Parametric Linear Dynamic Logic
Peter Faymonville
2014-08-01
Full Text Available We introduce Parametric Linear Dynamic Logic (PLDL, which extends Linear Dynamic Logic (LDL by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL that is able to express all ω-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic Büchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all ω-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic Büchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.
Application of linear logic to simulation
Clarke, Thomas L.
1998-08-01
Linear logic, since its introduction by Girard in 1987 has proven expressive and powerful. Linear logic has provided natural encodings of Turing machines, Petri nets and other computational models. Linear logic is also capable of naturally modeling resource dependent aspects of reasoning. The distinguishing characteristic of linear logic is that it accounts for resources; two instances of the same variable are considered differently from a single instance. Linear logic thus must obey a form of the linear superposition principle. A proportion can be reasoned with only once, unless a special operator is applied. Informally, linear logic distinguishes two kinds of conjunction, two kinds of disjunction, and also introduces a modal storage operator that explicitly indicates propositions that can be reused. This paper discuses the application of linear logic to simulation. A wide variety of logics have been developed; in addition to classical logic, there are fuzzy logics, affine logics, quantum logics, etc. All of these have found application in simulations of one sort or another. The special characteristics of linear logic and its benefits for simulation will be discussed. Of particular interest is a connection that can be made between linear logic and simulated dynamics by using the concept of Lie algebras and Lie groups. Lie groups provide the connection between the exponential modal storage operators of linear logic and the eigen functions of dynamic differential operators. Particularly suggestive are possible relations between complexity result for linear logic and non-computability results for dynamical systems.
Engberg, Uffe Henrik; Winskel, Glynn
This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...
On Multiplicative Linear Logic, Modality and Quantum Circuits
Ugo Dal Lago
2012-10-01
Full Text Available A logical system derived from linear logic and called QMLL is introduced and shown able to capture all unitary quantum circuits. Conversely, any proof is shown to compute, through a concrete GoI interpretation, some quantum circuits. The system QMLL, which enjoys cut-elimination, is obtained by endowing multiplicative linear logic with a quantum modality.
Petri Nets as Models of Linear Logic
Engberg, Uffe Henrik; Winskel, Glynn
1990-01-01
The chief purpose of this paper is to appraise the feasibility of Girad's linear logic as a specification language for parallel processes. To this end we propose an interpretation of linear logic in Petri nets, with respect to which we investigate the expressive power of the logic...
Cut elimination in multifocused linear logic
Guenot, Nicolas; Brock-Nannestad, Taus
2015-01-01
We study cut elimination for a multifocused variant of full linear logic in the sequent calculus. The multifocused normal form of proofs yields problems that do not appear in a standard focused system, related to the constraints in grouping rule instances in focusing phases. We show that cut...... elimination can be performed in a sensible way even though the proof requires some specific lemmas to deal with multifocusing phases, and discuss the difficulties arising with cut elimination when considering normal forms of proofs in linear logic....
Linear Temporal Logic-based Mission Planning
Anil Kumar; Rahul Kala
2016-01-01
In this paper, we describe the Linear Temporal Logic-based reactive motion planning. We address the problem of motion planning for mobile robots, wherein the goal specification of planning is given in complex environments. The desired task specification may consist of complex behaviors of the robot, including specifications for environment constraints, need of task optimality, obstacle avoidance, rescue specifications, surveillance specifications, safety specifications, etc. We use Linear Tem...
Completeness Results for Linear Logic on Petri Nets
Engberg, Uffe Henrik; Winskel, Glynn
1993-01-01
Completeness is shown for several versions of Girard's linear logic with respect to Petri nets as the class of models. The strongest logic considered is intuitionistic linear logic, with $otimes$, $-!circ$, &, $oplus$ and the exponential ! (''of course´´), and forms of quantification. This logic ...
Linear Temporal Logic-based Mission Planning
Anil Kumar
2016-06-01
Full Text Available In this paper, we describe the Linear Temporal Logic-based reactive motion planning. We address the problem of motion planning for mobile robots, wherein the goal specification of planning is given in complex environments. The desired task specification may consist of complex behaviors of the robot, including specifications for environment constraints, need of task optimality, obstacle avoidance, rescue specifications, surveillance specifications, safety specifications, etc. We use Linear Temporal Logic to give a representation for such complex task specification and constraints. The specifications are used by a verification engine to judge the feasibility and suitability of plans. The planner gives a motion strategy as output. Finally a controller is used to generate the desired trajectory to achieve such a goal. The approach is tested using simulations on the LTLMoP mission planning tool, operating over the Robot Operating System. Simulation results generated using high level planners and low level controllers work simultaneously for mission planning and controlling the physical behavior of the robot.
Dynamic logic architecture based on piecewise-linear systems
Peng Haipeng; Liu Fei; Li Lixiang; Yang Yixian; Wang Xue
2010-01-01
This Letter explores piecewise-linear systems to construct dynamic logic architecture. The proposed schemes can discriminate the two input signals and obtain 16 kinds of logic operations by different combinations of parameters and conditions for determining the output. Each logic cell performs more flexibly, that makes it possible to achieve complex logic operations more simply and construct computing architecture with less logic cells. We also analyze the various performances of our schemes under different conditions and the characteristics of these schemes.
Hybrid logic on linear structures: expressivity and complexity
Franceschet, M.; de Rijke, M.; Schlingoff, B.-H.
2003-01-01
We investigate expressivity and complexity of hybrid logics on linear structures. Hybrid logics are an enrichment of modal logics with certain first-order features which are algorithmically well behaved. Therefore, they are well suited for the specification of certain properties of computational
A logic circuit for solving linear function by digital method
Ma Yonghe
1986-01-01
A mathematical method for determining the linear relation of physical quantity with rediation intensity is described. A logic circuit has been designed for solving linear function by digital method. Some applications and the circuit function are discussed
Introducing Linear Functions: An Alternative Statistical Approach
Nolan, Caroline; Herbert, Sandra
2015-01-01
The introduction of linear functions is the turning point where many students decide if mathematics is useful or not. This means the role of parameters and variables in linear functions could be considered to be "threshold concepts". There is recognition that linear functions can be taught in context through the exploration of linear…
Introducing linear functions: an alternative statistical approach
Nolan, Caroline; Herbert, Sandra
2015-12-01
The introduction of linear functions is the turning point where many students decide if mathematics is useful or not. This means the role of parameters and variables in linear functions could be considered to be `threshold concepts'. There is recognition that linear functions can be taught in context through the exploration of linear modelling examples, but this has its limitations. Currently, statistical data is easily attainable, and graphics or computer algebra system (CAS) calculators are common in many classrooms. The use of this technology provides ease of access to different representations of linear functions as well as the ability to fit a least-squares line for real-life data. This means these calculators could support a possible alternative approach to the introduction of linear functions. This study compares the results of an end-of-topic test for two classes of Australian middle secondary students at a regional school to determine if such an alternative approach is feasible. In this study, test questions were grouped by concept and subjected to concept by concept analysis of the means of test results of the two classes. This analysis revealed that the students following the alternative approach demonstrated greater competence with non-standard questions.
Lincx: A Linear Logical Framework with First-class Contexts
Linn Georges, Aina; Murawska, Agata; Otis, Shawn
2017-01-01
Linear logic provides an elegant framework for modelling stateful, imperative and concurrent systems by viewing a context of assumptions as a set of resources. However, mechanizing the meta-theory of such systems remains a challenge, as we need to manage and reason about mixed contexts of linear...
Relating Reasoning Methodologies in Linear Logic and Process Algebra
Yuxin Deng
2012-11-01
Full Text Available We show that the proof-theoretic notion of logical preorder coincides with the process-theoretic notion of contextual preorder for a CCS-like calculus obtained from the formula-as-process interpretation of a fragment of linear logic. The argument makes use of other standard notions in process algebra, namely a labeled transition system and a coinductively defined simulation relation. This result establishes a connection between an approach to reason about process specifications and a method to reason about logic specifications.
Minimality of critical scenarios with linear logic and cutsets
DK
Keywords: Dependability - Mechatronic systems -Petri net - Linear logic - Minimal Feared scenarios - Cutsets. ..... Energy supply. Detection high level. Relay. ET. Energy supply. Detection high level. Relay ..... Evaluation de la SdF des systèmes mécatroniques en utilisant ... in complex distributed systems, Proceedings of the.
Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae
Rosu, Grigore; Havelund, Klaus
2001-01-01
The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.
Experimental investigation of a four-qubit linear-optical quantum logic circuit.
Stárek, R; Mičuda, M; Miková, M; Straka, I; Dušek, M; Ježek, M; Fiurášek, J
2016-09-20
We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C(3)Z gate and several two-qubit and single-qubit gates. The C(3)Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.
Introducing Programmable Logic to Undergraduate Engineering Students in a Digital Electronics Course
Todorovich, E.; Marone, J. A.; Vazquez, M.
2012-01-01
Due to significant technological advances and industry requirements, many universities have introduced programmable logic and hardware description languages into undergraduate engineering curricula. This has led to a number of logistical and didactical challenges, in particular for computer science students. In this paper, the integration of some…
Logical Qubit in a Linear Array of Semiconductor Quantum Dots
Cody Jones
2018-06-01
Full Text Available We design a logical qubit consisting of a linear array of quantum dots, we analyze error correction for this linear architecture, and we propose a sequence of experiments to demonstrate components of the logical qubit on near-term devices. To avoid the difficulty of fully controlling a two-dimensional array of dots, we adapt spin control and error correction to a one-dimensional line of silicon quantum dots. Control speed and efficiency are maintained via a scheme in which electron spin states are controlled globally using broadband microwave pulses for magnetic resonance, while two-qubit gates are provided by local electrical control of the exchange interaction between neighboring dots. Error correction with two-, three-, and four-qubit codes is adapted to a linear chain of qubits with nearest-neighbor gates. We estimate an error correction threshold of 10^{-4}. Furthermore, we describe a sequence of experiments to validate the methods on near-term devices starting from four coupled dots.
Testing Linear Temporal Logic Formulae on Finite Execution Traces
Havelund, Klaus; Rosu, Grigore; Norvig, Peter (Technical Monitor)
2001-01-01
We present an algorithm for efficiently testing Linear Temporal Logic (LTL) formulae on finite execution traces. The standard models of LTL are infinite traces, reflecting the behavior of reactive and concurrent systems which conceptually may be continuously alive. In most past applications of LTL. theorem provers and model checkers have been used to formally prove that down-scaled models satisfy such LTL specifications. Our goal is instead to use LTL for up-scaled testing of real software applications. Such tests correspond to analyzing the conformance of finite traces against LTL formulae. We first describe what it means for a finite trace to satisfy an LTL property. We then suggest an optimized algorithm based on transforming LTL formulae. The work is done using the Maude rewriting system. which turns out to provide a perfect notation and an efficient rewriting engine for performing these experiments.
Introducing a logic for real-world agents with degrees of belief
Rens, GB
2009-12-01
Full Text Available stream_source_info Gens_2009.pdf.txt stream_content_type text/plain stream_size 3189 Content-Encoding UTF-8 stream_name Gens_2009.pdf.txt Content-Type text/plain; charset=UTF-8 Introducing a Logic for Real-world Agents... the world could be. A further step to capture uncertain knowledge is to assign a likelihood to each state considered possible so that degrees of belief can be captured. Now as the robot acts and observes while completing its tasks, it will change its...
The King and Prisoner Puzzle: A Way of Introducing the Components of Logical Structures
Roh, Kyeong Hah; Lee, Yong Hah; Tanner, Austin
2016-01-01
The purpose of this paper is to provide issues related to student understanding of logical components that arise when solving word problems. We designed a logic problem called the King and Prisoner Puzzle--a linguistically simple, yet logically challenging problem. In this paper, we describe various student solutions to the puzzle and discuss the…
Configurable unitary transformations and linear logic gates using quantum memories.
Campbell, G T; Pinel, O; Hosseini, M; Ralph, T C; Buchler, B C; Lam, P K
2014-08-08
We show that a set of optical memories can act as a configurable linear optical network operating on frequency-multiplexed optical states. Our protocol is applicable to any quantum memories that employ off-resonant Raman transitions to store optical information in atomic spins. In addition to the configurability, the protocol also offers favorable scaling with an increasing number of modes where N memories can be configured to implement arbitrary N-mode unitary operations during storage and readout. We demonstrate the versatility of this protocol by showing an example where cascaded memories are used to implement a conditional cz gate.
Synthetic Domain Theory and Models of Linear Abadi & Plotkin Logic
Møgelberg, Rasmus Ejlers; Birkedal, Lars; Rosolini, Guiseppe
2008-01-01
Plotkin suggested using a polymorphic dual intuitionistic/linear type theory (PILLY) as a metalanguage for parametric polymorphism and recursion. In recent work the first two authors and R.L. Petersen have defined a notion of parametric LAPL-structure, which are models of PILLY, in which one can...... reason using parametricity and, for example, solve a large class of domain equations, as suggested by Plotkin.In this paper, we show how an interpretation of a strict version of Bierman, Pitts and Russo's language Lily into synthetic domain theory presented by Simpson and Rosolini gives rise...... to a parametric LAPL-structure. This adds to the evidence that the notion of LAPL-structure is a general notion, suitable for treating many different parametric models, and it provides formal proofs of consequences of parametricity expected to hold for the interpretation. Finally, we show how these results...
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Undecidability of the Logic of Overlap Relation over Discrete Linear Orderings
Bresolin, Davide; Della Monica, Dario; Goranko, Valentin
2010-01-01
. Still, decidability is the rule for the fragments of HS with only one modal operator, based on an Allen’s relation. In this paper, we show that the logic O of the Overlap relation, when interpreted over discrete linear orderings, is an exception. The proof is based on a reduction from the undecidable...
Passive linear-optics 640 Gbit/s logic NOT gate
Maram, Reza; Kong, Deming; Galili, Michael
2015-01-01
We experimentally demonstrate a 640 Gbit/s all-optical NOT gate for high-speed telecommunication on-off-keying (OOK) data signals. We employ linear optical signal processing based on spectral phase-only (all-pass) optical filtering to perform the target logic NOT operation....
N. Jaya
2008-10-01
Full Text Available In this work, a design and implementation of a Conventional PI controller, single region fuzzy logic controller, two region fuzzy logic controller and Globally Linearized Controller (GLC for a two capacity interacting nonlinear process is carried out. The performance of this process using single region FLC, two region FLC and GLC are compared with the performance of conventional PI controller about an operating point of 50 %. It has been observed that GLC and two region FLC provides better performance. Further, this procedure is also validated by real time experimentation using dSPACE.
Linear Time Logics around PSL: Complexity, Expressiveness, and a little bit of Succinctness
Lange, Martin
2007-01-01
We consider linear time temporal logic enriched with semi-extended regular expressions through various operators that have been proposed in the literature, in particular in Accelera's Property Specification Language. We obtain results about the expressive power of fragments of this logic when...... restricted to certain operators only: basically, all operators alone suffice for expressive completeness w.r.t.\\ omega-regular expressions, just the closure operator is too weak. We also obtain complexity results. Again, almost all operators alone suffice for EXPSPACE-completeness, just the closure operator...
Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.
Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko
2016-03-01
In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.
Braüner, Torben
2011-01-01
Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....
Parameterized Linear Temporal Logics Meet Costs: Still not Costlier than LTL
Martin Zimmermann
2015-09-01
Full Text Available We continue the investigation of parameterized extensions of Linear Temporal Logic (LTL that retain the attractive algorithmic properties of LTL: a polynomial space model checking algorithm and a doubly-exponential time algorithm for solving games. Alur et al. and Kupferman et al. showed that this is the case for Parametric LTL (PLTL and PROMPT-LTL respectively, which have temporal operators equipped with variables that bound their scope in time. Later, this was also shown to be true for Parametric LDL (PLDL, which extends PLTL to be able to express all omega-regular properties. Here, we generalize PLTL to systems with costs, i.e., we do not bound the scope of operators in time, but bound the scope in terms of the cost accumulated during time. Again, we show that model checking and solving games for specifications in PLTL with costs is not harder than the corresponding problems for LTL. Finally, we discuss PLDL with costs and extensions to multiple cost functions.
Kleene, Stephen Cole
1967-01-01
Undergraduate students with no prior instruction in mathematical logic will benefit from this multi-part text. Part I offers an elementary but thorough overview of mathematical logic of 1st order. Part II introduces some of the newer ideas and the more profound results of logical research in the 20th century. 1967 edition.
Shu, Qunfeng; Xu, Meijuan; Li, Jing; Yang, Taowei; Zhang, Xian; Xu, Zhenghong; Rao, Zhiming
2018-05-04
L-Ornithine is a non-protein amino acid with extensive applications in the food and pharmaceutical industries. In this study, we performed metabolic pathway engineering of an L-arginine hyper-producing strain of Corynebacterium crenatum for L-ornithine production. First, we amplified the L-ornithine biosynthetic pathway flux by blocking the competing branch of the pathway. To enhance L-ornithine synthesis, we performed site-directed mutagenesis of the ornithine-binding sites to solve the problem of L-ornithine feedback inhibition for ornithine acetyltransferase. Alternatively, the genes argA from Escherichia coli and argE from Serratia marcescens, encoding the enzymes N-acetyl glutamate synthase and N-acetyl-L-ornithine deacetylase, respectively, were introduced into Corynebacterium crenatum to mimic the linear pathway of L-ornithine biosynthesis. Fermentation of the resulting strain in a 5-L bioreactor allowed a dramatically increased production of L-ornithine, 40.4 g/L, with an overall productivity of 0.673 g/L/h over 60 h. This demonstrates that an increased level of transacetylation is beneficial for L-ornithine biosynthesis.
Smullyan, Raymond
2008-01-01
This book features a unique approach to the teaching of mathematical logic by putting it in the context of the puzzles and paradoxes of common language and rational thought. It serves as a bridge from the author's puzzle books to his technical writing in the fascinating field of mathematical logic. Using the logic of lying and truth-telling, the author introduces the readers to informal reasoning preparing them for the formal study of symbolic logic, from propositional logic to first-order logic, a subject that has many important applications to philosophy, mathematics, and computer science. T
a fuzzy logic approach to non-linearity problem of load frequency
user
2016-07-03
Jul 3, 2016 ... reduction in settling time, percent overshoot and steady state error. Keywords: fuzzy logic ... power system to regain a state of operating equilibrium given ... power system depends basically on the active (real) power balance ...
Schulz, S; Romacker, M; Hahn, U
1998-01-01
The development of powerful and comprehensive medical ontologies that support formal reasoning on a large scale is one of the key requirements for clinical computing in the next millennium. Taxonomic medical knowledge, a major portion of these ontologies, is mainly characterized by generalization and part-whole relations between concepts. While reasoning in generalization hierarchies is quite well understood, no fully conclusive mechanism as yet exists for part-whole reasoning. The approach we take emulates part-whole reasoning via classification-based reasoning using SEP triplets, a special data structure for encoding part-whole relations that is fully embedded in the formal framework of standard description logics.
Detection of epistatic effects with logic regression and a classical linear regression model.
Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata
2014-02-01
To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.
Mathematical modelling in engineering: A proposal to introduce linear algebra concepts
Andrea Dorila Cárcamo
2016-03-01
Full Text Available The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasize the development of mathematical abilities primarily associated with modelling and interpreting, which aren´t limited only to calculus abilities. Considering this, an instructional design was elaborated based on mathematic modelling and emerging heuristic models for the construction of specific linear algebra concepts: span and spanning set. This was applied to first year engineering students. Results suggest that this type of instructional design contributes to the construction of these mathematical concepts and can also favour first year engineering students understanding of key linear algebra concepts and potentiate the development of higher order skills.
Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts
Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep
2016-01-01
The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…
Microelectromechanical reprogrammable logic device
Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.
2016-01-01
on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance
Gnatenko Irina A.
2017-08-01
Full Text Available The article is aimed at implementing an implication of the theory of wave-like (cyclical evolutionary development of the economic system with regard to the regional labor market and determining the time for the most effective introduction of innovation influence according to development cycle of the labor markets in the Donetsk and Lugansk regions. The article schematically depicts the dissipative system of the cyclical evolutionary development of the regional labor market. The status of the regional labor market in each of the phases of the development cycle has been characterized. An evaluation of the efficiency of introducing innovations in the regional labor market, depending on the development cycle of this market, has been provided. The phase of the development cycle in which the labor markets of the Donetsk and Lugansk regions are effective has been defined, and the causal relationships that show these markets being in the «crisis» phase, have been described. It has been concluded that it would be useful to modify the existing policy of innovation impact on the regional labor markets of the Donetsk and Lugansk regions in line with the development phase of the markets indicated.
Quantifying the gantry sag on linear accelerators and introducing an MLC-based compensation strategy
Du Weiliang; Gao Song; Wang Xiaochun; Kudchadker, Rajat J. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)
2012-04-15
Purpose: Gantry sag is one of the well-known sources of mechanical imperfections that compromise the spatial accuracy of radiation dose delivery. The objectives of this study were to quantify the gantry sag on multiple linear accelerators (linacs), to investigate a multileaf collimator (MLC)-based strategy to compensate for gantry sag, and to verify the gantry sag and its compensation with film measurements. Methods: The authors used the Winston-Lutz method to measure gantry sag on three Varian linacs. A ball bearing phantom was imaged with megavolt radiation fields at 10 deg. gantry angle intervals. The images recorded with an electronic portal imaging device were analyzed to derive the radiation isocenter and the gantry sag, that is, the superior-inferior wobble of the radiation field center, as a function of the gantry angle. The authors then attempted to compensate for the gantry sag by applying a gantry angle-specific correction to the MLC leaf positions. The gantry sag and its compensation were independently verified using film measurements. Results: Gantry sag was reproducible over a six-month measurement period. The maximum gantry sag was found to vary from 0.7 to 1.0 mm, depending on the linac and the collimator angle. The radiation field center moved inferiorly (i.e., away from the gantry) when the gantry was rotated from 0 deg. to 180 deg. After the MLC leaf position compensation was applied at 90 deg. collimator angle, the maximum gantry sag was reduced to <0.2 mm. The film measurements at gantry angles of 0 deg. and 180 deg. verified the inferior shift of the radiation fields and the effectiveness of MLC compensation. Conclusions: The results indicate that gantry sag on a linac can be quantitatively measured using a simple phantom and an electronic portal imaging device. Reduction of gantry sag is feasible by applying a gantry angle-specific correction to MLC leaf positions at 90 deg. collimator angle.
Fränzle, Martin; Herde, Christian
2003-01-01
We investigate the problem of generalizing acceleration techniques as found in recent satisfiability engines for conjunctive normal forms (CNFs) to linear constraint systems over the Booleans. The rationale behind this research is that rewriting the propositional formulae occurring in e.g. bounde...
THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE
COMPUTER LOGIC, ARTIFICIAL INTELLIGENCE , BIONICS, GEOMETRY, INPUT OUTPUT DEVICES, LINEAR PROGRAMMING, MATHEMATICAL LOGIC, MATHEMATICAL PREDICTION, NETWORKS, PATTERN RECOGNITION, PROBABILITY, SWITCHING CIRCUITS, SYNTHESIS
Linear Logical Voting Protocols
DeYoung, Henry; Schürmann, Carsten
2012-01-01
Current approaches to electronic implementations of voting protocols involve translating legal text to source code of an imperative programming language. Because the gap between legal text and source code is very large, it is difficult to trust that the program meets its legal specification. In r...
Xue, Bingtian; Larsen, Kim Guldstrand; Mardare, Radu Iulian
2015-01-01
We introduce Concurrent Weighted Logic (CWL), a multimodal logic for concurrent labeled weighted transition systems (LWSs). The synchronization of LWSs is described using dedicated functions that, in various concurrency paradigms, allow us to encode the compositionality of LWSs. To reflect these......-completeness results for this logic. To complete these proofs we involve advanced topological techniques from Model Theory....
Fuzzy logic of Aristotelian forms
Perlovsky, L.I. [Nichols Research Corp., Lexington, MA (United States)
1996-12-31
Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties. In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.
Coherence Generalises Duality: A Logical Explanation of Multiparty Session Types
Carbone, Marco; Lindley, Sam; Montesi, Fabrizio
2016-01-01
the duality of classical linear logic (relating two types) with a more general notion of coherence (relating an arbitrary number of types). This paper introduces variants of CP and MCP, plus a new intermediate calculus of Globally-governed Classical Processes (GCP). We show a tight relation between......Wadler introduced Classical Processes (CP), a calculus based on a propositions-as-types correspondence between propositions of classical linear logic and session types. Carbone et al. introduced Multiparty Classical Processes, a calculus that generalises CP to multiparty session types, by replacing...
Nilsson, Jørgen Fischer
A Gentle introduction to logical languages, logical modeling, formal reasoning and computational logic for computer science and software engineering students......A Gentle introduction to logical languages, logical modeling, formal reasoning and computational logic for computer science and software engineering students...
Holakooie, Mohammad Hosein; Ojaghi, Mansour; Taheri, Asghar
2016-01-01
This paper investigates sensorless indirect field oriented control (IFOC) of SLIM with full-order Luenberger observer. The dynamic equations of SLIM are first elaborated to draw full-order Luenberger observer with some simplifying assumption. The observer gain matrix is derived from conventional procedure so that observer poles are proportional to SLIM poles to ensure the stability of system for wide range of linear speed. The operation of observer is significantly impressed by adaptive scheme. A fuzzy logic control (FLC) is proposed as adaptive scheme to estimate linear speed using speed tuning signal. The parameters of FLC are tuned using an off-line method through chaotic optimization algorithm (COA). The performance of the proposed observer is verified by both numerical simulation and real-time hardware-in-the-loop (HIL) implementation. Moreover, a detailed comparative study among proposed and other speed observers is obtained under different operation conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Institutional Logics in Action
Lounsbury, Michael; Boxenbaum, Eva
2013-01-01
This double volume presents state-of-the-art research and thinking on the dynamics of actors and institutional logics. In the introduction, we briefly sketch the roots and branches of institutional logics scholarship before turning to the new buds of research on the topic of how actors engage...... institutional logics in the course of their organizational practice. We introduce an exciting line of new works on the meta-theoretical foundations of logics, institutional logic processes, and institutional complexity and organizational responses. Collectively, the papers in this volume advance the very...... prolific stream of research on institutional logics by deepening our insight into the active use of institutional logics in organizational action and interaction, including the institutional effects of such (inter)actions....
