIMO systems based on an eigenbeam-space division multiplexing (E-SDM technique in an indoor time-varying fading environment, which has various distributions of scatterers, line-of-sight wave existence, and mutual coupling effect among antennas. We confirm that due to the mutual coupling among antennas, patterns of antenna elements are changed and different from an omnidirectional one of a single antenna. Results based on the measured channel data in our measurement campaigns show that received power, channel autocorrelation, and Doppler spectrum are dependent not only on the direction of terminal motion but also on the antenna configuration. Even in the obstructed-line-of-sight environment, observed Doppler spectrum is quite different from the theoretical U-shaped Jakes one. In addition, it has been also shown that a channel change during the time interval between the transmit weight matrix determination and the actual data transmission can degrade the performance of MIMO E-SDM systems.

  1. Performance of Cross-layer Design with Multiple Outdated Estimates in Multiuser MIMO System

    Directory of Open Access Journals (Sweden)

    X. Yu

    2014-09-01

    Full Text Available By combining adaptive modulation (AM and automatic repeat request (ARQ protocol as well as user scheduling, the cross-layer design scheme of multiuser MIMO system with imperfect feedback is presented, and multiple outdated estimates method is proposed to improve the system performance. Based on this method and imperfect feedback information, the closed-form expressions of spectral efficiency (SE and packet error rate (PER of the system subject to the target PER constraint are respectively derived. With these expressions, the system performance can be effectively evaluated. To mitigate the effect of delayed feedback, the variable thresholds (VTs are also derived by means of the maximum a posteriori method, and these VTs include the conventional fixed thresholds (FTs as special cases. Simulation results show that the theoretical SE and PER are in good agreement with the corresponding simulation. The proposed CLD scheme with multiple estimates can obtain higher SE than the existing CLD scheme with single estimate, especially for large delay. Moreover, the CLD scheme with VTs outperforms that with conventional FTs.

  2. A hybrid intelligent controller for a twin rotor MIMO system and its hardware implementation.

    Science.gov (United States)

    Juang, Jih-Gau; Liu, Wen-Kai; Lin, Ren-Wei

    2011-10-01

    This paper presents a fuzzy PID control scheme with a real-valued genetic algorithm (RGA) to a setpoint control problem. The objective of this paper is to control a twin rotor MIMO system (TRMS) to move quickly and accurately to the desired attitudes, both the pitch angle and the azimuth angle in a cross-coupled condition. A fuzzy compensator is applied to the PID controller. The proposed control structure includes four PID controllers with independent inputs in 2-DOF. In order to reduce total error and control energy, all parameters of the controller are obtained by a RGA with the system performance index as a fitness function. The system performance index utilized the integral of time multiplied by the square error criterion (ITSE) to build a suitable fitness function in the RGA. A new method for RGA to solve more than 10 parameters in the control scheme is investigated. For real-time control, Xilinx Spartan II SP200 FPGA (Field Programmable Gate Array) is employed to construct a hardware-in-the-loop system through writing VHDL on this FPGA. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  3. An Interference Cancellation Scheme for High Reliability Based on MIMO Systems

    Directory of Open Access Journals (Sweden)

    Jae-Hyun Ro

    2018-03-01

    Full Text Available This article proposes a new interference cancellation scheme in a half-duplex based two-path relay system. In the conventional two-path relay system, inter-relay-interference (IRI which severely degrades the error performances at a destination occurs because a source and a relay transmit signals simultaneously at a specific time. The proposed scheme removes the IRI at a relay for higher signal-to-interference plus noise ratio (SINR to receive interference free signal at a destination, unlike the conventional relay system, which removes IRI at a destination. To handle the IRI, the proposed scheme uses multiple-input multiple-output (MIMO signal detection at the relays and it makes low-complexity signal processing at a destination which is a usually mobile user. At the relays, the proposed scheme uses the low-complexity QR decomposition-M algorithm (QRD-M to optimally remove the IRI. Also, for obtaining diversity gain, the proposed scheme uses cyclic delay diversity (CDD to transmit the signals at a source and the relays. In simulation results, the error performance for the proposed scheme is better when the distance between one relay and another relay is low unlike the conventional scheme because the QRD-M detects received signal in order of higher post signal-to-noise ratio (SNR.

  4. Performance Analysis of Beamforming in MU-MIMO Systems for Rayleigh Fading Channels

    KAUST Repository

    Hassan, Ahmad K.

    2017-03-25

    This paper characterizes the performance metrics of MU-MIMO systems under Rayleigh fading channels in the presence of both cochannel interference and additive noise with unknown channel state information and known correlation matrices. In the first task, we derive analytical expressions for the cumulative distribution function of the instantaneous signal-to-interference-plus-noise ratio (SINR) for any deterministic beamvectors. As a second task, exact closed-form expressions are derived for the instantaneous capacity, the upper bound on ergodic capacity, and the Gram-Schmidt orthogonalization-based ergodic capacity for similar intra-cell correlation coefficients. Finally, we present the utility of several structured-diagonalization techniques, which can achieve the tractability for the approximate solution of ergodic capacity for both similar as well as different intra-cell correlation matrices. The novelty of this paper is to formulate the received SINR in terms of indefinite quadratic forms, which allows us to use complex residue theory to characterize the system behavior. The analytical expressions obtained closely match simulation results.

  5. Performance Analysis of Beamforming in MU-MIMO Systems for Rayleigh Fading Channels

    KAUST Repository

    Hassan, Ahmad K.; Moinuddin, Muhammad; Al-Saggaf, Ubaid M.; Al-Naffouri, Tareq Y.

    2017-01-01

    This paper characterizes the performance metrics of MU-MIMO systems under Rayleigh fading channels in the presence of both cochannel interference and additive noise with unknown channel state information and known correlation matrices. In the first task, we derive analytical expressions for the cumulative distribution function of the instantaneous signal-to-interference-plus-noise ratio (SINR) for any deterministic beamvectors. As a second task, exact closed-form expressions are derived for the instantaneous capacity, the upper bound on ergodic capacity, and the Gram-Schmidt orthogonalization-based ergodic capacity for similar intra-cell correlation coefficients. Finally, we present the utility of several structured-diagonalization techniques, which can achieve the tractability for the approximate solution of ergodic capacity for both similar as well as different intra-cell correlation matrices. The novelty of this paper is to formulate the received SINR in terms of indefinite quadratic forms, which allows us to use complex residue theory to characterize the system behavior. The analytical expressions obtained closely match simulation results.

  6. Iterative MIMO Turbo Multiuser Detection and Equalization for STTrC-Coded Systems with Unknown Interference

    Directory of Open Access Journals (Sweden)

    Veselinovic Nenad

    2004-01-01

    Full Text Available Iterative multiuser detection in a single-carrier broadband multiple-input multiple-output (MIMO system is studied in this paper. A minimum mean squared error (MMSE low-complexity multiuser receiver is derived for space-division multiple-access (SDMA space-time trellis-coded (STTrC systems in frequency-selective fading channels. The receiver uses MMSE filtering to jointly detect several transmit antennas of the user of interest, while the interference from the undetected transmit antennas, cochannel interference (CCI, and intersymbol interference (ISI are all cancelled by the soft cancellation. The performances of two extreme receiver cases are evaluated. In the first case, only one transmit antenna of the user of interest is detected at a time and the remaining ones are cancelled by soft cancellation. In the second case, all the transmit antennas are detected jointly. The comparison of the two cases shows improvement with the latter one, both in single-user and multiuser communications and in the presence of unknown cochannel interference (UCCI. It is further shown that in the multiuser case, the proposed receivers approach the corresponding single-user bounds. The number of receive antenna elements required to achieve single-user bound is thereby equal to the number of users and not to the total number of transmit antennas.

  7. Regression analysis for LED color detection of visual-MIMO system

    Science.gov (United States)

    Banik, Partha Pratim; Saha, Rappy; Kim, Ki-Doo

    2018-04-01

    Color detection from a light emitting diode (LED) array using a smartphone camera is very difficult in a visual multiple-input multiple-output (visual-MIMO) system. In this paper, we propose a method to determine the LED color using a smartphone camera by applying regression analysis. We employ a multivariate regression model to identify the LED color. After taking a picture of an LED array, we select the LED array region, and detect the LED using an image processing algorithm. We then apply the k-means clustering algorithm to determine the number of potential colors for feature extraction of each LED. Finally, we apply the multivariate regression model to predict the color of the transmitted LEDs. In this paper, we show our results for three types of environmental light condition: room environmental light, low environmental light (560 lux), and strong environmental light (2450 lux). We compare the results of our proposed algorithm from the analysis of training and test R-Square (%) values, percentage of closeness of transmitted and predicted colors, and we also mention about the number of distorted test data points from the analysis of distortion bar graph in CIE1931 color space.

  8. Worst-Case Energy Efficiency Maximization in a 5G Massive MIMO-NOMA System

    Directory of Open Access Journals (Sweden)

    Sunil Chinnadurai

    2017-09-01

    Full Text Available In this paper, we examine the robust beamforming design to tackle the energy efficiency (EE maximization problem in a 5G massive multiple-input multiple-output (MIMO-non-orthogonal multiple access (NOMA downlink system with imperfect channel state information (CSI at the base station. A novel joint user pairing and dynamic power allocation (JUPDPA algorithm is proposed to minimize the inter user interference and also to enhance the fairness between the users. This work assumes imperfect CSI by adding uncertainties to channel matrices with worst-case model, i.e., ellipsoidal uncertainty model (EUM. A fractional non-convex optimization problem is formulated to maximize the EE subject to the transmit power constraints and the minimum rate requirement for the cell edge user. The designed problem is difficult to solve due to its nonlinear fractional objective function. We firstly employ the properties of fractional programming to transform the non-convex problem into its equivalent parametric form. Then, an efficient iterative algorithm is proposed established on the constrained concave-convex procedure (CCCP that solves and achieves convergence to a stationary point of the above problem. Finally, Dinkelbach’s algorithm is employed to determine the maximum energy efficiency. Comprehensive numerical results illustrate that the proposed scheme attains higher worst-case energy efficiency as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA scheme.

  9. Worst-Case Energy Efficiency Maximization in a 5G Massive MIMO-NOMA System.

    Science.gov (United States)

    Chinnadurai, Sunil; Selvaprabhu, Poongundran; Jeong, Yongchae; Jiang, Xueqin; Lee, Moon Ho

    2017-09-18

    In this paper, we examine the robust beamforming design to tackle the energy efficiency (EE) maximization problem in a 5G massive multiple-input multiple-output (MIMO)-non-orthogonal multiple access (NOMA) downlink system with imperfect channel state information (CSI) at the base station. A novel joint user pairing and dynamic power allocation (JUPDPA) algorithm is proposed to minimize the inter user interference and also to enhance the fairness between the users. This work assumes imperfect CSI by adding uncertainties to channel matrices with worst-case model, i.e., ellipsoidal uncertainty model (EUM). A fractional non-convex optimization problem is formulated to maximize the EE subject to the transmit power constraints and the minimum rate requirement for the cell edge user. The designed problem is difficult to solve due to its nonlinear fractional objective function. We firstly employ the properties of fractional programming to transform the non-convex problem into its equivalent parametric form. Then, an efficient iterative algorithm is proposed established on the constrained concave-convex procedure (CCCP) that solves and achieves convergence to a stationary point of the above problem. Finally, Dinkelbach's algorithm is employed to determine the maximum energy efficiency. Comprehensive numerical results illustrate that the proposed scheme attains higher worst-case energy efficiency as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme.

  10. Simultaneous Wireless Information and Power Transfer for MIMO Amplify-and-Forward Relay Systems

    KAUST Repository

    Benkhelifa, Fatma

    2016-03-28

    © 2015 IEEE. In this paper, we investigate two-hop Multiple- Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication systems with simultaneous wireless information and power transfer (SWIPT) at the multi-antenna energy harvesting relay. We derive the optimal source and relay covariance matrices to characterize the achievable region between the source-destination rate and the harvested energy at the relay, namely Rate-Energy (R-E) region. In this context, we consider the ideal scenario where the energy harvester (EH) receiver and the information decoder (ID) receiver at the relay can simultaneously decode the information and harvest the energy at the relay. This scheme provides an outer bound for the achievable R-E region since practical energy harvesting circuits are not yet able to harvest the energy and decode the information simultaneously. Then, we consider more practical schemes which are the power splitting (PS) and the time switching (TS) proposed in [1] and which separate the EH and ID transfer over the power domain and the time domain, respectively. In our study, we derive the boundary of the achievable R- E region and we show the effect of the source transmit power, the relay transmit power and the position of the relay between the source and the destination on the achievable R-E region for the ideal scenario and the two practical schemes.

  11. Scheduling Algorithms for Maximizing Throughput with Zero-Forcing Beamforming in a MIMO Wireless System

    Science.gov (United States)

    Foronda, Augusto; Ohta, Chikara; Tamaki, Hisashi

    Dirty paper coding (DPC) is a strategy to achieve the region capacity of multiple input multiple output (MIMO) downlink channels and a DPC scheduler is throughput optimal if users are selected according to their queue states and current rates. However, DPC is difficult to implement in practical systems. One solution, zero-forcing beamforming (ZFBF) strategy has been proposed to achieve the same asymptotic sum rate capacity as that of DPC with an exhaustive search over the entire user set. Some suboptimal user group selection schedulers with reduced complexity based on ZFBF strategy (ZFBF-SUS) and proportional fair (PF) scheduling algorithm (PF-ZFBF) have also been proposed to enhance the throughput and fairness among the users, respectively. However, they are not throughput optimal, fairness and throughput decrease if each user queue length is different due to different users channel quality. Therefore, we propose two different scheduling algorithms: a throughput optimal scheduling algorithm (ZFBF-TO) and a reduced complexity scheduling algorithm (ZFBF-RC). Both are based on ZFBF strategy and, at every time slot, the scheduling algorithms have to select some users based on user channel quality, user queue length and orthogonality among users. Moreover, the proposed algorithms have to produce the rate allocation and power allocation for the selected users based on a modified water filling method. We analyze the schedulers complexity and numerical results show that ZFBF-RC provides throughput and fairness improvements compared to the ZFBF-SUS and PF-ZFBF scheduling algorithms.

  12. Linearization of the Lorenz system

    International Nuclear Information System (INIS)

    Li, Chunbiao; Sprott, Julien Clinton; Thio, Wesley

    2015-01-01

    A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation

  13. Linearization of the Lorenz system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunbiao, E-mail: goontry@126.com [School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Engineering Technology Research and Development Center of Jiangsu Circulation Modernization Sensor Network, Jiangsu Institute of Commerce, Nanjing 211168 (China); Sprott, Julien Clinton [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States); Thio, Wesley [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2015-05-08

    A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation.

  14. Layered Downlink Precoding for C-RAN Systems with Full Dimensional MIMO

    OpenAIRE

    Kang, Jinkyu; Simeone, Osvaldo; Kang, Joonhyuk; Shamai, Shlomo

    2015-01-01

    The implementation of a Cloud Radio Access Network (C-RAN) with Full Dimensional (FD)-MIMO is faced with the challenge of controlling the fronthaul overhead for the transmission of baseband signals as the number of horizontal and vertical antennas grows larger. This work proposes to leverage the special low-rank structure of FD-MIMO channel, which is characterized by a time-invariant elevation component and a time-varying azimuth component, by means of a layered precoding approach, so as to r...

  15. A Method of Time-Varying Rayleigh Channel Tracking in MIMO Radio System

    Institute of Scientific and Technical Information of China (English)

    GONG Yan-fei; HE Zi-shu; HAN Chun-lin

    2005-01-01

    A method of MIMO channel tracking based on Kalman filter and MMSE-DFE is proposed. The Kalman filter tracks the time-varying channel by using the MMSE-DFE decision and the MMSE-DFE conducts the next decision by using the channel estimates produced by the Kalman filter. Polynomial fitting is used to bridge the gap between the channel estimates produced by the Kalman filter and those needed for the DFE decision. Computer simulation demonstrates that this method can track the MIMO time-varying channel effectively.

  16. Sum-rate analysis of spectrum sharing spatial multiplexing MIMO systems with zero-forcing and multiuser diversity

    KAUST Repository

    Yang, Liang

    2013-06-01

    This paper considers a multiuser spectrum sharing (SS) multiple-input multiple-output (MIMO) system with zero-forcing (ZF) operating in a Rayleigh fading environment. We provide an asymptotic sum-rate analysis to investigate the effects of different parameters on the multiuser diversity gain. For a ZF SS spatial multiplexing system with scheduling, the asymptotic sum-rate scales like Nt log2(Q(Nt Np√K - 1)/N t), where Np denotes the number of antennas of primary receiver, Q is the interference temperature, and K represents the number of secondary transmitters. © 2013 IEEE.

  17. Bit Error Rate Performance of a MIMO-CDMA System Employing Parity-Bit-Selected Spreading in Frequency Nonselective Rayleigh Fading

    Directory of Open Access Journals (Sweden)

    Claude D'Amours

    2011-01-01

    Full Text Available We analytically derive the upper bound for the bit error rate (BER performance of a single user multiple input multiple output code division multiple access (MIMO-CDMA system employing parity-bit-selected spreading in slowly varying, flat Rayleigh fading. The analysis is done for spatially uncorrelated links. The analysis presented demonstrates that parity-bit-selected spreading provides an asymptotic gain of 10log(Nt dB over conventional MIMO-CDMA when the receiver has perfect channel estimates. This analytical result concurs with previous works where the (BER is determined by simulation methods and provides insight into why the different techniques provide improvement over conventional MIMO-CDMA systems.

  18. Dynamical systems and linear algebra

    OpenAIRE

    Colonius, Fritz (Prof.)

    2007-01-01

    Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

  19. A millimetre-wave MIMO radar system for threat detection in urban environments

    Science.gov (United States)

    Kirschner, A. J.; Guetlein, J.; Bertl, S.; Detlefsen, J.

    2012-10-01

    The European Defence Agency (EDA) engages countermeasures against Improvised Explosive Devices (IEDs) by funding several scientific programs on threat awareness, countermeasures IEDs or land-mine detection, in which this work is only one of numerous projects. The program, denoted as Surveillance in an urban environment using mobile sensors (SUM), covers the idea of equipping one or more vehicles of a patrol or a convoy with a set of sensors exploiting different physical principles in order to gain detailed insights of the road situation ahead. In order to give an added value to a conventional visual camera system, measurement data from an infra-red (IR) camera, a radiometer and a millimetre-wave radar are fused with data from an optical image and are displayed on a human-machine-interface (HMI) which shall assist the vehicle's co-driver to identify suspect objects or persons on or next to the road without forcing the vehicle to stop its cruise. This paper shall especially cover the role of the millimetre-wave radar sensor and its different operational modes. Measurement results are discussed. It is possible to alter the antenna mechanically which gives two choices for a field of view and angular resolution trade-off. Furthermore a synthetic aperture radar mode is possible and has been tested successfully. MIMO radar principles like orthogonal signal design were exploited tofrom a virtual array by 4 transmitters and 4 receivers. In joint evaluation, it was possible to detect e.g. grenade shells under cardboard boxes or covered metal barrels which were invisible for optical or infra-red detection.

  20. ASEP of MIMO System with MMSE-OSIC Detection over Weibull-Gamma Fading Channel Subject to AWGGN

    Directory of Open Access Journals (Sweden)

    Keerti Tiwari

    2016-01-01

    Full Text Available Ordered successive interference cancellation (OSIC is adopted with minimum mean square error (MMSE detection to enhance the multiple-input multiple-output (MIMO system performance. The optimum detection technique improves the error rate performance but increases system complexity. Therefore, MMSE-OSIC detection is used which reduces error rate compared to traditional MMSE with low complexity. The system performance is analyzed in composite fading environment that includes multipath and shadowing effects known as Weibull-Gamma (WG fading. Along with the composite fading, a generalized noise that is additive white generalized Gaussian noise (AWGGN is considered to show the impact of wireless scenario. This noise model includes various forms of noise as special cases such as impulsive, Gamma, Laplacian, Gaussian, and uniform. Consequently, generalized Q-function is used to model noise. The average symbol error probability (ASEP of MIMO system is computed for 16-quadrature amplitude modulation (16-QAM using MMSE-OSIC detection in WG fading perturbed by AWGGN. Analytical expressions are given in terms of Fox-H function (FHF. These expressions demonstrate the best fit to simulation results.

  1. Performance analysis for optimum transmission and comparison with maximal ratio transmission for MIMO systems with cochannel interference

    Directory of Open Access Journals (Sweden)

    Lin Sheng-Chou

    2011-01-01

    Full Text Available Abstract This article presents the performance analysis of multiple-input/multiple-output (MIMO systems with quadrature amplitude modulation (QAM transmission in the presence of cochannel interference (CCI in nonfading and flat Rayleigh fading environments. The use of optimum transmission (OT and maximum ratio transmission (MRT is considered and compared. In addition to determining precise results for the performance of QAM in the presence of CCI, it is our another aim in this article to examine the validity of the Gaussian interference model in the MRT-based systems. Nyquist pulse shaping and the effects of cross-channel intersymbol interference produced by CCI due to random symbol of the interfering signals are considered in the precise interference model. The error probability for each fading channel is estimated fast and accurately using Gauss quadrature rules which can approximate the probability density function (pdf of the output residual interference. The results of this article indicate that Gaussian interference model may overestimate the effects of interference, particularly, for high-order MRT-based MIMO systems over fading channels. In addition, OT cannot always outperform MRT due to the significant noise enhancement when OT intends to cancel CCI, depending on the combination of the antennas at the transmitter and the receiver, number of interference and the statistical characteristics of the channel.

  2. Wireless Distributed Antenna MIMO

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception...... of radio-frequency signals, an optical transmitter in the form of an electro-optic conversion unit for each of said plurality of antenna units, each electro-optic conversion unit adapted for converting an RF signal into an optical signal, a plurality of a single core optical fibers for guiding the optical...

  3. An ESPRIT-Based Approach for 2-D Localization of Incoherently Distributed Sources in Massive MIMO Systems

    Science.gov (United States)

    Hu, Anzhong; Lv, Tiejun; Gao, Hui; Zhang, Zhang; Yang, Shaoshi

    2014-10-01

    In this paper, an approach of estimating signal parameters via rotational invariance technique (ESPRIT) is proposed for two-dimensional (2-D) localization of incoherently distributed (ID) sources in large-scale/massive multiple-input multiple-output (MIMO) systems. The traditional ESPRIT-based methods are valid only for one-dimensional (1-D) localization of the ID sources. By contrast, in the proposed approach the signal subspace is constructed for estimating the nominal azimuth and elevation direction-of-arrivals and the angular spreads. The proposed estimator enjoys closed-form expressions and hence it bypasses the searching over the entire feasible field. Therefore, it imposes significantly lower computational complexity than the conventional 2-D estimation approaches. Our analysis shows that the estimation performance of the proposed approach improves when the large-scale/massive MIMO systems are employed. The approximate Cram\\'{e}r-Rao bound of the proposed estimator for the 2-D localization is also derived. Numerical results demonstrate that albeit the proposed estimation method is comparable with the traditional 2-D estimators in terms of performance, it benefits from a remarkably lower computational complexity.

  4. A MIMO-OFDM Testbed, Channel Measurements, and System Considerations for Outdoor-Indoor WiMAX

    Directory of Open Access Journals (Sweden)

    Torres

    2010-01-01

    Full Text Available The design, implementation, and test of a real-time flexible (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing MIMO-OFDM IEEE 802.16 prototype are presented. For the design, a channel measurement campaign on the 3.5 GHz band has been carried out, focusing on outdoor-indoor scenarios. The analysis of measured channels showed that higher capacity can be achieved in case of obstructed scenarios and that (Channel Distribution Information at the Transmitter CDIT capacity is close to (Channel State Information at the Transmitter CSIT with much lower complexity and requirements in terms of channel estimation and feedback. The baseband prototype used an (Field Programmable Gate Array FPGA where enhanced signal processing algorithms are implemented in order to improve system performance. We have shown that for MIMO-OFDM systems, extra signal processing such as enhanced joint channel and frequency offset estimation is needed to obtain a good performance and approach in practice the theoretical capacity improvements.

  5. A MIMO-OFDM Testbed, Channel Measurements, and System Considerations for Outdoor-Indoor WiMAX

    Directory of Open Access Journals (Sweden)

    Víctor P. Gil Jiménez

    2010-01-01

    Full Text Available The design, implementation, and test of a real-time flexible 2×2 (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing MIMO-OFDM IEEE 802.16 prototype are presented. For the design, a channel measurement campaign on the 3.5 GHz band has been carried out, focusing on outdoor-indoor scenarios. The analysis of measured channels showed that higher capacity can be achieved in case of obstructed scenarios and that (Channel Distribution Information at the Transmitter CDIT capacity is close to (Channel State Information at the Transmitter CSIT with much lower complexity and requirements in terms of channel estimation and feedback. The baseband prototype used an (Field Programmable Gate Array FPGA where enhanced signal processing algorithms are implemented in order to improve system performance. We have shown that for MIMO-OFDM systems, extra signal processing such as enhanced joint channel and frequency offset estimation is needed to obtain a good performance and approach in practice the theoretical capacity improvements.

  6. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems.

    Science.gov (United States)

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2015-01-01

    Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.

  7. A multiband dual-standard MIMO antenna system based on monopoles (4G) and connected slots (5G) for future smart phones

    KAUST Repository

    Ikram, M.; Sharawi, M. S.; Shamim, Atif; Sebak, A.

    2018-01-01

    In this work, a 4G/5G multiple-input multiple-output (MIMO) antenna system is presented for smart phone applications. The 4G antenna operates from 1900 to 3212 MHz and 3517 to 3712 MHz with 1312 (69%) and 195 (5.5%) MHz measured bandwidths

  8. A 2 x 2 imaging MIMO system based on LED Visible Light Communications employing space balanced coding and integrated PIN array reception

    DEFF Research Database (Denmark)

    Li, Jiehui; Xu, Yinfan; Shi, Jianyang

    2016-01-01

    In this paper, we proposed a 2 x 2 imaging Multi-Input Multi-Output (MIMO)-Visible Light Communication (VLC) system by employing Space Balanced Coding (SBC) based on two RGB LEDs and integrated PIN array reception. We experimentally demonstrated 1.4-Gbit/s VLC transmission at a distance of 2.5 m...

  9. MIMO over ESPAR with 16-QAM Modulation

    DEFF Research Database (Denmark)

    Han, Bo; Barousis, V.I.; Papadias, C.B.

    2013-01-01

    MIMO systems have become an indispensable part of modern wireless standards, e.g. LTE advanced. However, in applications with strict energy and size constraints, an alternative MIMO scheme with reduced hardware complexity would be attractive. Towards this direction, parasitic antennas with a single...... feeding port have been proposed to emulate MIMO transmission with PSK signaling. In order to support higher order constellations, this letter presents a smart loading scheme that enables the multiplexing of two 16-QAM signals over the air. Accompanying simulations show that this can be achieved by using...

  10. Experimental demonstration of high spectral efficient 4 × 4 MIMO SCMA-OFDM/OQAM radio over multi-core fiber system.

    Science.gov (United States)

    Liu, Chang; Deng, Lei; He, Jiale; Li, Di; Fu, Songnian; Tang, Ming; Cheng, Mengfan; Liu, Deming

    2017-07-24

    In this paper, 4 × 4 multiple-input multiple-output (MIMO) radio over 7-core fiber system based on sparse code multiple access (SCMA) and OFDM/OQAM techniques is proposed. No cyclic prefix (CP) is required by properly designing the prototype filters in OFDM/OQAM modulator, and non-orthogonally overlaid codewords by using SCMA is help to serve more users simultaneously under the condition of using equal number of time and frequency resources compared with OFDMA, resulting in the increase of spectral efficiency (SE) and system capacity. In our experiment, 11.04 Gb/s 4 × 4 MIMO SCMA-OFDM/OQAM signal is successfully transmitted over 20 km 7-core fiber and 0.4 m air distance in both uplink and downlink. As a comparison, 6.681 Gb/s traditional MIMO-OFDM signal with the same occupied bandwidth has been evaluated for both uplink and downlink transmission. The experimental results show that SE could be increased by 65.2% with no bit error rate (BER) performance degradation compared with the traditional MIMO-OFDM technique.

  11. Energy-Efficiency Analysis of Per-Subcarrier Antenna Selection with Peak-Power Reduction in MIMO-OFDM Wireless Systems

    Directory of Open Access Journals (Sweden)

    Ngoc Phuc Le

    2014-01-01

    Full Text Available The use of per-subcarrier antenna subset selection in OFDM wireless systems offers higher system capacity and/or improved link reliability. However, the implementation of the conventional per-subcarrier selection scheme may result in significant fluctuations of the average power and peak power across antennas, which affects the potential benefits of the system. In this paper, power efficiency of high-power amplifiers and energy efficiency in per-subcarrier antenna selection MIMO-OFDM systems are investigated. To deliver the maximum overall power efficiency, we propose a two-step strategy for data-subcarrier allocation. This strategy consists of an equal allocation of data subcarriers based on linear optimization and peak-power reduction via cross-antenna permutations. For analysis, we derive the CCDF (complementary cumulative distribution function of the power efficiency as well as the analytical expressions of the average power efficiency. It is proved from the power-efficiency perspective that the proposed allocation scheme outperforms the conventional scheme. We also show that the improvement in the power efficiency translates into an improved capacity and, in turn, increases energy efficiency of the proposed system. Simulation results are provided to validate our analyses.

  12. Indirect adaptive fuzzy fault-tolerant tracking control for MIMO nonlinear systems with actuator and sensor failures.

    Science.gov (United States)

    Bounemeur, Abdelhamid; Chemachema, Mohamed; Essounbouli, Najib

    2018-05-10

    In this paper, an active fuzzy fault tolerant tracking control (AFFTTC) scheme is developed for a class of multi-input multi-output (MIMO) unknown nonlinear systems in the presence of unknown actuator faults, sensor failures and external disturbance. The developed control scheme deals with four kinds of faults for both sensors and actuators. The bias, drift, and loss of accuracy additive faults are considered along with the loss of effectiveness multiplicative fault. A fuzzy adaptive controller based on back-stepping design is developed to deal with actuator failures and unknown system dynamics. However, an additional robust control term is added to deal with sensor faults, approximation errors, and external disturbances. Lyapunov theory is used to prove the stability of the closed loop system. Numerical simulations on a quadrotor are presented to show the effectiveness of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    Science.gov (United States)

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  14. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  15. On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System

    KAUST Repository

    Makki, Behrooz; Svensson, Tommy; Eriksson, Thomas; Alouini, Mohamed-Slim

    2015-01-01

    In this paper, we investigate the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. We study the effect of the spatial correlation between the antennas on the system performance. Also, the required number of antennas are obtained for different fading conditions. Our results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 2015 IEEE.

  16. On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System

    KAUST Repository

    Makki, Behrooz

    2015-11-12

    In this paper, we investigate the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. We study the effect of the spatial correlation between the antennas on the system performance. Also, the required number of antennas are obtained for different fading conditions. Our results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 2015 IEEE.

  17. Performance Characterization of a Real-Time Massive MIMO System with LOS Mobile Channels

    OpenAIRE

    Harris, Paul; Malkowsky, Steffen; Vieira, Joao; Hassan, Fredrik Tufvesson Wael Boukley; Liu, Liang; Beach, Mark; Armour, Simon; Edfors, Ove

    2017-01-01

    The first measured results for massive multiple input, multiple-output (MIMO) performance in a line-of-sight (LOS) scenario with moderate mobility are presented, with 8 users served in real-time using a 100 antenna base Station (BS) at 3.7 GHz. When such a large number of channels dynamically change, the inherent propagation and processing delay has a critical relationship with the rate of change, as the use of outdated channel information can result in severe detection and precoding inaccura...

  18. Precoding Design of MIMO Amplify-and-Forward Communication System With an Energy Harvesting Relay and Possibly Imperfect CSI

    KAUST Repository

    Benkhelifa, Fatma

    2017-03-02

    In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) in a Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication system where the relay is an energy harvesting (EH) node and harvests the energy the signals transmitted from the source. The harvested energy is partially used to forward signals from the source to the destination, and the remaining energy is stored for other usages. The SWIPT in relay-assisted communication is interesting as long as the relay stores energy from the source and the destination receives successfully the data from the source. In this context, we propose to investigate the source and relay precoders that characterize the relationship between the achievable stored energy at the relay and the achievable sourceto- destination rate, namely the rate-stored energy (R-E) tradeo region. First, we consider the ideal scheme where there is the simultaneous operation of the EH and ID receivers at the relay. Then, we consider practical schemes such as the power splitting (PS) and the time switching (TS) that separate the operation of EH and information decoding (ID) receivers over power domain or time domain, respectively. Moreover, we study the case of imperfect channel state information (CSI) at the relay and the destination and characterize its impact on the achievable R-E region. Through the simulation results, we show the eect of the position of the relay and the channel uncertainty on the achievable R-E regions of all the schemes when the used energy at the relay is constant or variable. We also show that, although it provides an outer bound on the achievable rate-energy region in one-hop MIMO systems, the ideal scheme provides only an upper bound on the maximum achievable end-to-end rate and not an outer bound on the R-E region.

  19. Feedback Systems for Linear Colliders

    International Nuclear Information System (INIS)

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies

  20. Window observers for linear systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  1. Interference Alignment-based Precoding and User Selection with Limited Feedback in Two-cell Downlink Multi-user MIMO Systems

    Directory of Open Access Journals (Sweden)

    Yin Zhu

    2016-05-01

    Full Text Available Interference alignment (IA is a new approach to address interference in modern multiple-input multiple-out (MIMO cellular networks in which interference is an important factor that limits the system throughput. System throughput in most IA implementation schemes is significantly improved only with perfect channel state information and in a high signal-to-noise ratio (SNR region. Designing a simple IA scheme for the system with limited feedback and investigating system performance at a low-to-medium SNR region is important and practical. This paper proposed a precoding and user selection scheme based on partial interference alignment in two-cell downlink multi-user MIMO systems under limited feedback. This scheme aligned inter-cell interference to a predefined direction by designing user’s receive antenna combining vectors. A modified singular value decomposition (SVD-based beamforming method and a corresponding user-selection algorithm were proposed for the system with low rate limited feedback to improve sum rate performance. Simulation results show that the proposed scheme achieves a higher sum rate than traditional schemes without IA. The modified SVD-based beamforming scheme is also superior to the traditional zero-forcing beamforming scheme in low-rate limited feedback systems. The proposed partial IA scheme does not need to collaborate between transmitters and joint design between the transmitter and the users. The scheme can be implemented with low feedback overhead in current MIMO cellular networks.

  2. Multi-User MIMO Across Small Cells

    DEFF Research Database (Denmark)

    Finn, Danny; Ahmadi, Hamed; Cattoni, Andrea Fabio

    2014-01-01

    The main contribution of this work is the proposal and assessment of the MU-MIMO across Small Cells concept. MU-MIMO is the spatial multiplexing of multiple users on a single time-frequency resource. In small cell networks, where the number of users per cell is low, finding suitable sets of users...... to be co-scheduled for MU-MIMO is not always possible. In these cases we propose MU-MIMO-based cell reassignments of users into adjacent cells to enable MU-MIMO operation. From system level simulations we found that, when the initial number of users per small cell is four, cell reassignment results in a 21.......7% increase in the spectral efficiency gain attributed to MU-MIMO, and a higher percentage increase when the initial number of users per cell is lower. Going forward, we will extend this work to also consider energy savings through switching off small cells which are emptied by the reassignment process....

  3. MIMO-OFDM System's Performance Using LDPC Codes for a Mobile Robot

    Science.gov (United States)

    Daoud, Omar; Alani, Omar

    This work deals with the performance of a Sniffer Mobile Robot (SNFRbot)-based spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM) transmission technology. The use of Multi-Input Multi-Output (MIMO)-OFDM technology increases the wireless transmission rate without increasing transmission power or bandwidth. A generic multilayer architecture of the SNFRbot is proposed with low power and low cost. Some experimental results are presented and show the efficiency of sniffing deadly gazes, sensing high temperatures and sending live videos of the monitored situation. Moreover, simulation results show the achieved performance by tackling the Peak-to-Average Power Ratio (PAPR) problem of the used technology using Low Density Parity Check (LDPC) codes; and the effect of combating the PAPR on the bit error rate (BER) and the signal to noise ratio (SNR) over a Doppler spread channel.

  4. On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System: Outage-Limited Scenario

    KAUST Repository

    Makki, Behrooz

    2016-03-22

    This paper investigates the performance of the point-To-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas, which are required to satisfy different outage probability constraints. Our results are obtained for different fading conditions and the effect of the power amplifiers efficiency/feedback error probability on the performance of the MIMO-HARQ systems is analyzed. Then, we use some recent results on the achievable rates of finite block-length codes, to analyze the effect of the codewords lengths on the system performance. Moreover, we derive closed-form expressions for the asymptotic performance of the MIMO-HARQ systems when the number of antennas increases. Our analytical and numerical results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 1972-2012 IEEE.

  5. Systems of Inhomogeneous Linear Equations

    Science.gov (United States)

    Scherer, Philipp O. J.

    Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.

  6. Linear collider systems and costs

    International Nuclear Information System (INIS)

    Loew, G.A.

    1993-05-01

    The purpose of this paper is to examine some of the systems and sub-systems involved in so-called ''conventional'' e + e - linear colliders and to study how their design affects the overall cost of these machines. There are presently a total of at least six 500 GeV c. of m. linear collider projects under study in the world. Aside from TESLA (superconducting linac at 1.3 GHz) and CLIC (two-beam accelerator with main linac at 30GHz), the other four proposed e + e - linear colliders can be considered ''conventional'' in that their main linacs use the proven technique of driving room temperature accelerator sections with pulsed klystrons and modulators. The centrally distinguishing feature between these projects is their main linac rf frequency: 3 GHz for the DESY machine, 11.424 GHz for the SLAC and JLC machines, and 14 GHz for the VLEPP machine. The other systems, namely the electron and positron sources, preaccelerators, compressors, damping rings and final foci, are fairly similar from project to project. Probably more than 80% of the cost of these linear colliders will be incurred in the two main linacs facing each other and it is therefore in their design and construction that major savings or extra costs may be found

  7. Efficient SDM-MIMO Stokes-space equalization

    DEFF Research Database (Denmark)

    Caballero, F. J.Vaquero; Zanaty, A.; Pittala, F.

    2016-01-01

    We propose a novel frequency-domain 6x6 MIMO Stokes-space equalizer and compare its performance to a 6x6 MIMO LMS architecture. This method is suited to overcome DSP complexity and laser linewidth issues in SDM transmission systems....

  8. MIMO capacity for deterministic channel models: sublinear growth

    DEFF Research Database (Denmark)

    Bentosela, Francois; Cornean, Horia; Marchetti, Nicola

    2013-01-01

    . In the current paper, we apply those results in order to study the (Shannon-Foschini) capacity behavior of a MIMO system as a function of the deterministic spread function of the environment and the number of transmitting and receiving antennas. The antennas are assumed to fill in a given fixed volume. Under...... some generic assumptions, we prove that the capacity grows much more slowly than linearly with the number of antennas. These results reinforce previous heuristic results obtained from statistical models of the transfer matrix, which also predict a sublinear behavior....

  9. Alternate transmission relaying based on interference alignment in 3-relay half-duplex MIMO systems

    KAUST Repository

    Park, Seongho; Park, Kihong; Ko, Youngchai; Alouini, Mohamed-Slim

    2012-01-01

    In a half-duplex relaying, the capacity pre-log factor 1/2 is a major drawback in spectral efficiency. This paper proposes a linear precoding/decoding scheme and an alternate relaying protocol in a dual-hop half-duplex system where three relays help the communication between the source and the destination. In our proposed scheme, we consider a phase incoherent method in relays in which the source alternately transmits message signals to the different relays. In addition, we propose a linear interference alignment scheme which can suppress the inter-relay interference resulting from the phase incoherence of relaying. Based on our analysis of degrees of freedom and our simulation results, we show that our proposed scheme achieves additional degrees of freedom compared to the conventional half-duplex relaying. © 2012 IEEE.

  10. Alternate transmission relaying based on interference alignment in 3-relay half-duplex MIMO systems

    KAUST Repository

    Park, Seongho

    2012-09-01

    In a half-duplex relaying, the capacity pre-log factor 1/2 is a major drawback in spectral efficiency. This paper proposes a linear precoding/decoding scheme and an alternate relaying protocol in a dual-hop half-duplex system where three relays help the communication between the source and the destination. In our proposed scheme, we consider a phase incoherent method in relays in which the source alternately transmits message signals to the different relays. In addition, we propose a linear interference alignment scheme which can suppress the inter-relay interference resulting from the phase incoherence of relaying. Based on our analysis of degrees of freedom and our simulation results, we show that our proposed scheme achieves additional degrees of freedom compared to the conventional half-duplex relaying. © 2012 IEEE.

  11. Proactive Spectrum Sharing for SWIPT in MIMO Cognitive Radio Systems Using Antenna Switching Technique

    KAUST Repository

    Benkhelifa, Fatma

    2017-04-24

    In this paper, we consider the simultaneous wireless information and power transfer (SWIPT) for the spectrum sharing (SS) in a multiple-input multiple-output (MIMO) cognitive radio (CR) network. The secondary transmitter (ST) selects only one antenna which maximizes the received signal-to-noise ratio (SNR) at the secondary receiver (SR) and minimizes the interference induced at the primary receiver (PR). Moreover, PR is an energy harvesting (EH) node using the antenna switching (AS) which assigns a subset of its antennas to harvest the energy and assigns the rest to decode its information data. The objective of this work is to show that the SS is advantageous for both SR and PR sides and leads to a win-win situation. To illustrate the incentive of the SS in CR network, we evaluate the energy and data performance metrics in terms of the average harvested energy, the power outage, and the mutual outage probability (MOP) which declares a data outage event if the PR or SR is in an outage. We present some special cases and asymptotic results of the derived analytic results. Through the simulation results, we show the impact of various simulation parameters and the benefits due to the presence of ST.

  12. Acoustic MIMO signal processing

    CERN Document Server

    Huang, Yiteng; Chen, Jingdong

    2006-01-01

    A timely and important book addressing a variety of acoustic signal processing problems under multiple-input multiple-output (MIMO) scenarios. It uniquely investigates these problems within a unified framework offering a novel and penetrating analysis.

  13. Linear operator inequalities for strongly stable weakly regular linear systems

    NARCIS (Netherlands)

    Curtain, RF

    2001-01-01

    We consider the question of the existence of solutions to certain linear operator inequalities (Lur'e equations) for strongly stable, weakly regular linear systems with generating operators A, B, C, 0. These operator inequalities are related to the spectral factorization of an associated Popov

  14. MIMO transmit scheme based on morphological perceptron with competitive learning.

    Science.gov (United States)

    Valente, Raul Ambrozio; Abrão, Taufik

    2016-08-01

    This paper proposes a new multi-input multi-output (MIMO) transmit scheme aided by artificial neural network (ANN). The morphological perceptron with competitive learning (MP/CL) concept is deployed as a decision rule in the MIMO detection stage. The proposed MIMO transmission scheme is able to achieve double spectral efficiency; hence, in each time-slot the receiver decodes two symbols at a time instead one as Alamouti scheme. Other advantage of the proposed transmit scheme with MP/CL-aided detector is its polynomial complexity according to modulation order, while it becomes linear when the data stream length is greater than modulation order. The performance of the proposed scheme is compared to the traditional MIMO schemes, namely Alamouti scheme and maximum-likelihood MIMO (ML-MIMO) detector. Also, the proposed scheme is evaluated in a scenario with variable channel information along the frame. Numerical results have shown that the diversity gain under space-time coding Alamouti scheme is partially lost, which slightly reduces the bit-error rate (BER) performance of the proposed MP/CL-NN MIMO scheme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Linear discrete-time state space realization of a modified quadruple tank system with state estimation using Kalman filter

    DEFF Research Database (Denmark)

    Mohd. Azam, Sazuan Nazrah

    2017-01-01

    In this paper, we used the modified quadruple tank system that represents a multi-input-multi-output (MIMO) system as an example to present the realization of a linear discrete-time state space model and to obtain the state estimation using Kalman filter in a methodical mannered. First, an existing...... part of the Kalman filter is used to estimates the current state, based on the model and the measurements. The static and dynamic Kalman filter is compared and all results is demonstrated through simulations....

  16. Performance Improvement of Space Shift Keying MIMO Systems with Orthogonal Codebook-Based Phase-Rotation Precoding

    Directory of Open Access Journals (Sweden)

    Mohammed Al-Ansi

    2017-01-01

    Full Text Available This paper considers codebook-based precoding for Space Shift Keying (SSK modulation MIMO system. Codebook-based precoding avoids the necessity for full knowledge of Channel State Information (CSI at the transmitter and alleviates the complexity of generating a CSI-optimized precoder. The receiver selects the codeword that maximizes the Minimum Euclidean Distance (MED of the received constellation and feeds back its index to the transmitter. In this paper, we first develop a new accurate closed-form Bit Error Rate (BER for SSK without precoding. Then, we investigate several phase-rotation codebooks with quantized set of phases and systematic structure. Namely, we investigate the Full-Combination, Walsh-Hadamard, Quasi-Orthogonal Sequences, and Orthogonal Array Testing codebooks. In addition, since the size of the Full-Combination codebook may be large, we develop an iterative search method for fast selection of its best codeword. The proposed codebooks significantly improve the BER performance in Rayleigh and Nakagami fading channels, even at high spatial correlation among transmit antennas and CSI estimation error. Moreover, we show that only four phases {+1,+j,-1,-j} are sufficient and further phase granularity does yield significant gain. This avoids hardware multiplication during searching the codebook and applying the codeword.

  17. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System.

    Science.gov (United States)

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2017-08-23

    Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.

  18. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-08-01

    Full Text Available Artificial Neural Networks (ANNs, including Deep Neural Networks (DNNs, have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP. The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.

  19. Widely Linear Blind Adaptive Equalization for Transmitter IQ-Imbalance/Skew Compensation in Multicarrier Systems

    DEFF Research Database (Denmark)

    Porto da Silva, Edson; Zibar, Darko

    2016-01-01

    Simple analytical widely linear complex-valued models for IQ-imbalance and IQ-skew effects in multicarrier transmitters are presented. To compensate for such effects, a 4×4 MIMO widely linear adaptive equalizer is proposed and experimentally validated....

  20. 12 Mode, MIMO-Free OAM Transmission

    DEFF Research Database (Denmark)

    Ingerslev, Kasper; Gregg, Patrick; Galili, Michael

    2017-01-01

    Simultaneous MIMO-free transmission of a record number (12) of orbital angular momentum modes over 1.2 km is demonstrated. WDM compatibility of the system is shown by using 60 WDM channels with 25 GHz spacing and 10 GBaud QPSK.......Simultaneous MIMO-free transmission of a record number (12) of orbital angular momentum modes over 1.2 km is demonstrated. WDM compatibility of the system is shown by using 60 WDM channels with 25 GHz spacing and 10 GBaud QPSK....

  1. MIMO H∞ control of three-axis ship-mounted mobile antenna systems

    Science.gov (United States)

    Kuseyri, İ. Sina

    2018-02-01

    The need for on-line information in any environment has led to the development of mobile satellite communication terminals. These high data-rate terminals require inertial antenna pointing error tolerance within fractions of a degree. However, the base motion of the antenna platform in mobile applications complicates this pointing problem and must be accounted for. Gimbaled motorised pedestals are used to eliminate the effect of disturbance and maintain uninterrupted communication. In this paper, a three-axis ship-mounted antenna on a pedestal gimbal system is studied. Based on the derived dynamic model of the antenna pedestal multi input-multi output PID and H∞ linear controllers are designed to stabilise the antenna to keep its orientation unaltered towards the satellite while the sea waves disturb the antenna. Simulation results are presented to show the stabilisation performance of the system with the synthesised controllers. It is shown through performance comparison and analysis that the proposed H∞ control structure is preferable over PID controlled system in terms of system stability and the disturbance rejection.

  2. 5G MIMO Conformal Microstrip Antenna Design

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2017-01-01

    Full Text Available With the development of wireless communication technology, 5G will develop into a new generation of wireless mobile communication systems. MIMO (multiple-input multiple-output technology is expected to be one of the key technologies in the field of 5G wireless communications. In this paper, 4 pairs of microstrip MIMO conformal antennas of 35 GHz have been designed. Eight-element microstrip Taylor antenna array with series-feeding not only achieves the deviation of the main lobe of the pattern but also increases the bandwidth of the antenna array and reduces sidelobe. MIMO antennas have been fabricated and measured. Measurement results match the simulation results well. The return loss of the antenna at 35 GHz is better than 20 dB, the first sidelobe level is −16 dB, and the angle between the main lobe and the plane of array is 60°.