Winkler, Peter; Bergmann, Helmar; Stuecklschweiger, Georg; Guss, Helmuth
2003-01-01
Mechanical stability and precise adjustment of rotation axes, collimator and room lasers are essential for the success of radiotherapy and particularly stereotactic radiosurgery with a linear accelerator. Quality assurance procedures, at present mainly based on visual tests and radiographic film evaluations, should desirably be little time consuming and highly accurate. We present a method based on segmentation and analysis of digital images acquired with an electronic portal imaging device (EPID) that meets these objectives. The method can be employed for routine quality assurance with a square field formed by the built-in collimator jaws as well as with a circular field using an external drill hole collimator. A number of tests, performed to evaluate accuracy and reproducibility of the algorithm, yielded very satisfying results. Studies performed over a period of 18 months prove the applicability of the inspected accelerator for stereotactic radiosurgery
Fuzzy Logic vs. Neutrosophic Logic: Operations Logic
Salah Bouzina
2016-12-01
Full Text Available The goal of this research is first to show how different, thorough, widespread and effective are the operations logic of the neutrosophic logic compared to the fuzzy logic’s operations logical. The second aim is to observe how a fully new logic, the neutrosophic logic, is established starting by changing the previous logical perspective fuzzy logic, and by changing that, we mean changing changing the truth values from the truth and falsity degrees membership in fuzzy logic, to the truth, falsity and indeterminacy degrees membership in neutrosophic logic; and thirdly, to observe that there is no limit to the logical discoveries - we only change the principle, then the system changes completely.
Carbone, Marco; Montesi, Fabrizio; Schürmann, Carsten
2014-01-01
In Choreographic Programming, a distributed system is programmed by giving a choreography, a global description of its interactions, instead of separately specifying the behaviour of each of its processes. Process implementations in terms of a distributed language can then be automatically...... projected from a choreography. We present Linear Compositional Choreographies (LCC), a proof theory for reasoning about programs that modularly combine choreographies with processes. Using LCC, we logically reconstruct a semantics and a projection procedure for programs. For the first time, we also obtain...... a procedure for extracting choreographies from process terms....
Logical entropy of quantum dynamical systems
Ebrahimzadeh Abolfazl
2016-01-01
Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.
Klarman, S
2013-05-01
Full Text Available We introduce Description Logics of Context (DLCs) - an extension of Description Logics (DLs) for context-based reasoning. Our approach descends from J. McCarthy's tradition of treating contexts as formal objects over which one can quantify...
Hung, Linda; Huang, Chen; Shin, Ilgyou; Ho, Gregory S.; Lignères, Vincent L.; Carter, Emily A.
2010-12-01
Orbital-free density functional theory (OFDFT) is a first principles quantum mechanics method to find the ground-state energy of a system by variationally minimizing with respect to the electron density. No orbitals are used in the evaluation of the kinetic energy (unlike Kohn-Sham DFT), and the method scales nearly linearly with the size of the system. The PRinceton Orbital-Free Electronic Structure Software (PROFESS) uses OFDFT to model materials from the atomic scale to the mesoscale. This new version of PROFESS allows the study of larger systems with two significant changes: PROFESS is now parallelized, and the ion-electron and ion-ion terms scale quasilinearly, instead of quadratically as in PROFESS v1 (L. Hung and E.A. Carter, Chem. Phys. Lett. 475 (2009) 163). At the start of a run, PROFESS reads the various input files that describe the geometry of the system (ion positions and cell dimensions), the type of elements (defined by electron-ion pseudopotentials), the actions you want it to perform (minimize with respect to electron density and/or ion positions and/or cell lattice vectors), and the various options for the computation (such as which functionals you want it to use). Based on these inputs, PROFESS sets up a computation and performs the appropriate optimizations. Energies, forces, stresses, material geometries, and electron density configurations are some of the values that can be output throughout the optimization. New version program summaryProgram Title: PROFESS Catalogue identifier: AEBN_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBN_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 68 721 No. of bytes in distributed program, including test data, etc.: 1 708 547 Distribution format: tar.gz Programming language: Fortran 90 Computer
Blackburn, Patrick Rowan; Jørgensen, Klaus Frovin
2012-01-01
In this paper we explore the logic of now, yesterday, today and tomorrow by combining the semantic approach to indexicality pioneered by Hans Kamp [9] and refined by David Kaplan [10] with hybrid tense logic. We first introduce a special now nominal (our @now corresponds to Kamp’s original now...... operator N) and prove completeness results for both logical and contextual validity. We then add propositional constants to handle yesterday, today and tomorrow; our system correctly treats sentences like “Niels will die yesterday” as contextually unsatisfiable. Building on our completeness results for now......, we prove completeness for the richer language, again for both logical and contextual validity....
Modal Logics for Cryptographic Processes
Frendrup, U.; Huttel, Hans; Jensen, N. J.
2002-01-01
We present three modal logics for the spi-calculus and show that they capture strong versions of the environment sensitive bisimulation introduced by Boreale et al. Our logics differ from conventional modal logics for process calculi in that they allow us to describe the knowledge of an attacker ...
Finkelstein, D.
1987-01-01
The von Neumann quantum logic lacks two basic symmetries of classical logic, that between sets and classes, and that between lower and higher order predicates. Similarly, the structural parallel between the set algebra and linear algebra of Grassmann and Peano was left incomplete by them in two respects. In this work a linear algebra is constructed that completes this correspondence and is interpreted as a new quantum logic that restores these invariances, and as a quantum set theory. It applies to experiments with coherent quantum phase relations between the quantum and the apparatus. The quantum set theory is applied to model a Lorentz-invariant quantum time-space complex
Ali Selamat
2012-01-01
Full Text Available Sensitivity-based linear learning method (SBLLM has recently been used as a predictive tool due to its unique characteristics and performance, particularly its high stability and consistency during predictions. However, the generalisation capability of SBLLM is sometimes limited depending on the nature of the dataset, particularly on whether uncertainty is present in the dataset or not. Since it made use of sensitivity analysis in relation to the data sets used, it is surely very prone to being affected by the nature of the dataset. In order to reduce the effects of uncertainties in SBLLM prediction and improve its generalisation ability, this paper proposes a hybrid system through the unique combination of type-2 fuzzy logic systems (type-2 FLSs and SBLLM; thereafter the hybrid system was used to model PVT properties of crude oil systems. Type-2 FLS has been choosen in order to better handle uncertainties existing in datasets beyond the capability of type-1 fuzzy logic systems. In the proposed hybrid, the type-2 FLS is used to handle uncertainties in reservoir data so that the cleaned data from type-2 FLS is then passed to the SBLLM for training and then final prediction using testing dataset follows. Comparative studies have been carried out to compare the performance of the newly proposed T2-SBLLM hybrid system with each of the constituent type-2 FLS and SBLLM. Empirical results from simulation show that the proposed T2-SBLLM hybrid system has greatly improved upon the performance of SBLLM, while also maintaining a better performance above that of the type-2 FLS.
Mittelstaedt, P.
1979-01-01
The subspaces of Hilbert space constitute an orthocomplemented quasimodular lattice Lsub(q) for which neither a two-valued function nor generalized truth function exist. A generalisation of the dialogic method can be used as an interpretation of a lattice Lsub(qi), which may be considered as the intuitionistic part of Lsub(q). Some obvious modifications of the dialogic method are introduced which come from the possible incommensurability of propositions about quantum mechanical systems. With the aid of this generalized dialogic method a propositional calculus Qsub(eff) is derived which is similar to the calculus of effective (intuitionistic) logic, but contains a few restrictions which are based on the incommensurability of quantum mechanical propositions. It can be shown within the framework of the calculus Qsub(eff) that the value-definiteness of the elementary propositions which are proved by quantum mechanical propositions is inherited by all finite compund propositions. In this way one arrives at the calculus Q of full quantum logic which incorporates the principle of excluded middle for all propositions and which is a model for the lattice Lsub(q). (Auth.)
Embedding Logics into Product Logic
Baaz, M.; Hájek, Petr; Krajíček, Jan; Švejda, David
1998-01-01
Roč. 61, č. 1 (1998), s. 35-47 ISSN 0039-3215 R&D Projects: GA AV ČR IAA1030601 Grant - others:COST(XE) Action 15 Keywords : fuzzy logic * Lukasiewicz logic * Gödel logic * product logic * computational complexity * arithmetical hierarchy Subject RIV: BA - General Mathematics
Microelectromechanical reprogrammable logic device
Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.
2016-01-01
In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme. PMID:27021295
Microelectromechanical reprogrammable logic device
Hafiz, Md Abdullah Al
2016-03-29
In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme.
Temporal logics and real time expert systems
Blom, J.A.
1996-01-01
This paper introduces temporal logics. Due to the eternal compromise between expressive adequacy and reasoning efficiency that must decided upon in any application, full (first order logic or modal logic based) temporal logics are frequently not suitable. This is especially true in real time expert
Characterization of quantum logics
Lahti, P.J.
1980-01-01
The quantum logic approach to axiomatic quantum mechanics is used to analyze the conceptual foundations of the traditional quantum theory. The universal quantum of action h>0 is incorporated into the theory by introducing the uncertainty principle, the complementarity principle, and the superposition principle into the framework. A characterization of those quantum logics (L,S) which may provide quantum descriptions is then given. (author)
Nilsson, Jørgen Fischer
1999-01-01
Conceptual spaces have been proposed as topological or geometric means for establishing conceptual structures and models. This paper, after briey reviewing conceptual spaces, focusses on the relationship between conceptual spaces and logical concept languages with operations for combining concepts...... to form concepts. Speci cally is introduced an algebraic concept logic, for which conceptual spaces are installed as semantic domain as replacement for, or enrichment of, the traditional....
Meyer, J.J.Ch.; Broersen, J.M.; Herzig, A.
2015-01-01
This paper presents an overview of so-called BDI logics, logics where the notion of Beliefs, Desires and Intentions play a central role. Starting out from the basic ideas about BDI by Bratman, we consider various formalizations in logic, such as the approach of Cohen and Levesque, slightly
Bialkowski, J.; Moszynski, M.; Zagorski, A.
1981-01-01
The logic diagram principle of operation and some details of the design of the multiplicity logic unit are presented. This unit was specially designed to fulfil the requirements of a multidetector arrangement for gamma-ray multiplicity measurements. The unit is equipped with 16 inputs controlled by a common coincidence gate. It delivers a linear output pulse with the height proportional to the multiplicity of coincidences and logic pulses corresponding to 0, 1, ... up to >= 5-fold coincidences. These last outputs are used to steer the routing unit working with the multichannel analyser. (orig.)
Fan, Daoqing; Shang, Changshuai; Gu, Wenling; Wang, Erkang; Dong, Shaojun
2017-08-09
Glutathione (GSH) plays crucial roles in various biological functions, the level alterations of which have been linked to varieties of diseases. Herein, we for the first time expanded the application of oxidase-like property of MnO 2 nanosheet (MnO 2 NS) to fluorescent substrates of peroxidase. Different from previously reported fluorescent quenching phenomena, we found that MnO 2 NS could not only largely quench the fluorescence of highly fluorescent Scopoletin (SC) but also surprisingly enhance that of nonfluorescent Amplex Red (AR) via oxidation reaction. If MnO 2 NS is premixed with GSH, it will be reduced to Mn 2+ and lose the oxidase-like property, accompanied by subsequent increase in SC's fluorescence and decrease in AR's. On the basis of the above mechanism, we construct the first MnO 2 NS-based ratiometric fluorescent sensor for ultrasensitive and selective detection of GSH. Notably, this ratiometric sensor is programmed by the cascade logic circuit (an INHIBIT gate cascade with a 1 to 2 decoder). And a linear relationship between ratiometric fluorescent intensities of the two substrates and logarithmic values of GSH's concentrations is obtained. The detection limit of GSH is as low as 6.7 nM, which is much lower than previous ratiometric fluorescent sensors, and the lowest MnO 2 NS-based fluorescent GSH sensor reported so far. Furthermore, this sensor is simple, label-free, and low-cost; it also presents excellent applicability in human serum samples.
Stoll, Robert R
1979-01-01
Set Theory and Logic is the result of a course of lectures for advanced undergraduates, developed at Oberlin College for the purpose of introducing students to the conceptual foundations of mathematics. Mathematics, specifically the real number system, is approached as a unity whose operations can be logically ordered through axioms. One of the most complex and essential of modern mathematical innovations, the theory of sets (crucial to quantum mechanics and other sciences), is introduced in a most careful concept manner, aiming for the maximum in clarity and stimulation for further study in
Carlton, David Bryan
influenced by thermal fluctuations. The magnetic ground state containing the answer to the computation is reached by a stochastic process very similar to the thermal annealing of crystalline materials. We will discuss how these dynamics affect the expected reliability, speed, and energy dissipation of NML systems operating under these conditions. Next I will show how a slight change in the properties of the nanomagnets that make up a NML circuit can completely alter the dynamics by which computations take place. The addition of biaxial anisotropy to the magnetic energy landscape creates a metastable state along the hard axis of the nanomagnet. This metastability can be used to remove the stochastic nature of the computation and has large implications for reliability, speed, and energy dissipation which will all be discussed. The changes to NML operation by the addition of biaxial anisotropy introduce new challenges to realizing a commercially viable logic architecture. In the final chapter, I will discuss these challenges and talk about the architectural changes that are necessary to make a working NML circuit based on nanomagnets with biaxial anisotropy.
Le Balleur, J. C.
1988-01-01
The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived.
A Current Logical Framework: The Propositional Fragment
Watkins, Kevin
2003-01-01
We present the propositional fragment CLF of the Concurrent Logical Framework (CLF). CLF extends the Linear Logical Framework to allow the natural representation of concurrent computations in an object language...
Tugué, Tosiyuki; Slaman, Theodore
1989-01-01
These proceedings include the papers presented at the logic meeting held at the Research Institute for Mathematical Sciences, Kyoto University, in the summer of 1987. The meeting mainly covered the current research in various areas of mathematical logic and its applications in Japan. Several lectures were also presented by logicians from other countries, who visited Japan in the summer of 1987.
Evidence logics with relational evidence
Baltag, Alexandru; Occhipinti, Andrés
2017-01-01
We introduce a family of logics for reasoning about relational evidence: evidence that involves an ordering of states in terms of their relative plausibility. We provide sound and complete axiomatizations for the logics. We also present several evidential actions and prove soundness...
Øhrstrøm, Peter
2009-01-01
's notion of branching time is analysed. It is argued that Prior can be criticized for identifying 'plain future'. Finally, Prior's four grades of tense-logical involvement are introduced and discussed. It is argued that the third grade is the most attractive form a philosophical point of view....
Jensen, Jonas Buhrkal; Birkedal, Lars
2012-01-01
, separation means physical separation. In this paper, we introduce \\emph{fictional separation logic}, which includes more general forms of fictional separating conjunctions P * Q, where "*" does not require physical separation, but may also be used in situations where the memory resources described by P and Q...
Classical Mathematical Logic The Semantic Foundations of Logic
Epstein, Richard L
2011-01-01
In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proo
Bresolin, Davide; Goranko, Valentin; Montanari, Angelo
2009-01-01
Interval temporal logics are based on interval structures over linearly (or partially) ordered domains, where time intervals, rather than time instants, are the primitive ontological entities. In this paper we introduce and study Right Propositional Neighborhood Logic over natural numbers...... with integer constraints for interval lengths, which is a propositional interval temporal logic featuring a modality for the 'right neighborhood' relation between intervals and explicit integer constraints for interval lengths. We prove that it has the bounded model property with respect to ultimately periodic...
Gibson, J
2013-01-01
Most branches of organizing utilize digital electronic systems. This book introduces the design of such systems using basic logic elements as the components. The material is presented in a straightforward manner suitable for students of electronic engineering and computer science. The book is also of use to engineers in related disciplines who require a clear introduction to logic circuits. This third edition has been revised to encompass the most recent advances in technology as well as the latest trends in components and notation. It includes a wide coverage of application specific integrate
Proof systems for Moss’ coalgebraic logic
Bílková, M.; Palmigiano, A.; Venema, Y.
2014-01-01
We study Gentzen-style proof theory of the finitary version of the coalgebraic logic introduced by L. Moss. The logic captures the behaviour of coalgebras for a large class of set functors. The syntax of the logic, defined uniformly with respect to a finitary coalgebraic type functor T , uses a
Quantum team logic and Bell's inequalities
Hyttinen, T.; Paolini, G.; Väänänen, J.
2015-01-01
A logical approach to Bell’s Inequalities of quantum mechanics has been introduced by Abramsky and Hardy (Abramsky & Hardy, 2012). We point out that the logical Bell’s Inequalities of Abramsky & Hardy (2012) are provable in the probability logic of Fagin, Halpern and Megiddo (Fagin et al., 1990).
An Adequate First Order Logic of Intervals
Chaochen, Zhou; Hansen, Michael Reichhardt
1998-01-01
This paper introduces left and right neighbourhoods as primitive interval modalities to define other unary and binary modalities of intervals in a first order logic with interval length. A complete first order logic for the neighbourhood modalities is presented. It is demonstrated how the logic can...... support formal specification and verification of liveness and fairness, and also of various notions of real analysis....
Propositional Logics of Dependence
Yang, F.; Väänänen, J.
2016-01-01
In this paper, we study logics of dependence on the propositional level. We prove that several interesting propositional logics of dependence, including propositional dependence logic, propositional intuitionistic dependence logic as well as propositional inquisitive logic, are expressively complete
Complete axiomatization of the stutter-invariant fragment of the linear time µ-calculus
Gheerbrant, A.
2010-01-01
The logic µ(U) is the fixpoint extension of the "Until"-only fragment of linear-time temporal logic. It also happens to be the stutter-invariant fragment of linear-time µ-calculus µ(◊). We provide complete axiomatizations of µ(U) on the class of finite words and on the class of ω-words. We introduce
Smets, P
1995-01-01
We start by describing the nature of imperfect data, and giving an overview of the various models that have been proposed. Fuzzy sets theory is shown to be an extension of classical set theory, and as such has a proeminent role or modelling imperfect data. The mathematic of fuzzy sets theory is detailled, in particular the role of the triangular norms. The use of fuzzy sets theory in fuzzy logic and possibility theory,the nature of the generalized modus ponens and of the implication operator for approximate reasoning are analysed. The use of fuzzy logic is detailled for application oriented towards process control and database problems.
Reynolds, John C.
2002-01-01
In joint work with Peter O'Hearn and others, based on early ideas of Burstall, we have developed an extension of Hoare logic that permits reasoning about low-level imperative programs that use shared mutable data structure. The simple imperative programming language is extended with commands (not...... with the inductive definition of predicates on abstract data structures, this extension permits the concise and flexible description of structures with controlled sharing. In this paper, we will survey the current development of this program logic, including extensions that permit unrestricted address arithmetic...
On-line tuning of a fuzzy-logic power system stabilizer
Hossein-Zadeh, N.; Kalam, A.
2002-01-01
A scheme for on-line tuning of a fuzzy-logic power system stabilizer is presented. firstly, a fuzzy-logic power system stabilizer is developed using speed deviation and accelerating power as the controller input variables. The inference mechanism of fuzzy-logic controller is represented by a decision table, constructed of linguistic IF-THEN rules. The Linguistic rules are available from experts and the design procedure is based on these rules. It assumed that an exact model of the plant is not available and it is difficult to extract the exact parameters of the power plant. Thus, the design procedure can not be based on an exact model. This is an advantage of fuzzy logic that makes the design of a controller possible without knowing the exact model of the plant. Secondly, two scaling parameters are introduced to tune the fuzzy-logic power system stabilizer. These scaling parameters are the outputs of another fuzzy-logic system, which gets the operating conditions of power system as inputs. These mechanism of tuning the fuzzy-logic power system stabilizer makes the fuzzy-logic power system stabilizer adaptive to changes in the operating conditions. Therefore, the degradation of the system response, under a wide range of operating conditions, is less compared to the system response with a fixed-parameter fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. The tuned stabilizer has been tested by performing nonlinear simulations using a synchronous machine-infinite bus model. The responses are compared with a fixed parameters fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. It is shown that the tuned fuzzy-logic power system stabilizer is superior to both of them
Brünnler, Kai; Flumini, Dandolo; Studer, Thomas
2017-01-01
Blockchains are distributed data structures that are used to achieve consensus in systems for cryptocurrencies (like Bitcoin) or smart contracts (like Ethereum). Although blockchains gained a lot of popularity recently, there is no logic-based model for blockchains available. We introduce BCL, a dynamic logic to reason about blockchain updates, and show that BCL is sound and complete with respect to a simple blockchain model.
Conjunction analysis and propositional logic in fMRI data analysis using Bayesian statistics.
Rudert, Thomas; Lohmann, Gabriele
2008-12-01
To evaluate logical expressions over different effects in data analyses using the general linear model (GLM) and to evaluate logical expressions over different posterior probability maps (PPMs). In functional magnetic resonance imaging (fMRI) data analysis, the GLM was applied to estimate unknown regression parameters. Based on the GLM, Bayesian statistics can be used to determine the probability of conjunction, disjunction, implication, or any other arbitrary logical expression over different effects or contrast. For second-level inferences, PPMs from individual sessions or subjects are utilized. These PPMs can be combined to a logical expression and its probability can be computed. The methods proposed in this article are applied to data from a STROOP experiment and the methods are compared to conjunction analysis approaches for test-statistics. The combination of Bayesian statistics with propositional logic provides a new approach for data analyses in fMRI. Two different methods are introduced for propositional logic: the first for analyses using the GLM and the second for common inferences about different probability maps. The methods introduced extend the idea of conjunction analysis to a full propositional logic and adapt it from test-statistics to Bayesian statistics. The new approaches allow inferences that are not possible with known standard methods in fMRI. (c) 2008 Wiley-Liss, Inc.
Vretenar, M
2014-01-01
The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics
Kermanikian, Ara
2010-01-01
One of the first books on Autodesk's new Mudbox 3D modeling and sculpting tool!. Autodesk's Mudbox was used to create photorealistic creatures for The Dark Knight , The Mist , and others films. Now you can join the crowd interested in learning this exciting new digital modeling and sculpting tool with this complete guide. Get up to speed on all of Mudbox's features and functions, learn how sculpt and paint, and master the art of using effective workflows to make it all go easier.: Introduces Autodesk's Mudbox, an exciting 3D modeling and sculpting tool that enables you to create photorealistic
A functional language for describing reversible logic
Thomsen, Michael Kirkedal
2012-01-01
Reversible logic is a computational model where all gates are logically reversible and combined in circuits such that no values are lost or duplicated. This paper presents a novel functional language that is designed to describe only reversible logic circuits. The language includes high....... Reversibility of descriptions is guaranteed with a type system based on linear types. The language is applied to three examples of reversible computations (ALU, linear cosine transformation, and binary adder). The paper also outlines a design flow that ensures garbage- free translation to reversible logic...... circuits. The flow relies on a reversible combinator language as an intermediate language....
Linear {GLP}-algebras and their elementary theories
Pakhomov, F. N.
2016-12-01
The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.
Logic regression and its extensions.
Schwender, Holger; Ruczinski, Ingo
2010-01-01
Logic regression is an adaptive classification and regression procedure, initially developed to reveal interacting single nucleotide polymorphisms (SNPs) in genetic association studies. In general, this approach can be used in any setting with binary predictors, when the interaction of these covariates is of primary interest. Logic regression searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome variable, and thus, reveals variables and interactions that are associated with the response and/or have predictive capabilities. The logic expressions are embedded in a generalized linear regression framework, and thus, logic regression can handle a variety of outcome types, such as binary responses in case-control studies, numeric responses, and time-to-event data. In this chapter, we provide an introduction to the logic regression methodology, list some applications in public health and medicine, and summarize some of the direct extensions and modifications of logic regression that have been proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.
Quantum supports and modal logic
Svetlichny, G.
1986-01-01
Recently Foulis, Piron, and Randall introduced a new interpretation of empirical and quantum logics which substitute for the notion of a probabilistic weight a combinatorial notion called a support. The informal use of the notion of ''possible outcomes of experiments'' suggests that this interpretation can be related to corresponding formal notions as treated by modal logic. The purpose of this paper is to prove that in fact supports are in one-to-one correspondence with the sets of possibly true elementary propositions in Kripke models of a set of modal formulas associated to the empirical or quantum logic. This hopefully provides a sufficiently detailed link between the two rather distinct logical systems to shed useful light on both
A Dynamic Logic for Learning Theory
Baltag, Alexandru; Gierasimczuk, Nina; Özgün, Aybüke
2017-01-01
Building on previous work that bridged Formal Learning Theory and Dynamic Epistemic Logic in a topological setting, we introduce a Dynamic Logic for Learning Theory (DLLT), extending Subset Space Logics with dynamic observation modalities, as well as with a learning operator, which encodes the le...... the learner’s conjecture after observing a finite sequence of data. We completely axiomatise DLLT, study its expressivity and use it to characterise various notions of knowledge, belief, and learning. ...
Payton, Spencer D.
2017-01-01
This study aimed to explore how inquiry-oriented teaching could be implemented in an introductory linear algebra course that, due to various constraints, may not lend itself to inquiry-oriented teaching. In particular, the course in question has a traditionally large class size, limited amount of class time, and is often coordinated with other…
Modal logic is a subject with ancient roots in the western logical tradition. Up until the last few generations, it was pursued mainly as a branch of philosophy. But in recent years, the subject has taken new directions with connections to topics in computer science and mathematics. This volume...... is the proceedings of the conference of record in its fi eld, Advances in Modal Logic. Its contributions are state-of-the-art papers. The topics include decidability and complexity results for specifi c modal logics, proof theory of modal logic, logics for reasoning about time and space, provability logic, dynamic...... epistemic logic, and the logic of evidence....
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Bohrification of operator algebras and quantum logic
Heunen, C.; Landsman, N.P.; Spitters, B.A.W.
2012-01-01
Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by
Bohrification of operator algebras and quantum logic
Heunen, C.; Landsman, N.P.; Spitters, B.A.W.
2009-01-01
Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by
Single-nary philosophy for non-linear study of mechanics of materials
Tran, C.
2005-01-01
Non-linear study of mechanics of materials is formulated in this paper as a problem of meta-intelligent system analysis. Non-linearity will be singled out as an important concept for understanding of high-order complex systems. Through single-nary thinking, which will be represented in this work, we introduce a modification of Aristotelian philosophy using modal logic and multi-valued logic (these logics we call 'high-order' logic). Next, non-linear cause - effect relations are expressed through non-additive measures and multiple-information aggregation principles based on fuzzy integration. The study of real time behaviors, required experiences and intuition, will be realized using truth measures (non-additive measures) and a procedure for information processing in intelligence levels. (author)
Paraconsistent Computational Logic
Jensen, Andreas Schmidt; Villadsen, Jørgen
2012-01-01
In classical logic everything follows from inconsistency and this makes classical logic problematic in areas of computer science where contradictions seem unavoidable. We describe a many-valued paraconsistent logic, discuss the truth tables and include a small case study....
Doberkat, Ernst-Erich
2009-01-01
Combining coalgebraic reasoning, stochastic systems and logic, this volume presents the principles of coalgebraic logic from a categorical perspective. Modal logics are also discussed, including probabilistic interpretations and an analysis of Kripke models.
Classical logic and logicism in human thought
Elqayam, Shira
2012-01-01
This chapter explores the role of classical logic as a theory of human reasoning. I distinguish between classical logic as a normative, computational and algorithmic system, and review its role is theories of human reasoning since the 1960s. The thesis I defend is that psychological theories have been moving further and further away from classical logic on all three levels. I examine some prominent example of logicist theories, which incorporate logic in their psychological account, includin...
Logic programming extensions of Horn clause logic
Ron Sigal
1988-11-01
Full Text Available Logic programming is now firmly established as an alternative programming paradigm, distinct and arguably superior to the still dominant imperative style of, for instance, the Algol family of languages. The concept of a logic programming language is not precisely defined, but it is generally understood to be characterized buy: a declarative nature; foundation in some well understood logical system, e.g., first order logic.
Modern logic 1850-1950, East and West
Fuller, Mark
2016-01-01
This book presents diverse topics in mathematical logic such as proof theory, meta-mathematics, and applications of logic to mathematical structures. The collection spans the first 100 years of modern logic and is dedicated to the memory of Irving Anellis, founder of the journal 'Modern Logic', whose academic work was essential in promoting the algebraic tradition of logic, as represented by Charles Sanders Peirce. Anellis’s association with the Russian logic community introduced their school of logic to a wider audience in the USA, Canada and Western Europe. In addition, the collection takes a historical perspective on proof theory and the development of logic and mathematics in Eastern Logic, the Soviet Union and Russia. The book will be of interest to historians and philosophers in logic and mathematics, and the more specialized papers will also appeal to mathematicians and logicians.
Temporal logics and real time expert systems.
Blom, J A
1996-10-01
This paper introduces temporal logics. Due to the eternal compromise between expressive adequacy and reasoning efficiency that must decided upon in any application, full (first order logic or modal logic based) temporal logics are frequently not suitable. This is especially true in real time expert systems, where a fixed (and usually small) response time must be guaranteed. One such expert system, Fagan's VM, is reviewed, and a delineation is given of how to formally describe and reason with time in medical protocols. It is shown that Petri net theory is a useful tool to check the correctness of formalised protocols.
Fuzzy logic control of nuclear power plant
Yao Liangzhong; Guo Renjun; Ma Changwen
1996-01-01
The main advantage of the fuzzy logic control is that the method does not require a detailed mathematical model of the object to be controlled. In this paper, the shortcomings and limitations of the model-based method in nuclear power plant control were presented, the theory of the fuzzy logic control was briefly introduced, and the applications of the fuzzy logic control technology in nuclear power plant controls were surveyed. Finally, the problems to be solved by using the fuzzy logic control in nuclear power plants were discussed
Three-valued logics in modal logic
Kooi, Barteld; Tamminga, Allard
2013-01-01
Every truth-functional three-valued propositional logic can be conservatively translated into the modal logic S5. We prove this claim constructively in two steps. First, we define a Translation Manual that converts any propositional formula of any three-valued logic into a modal formula. Second, we
Classical Syllogisms in Logic Teaching
Øhrstrøm, Peter; Sandborg-Petersen, Ulrik; Thorvaldsen, Steinar
2013-01-01
This paper focuses on the challenges of introducing classical syllogisms in university courses in elementary logic and human reasoning. Using a program written in Prolog+CG, some empirical studies have been carried out involving three groups of students in Denmark; one group of philosophy students...... have a tendency correctly to assess valid syllogisms as such more often than correctly assessing invalid syllogisms as such. It is also investigated to what extent the students have improved their skills in practical reasoning by attending the logic courses. Finally, some open questions regarding...
A peak value searching method of the MCA based on digital logic devices
Sang Ziru; Huang Shanshan; Chen Lian; Jin Ge
2010-01-01
Digital multi-channel analyzers play a more important role in multi-channel pulse height analysis technique. The direction of digitalization are characterized by powerful pulse processing ability, high throughput, improved stability and flexibility. This paper introduces a method of searching peak value of waveform based on digital logic with FPGA. This method reduce the dead time. Then data correction offline can improvement the non-linearity of MCA. It gives the α energy spectrum of 241 Am. (authors)
Heunen, Chris
2008-01-01
We consider categorical logic on the category of Hilbert spaces. More generally, in fact, any pre-Hilbert category suffices. We characterise closed subobjects, and prove that they form orthomodular lattices. This shows that quantum logic is just an incarnation of categorical logic, enabling us to establish an existential quantifier for quantum logic, and conclude that there cannot be a universal quantifier.
Fredkin gates for finite-valued reversible and conservative logics
Cattaneo, G; Leporati, A; Leporini, R
2002-01-01
The basic principles and results of conservative logic introduced by Fredkin and Toffoli in 1982, on the basis of a seminal paper of Landauer, are extended to d-valued logics, with a special attention to three-valued logics. Different approaches to d-valued logics are examined in order to determine some possible universal sets of logic primitives. In particular, we consider the typical connectives of Lukasiewicz and Goedel logics, as well as Chang's MV-algebras. As a result, some possible three-valued and d-valued universal gates are described which realize a functionally complete set of fundamental connectives. Two no-go theorems are also proved
Reconfigurable chaotic logic gates based on novel chaotic circuit
Behnia, S.; Pazhotan, Z.; Ezzati, N.; Akhshani, A.
2014-01-01
Highlights: • A novel method for implementing logic gates based on chaotic maps is introduced. • The logic gates can be implemented without any changes in the threshold voltage. • The chaos-based logic gates may serve as basic components of future computing devices. - Abstract: The logical operations are one of the key issues in today’s computer architecture. Nowadays, there is a great interest in developing alternative ways to get the logic operations by chaos computing. In this paper, a novel implementation method of reconfigurable logic gates based on one-parameter families of chaotic maps is introduced. The special behavior of these chaotic maps can be utilized to provide same threshold voltage for all logic gates. However, there is a wide interval for choosing a control parameter for all reconfigurable logic gates. Furthermore, an experimental implementation of this nonlinear system is presented to demonstrate the robustness of computing capability of chaotic circuits
Coinductive Logic Programming with Negation
Min, Richard; Gupta, Gopal
We introduce negation into coinductive logic programming (co-LP) via what we term Coinductive SLDNF (co-SLDNF) resolution. We present declarative and operational semantics of co-SLDNF resolution and present their equivalence under the restriction of rationality. Co-LP with co-SLDNF resolution provides a powerful, practical and efficient operational semantics for Fitting's Kripke-Kleene three-valued logic with restriction of rationality. Further, applications of co-SLDNF resolution are also discussed and illustrated where Co-SLDNF resolution allows one to develop elegant implementations of modal logics. Moreover it provides the capability of non-monotonic inference (e.g., predicate Answer Set Programming) that can be used to develop novel and effective first-order modal non-monotonic inference engines.
Fuzzy logic of quasi-truth an algebraic treatment
Di Nola, Antonio; Turunen, Esko
2016-01-01
This book presents the first algebraic treatment of quasi-truth fuzzy logic and covers the algebraic foundations of many-valued logic. It offers a comprehensive account of basic techniques and reports on important results showing the pivotal role played by perfect many-valued algebras (MV-algebras). It is well known that the first-order predicate Łukasiewicz logic is not complete with respect to the canonical set of truth values. However, it is complete with respect to all linearly ordered MV –algebras. As there are no simple linearly ordered MV-algebras in this case, infinitesimal elements of an MV-algebra are allowed to be truth values. The book presents perfect algebras as an interesting subclass of local MV-algebras and provides readers with the necessary knowledge and tools for formalizing the fuzzy concept of quasi true and quasi false. All basic concepts are introduced in detail to promote a better understanding of the more complex ones. It is an advanced and inspiring reference-guide for graduate s...
Metamathematics of fuzzy logic
Hájek, Petr
1998-01-01
This book presents a systematic treatment of deductive aspects and structures of fuzzy logic understood as many valued logic sui generis. Some important systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference' can be naturally understood as logical deduction.
Berg Johansen, Christina; Bock Waldorff, Susanne
2015-01-01
This study presents new insights into the explanatory power of the institutional logics perspective. With outset in a discussion of seminal theory texts, we identify two fundamental topics that frame institutional logics: overarching institutional orders guided by institutional logics, as well as change and agency generated by friction between logics. We use these topics as basis for an analysis of selected empirical papers, with the aim of understanding how institutional logics contribute to...
Linearization Method and Linear Complexity
Tanaka, Hidema
We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.
Connections among quantum logics
Lock, P.F.; Hardegree, G.M.
1985-01-01
In this paper, a theory of quantum logics is proposed which is general enough to enable us to reexamine a previous work on quantum logics in the context of this theory. It is then easy to assess the differences between the different systems studied. The quantum logical systems which are incorporated are divided into two groups which we call ''quantum propositional logics'' and ''quantum event logics''. The work of Kochen and Specker (partial Boolean algebras) is included and so is that of Greechie and Gudder (orthomodular partially ordered sets), Domotar (quantum mechanical systems), and Foulis and Randall (operational logics) in quantum propositional logics; and Abbott (semi-Boolean algebras) and Foulis and Randall (manuals) in quantum event logics, In this part of the paper, an axiom system for quantum propositional logics is developed and the above structures in the context of this system examined. (author)
Cleaveland, Rance; Luettgen, Gerald; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
This paper presents the Logical Process Calculus (LPC), a formalism that supports heterogeneous system specifications containing both operational and declarative subspecifications. Syntactically, LPC extends Milner's Calculus of Communicating Systems with operators from the alternation-free linear-time mu-calculus (LT(mu)). Semantically, LPC is equipped with a behavioral preorder that generalizes Hennessy's and DeNicola's must-testing preorder as well as LT(mu's) satisfaction relation, while being compositional for all LPC operators. From a technical point of view, the new calculus is distinguished by the inclusion of: (1) both minimal and maximal fixed-point operators and (2) an unimple-mentability predicate on process terms, which tags inconsistent specifications. The utility of LPC is demonstrated by means of an example highlighting the benefits of heterogeneous system specification.
Schürmann, Carsten; Sarnat, Jeffrey
2008-01-01
Tait's method (a.k.a. proof by logical relations) is a powerful proof technique frequently used for showing foundational properties of languages based on typed lambda-calculi. Historically, these proofs have been extremely difficult to formalize in proof assistants with weak meta-logics......, such as Twelf, and yet they are often straightforward in proof assistants with stronger meta-logics. In this paper, we propose structural logical relations as a technique for conducting these proofs in systems with limited meta-logical strength by explicitly representing and reasoning about an auxiliary logic...
Berg Johansen, Christina; Waldorff, Susanne Boch
This study presents new insights into the explanatory power of the institutional logics perspective. With outset in a discussion of seminal theory texts, we identify two fundamental topics that frame institutional logics: overarching institutional orders guides by institutional logics, as well...... as change and agency generated by friction between logics. We use these topics as basis for an analysis of selected empirical papers, with the aim of understanding how institutional logics contribute to institutional theory at large, and which social matters institutional logics can and cannot explore...
Indeterministic Temporal Logic
Trzęsicki Kazimierz
2015-09-01
Full Text Available The questions od determinism, causality, and freedom have been the main philosophical problems debated since the beginning of temporal logic. The issue of the logical value of sentences about the future was stated by Aristotle in the famous tomorrow sea-battle passage. The question has inspired Łukasiewicz’s idea of many-valued logics and was a motive of A. N. Prior’s considerations about the logic of tenses. In the scheme of temporal logic there are different solutions to the problem. In the paper we consider indeterministic temporal logic based on the idea of temporal worlds and the relation of accessibility between them.
Quantum Logic as a Dynamic Logic
Baltag, A.; Smets, S.
We address the old question whether a logical understanding of Quantum Mechanics requires abandoning some of the principles of classical logic. Against Putnam and others (Among whom we may count or not E. W. Beth, depending on how we interpret some of his statements), our answer is a clear “no”.
Quantum logic as a dynamic logic
Baltag, Alexandru; Smets, Sonja
We address the old question whether a logical understanding of Quantum Mechanics requires abandoning some of the principles of classical logic. Against Putnam and others (Among whom we may count or not E. W. Beth, depending on how we interpret some of his statements), our answer is a clear "no".
Transforming equality logic to propositional logic
Zantema, H.; Groote, J.F.
2003-01-01
Abstract We investigate and compare various ways of transforming equality formulas to propositional formulas, in order to be able to solve satisfiability in equality logic by means of satisfiability in propositional logic. We propose equality substitution as a new approach combining desirable
Admissible Rules of Lukasiewicz Logic
Jeřábek, Emil
2010-01-01
Roč. 20, č. 2 (2010), s. 425-447 ISSN 0955-792X R&D Projects: GA AV ČR IAA900090703; GA AV ČR IAA100190902; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear temporal logic * unification * consecutions Subject RIV: BA - General Mathematics Impact factor: 0.586, year: 2010 http://logcom.oxfordjournals.org/content/20/2/425
Session Types in Abelian Logic
Yoichi Hirai
2013-12-01
Full Text Available There was a PhD student who says "I found a pair of wooden shoes. I put a coin in the left and a key in the right. Next morning, I found those objects in the opposite shoes." We do not claim existence of such shoes, but propose a similar programming abstraction in the context of typed lambda calculi. The result, which we call the Amida calculus, extends Abramsky's linear lambda calculus LF and characterizes Abelian logic.
Interpreting Quantum Logic as a Pragmatic Structure
Garola, Claudio
2017-12-01
Many scholars maintain that the language of quantum mechanics introduces a quantum notion of truth which is formalized by (standard, sharp) quantum logic and is incompatible with the classical (Tarskian) notion of truth. We show that quantum logic can be identified (up to an equivalence relation) with a fragment of a pragmatic language LGP of assertive formulas, that are justified or unjustified rather than trueor false. Quantum logic can then be interpreted as an algebraic structure that formalizes properties of the notion of empirical justification according to quantum mechanics rather than properties of a quantum notion of truth. This conclusion agrees with a general integrationist perspective that interprets nonstandard logics as theories of metalinguistic notions different from truth, thus avoiding incompatibility with classical notions and preserving the globality of logic.
Bolc, Leonard
1992-01-01
Many-valued logics were developed as an attempt to handle philosophical doubts about the "law of excluded middle" in classical logic. The first many-valued formal systems were developed by J. Lukasiewicz in Poland and E.Post in the U.S.A. in the 1920s, and since then the field has expanded dramatically as the applicability of the systems to other philosophical and semantic problems was recognized. Intuitionisticlogic, for example, arose from deep problems in the foundations of mathematics. Fuzzy logics, approximation logics, and probability logics all address questions that classical logic alone cannot answer. All these interpretations of many-valued calculi motivate specific formal systems thatallow detailed mathematical treatment. In this volume, the authors are concerned with finite-valued logics, and especially with three-valued logical calculi. Matrix constructions, axiomatizations of propositional and predicate calculi, syntax, semantic structures, and methodology are discussed. Separate chapters deal w...
P N Johnson-Laird
2010-10-01
Full Text Available An old view in logic going back to Aristotle is that an inference is valid in virtue of its logical form. Many psychologists have adopted the same point of view about human reasoning: the first step is to recover the logical form of an inference, and the second step is to apply rules of inference that match these forms in order to prove that the conclusion follows from the premises. The present paper argues against this idea. The logical form of an inference transcends the grammatical forms of the sentences used to express it, because logical form also depends on context. Context is not readily expressed in additional premises. And the recovery of logical form leads ineluctably to the need for infinitely many axioms to capture the logical properties of relations. An alternative theory is that reasoning depends on mental models, and this theory obviates the need to recover logical form.
Newton-Smith, WH
2003-01-01
A complete introduction to logic for first-year university students with no background in logic, philosophy or mathematics. In easily understood steps it shows the mechanics of the formal analysis of arguments.
Anticoincidence logic using PALs
Bolanos, L.; Arista Romeu, E.
1997-01-01
This paper describes the functioning principle of an anticoincidence logic and a design of this based on programing logic. The circuit was included in a discriminator of an equipment for single-photon absorptiometry
Manipulating potential wells in Logical Stochastic Resonance to obtain XOR logic
Storni, Remo; Ando, Hiroyasu; Aihara, Kazuyuki; Murali, K.; Sinha, Sudeshna
2012-01-01
Logical Stochastic Resonance (LSR) is the application of Stochastic Resonance to logic computation, namely the phenomenon where a nonlinear system driven by weak signals representing logic inputs, under optimal noise, can yield logic outputs. We extend the existing results, obtained in the context of bistable systems, to multi-stable dynamical systems, allowing us to obtain XOR logic, in addition to the AND (NAND) and OR (NOR) logic observed in earlier studies. This strategy widens the scope of LSR from the application point of view, as XOR forms the basis of ubiquitous bit-by-bit addition, and conceptually, showing the ability to yield non-monotonic input–output logic associations. -- Highlights: ► We generalize Logical Stochastic Resonance from bistable to multi-stable systems. ► We propose a tristable dynamical system formed of piecewise linear functions. ► The system can correctly reproduce XOR logic behavior using the LSR principle. ► The system yields different logic behavior without the need to change the dynamics.
Symbolic logic and mechanical theorem proving
Chang, Chin-Liang
1969-01-01
This book contains an introduction to symbolic logic and a thorough discussion of mechanical theorem proving and its applications. The book consists of three major parts. Chapters 2 and 3 constitute an introduction to symbolic logic. Chapters 4-9 introduce several techniques in mechanical theorem proving, and Chapters 10 an 11 show how theorem proving can be applied to various areas such as question answering, problem solving, program analysis, and program synthesis.
A Graph Calculus for Predicate Logic
Paulo A. S. Veloso
2013-03-01
Full Text Available We introduce a refutation graph calculus for classical first-order predicate logic, which is an extension of previous ones for binary relations. One reduces logical consequence to establishing that a constructed graph has empty extension, i. e. it represents bottom. Our calculus establishes that a graph has empty extension by converting it to a normal form, which is expanded to other graphs until we can recognize conflicting situations (equivalent to a formula and its negation.
Redundant sensor validation by using fuzzy logic
Holbert, K.E.; Heger, A.S.; Alang-Rashid, N.K.
1994-01-01
This research is motivated by the need to relax the strict boundary of numeric-based signal validation. To this end, the use of fuzzy logic for redundant sensor validation is introduced. Since signal validation employs both numbers and qualitative statements, fuzzy logic provides a pathway for transforming human abstractions into the numerical domain and thus coupling both sources of information. With this transformation, linguistically expressed analysis principles can be coded into a classification rule-base for signal failure detection and identification
Graded Alternating-Time Temporal Logic
Faella, Marco; Napoli, Margherita; Parente, Mimmo
Graded modalities enrich the universal and existential quantifiers with the capability to express the concept of at least k or all but k, for a non-negative integer k. Recently, temporal logics such as μ-calculus and Computational Tree Logic, Ctl, augmented with graded modalities have received attention from the scientific community, both from a theoretical side and from an applicative perspective. Both μ-calculus and Ctl naturally apply as specification languages for closed systems: in this paper, we add graded modalities to the Alternating-time Temporal Logic (Atl) introduced by Alur et al., to study how these modalities may affect specification languages for open systems.
Philosophy and logic of quantum physics
Dapprich, Jan Philipp
2015-01-01
The book investigates the ontology and logic of quantum physics. The first part discusses the relationship of theory and observation and different views on the ontological status of scientific theories. It introduces the fundamentals of quantum mechanics and some of its interpretations and their compatibility with various ontological positions. In the second part, implications of quantum mechanics on classical logic, especially on the distributive law and bivalence, as discussed by Garrett Birkhoff & John von Neumann (1936) and Hilary Putnam (1968), and their counterarguments are reconstructed and discussed. It is concluded that classical logic is sufficient for dealing with quantum mechanical propositions.
Connections among quantum logics
Lock, P.F.; Hardegree, G.M.
1985-01-01
This paper gives a brief introduction to the major areas of work in quantum event logics: manuals (Foulis and Randall) and semi-Boolean algebras (Abbott). The two theories are compared, and the connection between quantum event logics and quantum propositional logics is made explicit. In addition, the work on manuals provides us with many examples of results stated in Part I. (author)
Manca, V.; Salibra, A.; Scollo, Giuseppe
1990-01-01
Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either
Bergstra, J.A.
2011-01-01
Four options for assigning a meaning to Islamic Logic are surveyed including a new proposal for an option named "Real Islamic Logic" (RIL). That approach to Islamic Logic should serve modern Islamic objectives in a way comparable to the functionality of Islamic Finance. The prospective role of RIL
Christiansen, Henning; Dahl, Veronica
2009-01-01
By extending logic grammars with constraint logic, we give them the ability to create knowledge bases that represent the meaning of an input string. Semantic information is thus defined through extra-grammatical means, and a sentence's meaning logically follows as a by-product of string rewriting....... We formalize these ideas, and exemplify them both within and outside first-order logic, and for both fixed and dynamic knowledge bases. Within the latter variety, we consider the usual left-to-right derivations that are traditional in logic grammars, but also -- in a significant departure from...
Bentzen, Martin Mose
2014-01-01
A new deontic logic, Action Type Deontic Logic, is presented. To motivate this logic, a number of benchmark cases are shown, representing inferences a deontic logic should validate. Some of the benchmark cases are singled out for further comments and some formal approaches to deontic reasoning...... are evaluated with respect to the benchmark cases. After that follows an informal introduction to the ideas behind the formal semantics, focussing on the distinction between action types and action tokens. Then the syntax and semantics of Action Type Deontic Logic is presented and it is shown to meet...
Horčík, Rostislav; Cintula, Petr
2004-01-01
Roč. 43, - (2004), s. 477-503 ISSN 1432-0665 R&D Projects: GA AV ČR IAA1030004; GA ČR GA201/02/1540 Grant - others:GA CTU(CZ) project 0208613; net CEEPUS(SK) SK-042 Institutional research plan: CEZ:AV0Z1030915 Keywords : fuzzy logic * many-valued logic * Lukasiewicz logic * Lpi logic * Takeuti-Titani logic * MV-algebras * product MV-algebras Subject RIV: BA - General Mathematics Impact factor: 0.295, year: 2004
Local stabilizer codes in three dimensions without string logical operators
Haah, Jeongwan
2011-01-01
We suggest concrete models for self-correcting quantum memory by reporting examples of local stabilizer codes in 3D that have no string logical operators. Previously known local stabilizer codes in 3D all have stringlike logical operators, which make the codes non-self-correcting. We introduce a notion of ''logical string segments'' to avoid difficulties in defining one-dimensional objects in discrete lattices. We prove that every stringlike logical operator of our code can be deformed to a disjoint union of short segments, each of which is in the stabilizer group. The code has surfacelike logical operators whose partial implementation has unsatisfied stabilizers along its boundary.
Model-Checking of Linear-Time Properties in Multi-Valued Systems
Li, Yongming; Droste, Manfred; Lei, Lihui
2012-01-01
In this paper, we study model-checking of linear-time properties in multi-valued systems. Safety property, invariant property, liveness property, persistence and dual-persistence properties in multi-valued logic systems are introduced. Some algorithms related to the above multi-valued linear-time properties are discussed. The verification of multi-valued regular safety properties and multi-valued $\\omega$-regular properties using lattice-valued automata are thoroughly studied. Since the law o...
Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria
2014-01-01
Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...... Henkin’s techniques are so important in hybrid logic. We do so by proving a completeness result for a hybrid type theory called HTT, probably the strongest hybrid logic that has yet been explored. Our completeness result builds on earlier work with a system called BHTT, or basic hybrid type theory...... is due to the first-order perspective, which lies at the heart of Henin’s best known work and hybrid logic....