  3. Spectral and Energy Efficient Low-Overhead Uplink and Downlink Channel Estimation for 5G Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Imran Khan

    2018-01-01

    Full Text Available Uplink and Downlink channel estimation in massive Multiple Input Multiple Output (MIMO systems is an intricate issue because of the increasing channel matrix dimensions. The channel feedback overhead using traditional codebook schemes is very large, which consumes more bandwidth and decreases the overall system efficiency. The purpose of this paper is to decrease the channel estimation overhead by taking the advantage of sparse attributes and also to optimize the Energy Efficiency (EE of the system. To cope with this issue, we propose a novel approach by using Compressed-Sensing (CS, Block Iterative-Support-Detection (Block-ISD, Angle-of-Departure (AoD and Structured Compressive Sampling Matching Pursuit (S-CoSaMP algorithms to reduce the channel estimation overhead and compare them with the traditional algorithms. The CS uses temporal-correlation of time-varying channels to produce Differential-Channel Impulse Response (DCIR among two CIRs that are adjacent in time-slots. DCIR has greater sparsity than the conventional CIRs as it can be easily compressed. The Block-ISD uses spatial-correlation of the channels to obtain the block-sparsity which results in lower pilot-overhead. AoD quantizes the channels whose path-AoDs variation is slower than path-gains and such information is utilized for reducing the overhead. S-CoSaMP deploys structured-sparsity to obtain reliable Channel-State-Information (CSI. MATLAB simulation results show that the proposed CS based algorithms reduce the feedback and pilot-overhead by a significant percentage and also improve the system capacity as compared with the traditional algorithms. Moreover, the EE level increases with increasing Base Station (BS density, UE density and lowering hardware impairments level.

  4. An efficient subband adaptive bit and power allocation algorithm for MIMO-OFDM systems%MIMO-OFDM系统中一种高效的分子带自适应比特功率分配算法

    Institute of Scientific and Technical Information of China (English)

    张世超; 季仲梅; 崔维嘉

    2012-01-01

    自适应比特、功率分配(ABPA)可根据各子载波在频率选择性衰落信道中不同的瞬时增益,动态地分配数据比特和发射功率,从而达到优化系统性能,提高频率效率的目的.针对MIMO-OFDM系统中ABPA算法计算复杂度高的问题,本文提出了一种高效分子带ABPA算法,该算法采用新颖的分簇随机选取的方式进行子带划分及等效,将以子载波为分配单元的Fischer算法扩展为以子带为分配单元的ABPA算法,并对此算法进行改进,使其可在一次迭代过程中剔除多个比特数小于等于0的不可用簇.仿真结果表明,该算法能够在保持系统性能不变的前提下,提高筛选效率,同时可通过选择不同的簇宽度,进一步灵活地调整算法的复杂度,使其在性能与计算量之间取得良好的折衷.%According to each subcarrier's different instantaneous gain in the frequency selective channel, adaptive bit and power allocation (ABPA) can allocate data bits and transmit power dynamically, which can optimize the system performance and improve the frequency spectrum efficiency. Conventional ABPA algorithms in MIMO-OFDM systems have many problems, including high computational complexity, time consuming etc. The paper proposes an efficient sub-band ABPA algorithm, which extends the Fischer algorithm to set the sub-bands as the allocation unit instead of sub-carriers with a novel cluster randomly selecting method, at the same time enhances it by eliminating multiple un-applicable clusters during one iterative process. The simulation results show that the algorithm can increase the screening efficiency while ensure the system performance, at the same time can neatly adjust the computational complexity with choose different bandwidth of cluster, which can realize a good trade off between performance and complexity.

  5. Effectiveness of a fading emulator in evaluating the performance of MIMO systems by comparison with a propagation test

    DEFF Research Database (Denmark)

    Yamamoto, Atsushi; Sakata, T.; Hayashi, T.

    2010-01-01

    This paper presents a MIMO spatial fading emulator, used to represent a street microcell environment. The fading emulator can reproduce a multipath radio propagation environment with either a uniform or non-uniform angular power spectrum (APS) in the horizontal plane. In this paper, we used...

  6. Mitigation of MIMO Co-Channel Interference using robust interference cancellation receiver

    DEFF Research Database (Denmark)

    Rahman, Muhammad Imadur; De Carvalho, Elisabeth; Prasad, Ramjee

    2007-01-01

    (STBC) link may become equivalent to an interfering Spatial Multiplexing (SM) link. Using this knowledge and understanding, we propose an interference cancellation receiver robust to different types of MIMO interferers at cell edge for the Downlink (DL) of cellular systems. The receiver systematically...... performs a multiple symbol processing: this is the appropriate processing when the signal of interest or the signal of interferer is correlated across symbols, which is the case for STBC transmission. We evaluated different link combinations in terms of Signal to Interference and Noise Ratio (SINR......) statistics and Bit Error Rate (BER) performance in cellular Orthogonal Frequency Division Multiple Access (OFDMA) systems. We have found that the proposed multiple-symbol linear interference cancellation receiver performs satisfactorily when any kind of single 'logical' stream MIMO scheme is present...

  7. Angular Domain Data-Assisted Channel Estimation for Pilot Decontamination in Massive MIMO

    Directory of Open Access Journals (Sweden)

    Yihenew Beyene

    2017-01-01

    Full Text Available Massive Multiple-Input-Multiple-Output (M-MIMO system is a promising technology that offers to mobile networks substantial increase in throughput. In Time-Division Duplexing (TDD, the uplink training allows a Base Station (BS to acquire Channel State Information (CSI for both uplink reception and downlink transmission. This is essential for M-MIMO systems where downlink training pilots would consume large portion of the bandwidth. In densely populated areas, pilot symbols are reused among neighboring cells. Pilot contamination is the fundamental bottleneck on the performance of M-MIMO systems. Pilot contamination effect in antenna arrays can be mitigated by treating the channel estimation problem in angular domain where channel sparsity can be exploited. In this paper, we introduce a codebook that projects the channel into orthogonal beams and apply Minimum Mean-Squared Error (MMSE criterion to estimate the channel. We also propose data-aided channel covariance matrix estimation algorithm for angular domain MMSE channel estimator by exploiting properties of linear antenna array. The algorithm is based on simple linear operations and no matrix inversion is involved. Numerical results show that the algorithm performs well in mitigating pilot contamination where the desired channel and other interfering channels span overlapping angle-of-arrivals.

  8. Robust model reference adaptive output feedback tracking for uncertain linear systems with actuator fault based on reinforced dead-zone modification.

    Science.gov (United States)

    Bagherpoor, H M; Salmasi, Farzad R

    2015-07-01

    In this paper, robust model reference adaptive tracking controllers are considered for Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) linear systems containing modeling uncertainties, unknown additive disturbances and actuator fault. Two new lemmas are proposed for both SISO and MIMO, under which dead-zone modification rule is improved such that the tracking error for any reference signal tends to zero in such systems. In the conventional approach, adaption of the controller parameters is ceased inside the dead-zone region which results tracking error, while preserving the system stability. In the proposed scheme, control signal is reinforced with an additive term based on tracking error inside the dead-zone which results in full reference tracking. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed approach. Closed loop system stability and zero tracking error are proved by considering a suitable Lyapunov functions candidate. It is shown that the proposed control approach can assure that all the signals of the close loop system are bounded in faulty conditions. Finally, validity and performance of the new schemes have been illustrated through numerical simulations of SISO and MIMO systems in the presence of actuator faults, modeling uncertainty and output disturbance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. A novel mirror diversity receiver for indoor MIMO visible light

    KAUST Repository

    Park, Ki-Hong; Alheadary, Wael G.; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we propose and study a non-imaging receiver design reducing the correlation of channel matrix for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems. Contrary to previous works, our proposed mirror

  10. Dynamic linearization system for a radiation gauge

    International Nuclear Information System (INIS)

    Panarello, J.A.

    1977-01-01

    The linearization system and process converts a high resolution non-linear analog input signal, representative of the thickness of an object, into a high resolution linear analog output signal suitable for use in driving a variety of output devices. The system requires only a small amount of memory for storing pre-calculated non-linear correction coefficients. The system channels the input signal to separate circuit paths so that it may be used directly to; locate an appropriate correction coefficient; develop a correction term after an appropriate correction coefficient is located; and develop a linearized signal having the same high resolution inherent in the input signal. The system processes the linearized signal to compensate for the possible errors introduced by radiation source noise. The processed linearized signal is the high resolution linear analog output signal which accurately represents the thickness of the object being gauged

  11. DFT based spatial multiplexing and maximum ratio transmission for mm-wawe large MIMO

    DEFF Research Database (Denmark)

    Phan-Huy, D.-T.; Tölli, A.; Rajatheva, N.

    2014-01-01

    -SM-MRT). When the DFT-SM scheme alone is used, the data streams are either mapped onto different angles of departures in the case of aligned linear arrays, or mapped onto different orbital angular momentums in the case of aligned circular arrays. Maximum ratio transmission pre-equalizes the channel......By using large point-to-point multiple input multiple output (MIMO), spatial multiplexing of a large number of data streams in wireless communications using millimeter-waves (mm-waves) can be achieved. However, according to the antenna spacing and transmitter-receiver distance, the MIMO channel...... is likely to be ill-conditioned. In such conditions, highly complex schemes such as the singular value decomposition (SVD) are necessary. In this paper, we propose a new low complexity system called discrete Fourier transform based spatial multiplexing (DFT-SM) with maximum ratio transmission (DFT...

  12. Linear quadratic optimization for positive LTI system

    Science.gov (United States)

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  13. An adaptive noise cancelling system used for beam control at the Stanford Linear Accelerator Center

    International Nuclear Information System (INIS)

    Himel, T.; Allison, S.; Grossberg, P.; Hendrickson, L.; Sass, R.; Shoaee, H.

    1993-06-01

    The SLAC Linear Collider now has a total of twenty-four beam-steering feedback loops used to keep the electron and positron beams on their desired trajectories. Seven of these loops measure and control the same beam as it proceeds down the linac through the arcs to the final focus. Ideally by each loop should correct only for disturbances that occur between it and the immediate upstream loop. In fact, in the original system each loop corrected for all upstream disturbances. This resulted in undesirable over-correction and ringing. We added MIMO (Multiple Input Multiple Output) adaptive noise cancellers to separate the signal we wish to correct from disturbances further upstream. This adaptive control improved performance in the 1992 run

  14. A Design of Double Broadband MIMO Antenna

    Directory of Open Access Journals (Sweden)

    Yanfeng Geng

    2015-01-01

    Full Text Available The MIMO antenna applied to LTE mobile system should be miniaturization and can work in the current communication frequency band; isolation between each antenna unit also should be good so as to reduce loss of radio wave energy and improve the antenna performance of the MIMO system. This paper puts forward the design scheme of a broadband MIMO double antenna. And the design of antenna unit and debugging and related technical measures, such as bending antenna bracket, are both presented; the integration design of high isolation of ultra broadband MIMO antenna is realized on the plate with the volume of 100 × 52 × 0.8 mm3; antenna working bands are 698 MHz~960 MHz and 1710 MHz~2700 MHz; in the whole spectrum, the 10 dB of port isolation can be basically achieved; in low frequency band, the isolation degree of antenna port can reach 12 dB.

  15. Channel capacity of TDD-OFDM-MIMO for multiple access points in a wireless single-frequency-network

    DEFF Research Database (Denmark)

    Takatori, Y.; Fitzek, Frank; Tsunekawa, K.

    2005-01-01

    MIMO data transmission scheme, which combines Single-Frequency-Network (SFN) with TDD-OFDM-MIMO applied for wireless LAN networks. In our proposal, we advocate to use SFN for multiple access points (MAP) MIMO data transmission. The goal of this approach is to achieve very high channel capacity in both......The multiple-input-multiple-output (MIMO) technique is the most attractive candidate to improve the spectrum efficiency in the next generation wireless communication systems. However, the efficiency of MIMO techniques reduces in the line of sight (LOS) environments. In this paper, we propose a new...

  16. FUNDAMENTAL MATRIX OF LINEAR CONTINUOUS SYSTEM IN THE PROBLEM OF ESTIMATING ITS TRANSPORT DELAY

    Directory of Open Access Journals (Sweden)

    N. A. Dudarenko

    2014-09-01

    Full Text Available The paper deals with the problem of quantitative estimation for transport delay of linear continuous systems. The main result is received by means of fundamental matrix of linear differential equations solutions specified in the normal Cauchy form for the cases of SISO and MIMO systems. Fundamental matrix has the dual property. It means that the weight function of the system can be formed as a free motion of systems. Last one is generated by the vector of initial system conditions, which coincides with the matrix input of the system being researched. Thus, using the properties of the system- solving for fundamental matrix has given the possibility to solve the problem of estimating transport linear continuous system delay without the use of derivation procedure in hardware environment and without formation of exogenous Dirac delta function. The paper is illustrated by examples. The obtained results make it possible to solve the problem of modeling the pure delay links using consecutive chain of aperiodic links of the first order with the equal time constants. Modeling results have proved the correctness of obtained computations. Knowledge of transport delay can be used when configuring multi- component technological complexes and in the diagnosis of their possible functional degeneration.

  17. MIMO Technologies in 3GPP LTE and LTE-Advanced

    Directory of Open Access Journals (Sweden)

    Zhang Jianzhong(Charlie

    2009-01-01

    Full Text Available Abstract 3rd Generation Partnership Project (3GPP has recently completed the specification of the Long Term Evolution (LTE standard. Majority of the world's operators and vendors are already committed to LTE deployments and developments, making LTE the market leader in the upcoming evolution to 4G wireless communication systems. Multiple input multiple output (MIMO technologies introduced in LTE such as spatial multiplexing, transmit diversity, and beamforming are key components for providing higher peak rate at a better system efficiency, which are essential for supporting future broadband data service over wireless links. Further extension of LTE MIMO technologies is being studied under the 3GPP study item "LTE-Advanced" to meet the requirement of IMT-Advanced set by International Telecommunication Union Radiocommunication Sector (ITU-R. In this paper, we introduce various MIMO technologies employed in LTE and provide a brief overview on the MIMO technologies currently discussed in the LTE-Advanced forum.

  18. On pole structure assignment in linear systems

    Czech Academy of Sciences Publication Activity Database

    Loiseau, J.-J.; Zagalak, Petr

    2009-01-01

    Roč. 82, č. 7 (2009), s. 1179-1192 ISSN 0020-7179 R&D Projects: GA ČR(CZ) GA102/07/1596 Institutional research plan: CEZ:AV0Z10750506 Keywords : linear systems * linear state feedback * pole structure assignment Subject RIV: BC - Control Systems Theory Impact factor: 1.124, year: 2009 http://library.utia.cas.cz/separaty/2009/AS/zagalak-on pole structure assignment in linear systems.pdf

  19. Robust Transceiver with Tomlinson-Harashima Precoding for Amplify-and-Forward MIMO Relaying Systems

    KAUST Repository

    Xing, Chengwen; Xia, Minghua; Gao, Feifei; Wu, Yik-Chung

    2012-01-01

    forwarding matrices at relays and linear equalizer at destination is proposed. With novel applications of elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the transceiver design problem reduces to a much simpler one with only scalar variables which can be efficiently solved. Finally, the performance advantage of the proposed robust design over non-robust design is demonstrated by simulation results.

  20. Performance Analysis of Virtual MIMO Relaying Schemes Based on Detect–Split–Forward

    KAUST Repository

    Al-Basit, Suhaib M.; Al-Ghadhban, Samir; Zummo, Salam A.

    2014-01-01

    © 2014, Springer Science+Business Media New York. Virtual multi-input multi-output (vMIMO) schemes in wireless communication systems improve coverage, throughput, capacity, and quality of service. In this paper, we propose three uplink vMIMO relaying schemes based on detect–split–forward (DSF). In addition, we investigate the effect of several physical parameters such as distance, modulation type and number of relays. Furthermore, an adaptive vMIMO DSF scheme based on VBLAST and STBC is proposed. In order to do that, we provide analytical tools to evaluate the performance of the propose vMIMO relaying scheme.

  1. Performance Analysis of Virtual MIMO Relaying Schemes Based on Detect–Split–Forward

    KAUST Repository

    Al-Basit, Suhaib M.

    2014-10-29

    © 2014, Springer Science+Business Media New York. Virtual multi-input multi-output (vMIMO) schemes in wireless communication systems improve coverage, throughput, capacity, and quality of service. In this paper, we propose three uplink vMIMO relaying schemes based on detect–split–forward (DSF). In addition, we investigate the effect of several physical parameters such as distance, modulation type and number of relays. Furthermore, an adaptive vMIMO DSF scheme based on VBLAST and STBC is proposed. In order to do that, we provide analytical tools to evaluate the performance of the propose vMIMO relaying scheme.

  2. Displacement measurement system for linear array detector

    International Nuclear Information System (INIS)

    Zhang Pengchong; Chen Ziyu; Shen Ji

    2011-01-01

    It presents a set of linear displacement measurement system based on encoder. The system includes displacement encoders, optical lens and read out circuit. Displacement read out unit includes linear CCD and its drive circuit, two amplifier circuits, second order Butterworth low-pass filter and the binarization circuit. The coding way is introduced, and various parts of the experimental signal waveforms are given, and finally a linear experimental test results are given. The experimental results are satisfactory. (authors)

  3. Numerical solution of large sparse linear systems

    International Nuclear Information System (INIS)

    Meurant, Gerard; Golub, Gene.

    1982-02-01

    This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr

  4. Balanced truncation for linear switched systems

    DEFF Research Database (Denmark)

    Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef

    2013-01-01

    In this paper, we present a theoretical analysis of the model reduction algorithm for linear switched systems from Shaker and Wisniewski (2011, 2009) and . This algorithm is a reminiscence of the balanced truncation method for linear parameter varying systems (Wood et al., 1996) [3]. Specifically...

  5. Study on sampling of continuous linear system based on generalized Fourier transform

    Science.gov (United States)

    Li, Huiguang

    2003-09-01

    In the research of signal and system, the signal's spectrum and the system's frequency characteristic can be discussed through Fourier Transform (FT) and Laplace Transform (LT). However, some singular signals such as impulse function and signum signal don't satisfy Riemann integration and Lebesgue integration. They are called generalized functions in Maths. This paper will introduce a new definition -- Generalized Fourier Transform (GFT) and will discuss generalized function, Fourier Transform and Laplace Transform under a unified frame. When the continuous linear system is sampled, this paper will propose a new method to judge whether the spectrum will overlap after generalized Fourier transform (GFT). Causal and non-causal systems are studied, and sampling method to maintain system's dynamic performance is presented. The results can be used on ordinary sampling and non-Nyquist sampling. The results also have practical meaning on research of "discretization of continuous linear system" and "non-Nyquist sampling of signal and system." Particularly, condition for ensuring controllability and observability of MIMO continuous systems in references 13 and 14 is just an applicable example of this paper.

  6. Observability of linear systems with saturated outputs

    NARCIS (Netherlands)

    Koplon, R.; Sontag, E.D.; Hautus, M.L.J.

    1994-01-01

    We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.

  7. Adaptive Backstepping-Based Neural Tracking Control for MIMO Nonlinear Switched Systems Subject to Input Delays.

    Science.gov (United States)

    Niu, Ben; Li, Lu

    2018-06-01

    This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.

  8. Human Posture Identification Using a MIMO Array

    OpenAIRE

    Dai Sasakawa; Naoki Honma; Takeshi Nakayama; Shoichi Iizuka

    2018-01-01

    The elderly are constantly in danger of falling and injuring themselves without anyone realizing it. A safety-monitoring system based on microwaves can ease these concerns. The authors have proposed safety-monitoring systems that use multiple-input multiple-output (MIMO) radar to localize persons by capturing their biological activities such as respiration. However, our studies to date have focused on localization, which is easier to achieve than an estimation of human postures. This paper pr...

  9. Control Law Design for Twin Rotor MIMO System with Nonlinear Control Strategy

    Directory of Open Access Journals (Sweden)

    M. Ilyas

    2016-01-01

    Full Text Available Modeling of complex air vehicles is a challenging task due to high nonlinear behavior and significant coupling effect between rotors. Twin rotor multi-input multioutput system (TRMS is a laboratory setup designed for control experiments, which resembles a helicopter with unstable, nonlinear, and coupled dynamics. This paper focuses on the design and analysis of sliding mode control (SMC and backstepping controller for pitch and yaw angle control of main and tail rotor of the TRMS under parametric uncertainty. The proposed control strategy with SMC and backstepping achieves all mentioned limitations of TRMS. Result analysis of SMC and backstepping control schemes elucidates that backstepping provides efficient behavior with the parametric uncertainty for twin rotor system. Chattering and oscillating behaviors of SMC are removed with the backstepping control scheme considering the pitch and yaw angle for TRMS.

  10. Sensitivity Synthesis for MIMO Systems: A Multi Objective H^2 Approach

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1996-01-01

    A series of multi objective QTR H-infinity designproblems are considered in this paper. The problems are formulatedas a number of coupled QTR H-infinity design problems. TheseQTR H-infinity problems can be formulated as sensitivityproblems, complementary sensitivity problems, or control...... sensitivityproblems for every output (or input) in the system. It turns out thatthese multi objective QTR H-infinity design problems, based ona number of different types of sensitivity problems, can be exactlydecoupled into k\\QTR H-infinity sensitivity problems for stablesystems, where k is the number of outputs (for...... unstable systems,independent stabilization is required). Further, it is shown how to usesimilar techniques to incorporate simultaneous specifications for differentcontrol objectives such as QTR H-infinity, etc., for the sensitivities....

  11. Isolators Including Main Spring Linear Guide Systems

    Science.gov (United States)

    Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)

    2017-01-01

    Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.

  12. Mean value-based power allocation and ratio selection for MIMO cognitive radio systems

    KAUST Repository

    Tourki, Kamel; Qaraqe, Khalid A.; Alouini, Mohamed-Slim

    2013-01-01

    In this paper, we consider a spectrum sharing cognitive radio system with ratio selection using a mean value-based power allocation strategy. We first provide the exact statistics in terms of probability density function and cumulative density function of the secondary channel gain as well as of the interference channel gain. These statistics are then used to derive exact closed form expression of the secondary outage probability. Furthermore, asymptotical analysis is derived and generalized diversity gain is deduced. We validate our analysis with simulation results in a Rayleigh fading environment. © 2013 IEEE.

  13. Mean value-based power allocation and ratio selection for MIMO cognitive radio systems

    KAUST Repository

    Tourki, Kamel

    2013-06-01

    In this paper, we consider a spectrum sharing cognitive radio system with ratio selection using a mean value-based power allocation strategy. We first provide the exact statistics in terms of probability density function and cumulative density function of the secondary channel gain as well as of the interference channel gain. These statistics are then used to derive exact closed form expression of the secondary outage probability. Furthermore, asymptotical analysis is derived and generalized diversity gain is deduced. We validate our analysis with simulation results in a Rayleigh fading environment. © 2013 IEEE.

  14. Low-Bit Rate Feedback Strategies for Iterative IA-Precoded MIMO-OFDM-Based Systems

    Science.gov (United States)

    Teodoro, Sara; Silva, Adão; Dinis, Rui; Gameiro, Atílio

    2014-01-01

    Interference alignment (IA) is a promising technique that allows high-capacity gains in interference channels, but which requires the knowledge of the channel state information (CSI) for all the system links. We design low-complexity and low-bit rate feedback strategies where a quantized version of some CSI parameters is fed back from the user terminal (UT) to the base station (BS), which shares it with the other BSs through a limited-capacity backhaul network. This information is then used by BSs to perform the overall IA design. With the proposed strategies, we only need to send part of the CSI information, and this can even be sent only once for a set of data blocks transmitted over time-varying channels. These strategies are applied to iterative MMSE-based IA techniques for the downlink of broadband wireless OFDM systems with limited feedback. A new robust iterative IA technique, where channel quantization errors are taken into account in IA design, is also proposed and evaluated. With our proposed strategies, we need a small number of quantization bits to transmit and share the CSI, when comparing with the techniques used in previous works, while allowing performance close to the one obtained with perfect channel knowledge. PMID:24678274

  15. Secrecy Outage of Max-Min TAS Scheme in MIMO-NOMA Systems

    KAUST Repository

    Lei, Hongjiang

    2018-04-09

    This paper considers a secure non-orthogonal multiple access system, where confidential messages are transmitted from a base station to multiple legitimate destinations and wiretapped by multiple illegitimate receivers. It is assumed that all the channels experience Nakagami-m fading model and all the nodes are equipped with multiple antennas, respectively. Both non-colluding and colluding eavesdroppers are respectively considered. Max-min (MM) transmit antenna selection (TAS) strategy is adopted to improve the secrecy performance of the target system, in which both users in user paring are considered simultaneously. In particular, closed-form expressions for the cumulative distribution function of the signal-to-interference-noise ratio at the legitimate user are derived firstly. Then we obtain the exact and asymptotic analytical results in a closed form for the secrecy outage probability of MM TAS scheme. Monte-Carlo simulation results are presented to corroborate the correctness of the analysis. The results show that the secrecy diversity order is zero and non-zero for fixed and dynamic power allocations, respectively.