Newton C. A. da Costa
2002-12-01
Full Text Available In view of the present state of development of non classical logic, especially of paraconsistent logic, a new stand regarding the relations between logic and ontology is defended In a parody of a dictum of Quine, my stand May be summarized as follows. To be is to be the value of a variable a specific language with a given underlying logic Yet my stand differs from Quine’s, because, among other reasons, I accept some first order heterodox logics as genuine alternatives to classical logic I also discuss some questions of non classical logic to substantiate my argument, and suggest that may position complements and extends some ideas advanced by L Apostel.
Contextual Validity in Hybrid Logic
Blackburn, Patrick Rowan; Jørgensen, Klaus Frovin
2013-01-01
interpretations. Moreover, such indexicals give rise to a special kind of validity—contextual validity—that interacts with ordinary logi- cal validity in interesting and often unexpected ways. In this paper we model these interactions by combining standard techniques from hybrid logic with insights from the work...... of Hans Kamp and David Kaplan. We introduce a simple proof rule, which we call the Kamp Rule, and first we show that it is all we need to take us from logical validities involving now to contextual validities involving now too. We then go on to show that this deductive bridge is strong enough to carry us...... to contextual validities involving yesterday, today and tomorrow as well....
Dalen, Dirk
1983-01-01
A book which efficiently presents the basics of propositional and predicate logic, van Dalen’s popular textbook contains a complete treatment of elementary classical logic, using Gentzen’s Natural Deduction. Propositional and predicate logic are treated in separate chapters in a leisured but precise way. Chapter Three presents the basic facts of model theory, e.g. compactness, Skolem-Löwenheim, elementary equivalence, non-standard models, quantifier elimination, and Skolem functions. The discussion of classical logic is rounded off with a concise exposition of second-order logic. In view of the growing recognition of constructive methods and principles, one chapter is devoted to intuitionistic logic. Completeness is established for Kripke semantics. A number of specific constructive features, such as apartness and equality, the Gödel translation, the disjunction and existence property have been incorporated. The power and elegance of natural deduction is demonstrated best in the part of proof theory cal...
Schang Fabien
2017-03-01
Full Text Available An analogy is made between two rather different domains, namely: logic, and football (or soccer. Starting from a comparative table between the two activities, an alternative explanation of logic is given in terms of players, ball, goal, and the like. Our main thesis is that, just as the task of logic is preserving truth from premises to the conclusion, footballers strive to keep the ball as far as possible until the opposite goal. Assuming this analogy may help think about logic in the same way as in dialogical logic, but it should also present truth-values in an alternative sense of speech-acts occurring in a dialogue. The relativity of truth-values is focused by this way, thereby leading to an additional way of logical pluralism.
Wall, M.J.W.
1992-01-01
The notion of open-quotes probabilityclose quotes is generalized to that of open-quotes likelihood,close quotes and a natural logical structure is shown to exist for any physical theory which predicts likelihoods. Two physically based axioms are given for this logical structure to form an orthomodular poset, with an order-determining set of states. The results strengthen the basis of the quantum logic approach to axiomatic quantum theory. 25 refs
Logical database design principles
Garmany, John; Clark, Terry
2005-01-01
INTRODUCTION TO LOGICAL DATABASE DESIGNUnderstanding a Database Database Architectures Relational Databases Creating the Database System Development Life Cycle (SDLC)Systems Planning: Assessment and Feasibility System Analysis: RequirementsSystem Analysis: Requirements Checklist Models Tracking and Schedules Design Modeling Functional Decomposition DiagramData Flow Diagrams Data Dictionary Logical Structures and Decision Trees System Design: LogicalSYSTEM DESIGN AND IMPLEMENTATION The ER ApproachEntities and Entity Types Attribute Domains AttributesSet-Valued AttributesWeak Entities Constraint
Peliš, Michal
2017-01-01
Roč. 26, č. 3 (2017), s. 357-381 ISSN 1425-3305 R&D Projects: GA ČR(CZ) GC16-07954J Institutional support: RVO:67985955 Keywords : epistemic logic * erotetic implication * erotetic logic * logic of questions Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology http://apcz.umk.pl/czasopisma/index.php/LLP/article/view/LLP.2017.007
Pereyra, Nicolas A.
2018-06-01
This book gives a rigorous yet 'physics-focused' introduction to mathematical logic that is geared towards natural science majors. We present the science major with a robust introduction to logic, focusing on the specific knowledge and skills that will unavoidably be needed in calculus topics and natural science topics in general (rather than taking a philosophical-math-fundamental oriented approach that is commonly found in mathematical logic textbooks).
Logical provenance in data-oriented workflows?
Ikeda, R.
2013-04-01
We consider the problem of defining, generating, and tracing provenance in data-oriented workflows, in which input data sets are processed by a graph of transformations to produce output results. We first give a new general definition of provenance for general transformations, introducing the notions of correctness, precision, and minimality. We then determine when properties such as correctness and minimality carry over from the individual transformations\\' provenance to the workflow provenance. We describe a simple logical-provenance specification language consisting of attribute mappings and filters. We provide an algorithm for provenance tracing in workflows where logical provenance for each transformation is specified using our language. We consider logical provenance in the relational setting, observing that for a class of Select-Project-Join (SPJ) transformations, logical provenance specifications encode minimal provenance. We have built a prototype system supporting the features and algorithms presented in the paper, and we report a few preliminary experimental results. © 2013 IEEE.
CONCEPT OF SUSTAINABILITY – A LOGICAL APPROACH
EMIL DINGA
2011-04-01
Full Text Available The paper aims to achieve a definition of the concept of sustainability and of sustainable system from a logical perspective. In this respect, it introduces and defines (through the sufficiency predicates the concept of logically vivid system and, on this basis, are discussed a logical concept of sustainability, respectively of a sustainable system in general are discussed and built up. Sustainability is considered in light of identity preservation of the systems, as a static anchor, on one hand, and of the concept of automatic stabilizers as a dynamic anchor on the other side. Finally, the two sufficiency conditions for a logically vivid system be sustainable are identified: the presence of hyper-cycles, respectively the absence of positive feed-back.
Searching the Arcane Origins of Fuzzy Logic
Angel Garrido
2011-05-01
Full Text Available It is well-known that Artificial Intelligence requires Logic. But its Classical version shows too many insufficiencies. So, it is very necessary to introduce more sophisticated tools, as may be
Fuzzy Logic, Modal Logic, Non-Monotonic Logic, and so on. When you are searching the possible precedent of such new ideas, we may found that they are not totally new, because some ancient thinkers have suggested many centuries ago similar concepts, certainly without adequate mathematical formulation, but in the same line: against the dogmatism and the dualistic vision of
the world: absolutely true vs. absolutely false, black vs. white, good or bad by nature, 0 vs.1, etc. We attempt to analyze here some of these greatly unexplored, and very interesting early origins.
Fuzzy logic applications in engineering science
Harris, J
2006-01-01
Fuzzy logic is a relatively new concept in science applications. Hitherto, fuzzy logic has been a conceptual process applied in the field of risk management. Its potential applicability is much wider than that, however, and its particular suitability for expanding our understanding of processes and information in science and engineering in our post-modern world is only just beginning to be appreciated. Written as a companion text to the author's earlier volume "An Introduction to Fuzzy Logic Applications", the book is aimed at professional engineers and students and those with an interest in exploring the potential of fuzzy logic as an information processing kit with a wide variety of practical applications in the field of engineering science and develops themes and topics introduced in the author's earlier text.
Crossley, J N; Brickhill, CJ; Stillwell, JC
2010-01-01
Although mathematical logic can be a formidably abstruse topic, even for mathematicians, this concise book presents the subject in a lively and approachable fashion. It deals with the very important ideas in modern mathematical logic without the detailed mathematical work required of those with a professional interest in logic.The book begins with a historical survey of the development of mathematical logic from two parallel streams: formal deduction, which originated with Aristotle, Euclid, and others; and mathematical analysis, which dates back to Archimedes in the same era. The streams beg
Lopez, Hugo Andres; Carbone, Marco; Hildebrandt, Thomas
2010-01-01
We explore logical reasoning for the global calculus, a coordination model based on the notion of choreography, with the aim to provide a methodology for speciﬁcation and veriﬁcation of structured communications. Starting with an extension of Hennessy-Milner logic, we present the global logic (GL...... ), a modal logic describing possible interactions among participants in a choreography. We illustrate its use by giving examples of properties on service speciﬁcations. Finally, we show that, despite GL is undecidable, there is a signiﬁcant decidable fragment which we provide with a sound and complete proof...
Andronov, A.A.; Kurin, V.V.; Levichev, M.Yu.; Ryndyk, D.A.; Vostokov, V.I.
1993-01-01
In recent years there has been much interest in superconductor logical devices. Our paper is devoted to the analysis of some new possibilities in this field. The main problems here are: minimization of time of logical operations and reducing of device scale. Josephson systems are quite appropriate for this purpose because of small size, short characteristic time and also small energy losses. Two different types of Josephson logic have been investigated during last years. The first type is based on hysteretic V-A characteristic of a single Josephson junction. Superconducting and resistive (with nonzero voltage) states are considered as logical zero and logical unit. The second one - rapid single flux quantum logic, has been developed recently and is based on SQUID-like bistability. Different logical states are the states with different number of magnetic flux quanta inside closed superconducting contour. Information is represented by voltage pulses with fixed ''area'' (∫ V(t)/dt). This pulses are generated when logical state of SQUID-like elementary cell changes. The fundamental role of magnetic flux quantization in this type of logic leads to the necessity of large enough self-inductance of superconductor contour and thus to limitations on minimal device dimensions. (orig.)
Marco Carbone
2011-10-01
Full Text Available We explore logical reasoning for the global calculus, a coordination model based on the notion of choreography, with the aim to provide a methodology for specification and verification of structured communications. Starting with an extension of Hennessy-Milner logic, we present the global logic (GL, a modal logic describing possible interactions among participants in a choreography. We illustrate its use by giving examples of properties on service specifications. Finally, we show that, despite GL is undecidable, there is a significant decidable fragment which we provide with a sound and complete proof system for checking validity of formulae.
Introduction to mathematical logic
Mendelson, Elliott
2015-01-01
The new edition of this classic textbook, Introduction to Mathematical Logic, Sixth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Gödel, Church, Kleene, Rosser, and Turing.The sixth edition incorporates recent work on Gödel's second incompleteness theorem as well as restoring an appendix on consistency proofs for first-order arithmetic. This appendix last appeared in the first edition. It is offered in th
New data structures and algorithms for logic synthesis and verification
Amaru, Luca Gaetano
2017-01-01
This book introduces new logic primitives for electronic design automation tools. The author approaches fundamental EDA problems from a different, unconventional perspective, in order to demonstrate the key role of rethinking EDA solutions in overcoming technological limitations of present and future technologies. The author discusses techniques that improve the efficiency of logic representation, manipulation and optimization tasks by taking advantage of majority and biconditional logic primitives. Readers will be enabled to accelerate formal methods by studying core properties of logic circuits and developing new frameworks for logic reasoning engines. · Provides a comprehensive, theoretical study on majority and biconditional logic for logic synthesis; · Updates the current scenario in synthesis and verification – especially in light of emerging technologies; · Demonstrates applications to CMOS technology and emerging technologies.
Logic, mathematics, and computer science modern foundations with practical applications
Nievergelt, Yves
2015-01-01
This text for the first or second year undergraduate in mathematics, logic, computer science, or social sciences, introduces the reader to logic, proofs, sets, and number theory. It also serves as an excellent independent study reference and resource for instructors. Adapted from Foundations of Logic and Mathematics: Applications to Science and Cryptography © 2002 Birkhӓuser, this second edition provides a modern introduction to the foundations of logic, mathematics, and computers science, developing the theory that demonstrates construction of all mathematics and theoretical computer science from logic and set theory. The focus is on foundations, with specific statements of all the associated axioms and rules of logic and set theory, and provides complete details and derivations of formal proofs. Copious references to literature that document historical development is also provided. Answers are found to many questions that usually remain unanswered: Why is the truth table for logical implication so uni...
Logic for computer science foundations of automatic theorem proving
Gallier, Jean H
2015-01-01
This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in fir
Logic of non-interacting programs and reactive systems
Shelekhov, Vladimir; Tumurov, Erdem
2012-01-01
The notion of a program logic is introduced to denote a set of predicates which are true in different program points. The program logic can be easily constructed for different kinds of statements of an imperative or a functional language with data types except pointers. For a non-interacting program, a total correctness formula based on the program logic is defined. The rules of program correctness proof have been developed for proving the statements of various kinds. For a reactive system, t...
Understanding Social Media Logic
José van Dijck
2013-08-01
Full Text Available Over the past decade, social media platforms have penetrated deeply into the mechanics of everyday life, affecting people's informal interactions, as well as institutional structures and professional routines. Far from being neutral platforms for everyone, social media have changed the conditions and rules of social interaction. In this article, we examine the intricate dynamic between social media platforms, mass media, users, and social institutions by calling attention to social media logic—the norms, strategies, mechanisms, and economies—underpinning its dynamics. This logic will be considered in light of what has been identified as mass media logic, which has helped spread the media's powerful discourse outside its institutional boundaries. Theorizing social media logic, we identify four grounding principles—programmability, popularity, connectivity, and datafication—and argue that these principles become increasingly entangled with mass media logic. The logic of social media, rooted in these grounding principles and strategies, is gradually invading all areas of public life. Besides print news and broadcasting, it also affects law and order, social activism, politics, and so forth. Therefore, its sustaining logic and widespread dissemination deserve to be scrutinized in detail in order to better understand its impact in various domains. Concentrating on the tactics and strategies at work in social media logic, we reassess the constellation of power relationships in which social practices unfold, raising questions such as: How does social media logic modify or enhance existing mass media logic? And how is this new media logic exported beyond the boundaries of (social or mass media proper? The underlying principles, tactics, and strategies may be relatively simple to identify, but it is much harder to map the complex connections between platforms that distribute this logic: users that employ them, technologies that
Contribution of Warsaw Logicians to Computational Logic
Damian Niwiński
2016-06-01
Full Text Available The newly emerging branch of research of Computer Science received encouragement from the successors of the Warsaw mathematical school: Kuratowski, Mazur, Mostowski, Grzegorczyk, and Rasiowa. Rasiowa realized very early that the spectrum of computer programs should be incorporated into the realm of mathematical logic in order to make a rigorous treatment of program correctness. This gave rise to the concept of algorithmic logic developed since the 1970s by Rasiowa, Salwicki, Mirkowska, and their followers. Together with Pratt’s dynamic logic, algorithmic logic evolved into a mainstream branch of research: logic of programs. In the late 1980s, Warsaw logicians Tiuryn and Urzyczyn categorized various logics of programs, depending on the class of programs involved. Quite unexpectedly, they discovered that some persistent open questions about the expressive power of logics are equivalent to famous open problems in complexity theory. This, along with parallel discoveries by Harel, Immerman and Vardi, contributed to the creation of an important area of theoretical computer science: descriptive complexity. By that time, the modal μ-calculus was recognized as a sort of a universal logic of programs. The mid 1990s saw a landmark result by Walukiewicz, who showed completeness of a natural axiomatization for the μ-calculus proposed by Kozen. The difficult proof of this result, based on automata theory, opened a path to further investigations. Later, Bojanczyk opened a new chapter by introducing an unboundedness quantifier, which allowed for expressing some quantitative properties of programs. Yet another topic, linking the past with the future, is the subject of automata founded in the Fraenkel-Mostowski set theory. The studies on intuitionism found their continuation in the studies of Curry-Howard isomorphism. ukasiewicz’s landmark idea of many-valued logic found its continuation in various approaches to incompleteness and uncertainty.
Weakly Intuitionistic Quantum Logic
Hermens, Ronnie
2013-01-01
In this article von Neumann's proposal that in quantum mechanics projections can be seen as propositions is followed. However, the quantum logic derived by Birkhoff and von Neumann is rejected due to the failure of the law of distributivity. The options for constructing a distributive logic while
Kuusisto, Antti
2013-01-01
In recent years, research into the mathematical foundations of modal logic has become increasingly popular. One of the main reasons for this is the fact that modal logic seems to adapt well to the requirements of a wide range of different fields of application. This paper is a summary of some of the author’s contributions to the understanding of modal definability theory.
Cirstea, C.; Kurz, A.; Pattinson, D.; Schröder, L.; Venema, Y.
2011-01-01
Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large
Criteria for logical formalization
Peregrin, Jaroslav; Svoboda, Vladimír
2013-01-01
Roč. 190, č. 14 (2013), s. 2897-2924 ISSN 0039-7857 R&D Projects: GA ČR(CZ) GAP401/10/1279 Institutional support: RVO:67985955 Keywords : logic * logical form * formalization * reflective equilibrium Subject RIV: AA - Philosophy ; Religion Impact factor: 0.637, year: 2013
NEVEN, Frank
2002-01-01
We survey some recent developments in the broad area of automata and logic which are motivated by the advent of XML. In particular, we consider unranked tree automata, tree-walking automata, and automata over infinite alphabets. We focus on their connection with logic and on questions imposed by XML.
Evandro Agazzi
2011-06-01
Full Text Available Humans have used arguments for defending or refuting statements long before the creation of logic as a specialized discipline. This can be interpreted as the fact that an intuitive notion of "logical consequence" or a psychic disposition to articulate reasoning according to this pattern is present in common sense, and logic simply aims at describing and codifying the features of this spontaneous capacity of human reason. It is well known, however, that several arguments easily accepted by common sense are actually "logical fallacies", and this indicates that logic is not just a descriptive, but also a prescriptive or normative enterprise, in which the notion of logical consequence is defined in a precise way and then certain rules are established in order to maintain the discourse in keeping with this notion. Yet in the justification of the correctness and adequacy of these rules commonsense reasoning must necessarily be used, and in such a way its foundational role is recognized. Moreover, it remains also true that several branches and forms of logic have been elaborated precisely in order to reflect the structural features of correct argument used in different fields of human reasoning and yet insufficiently mirrored by the most familiar logical formalisms.
A. Ponse (Alban); M.B. van der Zwaag
2002-01-01
textabstractWe distinguish two interpretations for the truth value `undefined' in Kleene's three-valued logic. Combining these two interpretations leads to a four-valued propositional logic that characterizes two particular ingredients of process algebra: ``choice' and ``inaction'. We study two
Uckelman, S.L.
2009-01-01
The origins of treating agency as a modal concept go back at least to the 11th century when Anselm, Archbishop of Canterbury, provided a modal explication of the Latin facere ‘to do’, which can be formalized within the context of modern modal logic and neighborhood semantics. The agentive logic
Temporalized Epistemic Default Logic
van der Hoek, W.; Meyer, J.J.; Treur, J.; Gabbay, D.
2001-01-01
The nonmonotonic logic Epistemic Default Logic (EDL) [Meyer and van der Hoek, 1993] is based on the metaphore of a meta-level architecture. It has already been established [Meyer and van der Hoek, 1993] how upward reflection can be formalized by a nonmonotonic entailment based on epistemic states,
Lopez, Antonio M., Jr.
1989-01-01
Provides background material on logic programing and presents PROLOG as a high-level artificial intelligence programing language that borrows its basic constructs from logic. Suggests the language is one which will help the educator to achieve various goals, particularly the promotion of problem solving ability. (MVL)
W. van der Hoek (Wiebe); J.O.M. Jaspars; E. Thijsse
1995-01-01
textabstractWe propose an epistemic logic in which knowledge is fully introspective and implies truth, although truth need not imply epistemic possibility. The logic is presented in sequential format and is interpreted in a natural class of partial models, called balloon models. We examine the
The application of computer logic design in the trigger system
Zhao Dixin; Ding Huiliang; Gu Jianhui
1996-01-01
The programmable logic devices PLD and FPGA, which are developing steadily recently, can be configured by user. Designers define the logic functions of the circuit and revise these functions when necessary. The application of these devices in the trigger system and development system is introduced
Amplifying genetic logic gates.
Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew
2013-05-03
Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.
Heterogeneous logics of competition
Mossin, Christiane
2015-01-01
of competition are only realized as particular forms of social organization by virtue of interplaying with other kinds of logics, like legal logics. (2) Competition logics enjoy a peculiar status in-between constructedness and givenness; although competition depends on laws and mechanisms of socialization, we...... still experience competition as an expression of spontaneous human activities. On the basis of these perspectives, a study of fundamental rights of EU law, springing from the principle of ‘free movement of people’, is conducted. The first part of the empirical analysis seeks to detect the presence...... of a presumed logic of competition within EU law, whereas the second part focuses on particular legal logics. In this respect, the so-called ‘real link criterion’ (determining the access to transnational social rights for certain groups of unemployed people) is given special attention. What is particularly...
Primitive recursive realizability and basic propositional logic
Plisko, Valery
2007-01-01
Two notions of primitive recursive realizability for arithmetic sentences are considered. The first one is strictly primitive recursive realizability introduced by Z. Damnjanovic in 1994. We prove that intuitionistic predicate logic is not sound with this kind of realizability. Namely there
The first order fuzzy predicate logic (I)
Sheng, Y.M.
1986-01-01
Some analysis tools of fuzzy measures, Sugeno's integrals, etc. are introduced into the semantic of the first order predicate logic to explain the concept of fuzzy quantifiers. The truth value of a fuzzy quantification proposition is represented by Sugeno's integral. With this framework, several important notions of formation rules, fuzzy valutions and fuzzy validity are discussed
Introducing philosophy of mathematics
Friend, Michele
2014-01-01
What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual acc
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Jauch-Piron logics with finiteness conditions
Rogalewicz, V.
1991-01-01
An event structure (so-called quantum logic) of a quantum mechanical system is commonly assumed to be an orthomodular poset L. A state of such a system is then interpreted as a probability measure on L. It turns out that the orthomodular posets which may potentially serve as logics must have reasonably rich spaces of states. Moreover, the following condition on the state space appears among the axioms of a quantum system: if Φ is a state on a logic L, and Φ(a) = Φ(b) = 1 for some a, b element-of L, then there is a c element-of L such that c ≤ a, c ≤ b, and Φ(c) = 1. Such a state is said to be a Jauch-Piron state. If all states on L fulfill this condition, then L is called a Jauch-Piron logic. The condition was originally introduced by Jauch (1968) and Piron (1976). The author investigates unital Jauch-Piron logics with finitely many blocks (maximal Boolean subalgebras). He shows that such a logic is always Boolean, i.e., it represents a purely classical system. In other words, and orthomodular poset must have infinitely many blocks in order to describe a (nonclassical) quantum system
Design of digital logic control for accelerator magnet power supply
Long Fengli; Hu Wei; Cheng Jian
2008-01-01
For the accelerator magnet power supply, usually the Programmable Logic Controller (PLC) is used to server as the controller for logic protection and control. Along with the development of modern accelerator technology, it is a trend to use fully-digital control to the magnet power supply. It is possible to integrate the logic control part into the digital control component of the power supply, for example, the Field Programmable Gate Array (FPGA). The paper introduces to different methods which are designed for the logic protection and control for accelerator magnet power supplies with the FPGA as the control component. (authors)
Simulation Approach for Timing Analysis of Genetic Logic Circuits
Baig, Hasan; Madsen, Jan
2017-01-01
in a manner similar to electronic logic circuits, but they are much more stochastic and hence much harder to characterize. In this article, we introduce an approach to analyze the threshold value and timing of genetic logic circuits. We show how this approach can be used to analyze the timing behavior...... of single and cascaded genetic logic circuits. We further analyze the timing sensitivity of circuits by varying the degradation rates and concentrations. Our approach can be used not only to characterize the timing behavior but also to analyze the timing constraints of cascaded genetic logic circuits...
Instantons in Self-Organizing Logic Gates
Bearden, Sean R. B.; Manukian, Haik; Traversa, Fabio L.; Di Ventra, Massimiliano
2018-03-01
Self-organizing logic is a recently suggested framework that allows the solution of Boolean truth tables "in reverse"; i.e., it is able to satisfy the logical proposition of gates regardless to which terminal(s) the truth value is assigned ("terminal-agnostic logic"). It can be realized if time nonlocality (memory) is present. A practical realization of self-organizing logic gates (SOLGs) can be done by combining circuit elements with and without memory. By employing one such realization, we show, numerically, that SOLGs exploit elementary instantons to reach equilibrium points. Instantons are classical trajectories of the nonlinear equations of motion describing SOLGs and connect topologically distinct critical points in the phase space. By linear analysis at those points, we show that these instantons connect the initial critical point of the dynamics, with at least one unstable direction, directly to the final fixed point. We also show that the memory content of these gates affects only the relaxation time to reach the logically consistent solution. Finally, we demonstrate, by solving the corresponding stochastic differential equations, that, since instantons connect critical points, noise and perturbations may change the instanton trajectory in the phase space but not the initial and final critical points. Therefore, even for extremely large noise levels, the gates self-organize to the correct solution. Our work provides a physical understanding of, and can serve as an inspiration for, models of bidirectional logic gates that are emerging as important tools in physics-inspired, unconventional computing.
Mittelstaedt, P.
1983-01-01
on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)
Logical inference and evaluation
Perey, F.G.
1981-01-01
Most methodologies of evaluation currently used are based upon the theory of statistical inference. It is generally perceived that this theory is not capable of dealing satisfactorily with what are called systematic errors. Theories of logical inference should be capable of treating all of the information available, including that not involving frequency data. A theory of logical inference is presented as an extension of deductive logic via the concept of plausibility and the application of group theory. Some conclusions, based upon the application of this theory to evaluation of data, are also given
Filipiuk, Piotr; Nielson, Flemming; Nielson, Hanne Riis
2012-01-01
We present a logic for the specification of static analysis problems that goes beyond the logics traditionally used. Its most prominent feature is the direct support for both inductive computations of behaviors as well as co-inductive specifications of properties. Two main theoretical contributions...... are a Moore Family result and a parametrized worst case time complexity result. We show that the logic and the associated solver can be used for rapid prototyping of analyses and illustrate a wide variety of applications within Static Analysis, Constraint Satisfaction Problems and Model Checking. In all cases...
Linear contextual modal type theory
Schack-Nielsen, Anders; Schürmann, Carsten
Abstract. When one implements a logical framework based on linear type theory, for example the Celf system [?], one is immediately con- fronted with questions about their equational theory and how to deal with logic variables. In this paper, we propose linear contextual modal type theory that gives...... a mathematical account of the nature of logic variables. Our type theory is conservative over intuitionistic contextual modal type theory proposed by Nanevski, Pfenning, and Pientka. Our main contributions include a mechanically checked proof of soundness and a working implementation....
Linearly Refined Session Types
Pedro Baltazar
2012-11-01
Full Text Available Session types capture precise protocol structure in concurrent programming, but do not specify properties of the exchanged values beyond their basic type. Refinement types are a form of dependent types that can address this limitation, combining types with logical formulae that may refer to program values and can constrain types using arbitrary predicates. We present a pi calculus with assume and assert operations, typed using a session discipline that incorporates refinement formulae written in a fragment of Multiplicative Linear Logic. Our original combination of session and refinement types, together with the well established benefits of linearity, allows very fine-grained specifications of communication protocols in which refinement formulae are treated as logical resources rather than persistent truths.
Nonlinear dynamics based digital logic and circuits.
Kia, Behnam; Lindner, John F; Ditto, William L
2015-01-01
We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two.
Fisher, Michael; Gabbay, Dov; Gough, Graham
2000-01-01
Time is a fascinating subject that has captured mankind's imagination from ancient times to the present. It has been, and continues to be studied across a wide range of disciplines, from the natural sciences to philosophy and logic. More than two decades ago, Pnueli in a seminal work showed the value of temporal logic in the specification and verification of computer programs. Today, a strong, vibrant international research community exists in the broad community of computer science and AI. This volume presents a number of articles from leading researchers containing state-of-the-art results in such areas as pure temporal/modal logic, specification and verification, temporal databases, temporal aspects in AI, tense and aspect in natural language, and temporal theorem proving. Earlier versions of some of the articles were given at the most recent International Conference on Temporal Logic, University of Manchester, UK. Readership: Any student of the area - postgraduate, postdoctoral or even research professor ...
Hendricks, Vincent Fella; Gierasimczuk, Nina; de Jong, Dick
2014-01-01
Learning and learnability have been long standing topics of interests within the linguistic, computational, and epistemological accounts of inductive in- ference. Johan van Benthem’s vision of the “dynamic turn” has not only brought renewed life to research agendas in logic as the study of inform......Learning and learnability have been long standing topics of interests within the linguistic, computational, and epistemological accounts of inductive in- ference. Johan van Benthem’s vision of the “dynamic turn” has not only brought renewed life to research agendas in logic as the study...... of information processing, but likewise helped bring logic and learning in close proximity. This proximity relation is examined with respect to learning and belief revision, updating and efficiency, and with respect to how learnability fits in the greater scheme of dynamic epistemic logic and scientific method....
Khitun, Alexander; Bao Mingqiang; Wang, Kang L
2010-01-01
We describe and analyse possible approaches to magnonic logic circuits and basic elements required for circuit construction. A distinctive feature of the magnonic circuitry is that information is transmitted by spin waves propagating in the magnetic waveguides without the use of electric current. The latter makes it possible to exploit spin wave phenomena for more efficient data transfer and enhanced logic functionality. We describe possible schemes for general computing and special task data processing. The functional throughput of the magnonic logic gates is estimated and compared with the conventional transistor-based approach. Magnonic logic circuits allow scaling down to the deep submicrometre range and THz frequency operation. The scaling is in favour of the magnonic circuits offering a significant functional advantage over the traditional approach. The disadvantages and problems of the spin wave devices are also discussed.
Characteristics of a Circular Logic and Its Treatment
Lim, Ho-Gon; Han, Sang-Hoon; Yang, Joon Eon
2007-01-01
A circular logic or a logical loop is defined as the infinite circulation of supporting relations due to their mutual dependencies among the systems in the Fault Tree Analysis (FTA). While many methods to break the circular logic have been developed and used in the fault tree quantification codes, the general solution for a circular logic and its breaking methods are not generally known as yet. This paper presents an analytic solution for circular logics in which the systems are linearly interrelated with each other. Then, a general treatment of circular logics is discussed. To formulate the analytic solution, the relations among systems in the fault tree structure are described by the Boolean equations. The solution is, then, obtained from the successive substitutions of the Boolean equations, which is equivalent to the attaching processes of interrelated system's fault tree to a given fault tree. The solution for three interrelated systems and their independent fault tree structures are given as an example
Extending Value Logic Thinking to Value Logic Portfolios
Andersen, Poul Houman; Ritter, Thomas
2014-01-01
Based on value creation logic theory (Stabell & Fjeldstad, 1998), this paper suggests an extension of the original Stabell & Fjeldstad model by an additional fourth value logic, the value system logic. Furthermore, instead of only allowing one dominant value creation logic for a given firm...... or transaction, an understanding of firms and transactions as a portfolio of value logics (i.e. an interconnected coexistence of different value creation logics) is proposed. These additions to the original value creation logic theory imply interesting avenues for both, strategic decision making in firms...
CIFOL: Case-intensional first order logic. (I) Toward a theory of sorts
Belnap, Nuel; Müller, Thomas
2012-01-01
This is Part I of a two-part essay introducing case-intensional ﬁrst-order logic (CIFOL), an easy-to-use, uniform, powerful, and useful combination of ﬁrst order logic with modal logic resulting from philosophical and technical modiﬁcations of Bressan’s General interpreted modal calculus (Yale
Towards a Formal Occurrence Logic based on Predicate Logic
Badie, Farshad; Götzsche, Hans
2015-01-01
In this discussion we will concentrate on the main characteristics of an alternative kind of logic invented by Hans Götzsche: Occurrence Logic, which is not based on truth functionality. Our approach is based on temporal logic developed and elaborated by A. N. Prior. We will focus on characterising...... argumentation based on formal Occurrence Logic concerning events and occurrences, and illustrate the relations between Predicate Logic and Occurrence Logic. The relationships (and dependencies) is conducive to an approach that can analyse the occurrences of ”logical statements based on different logical...... principles” in different moments. We will also conclude that the elaborated Götzsche’s Occurrence Logic could be able to direct us to a truth-functional independent computer-based logic for analysing argumentation based on events and occurrences....
Modern logic and quantum mechanics
Garden, R.W.
1984-01-01
The book applies the methods of modern logic and probabilities to ''interpreting'' quantum mechanics. The subject is described and discussed under the chapter headings: classical and quantum mechanics, modern logic, the propositional logic of mechanics, states and measurement in mechanics, the traditional analysis of probabilities, the probabilities of mechanics and the model logic of predictions. (U.K.)
Semantic theory for logic programming
Brown, F M
1981-01-01
The author axiomatizes a number of meta theoretic concepts which have been used in logic programming, including: meaning, logical truth, nonentailment, assertion and erasure, thus showing that these concepts are logical in nature and need not be defined as they have previously been defined in terms of the operations of any particular interpreter for logic programs. 10 references.
Relational Parametricity and Separation Logic
Birkedal, Lars; Yang, Hongseok
2008-01-01
Separation logic is a recent extension of Hoare logic for reasoning about programs with references to shared mutable data structures. In this paper, we provide a new interpretation of the logic for a programming language with higher types. Our interpretation is based on Reynolds's relational...... parametricity, and it provides a formal connection between separation logic and data abstraction. Udgivelsesdato: 2008...
Reversible arithmetic logic unit for quantum arithmetic
Thomsen, Michael Kirkedal; Glück, Robert; Axelsen, Holger Bock
2010-01-01
This communication presents the complete design of a reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The presented ALU is garbage free and uses reversible updates to combine the standard reversible arithmetic...... and logical operations in one unit. Combined with a suitable control unit, the ALU permits the construction of an r-Turing complete computing device. The garbage-free ALU developed in this communication requires only 6n elementary reversible gates for five basic arithmetic-logical operations on two n......-bit operands and does not use ancillae. This remarkable low resource consumption was achieved by generalizing the V-shape design first introduced for quantum ripple-carry adders and nesting multiple V-shapes in a novel integrated design. This communication shows that the realization of an efficient reversible...
Logic and memory concepts for all-magnetic computing based on transverse domain walls
Vandermeulen, J; Van de Wiele, B; Dupré, L; Van Waeyenberge, B
2015-01-01
We introduce a non-volatile digital logic and memory concept in which the binary data is stored in the transverse magnetic domain walls present in in-plane magnetized nanowires with sufficiently small cross sectional dimensions. We assign the digital bit to the two possible orientations of the transverse domain wall. Numerical proofs-of-concept are presented for a NOT-, AND- and OR-gate, a FAN-out as well as a reading and writing device. Contrary to the chirality based vortex domain wall logic gates introduced in Omari and Hayward (2014 Phys. Rev. Appl. 2 044001), the presented concepts remain applicable when miniaturized and are driven by electrical currents, making the technology compatible with the in-plane racetrack memory concept. The individual devices can be easily combined to logic networks working with clock speeds that scale linearly with decreasing design dimensions. This opens opportunities to an all-magnetic computing technology where the digital data is stored and processed under the same magnetic representation. (paper)
Rough set classification based on quantum logic
Hassan, Yasser F.
2017-11-01
By combining the advantages of quantum computing and soft computing, the paper shows that rough sets can be used with quantum logic for classification and recognition systems. We suggest the new definition of rough set theory as quantum logic theory. Rough approximations are essential elements in rough set theory, the quantum rough set model for set-valued data directly construct set approximation based on a kind of quantum similarity relation which is presented here. Theoretical analyses demonstrate that the new model for quantum rough sets has new type of decision rule with less redundancy which can be used to give accurate classification using principles of quantum superposition and non-linear quantum relations. To our knowledge, this is the first attempt aiming to define rough sets in representation of a quantum rather than logic or sets. The experiments on data-sets have demonstrated that the proposed model is more accuracy than the traditional rough sets in terms of finding optimal classifications.
Introducing Science to undergraduate students
P. Avila Jr
2006-07-01
Full Text Available The knowledge of scientific method provides stimulus and development of critical thinking and logical analysis of information besides the training of continuous formulation of hypothesis to be applied in formal scientific issues as well as in everyday facts. The scientific education, useful for all people, is indispensable for the experimental science students. Aiming at the possibility to offer a systematic learning of the scientific principles, we developed a undergraduate course designed to approximate the students to the procedures of scientific production and publication. The course was developed in a 40 hours, containing two modules: I. Introducing Scientific Articles (papers and II. Writing Research Project. The first module deals with: (1 the difference between scientific knowledge and common sense; (2 scientific methodology; (3 scientific publishing categories; (4 logical principles; (5 deduction and induction approach and (6 paper analysis. The second module includes (1 selection of problem to be solved by experimental procedures; (2 bibliography revision; (3 support agencies; (4 project writing and presentation and (5 critical analysis of experimental results. The course used a Collaborative Learning strategy with each topic being developed through activities performed by the students. Qualitative and quantitative (through Likert questionnaires evaluation were carried out in each step of the course, the results showing great appreciation by the students. This is also the opinion of the staff responsible for the planning and development of the course, which is now in its second and improved version.
Non-logic devices in logic processes
Ma, Yanjun
2017-01-01
This book shows readers how to design semiconductor devices using the most common and lowest cost logic CMOS processes. Readers will benefit from the author’s extensive, industrial experience and the practical approach he describes for designing efficiently semiconductor devices that typically have to be implemented using specialized processes that are expensive, time-consuming, and low-yield. The author presents an integrated picture of semiconductor device physics and manufacturing techniques, as well as numerous practical examples of device designs that are tried and true.
The dark side of Interval Temporal Logic: sharpening the undecidability border
Bresolin, Davide; Monica, Dario Della; Goranko, Valentin
2011-01-01
on the class of models (in our case, the class of interval structures)in which it is interpreted. In this paper, we have identified several new minimal undecidable logics amongst the fragments of Halpern-Shoham logic HS, including the logic of the overlaps relation, over the classes of all and finite linear...... orders, as well as the logic of the meet and subinterval relations, over the class of dense linear orders. Together with previous undecid ability results, this work contributes to delineate the border of the dark side of interval temporal logics quite sharply....
The multi-interlock and check of logical system for 5 MW low power reactor automatic rod
Li Guangjian; Zhao Zengqiao
1992-01-01
The safety and reliability of the logical system for 5 MW LPR automatic rod are improved, because of using multi-interlock and manual check on line. The design character and function of the logical system are introduced
Computational logic with square rings of nanomagnets
Arava, Hanu; Derlet, Peter M.; Vijayakumar, Jaianth; Cui, Jizhai; Bingham, Nicholas S.; Kleibert, Armin; Heyderman, Laura J.
2018-06-01
Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.
Fibred Coalgebraic Logic and Quantum Protocols
Daniel Marsden
2014-12-01
Full Text Available Motivated by applications in modelling quantum systems using coalgebraic techniques, we introduce a fibred coalgebraic logic. Our approach extends the conventional predicate lifting semantics with additional modalities relating conditions on different fibres. As this fibred setting will typically involve multiple signature functors, the logic incorporates a calculus of modalities enabling the construction of new modalities using various composition operations. We extend the semantics of coalgebraic logic to this setting, and prove that this extension respects behavioural equivalence. We show how properties of the semantics of modalities are preserved under composition operations, and then apply the calculational aspect of our logic to produce an expressive set of modalities for reasoning about quantum systems, building these modalities up from simpler components. We then demonstrate how these modalities can describe some standard quantum protocols. The novel features of our logic are shown to allow for a uniform description of unitary evolution, and support local reasoning such as "Alice's qubit satisfies condition" as is common when discussing quantum protocols.
Logic circuits from zero forcing.
Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael
We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.
Areces, Carlos; Hoffmann, Guillaume; Denis, Alexandre
We present a modal language that includes explicit operators to count the number of elements that a model might include in the extension of a formula, and we discuss how this logic has been previously investigated under different guises. We show that the language is related to graded modalities and to hybrid logics. We illustrate a possible application of the language to the treatment of plural objects and queries in natural language. We investigate the expressive power of this logic via bisimulations, discuss the complexity of its satisfiability problem, define a new reasoning task that retrieves the cardinality bound of the extension of a given input formula, and provide an algorithm to solve it.
Diagnosable structured logic array
Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)
2009-01-01
A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.
Rushton, Andrew
2011-01-01
Many engineers encountering VHDL (very high speed integrated circuits hardware description language) for the first time can feel overwhelmed by it. This book bridges the gap between the VHDL language and the hardware that results from logic synthesis with clear organisation, progressing from the basics of combinational logic, types, and operators; through special structures such as tristate buses, register banks and memories, to advanced themes such as developing your own packages, writing test benches and using the full range of synthesis types. This third edition has been substantially rewritten to include the new VHDL-2008 features that enable synthesis of fixed-point and floating-point hardware. Extensively updated throughout to reflect modern logic synthesis usage, it also contains a complete case study to demonstrate the updated features. Features to this edition include: * a common VHDL subset which will work across a range of different synthesis systems, targeting a very wide range of technologies...
Carlsson, Christer; Fullér, Robert
2004-01-01
Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...
Mardare, Radu Iulian; Cardelli, Luca; Larsen, Kim Guldstrand
2012-01-01
Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-time labelled Markov processes with arbitrary (analytic) state-spaces, henceforth called continuous Markov processes (CMPs). The modalities of CML evaluate the rates...... of the exponentially distributed random variables that characterize the duration of the labeled transitions of a CMP. In this paper we present weak and strong complete axiomatizations for CML and prove a series of metaproperties, including the finite model property and the construction of canonical models. CML...... characterizes stochastic bisimilarity and it supports the definition of a quantified extension of the satisfiability relation that measures the "compatibility" between a model and a property. In this context, the metaproperties allows us to prove two robustness theorems for the logic stating that one can...
Claude Ziad Bayeh
2015-01-01
The “Manual Logic Controller” also called MLC, is an electronic circuit invented and designed by the author in 2008, in order to replace the well known PLC (Programmable Logic Controller) in many applications for its advantages and its low cost of fabrication. The function of the MLC is somewhat similar to the well known PLC, but instead of doing it by inserting a written program into the PLC using a computer or specific software inside the PLC, it will be manually programmed in a manner to h...
Introduction to mathematical logic
Mendelson, Elliott
2009-01-01
The Propositional CalculusPropositional Connectives. Truth TablesTautologies Adequate Sets of Connectives An Axiom System for the Propositional Calculus Independence. Many-Valued LogicsOther AxiomatizationsFirst-Order Logic and Model TheoryQuantifiersFirst-Order Languages and Their Interpretations. Satisfiability and Truth. ModelsFirst-Order TheoriesProperties of First-Order Theories Additional Metatheorems and Derived Rules Rule C Completeness Theorems First-Order Theories with EqualityDefinitions of New Function Letters and Individual Constants Prenex Normal Forms Isomorphism of Interpretati
Ramli, Carroline Dewi Puspa Kencana; Nielson, Hanne Riis; Nielson, Flemming
2011-01-01
We study the international standard XACML 3.0 for describing security access control policy in a compositional way. Our main contribution is to derive a logic that precisely captures the idea behind the standard and to formally define the semantics of the policy combining algorithms of XACML....... To guard against modelling artefacts we provide an alternative way of characterizing the policy combining algorithms and we formally prove the equivalence of these approaches. This allows us to pinpoint the shortcoming of previous approaches to formalization based either on Belnap logic or on D -algebra....
Yun, Gil Jung; Yang, Hong Young
2011-03-15
This book is about digital logic circuit test, which lists the digital basic theory, basic gate like and, or And Not gate, NAND/NOR gate such as NAND gate, NOR gate, AND and OR, logic function, EX-OR gate, adder and subtractor, decoder and encoder, multiplexer, demultiplexer, flip-flop, counter such as up/down counter modulus N counter and Reset type counter, shift register, D/A and A/D converter and two supplements list of using components and TTL manual and CMOS manual.
Evens, Aden
2015-01-01
Building a foundational understanding of the digital, Logic of the Digital reveals a unique digital ontology. Beginning from formal and technical characteristics, especially the binary code at the core of all digital technologies, Aden Evens traces the pathways along which the digital domain of abstract logic encounters the material, human world. How does a code using only 0s and 1s give rise to the vast range of applications and information that constitutes a great and growing portion of our world? Evens' analysis shows how any encounter between the actual and the digital must cross an ontolo
Programmable Array Logic Design
Demon Handoyo; Djen Djen Djainal
2007-01-01
Good digital circuit design that part of a complex system, often becoming a separate problem. To produce finishing design according to wanted performance is often given on to considerations which each other confuse, hence thereby analyse optimization become important in this case. To realization is made design logic program, the first are determined global diagram block, then are decided contents of these block diagram, and then determined its interconnection in the form of logic expression, continued with election of component. These steps are done to be obtained the design with low price, easy in its interconnection, minimal volume, low power and certainty god work. (author)
Prospects of luminescence based molecular scale logic gates and logic circuits
Speiser, Shammai, E-mail: speiser@technion.ac.il
2016-01-15
In recent years molecular electronics has emerged as a rapidly growing research field. The aim of this review is to introduce this subject as a whole with special emphasis on molecular scale potential devices and applications. As a particular example we will discuss all optical molecular scale logic gates and logic circuits based on molecular fluorescence and electronic excitation transfer processes. Charge and electronic energy transfers (ET and EET) are well-studied examples whereby different molecules can signal their state from one (the donor, D) to the other (the acceptor, A). We show how a half-adder logic circuit can be implemented on one molecule that can communicate its logic output as input to another half-adder molecule. This is achieved as an electronic energy transfer from a donor to an acceptor, thus implementing a molecular full adder. We discuss a specific pair, the rhodamine–azulene, for which there is considerable spectroscopic data, but the scheme is general enough to allow a wide choice of D and A pairs. We present results based on this pair, in which, for the first time, an all optical half-adder and full-adder logic circuits are implemented. - Highlights: • Molecular scale logic • Photoquenching • Full adder.
Prospects of luminescence based molecular scale logic gates and logic circuits
Speiser, Shammai
2016-01-01
In recent years molecular electronics has emerged as a rapidly growing research field. The aim of this review is to introduce this subject as a whole with special emphasis on molecular scale potential devices and applications. As a particular example we will discuss all optical molecular scale logic gates and logic circuits based on molecular fluorescence and electronic excitation transfer processes. Charge and electronic energy transfers (ET and EET) are well-studied examples whereby different molecules can signal their state from one (the donor, D) to the other (the acceptor, A). We show how a half-adder logic circuit can be implemented on one molecule that can communicate its logic output as input to another half-adder molecule. This is achieved as an electronic energy transfer from a donor to an acceptor, thus implementing a molecular full adder. We discuss a specific pair, the rhodamine–azulene, for which there is considerable spectroscopic data, but the scheme is general enough to allow a wide choice of D and A pairs. We present results based on this pair, in which, for the first time, an all optical half-adder and full-adder logic circuits are implemented. - Highlights: • Molecular scale logic • Photoquenching • Full adder
Quantum logics with existence property
Schindler, C.
1991-01-01
A quantum logic (σ-orthocomplete orthomodular poset L with a convex, unital, and separating set Δ of states) is said to have the existence property if the expectation functionals on lin(Δ) associated with the bounded observables of L form a vector space. Classical quantum logics as well as the Hilbert space logics of traditional quantum mechanics have this property. The author shows that, if a quantum logic satisfies certain conditions in addition to having property E, then the number of its blocks (maximal classical subsystems) must either be one (classical logics) or uncountable (as in Hilbert space logics)
GOAL Agents Instantiate Intention Logic
Hindriks, Koen; van der Hoek, Wiebe
2008-01-01
It is commonly believed there is a big gap between agent logics and computational agent frameworks. In this paper, we show that this gap is not as big as believed by showing that GOAL agents instantiate Intention Logic of Cohen and Levesque. That is, we show that GOAL agent programs can be formally related to Intention Logic.We do so by proving that the GOAL Verification Logic can be embedded into Intention Logic. It follows that (a fragment of) Intention Logic can be used t...
Querying Natural Logic Knowledge Bases
Andreasen, Troels; Bulskov, Henrik; Jensen, Per Anker
2017-01-01
This paper describes the principles of a system applying natural logic as a knowledge base language. Natural logics are regimented fragments of natural language employing high level inference rules. We advocate the use of natural logic for knowledge bases dealing with querying of classes...... in ontologies and class-relationships such as are common in life-science descriptions. The paper adopts a version of natural logic with recursive restrictive clauses such as relative clauses and adnominal prepositional phrases. It includes passive as well as active voice sentences. We outline a prototype...... for partial translation of natural language into natural logic, featuring further querying and conceptual path finding in natural logic knowledge bases....
Linearity in Process Languages
Nygaard, Mikkel; Winskel, Glynn
2002-01-01
The meaning and mathematical consequences of linearity (managing without a presumed ability to copy) are studied for a path-based model of processes which is also a model of affine-linear logic. This connection yields an affine-linear language for processes, automatically respecting open......-map bisimulation, in which a range of process operations can be expressed. An operational semantics is provided for the tensor fragment of the language. Different ways to make assemblies of processes lead to different choices of exponential, some of which respect bisimulation....
Some relationships between logic programming and multiple-valued logic
Rine, D.C.
1986-01-01
There have been suggestions in the artificial intelligence literature that investigations into relationships between logic programming and multiple-valued logic may be helpful. This paper presents some of these relationships through equivalent algebraic evaluations
Ramli, Carroline Dewi Puspa Kencana; Nielson, Hanne Riis; Nielson, Flemming
2014-01-01
We study the international standard XACML 3.0 for describing security access control policies in a compositional way. Our main contributions are (i) to derive a logic that precisely captures the intentions of the standard, (ii) to formally define a semantics for the XACML 3.0 component evaluation...
Ramli, Carroline Dewi Puspa Kencana; Nielson, Hanne Riis; Nielson, Flemming
2011-01-01
We study the international standard XACML 3.0 for describing security access control policy in a compositional way. Our main contribution is to derive a logic that precisely captures the idea behind the standard and to formally define the semantics of the policy combining algorithms of XACML...
Klev, Ansten Morch
2014-01-01
The notions of category and type are here studied through the lens of logical syntax: Aristotle's as well as Kant's categories through the traditional form of proposition `S is P', and modern doctrines of type through the Fregean form of proposition `F(a)', function applied to argument. Topics
Structures for Epistemic Logic
Bezhanishvili, N.; Hoek, W. van der
2013-01-01
Epistemic modal logic in a narrow sense studies and formalises reasoning about knowledge. In a wider sense, it gives a formal account of the informational attitude that agents may have, and covers notions like knowledge, belief, uncertainty, and hence incomplete or partial information. As is so
Expressivist Perspective on Logicality
Arazim, Pavel
2017-01-01
Roč. 11, č. 4 (2017), s. 409-419 ISSN 1661-8297 R&D Projects: GA ČR(CZ) GA17-15645S Institutional support: RVO:67985955 Keywords : logical constant * expressivism * topic-neutrality * proof- theory * conservativity Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology
Klev, Ansten
2017-01-01
Roč. 25, č. 3 (2017), s. 341-368 ISSN 0031-8019 Institutional support: RVO:67985955 Keywords : Philosophy of mathematics * logicism * Richard Dedekind Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology Impact factor: 0.419, year: 2016
Klose, Karl; Ostermann, Klaus
2010-01-01
In logic metaprogramming, programs are not stored as plain textfiles but rather derived from a deductive database. While the benefits of this approach for metaprogramming are obvious, its incompatibility with separate checking limits its applicability to large-scale projects. We analyze the probl...