  16. Secrecy Outage of Max-Min TAS Scheme in MIMO-NOMA Systems

    KAUST Repository

    Lei, Hongjiang; Zhang, Jianming; Park, Kihong; Xu, Peng; Zhang, Zufan; Pan, Gaofeng; Alouini, Mohamed-Slim

    2018-01-01

    This paper considers a secure non-orthogonal multiple access system, where confidential messages are transmitted from a base station to multiple legitimate destinations and wiretapped by multiple illegitimate receivers. It is assumed that all the channels experience Nakagami-m fading model and all the nodes are equipped with multiple antennas, respectively. Both non-colluding and colluding eavesdroppers are respectively considered. Max-min (MM) transmit antenna selection (TAS) strategy is adopted to improve the secrecy performance of the target system, in which both users in user paring are considered simultaneously. In particular, closed-form expressions for the cumulative distribution function of the signal-to-interference-noise ratio at the legitimate user are derived firstly. Then we obtain the exact and asymptotic analytical results in a closed form for the secrecy outage probability of MM TAS scheme. Monte-Carlo simulation results are presented to corroborate the correctness of the analysis. The results show that the secrecy diversity order is zero and non-zero for fixed and dynamic power allocations, respectively.

  17. Exact performance analysis of MIMO cognitive radio systems using transmit antenna selection

    KAUST Repository

    Tourki, Kamel

    2014-03-01

    We consider in this paper, a spectrum sharing cognitive radio system with a ratio selection scheme; where one out of N independent-and-identically- distributed transmit antennas is selected such that the ratio of the secondary transmitter (ST) to the secondary receiver (SR) channel gain to the interference from the ST to the primary receiver (PR) channel gain is maximized. Although previous works considered perfect, outdated, or partial channel state information at the transmitter, we stress that using such assumptions may lead to a feedback overhead for updating the SR with the ST-PR interference channel estimation. Considering only statistical knowledge of the ST-PR channel gain, we investigate a ratio selection scheme using a mean value (MV)-based power allocation strategy referred to as MV-based scheme. We first provide the exact statistics in terms of probability density function and cumulative distribution function of the secondary channel gain as well as of the interference channel gain. Furthermore, we derive exact cumulative density function of the received signal-to-noise ratio at the SR where the ST uses a power allocation based on instantaneous perfect channel state information (CSI) referred to as CSI-based scheme. These statistics are then used to derive exact closed form expressions of the outage probability, symbol error rate, and ergodic capacity of the secondary system when the interference channel from the primary transmitter (PT) to the SR is ignored. Furthermore, an asymptotical analysis is also carried out for the MV-based scheme as well as for the CSI-based scheme to derive the generalized diversity gain for each. Subsequently, we address the performance analysis based on exact statistics of the combined signal-to-interference-plus- noise ratio at the SR of the more challenging case; when the PT-SR interference channel is considered. Numerical results in a Rayleigh fading environment manifest that the MV-based scheme outperforms the CSI

  18. Precoder Design and Power Allocation for MIMO Cognitive Radio Two-Way Relaying Systems

    KAUST Repository

    Sboui, Lokman

    2016-08-11

    In this paper, we study a multiple-antenna two-way relaying (TWR) cognitive radio (CR) system. A space alignment (SA) technique is adopted by the secondary users (SUs) to avoid interference with the primary users (PUs). We derive the optimal power allocation that maximizes the TWR achievable SU sum- rate while respecting the total power budget and the relay power constraints. We also analyze the case in which the relay is able to optimize its gain matrix structure to enhance the SU sum-rate. In the numerical results, we quantify the sum-rate gain of using the SA in the TWR CR and we show that the SU sum-rate is very limited when the relay power is low or the PU power and its resulting interference are high. In addition, we optimize the relay gain using an iterative algorithm and compare between different relay matrix structures.

  19. Information-guided communications in MIMO systems with channel state impairments

    KAUST Repository

    Yang, Yuli

    2013-06-20

    Information-guided channel hopping (IGCH) is a promising technique for high-data-rate communications using multiple antennas for information mapping at the transmitter and optional antenna diversity at the receiver. Compared with some popular multi-antenna techniques, the advantage of this scheme is proven in ideal channel conditions, where the channel is spatially white and the perfect channel state information is assumed available at the receiver. The main objective of this paper is to present an information theoretical study on IGCH in realistic propagation environments with channel degeneracy due to spatial correlation and keyhole phenomena as well as imperfect channel estimation. It is proven that good performance promised by IGCH can be achieved in a variety of non-ideal channel conditions. Moreover, the analysis in this paper provides a convenient tool for the corresponding system design in practical operating environments. © 2013 John Wiley & Sons, Ltd.

  20. Information-guided communications in MIMO systems with channel state impairments

    KAUST Repository

    Yang, Yuli; Aï ssa, Sonia

    2013-01-01

    Information-guided channel hopping (IGCH) is a promising technique for high-data-rate communications using multiple antennas for information mapping at the transmitter and optional antenna diversity at the receiver. Compared with some popular multi-antenna techniques, the advantage of this scheme is proven in ideal channel conditions, where the channel is spatially white and the perfect channel state information is assumed available at the receiver. The main objective of this paper is to present an information theoretical study on IGCH in realistic propagation environments with channel degeneracy due to spatial correlation and keyhole phenomena as well as imperfect channel estimation. It is proven that good performance promised by IGCH can be achieved in a variety of non-ideal channel conditions. Moreover, the analysis in this paper provides a convenient tool for the corresponding system design in practical operating environments. © 2013 John Wiley & Sons, Ltd.

  1. SDN Controlled mmWave Massive MIMO Hybrid Precoding for 5G Heterogeneous Mobile Systems

    Directory of Open Access Journals (Sweden)

    Na Chen

    2016-01-01

    Full Text Available In 5G mobile network, millimeter wave (mmWave and heterogeneous networks (Hetnets are significant techniques to sustain coverage and spectral efficiency. In this paper, we utilize the hybrid precoding to overcome hardware constraints on the analog-only beamforming in mmWave systems. Particularly, we identify the complicated antenna coordination and vast spatial domain information as the outstanding challenges in mmWave Hetnets. In our work, we employ software defined network (SDN to accomplish radio resource management (RRM and achieve flexible spacial coordination in mmWave Hetnets. In our proposed scheme, SDN controller is responsible for collecting the user channel state information (CSI and applying hybrid precoding based on the calculated null-space of victim users. Simulation results show that our design can effectively reduce the interference to victim users and support high quality of service.

  2. Linear systems a measurement based approach

    CERN Document Server

    Bhattacharyya, S P; Mohsenizadeh, D N

    2014-01-01

    This brief presents recent results obtained on the analysis, synthesis and design of systems described by linear equations. It is well known that linear equations arise in most branches of science and engineering as well as social, biological and economic systems. The novelty of this approach is that no models of the system are assumed to be available, nor are they required. Instead, a few measurements made on the system can be processed strategically to directly extract design values that meet specifications without constructing a model of the system, implicitly or explicitly. These new concepts are illustrated by applying them to linear DC and AC circuits, mechanical, civil and hydraulic systems, signal flow block diagrams and control systems. These applications are preliminary and suggest many open problems. The results presented in this brief are the latest effort in this direction and the authors hope these will lead to attractive alternatives to model-based design of engineering and other systems.

  3. Modified MIMO Cube for Enhanced Channel Capacity

    Directory of Open Access Journals (Sweden)

    Lajos Nagy

    2012-01-01

    Full Text Available This paper deals with the optimization of MIMO antenna elements' position in modified MIMO cube for getting maximal channel capacity in indoor environment. The dependence of the channel capacity on the antenna orientation was analyzed by simulations. We have also examined the effect of the frequency dependence of the antenna system (in case of conjugate matching and nonconjugate matching for the channel capacity. Based on the simulation results in the created and measured antenna system, the antennas were at a right angle to each other. At the two chosen different structures, we measured the antenna parameters and the channel capacity. In this paper, we present the results of the measurements which clearly confirm our simulations. We will point out the differences between the two antenna structures.

  4. Human Posture Identification Using a MIMO Array

    Directory of Open Access Journals (Sweden)

    Dai Sasakawa

    2018-03-01

    Full Text Available The elderly are constantly in danger of falling and injuring themselves without anyone realizing it. A safety-monitoring system based on microwaves can ease these concerns. The authors have proposed safety-monitoring systems that use multiple-input multiple-output (MIMO radar to localize persons by capturing their biological activities such as respiration. However, our studies to date have focused on localization, which is easier to achieve than an estimation of human postures. This paper proposes a human posture identification scheme based on height and a Doppler radar cross section (RCS as estimated by a MIMO array. This scheme allows smart home applications to dispense with contact and wearable devices. Experiments demonstrate that this method can identify the supine position (i.e., after a fall with 100% accuracy, and the average identification rate is 95.0%.

  5. Final focus systems for linear colliders

    International Nuclear Information System (INIS)

    Erickson, R.A.

    1987-11-01

    The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs

  6. On deformations of linear differential systems

    NARCIS (Netherlands)

    Gontsov, R.R.; Poberezhnyi, V.A.; Helminck, G.F.

    2011-01-01

    This article concerns deformations of meromorphic linear differential systems. Problems relating to their existence and classification are reviewed, and the global and local behaviour of solutions to deformation equations in a neighbourhood of their singular set is analysed. Certain classical

  7. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    59, No. 5. — journal of. November 2002 physics pp. 849–858. Superconducting linear accelerator system for NSC ... cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indige- ... Prototype resonator was.

  8. MIMO feed-forward design in wafer scanners using a gradient approximation-based algorithm

    NARCIS (Netherlands)

    Heertjes, M.F.; Hennekens, D.W.T.; Steinbuch, M.

    2010-01-01

    An experimental demonstration is given of a data-based multi-input multi-output (MIMO) feed-forward control design applied to the motion systems of a wafer scanner. Atop a nominal single-input single-output (SISO) feed-forward controller, a MIMO controller is designed having a finite impulse

  9. Random transmission scheme approach for a FMCW TDMA coherent MIMO radar

    NARCIS (Netherlands)

    Belfiori, F.; Rossum, W.L. van; Hoogeboom, P.

    2012-01-01

    In this paper the authors analyze the use of Time Division Multiple Access (TDMA) applied to coherent Multiple-Input Multiple-Output (MIMO) radar systems. One of the main limitations in exploiting the orthogonal condition in the time domain for MIMO radars is the reduction of the unambiguous Doppler

  10. A Smart and Balanced Energy-Efficient Multihop Clustering Algorithm (Smart-BEEM) for MIMO IoT Systems in Future Networks.

    Science.gov (United States)

    Xu, Lina; O'Hare, Gregory M P; Collier, Rem

    2017-07-05

    Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors powered by limited energy resources. Clustering techniques were introduced to prolong network longevity offering the promise of green computing. However, most existing work fails to consider the network coverage when evaluating the lifetime of a network. We believe that balancing the energy consumption in per unit area rather than on each single sensor can provide better-balanced power usage throughout the network. Our former work-Balanced Energy-Efficiency (BEE) and its Multihop version BEEM can not only extend the network longevity, but also maintain the network coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher degree of diversities in terms of communication abilities and user scenarios, supporting a large range of real world applications. The IoT devices are embedded with multiple communication interfaces, normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running on those devices can generate various types of data. Every interface has its own characteristics, which may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also pressingly demanded in order to cater for differing user applications. In this paper, we present a smart clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient and Quality of user Experience (QoE) supported communication in cluster based IoT networks. It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial communication interfaces and cluster headers for data transmission. Experimental results have proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage sensitive longevity.

  11. A Smart and Balanced Energy-Efficient Multihop Clustering Algorithm (Smart-BEEM) for MIMO IoT Systems in Future Networks †

    Science.gov (United States)

    O’Hare, Gregory M. P.; Collier, Rem

    2017-01-01

    Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors powered by limited energy resources. Clustering techniques were introduced to prolong network longevity offering the promise of green computing. However, most existing work fails to consider the network coverage when evaluating the lifetime of a network. We believe that balancing the energy consumption in per unit area rather than on each single sensor can provide better-balanced power usage throughout the network. Our former work—Balanced Energy-Efficiency (BEE) and its Multihop version BEEM can not only extend the network longevity, but also maintain the network coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher degree of diversities in terms of communication abilities and user scenarios, supporting a large range of real world applications. The IoT devices are embedded with multiple communication interfaces, normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running on those devices can generate various types of data. Every interface has its own characteristics, which may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also pressingly demanded in order to cater for differing user applications. In this paper, we present a smart clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient and Quality of user Experience (QoE) supported communication in cluster based IoT networks. It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial communication interfaces and cluster headers for data transmission. Experimental results have proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage sensitive longevity. PMID:28678164

  12. Fast Solvers for Dense Linear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kauers, Manuel [Research Institute for Symbolic Computation (RISC), Altenbergerstrasse 69, A4040 Linz (Austria)

    2008-10-15

    It appears that large scale calculations in particle physics often require to solve systems of linear equations with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a standard technique from computer algebra that avoids this exponential growth: homomorphic images. Using this technique, big dense linear systems can be solved in a much more reasonable time than using Gaussian elimination over the rationals.

  13. MIMO Four-Way Relaying

    DEFF Research Database (Denmark)

    Liu, Huaping; Sun, Fan; De Carvalho, Elisabeth

    2013-01-01

    Two-way relaying in wireless systems has initiated a large research effort during the past few years. Nevertheless, it represents only a specific traffic pattern and it is of interest to investigate other traffic patterns where such a simultaneous processing of information flows can bring...... performance advantage. In this paper we consider a \\emph{four-way relaying} multiple-input multiple-output (MIMO) scenario, where each of the two Mobile Stations (MSs) has a two-way connection to the same Base Station (BS), while each connection is through a dedicated Relay Station (RS). The RSs are placed...... the sum-rate of the new scheme for Decode-and-Forward (DF) operational model for the RS. We compare the performance with state-of-the-art reference schemes, based on two-way relaying with DF. The results indicate that the sum-rate of the two-phase four-way relaying scheme largely outperforms the four...

  14. Signals and transforms in linear systems analysis

    CERN Document Server

    Wasylkiwskyj, Wasyl

    2013-01-01

    Signals and Transforms in Linear Systems Analysis covers the subject of signals and transforms, particularly in the context of linear systems theory. Chapter 2 provides the theoretical background for the remainder of the text. Chapter 3 treats Fourier series and integrals. Particular attention is paid to convergence properties at step discontinuities. This includes the Gibbs phenomenon and its amelioration via the Fejer summation techniques. Special topics include modulation and analytic signal representation, Fourier transforms and analytic function theory, time-frequency analysis and frequency dispersion. Fundamentals of linear system theory for LTI analogue systems, with a brief account of time-varying systems, are covered in Chapter 4 . Discrete systems are covered in Chapters 6 and 7.  The Laplace transform treatment in Chapter 5 relies heavily on analytic function theory as does Chapter 8 on Z -transforms. The necessary background on complex variables is provided in Appendix A. This book is intended to...

  15. Linear integral equations and soliton systems

    International Nuclear Information System (INIS)

    Quispel, G.R.W.

    1983-01-01

    A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)

  16. STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Mayta Guillermo

    2016-12-01

    Full Text Available In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is nite. Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory.

  17. Correlated Levy Noise in Linear Dynamical Systems

    International Nuclear Information System (INIS)

    Srokowski, T.

    2011-01-01

    Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)

  18. A kernel-based approach to MIMO LPV state-space identification and application to a nonlinear process system

    NARCIS (Netherlands)

    Rizvi, S.Z.; Mohammadpour, J.; Toth, R.; Meskin, N.

    2015-01-01

    This paper first describes the development of a nonparametric identification method for linear parameter-varying (LPV) state-space models and then applies it to a nonlinear process system. The proposed method uses kernel-based least-squares support vector machines (LS-SVM). While parametric

  19. Introduction to linear systems of differential equations

    CERN Document Server

    Adrianova, L Ya

    1995-01-01

    The theory of linear systems of differential equations is one of the cornerstones of the whole theory of differential equations. At its root is the concept of the Lyapunov characteristic exponent. In this book, Adrianova presents introductory material and further detailed discussions of Lyapunov exponents. She also discusses the structure of the space of solutions of linear systems. Classes of linear systems examined are from the narrowest to widest: 1)�autonomous, 2)�periodic, 3)�reducible to autonomous, 4)�nearly reducible to autonomous, 5)�regular. In addition, Adrianova considers the following: stability of linear systems and the influence of perturbations of the coefficients on the stability the criteria of uniform stability and of uniform asymptotic stability in terms of properties of the solutions several estimates of the growth rate of solutions of a linear system in terms of its coefficients How perturbations of the coefficients change all the elements of the spectrum of the system is defin...

  20. Final Focus Systems in Linear Colliders

    International Nuclear Information System (INIS)

    Raubenheimer, Tor

    1998-01-01

    In colliding beam facilities, the ''final focus system'' must demagnify the beams to attain the very small spot sizes required at the interaction points. The first final focus system with local chromatic correction was developed for the Stanford Linear Collider where very large demagnifications were desired. This same conceptual design has been adopted by all the future linear collider designs as well as the SuperConducting Supercollider, the Stanford and KEK B-Factories, and the proposed Muon Collider. In this paper, the over-all layout, physics constraints, and optimization techniques relevant to the design of final focus systems for high-energy electron-positron linear colliders are reviewed. Finally, advanced concepts to avoid some of the limitations of these systems are discussed

  1. Generalized Cross-Gramian for Linear Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    2012-01-01

    The cross-gramian is a well-known matrix with embedded controllability and observability information. The cross-gramian is related to the Hankel operator and the Hankel singular values of a linear square system and it has several interesting properties. These properties make the cross...... square symmetric systems, the ordinary cross-gramian does not exist. To cope with this problem, a new generalized cross-gramian is introduced in this paper. In contrast to the ordinary cross-gramian, the generalized cross-gramian can be easily obtained for general linear systems and therefore can be used...

  2. Linear dynamic coupling in geared rotor systems

    Science.gov (United States)

    David, J. W.; Mitchell, L. D.

    1986-01-01

    The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.

  3. On output regulation for linear systems

    NARCIS (Netherlands)

    Saberi, Ali; Stoorvogel, Antonie Arij; Sannuti, Peddapullaiah

    For both continuous- and discrete-time systems, we revisit the output regulation problem for linear systems. We generalize the problem formulation in order • to expand the class of reference or disturbance signals, • to utilize the derivative or feedforward information of reference signals whenever

  4. Linear response theory for quantum open systems

    OpenAIRE

    Wei, J. H.; Yan, YiJing

    2011-01-01

    Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.

  5. When to call a linear system nonnegative

    NARCIS (Netherlands)

    Nieuwenhuis, J.W.

    1998-01-01

    In this paper we will consider discrete time invariant linear systems that allow for an input-state-output representation with a finite dimensional state space, and that have a finite number of inputs and outputs. The basic issue in this paper is when to call these systems nonnegative. An important

  6. Tikhonov theorem for linear hyperbolic systems

    OpenAIRE

    Tang , Ying; Prieur , Christophe; Girard , Antoine

    2015-01-01

    International audience; A class of linear systems of conservation laws with a small perturbation parameter is introduced. By setting the perturbation parameter to zero, two subsystems, the reduced system standing for the slow dynamics and the boundary-layer system representing the fast dynamics, are computed. It is first proved that the exponential stability of the full system implies the stability of both subsystems. Secondly, a counter example is given to indicate that the converse is not t...

  7. CR-Calculus and adaptive array theory applied to MIMO random vibration control tests

    Science.gov (United States)

    Musella, U.; Manzato, S.; Peeters, B.; Guillaume, P.

    2016-09-01

    Performing Multiple-Input Multiple-Output (MIMO) tests to reproduce the vibration environment in a user-defined number of control points of a unit under test is necessary in applications where a realistic environment replication has to be achieved. MIMO tests require vibration control strategies to calculate the required drive signal vector that gives an acceptable replication of the target. This target is a (complex) vector with magnitude and phase information at the control points for MIMO Sine Control tests while in MIMO Random Control tests, in the most general case, the target is a complete spectral density matrix. The idea behind this work is to tailor a MIMO random vibration control approach that can be generalized to other MIMO tests, e.g. MIMO Sine and MIMO Time Waveform Replication. In this work the approach is to use gradient-based procedures over the complex space, applying the so called CR-Calculus and the adaptive array theory. With this approach it is possible to better control the process performances allowing the step-by-step Jacobian Matrix update. The theoretical bases behind the work are followed by an application of the developed method to a two-exciter two-axis system and by performance comparisons with standard methods.

  8. ITMETH, Iterative Routines for Linear System

    International Nuclear Information System (INIS)

    Greenbaum, A.

    1989-01-01

    1 - Description of program or function: ITMETH is a collection of iterative routines for solving large, sparse linear systems. 2 - Method of solution: ITMETH solves general linear systems of the form AX=B using a variety of methods: Jacobi iteration; Gauss-Seidel iteration; incomplete LU decomposition or matrix splitting with iterative refinement; diagonal scaling, matrix splitting, or incomplete LU decomposition with the conjugate gradient method for the problem AA'Y=B, X=A'Y; bi-conjugate gradient method with diagonal scaling, matrix splitting, or incomplete LU decomposition; and ortho-min method with diagonal scaling, matrix splitting, or incomplete LU decomposition. ITMETH also solves symmetric positive definite linear systems AX=B using the conjugate gradient method with diagonal scaling or matrix splitting, or the incomplete Cholesky conjugate gradient method

  9. Measurement-Based Performance Evaluation of Advanced MIMO Transceiver Designs

    Directory of Open Access Journals (Sweden)

    Schneider Christian

    2005-01-01

    Full Text Available This paper describes the methodology and the results of performance investigations on a multiple-input multiple-output (MIMO transceiver scheme for frequency-selective radio channels. The method relies on offline simulations and employs real-time MIMO channel sounder measurement data to ensure a realistic channel modeling. Thus it can be classified in between the performance evaluation using some predefined channel models and the evaluation of a prototype hardware in field experiments. New aspects for the simulation setup are discussed, which are frequently ignored when using simpler model-based evaluations. Example simulations are provided for an iterative ("turbo" MIMO equalizer concept. The dependency of the achievable bit error rate performance on the propagation characteristics and on the variation in some system design parameters is shown, whereas the antenna constellation is of particular concern for MIMO systems. Although in many of the considered constellations turbo MIMO equalization appears feasible in real field scenarios, there exist cases with poor performance as well, indicating that in practical applications link adaptation of the transmitter and receiver processing to the environment is necessary.

  10. Acoustic MIMO communications in a very shallow water channel

    Science.gov (United States)

    Zhou, Yuehai; Cao, Xiuling; Tong, Feng

    2015-12-01

    Underwater acoustic channels pose significant difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple input multiple output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.

  11. A novel mirror diversity receiver for indoor MIMO visible light

    KAUST Repository

    Park, Ki-Hong

    2016-03-01

    In this paper, we propose and study a non-imaging receiver design reducing the correlation of channel matrix for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems. Contrary to previous works, our proposed mirror diversity receiver (MDR) not only blocks the reception of light on one specific direction but also improves the channel gain on the other direction by receiving the light reflected by a mirror deployed between the photodetectors. We analyze the channel capacity and optimal height of mirror in terms of maximum channel capacity for a 2 -by-2 MIMO-VLC system in a 2-dimensional geometric model.We prove that this constructive and destructive effects in channel matrix resulting from our proposed MDR are more beneficial to obtain well-conditioned channel matrix which is suitable for implementing spatial-multiplexing MIMO-VLC systems in order to support high data rate.