LOGICAL SEMANTICS OF MODULARIZATION
DELAVALETTE, GRR
1992-01-01
An algebra of theories, signatures, renamings and the operations import and export is investigated. A normal form theorem for terms of this algebra is proved. Another algebraic approach and the relation with a fragment of second order logic are also considered.
Duration Calculus: Logical Foundations
Hansen, Michael Reichhardt; Chaochen, Zhou
1997-01-01
The Duration Calculus (abbreviated DC) represents a logical approach to formal design of real-time systems, where real numbers are used to model time and Boolean valued functions over time are used to model states and events of real-time systems. Since it introduction, DC has been applied to many...
Logicism, intuitionism, and formalism
Symons, John
2008-01-01
Aims to review the programmes in the foundations of mathematics from the classical period and to assess their possible relevance for contemporary philosophy of mathematics. This work is suitable for researchers and graduate students of philosophy, logic, mathematics and theoretical computer science.
Foundations of mathematical logic
Curry, Haskell B
2010-01-01
Written by a pioneer of mathematical logic, this comprehensive graduate-level text explores the constructive theory of first-order predicate calculus. It covers formal methods, including algorithms and epitheory, and offers a brief treatment of Markov's approach to algorithms, explains elementary facts about lattices and similar algebraic systems, and more. 1963 edition.
Svoboda, Vladimír; Peregrin, Jaroslav
2016-01-01
Roč. 30, č. 3 (2016), s. 263-287 ISSN 0920-427X R&D Projects: GA ČR(CZ) GA13-21076S Institutional support: RVO:67985955 Keywords : argumentation * logical form * incorrect argument * correct arguments Subject RIV: AA - Philosophy ; Religion Impact factor: 0.689, year: 2016
Bergstra, J.A.; Ponse, A.
2010-01-01
Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of
Temporal logic motion planning
Seotsanyana, M
2010-01-01
Full Text Available In this paper, a critical review on temporal logic motion planning is presented. The review paper aims to address the following problems: (a) In a realistic situation, the motion planning problem is carried out in real-time, in a dynamic, uncertain...
Logic Programming for Linguistics
Christiansen, Henning
2010-01-01
This article gives a short introduction on how to get started with logic pro- gramming in Prolog that does not require any previous programming expe- rience. The presentation is aimed at students of linguistics, but it does not go deeper into linguistics than any student who has some ideas of what...
Peregrin, Jaroslav
2010-01-01
Roč. 4, č. 2 (2010), s. 207-223 ISSN 1661-8297 R&D Projects: GA ČR(CZ) GAP401/10/1279 Institutional research plan: CEZ:AV0Z9009908 Keywords : logic * natural selection * modus potens * inferentialism Subject RIV: AA - Philosophy ; Religion
Quantum probabilistic logic programming
Balu, Radhakrishnan
2015-05-01
We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.
Temporalizing Epistemic Default Logic
van der Hoek, Wiebe; Meyer, John Jules; Treur, Jan
1998-01-01
We present an epistemic default logic, based on the metaphore of a meta-level architecture. Upward reflection is formalized by a nonmonotonic entailment relation, based on the objective facts that are either known or unknown at the object level. Then, the meta (monotonic) reasoning process generates
Logic Programming with Requests
De Schreye, Danny; Etalle, Sandro; van Raamsdonk, Femke
1999-01-01
We propose an extension of logic programming where the user can specify, together with the initial query, the information he is interested in by means of a request. This allows one to extract a result from an incomplete computation, such as the prefix of an infinite derivation. The classical
Logical Characterisation of Ontology Construction using Fuzzy Description Logics
Badie, Farshad; Götzsche, Hans
had the extension of ontologies with Fuzzy Logic capabilities which plan to make proper backgrounds for ontology driven reasoning and argumentation on vague and imprecise domains. This presentation conceptualises learning from fuzzy classes using the Inductive Logic Programming framework. Then......, employs Description Logics in characterising and analysing fuzzy statements. And finally, provides a conceptual framework describing fuzzy concept learning in ontologies using the Inductive Logic Programming....
Greek, Indian and Arabic logic
Gabbay, Dov M
2004-01-01
Greek, Indian and Arabic Logic marks the initial appearance of the multi-volume Handbook of the History of Logic. Additional volumes will be published when ready, rather than in strict chronological order. Soon to appear are The Rise of Modern Logic: From Leibniz to Frege. Also in preparation are Logic From Russell to Gödel, Logic and the Modalities in the Twentieth Century, and The Many-Valued and Non-Monotonic Turn in Logic. Further volumes will follow, including Mediaeval and Renaissance Logic and Logic: A History of its Central. In designing the Handbook of the History of Logic, the Editors have taken the view that the history of logic holds more than an antiquarian interest, and that a knowledge of logic's rich and sophisticated development is, in various respects, relevant to the research programmes of the present day. Ancient logic is no exception. The present volume attests to the distant origins of some of modern logic's most important features, such as can be found in the claim by the authors of t...
Radiation tolerant combinational logic cell
Maki, Gary R. (Inventor); Gambles, Jody W. (Inventor); Whitaker, Sterling (Inventor)
2009-01-01
A system has a reduced sensitivity to Single Event Upset and/or Single Event Transient(s) compared to traditional logic devices. In a particular embodiment, the system includes an input, a logic block, a bias stage, a state machine, and an output. The logic block is coupled to the input. The logic block is for implementing a logic function, receiving a data set via the input, and generating a result f by applying the data set to the logic function. The bias stage is coupled to the logic block. The bias stage is for receiving the result from the logic block and presenting it to the state machine. The state machine is coupled to the bias stage. The state machine is for receiving, via the bias stage, the result generated by the logic block. The state machine is configured to retain a state value for the system. The state value is typically based on the result generated by the logic block. The output is coupled to the state machine. The output is for providing the value stored by the state machine. Some embodiments of the invention produce dual rail outputs Q and Q'. The logic block typically contains combinational logic and is similar, in size and transistor configuration, to a conventional CMOS combinational logic design. However, only a very small portion of the circuits of these embodiments, is sensitive to Single Event Upset and/or Single Event Transients.
A Single MEMS Resonator for Reconfigurable Multifunctional Logic Gates
Tella, Sherif Adekunle
2018-04-30
Despite recent efforts toward true electromechanical resonator-based computing, achieving complex logics functions through cascading micro resonators has been deterred by challenges involved in their interconnections and the large required array of resonators. In this work we present a single micro electromechanical resonator with two outputs that enables the realization of multifunctional logic gates as well as other complex logic operations. As examples, we demonstrate the realization of the fundamental 2-bit logic gates of OR, XOR, AND, NOR, and a half adder. The device is based on a compound resonator consisting of a clamped-guided electrostatically actuated arch beam that is attached to another resonant beam from the side, which serves as an additional actuation electrode for the arch. The structure is also provided with an additional electrothermal tuning capability. The logic operations are based on the linear frequency modulations of the arch resonator and side microbeam. The device is compatible with CMOS fabrication process and works at room temperature
A Single MEMS Resonator for Reconfigurable Multifunctional Logic Gates
Tella, Sherif Adekunle; Alcheikh, Nouha; Younis, Mohammad I.
2018-01-01
Despite recent efforts toward true electromechanical resonator-based computing, achieving complex logics functions through cascading micro resonators has been deterred by challenges involved in their interconnections and the large required array of resonators. In this work we present a single micro electromechanical resonator with two outputs that enables the realization of multifunctional logic gates as well as other complex logic operations. As examples, we demonstrate the realization of the fundamental 2-bit logic gates of OR, XOR, AND, NOR, and a half adder. The device is based on a compound resonator consisting of a clamped-guided electrostatically actuated arch beam that is attached to another resonant beam from the side, which serves as an additional actuation electrode for the arch. The structure is also provided with an additional electrothermal tuning capability. The logic operations are based on the linear frequency modulations of the arch resonator and side microbeam. The device is compatible with CMOS fabrication process and works at room temperature
Introduced Terrestrial Species Richness
U.S. Environmental Protection Agency — These data represent predicted current distributions of all introduced mammals, birds, reptiles, amphibians and butterflies in the Middle-Atlantic region. These data...
Quantum Logic and Quantum Reconstruction
Stairs, Allen
2015-01-01
Quantum logic understood as a reconstruction program had real successes and genuine limitations. This paper offers a synopsis of both and suggests a way of seeing quantum logic in a larger, still thriving context.
Braüner, Torben
2011-01-01
Hybrid logic is an extension of modal logic which allows us to refer explicitly to points of the model in the syntax of formulas. It is easy to justify interest in hybrid logic on applied grounds, with the usefulness of the additional expressive power. For example, when reasoning about time one...... often wants to build up a series of assertions about what happens at a particular instant, and standard modal formalisms do not allow this. What is less obvious is that the route hybrid logic takes to overcome this problem often actually improves the behaviour of the underlying modal formalism....... For example, it becomes far simpler to formulate proof-systems for hybrid logic, and completeness results can be proved of a generality that is simply not available in modal logic. That is, hybridization is a systematic way of remedying a number of known deficiencies of modal logic. First-order hybrid logic...
Logical analysis of biological systems
Mardare, Radu Iulian
2005-01-01
R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005.......R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005....
Probabilistic logics and probabilistic networks
Haenni, Rolf; Wheeler, Gregory; Williamson, Jon; Andrews, Jill
2014-01-01
Probabilistic Logic and Probabilistic Networks presents a groundbreaking framework within which various approaches to probabilistic logic naturally fit. Additionally, the text shows how to develop computationally feasible methods to mesh with this framework.
Wansing, Heinrich; Willkommen, Caroline; Recent Trends in Philosophical Logic
2014-01-01
This volume presents recent advances in philosophical logic with chapters focusing on non-classical logics, including paraconsistent logics, substructural logics, modal logics of agency and other modal logics. The authors cover themes such as the knowability paradox, tableaux and sequent calculi, natural deduction, definite descriptions, identity, truth, dialetheism, and possible worlds semantics. The developments presented here focus on challenging problems in the specification of fundamental philosophical notions, as well as presenting new techniques and tools, thereby contributing to the development of the field. Each chapter contains a bibliography, to assist the reader in making connections in the specific areas covered. Thus this work provides both a starting point for further investigations into philosophical logic and an update on advances, techniques and applications in a dynamic field. The chapters originate from papers presented during the Trends in Logic XI conference at the Ruhr University ...
Preferential reasoning for modal logics
Britz, K
2011-11-01
Full Text Available Modal logic is the foundation for a versatile and well-established class of knowledge representation formalisms in artificial intelligence. Enriching modal logics with non-monotonic reasoning capabilities such as preferential reasoning as developed...
From Logical to Distributional Models
Anne Preller
2014-12-01
Full Text Available The paper relates two variants of semantic models for natural language, logical functional models and compositional distributional vector space models, by transferring the logic and reasoning from the logical to the distributional models. The geometrical operations of quantum logic are reformulated as algebraic operations on vectors. A map from functional models to vector space models makes it possible to compare the meaning of sentences word by word.
Event-phase-space structure: an alternative to quantum logic
Guz, W.
1980-01-01
The main aim of this paper is to examine two new possibilities in the axiomatic foundations of quantum mechanics: first, the possibility of introducing a non-symmetric transition probability between pure states, and second, showing that the concept of orthocomplementation in the logic of events is unnecessary and of secondary importance. Presented here is an axiomatic scheme, which does not involve the concept of orthocomplementation and yet has all the advantages of the well-known quantum logic axiomatics, because the generalised logic of events admits an extension, which is a complete orthocomplemented orthomodular lattice with the covering law holding in it. (author)
Combining Paraconsistent Logic with Argumentation
Grooters, Diana; Prakken, Hendrik
2014-01-01
One tradition in the logical study of argumentation is to allow for arguments that combine strict and defeasible inference rules, and to derive the strict inference rules from a logic at least as strong as classical logic. An unsolved problem in this tradition is how the trivialising effect of the
Lectures on Logic and Computation
The European Summer School in Logic, Language and Information (ESSLLI) is organized every year by the Association for Logic, Language and Information (FoLLI) in different sites around Europe. The main focus of ESSLLI is on the interface between linguistics, logic and computation. ESSLLI offers fo...
Strong Completeness for Markovian Logics
Kozen, Dexter; Mardare, Radu Iulian; Panangaden, Prakash
2013-01-01
In this paper we present Hilbert-style axiomatizations for three logics for reasoning about continuous-space Markov processes (MPs): (i) a logic for MPs defined for probability distributions on measurable state spaces, (ii) a logic for MPs defined for sub-probability distributions and (iii) a log...
Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions
Bresolin, Davide; Goranko, Valentin; Montanari, Angelo
2009-01-01
In this paper, we investigate the expressiveness of the variety of propositional interval neighborhood logics (PNL), we establish their decidability on linearly ordered domains and some important subclasses, and we prove the undecidability of a number of extensions of PNL with additional modalities...... over interval relations. All together, we show that PNL form a quite expressive and nearly maximal decidable fragment of Halpern–Shoham’s interval logic HS....
"Glitch Logic" and Applications to Computing and Information Security
Stoica, Adrian; Katkoori, Srinivas
2009-01-01
This paper introduces a new method of information processing in digital systems, and discusses its potential benefits to computing and information security. The new method exploits glitches caused by delays in logic circuits for carrying and processing information. Glitch processing is hidden to conventional logic analyses and undetectable by traditional reverse engineering techniques. It enables the creation of new logic design methods that allow for an additional controllable "glitch logic" processing layer embedded into a conventional synchronous digital circuits as a hidden/covert information flow channel. The combination of synchronous logic with specific glitch logic design acting as an additional computing channel reduces the number of equivalent logic designs resulting from synthesis, thus implicitly reducing the possibility of modification and/or tampering with the design. The hidden information channel produced by the glitch logic can be used: 1) for covert computing/communication, 2) to prevent reverse engineering, tampering, and alteration of design, and 3) to act as a channel for information infiltration/exfiltration and propagation of viruses/spyware/Trojan horses.
Friche, Nanna; Normann Andersen, Vibeke
unintended consequences. Theoretically, we draw on different management and governance theories, e.g. performance management. Empirically, the study is based on surveys to teachers and students at all Danish vocational colleges and interviews with school leaders, teachers and students at six colleges (cases...... and well-being of students enrolled in the VETs must be strengthened. We focus on target 1, 2 and 4. The reform is being implemented in a field of VET that can be characterized by four logics of governance. Firstly, a governance logic characterized by institutional independence of vocational colleges......For the last fifteen years completion rates in Danish vocational education and training (VET) has stayed on a rather low level. In 2014, only half of the students enrolled in a vocational program on upper secondary level, graduated from the program (Flarup et al 2016). In Denmark, like in other...
Modern Logical Frameworks Design
Murawska, Agata Anna
2017-01-01
lack support for reasoning about, or programming with, the mechanised systems. Our main motivation is to eventually make it possible to model and reason about complex concurrent systems and protocols. No matter the application, be it the development of a logic for multiparty session types...... or a cryptographic protocol used in a voting system, we need the ability to model and reason about both the building blocks of these systems and the intricate connections between them. To this end, this dissertation is an investigation into LF-based formalisms that might help address the aforementioned issues. We...... design and provide the meta-theory of two new frameworks, HyLF and Lincx. The former aims to extend the expressiveness of LF to include proof irrelevance and some user-defined behaviours, using ideas from hybrid logics. The latter is a showcase for an easier to implement framework, while also allowing...
Competing Logics and Healthcare
Saks, Mike
2018-01-01
This paper offers a short commentary on the editorial by Mannion and Exworthy. The paper highlights the positive insights offered by their analysis into the tensions between the competing institutional logics of standardization and customization in healthcare, in part manifested in the conflict between managers and professionals, and endorses the plea of the authors for further research in this field. However, the editorial is criticized for its lack of a strong societal reference point, the comparative absence of focus on hybridization, and its failure to highlight structural factors impinging on the opposing logics in a broader neo-institutional framework. With reference to the Procrustean metaphor, it is argued that greater stress should be placed on the healthcare user in future health policy. Finally, the case of complementary and alternative medicine is set out which – while not explicitly mentioned in the editorial – most effectively concretizes the tensions at the heart of this analysis of healthcare. PMID:29626406
Conventions and Institutional Logics
Westenholz, Ann
Two theoretical approaches – Conventions and Institutional Logics – are brought together and the similarities and differences between the two are explored. It is not the intention to combine the approaches, but I would like to open both ‘boxes’ and make them available to each other with the purpose...... of creating a space for dialog. Both approaches were developed in the mid-1980s as a reaction to rational-choice economic theory and collectivistic sociological theory. These two theories were oversimplifying social life as being founded either in actor-micro level analyses or in structure-macro level...... analyses. The theoretical quest of both Conventions and Institutional Logics has been to understand the increasing indeterminacy, uncertainty and ambiguity in people’s lives where a sense of reality, of value, of moral, of feelings is not fixed. Both approaches have created new theoretical insights...
Automatic Function Annotations for Hoare Logic
Daniel Matichuk
2012-11-01
Full Text Available In systems verification we are often concerned with multiple, inter-dependent properties that a program must satisfy. To prove that a program satisfies a given property, the correctness of intermediate states of the program must be characterized. However, this intermediate reasoning is not always phrased such that it can be easily re-used in the proofs of subsequent properties. We introduce a function annotation logic that extends Hoare logic in two important ways: (1 when proving that a function satisfies a Hoare triple, intermediate reasoning is automatically stored as function annotations, and (2 these function annotations can be exploited in future Hoare logic proofs. This reduces duplication of reasoning between the proofs of different properties, whilst serving as a drop-in replacement for traditional Hoare logic to avoid the costly process of proof refactoring. We explain how this was implemented in Isabelle/HOL and applied to an experimental branch of the seL4 microkernel to significantly reduce the size and complexity of existing proofs.
Learning Probabilistic Logic Models from Probabilistic Examples.
Chen, Jianzhong; Muggleton, Stephen; Santos, José
2008-10-01
We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.
Douglas Walton
2015-12-01
Full Text Available This paper presents a formalization of informal logic using the Carneades Argumentation System (CAS, a formal, computational model of argument that consists of a formal model of argument graphs and audiences. Conflicts between pro and con arguments are resolved using proof standards, such as preponderance of the evidence. CAS also formalizes argumentation schemes. Schemes can be used to check whether a given argument instantiates the types of argument deemed normatively appropriate for the type of dialogue.
Probabilistic Logical Characterization
Hermanns, Holger; Parma, Augusto; Segala, Roberto
2011-01-01
Probabilistic automata exhibit both probabilistic and non-deterministic choice. They are therefore a powerful semantic foundation for modeling concurrent systems with random phenomena arising in many applications ranging from artificial intelligence, security, systems biology to performance...... modeling. Several variations of bisimulation and simulation relations have proved to be useful as means to abstract and compare different automata. This paper develops a taxonomy of logical characterizations of these relations on image-finite and image-infinite probabilistic automata....
Bisimulations, games, and logic
Nielsen, Mogens; Clausen, Christian
1994-01-01
In a recent paper by Joyal, Nielsen, and Winskel, bisimulation is defined in an abstract and uniform way across a wide range of different models for concurrency. In this paper, following a recent trend in theoretical computer science, we characterize their abstract definition game-theoretically a......-theoretically and logically in a non-interleaving model. Our characterizations appear as surprisingly simple extensions of corresponding characterizations of interleaving bisimulation....
Stereotypical Reasoning: Logical Properties
Lehmann, Daniel
2002-01-01
Stereotypical reasoning assumes that the situation at hand is one of a kind and that it enjoys the properties generally associated with that kind of situation. It is one of the most basic forms of nonmonotonic reasoning. A formal model for stereotypical reasoning is proposed and the logical properties of this form of reasoning are studied. Stereotypical reasoning is shown to be cumulative under weak assumptions.
Mukhanov, O.A.; Rylov, S.V.; Semenov, V.K.; Vyshenskii, S.V.
1989-01-01
Several ways of local timing of the Josephson-junction RSFQ (Rapid Single Flux Quantum) logic elements are proposed, and their peculiarities are discussed. Several examples of serial and parallel pipelined arithmetic blocks using various types of timing are suggested and their possible performance is discussed. Serial devices enable one to perform n-bit functions relatively slowly but using integrated circuits of a moderate integration scale, while parallel pipelined devices are more hardware-wasteful but promise extremely high productivity
1981-01-01
Rapport, Groupe Intelligence Pasero, R., Artificielle , Universite d’Aix-Marseille, Roussel, P. Luminy, France, 1973. [Kowalski 1974] Kowalski, R. A...THIS PAGZ(Whan Doee Es tMord) Item 20 (Cont’d) ------ work in the area of artificial intelligence and those used in general program development into a...logic programming with LISP for implementing intelligent data base query systems. Continued developments will allow for enhancements to be made to the
Magnetoresistive logic and biochip
Brueckl, Hubert; Brzeska, Monika; Brinkmann, Dirk; Schotter, J.Joerg; Reiss, Guenter; Schepper, Willi; Kamp, P.-B.; Becker, Anke
2004-01-01
While some magnetoresistive devices based on giant magnetoresistance or spin-dependent tunneling are already commercialized, a new branch of development is evolving towards magnetoresistive logic with magnetic tunnel junctions. Furthermore, the new magnetoelectronic effects show promising properties in magnetoresistive biochips, which are capable of detecting even single molecules (e.g. DNA) by functionalized magnetic markers. The unclear limits of this approach are discussed with two model systems
Keller, Eric
2011-01-01
Introducing ZBrush 4 launches readers head-on into fulfilling their artistic potential for sculpting realistic creature, cartoon, and hard surface models in ZBrush. ZBrush's innovative technology and interface can be intimidating to both digital-art beginners as well as veterans who are used to a more conventional modeling environment. This book dispels myths about the difficulty of ZBrush with a thorough tour and exploration of the program's interface. Engaging projects also allow the reader to become comfortable with digital sculpting in with a relaxed and fun book atmosphere. Introducing ZB
A Paraconsistent Higher Order Logic
Villadsen, Jørgen
2004-01-01
of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order...... of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens. Many non-classical logics are, at the propositional level, funny toys which work quite good, but when one wants...
Nickerson, C.; Planken, B.C.
2015-01-01
Introducing Business English provides a comprehensive overview of this topic, situating the concepts of Business English and English for Specific Business Purposes within the wider field of English for Special Purposes. This book draws on contemporary teaching and research contexts to demonstrate
Introducing Conservation of Momentum
Brunt, Marjorie; Brunt, Geoff
2013-01-01
The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…
Borjars, Kersti
2013-01-01
Answering key questions such as 'Why study grammar?' and 'What is standard English?', Introducing English Grammar guides readers through the practical analysis of the syntax of English sentences. With all special terms carefully explained as they are introduced, the book is written for readers with no previous experience of grammatical analysis. It is ideal for all those beginning their study of linguistics, English language or speech pathology, as well as students with primarily literary interests who need to cover the basics of linguistic analysis. The approach taken is in line with current research in grammar, a particular advantage for students who may go on to study syntax in more depth. All the examples and exercises use real language taken from newspaper articles, non-standard dialects and include excerpts from studies of patients with language difficulties. Students are encouraged to think about the terminology as a tool kit for studying language and to test what can and cannot be described using thes...
Introducing Online Bibliographic Service to its Users: The Online Presentation
Crane, Nancy B.; Pilachowski, David M.
1978-01-01
A description of techniques for introducing online services to new user groups includes discussion of terms and their definitions, evolution of online searching, advantages and disadvantages of online searching, production of the data bases, search strategies, Boolean logic, costs and charges, "do's and don'ts," and a user search questionnaire. (J…
PLQP & Company: Decidable Logics for Quantum Algorithms
Baltag, Alexandru; Bergfeld, Jort; Kishida, Kohei; Sack, Joshua; Smets, Sonja; Zhong, Shengyang
2014-10-01
We introduce a probabilistic modal (dynamic-epistemic) quantum logic PLQP for reasoning about quantum algorithms. We illustrate its expressivity by using it to encode the correctness of the well-known quantum search algorithm, as well as of a quantum protocol known to solve one of the paradigmatic tasks from classical distributed computing (the leader election problem). We also provide a general method (extending an idea employed in the decidability proof in Dunn et al. (J. Symb. Log. 70:353-359, 2005)) for proving the decidability of a range of quantum logics, interpreted on finite-dimensional Hilbert spaces. We give general conditions for the applicability of this method, and in particular we apply it to prove the decidability of PLQP.
Active matter logic for autonomous microfluidics
Woodhouse, Francis G.; Dunkel, Jörn
2017-04-01
Chemically or optically powered active matter plays an increasingly important role in materials design, but its computational potential has yet to be explored systematically. The competition between energy consumption and dissipation imposes stringent physical constraints on the information transport in active flow networks, facilitating global optimization strategies that are not well understood. Here, we combine insights from recent microbial experiments with concepts from lattice-field theory and non-equilibrium statistical mechanics to introduce a generic theoretical framework for active matter logic. Highlighting conceptual differences with classical and quantum computation, we demonstrate how the inherent non-locality of incompressible active flow networks can be utilized to construct universal logical operations, Fredkin gates and memory storage in set-reset latches through the synchronized self-organization of many individual network components. Our work lays the conceptual foundation for developing autonomous microfluidic transport devices driven by bacterial fluids, active liquid crystals or chemically engineered motile colloids.
Coexisting principles and logics of elder care
Dahl, Hanne Marlene; Eskelinen, Leena; Boll Hansen, Eigil
2015-01-01
Healthy and active ageing has become an ideal in Western societies. In the Nordic countries, this ideal has been supported through a policy of help to self-help in elder care since the 1980s. However, reforms inspired by New Public Management (NPM) have introduced a new policy principle of consumer......-oriented service that stresses the wishes and priorities of older people. We have studied how these two principles are applied by care workers in Denmark. Is one principle or logic replacing the other, or do they coexist? Do they create tensions between professional knowledge and the autonomy of older people......? Using neo-institutional theory and feminist care theory, we analysed the articulation of the two policy principles in interviews and their logics in observations in four local authorities. We conclude that help to self-help is the dominant principle, that it is deeply entrenched in the identity...
Logic circuits based on molecular spider systems.
Mo, Dandan; Lakin, Matthew R; Stefanovic, Darko
2016-08-01
Spatial locality brings the advantages of computation speed-up and sequence reuse to molecular computing. In particular, molecular walkers that undergo localized reactions are of interest for implementing logic computations at the nanoscale. We use molecular spider walkers to implement logic circuits. We develop an extended multi-spider model with a dynamic environment wherein signal transmission is triggered via localized reactions, and use this model to implement three basic gates (AND, OR, NOT) and a cascading mechanism. We develop an algorithm to automatically generate the layout of the circuit. We use a kinetic Monte Carlo algorithm to simulate circuit computations, and we analyze circuit complexity: our design scales linearly with formula size and has a logarithmic time complexity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Computability, complexity, logic
Börger, Egon
1989-01-01
The theme of this book is formed by a pair of concepts: the concept of formal language as carrier of the precise expression of meaning, facts and problems, and the concept of algorithm or calculus, i.e. a formally operating procedure for the solution of precisely described questions and problems. The book is a unified introduction to the modern theory of these concepts, to the way in which they developed first in mathematical logic and computability theory and later in automata theory, and to the theory of formal languages and complexity theory. Apart from considering the fundamental themes an
T Atanassov, Krassimir
2017-01-01
The book offers a comprehensive survey of intuitionistic fuzzy logics. By reporting on both the author’s research and others’ findings, it provides readers with a complete overview of the field and highlights key issues and open problems, thus suggesting new research directions. Starting with an introduction to the basic elements of intuitionistic fuzzy propositional calculus, it then provides a guide to the use of intuitionistic fuzzy operators and quantifiers, and lastly presents state-of-the-art applications of intuitionistic fuzzy sets. The book is a valuable reference resource for graduate students and researchers alike.
Basavanagowda Nagabhushana, Nandeesh
2014-01-01
Brown plant hopper showed me the way into organic farming. In 2001, I started my practice with logic of legumes just to cut down the 45 percent expenses of my paddy on fertilizers, pesticides and herbicides. Later as I realized each and every plant carries it’s own nutrients, medicinal values and characters. Plants like millets, oil seeds, spices, di-cots, monocots and weeds all being used as a green manure. For all my agriculture problems and crop demands, I look for the answers only thro...
Birkedal, Lars; Sieczkowski, Filip; Thamsborg, Jacob Junker
2012-01-01
We present a logical relation for showing the correctness of program transformations based on a new type-and-eﬀect system for a concurrent extension of an ML-like language with higher-order functions, higher-order store and dynamic memory allocation. We show how to use our model to verify a number....... To the best of our knowledge, this is the ﬁrst such result for a concurrent higher-order language with higher-order store and dynamic memory allocation....
Krötzsch, M
2010-01-01
Ontological modelling today is applied in many areas of science and technology,including the Semantic Web. The W3C standard OWL defines one of the most important ontology languages based on the semantics of description logics. An alternative is to use rule languages in knowledge modelling, as proposed in the W3C's RIF standard. So far, it has often been unclear how to combine both technologies without sacrificing essential computational properties. This book explains this problem and presents new solutions that have recently been proposed. Extensive introductory chapters provide the necessary
Bright, Liam Kofi
2017-10-01
The logical empiricists expressed a consistent attitude to racial categorisation in both the ethical and scientific spheres. Their attitude may be captured in the following slogan: human racial taxonomy is an empirically meaningful mode of classifying persons that we should refrain from deploying. I offer an interpretation of their position that would render coherent their remarks on race with positions they adopted on the scientific status of taxonomy in general, together with their potential moral or political motivations for adopting that position. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flexible programmable logic module
Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.
2001-01-01
The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.
Introducing Program Evaluation Models
Raluca GÂRBOAN
2008-02-01
Full Text Available Programs and project evaluation models can be extremely useful in project planning and management. The aim is to set the right questions as soon as possible in order to see in time and deal with the unwanted program effects, as well as to encourage the positive elements of the project impact. In short, different evaluation models are used in order to minimize losses and maximize the benefits of the interventions upon small or large social groups. This article introduces some of the most recently used evaluation models.
A reconfigurable NAND/NOR genetic logic gate.
Goñi-Moreno, Angel; Amos, Martyn
2012-09-18
Engineering genetic Boolean logic circuits is a major research theme of synthetic biology. By altering or introducing connections between genetic components, novel regulatory networks are built in order to mimic the behaviour of electronic devices such as logic gates. While electronics is a highly standardized science, genetic logic is still in its infancy, with few agreed standards. In this paper we focus on the interpretation of logical values in terms of molecular concentrations. We describe the results of computational investigations of a novel circuit that is able to trigger specific differential responses depending on the input standard used. The circuit can therefore be dynamically reconfigured (without modification) to serve as both a NAND/NOR logic gate. This multi-functional behaviour is achieved by a) varying the meanings of inputs, and b) using branch predictions (as in computer science) to display a constrained output. A thorough computational study is performed, which provides valuable insights for the future laboratory validation. The simulations focus on both single-cell and population behaviours. The latter give particular insights into the spatial behaviour of our engineered cells on a surface with a non-homogeneous distribution of inputs. We present a dynamically-reconfigurable NAND/NOR genetic logic circuit that can be switched between modes of operation via a simple shift in input signal concentration. The circuit addresses important issues in genetic logic that will have significance for more complex synthetic biology applications.
Superconducting digital logic amplifier
Przybysz, J.X.
1989-01-01
This paper describes a superconducting digital logic amplifier for interfacing between a Josephson junction logic circuit having output current and a higher voltage semiconductor circuit input. The amplifier comprising: an input terminal for connection to a; an output terminal for connection to a semiconductor circuit input; an input, lower critical current, Josephson junction having first and second terminals; a first series string of at least three lower critical current Josephson junctions. The first series string being connected to the first terminal of the input Josephson junction such that the first series string is in series with the input Josephson junction to provide a series combination. The input terminal being connected to the first terminal of the input Josephson junction, and with the critical current of the lower critical current Josephson junctions of the input Josephson junction and the first series Josephson junctions being less than the output current of the low voltage Josephson junction circuit; a second series string of at least four higher critical current Josephson junctions. The second string being connected in parallel with the series combination to provide parallel strings having an upper common connection and a lower common connection. The lower common connection being connected to the second terminal of the input Josephson junction and the upper common connection being connected to the output terminal; and a pulsed DC current source connected the parallel strings at the upper common connection. The DC current source having a current at least equal to the critical current of the higher critical current Josephson junctions
Quantum logics and convex geometry
Bunce, L.J.; Wright, J.D.M.
1985-01-01
The main result is a representation theorem which shows that, for a large class of quantum logics, a quantum logic, Q, is isomorphic to the lattice of projective faces in a suitable convex set K. As an application we extend our earlier results, which, subject to countability conditions, gave a geometric characterization of those quantum logics which are isomorphic to the projection lattice of a von Neumann algebra or a JBW-algebra. (orig.)
Sambasivan, S. Ilango
2004-01-01
Full text : PFBR is provided with two independent, fast acting and diverse shutdown systems to detect any abnormalities and to initiate safety action. Each system consists of sensors, signal processing systems, logics, drive mechanisms and absorber rods. The absorber rods of the first system are Control and Safety Rods (CSR) and that of the second are called as Diverse Safety Rods (DSR). There are nine CSR and three DSR. While CSR are used for startup, control of reactor power, controlled shutdown and SCRAM, the DSR are used only for SCRAM. The respective drive mechanisms are called as CSRDM and DSRDM. Each of these two systems is capable of executing the shutdown satisfactorily with single failure criteria. Two independent safety logic systems based on diverse principles have been designed for the two shut down systems. The analog outputs of the sensors of Core Monitoring Systems comprising of reactor flux monitoring, core temperature monitoring, failed fuel detection and core flow monitoring systems are processed and converted into binary signals depending on their instantaneous values. Safety logic systems receive the binary signals from these core-monitoring systems and process them logically to protect the reactor against postulated initiating events. Neutronic and power to flow (P/Q) signals form the inputs to safety logic system-I and temperature signals are inputs to the safety logic system II. Failed fuel detection signals are processed by both the shut down systems. The two logic systems to actuate the safety rods are also based on two diverse designs and implemented with solid-state devices to meet all the requirements of safety systems. Safety logic system I that caters to neutronic and P/Q signals is designed around combinational logic and has an on-line test facility to detect struck at faults. The second logic system is based on dynamic logic and hence is inherently safe. This paper gives an overview of the two logic systems that have been
PM 3655 PHILIPS Logic analyzer
A logic analyzer is an electronic instrument that captures and displays multiple signals from a digital system or digital circuit. A logic analyzer may convert the captured data into timing diagrams, protocol decodes, state machine traces, assembly language, or may correlate assembly with source-level software. Logic Analyzers have advanced triggering capabilities, and are useful when a user needs to see the timing relationships between many signals in a digital system.
Testing Automation of Context-Oriented Programs Using Separation Logic
Mohamed A. El-Zawawy
2014-01-01
Full Text Available A new approach for programming that enables switching among contexts of commands during program execution is context-oriented programming (COP. This technique is more structured and modular than object-oriented and aspect-oriented programming and hence more flexible. For context-oriented programming, as implemented in COP languages such as ContextJ* and ContextL, this paper introduces accurate operational semantics. The language model of this paper uses Java concepts and is equipped with layer techniques for activation/deactivation of layer contexts. This paper also presents a logical system for COP programs. This logic is necessary for the automation of testing, developing, and validating of partial correctness specifications for COP programs and is an extension of separation logic. A mathematical soundness proof for the logical system against the proposed operational semantics is presented in the paper.
A Reconfigurable Logic Cell Based on a Simple Dynamical System
Lixiang Li
2013-01-01
Full Text Available This paper introduces a new scheme to achieve a dynamic logic gate which can be adjusted flexibly to obtain different logic functions by adjusting specific parameters of a dynamical system. Based on graphical tools and the threshold mechanism, the distribution of different logic gates is studied, and a transformation method between different logics is given. Analyzing the performance of the dynamical system in the presence of noise, we discover that it is resistant to system noise. Moreover, we find some part of the system can be considered as a leaky integrator which has been already widely applied in engineering. Finally, we provide a proof-of-principle hardware implementation of the proposed scheme to illustrate its effectiveness. With the proposed scheme in hand, it is convenient to build the flexible, robust, and general purpose computing devices such as various network coding routers, communication encoders or decoders, and reconfigurable computer chips.
Popular lectures on mathematical logic
Wang, Hao
2014-01-01
A noted logician and philosopher addresses various forms of mathematical logic, discussing both theoretical underpinnings and practical applications. Author Hao Wang surveys the central concepts and theories of the discipline in a historical and developmental context, and then focuses on the four principal domains of contemporary mathematical logic: set theory, model theory, recursion theory and constructivism, and proof theory.Topics include the place of problems in the development of theories of logic and logic's relation to computer science. Specific attention is given to Gödel's incomplete
Contextual logic for quantum systems
Domenech, Graciela; Freytes, Hector
2005-01-01
In this work we build a quantum logic that allows us to refer to physical magnitudes pertaining to different contexts from a fixed one without the contradictions with quantum mechanics expressed in no-go theorems. This logic arises from considering a sheaf over a topological space associated with the Boolean sublattices of the ortholattice of closed subspaces of the Hilbert space of the physical system. Different from standard quantum logics, the contextual logic maintains a distributive lattice structure and a good definition of implication as a residue of the conjunction
Tensor product of quantum logics
Pulmannová, Sylvia
1985-01-01
A quantum logic is the couple (L,M) where L is an orthomodular σ-lattice and M is a strong set of states on L. The Jauch-Piron property in the σ-form is also supposed for any state of M. A ``tensor product'' of quantum logics is defined. This definition is compared with the definition of a free orthodistributive product of orthomodular σ-lattices. The existence and uniqueness of the tensor product in special cases of Hilbert space quantum logics and one quantum and one classical logic are studied.
A.N. Prior (1914-69) in the course of the 1950s and 1960s founded a new and revolutionary paradigm in philosophy and logic. Its most central feature is the preoccupation with time and the development of the logic of time. However, this was inseparably interwoven with fundamental questions about h...... human freedom, ethics, and existence. This remarkable integration of themes also embodies an original and in fact revolutionary conception of logic. The book series, Logic and Philosophy of Time, is dedicated to a deep investigation and also the further development of Prior’s paradigm. ...
Optimization methods for logical inference
Chandru, Vijay
2011-01-01
Merging logic and mathematics in deductive inference-an innovative, cutting-edge approach. Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though ""solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs."" Presenting powerful, proven optimization techniques for logic in
By blending historical research with current research, this collection (loosely inspired by themes from the work of Arthur Prior) demonstrates the importance of Prior's writings and helps us to gain a deeper understanding of time, its logic(s), and its language(s).......By blending historical research with current research, this collection (loosely inspired by themes from the work of Arthur Prior) demonstrates the importance of Prior's writings and helps us to gain a deeper understanding of time, its logic(s), and its language(s)....
Quaternion Linear Canonical Transform Application
Bahri, Mawardi
2015-01-01
Quaternion linear canonical transform (QLCT) is a generalization of the classical linear canonical transfom (LCT) using quaternion algebra. The focus of this paper is to introduce an application of the QLCT to study of generalized swept-frequency filter
Meta-Logical Reasoning in Higher-Order Logic
Villadsen, Jørgen; Schlichtkrull, Anders; Hess, Andreas Viktor
The semantics of first-order logic (FOL) can be described in the meta-language of higher-order logic (HOL). Using HOL one can prove key properties of FOL such as soundness and completeness. Furthermore, one can prove sentences in FOL valid using the formalized FOL semantics. To aid...
Mexico introduces pentavalent vaccine.
1999-08-01
Combination vaccines have been introduced in Mexico. The national immunization program has incorporated the measles-mumps-rubella (MMR) vaccines in 1998, and the pentavalent vaccine in 1999. The two categories of antigen composition in combination vaccines are: 1) multiple different antigenic types of a single pathogen, such as the 23 valent pneumococcal polysaccharide vaccine, and 2) antigens from different pathogens causing different diseases, such as the DPT and MMR vaccines. Pentavalent vaccines are included in the second category. The vaccine protects against diphtheria, tetanus, pertussis, hepatitis B, and other diseases produced by Haemophilus influenzae type b (Hib). Combined diphtheria, tetanus, pertussis, hepatitis B, and Haemophilus influenza type b (DTP-HB/Hib) vaccine has been distributed to 87% of Mexican children under 1 year of age. Over 800,000 doses of pentavalent vaccine have been administered.
Towards an arithmetical logic the arithmetical foundations of logic
Gauthier, Yvon
2015-01-01
This book offers an original contribution to the foundations of logic and mathematics, and focuses on the internal logic of mathematical theories, from arithmetic or number theory to algebraic geometry. Arithmetical logic is the term used to refer to the internal logic of classical arithmetic, here called Fermat-Kronecker arithmetic, and combines Fermat’s method of infinite descent with Kronecker’s general arithmetic of homogeneous polynomials. The book also includes a treatment of theories in physics and mathematical physics to underscore the role of arithmetic from a constructivist viewpoint. The scope of the work intertwines historical, mathematical, logical and philosophical dimensions in a unified critical perspective; as such, it will appeal to a broad readership from mathematicians to logicians, to philosophers interested in foundational questions. Researchers and graduate students in the fields of philosophy and mathematics will benefit from the author’s critical approach to the foundations of l...
Wave calculus based upon wave logic
Orlov, Y.F.
1978-01-01
A number operator has been introduced based upon the binary (p-nary) presentation of numbers. This operator acts upon a numerical state vector. Generally the numerical state vector describes numbers that are not precise but smeared in a quantum sense. These states are interrupted in wave logic terms, according to which concepts may exist within the inner language of a phenomenon that in principle cannot be translated into the language of the investigator. In particular, states may exist where mean values of a quantity, continuous in classical limits, take only discrete values. Operators for differentiation and integration of operator functions are defined, which take the usual form in the classical limit. (author)
Fuzzy Logic and Arithmetical Hierarchy III
Hájek, Petr
2001-01-01
Roč. 68, č. 1 (2001), s. 129-142 ISSN 0039-3215 R&D Projects: GA AV ČR IAA1030004 Institutional research plan: AV0Z1030915 Keywords : fuzzy logic * basic fuzzy logic * Lukasiewicz logic * Godel logic * product logic * arithmetical hierarchy Subject RIV: BA - General Mathematics
Questions and dependency in intuitionistic logic
Ciardelli, Ivano; Iemhoff, Rosalie; Yang, Fan
2017-01-01
In recent years, the logic of questions and dependencies has been investigated in the closely related frameworks of inquisitive logic and dependence logic. These investigations have assumed classical logic as the background logic of statements, and added formulas expressing questions and
Reversible logic gates on Physarum Polycephalum
Schumann, Andrew
2015-01-01
In this paper, we consider possibilities how to implement asynchronous sequential logic gates and quantum-style reversible logic gates on Physarum polycephalum motions. We show that in asynchronous sequential logic gates we can erase information because of uncertainty in the direction of plasmodium propagation. Therefore quantum-style reversible logic gates are more preferable for designing logic circuits on Physarum polycephalum
A beginner's guide to mathematical logic
Smullyan, Raymond M
2014-01-01
Combining stories of great philosophers, quotations, and riddles with the fundamentals of mathematical logic, this new textbook for first courses in mathematical logic was written by the subject's creative master. Raymond Smullyan offers clear, incremental presentations of difficult logic concepts with creative explanations and unique problems related to proofs, propositional logic and first-order logic, undecidability, recursion theory, and other topics.
Design, Specification, and Synthesis of Aircraft Electric Power Systems Control Logic
Xu, Huan
Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, actuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based specifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considerations for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area. This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller. The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and
Structural Completeness in Fuzzy Logics
Cintula, Petr; Metcalfe, G.
2009-01-01
Roč. 50, č. 2 (2009), s. 153-183 ISSN 0029-4527 R&D Projects: GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : structral logics * fuzzy logics * structural completeness * admissible rules * primitive variety * residuated lattices Subject RIV: BA - General Mathematics
A tristate optical logic system
Basuray, A.; Mukhopadhyay, S.; Kumar Ghosh, Hirak; Datta, A. K.
1991-09-01
A method is described to represent data in a tristate logic system which are subsequently replaced by Modified Trinary Numbers (MTN). This system is advantagegeous in parallel processing as carry and borrow free operations in arithmatic computation is possible. The logical operations are also modified according to the three states available. A possible practical application of the same using polarized light is also suggested.
Logic, reasoning, and verbal behavior
Terrell, Dudley J.; Johnston, J. M.
1989-01-01
This paper analyzes the traditional concepts of logic and reasoning from the perspective of radical behaviorism and in the terms of Skinner's treatment of verbal behavior. The topics covered in this analysis include the proposition, premises and conclusions, logicality and rules, and deductive and inductive reasoning.
Flat Coalgebraic Fixed Point Logics
Schröder, Lutz; Venema, Yde
Fixed point logics are widely used in computer science, in particular in artificial intelligence and concurrency. The most expressive logics of this type are the μ-calculus and its relatives. However, popular fixed point logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the μ-calculus. The family of such flat fixed point logics includes, e.g., CTL, the *-nesting-free fragment of PDL, and the logic of common knowledge. Here, we extend this notion to the generic semantic framework of coalgebraic logic, thus covering a wide range of logics beyond the standard μ-calculus including, e.g., flat fragments of the graded μ-calculus and the alternating-time μ-calculus (such as ATL), as well as probabilistic and monotone fixed point logics. Our main results are completeness of the Kozen-Park axiomatization and a timed-out tableaux method that matches ExpTime upper bounds inherited from the coalgebraic μ-calculus but avoids using automata.
Methods in Logic Based Control
Christensen, Georg Kronborg
1999-01-01
Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC...
Epistemic logics for sceptical agents
Bílková, M.; Majer, Ondrej; Peliš, Michal
2016-01-01
Roč. 26, č. 6 (2016), s. 1815-1841 ISSN 0955-792X R&D Projects: GA ČR(CZ) GA13-21076S Institutional support: RVO:67985955 Keywords : epistemic logic * substructural logic * frame semantics Subject RIV: AA - Philosophy ; Religion Impact factor: 0.909, year: 2016
Zapatrin, R.R.
1992-01-01
Given a finite ortholattice L, the *-semigroup is explicitly built whose annihilator ortholattice is isomorphic to L. Thus, it is shown that any finite quantum logic is the additive part of a binary logic. Some areas of possible applications are outlined. 7 refs
Logical independence and quantum randomness
Paterek, T; Kofler, J; Aspelmeyer, M; Zeilinger, A; Brukner, C; Prevedel, R; Klimek, P
2010-01-01
We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.
Generator of combined logical signals
Laviron, Andre; Berard, Claude.
1982-01-01
The invention concerns a generator of combined logical signals to form combinations of two outputs at logical level 1 and N-2 outputs at logical level 0, among N generator outputs. This generator is characterized in that it includes a set of N means for storing combinations. Means enable the N storage means to be loaded with the logical levels corresponding to a pre-set starting combination, to control the operations for shifting the contents of the storage means and to control, by transfer facilities, the transfers of contents between these storage means. Controls enable the storage means to be actuated in order to obtain combinations of logical levels 1 and 0. The generation of combinations can be stopped after another pre-set combination. Application is for testing of safety circuits for nuclear power stations [fr
Reliability evaluation programmable logic devices
Srivani, L.; Murali, N.; Thirugnana Murthy, D.; Satya Murty, S.A.V.
2014-01-01
Programmable Logic Devices (PLD) are widely used as basic building modules in high integrity systems, considering their robust features such as gate density, performance, speed etc. PLDs are used to implement digital design such as bus interface logic, control logic, sequencing logic, glue logic etc. Due to semiconductor evolution, new PLDs with state-of-the-art features are arriving to the market. Since these devices are reliable as per the manufacturer's specification, they were used in the design of safety systems. But due to their reduced market life, the availability of performance data is limited. So evaluating the PLD before deploying in a safety system is very important. This paper presents a survey on the use of PLDs in the nuclear domain and the steps involved in the evaluation of PLD using Quantitative Accelerated Life Testing. (author)
Logical independence and quantum randomness
Paterek, T; Kofler, J; Aspelmeyer, M; Zeilinger, A; Brukner, C [Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna (Austria); Prevedel, R; Klimek, P [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)], E-mail: tomasz.paterek@univie.ac.at
2010-01-15
We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.
Marketing Logics, Ambidexterity and Influence
Tollin, Karin; Schmidt, Marcus
2012-01-01
in four CMOs have taken on this challenge, or adopted a marketing logic which could be referred to as ambidextrous. Furthermore, the study shows that this logic exerts a stronger impact on marketing's influence, compared to logics related to assuring brand consistency and measuring the performance...... of marketing processes. Three other ways to enact marketing management were also revealed, namely: an innovation; a communication; and a supporting marketing logic. This leads us to conclude that the influence of companies' marketing functions show up a heterogeneous picture within which the marketing logics......The duties of companies' chief marketing officers (CMOs) seem incompatible. They are expected to ensure that their company's market assets are properly exploited and recorded, while simultaneously enacting a proactive role in the company's business development. This study shows that about one...
Optical programmable Boolean logic unit.
Chattopadhyay, Tanay
2011-11-10
Logic units are the building blocks of many important computational operations likes arithmetic, multiplexer-demultiplexer, radix conversion, parity checker cum generator, etc. Multifunctional logic operation is very much essential in this respect. Here a programmable Boolean logic unit is proposed that can perform 16 Boolean logical operations from a single optical input according to the programming input without changing the circuit design. This circuit has two outputs. One output is complementary to the other. Hence no loss of data can occur. The circuit is basically designed by a 2×2 polarization independent optical cross bar switch. Performance of the proposed circuit has been achieved by doing numerical simulations. The binary logical states (0,1) are represented by the absence of light (null) and presence of light, respectively.
Flow Logic for Process Calculi
Nielson, Hanne Riis; Nielson, Flemming; Pilegaard, Henrik
2012-01-01
Flow Logic is an approach to statically determining the behavior of programs and processes. It borrows methods and techniques from Abstract Interpretation, Data Flow Analysis and Constraint Based Analysis while presenting the analysis in a style more reminiscent of Type Systems. Traditionally...... developed for programming languages, this article provides a tutorial development of the approach of Flow Logic for process calculi based on a decade of research. We first develop a simple analysis for the π-calculus; this consists of the specification, semantic soundness (in the form of subject reduction......, and finally, we extend it to a relational analysis. A Flow Logic is a program logic---in the same sense that a Hoare’s logic is. We conclude with an executive summary presenting the highlights of the approach from this perspective including a discussion of theoretical properties as well as implementation...
Introducing International Geneva
2015-01-01
Geneva is variously known as the city of peace, the world’s smallest metropolis and a place where great ideas have taken form. It has been the home to philosophers such as Rousseau and Voltaire. It was the centre of the Calvinist reformation and birthplace of the Red Cross. I hardly need to tell you that it is also a city of great international collaboration in science. Little wonder, then, that over the years, Geneva has developed into the world’s capital of internationalism in the broadest sense of the word. Yet while we all know of the existence of modern day International Geneva, how many of us really know what it does? Here at CERN, we’re about to find out. Next week sees the first in a series of talks at the Laboratory from the heads of some of the institutions that make up International Geneva. On Friday, 20 February, it will be my pleasure to introduce you to Michael Møller, Acting Director-General of the United Nations Office at Geneva (UNO...