  12. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  13. Rf system specifications for a linear accelerator

    International Nuclear Information System (INIS)

    Young, A.; Eaton, L.E.

    1992-01-01

    A linear accelerator contains many systems; however, the most complex and costly is the RF system. The goal of an RF system is usually simply stated as maintaining the phase and amplitude of the RF signal within a given tolerance to accelerate the charged particle beam. An RF system that drives a linear accelerator needs a complete system specification, which should contain specifications for all the subsystems (i.e., high-power RF, low-level RF, RF generation/distribution, and automation control). This paper defines a format for the specifications of these subsystems and discusses each RF subsystem independently to provide a comprehensive understanding of the function of each subsystem. This paper concludes with an example of a specification spreadsheet allowing one to input the specifications of a subsystem. Thus, some fundamental parameters (i.e., the cost and size) of the RF system can be determined

  14. Chaos as an intermittently forced linear system.

    Science.gov (United States)

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan

    2017-05-30

    Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.

  15. MIMO to LS-MIMO: A road to realization of 5G

    Science.gov (United States)

    Koppati, Naveena; Pavani, K.; Sharma, Dinesh; Sharma, Purnima K.

    2017-07-01

    MIMO means multiple inputs multiple outputs. As it refers MIMO is a RF technology used in many new technologies these days to increase link capacity and spectral efficiency. MIMO is used in Wi-Fi, LTE, 4G, 5G and other wireless technologies. This paper describes the earlier history of MIMO-OFDM and the antenna beam forming development in MIMO and types of MIMO. Also this treatise describes several decoding algorithms. The MIMO combined with OFDM increases the channel capacity. But the main problem is in estimating the transmitted signal from the received signal. So the channel knowledge is to be known in estimating the channel capacity. The advancement in MIMO-OFDM is Massive MIMO which is beneficial in providing additional data capacity in the increased traffic environment is described. In this memoir various application scenarios of LS-MIMO which increases the capacity are discussed.

  16. Final focus systems for linear colliders

    International Nuclear Information System (INIS)

    Helm, R.; Irwin, J.

    1992-08-01

    Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We will outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We will discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread, bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, will be described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC will be given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC)

  17. Final focus systems for linear colliders

    International Nuclear Information System (INIS)

    Helm, R.; Irwing, J.

    1992-01-01

    Final focus systems for linear colliders present many exacting challenges in beam optics, component design, and beam quality. Efforts to resolve these problems as they relate to a new generation of linear colliders are under way at several laboratories around the world. We outline criteria for final focus systems and discuss the current state of understanding and resolution of the outstanding problems. We discuss tolerances on alignment, field quality and stability for optical elements, and the implications for beam parameters such as emittance, energy spread , bunch length, and stability in position and energy. Beam-based correction procedures, which in principle can alleviate many of the tolerances, are described. Preliminary results from the Final Focus Test Beam (FFTB) under construction at SLAC are given. Finally, we mention conclusions from operating experience at the Stanford Linear Collider (SLC). (Author) 16 refs., 4 tabs., 6 figs

  18. Dual-range linearized transimpedance amplifier system

    Science.gov (United States)

    Wessendorf, Kurt O.

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  19. Optimizing the wireless power transfer over MIMO Channels

    Science.gov (United States)

    Wiedmann, Karsten; Weber, Tobias

    2017-09-01

    In this paper, the optimization of the power transfer over wireless channels having multiple-inputs and multiple-outputs (MIMO) is studied. Therefore, the transmitter, the receiver and the MIMO channel are modeled as multiports. The power transfer efficiency is described by a Rayleigh quotient, which is a function of the channel's scattering parameters and the incident waves from both transmitter and receiver side. This way, the power transfer efficiency can be maximized analytically by solving a generalized eigenvalue problem, which is deduced from the Rayleigh quotient. As a result, the maximum power transfer efficiency achievable over a given MIMO channel is obtained. This maximum can be used as a performance bound in order to benchmark wireless power transfer systems. Furthermore, the optimal operating point which achieves this maximum will be obtained. The optimal operating point will be described by the complex amplitudes of the optimal incident and reflected waves of the MIMO channel. This supports the design of the optimal transmitter and receiver multiports. The proposed method applies for arbitrary MIMO channels, taking transmitter-side and/or receiver-side cross-couplings in both near- and farfield scenarios into consideration. Special cases are briefly discussed in this paper in order to illustrate the method.

  20. Optimizing the wireless power transfer over MIMO Channels

    Directory of Open Access Journals (Sweden)

    K. Wiedmann

    2017-09-01

    Full Text Available In this paper, the optimization of the power transfer over wireless channels having multiple-inputs and multiple-outputs (MIMO is studied. Therefore, the transmitter, the receiver and the MIMO channel are modeled as multiports. The power transfer efficiency is described by a Rayleigh quotient, which is a function of the channel's scattering parameters and the incident waves from both transmitter and receiver side. This way, the power transfer efficiency can be maximized analytically by solving a generalized eigenvalue problem, which is deduced from the Rayleigh quotient. As a result, the maximum power transfer efficiency achievable over a given MIMO channel is obtained. This maximum can be used as a performance bound in order to benchmark wireless power transfer systems. Furthermore, the optimal operating point which achieves this maximum will be obtained. The optimal operating point will be described by the complex amplitudes of the optimal incident and reflected waves of the MIMO channel. This supports the design of the optimal transmitter and receiver multiports. The proposed method applies for arbitrary MIMO channels, taking transmitter-side and/or receiver-side cross-couplings in both near- and farfield scenarios into consideration. Special cases are briefly discussed in this paper in order to illustrate the method.

  1. Consys Linear Control System Design Software Package

    International Nuclear Information System (INIS)

    Diamantidis, Z.

    1987-01-01

    This package is created in order to help engineers, researchers, students and all who work on linear control systems. The software includes all time and frequency domain analysises, spectral analysises and networks, active filters and regulators design aids. The programmes are written on Hewlett Packard computer in Basic 4.0

  2. Disturbance Decoupling of Switched Linear Systems

    NARCIS (Netherlands)

    Yurtseven, E.; Heemels, W.P.M.H.; Camlibel, M.K.

    2010-01-01

    In this paper we consider disturbance decoupling problems for switched linear systems. We will provide necessary and sufficient conditions for three different versions of disturbance decoupling, which differ based on which signals are considered to be the disturbance. In the first version the

  3. Uzawa method for fuzzy linear system

    OpenAIRE

    Ke Wang

    2013-01-01

    An Uzawa method is presented for solving fuzzy linear systems whose coefficient matrix is crisp and the right-hand side column is arbitrary fuzzy number vector. The explicit iterative scheme is given. The convergence is analyzed with convergence theorems and the optimal parameter is obtained. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.

  4. Collimation systems in the next linear collider

    International Nuclear Information System (INIS)

    Merminga, N.; Irwin, J.; Helm, R.; Ruth, R.D.

    1991-02-01

    Experience indicates that beam collimation will be an essential element of the next generation e + E - linear colliders. A proposal for using nonlinear lenses to drive beam tails to large amplitudes was presented in a previous paper. Here we study the optimization of such systems including effects of wakefields and optical aberrations. Protection and design of the scrapers in these systems are discussed. 9 refs., 7 figs

  5. Standard diffusive systems are well-posed linear systems

    NARCIS (Netherlands)

    Matignon, Denis; Zwart, Heiko J.

    2004-01-01

    The class of well-posed linear systems as introduced by Salamon has become a well-understood class of systems, see e.g. the work of Weiss and the book of Staffans. Many partial partial differential equations with boundary control and point observation can be formulated as a well-posed linear system.

  6. Parameter identifiability of linear dynamical systems

    Science.gov (United States)

    Glover, K.; Willems, J. C.

    1974-01-01

    It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.

  7. Stability problems for linear hyperbolic systems

    International Nuclear Information System (INIS)

    Eckhoff, K.S.

    1975-05-01

    The stability properties for the trivial solution of a general linear hyperbolic system of partial differential equations of the first order are studied. It is shown that results may be obtained by studying the stability properties of certain systems of ordinary differential equations which can be constructed from the hyperbolic system (the so-called transport equations). In some cases the associated stability problem for the transport equations can in fact be shown to be equivalent to the stability problem for the hyperbolic system, but in general the transport equations will only give the necessary conditions for stability. (Auth.)

  8. Identification of general linear mechanical systems

    Science.gov (United States)

    Sirlin, S. W.; Longman, R. W.; Juang, J. N.

    1983-01-01

    Previous work in identification theory has been concerned with the general first order time derivative form. Linear mechanical systems, a large and important class, naturally have a second order form. This paper utilizes this additional structural information for the purpose of identification. A realization is obtained from input-output data, and then knowledge of the system input, output, and inertia matrices is used to determine a set of linear equations whereby we identify the remaining unknown system matrices. Necessary and sufficient conditions on the number, type and placement of sensors and actuators are given which guarantee identificability, and less stringent conditions are given which guarantee generic identifiability. Both a priori identifiability and a posteriori identifiability are considered, i.e., identifiability being insured prior to obtaining data, and identifiability being assured with a given data set.

  9. Optimal Multiuser Zero Forcing with Per-Antenna Power Constraints for Network MIMO Coordination

    Directory of Open Access Journals (Sweden)

    Kaviani Saeed

    2011-01-01

    Full Text Available We consider a multicell multiple-input multiple-output (MIMO coordinated downlink transmission, also known as network MIMO, under per-antenna power constraints. We investigate a simple multiuser zero-forcing (ZF linear precoding technique known as block diagonalization (BD for network MIMO. The optimal form of BD with per-antenna power constraints is proposed. It involves a novel approach of optimizing the precoding matrices over the entire null space of other users' transmissions. An iterative gradient descent method is derived by solving the dual of the throughput maximization problem, which finds the optimal precoding matrices globally and efficiently. The comprehensive simulations illustrate several network MIMO coordination advantages when the optimal BD scheme is used. Its achievable throughput is compared with the capacity region obtained through the recently established duality concept under per-antenna power constraints.

  10. Joint beam design and user selection over non-binary coded MIMO interference channel

    Science.gov (United States)

    Li, Haitao; Yuan, Haiying

    2013-03-01

    In this paper, we discuss the problem of sum rate improvement for coded MIMO interference system, and propose joint beam design and user selection over interference channel. Firstly, we have formulated non-binary LDPC coded MIMO interference networks model. Then, the least square beam design for MIMO interference system is derived, and the low complexity user selection is presented. Simulation results confirm that the sum rate can be improved by the joint user selection and beam design comparing with single interference aligning beamformer.

  11. Multi-static MIMO along track interferometry (ATI)

    Science.gov (United States)

    Knight, Chad; Deming, Ross; Gunther, Jake

    2016-05-01

    Along-track interferometry (ATI) has the ability to generate high-quality synthetic aperture radar (SAR) images and concurrently detect and estimate the positions of ground moving target indicators (GMTI) with moderate processing requirements. This paper focuses on several different ATI system configurations, with an emphasis on low-cost configurations employing no active electronic scanned array (AESA). The objective system has two transmit phase centers and four receive phase centers and supports agile adaptive radar behavior. The advantages of multistatic, multiple input multiple output (MIMO) ATI system configurations are explored. The two transmit phase centers can employ a ping-pong configuration to provide the multistatic behavior. For example, they can toggle between an up and down linear frequency modulated (LFM) waveform every other pulse. The four receive apertures are considered in simple linear spatial configurations. Simulated examples are examined to understand the trade space and verify the expected results. Finally, actual results are collected with the Space Dynamics Laboratorys (SDL) FlexSAR system in diverse configurations. The theory, as well as the simulated and actual SAR results, are presented and discussed.

  12. MIMO Communication Using Single Feed Antenna Arrays

    DEFF Research Database (Denmark)

    Alrabadi, Osama

    Multi-input-multi-output (MIMO) communication has emerged as a promis- ing technology for meeting the increasing demand on higher data rates. The technology exploits the spatial resource dimension by sending the datas- treams to different locations in the multi element array (MEA) domain while...... conventionally to a single antenna element while mod- ulating the other datastreams in the analogue RF domain, using simple switched antenna systems (SAS) or sophisticated reactance-assisted antenna systems. The use of a SAS is found simple to implement, but can hardly handle high order signal formats...

  13. Designing and simulation smart multifunctional continuous logic device as a basic cell of advanced high-performance sensor systems with MIMO-structure

    Science.gov (United States)

    Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Lazarev, Alexander A.

    2015-01-01

    We have proposed a design and simulation of hardware realizations of smart multifunctional continuous logic devices (SMCLD) as advanced basic cells of the sensor systems with MIMO- structure for images processing and interconnection. The SMCLD realize function of two-valued, multi-valued and continuous logics with current inputs and current outputs. Such advanced basic cells realize function nonlinear time-pulse transformation, analog-to-digital converters and neural logic. We showed advantages of such elements. It's have a number of advantages: high speed and reliability, simplicity, small power consumption, high integration level. The conception of construction of SMCLD consists in the use of a current mirrors realized on 1.5μm technology CMOS transistors. Presence of 50÷70 transistors, 1 PD and 1 LED makes the offered circuits quite compact. The simulation results of NOT, MIN, MAX, equivalence (EQ), normalize summation, averaging and other functions, that implemented SMCLD, showed that the level of logical variables can change from 0.1μA to 10μA for low-power consumption variants. The SMCLD have low power consumption <1mW and processing time about 1÷11μS at supply voltage 2.4÷3.3V.

  14. Lectures on algebraic system theory: Linear systems over rings

    Science.gov (United States)

    Kamen, E. W.

    1978-01-01

    The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.

  15. Bidirectional Fano Algorithm for Lattice Coded MIMO Channels

    KAUST Repository

    Al-Quwaiee, Hessa

    2013-05-08

    Recently, lattices - a mathematical representation of infinite discrete points in the Euclidean space, have become an effective way to describe and analyze communication systems especially system those that can be modeled as linear Gaussian vector channel model. Channel codes based on lattices are preferred due to three facts: lattice codes have simple structure, the code can achieve the limits of the channel, and they can be decoded efficiently using lattice decoders which can be considered as the Closest Lattice Point Search (CLPS). Since the time lattice codes were introduced to Multiple Input Multiple Output (MIMO) channel, Sphere Decoder (SD) has been an efficient way to implement lattice decoders. Sphere decoder offers the optimal performance at the expense of high decoding complexity especially for low signal-to-noise ratios (SNR) and for high- dimensional systems. On the other hand, linear and non-linear receivers, Minimum Mean Square Error (MMSE), and MMSE Decision-Feedback Equalization (DFE), provide the lowest decoding complexity but unfortunately with poor performance. Several studies works have been conducted in the last years to address the problem of designing low complexity decoders for the MIMO channel that can achieve near optimal performance. It was found that sequential decoders using backward tree 
search can bridge the gap between SD and MMSE. The sequential decoder provides an interesting performance-complexity trade-off using a bias term. Yet, the sequential decoder still suffers from high complexity for mid-to-high SNR values. In this work, we propose a new algorithm for Bidirectional Fano sequential Decoder (BFD) in order to reduce the mid-to-high SNR complexity. Our algorithm consists of first constructing a unidirectional Sequential Decoder based on forward search using the QL decomposition. After that, BFD incorporates two searches, forward and backward, to work simultaneously till they merge and find the closest lattice point to the

  16. An injection system for a linear accelerator

    International Nuclear Information System (INIS)

    Santos, A.C.R.

    1978-03-01

    An injection system for the Linear Accelerator is developed using the parameters of machines at the Centro Brasileiro de Pesquisas Fisicas and the Instituto Militar de Engenharia. The proposed system consists basically of a prebuncher and a chopper. The pre-buncher is used to improve the energy resolution and also to increase the accelerator target current. The chopper is used to remove from the beam the electrons that have no possibility of attaining the desired energy and that are usually lost in the walls and the cavity tube, thus producing undesirable background. Theoretical development of the chopper is performed in order to obtain its dimensions for future construction. The complete design the pre-buncher and its feed supply system and the experimental verication of its performance are also presented. It is intended to give the necessary information for the design and construction of the complete injection system proposed. (Author) [pt

  17. Operator approach to linear control systems

    CERN Document Server

    Cheremensky, A

    1996-01-01

    Within the framework of the optimization problem for linear control systems with quadratic performance index (LQP), the operator approach allows the construction of a systems theory including a number of particular infinite-dimensional optimization problems with hardly visible concreteness. This approach yields interesting interpretations of these problems and more effective feedback design methods. This book is unique in its emphasis on developing methods for solving a sufficiently general LQP. Although this is complex material, the theory developed here is built on transparent and relatively simple principles, and readers with less experience in the field of operator theory will find enough material to give them a good overview of the current state of LQP theory and its applications. Audience: Graduate students and researchers in the fields of mathematical systems theory, operator theory, cybernetics, and control systems.

  18. Demonstration of fully functional MIMO wireless LAN transmission over GI-MMF for in-building networks

    NARCIS (Netherlands)

    Zou, S.; Chen, H.; Huijskens, F.M.; Cao, Z.; Tangdiongga, E.; Koonen, A.M.J.

    2013-01-01

    We propose a low-cost optically-fed architecture capable of increasing the capacity and overall coverage of IEEE 802.11n MIMO WLAN system for in-building networks. A fully functional transmission over GI-MMF was demonstrated employing 2×3 MIMO configuration.

  19. MIMO FIR feedforward design for zero error tracking control

    NARCIS (Netherlands)

    Heertjes, M.F.; Bruijnen, D.J.H.

    2014-01-01

    This paper discusses a multi-input multi-output (MIMO) finite impulse response (FIR) feedforward design. The design is intended for systems that have (non-)minimum phase zeros in the plant description. The zeros of the plant (either minimum or non-minimum phase) are used in the shaping of the

  20. Relationship Between Capacity and Pathloss for Indoor MIMO Channels

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ødum; Andersen, Jørgen Bach; Bauch, Gerhard

    2006-01-01

    MIMO transmission systems exploit scattering in the radio channel to achieve high capacity for a given SNR. A high pathloss is generally expected for channels with rich scattering, suggesting that a high SNR and rich multipath are competing goals. The current work investigates this issue based on...

  1. Iterative solution of large linear systems

    CERN Document Server

    Young, David Matheson

    1971-01-01

    This self-contained treatment offers a systematic development of the theory of iterative methods. Its focal point resides in an analysis of the convergence properties of the successive overrelaxation (SOR) method, as applied to a linear system with a consistently ordered matrix. The text explores the convergence properties of the SOR method and related techniques in terms of the spectral radii of the associated matrices as well as in terms of certain matrix norms. Contents include a review of matrix theory and general properties of iterative methods; SOR method and stationary modified SOR meth

  2. a Continuous-Time Positive Linear System

    Directory of Open Access Journals (Sweden)

    Kyungsup Kim

    2013-01-01

    Full Text Available This paper discusses a computational method to construct positive realizations with sparse matrices for continuous-time positive linear systems with multiple complex poles. To construct a positive realization of a continuous-time system, we use a Markov sequence similar to the impulse response sequence that is used in the discrete-time case. The existence of the proposed positive realization can be analyzed with the concept of a polyhedral convex cone. We provide a constructive algorithm to compute positive realizations with sparse matrices of some positive systems under certain conditions. A sufficient condition for the existence of a positive realization, under which the proposed constructive algorithm works well, is analyzed.

  3. State space model extraction of thermohydraulic systems – Part II: A linear graph approach applied to a Brayton cycle-based power conversion unit

    International Nuclear Information System (INIS)

    Uren, Kenneth Richard; Schoor, George van

    2013-01-01

    This second paper in a two part series presents the application of a developed state space model extraction methodology applied to a Brayton cycle-based PCU (power conversion unit) of a PBMR (pebble bed modular reactor). The goal is to investigate if the state space extraction methodology can cope with larger and more complex thermohydraulic systems. In Part I the state space model extraction methodology for the purpose of control was described in detail and a state space representation was extracted for a U-tube system to illustrate the concept. In this paper a 25th order nonlinear state space representation in terms of the different energy domains is extracted. This state space representation is solved and the responses of a number of important states are compared with results obtained from a PBMR PCU Flownex ® model. Flownex ® is a validated thermo fluid simulation software package. The results show that the state space model closely resembles the dynamics of the PBMR PCU. This kind of model may be used for nonlinear MIMO (multi-input, multi-output) type of control strategies. However, there is still a need for linear state space models since many control system design and analysis techniques require a linear state space model. This issue is also addressed in this paper by showing how a linear state space model can be derived from the extracted nonlinear state space model. The linearised state space model is also validated by comparing the state space model to an existing linear Simulink ® model of the PBMR PCU system. - Highlights: • State space model extraction of a pebble bed modular reactor PCU (power conversion unit). • A 25th order nonlinear time varying state space model is obtained. • Linearisation of a nonlinear state space model for use in power output control. • Non-minimum phase characteristic that is challenging in terms of control. • Models derived are useful for MIMO control strategies

  4. Linear and non-linear energy barriers in systems of interacting single-domain ferromagnetic particles

    International Nuclear Information System (INIS)

    Petrila, Iulian; Bodale, Ilie; Rotarescu, Cristian; Stancu, Alexandru

    2011-01-01

    A comparative analysis between linear and non-linear energy barriers used for modeling statistical thermally-excited ferromagnetic systems is presented. The linear energy barrier is obtained by new symmetry considerations about the anisotropy energy and the link with the non-linear energy barrier is also presented. For a relevant analysis we compare the effects of linear and non-linear energy barriers implemented in two different models: Preisach-Neel and Ising-Metropolis. The differences between energy barriers which are reflected in different coercive field dependence of the temperature are also presented. -- Highlights: → The linear energy barrier is obtained from symmetry considerations. → The linear and non-linear energy barriers are calibrated and implemented in Preisach-Neel and Ising-Metropolis models. → The temperature and time effects of the linear and non-linear energy barriers are analyzed.

  5. New approach to solve symmetric fully fuzzy linear systems

    Indian Academy of Sciences (India)

    concepts of fuzzy set theory and then define a fully fuzzy linear system of equations. .... To represent the above problem as fully fuzzy linear system, we represent x .... Fully fuzzy linear systems can be solved by Linear programming approach, ...

  6. Demonstration of 352 Gbit/s Photonically-enabled D-Band Wireless Delivery in one 2x2 MIMO System

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Yu, Jianjun; Li, Xinying

    2017-01-01

    First demonstration of photonically-enabled independent side-bands D-Band wireless transmission up to 352 Gbit/s with a BER below 3.8×10-3. These results were achieved by means of advanced DSP and antenna polarization multiplexing (2x2 MIMO)....

  7. Data-Aided Frequency-Domain 2×2 MIMO Equalizer for 112 Gbit/s PDM-QPSK Coherent Transmission Systems

    DEFF Research Database (Denmark)

    Pittalà, Fabio; Hauske, Fabian N.; Ye, Yabin

    2012-01-01

    Benefits of a low-complexity adaptive 32-tap 2×2 MIMO frequency-domain filter update by data-aided channel estimation over a time-domain filter with DD-LMS are shown. Superior stability and convergence speed is demonstrated with identical impairment tolerance....

  8. LTE Radiated Data Throughput Measurements, Adopting MIMO 2x2 Reference Antennas

    DEFF Research Database (Denmark)

    Szini, Istvan Janos; Pedersen, Gert Frølund; Barrio, Samantha Caporal Del

    2012-01-01

    Long Term Evolution (LTE) requires Multiple Input Multiple Output (MIMO) antenna systems. Consequently a new over-the-air (OTA) test methodology need to be created to make proper assessment of LTE devices radiated performance. The antenna specific parameters i.e. total antenna efficiency, gain...... imbalance and correlation coefficient, are essential for a proper MIMO antenna system design. However it can't be use directly to assess the LTE device system performance, since a multiplicity of other factors are involved, e.g. power amplifier load- pull, low noise amplifier source-pull, self interference...... noise, baseband algorithm and other factors. Several standard organizations are working towards a consensus over the proper OTA MIMO test method, however so far results of measurement campaigns have ambiguous results not allowing a desirable progress [1]. Initially presented at one of several MIMO OTA...

  9. SLAP, Large Sparse Linear System Solution Package

    International Nuclear Information System (INIS)

    Greenbaum, A.

    1987-01-01

    1 - Description of program or function: SLAP is a set of routines for solving large sparse systems of linear equations. One need not store the entire matrix - only the nonzero elements and their row and column numbers. Any nonzero structure is acceptable, so the linear system solver need not be modified when the structure of the matrix changes. Auxiliary storage space is acquired and released within the routines themselves by use of the LRLTRAN POINTER statement. 2 - Method of solution: SLAP contains one direct solver, a band matrix factorization and solution routine, BAND, and several interactive solvers. The iterative routines are as follows: JACOBI, Jacobi iteration; GS, Gauss-Seidel Iteration; ILUIR, incomplete LU decomposition with iterative refinement; DSCG and ICCG, diagonal scaling and incomplete Cholesky decomposition with conjugate gradient iteration (for symmetric positive definite matrices only); DSCGN and ILUGGN, diagonal scaling and incomplete LU decomposition with conjugate gradient interaction on the normal equations; DSBCG and ILUBCG, diagonal scaling and incomplete LU decomposition with bi-conjugate gradient iteration; and DSOMN and ILUOMN, diagonal scaling and incomplete LU decomposition with ORTHOMIN iteration

  10. A Fractional Lower Order Statistics-Based MIMO Detection Method in Impulse Noise for Power Line Channel

    Directory of Open Access Journals (Sweden)

    CHEN, Z.

    2014-11-01

    Full Text Available Impulse noise in power line communication (PLC channel seriously degrades the performance of Multiple-Input Multiple-Output (MIMO system. To remedy this problem, a MIMO detection method based on fractional lower order statistics (FLOS for PLC channel with impulse noise is proposed in this paper. The alpha stable distribution is used to model impulse noise, and FLOS is applied to construct the criteria of MIMO detection. Then the optimal detection solution is obtained by recursive least squares algorithm. Finally, the transmitted signals in PLC MIMO system are restored with the obtained detection matrix. The proposed method does not require channel estimation and has low computational complexity. The simulation results show that the proposed method has a better PLC MIMO detection performance than the existing ones under impulsive noise environment.

  11. ROBUST MPC FOR STABLE LINEAR SYSTEMS

    Directory of Open Access Journals (Sweden)

    M.A. Rodrigues

    2002-03-01

    Full Text Available In this paper, a new model predictive controller (MPC, which is robust for a class of model uncertainties, is developed. Systems with stable dynamics and time-invariant model uncertainty are treated. The development herein proposed is focused on real industrial systems where the controller is part of an on-line optimization scheme and works in the output-tracking mode. In addition, the system has a time-varying number of degrees of freedom since some of the manipulated inputs may become constrained. Moreover, the number of controlled outputs may also vary during system operation. Consequently, the actual system may show operating conditions with a number of controlled outputs larger than the number of available manipulated inputs. The proposed controller uses a state-space model, which is aimed at the representation of the output-predicted trajectory. Based on this model, a cost function is proposed whereby the output error is integrated along an infinite prediction horizon. It is considered the case of multiple operating points, where the controller stabilizes a set of models corresponding to different operating conditions for the system. It is shown that closed-loop stability is guaranteed by the feasibility of a linear matrix optimization problem.

  12. Optimal Control of Switching Linear Systems

    Directory of Open Access Journals (Sweden)

    Ali Benmerzouga

    2004-06-01

    Full Text Available A solution to the control of switching linear systems with input constraints was given in Benmerzouga (1997 for both the conventional enumeration approach and the new approach. The solution given there turned out to be not unique. The main objective in this work is to determine the optimal control sequences {Ui(k ,  i = 1,..., M ;  k = 0, 1, ...,  N -1} which transfer the system from a given initial state  X0  to a specific target state  XT  (or to be as close as possible by using the same discrete time solution obtained in Benmerzouga (1997 and minimizing a running cost-to-go function. By using the dynamic programming technique, the optimal solution is found for both approaches given in Benmerzouga (1997. The computational complexity of the modified algorithm is also given.

  13. Well logging system with linearity control

    International Nuclear Information System (INIS)

    Jones, J.M.

    1973-01-01

    Apparatus is described for controlling the gain of a nuclear well logging system comprising: (1) means for measuring the energy spectrum of gamma rays produced by earth formation materials surrounding a well borehole; (2) means for measuring the number of counts of a gamma rays having an energy falling within each of at least two predetermined energy band portions of the gamma ray energy spectrum; (3) means for generating a signal proportional to the ratio of the gamma ray counts and for comparing the ratio signal with at least one constant ratio calibration signal; (4) means for generating an error signal representative of the difference of the ratio signal and the constant ratio calibration signal; and (5) means for using the error signal to control the linearity of the well logging system. (author)

  14. Linear concentration system; Sistema de concentracion lineal

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lugo, J.I; Leon Rovira, N; Aguayo Tellez, H [Instituto Tecnologico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon (Mexico)]. E-mails: a00812662@itesm.mx; noel.leon@itesm.mx; haguayo@itesm.mx

    2013-03-15

    Solar linear concentration technologies to generate high temperatures are limited to the ranges of 200 to 500 degrees Celsius. While its performance has been tested through prototypes and pilot plants around the world, there are still areas of opportunity that can be exploited to obtain a linear concentration that achieves temperatures above this range in order to have a better use of the available solar energy. Because of this: It is possible to develop a linear concentration system that can track the sun with minimal movement of the absorber-receiver while maintaining temperatures above 850 degrees Celsius sufficient for industrial processes that require that temperature. The methodology consists of a series of stages (conceptual design, simulation, evaluation, development concept, results and validation) through which concepts are generated that allow design and evaluation of solar concentrator configurations with the help of simulation software. We have designed a linear parabolic concentrating system which comprises a set of mirrors segments with different focal lengths that works within the range of 600 degrees Celsius; however, it is advancing in the development of a double concentration to reach 850 degrees Celsius. [Spanish] Las tecnologias de concentracion lineal solar para generar altas temperaturas se ven limitadas a los rangos de 200 a 500 grados centigrados. Si bien su funcionamiento ha sido probado a traves de prototipos y plantas piloto alrededor del mundo, aun existen areas de oportunidad que pueden ser aprovechadas para obtener un sistema de concentracion lineal que permita alcanzar temperaturas mayores a este rango para asi tener un mejor aprovechamiento de la energia solar disponible. Debido a esto: Es posible desarrollar un sistema de concentracion lineal capaz de seguir la trayectoria del Sol con minimo movimiento del absorbedor-recibidor al mismo tiempo que mantiene temperaturas superiores a los 850 grados centigrados suficientes para

  15. Linear Actuator System for the NASA Docking System

    Science.gov (United States)

    Dick, Brandon N.; Oesch, Christopher; Rupp, Timothy W.

    2017-01-01

    The Linear Actuator System (LAS) is a major sub-system within the NASA Docking System (NDS). The NDS Block 1 will be used on the Boeing Crew Space Transportation (CST-100) system to achieve docking with the International Space Station. Critical functions in the Soft Capture aspect of docking are performed by the LAS. This paper describes the general function of the LAS, the system's key requirements and technical challenges, and the development and qualification approach for the system.

  16. Relative null controllability of linear systems with multiple delays in ...

    African Journals Online (AJOL)

    varying multiple delays in state and control are developed. If the uncontrolled system is uniformly asymptotically stable, and if the linear system is controllable, then the linear system is null controllable. Journal of the Nigerian Association of ...

  17. Linear optical response of finite systems using multishift linear system solvers

    Energy Technology Data Exchange (ETDEWEB)

    Hübener, Hannes; Giustino, Feliciano [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

    2014-07-28

    We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.

  18. Control system analysis for the perturbed linear accelerator rf system

    CERN Document Server

    Sung Il Kwon

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

  19. CONTROL SYSTEM ANALYSIS FOR THE PERTURBED LINEAR ACCELERATOR RF SYSTEM

    International Nuclear Information System (INIS)

    SUNG-IL KWON; AMY H. REGAN

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller

  20. Multi-Satellite MIMO Communications at Ku-Band and Above: Investigations on Spatial Multiplexing for Capacity Improvement and Selection Diversity for Interference Mitigation

    Directory of Open Access Journals (Sweden)

    Liolis Konstantinos P

    2007-01-01

    Full Text Available This paper investigates the applicability of multiple-input multiple-output (MIMO technology to satellite communications at the Ku-band and above. After introducing the possible diversity sources to form a MIMO matrix channel in a satellite environment, particular emphasis is put on satellite diversity. Two specific different topics from the field of MIMO technology applications to satellite communications at these frequencies are further analyzed: (i capacity improvement achieved by MIMO spatial multiplexing systems and (ii interference mitigation achieved by MIMO diversity systems employing receive antenna selection. In the first case, a single-user capacity analysis of a satellite MIMO spatial multiplexing system is presented and a useful analytical closed form expression is derived for the outage capacity achieved. In the second case, a satellite MIMO diversity system with receive antenna selection is considered, adjacent satellite cochannel interference on its forward link is studied and an analytical model predicting the interference mitigation achieved is presented. In both cases, an appropriate physical MIMO channel model is assumed which takes into account the propagation phenomena related to the frequencies of interest, such as clear line-of-sight operation, high antenna directivity, the effect of rain fading, and the slant path lengths difference. Useful numerical results obtained through the analytical expressions derived are presented to compare the performance of multi-satellite MIMO systems to relevant single-input single-output (SISO ones.

  1. Linear-array systems for aerospace NDE

    International Nuclear Information System (INIS)

    Smith, Robert A.; Willsher, Stephen J.; Bending, Jamie M.

    1999-01-01

    Rapid large-area inspection of composite structures for impact damage and multi-layered aluminum skins for corrosion has been a recognized priority for several years in both military and civil aerospace applications. Approaches to this requirement have followed two clearly different routes: the development of novel large-area inspection systems, and the enhancement of current ultrasonic or eddy-current methods to reduce inspection times. Ultrasonic inspection is possible with standard flaw detection equipment but the addition of a linear ultrasonic array could reduce inspection times considerably. In order to investigate their potential, 9-element and 17-element linear ultrasonic arrays for composites, and 64-element arrays for aluminum skins, have been developed to DERA specifications for use with the ANDSCAN area scanning system. A 5 m 2 composite wing surface has been scanned with a scan resolution of approximately 3 mm in 6 hours. With subsequent software and hardware improvements all four composite wing surfaces (top/bottom, left/right) of a military fighter aircraft can potentially be inspected in less than a day. Array technology has been very widely used in the medical ultrasound field although rarely above 10 MHz, whereas lap-joint inspection requires a pulse center-frequency of 12 to 20 MHz in order to resolve the separate interfaces in the lap joint. A 128 mm-long multi-element array of 5 mmx2 mm ultrasonic elements for use with the ANDSCAN scanning software was produced to a DERA specification by an NDT manufacturer with experience in the medical imaging field. This paper analyses the performance of the transducers that have been produced and evaluates their use in scanning systems of different configurations

  2. Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems

    Directory of Open Access Journals (Sweden)

    Bambang Riyanto

    2005-11-01

    Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.

  3. Thermodynamics of (1-alkanol + linear monoether) systems

    International Nuclear Information System (INIS)

    Gonzalez, Juan Antonio; Mozo, Ismael; Garcia de la Fuente, Isaias; Cobos, Jose Carlos; Riesco, Nicolas

    2008-01-01

    Densities, ρ, and speeds of sound, u, of systems formed by 1-heptanol, or 1-octanol, or 1-decanol and dibutylether have been measured at a temperature of (293.15, 298.15, and 303.15) K and atmospheric pressure using a vibrating tube densimeter and sound analyser Anton Paar model DSA-5000. The ρ and u values were used to calculate excess molar volumes, V E , and deviations from the ideal behaviour of the thermal expansion coefficient, Δα p and of the isentropic compressibilities, Δκ S . The available database on molar excess enthalpies, H E , and V E for (1-alkanol + linear monoether) systems was used to investigate interactional and structural effects in such mixtures. The enthalpy of the OH...O bonds is lower for methanol solutions, and for the remainder systems, it is practically independent of the mixture compounds. The V E variation with the chain length of the 1-alkanol points out the existence of structural effects for systems including longer 1-alkanols. The ERAS model is applied to the studied mixtures. ERAS represents quite accurately H E and V E data using parameters which consistently depend on the molecular structure

  4. Identification problems in linear transformation system

    International Nuclear Information System (INIS)

    Delforge, Jacques.

    1975-01-01

    An attempt was made to solve the theoretical and numerical difficulties involved in the identification problem relative to the linear part of P. Delattre's theory of transformation systems. The theoretical difficulties are due to the very important problem of the uniqueness of the solution, which must be demonstrated in order to justify the value of the solution found. Simple criteria have been found when measurements are possible on all the equivalence classes, but the problem remains imperfectly solved when certain evolution curves are unknown. The numerical difficulties are of two kinds: a slow convergence of iterative methods and a strong repercussion of numerical and experimental errors on the solution. In the former case a fast convergence was obtained by transformation of the parametric space, while in the latter it was possible, from sensitivity functions, to estimate the errors, to define and measure the conditioning of the identification problem then to minimize this conditioning as a function of the experimental conditions [fr

  5. System theory as applied differential geometry. [linear system

    Science.gov (United States)

    Hermann, R.

    1979-01-01

    The invariants of input-output systems under the action of the feedback group was examined. The approach used the theory of Lie groups and concepts of modern differential geometry, and illustrated how the latter provides a basis for the discussion of the analytic structure of systems. Finite dimensional linear systems in a single independent variable are considered. Lessons of more general situations (e.g., distributed parameter and multidimensional systems) which are increasingly encountered as technology advances are presented.

  6. Normal form of linear systems depending on parameters

    International Nuclear Information System (INIS)

    Nguyen Huynh Phan.

    1995-12-01

    In this paper we resolve completely the problem to find normal forms of linear systems depending on parameters for the feedback action that we have studied for the special case of controllable linear systems. (author). 24 refs

  7. PWR control system design using advanced linear and non-linear methodologies

    International Nuclear Information System (INIS)

    Rabindran, N.; Whitmarsh-Everiss, M.J.

    2004-01-01

    Consideration is here given to the methodology deployed for non-linear heuristic analysis in the time domain supported by multi-variable linear control system design methods for the purposes of operational dynamics and control system analysis. This methodology is illustrated by the application of structural singular value μ analysis to Pressurised Water Reactor control system design. (author)

  8. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    Science.gov (United States)

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  9. Body-insensitive Multi-Mode MIMO Terminal Antenna of Double-Ring Structure

    DEFF Research Database (Denmark)

    Zhao, Kun; Zhang, Shuai; Ishimiya, Katsunori

    2015-01-01

    of mobile terminals. With the multimode excitation, the MIMO cellular antenna can operate at 830-900 MHz, 1700-2200 MHz, and 2400-2700 MHz, for 2G, 3G, and LTE bands, respectively. The MIMO Wi-Fi antenna can cover two Wi-Fi bands from 2.4 to 2.5 GHz and from 5.2 to 5.8 GHz. The effect of a user's body......In this paper, we propose a novel multimode multi-input multi-output (MIMO) antenna system composed of a dual-element MIMO cellular antenna and dual-element MIMO Wi-Fi antenna for mobile terminal applications. The antenna system has a double-ring structure and can be integrated with the metal frame...... on the MIMO cellular antenna is investigated on CTIA standard phantoms and a real user. Since our antenna mainly operates in the loop mode, it has a much lower efficiency loss than conventional mobile antennas in both talking and data modes. Our theoretical analysis and experiments have shown that our design...

  10. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed ...

  11. Symmetric linear systems - An application of algebraic systems theory

    Science.gov (United States)

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  12. A Generalized Spatial Correlation Model for 3D MIMO Channels based on the Fourier Coefficients of Power Spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Merouane; Alouini, Mohamed-Slim

    2015-01-01

    Previous studies have confirmed the adverse impact of fading correlation on the mutual information (MI) of two-dimensional (2D) multiple-input multiple-output (MIMO) systems. More recently, the trend is to enhance the system performance

  13. Asymptotic analysis of multicell massive MIMO over Rician fading channels

    KAUST Repository

    Sanguinetti, Luca; Kammoun, Abla; Debbah, Merouane

    2017-01-01

    This work considers the downlink of a multicell massive MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments randomly positioned in the coverage area. Within this setting, we are interested in evaluating the sum rate of the system when MRT and RZF are employed under the assumption that each intracell link forms a MIMO Rician uncorrelated fading channel. The analysis is conducted assuming that N and K grow large with a non-trivial ratio N/K under the assumption that the data transmission in each cell is affected by channel estimation errors, pilot contamination, and an arbitrary large scale attenuation. Numerical results are used to validate the asymptotic analysis in the finite system regime and to evaluate the network performance under different settings. The asymptotic results are also instrumental to get insights into the interplay among system parameters.

  14. Asymptotic analysis of multicell massive MIMO over Rician fading channels

    KAUST Repository

    Sanguinetti, Luca

    2017-06-20

    This work considers the downlink of a multicell massive MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments randomly positioned in the coverage area. Within this setting, we are interested in evaluating the sum rate of the system when MRT and RZF are employed under the assumption that each intracell link forms a MIMO Rician uncorrelated fading channel. The analysis is conducted assuming that N and K grow large with a non-trivial ratio N/K under the assumption that the data transmission in each cell is affected by channel estimation errors, pilot contamination, and an arbitrary large scale attenuation. Numerical results are used to validate the asymptotic analysis in the finite system regime and to evaluate the network performance under different settings. The asymptotic results are also instrumental to get insights into the interplay among system parameters.

  15. Full-duplex transmission of IEEE 802.11ac-compliant MIMO WLAN signals over a 2-km 7-core fiber

    NARCIS (Netherlands)

    Fan, Yuting; Li, Jianqiang; Lei, Yi; Tang, Ming; Yin, Feifei; Dai, Yitang; Xu, Kun

    2017-01-01

    In this Letter, we experimentally demonstrate a full-duplex transmission system of IEEE 802.11ac-compliant multiple-input multiple-output (MIMO) signals over a 2-km 7-core fiber for in-building wireless local-area network (WLAN) distributed antenna systems. For full-duplex 3 � 3 MIMO

  16. A Generalized Spatial Correlation Model for 3D MIMO Channels based on the Fourier Coefficients of Power Spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-05-07

    Previous studies have confirmed the adverse impact of fading correlation on the mutual information (MI) of two-dimensional (2D) multiple-input multiple-output (MIMO) systems. More recently, the trend is to enhance the system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the derivation and characterization of three-dimensional (3D) channels in the presence of spatial correlation. In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for 3D MIMO channels. This novel SCF is developed for a uniform linear array of antennas with nonisotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. The resulting expression depends on the underlying arbitrary angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. The developed SCF determines the covariance matrices at the transmitter and the receiver that form the Kronecker channel model. In order to quantify the effects of correlation on the system performance, the information-theoretic deterministic equivalents of the MI for the Kronecker model are utilized in both mono-user and multi-user cases. Numerical results validate the proposed analytical expressions and elucidate the dependence of the system performance on azimuth and elevation angular spreads and antenna patterns. Some useful insights into the behaviour of MI as a function of downtilt angles are provided. The derived model will help evaluate the performance of correlated 3D MIMO channels in the future.

  17. A Hybrid Approach to Spatial Multiplexing in Multiuser MIMO Downlinks

    Directory of Open Access Journals (Sweden)

    Spencer Quentin H

    2004-01-01

    Full Text Available In the downlink of a multiuser multiple-input multiple-output (MIMO communication system, simultaneous transmission to several users requires joint optimization of the transmitted signals. Allowing all users to have multiple antennas adds an additional degree of complexity to the problem. In this paper, we examine the case where a single base station transmits to multiple users using linear processing (beamforming at each of the antenna arrays. We propose generalizations of several previous iterative algorithms for multiuser transmit beamforming that allow multiple antennas and multiple data streams for each user, and that take into account imperfect channel estimates at the transmitter. We then present a new hybrid algorithm that is based on coordinated transmit-receive beamforming, and combines the strengths of nonorthogonal iterative solutions with zero-forcing solutions. The problem of distributing power among the subchannels is solved by using standard bit-loading algorithms combined with the subchannel gains resulting from the zero-forcing solution. The result is a significant performance improvement over equal power distribution. At the same time, the number of iterations required to compute the final solution is reduced.

  18. A study on switched linear system identification using game ...

    African Journals Online (AJOL)

    A study on switched linear system identification using game-theoretic strategies and neural computing. ... This study deals with application of game-theoretic strategies and neural computing to switched linear ... AJOL African Journals Online.

  19. Reduction of Linear Functional Systems using Fuhrmann's Equivalence

    Directory of Open Access Journals (Sweden)

    Mohamed S. Boudellioua

    2016-11-01

    Full Text Available Functional systems arise in the treatment of systems of partial differential equations, delay-differential equations, multidimensional equations, etc. The problem of reducing a linear functional system to a system containing fewer equations and unknowns was first studied by Serre. Finding an equivalent presentation of a linear functional system containing fewer equations and fewer unknowns can generally simplify both the study of the structural properties of the linear functional system and of different numerical analysis issues, and it can sometimes help in solving the linear functional system. In this paper, Fuhrmann's equivalence is used to present a constructive result on the reduction of under-determined linear functional systems to a single equation involving a single unknown. This equivalence transformation has been studied by a number of authors and has been shown to play an important role in the theory of linear functional systems.

  20. Greenhouse Environmental Control Using Optimized MIMO PID Technique

    Directory of Open Access Journals (Sweden)

    Fateh BOUNAAMA

    2011-10-01

    Full Text Available Climate control for protected crops brings the added dimension of a biological system into a physical system control situation. The thermally dynamic nature of a greenhouse suggests that disturbance attenuation (load control of external temperature, humidity, and sunlight is far more important than is the case for controlling other types of buildings. This paper investigates the application of multi-inputs multi-outputs (MIMO PID controller to a MIMO greenhouse environmental model with actuation constraints. This method is based on decoupling the system at low frequency point. The optimal tuning values are determined using genetic algorithms optimization (GA. The inside outsides climate model of the environmental greenhouse, and the automatically collected data sets of Avignon, France are used to simulate and test this technique. The control objective is to maintain a highly coupled inside air temperature and relative humidity of strongly perturbed greenhouse, at specified set-points, by the ventilation/cooling and moisturizing operations.

  1. Aspheric lens based imaging receiver for MIMO visible light communication

    Science.gov (United States)

    Ju, Qiuqi; Liang, Zhongcheng; Liu, Xueming; Yang, Tingting; Wang, Jin

    2014-10-01

    Visible light communication (VLC) has been regarded as a promising solution in short-range intelligent communication system. Nowadays, the research is focused on integrating the multi-input multi-output (MIMO) technique in the VLC system, to achieve a larger transmission capacity and stronger transmission reliability. However, one important issue should be addressed due to the use of MIMO technology: the multipath inter-symbol interference. The multipath intersymbol interference comes from the reflection of the signal in the room and channel crosstalk between different channels. In this paper, we propose a novel optical system used in the MIMO VLC system to reduce multipath interference dramatically. Signals from different LEDs can be separated by using parabolic lens plated with reflecting film. This structure can reduce the reflection effect effectively as well. We present the simulation results to observe the distribution of optical power on the imaging plane for various receiving positions and low correlation between all channels. We can find that the optical power density becomes stronger than non-imaging system and the interference is sharply decreased, thus the SNR and BER are also optimized. Analysis about the optical system is given in this paper.

  2. High density linear systems for fusion power

    International Nuclear Information System (INIS)

    Ellis, W.R.; Krakowski, R.A.

    1975-01-01

    The physics and technological limitations and uncertainties associated with the linear theta pinch are discussed in terms of a generalized energy balance, which has as its basis the ratio (Q/sub E/) of total electrical energy generated to net electrical energy consumed. Included in this total is the virtual energy of bred fissile fuel, if a hybrid blanket is used, as well as the actual of real energy deposited in the blanket by the fusion neutron. The advantages and disadvantages of the pulsed operation demanded by the linear theta pinch are also discussed

  3. MIMO Underwater Acoustic Communications in Ports and Shallow Waters at Very High Frequency

    Directory of Open Access Journals (Sweden)

    Gaultier Real

    2013-10-01

    Full Text Available Hermes is a Single-Input Single-Output (SISO underwater acoustic modem that achieves very high-bit rate digital communications in ports and shallow waters. Here, the authors study the capability of Hermes to support Multiple-Input-Multiple-Output (MIMO technology. A least-square channel estimation algorithm is used to evaluate multiple MIMO channel impulse responses at the receiver end. A deconvolution routine is used to separate the messages coming from different sources. This paper covers the performance of both the channel estimation and the MIMO deconvolution processes using either simulated data or field data. The MIMO equalization performance is measured by comparing three relative root mean-squared errors (RMSE, obtained by calculations between the source signal (a pseudo-noise sequence and the corresponding received MIMO signal at various stages of the deconvolution process; prior to any interference removal, at the output of the Linear Equalization (LE process and at the output of an interference cancellation process with complete a priori knowledge of the transmitted signal. Using the simulated data, the RMSE using LE is −20.5 dB (where 0 dB corresponds to 100% of relative error while the lower bound value is −33.4 dB. Using experimental data, the LE performance is −3.3 dB and the lower bound RMSE value is −27 dB.

  4. Advanced Signal Processing for MIMO-OFDM Receivers

    DEFF Research Database (Denmark)

    Manchón, Carles Navarro

    This thesis deals with a wide range of topics within the research area of advanced baseband receiver design for wireless communication systems. In particular, the work focuses on signal processing algorithms for receivers in multiple-input multiple-output (MIMO) orthogonal frequency-division mult......This thesis deals with a wide range of topics within the research area of advanced baseband receiver design for wireless communication systems. In particular, the work focuses on signal processing algorithms for receivers in multiple-input multiple-output (MIMO) orthogonal frequency...... the structure of the receiver with the hope that the resulting heuristic architecture will exhibit the desired behavior and performance. On the other hand, one can employ analytical frameworks to pose the problem as the optimization of a global objective function subject to certain constraints. This work...

  5. Analysis of Linear Hybrid Systems in CLP

    DEFF Research Database (Denmark)

    Banda, Gourinath; Gallagher, John Patrick

    2009-01-01

    In this paper we present a procedure for representing the semantics of linear hybrid automata (LHAs) as constraint logic programs (CLP); flexible and accurate analysis and verification of LHAs can then be performed using generic CLP analysis and transformation tools. LHAs provide an expressive...

  6. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    Science.gov (United States)

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  7. Low Complexity V-BLAST MIMO-OFDM Detector by Successive Iterations Reduction

    Directory of Open Access Journals (Sweden)

    AHMED, K.

    2015-02-01

    Full Text Available V-BLAST detection method suffers large computational complexity due to its successive detection of symbols. In this paper, we propose a modified V-BLAST algorithm to decrease the computational complexity by reducing the number of detection iterations required in MIMO communication systems. We begin by showing the existence of a maximum number of iterations, beyond which, no significant improvement is obtained. We establish a criterion for the number of maximum effective iterations. We propose a modified algorithm that uses the measured SNR to dynamically set the number of iterations to achieve an acceptable bit-error rate. Then, we replace the feedback algorithm with an approximate linear function to reduce the complexity. Simulations show that significant reduction in computational complexity is achieved compared to the ordinary V-BLAST, while maintaining a good BER performance.

  8. Tuning of PID controller using optimization techniques for a MIMO process

    Science.gov (United States)

    Thulasi dharan, S.; Kavyarasan, K.; Bagyaveereswaran, V.

    2017-11-01

    In this paper, two processes were considered one is Quadruple tank process and the other is CSTR (Continuous Stirred Tank Reactor) process. These are majorly used in many industrial applications for various domains, especially, CSTR in chemical plants.At first mathematical model of both the process is to be done followed by linearization of the system due to MIMO process and controllers are the major part to control the whole process to our desired point as per the applications so the tuning of the controller plays a major role among the whole process. For tuning of parameters we use two optimizations techniques like Particle Swarm Optimization, Genetic Algorithm. The above techniques are majorly used in different applications to obtain which gives the best among all, we use these techniques to obtain the best tuned values among many. Finally, we will compare the performance of the each process with both the techniques.

  9. Seamless Translation of Optical Fiber PolMux-OFDM into a 2x2 MIMO Wireless Transmission Enabled by Digital Training-Based Fiber-Wireless Channel Estimation

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Zhao, Ying; Deng, Lei

    2011-01-01

    We propose and demonstrate a 2 × 2 multiple-input multiple-output (MIMO) wireless over fiber transmission system. Seamless translation of two orthogonal frequency division multiplexing (OFDM) signals on dual optical polarization states into wireless MIMO transmission at 795.5 Mbit/s net data rate...

  10. Weighted Sum-Rate Maximization Using Weighted MMSE for MIMO-BC Beamforming Design

    DEFF Research Database (Denmark)

    Christensen, Søren; De Carvalho, Elisabeth; Agarwal, Rajiv

    2009-01-01

    This paper studies linear transmit filter design for weighted sum-rate (WSR) maximization in the multiple input multiple output broadcast channel (MIMO-BC). The problem of finding the optimal transmit filter is non-convex and intractable to solve using low complexity methods. Motivated by recent ...

  11. A SYSTEMIC VISION OF BIOLOGY: OVERCOMING LINEARITY

    Directory of Open Access Journals (Sweden)

    M. Mayer

    2005-07-01

    were used to build  a hipermedia  material.  This  technology  permit  overcomes a linear  communication, improving the  comprehension  of the network perspective.   The teachers  speeches revealed  their  conceptual  con- structions along the  course,  showed the development of the  competences  in identify  interconnection points  in the flow and chemical cycling of energy, compatible  with a systemic view of life.

  12. Solving Fully Fuzzy Linear System of Equations in General Form

    Directory of Open Access Journals (Sweden)

    A. Yousefzadeh

    2012-06-01

    Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  13. Efficient collaborative sparse channel estimation in massive MIMO

    KAUST Repository

    Masood, Mudassir; Afify, Laila H.; Al-Naffouri, Tareq Y.

    2015-01-01

    We propose a method for estimation of sparse frequency selective channels within MIMO-OFDM systems. These channels are independently sparse and share a common support. The method estimates the impulse response for each channel observed by the antennas at the receiver. Estimation is performed in a coordinated manner by sharing minimal information among neighboring antennas to achieve results better than many contemporary methods. Simulations demonstrate the superior performance of the proposed method.

  14. Efficient collaborative sparse channel estimation in massive MIMO

    KAUST Repository

    Masood, Mudassir

    2015-08-12

    We propose a method for estimation of sparse frequency selective channels within MIMO-OFDM systems. These channels are independently sparse and share a common support. The method estimates the impulse response for each channel observed by the antennas at the receiver. Estimation is performed in a coordinated manner by sharing minimal information among neighboring antennas to achieve results better than many contemporary methods. Simulations demonstrate the superior performance of the proposed method.

  15. Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time

    Science.gov (United States)

    Wang, Yu

    1995-08-01

    The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.

  16. Magnetic MIMO Signal Processing and Optimization for Wireless Power Transfer

    Science.gov (United States)

    Yang, Gang; Moghadam, Mohammad R. Vedady; Zhang, Rui

    2017-06-01

    In magnetic resonant coupling (MRC) enabled multiple-input multiple-output (MIMO) wireless power transfer (WPT) systems, multiple transmitters (TXs) each with one single coil are used to enhance the efficiency of simultaneous power transfer to multiple single-coil receivers (RXs) by constructively combining their induced magnetic fields at the RXs, a technique termed "magnetic beamforming". In this paper, we study the optimal magnetic beamforming design in a multi-user MIMO MRC-WPT system. We introduce the multi-user power region that constitutes all the achievable power tuples for all RXs, subject to the given total power constraint over all TXs as well as their individual peak voltage and current constraints. We characterize each boundary point of the power region by maximizing the sum-power deliverable to all RXs subject to their minimum harvested power constraints. For the special case without the TX peak voltage and current constraints, we derive the optimal TX current allocation for the single-RX setup in closed-form as well as that for the multi-RX setup. In general, the problem is a non-convex quadratically constrained quadratic programming (QCQP), which is difficult to solve. For the case of one single RX, we show that the semidefinite relaxation (SDR) of the problem is tight. For the general case with multiple RXs, based on SDR we obtain two approximate solutions by applying time-sharing and randomization, respectively. Moreover, for practical implementation of magnetic beamforming, we propose a novel signal processing method to estimate the magnetic MIMO channel due to the mutual inductances between TXs and RXs. Numerical results show that our proposed magnetic channel estimation and adaptive beamforming schemes are practically effective, and can significantly improve the power transfer efficiency and multi-user performance trade-off in MIMO MRC-WPT systems.

  17. Reliability modelling and simulation of switched linear system ...

    African Journals Online (AJOL)

    Reliability modelling and simulation of switched linear system control using temporal databases. ... design of fault-tolerant real-time switching systems control and modelling embedded micro-schedulers for complex systems maintenance.

  18. Multipass Channel Estimation and Joint Multiuser Detection and Equalization for MIMO Long-Code DS/CDMA Systems

    Directory of Open Access Journals (Sweden)

    Buzzi Stefano

    2006-01-01

    Full Text Available The problem of joint channel estimation, equalization, and multiuser detection for a multiantenna DS/CDMA system operating over a frequency-selective fading channel and adopting long aperiodic spreading codes is considered in this paper. First of all, we present several channel estimation and multiuser data detection schemes suited for multiantenna long-code DS/CDMA systems. Then, a multipass strategy, wherein the data detection and the channel estimation procedures exchange information in a recursive fashion, is introduced and analyzed for the proposed scenario. Remarkably, this strategy provides, at the price of some attendant computational complexity increase, excellent performance even when very short training sequences are transmitted, and thus couples together the conflicting advantages of both trained and blind systems, that is, good performance and no wasted bandwidth, respectively. Space-time coded systems are also considered, and it is shown that the multipass strategy provides excellent results for such systems also. Likewise, it is also shown that excellent performance is achieved also when each user adopts the same spreading code for all of its transmit antennas. The validity of the proposed procedure is corroborated by both simulation results and analytical findings. In particular, it is shown that adopting the multipass strategy results in a remarkable reduction of the channel estimation mean-square error and of the optimal length of the training sequence.

  19. Joint source and relay optimization for interference MIMO relay networks

    Science.gov (United States)

    Khandaker, Muhammad R. A.; Wong, Kai-Kit

    2017-12-01

    This paper considers multiple-input multiple-output (MIMO) relay communication in multi-cellular (interference) systems in which MIMO source-destination pairs communicate simultaneously. It is assumed that due to severe attenuation and/or shadowing effects, communication links can be established only with the aid of a relay node. The aim is to minimize the maximal mean-square-error (MSE) among all the receiving nodes under constrained source and relay transmit powers. Both one- and two-way amplify-and-forward (AF) relaying mechanisms are considered. Since the exactly optimal solution for this practically appealing problem is intractable, we first propose optimizing the source, relay, and receiver matrices in an alternating fashion. Then we contrive a simplified semidefinite programming (SDP) solution based on the error covariance matrix decomposition technique, avoiding the high complexity of the iterative process. Numerical results reveal the effectiveness of the proposed schemes.

  20. A MIMO-OFDM Testbed for Wireless Local Area Networks

    Directory of Open Access Journals (Sweden)

    Conrat Jean-Marc

    2006-01-01

    Full Text Available We describe the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We first describe the channel measurement campaign used to characterize the indoor operational propagation environment, and analyze the influence of the channel on code design through a ray-tracing channel simulator. We also comment on some antenna and RF issues which are of importance for the final realization of the testbed. Multiple coding, decoding, and channel estimation strategies are discussed and their respective performance-complexity trade-offs are evaluated over the realistic channel obtained from the propagation studies. Finally, we present the design methodology, including cross-validation of the Matlab, C++, and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system.

  1. Efficient two-dimensional compressive sensing in MIMO radar

    Science.gov (United States)

    Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad

    2017-12-01

    Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.

  2. Low profile frequency agile MIMO slot antenna with TCM characterization

    KAUST Repository

    Ghalib, Asim

    2017-06-07

    In this paper, a frequency reconfigurable multiple-input-multiple-output (MIMO) slot antenna is presented. The proposed design is low profile and compact with wide tunability range, covering several well-known frequency bands from 1800 MHz to 2450 MHz. The frequency reconfigurability is achieved by loading the annular slot with varactor diodes. The antenna system is also analyzed for MIMO performance metrics. Moreover, the effect of circular slot antenna on the chassis modes is also investigated using the theory of characteristic modes (TCM). The physical principle behind frequency reconfigurability is also investigated using TCM analysis. An interesting finding is observed using varactor diodes for frequency reconfigurability, that is the reactive impedance loading does not alter the modal significance (MS) plots but only aid in the input impedance matching at different frequency bands.

  3. Performance analysis of MIMO wireless optical communication system with Q-ary PPM over correlated log-normal fading channel

    Science.gov (United States)

    Wang, Huiqin; Wang, Xue; Lynette, Kibe; Cao, Minghua

    2018-06-01

    The performance of multiple-input multiple-output wireless optical communication systems that adopt Q-ary pulse position modulation over spatial correlated log-normal fading channel is analyzed in terms of its un-coded bit error rate and ergodic channel capacity. The analysis is based on the Wilkinson's method which approximates the distribution of a sum of correlated log-normal random variables to a log-normal random variable. The analytical and simulation results corroborate the increment of correlation coefficients among sub-channels lead to system performance degradation. Moreover, the receiver diversity has better performance in resistance of spatial correlation caused channel fading.

  4. Low-Complexity Transmit Antenna Selection and Beamforming for Large-Scale MIMO Communications

    Directory of Open Access Journals (Sweden)

    Kun Qian

    2014-01-01

    Full Text Available Transmit antenna selection plays an important role in large-scale multiple-input multiple-output (MIMO communications, but optimal large-scale MIMO antenna selection is a technical challenge. Exhaustive search is often employed in antenna selection, but it cannot be efficiently implemented in large-scale MIMO communication systems due to its prohibitive high computation complexity. This paper proposes a low-complexity interactive multiple-parameter optimization method for joint transmit antenna selection and beamforming in large-scale MIMO communication systems. The objective is to jointly maximize the channel outrage capacity and signal-to-noise (SNR performance and minimize the mean square error in transmit antenna selection and minimum variance distortionless response (MVDR beamforming without exhaustive search. The effectiveness of all the proposed methods is verified by extensive simulation results. It is shown that the required antenna selection processing time of the proposed method does not increase along with the increase of selected antennas, but the computation complexity of conventional exhaustive search method will significantly increase when large-scale antennas are employed in the system. This is particularly useful in antenna selection for large-scale MIMO communication systems.

  5. Signal Processing for Wireless Communication MIMO System with Nano- Scaled CSDG MOSFET based DP4T RF Switch.

    Science.gov (United States)

    Srivastava, Viranjay M

    2015-01-01

    In the present technological expansion, the radio frequency integrated circuits in the wireless communication technologies became useful because of the replacement of increasing number of functions, traditional hardware components by modern digital signal processing. The carrier frequencies used for communication systems, now a day, shifted toward the microwave regime. The signal processing for the multiple inputs multiple output wireless communication system using the Metal- Oxide-Semiconductor Field-Effect-Transistor (MOSFET) has been done a lot. In this research the signal processing with help of nano-scaled Cylindrical Surrounding Double Gate (CSDG) MOSFET by means of Double- Pole Four-Throw Radio-Frequency (DP4T RF) switch, in terms of Insertion loss, Isolation, Reverse isolation and Inter modulation have been analyzed. In addition to this a channel model has been presented. Here, we also discussed some patents relevant to the topic.

  6. Resource allocation and MIMO for 4G and beyond

    CERN Document Server

    2014-01-01

    This book presents the underlying technological breakthroughs that allowed the current state of wireless technology development to evolve. The book focuses on the two lower layers of the ISO/OSI layered model, specifically the physical and data link layers including the media access control sub-layer. These two layers are of particular importance to wireless systems due to the spectrum shortage, the broadcast nature of interference, and time variability in the wireless channel. Topics covered in this book include: radio resource allocation (RRA) for emerging architectures such as Coordinated Multipoint (CoMP) and Device-to-Device communications (D2D); RRA for quality of service control; propagation and transceiver aspects of MIMO systems; and the design and selection of MIMO multiuser precoders. The proposed approaches for RRA and MIMO are applicable to mobile communication standards such as 3GPP’s LTE and LTE-Advanced, but also apply further to the continuously evolving wireless access technologies lan...

  7. Subcarrier intensity modulation for MIMO visible light communications

    Science.gov (United States)

    Celik, Yasin; Akan, Aydin

    2018-04-01

    In this paper, subcarrier intensity modulation (SIM) is investigated for multiple-input multiple-output (MIMO) visible light communication (VLC) systems. A new modulation scheme called DC-aid SIM (DCA-SIM) is proposed for the spatial modulation (SM) transmission plan. Then, DCA-SIM is extended for multiple subcarrier case which is called DC-aid Multiple Subcarrier Modulation (DCA-MSM). Bit error rate (BER) performances of the considered system are analyzed for different MIMO schemes. The power efficiencies of DCA-SIM and DCA-MSM are shown in correlated MIMO VLC channels. The upper bound BER performances of the proposed models are obtained analytically for PSK and QAM modulation types in order to validate the simulation results. Additionally, the effect of power imbalance method on the performance of SIM is studied and remarkable power gains are obtained compared to the non-power imbalanced cases. In this work, Pulse amplitude modulation (PAM) and MSM-Index are used as benchmarks for single carrier and multiple carrier cases, respectively. And the results show that the proposed schemes outperform PAM and MSM-Index for considered single carrier and multiple carrier communication scenarios.

  8. Energy balance in a system with quasispherical linear compression

    International Nuclear Information System (INIS)

    Es'kov, A.G.; Kozlov, N.P.; Kurtmullaev, R.K.; Semenov, V.N.; Khvesyuk, V.I.; Yaminskii, A.V.

    1983-01-01

    This letter reports the resists of some experimental studies and a numerical simulation of the Tor-linear fusion system, 1 in which a heavy plasma shell with a closed magnetic structure is compressed in a quasispherical manner. The parameters of the Tor-Linear, at the Kurchatov Institute of Atomic Energy in Moscow are as follows: The energy stored in the system which accelerates the linear is E = 0.5 MJ; the linear mass is m = 0.2 kg; the working volume of the linear module is 1.5 x 10 -3 m 3 ; the linear velocity is approx.10 3 m/s; the guiding field in the toriod in the linear is 1--10 x 10 21 m -3 ; and the intial volume of the plasma in the linear chamber is 2.5 x 10 -4 m 3 . In this series of experiments, new solutions were developed for all the systems of the plasma--linear complex of the Tor-Linear: to produce a plasma toroid, to transport it, and to trap it in the linear cavity

  9. A Proposed Method for Solving Fuzzy System of Linear Equations

    Directory of Open Access Journals (Sweden)

    Reza Kargar

    2014-01-01

    Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.

  10. Linear and Non-linear Multi-Input Multi-Output Model Predictive Control of Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Muayad Al-Qaisy

    2015-02-01

    Full Text Available In this article, multi-input multi-output (MIMO linear model predictive controller (LMPC based on state space model and nonlinear model predictive controller based on neural network (NNMPC are applied on a continuous stirred tank reactor (CSTR. The idea is to have a good control system that will be able to give optimal performance, reject high load disturbance, and track set point change. In order to study the performance of the two model predictive controllers, MIMO Proportional-Integral-Derivative controller (PID strategy is used as benchmark. The LMPC, NNMPC, and PID strategies are used for controlling the residual concentration (CA and reactor temperature (T. NNMPC control shows a superior performance over the LMPC and PID controllers by presenting a smaller overshoot and shorter settling time.

  11. Indirect synthesis of multi-degree of freedom transient systems. [linear programming for a kinematically linear system

    Science.gov (United States)

    Pilkey, W. D.; Chen, Y. H.

    1974-01-01

    An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.

  12. Zero-forcing pre-coding for MIMO WiMAX transceivers: Performance analysis and implementation issues

    Science.gov (United States)

    Cattoni, A. F.; Le Moullec, Y.; Sacchi, C.

    Next generation wireless communication networks are expected to achieve ever increasing data rates. Multi-User Multiple-Input-Multiple-Output (MU-MIMO) is a key technique to obtain the expected performance, because such a technique combines the high capacity achievable using MIMO channel with the benefits of space division multiple access. In MU-MIMO systems, the base stations transmit signals to two or more users over the same channel, for this reason every user can experience inter-user interference. This paper provides a capacity analysis of an online, interference-based pre-coding algorithm able to mitigate the multi-user interference of the MU-MIMO systems in the context of a realistic WiMAX application scenario. Simulation results show that pre-coding can significantly increase the channel capacity. Furthermore, the paper presents several feasibility considerations for implementation of the analyzed technique in a possible FPGA-based software defined radio.

  13. High-Dimensional Analysis of Convex Optimization-Based Massive MIMO Decoders

    KAUST Repository

    Ben Atitallah, Ismail

    2017-04-01

    A wide range of modern large-scale systems relies on recovering a signal from noisy linear measurements. In many applications, the useful signal has inherent properties, such as sparsity, low-rankness, or boundedness, and making use of these properties and structures allow a more efficient recovery. Hence, a significant amount of work has been dedicated to developing and analyzing algorithms that can take advantage of the signal structure. Especially, since the advent of Compressed Sensing (CS) there has been significant progress towards this direction. Generally speaking, the signal structure can be harnessed by solving an appropriate regularized or constrained M-estimator. In modern Multi-input Multi-output (MIMO) communication systems, all transmitted signals are drawn from finite constellations and are thus bounded. Besides, most recent modulation schemes such as Generalized Space Shift Keying (GSSK) or Generalized Spatial Modulation (GSM) yield signals that are inherently sparse. In the recovery procedure, boundedness and sparsity can be promoted by using the ℓ1 norm regularization and by imposing an ℓ∞ norm constraint respectively. In this thesis, we propose novel optimization algorithms to recover certain classes of structured signals with emphasis on MIMO communication systems. The exact analysis permits a clear characterization of how well these systems perform. Also, it allows an automatic tuning of the parameters. In each context, we define the appropriate performance metrics and we analyze them exactly in the High Dimentional Regime (HDR). The framework we use for the analysis is based on Gaussian process inequalities; in particular, on a new strong and tight version of a classical comparison inequality (due to Gordon, 1988) in the presence of additional convexity assumptions. The new framework that emerged from this inequality is coined as Convex Gaussian Min-max Theorem (CGMT).

  14. Minimal solution of general dual fuzzy linear systems

    International Nuclear Information System (INIS)

    Abbasbandy, S.; Otadi, M.; Mosleh, M.

    2008-01-01

    Fuzzy linear systems of equations, play a major role in several applications in various area such as engineering, physics and economics. In this paper, we investigate the existence of a minimal solution of general dual fuzzy linear equation systems. Two necessary and sufficient conditions for the minimal solution existence are given. Also, some examples in engineering and economic are considered

  15. Partial Linearization of Mechanical Systems with Application to Observer Design

    NARCIS (Netherlands)

    Sarras, Ioannis; Venkatraman, Aneesh; Ortega, Romeo; Schaft, Arjan van der

    2008-01-01

    We consider general mechanical systems and establish a necessary and sufficient condition for the existence of a suitable change in the generalized momentum coordinates such that the new dynamics become linear in the transformed momenta. The class of systems which can be (partially) linearized by

  16. Simultaneous Balancing and Model Reduction of Switched Linear Systems

    NARCIS (Netherlands)

    Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.

    2011-01-01

    In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not

  17. Joint Bandwidth and Power Allocation for MIMO Two-Way Relays-Assisted Overlay Cognitive Radio Systems

    KAUST Repository

    Alsharoa, Ahmad; Ghazzai, Hakim; Yaacoub, Elias; Alouini, Mohamed-Slim; Kamal, Ahmed

    2015-01-01

    This paper studies the achievable cognitive sum rate of an overlay cognitive radio (CR) system assisted with multiple antennas two-way relays in which primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. In this context, the problem of both bandwidth and power allocation is investigated. We propose that the CUs are allowed to allocate a part of the PUs spectrum to perform their cognitive transmission. In return, acting as amplify-and-forward two-way relays, they are exploited to support PUs to reach their target data rates over the remaining bandwidth. Power expressions for optimal transmit power allocated per PU and CU antenna are derived under primary quality-of-service constraint in addition to bandwidth and power budget constraints. More specifically, CUs act as relays for the PUs transmission and gain some spectrum as long as they respect these constraints. After deriving the optimal transmit powers, we employ a strong optimization tool based on swarm intelligence to optimize the full and complex relay amplification gain matrices in addition to the bandwidths released to primary and cognitive transmission. Furthermore, three different utility functions are considered in our optimization problems depending on the level of fairness among CUs.

  18. A best-first soft/hard decision tree searching MIMO decoder for a 4 × 4 64-QAM system

    KAUST Repository

    Shen, Chungan

    2012-08-01

    This paper presents the algorithm and VLSI architecture of a configurable tree-searching approach that combines the features of classical depth-first and breadth-first methods. Based on this approach, techniques to reduce complexity while providing both hard and soft outputs decoding are presented. Furthermore, a single programmable parameter allows the user to tradeoff throughput versus BER performance. The proposed multiple-input-multiple-output decoder supports a 4 × 4 64-QAM system and was synthesized with 65-nm CMOS technology at 333 MHz clock frequency. For the hard output scheme the design can achieve an average throughput of 257.8 Mbps at 24 dB signal-to-noise ratio (SNR) with area equivalent to 54.2 Kgates and a power consumption of 7.26 mW. For the soft output scheme it achieves an average throughput of 83.3 Mbps across the SNR range of interest with an area equivalent to 64 Kgates and a power consumption of 11.5 mW. © 2011 IEEE.

  19. A best-first soft/hard decision tree searching MIMO decoder for a 4 × 4 64-QAM system

    KAUST Repository

    Shen, Chungan; Eltawil, Ahmed M.; Salama, Khaled N.; Mondal, Sudip

    2012-01-01

    This paper presents the algorithm and VLSI architecture of a configurable tree-searching approach that combines the features of classical depth-first and breadth-first methods. Based on this approach, techniques to reduce complexity while providing both hard and soft outputs decoding are presented. Furthermore, a single programmable parameter allows the user to tradeoff throughput versus BER performance. The proposed multiple-input-multiple-output decoder supports a 4 × 4 64-QAM system and was synthesized with 65-nm CMOS technology at 333 MHz clock frequency. For the hard output scheme the design can achieve an average throughput of 257.8 Mbps at 24 dB signal-to-noise ratio (SNR) with area equivalent to 54.2 Kgates and a power consumption of 7.26 mW. For the soft output scheme it achieves an average throughput of 83.3 Mbps across the SNR range of interest with an area equivalent to 64 Kgates and a power consumption of 11.5 mW. © 2011 IEEE.

  20. Joint Bandwidth and Power Allocation for MIMO Two-Way Relays-Assisted Overlay Cognitive Radio Systems

    KAUST Repository

    Alsharoa, Ahmad

    2015-10-08

    This paper studies the achievable cognitive sum rate of an overlay cognitive radio (CR) system assisted with multiple antennas two-way relays in which primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. In this context, the problem of both bandwidth and power allocation is investigated. We propose that the CUs are allowed to allocate a part of the PUs spectrum to perform their cognitive transmission. In return, acting as amplify-and-forward two-way relays, they are exploited to support PUs to reach their target data rates over the remaining bandwidth. Power expressions for optimal transmit power allocated per PU and CU antenna are derived under primary quality-of-service constraint in addition to bandwidth and power budget constraints. More specifically, CUs act as relays for the PUs transmission and gain some spectrum as long as they respect these constraints. After deriving the optimal transmit powers, we employ a strong optimization tool based on swarm intelligence to optimize the full and complex relay amplification gain matrices in addition to the bandwidths released to primary and cognitive transmission. Furthermore, three different utility functions are considered in our optimization problems depending on the level of fairness among CUs.

  1. A Triply Selective MIMO Channel Simulator Using GPUs

    Directory of Open Access Journals (Sweden)

    R. Carrasco-Alvarez

    2018-01-01

    Full Text Available A methodology for implementing a triply selective multiple-input multiple-output (MIMO simulator based on graphics processing units (GPUs is presented. The resulting simulator is based on the implementation of multiple double-selective single-input single-output (SISO channel generators, where the multiple inputs and the multiple received signals have been transformed in order to supply the corresponding space correlation of the channel under consideration. A direct consequence of this approach is the flexibility provided, which allows different propagation statistics to each SISO channel to be specified and thus more complex environments to be replicated. It is shown that under some specific constraints, the statistics of the triply selective MIMO simulator are the same as those reported in the state of art. Simulation results show the computational time improvement achieved, up to 650-fold for an 8 × 8 MIMO channel simulator when compared with sequential implementations. In addition to the computational improvement, the proposed simulator offers flexibility for testing a variety of scenarios in vehicle-to-vehicle (V2V and vehicle-to-infrastructure (V2I systems.

  2. Investigations in Satellite MIMO Channel Modeling: Accent on Polarization

    Directory of Open Access Journals (Sweden)

    Karagiannidis George K

    2007-01-01

    Full Text Available Due to the much different environment in satellite and terrestrial links, possibilities in and design of MIMO systems are rather different as well. After pointing out these differences and problems arising from them, two MIMO designs are shown rather well adapted to satellite link characteristics. Cooperative diversity seems to be applicable; its concept is briefly presented without a detailed discussion, leaving solving particular satellite problems to later work. On the other hand, a detailed discussion of polarization time-coded diversity (PTC is given. A physical-statistical model for dual-polarized satellite links is presented together with measuring results validating the model. The concept of 3D polarization is presented as well as briefly describing compact 3D-polarized antennas known from the literature and applicable in satellite links. A synthetic satellite-to-indoor link is constructed and its electromagnetic behavior is simulated via the FDTD (finite-difference time-domain method. Previous result of the authors states that in 3D-PTC situations, MIMO capacity can be about two times higher than SIMO (single-input multiple-output capacity while a diversity gain of nearly is further verified via extensive FDTD computer simulation.

  3. Analysis and Transceiver Design for the MIMO Broadcast Channel

    CERN Document Server

    Hunger, Raphael

    2013-01-01

    This book deals with the optimization-based joint design of the transmit and receive filters in   MIMO broadcast channel in which the user terminals may be equipped with several antenna elements. Furthermore, the maximum performance of the system in the high power regime as well as the set of all feasible quality-of-service requirements is analyzed. First, a fundamental duality is derived that holds between the MIMO broadcast channel and virtual MIMO multiple access channel. This duality construct allows for the efficient solution of problems originally posed in the broadcast channel in the dual domain where a possibly hidden convexity can often be revealed. On the basis of the established duality result, the gradient-projection algorithm is introduced as a tool to solve constrained optimization problems to global optimality under certain conditions. The gradient-projection tool is then applied to solving the weighted sum rate maximization problem which is a central optimization that arises in any network u...

  4. Linear System Control Using Stochastic Learning Automata

    Science.gov (United States)

    Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.

    1998-01-01

    This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.

  5. Useful tools for non-linear systems: Several non-linear integral inequalities

    Czech Academy of Sciences Publication Activity Database

    Agahi, H.; Mohammadpour, A.; Mesiar, Radko; Vaezpour, M. S.

    2013-01-01

    Roč. 49, č. 1 (2013), s. 73-80 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : Monotone measure * Comonotone functions * Integral inequalities * Universal integral Subject RIV: BA - General Mathematics Impact factor: 3.058, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf

  6. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Introduction. Modern excitation systems considerably enhance the overall transient stability of power systems ..... to the local bus rather than the angle δ measured with respect to the remote bus. ... With this in view, the linear and nonlinear per-.

  7. Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches

    Directory of Open Access Journals (Sweden)

    Su Hai

    2017-02-01

    Full Text Available A Multiple-Input Multiple-Output (MIMO ultra-wideband radar can detect the range and azimuth information of targets in real time. It is widely used for geological surveys, life rescue, through-wall tracking, and other military or civil fields. This paper presents the design of an ultra-wideband pseudo random coded MIMO radar that is based on Radio Frequency (RF switches and implements a MIMO radar system. RF switches are employed to reduce cost and complexity of the system. As the switch pressure value is limited, the peak power of the transmitting signal is 18 dBm. The ultra-wideband radar echo is obtained by hybrid sampling, and pulse compression is computed by Digital Signal Processors (DSPs embedded in an Field-Programmable Gate Array (FPGA to simplify the signal process. The experiment illustrates that the radar system can detect the range and azimuth information of targets in real time.

  8. A new active absorption system and its performance to linear and non-linear waves

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Clavero, M.; Frigaard, Peter Bak

    2016-01-01

    Highlights •An active absorption system for wavemakers has been developed. •The theory for flush mounted gauges has been extended to cover also small gaps. •The new system has been validated in a wave flume with wavemakers in both ends. •A generation and absorption procedure for highly non-linear...

  9. Multiple Input - Multiple Output (MIMO) SAR

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort will research and implement advanced Multiple-Input Multiple-Output (MIMO) Synthetic Aperture Radar (SAR) techniques which have the potential to improve...

  10. Phase noise effects in synchronized wireless networks for mimo-ofdm

    International Nuclear Information System (INIS)

    Kiyani, M.K.

    2014-01-01

    Channel impairments effects are evaluated by inclusion of phase noise in a synchronization error correction algorithm for MIMO (Multiple Input Multiple Output) OFDM (Orthogonal Frequency Division Multiplexing) systems. The original synchronization error correction algorithm applicable to AWGN (Additive White Gaussian Noise) channel pertaining to SISO (Single Input Single Output) system is modified in the presence of SUI (Stanford University Interim) channel models and then applied to MIMO systems. Then the performance of this modified algorithm is verified through simulations under the effects of channel impairments. (author)

  11. On Optimal Feedback Control for Stationary Linear Systems

    International Nuclear Information System (INIS)

    Russell, David L.

    2010-01-01

    We study linear-quadratic optimal control problems for finite dimensional stationary linear systems AX+BU=Z with output Y=CX+DU from the viewpoint of linear feedback solution. We interpret solutions in relation to system robustness with respect to disturbances Z and relate them to nonlinear matrix equations of Riccati type and eigenvalue-eigenvector problems for the corresponding Hamiltonian system. Examples are included along with an indication of extensions to continuous, i.e., infinite dimensional, systems, primarily of elliptic type.

  12. Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis

    Science.gov (United States)

    Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel

    2013-01-01

    This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007

  13. Gradient remediability in linear distributed parabolic systems ...

    African Journals Online (AJOL)

    The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...

  14. Toward a Reconfigurable MIMO Downlink Air Interface and Radio Resource Management

    DEFF Research Database (Denmark)

    Kovacs, Istvan Zsolt; Luis, Garcia Ordonez; Ferrández, Miguel Navarro

    2010-01-01

    This article presents a reconfigurable multiple-input multiple-output air interface design combined with radio resource management algorithms applicable to multi-user MIMO transmission in downlink orthogonal frequency-division multiple access systems. A low-complexity, adaptive, and channel...... scheduling. System-level performance analysis, including the effects of limited and imperfect feedback from the terminals, shows that the SURFACE air interface provides an attractive practical solution for operations with high-rate adaptive MIMO transmission schemes in the context of next-generation wireless......-aware single-user and multi-user MIMO transmission solution is proposed based on the findings of the SURFACE European Commission funded research project. The resulting cross-layer design covers the reconfigurable air interface, and practical layer 1 and layer 2 RRM mechanisms for time-frequency packet...

  15. Three-Dimensional Target Localization and Cramér-Rao Bound for Two-Dimensional OFDM-MIMO Radar

    Directory of Open Access Journals (Sweden)

    Xingxing Li

    2017-01-01

    Full Text Available Target localization using a frequency diversity multiple-input multiple-output (MIMO system is one of the hottest research directions in the radar society. In this paper, three-dimensional (3D target localization is considered for two-dimensional MIMO radar with orthogonal frequency division multiplexing linear frequency modulated (OFDM-LFM waveforms. To realize joint estimation for range and angle in azimuth and elevation, the range-angle-dependent beam pattern with high range resolution is produced by the OFDM-LFM waveform. Then, the 3D target localization proposal is presented and the corresponding closed-form expressions of Cramér-Rao bound (CRB are derived. Furthermore, for mitigating the coupling of angle and range and further improving the estimation precision, a CRB optimization method is proposed. Different from the existing methods of FDA-based radar, the proposed method can provide higher range estimation because of multiple transmitted frequency bands. Numerical simulation results are provided to demonstrate the effectiveness of the proposed approach and its improved performance of target localization.

  16. Linearization of Nonautonomous Impulsive System with Nonuniform Exponential Dichotomy

    Directory of Open Access Journals (Sweden)

    Yongfei Gao

    2014-01-01

    Full Text Available This paper gives a version of Hartman-Grobman theorem for the impulsive differential equations. We assume that the linear impulsive system has a nonuniform exponential dichotomy. Under some suitable conditions, we proved that the nonlinear impulsive system is topologically conjugated to its linear system. Indeed, we do construct the topologically equivalent function (the transformation. Moreover, the method to prove the topological conjugacy is quite different from those in previous works (e.g., see Barreira and Valls, 2006.

  17. On the discretization of linear fractional representations of LPV systems

    NARCIS (Netherlands)

    Toth, R.; Lovera, M.; Heuberger, P.S.C.; Corno, M.; Hof, Van den P.M.J.

    2012-01-01

    Commonly, controllers for linear parameter-varying (LPV) systems are designed in continuous time using a linear fractional representation (LFR) of the plant. However, the resulting controllers are implemented on digital hardware. Furthermore, discrete-time LPV synthesis approaches require a

  18. Automatic frequency control system for driving a linear accelerator

    International Nuclear Information System (INIS)

    Helgesson, A.L.

    1976-01-01

    An automatic frequency control system is described for maintaining the drive frequency applied to a linear accelerator to produce maximum particle output from the accelerator. The particle output amplitude is measured and the frequency of the radio frequency source powering the linear accelerator is adjusted to maximize particle output amplitude

  19. A Pilot-Pattern Based Algorithm for MIMO-OFDM Channel Estimation

    Directory of Open Access Journals (Sweden)

    Guomin Li

    2016-12-01

    Full Text Available An improved pilot pattern algorithm for facilitating the channel estimation in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM systems is proposed in this paper. The presented algorithm reconfigures the parameter in the least square (LS algorithm, which belongs to the space-time block-coded (STBC category for channel estimation in pilot-based MIMO-OFDM system. Simulation results show that the algorithm has better performance in contrast to the classical single symbol scheme. In contrast to the double symbols scheme, the proposed algorithm can achieve nearly the same performance with only half of the complexity of the double symbols scheme.

  20. Application of Nearly Linear Solvers to Electric Power System Computation

    Science.gov (United States)

    Grant, Lisa L.

    To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement online control and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within reasonable time. This project expands on the current work in fast linear solvers, developed for solving symmetric and diagonally dominant linear systems, in order to produce power system specific methods that can be solved in nearly-linear run times. The work explores a new theoretical method that is based on ideas in graph theory and combinatorics. The technique builds a chain of progressively smaller approximate systems with preconditioners based on the system's low stretch spanning tree. The method is compared to traditional linear solvers and shown to reduce the time and iterations required for an accurate solution, especially as the system size increases. A simulation validation is performed, comparing the solution capabilities of the chain method to LU factorization, which is the standard linear solver for power flow. The chain method was successfully demonstrated to produce accurate solutions for power flow simulation on a number of IEEE test cases, and a discussion on how to further improve the method's speed and accuracy is included.

  1. Simplified Antenna Group Determination of RS Overhead Reduced Massive MIMO for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Byung Moo Lee

    2017-12-01

    Full Text Available Massive multiple-input multiple-output (MIMO systems can be applied to support numerous internet of things (IoT devices using its excessive amount of transmitter (TX antennas. However, one of the big obstacles for the realization of the massive MIMO system is the overhead of reference signal (RS, because the number of RS is proportional to the number of TX antennas and/or related user equipments (UEs. It has been already reported that antenna group-based RS overhead reduction can be very effective to the efficient operation of massive MIMO, but the method of deciding the number of antennas needed in each group is at question. In this paper, we propose a simplified determination scheme of the number of antennas needed in each group for RS overhead reduced massive MIMO to support many IoT devices. Supporting many distributed IoT devices is a framework to configure wireless sensor networks. Our contribution can be divided into two parts. First, we derive simple closed-form approximations of the achievable spectral efficiency (SE by using zero-forcing (ZF and matched filtering (MF precoding for the RS overhead reduced massive MIMO systems with channel estimation error. The closed-form approximations include a channel error factor that can be adjusted according to the method of the channel estimation. Second, based on the closed-form approximation, we present an efficient algorithm determining the number of antennas needed in each group for the group-based RS overhead reduction scheme. The algorithm depends on the exact inverse functions of the derived closed-form approximations of SE. It is verified with theoretical analysis and simulation that the proposed algorithm works well, and thus can be used as an important tool for massive MIMO systems to support many distributed IoT devices.

  2. Portable, x-band, linear accelerator systems

    International Nuclear Information System (INIS)

    Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.

    1985-01-01

    Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for nondestructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz

  3. Structure Learning in Stochastic Non-linear Dynamical Systems

    Science.gov (United States)

    Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.

    2005-12-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.

  4. Portable, x-band, linear accelerator systems

    International Nuclear Information System (INIS)

    Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.

    1985-01-01

    Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for non-destructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz

  5. Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems

    NARCIS (Netherlands)

    Opmeer, MR; Curtain, RF

    2004-01-01

    In this paper, we study the existence of linear quadratic Gaussian (LQG)-balanced realizations for discrete-time infinite-dimensional systems. LQG-balanced realizations are those for which the smallest nonnegative self-adjoint solutions of the control and filter Riccati equations are equal. We show

  6. MIMO processing based on higher-order Poincaré spheres

    Science.gov (United States)

    Fernandes, Gil M.; Muga, Nelson J.; Pinto, Armando N.

    2017-08-01

    A multi-input multi-output (MIMO) algorithm based on higher-order Poincaré spheres is demonstrated for space-division multiplexing (SDM) systems. The MIMO algorithm is modulation format agnostic, robust to frequency offset and does not require training sequences. In this approach, the space-multiplexed signal is decomposed in sets of two tributary signals, with each set represented in a higher-order Poincaré sphere. For any arbitrary complex modulation format, the samples of two tributaries can be represented in a given higher-order Poincaré sphere with a symmetry plane. The crosstalk along propagation changes the spatial orientation of this plane and, therefore, it can be compensated by computing and realigning the best fit plane. We show how the transmitted signal can be successfully recovered using this procedure for all possible combinations of tributaries. Moreover, we analyze the convergence speed for the MIMO technique considering several optical-to-noise ratios.

  7. Sparse Linear Solver for Power System Analysis Using FPGA

    National Research Council Canada - National Science Library

    Johnson, J. R; Nagvajara, P; Nwankpa, C

    2005-01-01

    .... Numerical solution to load flow equations are typically computed using Newton-Raphson iteration, and the most time consuming component of the computation is the solution of a sparse linear system...

  8. Perfect commuting-operator strategies for linear system games

    Science.gov (United States)

    Cleve, Richard; Liu, Li; Slofstra, William

    2017-01-01

    Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.

  9. A data-driven fault-tolerant control design of linear multivariable systems with performance optimization.

    Science.gov (United States)

    Li, Zhe; Yang, Guang-Hong

    2017-09-01

    In this paper, an integrated data-driven fault-tolerant control (FTC) design scheme is proposed under the configuration of the Youla parameterization for multiple-input multiple-output (MIMO) systems. With unknown system model parameters, the canonical form identification technique is first applied to design the residual observer in fault-free case. In faulty case, with online tuning of the Youla parameters based on the system data via the gradient-based algorithm, the fault influence is attenuated with system performance optimization. In addition, to improve the robustness of the residual generator to a class of system deviations, a novel adaptive scheme is proposed for the residual generator to prevent its over-activation. Simulation results of a two-tank flow system demonstrate the optimized performance and effect of the proposed FTC scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. A conceptual design of Final Focus Systems for linear colliders

    International Nuclear Information System (INIS)

    Brown, K.L.

    1987-06-01

    Linear colliders are a relatively recent development in the evolution of particle accelerators. This report discusses some of the approaches that have been considered for the design of Final Focus Systems to demagnify the beam exiting from a linac to the small size suitable for collisions at the interaction point. The system receiving the most attention is the one adopted for the SLAC Linear Collider. However, the theory and optical techniques discussed should be applicable to the design efforts for future machines

  11. ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE

    Directory of Open Access Journals (Sweden)

    Kirillov

    2014-11-01

    Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.

  12. Iterative algorithms for large sparse linear systems on parallel computers

    Science.gov (United States)

    Adams, L. M.

    1982-01-01

    Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.

  13. Simultaneous Balancing and Model Reduction of Switched Linear Systems

    OpenAIRE

    Monshizadeh, Nima; Trentelman, Hendrikus; Camlibel, M.K.

    2011-01-01

    In this paper, first, balanced truncation of linear systems is revisited. Then, simultaneous balancing of multiple linear systems is investigated. Necessary and sufficient conditions are introduced to identify the case where simultaneous balancing is possible. The validity of these conditions is not limited to a certain type of balancing, and they are applicable for different types of balancing corresponding to different equations, like Lyapunov or Riccati equations. The results obtained are ...

  14. Solar photovoltaic water pumping system using a new linear actuator

    OpenAIRE

    Andrada Gascón, Pedro; Castro, Javier

    2007-01-01

    In this paper a photovoltaic solar pumping system using a new linear actuator is presented. This linear actuator is a double-sided flat two-phase variable-reluctance linear stepper motor that moves a piston-type water pump with the help of a rope, a pulley and a counterweight. The entire actuator pump ensemble is controlled by a simple electronic unit that manages the electric power generated by a photovoltaic array. The proposed system is suitable for rural communities in developing...

  15. Constrained Optimization of MIMO Training Sequences

    Directory of Open Access Journals (Sweden)

    Coon Justin P

    2007-01-01

    Full Text Available Multiple-input multiple-output (MIMO systems have shown a huge potential for increased spectral efficiency and throughput. With an increasing number of transmitting antennas comes the burden of providing training for channel estimation for coherent detection. In some special cases optimal, in the sense of mean-squared error (MSE, training sequences have been designed. However, in many practical systems it is not feasible to analytically find optimal solutions and numerical techniques must be used. In this paper, two systems (unique word (UW single carrier and OFDM with nulled subcarriers are considered and a method of designing near-optimal training sequences using nonlinear optimization techniques is proposed. In particular, interior-point (IP algorithms such as the barrier method are discussed. Although the two systems seem unrelated, the cost function, which is the MSE of the channel estimate, is shown to be effectively the same for each scenario. Also, additional constraints, such as peak-to-average power ratio (PAPR, are considered and shown to be easily included in the optimization process. Numerical examples illustrate the effectiveness of the designed training sequences, both in terms of MSE and bit-error rate (BER.

  16. Phase and amplitude detection system for the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Fox, J.D.; Schwarz, H.D.

    1983-01-01

    A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  17. Synchronization of linearly coupled unified chaotic systems based on linear balanced feedback scheme with constraints

    International Nuclear Information System (INIS)

    Chen, H.-H.; Chen, C.-S.; Lee, C.-I

    2009-01-01

    This paper investigates the synchronization of unidirectional and bidirectional coupled unified chaotic systems. A balanced coupling coefficient control method is presented for global asymptotic synchronization using the Lyapunov stability theorem and a minimum scheme with no constraints/constraints. By using the result of the above analysis, the balanced coupling coefficients are then designed to achieve the chaos synchronization of linearly coupled unified chaotic systems. The feasibility and effectiveness of the proposed chaos synchronization scheme are verified via numerical simulations.

  18. Uplink multi-cluster scheduling with MU-MIMO for LTE-advanced with carrier aggregation

    DEFF Research Database (Denmark)

    Wang, Hua; Nguyen, Hung Tuan; Rosa, Claudio

    2012-01-01

    -Advanced requirements and are being considered as part of LTE Release 10. In this paper, some of the physical layer enhancement techniques for LTE-Advanced have been studied including carrier aggregation (CA), uplink multi-cluster scheduling, and uplink multi-user multiple-input multiple-output (MU-MIMO) transmission....... A system-level simulation was conducted to investigate the performance gains that can be achieved in uplink CA with multi-cluster scheduling and MU-MIMO. Simulation results show that with proper separation between power-limited and non-power-limited LTE-A users, multi-cluster scheduling with CA has similar...

  19. MIMO OTA Testing

    DEFF Research Database (Denmark)

    Kotterman, Wim; Pedersen, Gert F.; Szini, Istvan Janos

    2016-01-01

    in science and technology (COST) IC1004, discussions are generally held in an easier atmosphere than in standardisation bodies. Contributions to a broader understanding of OTAtesting of multi-antenna systems and its implications are welcomed as much as investigations of particular technologies or concepts....... Such contributions come from industry and academia. Compared to earlier work in, for instance in COST Action 2100, the focus has shifted from RF performance (the present OTA standard) to overall device performance as seen by the user, without regarding any specific hardware/subsystem performance. This also means...

  20. Solution of generalized shifted linear systems with complex symmetric matrices

    International Nuclear Information System (INIS)

    Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo

    2012-01-01

    We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.