The EDMS Team
2014-01-01
We are very pleased to announce the arrival of a brand new EDMS: EDMS 6. The CERN Engineering and Equipment Data Management Service just got better than ever! EDMS is the de facto interface for all engineering related data and more. Currently there are more than 1.2 million documents and nearly 2 million files stored in EDMS. What’s new? The first thing you will notice is the look and feel of EDMS 6; the new design not only makes it more modern but also more intuitive, so that the system is easier to use, regardless of your experience with EDMS. Whilst we have kept the key concepts, we have introduced more functionality and improved navigation within the interface, allowing for better performance to help you in your daily work. We have also added a personal slant to EDMS 6 so that you can now customise your list of favourite objects. Modifying data in EDMS is much simpler, allowing you to view all object data in a single window. More functionality will be added in the ...
Implementing Probabilistic Abductive Logic Programming with Constraint Handling Rules
Christiansen, Henning
2008-01-01
A class of Probabilistic Abductive Logic Programs (PALPs) is introduced and an implementation is developed in CHR for solving abductive problems, providing minimal explanations with their probabilities. Both all-explanations and most-probable-explanations versions are given. Compared with other...
Probabilistic Abductive Logic Programming in Constraint Handling Rules
Christiansen, Henning
A class of Probabilistic Abductive Logic Programs (PALPs) is introduced and an implementation is developed in CHR for solving abductive problems, providing minimal explanations with their probabilities. Both all-explanations and most-probable-explanations versions are given. % Compared with other...
Analysing Vote Counting Algorithms Via Logic - And its Application to the CADE Election Scheme
Schürmann, Carsten; Beckert, Bernhard; Gore, Rejeev
2013-01-01
We present a method for using first-order logic to specify the semantics of preferences as used in common vote counting algorithms. We also present a corresponding system that uses Celf linear-logic programs to describe voting algorithms and which generates explicit examples when the algorithm de...
Fuzzy logic control of vehicle suspensions with dry friction nonlinearity
We design and investigate the performance of fuzzy logic-controlled (FLC) active suspensions on a nonlinear vehicle model with four degrees of freedom, without causing any degeneration in suspension working limits. Force actuators were mounted parallel to the suspensions. In this new approach, linear combinations of ...
The Logic of Practice in the Practice of Logics
Raviola, Elena; Dubini, Paola
2016-01-01
of logics through a six months full-time ethnographic study at Il Sole-24 Ore, the largest Italian financial newspaper, between 2007 and 2008. An original conceptual framework is developed to analyse how the logic of journalism is enacted vis-à-vis that of advertising in a setting in which an old technology...... for news production – print newspaper – coexists with a new one – website – and thus encounters between new and old technological possibilities make workings of institutional logics particularly visible. The findings point out different mechanisms of institutional work dealing with actions that, made...
Minimality of critical scenarios with linear logic and cutsets
DK
establish the causality between undesirable events and normal operations. The proof trees of ... MS (both continuous and discrete features) leads us to choose a ...... Modeling and simulation of hybrid system through. Differential Predicate ...
Basic logic and quantum entanglement
Zizzi, P A
2007-01-01
As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But... can it be made explicit? In other words, is it possible to find the connective 'entanglement' in a logical sequent calculus for the machine language? And also, is it possible to 'teach' the quantum computer to 'mimic' the EPR 'paradox'? The answer is in the affirmative, if the logical sequent calculus is that of the weakest possible logic, namely Basic logic. - A weak logic has few structural rules. But in logic, a weak structure leaves more room for connectives (for example the connective 'entanglement'). Furthermore, the absence in Basic logic of the two structural rules of contraction and weakening corresponds to the validity of the no-cloning and no-erase theorems, respectively, in quantum computing
Basic logic and quantum entanglement
Zizzi, P A [Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova (Italy)
2007-05-15
As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But... can it be made explicit? In other words, is it possible to find the connective 'entanglement' in a logical sequent calculus for the machine language? And also, is it possible to 'teach' the quantum computer to 'mimic' the EPR 'paradox'? The answer is in the affirmative, if the logical sequent calculus is that of the weakest possible logic, namely Basic logic. - A weak logic has few structural rules. But in logic, a weak structure leaves more room for connectives (for example the connective 'entanglement'). Furthermore, the absence in Basic logic of the two structural rules of contraction and weakening corresponds to the validity of the no-cloning and no-erase theorems, respectively, in quantum computing.
Kral, M J
1994-01-01
Although suicide is not viewed as a mental disorder per se, it is viewed by many if not most clinicians, researchers, and lay people as a real or natural symptom of depression. It is at least most typically seen as the unfortunate, severe, yet logical end result of a chain of negative self-appraisals, negative events, and hopelessness. Extending an approach articulated by the early French sociologist Gabriel Tarde, in this paper I argue that suicide is merely an idea, albeit a very bad one, having more in common with societal beliefs and norms regarding such things as divorce, abortion, sex, politics, consumer behavior, and fashion. I make a sharp contrast between perturbation and lethality, concepts central to Edwin S. Shneidman's theory of suicide. Evidence supportive of suicide as an idea is discussed based on what we are learning from the study of history and culture, and about contagion/cluster phenomena, media/communication, and choice of method. It is suggested that certain individuals are more vulnerable to incorporate the idea and act of suicide into their concepts of self, based on the same principles by which ideas are spread throughout society. Just as suicide impacts on society, so does society impact on suicide.
Remmel, Jeffrey; Shore, Richard; Sweedler, Moss; Progress in Computer Science and Applied Logic
1993-01-01
The twenty-six papers in this volume reflect the wide and still expanding range of Anil Nerode's work. A conference on Logical Methods was held in honor of Nerode's sixtieth birthday (4 June 1992) at the Mathematical Sciences Institute, Cornell University, 1-3 June 1992. Some of the conference papers are here, but others are from students, co-workers and other colleagues. The intention of the conference was to look forward, and to see the directions currently being pursued, in the development of work by, or with, Nerode. Here is a brief summary of the contents of this book. We give a retrospective view of Nerode's work. A number of specific areas are readily discerned: recursive equivalence types, recursive algebra and model theory, the theory of Turing degrees and r.e. sets, polynomial-time computability and computer science. Nerode began with automata theory and has also taken a keen interest in the history of mathematics. All these areas are represented. The one area missing is Nerode's applied mathematica...
Introducing quantum theory a graphic guide
McEvoy, J P
2013-01-01
Quantum theory confronts us with bizarre paradoxes which contradict the logic of classical physics. At the subatomic level, one particle seems to know what the others are doing, and according to Heisenberg's "uncertainty principle", there is a limit on how accurately nature can be observed. And yet the theory is amazingly accurate and widely applied, explaining all of chemistry and most of physics. "Introducing Quantum Theory" takes us on a step-by-step tour with the key figures, including Planck, Einstein, Bohr, Heisenberg and Schrodinger. Each contributed at least one crucial concept to the theory. The puzzle of the wave-particle duality is here, along with descriptions of the two questions raised against Bohr's "Copenhagen Interpretation" - the famous "dead and alive cat" and the EPR paradox. Both remain unresolved.
Meaning and proscription in formal logic variations on the propositional logic of William T. Parry
Ferguson, Thomas Macaulay
2017-01-01
This book aids in the rehabilitation of the wrongfully deprecated work of William Parry, and is the only full-length investigation into Parry-type propositional logics. A central tenet of the monograph is that the sheer diversity of the contexts in which the mereological analogy emerges – its effervescence with respect to fields ranging from metaphysics to computer programming – provides compelling evidence that the study of logics of analytic implication can be instrumental in identifying connections between topics that would otherwise remain hidden. More concretely, the book identifies and discusses a host of cases in which analytic implication can play an important role in revealing distinct problems to be facets of a larger, cross-disciplinary problem. It introduces an element of constancy and cohesion that has previously been absent in a regrettably fractured field, shoring up those who are sympathetic to the worth of mereological analogy. Moreover, it generates new interest in the field by illustrat...
Rethinking logic logic in relation to mathematics, evolution, and method
Cellucci, Carlo
2014-01-01
This book examines the limitations of mathematical logic and proposes a new approach intended to overcome them. Formulates new rules of discovery, such as induction, analogy, generalization, specialization, metaphor, metonymy, definition and diagrams.
The conditional in quantum logic
Hardegree, G.M.
1976-01-01
In this article it is argued that orthodox quantum logic, which is represented by the lattice of projections on Hilbert space, does in fact admit an operation which possesses the essential properties of a material conditional. It is proposed that this connective can be interpreted as a Stalnaker (counter factual) conditional, where the nearness ordering among 'worlds' (in this case, QM pure states) derives in a natural way from the Hilbert space inner-product metric. It is a characteristic of the quantum logic conditional that the law of modus ponens is equivalent to the orthomodular law of conventional quantum logic. (B.R.H.)
Handling Pressures of Community Logic
Minbaeva, Dana; Hotho, Jasper; Muratbekova-Touron, Maral
2013-01-01
The paper aims at investigating how in pluralistic societies, such as emerging economies and countries in transition, organizational decision-makers respond to pressures of community logics in non-community settings, such as the work place. We theorize that in non-community settings, social...... relations and interactions with community members can act as social cues that induce and expose individuals to community logics. We subsequently propose that properties of these relations – immediacy and relatedness - will affect individual response strategies towards community logics. We test these ideas...... with an experimental vignette study of the effects of clan and kinship ties on recruitment and selection decisions in Kazakhstan, followed by qualitative interviews....
Miniaturization of Josephson logic circuits
Ko, H.; Van Duzer, T.
1985-01-01
The performances of Current Injection Logic (CIL) and Resistor Coupled Josephson Logic (RCJL) have been evaluated for minimum features sizes ranging from 5 μm to 0.2 μm. The logic delay is limited to about 10 ps for both the CIL AND gate and the RCJL OR gate biased at 70% of maximum bias current. The maximum circuit count on an 6.35 x 6.35 chip is 13,000 for CIL gates and 20,000 for RCJL gates. Some suggestions are given for further improvements
Nanoelectromechanical resonator for logic operations
Kazmi, Syed N. R.
2017-08-29
We report an electro-thermally tunable in-plane doubly-clamped nanoelectromechanical resonator capable of dynamically performing NOR, NOT, XNOR, XOR, and AND logic operations. Toward this, a silicon based resonator is fabricated using standard e-beam lithography and surface nanomachining of a highly conductive device layer of a silicon-on-insulator (SOI) wafer. The performance of this logic device is examined at elevated temperatures, ranging from 25 °C to 85 °C, demonstrating its resilience for most of the logic operations; thereby paving the way towards nano-elements-based mechanical computing.
Formalized Epistemology, Logic, and Grammar
Bitbol, Michel
The task of a formal epistemology is defined. It appears that a formal epistemology must be a generalization of "logic" in the sense of Wittgenstein's Tractatus. The generalization is required because, whereas logic presupposes a strict relation between activity and language, this relation may be broken in some domains of experimental enquiry (e.g., in microscopic physics). However, a formal epistemology should also retain a major feature of Wittgenstein's "logic": It must not be a discourse about scientific knowledge, but rather a way of making manifest the structures usually implicit in knowledge-gaining activity. This strategy is applied to the formalism of quantum mechanics.
Szulczyński, Bartosz; Gębicki, Jacek; Namieśnik, Jacek
2018-01-01
The paper presents the possibility of application of fuzzy logic to determine the odour intensity of model, ternary gas mixtures (α-pinene, toluene and triethylamine) using electronic nose prototype. The results obtained using fuzzy logic algorithms were compared with the values obtained using multiple linear regression (MLR) model and sensory analysis. As the results of the studies, it was found the electronic nose prototype along with the fuzzy logic pattern recognition system can be successfully used to estimate the odour intensity of tested gas mixtures. The correctness of the results obtained using fuzzy logic was equal to 68%.
Surface confined assemblies and polymers for sensing and molecular logic
de Ruiter, Graham; Altman, Marc; Motiei, Leila; Lahav, Michal; van der Boom, Milko E.
2013-05-01
Since the development of molecule-based sensors and the introduction of molecules mimicking the behavior of the AND gate in solution by de Silva in 1993, molecular (Boolean) Logic and Computing (MBLC) has become increasingly popular. The molecular approach toward Boolean logic resulted in intriguing proofs of concepts in solution including logic gates, half-adders, multiplexers, and flip-flop logic circuits. Molecular assemblies can perform diverse logic tasks by reconfiguring their inputs. Our recent research activities focus on MBLC with electrochromic polymers and immobilized polypyridyl complexes on solid support. We have designed a series of coordination-based thin films that are formed linearly by stepwise wet-chemical deposition or by self-propagating molecular assembly. The electrochromic properties of these films can be used for (i) detecting various analytes in solution and in the air, (ii) MBLC, (iii) electron-transfer studies, and (iv) interlayers for efficient inverted bulk-heterojunction solar cells. Our concept toward MBLC with functionalized surfaces is applicable to electrochemical and chemical inputs coupled with optical readout. Using this approach, we demonstrated various logic architectures with redox-active functionalized surfaces. Electrochemically operated sequential logic systems (e.g., flip-flops), multi-valued logic, and multi-state memory have been designed, which can improve computational power without increasing spatial requirements. Applying multi-valued digits in data storage and information processing could exponentially increase memory capacity. Our approach is applicable to highly diverse electrochromic thin films that operate at practical voltages (< 1.5 V).
Logic Foundry: Rapid Prototyping for FPGA-Based DSP Systems
Bhattacharyya Shuvra S
2003-01-01
Full Text Available We introduce the Logic Foundry, a system for the rapid creation and integration of FPGA-based digital signal processing systems. Recognizing that some of the greatest challenges in creating FPGA-based systems occur in the integration of the various components, we have proposed a system that targets the following four areas of integration: design flow integration, component integration, platform integration, and software integration. Using the Logic Foundry, a system can be easily specified, and then automatically constructed and integrated with system level software.
Computational intelligence synergies of fuzzy logic, neural networks and evolutionary computing
Siddique, Nazmul
2013-01-01
Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspect
Decision logics in radiotherapy
Gauwerky, F.
1979-01-01
Decisions in planning procedures can generally, at least for beam therapy to deep seated tumors, be based on a self-consistent system of criteria of optimization, namely: 1. The absorbed dose to the target volume must be applied as uniformly as possible. 2. Absorbed doses to organs (volumes) at risk must be as low as possible, at least below an accepted limit. 3. Radiation effects to outside volumes must be kept as low as possible. Whereas these criteria, as being reduced to the simplest possible requirements, have to be regarded as the stable elements, the radiotherapy parameters, such as geometric arrangements, special techniques, absorbed dose contributions to reference points or systems, have to be taken as the variables within decision processes. The properties of the criteria which have widely proved to be valuable in routine clinical practice, have been investigated in relation to the theoretical system of axioms as it is e.g. offered by Karl Popper's general logics of scientific research. An axiomatic system, as it is demanded (after Popper) must be a) free of discrepancies, i.e. self-consistent (not any sentence can be derived), b) independent, that is, one axiom cannot be derived from another one within the system, c) sufficient for deduction of statements needed, d) necessary, that is complete. All these requirements are fitting also to the offered system of radiotherapy optimization criteria. It has been demonstrated, that Popper's axiomatic system can be regarded as to be the general case for all scientific fields of application, the set of optimization criteria being a special system for radiation therapy, which would have been derivable from Popper's theory. Also practical use could be demonstrated. (orig./ORU) [de
Classical Limit and Quantum Logic
Losada, Marcelo; Fortin, Sebastian; Holik, Federico
2018-02-01
The analysis of the classical limit of quantum mechanics usually focuses on the state of the system. The general idea is to explain the disappearance of the interference terms of quantum states appealing to the decoherence process induced by the environment. However, in these approaches it is not explained how the structure of quantum properties becomes classical. In this paper, we consider the classical limit from a different perspective. We consider the set of properties of a quantum system and we study the quantum-to-classical transition of its logical structure. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we consider systems with many characteristic decoherence times, whose sublattices of properties become distributive at different times.
Logical Theories for Agent Introspection
Bolander, Thomas
2004-01-01
Artificial intelligence systems (agents) generally have models of the environments they inhabit which they use for representing facts, for reasoning about these facts and for planning actions. Much intelligent behaviour seems to involve an ability to model not only one's external environment...... by self-reference. In the standard approach taken in artificial intelligence, the model that an agent has of its environment is represented as a set of beliefs. These beliefs are expressed as logical formulas within a formal, logical theory. When the logical theory is expressive enough to allow...... introspective reasoning, the presence of self-reference causes the theory to be prone to inconsistency. The challenge therefore becomes to construct logical theories supporting introspective reasoning while at the same time ensuring that consistency is retained. In the thesis, we meet this challenge by devising...
Dependence logic theory and applications
Kontinen, Juha; Väänänen, Jouko; Vollmer, Heribert
2016-01-01
In this volume, different aspects of logics for dependence and independence are discussed, including both the logical and computational aspects of dependence logic, and also applications in a number of areas, such as statistics, social choice theory, databases, and computer security. The contributing authors represent leading experts in this relatively new field, each of whom was invited to write a chapter based on talks given at seminars held at the Schloss Dagstuhl Leibniz Center for Informatics in Wadern, Germany (in February 2013 and June 2015) and an Academy Colloquium at the Royal Netherlands Academy of Arts and Sciences (March 2014). Altogether, these chapters provide the most up-to-date look at this developing and highly interdisciplinary field and will be of interest to a broad group of logicians, mathematicians, statisticians, philosophers, and scientists. Topics covered include a comprehensive survey of many propositional, modal, and first-order variants of dependence logic; new results concerning ...
Nanoelectromechanical resonator for logic operations
Kazmi, Syed N. R.; Hafiz, Md A. Al; Chappanda, Karumbaiah N.; Ilyas, Saad; Holguin, Jorge; Da Costa, Pedro M. F. J.; Younis, Mohammad I.
2017-01-01
We report an electro-thermally tunable in-plane doubly-clamped nanoelectromechanical resonator capable of dynamically performing NOR, NOT, XNOR, XOR, and AND logic operations. Toward this, a silicon based resonator is fabricated using standard e
Empirical logic and quantum mechanics
Foulis, D.J.; Randall, C.H.
1976-01-01
This article discusses some of the basic notions of quantum physics within the more general framework of operational statistics and empirical logic (as developed in Foulis and Randall, 1972, and Randall and Foulis, 1973). Empirical logic is a formal mathematical system in which the notion of an operation is primitive and undefined; all other concepts are rigorously defined in terms of such operations (which are presumed to correspond to actual physical procedures). (Auth.)
Logical operations using phenyl ring
Patra, Moumita; Maiti, Santanu K.
2018-02-01
Exploiting the effects of quantum interference we put forward an idea of designing three primary logic gates, OR, AND and NOT, using a benzene molecule. Under a specific molecule-lead interface geometry, anti-resonant states appear which play the crucial role for AND and NOT operations, while for OR gate no such states are required. Our analysis leads to a possibility of designing logic gates using simple molecular structure which might be significant in the area of molecular electronics.
Observation Predicates in Flow Logic
Nielson, Flemming; Nielson, Hanne Riis; Sun, Hongyan
2003-01-01
in such a way that the hard constraints are satisfi ed exactly when the observation predicates report no violations. The development is carried out in a large fragment of a first order logic with negation and also takes care of the transformations necessary in order to adhere to the stratification restrictions...... inherent in Alternation-free Least Fixed Point Logic and similar formalisms such as Datalog....
Logically automorphically equivalent knowledge bases
Aladova, Elena; Plotkin, Tatjana
2017-01-01
Knowledge bases theory provide an important example of the field where applications of universal algebra and algebraic logic look very natural, and their interaction with practical problems arising in computer science might be very productive. In this paper we study the equivalence problem for knowledge bases. Our interest is to find out how the informational equivalence is related to the logical description of knowledge. Studying various equivalences of knowledge bases allows us to compare d...
Logical Reasoning and Decision Making
Ong, D; Khaddaj, Souheil; Bashroush, Rabih
2011-01-01
Most intelligent systems have some form of \\ud decision making mechanisms built into their \\ud organisations. These normally include a logical \\ud reasoning element into their design. This paper reviews \\ud and compares the different logical reasoning strategies, \\ud and tries to address the accuracy and precision of \\ud decision making by formulating a tolerance to \\ud imprecision view which can be used in conjunction with \\ud the various reasoning strategies.
Flow Logics and Operational Semantics
Nielson, Flemming; Nielson, Hanne Riis
1998-01-01
Flow logic is a “fast prototyping” approach to program analysis that shows great promise of being able to deal with a wide variety of languages and calculi for computation. However, seemingly innocent choices in the flow logic as well as in the operational semantics may inhibit proving the analys...... correct. Our main conclusion is that environment based semantics is more flexible than either substitution based semantics or semantics making use of structural congruences (like alpha-renaming)....
Some results from the combinatorial approach to quantum logic
Greechie, R.J.
1976-01-01
The combinatorial approach to quantum logic focuses on certain interconnections between graphs, combinatorial designs, and convex sets as applied to a quantum logic. This article is concerned only with orthomodular lattices and associated structures. A class of complete atomic irreducible semimodular orthomodular lattices is derived which may not be represented as linear subspaces of a vector space over a division ring. Each of these lattices is a proposition system of dimension three. These proposition systems form orthocomplemented non-Desarguesian projective geometries. (B.R.H.)
A logic for specifying stochastic actions and observations
Rens, G
2014-03-01
Full Text Available (2007) 30. Smallwood, R., Sondik, E.: The optimal control of partially observable Markov processes over a finite horizon. Operations Research 21, 1071–1088 (1973) 31. Tarski, A.: A decision method for elementary algebra and geometry. Tech. rep., The RAND... POMDPs totally into the logical arena. One is then in very familiar territory and new opportunities for the advancement in reasoning about POMDPs may be opened up. Systems of linear inequalities are at the heart of Nilsson’s probabilistic logic [19...
Abstract Interpretation of PIC programs through Logic Programming
Henriksen, Kim Steen; Gallagher, John Patrick
2006-01-01
, are applied to the logic based model of the machine. A small PIC microcontroller is used as a case study. An emulator for this microcontroller is written in Prolog, and standard programming transformations and analysis techniques are used to specialise this emulator with respect to a given PIC program....... The specialised emulator can now be further analysed to gain insight into the given program for the PIC microcontroller. The method describes a general framework for applying abstractions, illustrated here by linear constraints and convex hull analysis, to logic programs. Using these techniques on the specialised...
Circuit Simulation of All-Spin Logic
Alawein, Meshal
2016-05-01
With the aggressive scaling of complementary metal-oxide semiconductor (CMOS) nearing an inevitable physical limit and its well-known power crisis, the quest for an alternative/augmenting technology that surpasses the current semiconductor electronics is needed for further technological progress. Spintronic devices emerge as prime candidates for Beyond CMOS era by utilizing the electron spin as an extra degree of freedom to decrease the power consumption and overcome the velocity limit connected with the charge. By using the nonvolatility nature of magnetization along with its direction to represent a bit of information and then manipulating it by spin-polarized currents, routes are opened for combined memory and logic. This would not have been possible without the recent discoveries in the physics of nanomagnetism such as spin-transfer torque (STT) whereby a spin-polarized current can excite magnetization dynamics through the transfer of spin angular momentum. STT have expanded the available means of switching the magnetization of magnetic layers beyond old classical techniques, promising to fulfill the need for a new generation of dense, fast, and nonvolatile logic and storage devices. All-spin logic (ASL) is among the most promising spintronic logic switches due to its low power consumption, logic-in-memory structure, and operation on pure spin currents. The device is based on a lateral nonlocal spin valve and STT switching. It utilizes two nanomagnets (whereby information is stored) that communicate with pure spin currents through a spin-coherent nonmagnetic channel. By using the well-known spin physics and the recently proposed four-component spin circuit formalism, ASL can be thoroughly studied and simulated. Previous attempts to model ASL in the linear and diffusive regime either neglect the dynamic characteristics of transport or do not provide a scalable and robust platform for full micromagnetic simulations and inclusion of other effects like spin Hall
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
Optically controllable molecular logic circuits
Nishimura, Takahiro; Fujii, Ryo; Ogura, Yusuke; Tanida, Jun
2015-01-01
Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals
A Comparison of Implications in Orthomodular Quantum Logic—Morphological Analysis of Quantum Logic
Mitsuhiko Fujio
2012-01-01
Full Text Available Morphological operators are generalized to lattices as adjunction pairs (Serra, 1984; Ronse, 1990; Heijmans and Ronse, 1990; Heijmans, 1994. In particular, morphology for set lattices is applied to analyze logics through Kripke semantics (Bloch, 2002; Fujio and Bloch, 2004; Fujio, 2006. For example, a pair of morphological operators as an adjunction gives rise to a temporalization of normal modal logic (Fujio and Bloch, 2004; Fujio, 2006. Also, constructions of models for intuitionistic logic or linear logics can be described in terms of morphological interior and/or closure operators (Fujio and Bloch, 2004. This shows that morphological analysis can be applied to various non-classical logics. On the other hand, quantum logics are algebraically formalized as orhomodular or modular ortho-complemented lattices (Birkhoff and von Neumann, 1936; Maeda, 1980; Chiara and Giuntini, 2002, and shown to allow Kripke semantics (Chiara and Giuntini, 2002. This suggests the possibility of morphological analysis for quantum logics. In this article, to show an efficiency of morphological analysis for quantum logic, we consider the implication problem in quantum logics (Chiara and Giuntini, 2002. We will give a comparison of the 5 polynomial implication connectives available in quantum logics.
On Structural Completeness of Tabular Superintuitionistic Logics
Citkin, Alexander
2015-01-01
As usual, the superintuitionistic (propositional) logics (that is, logics extending intuitionistic logic) are being studied “modulo derivability”, meaning such logics are viewed extensionally — they are identified with the set of formulae that are valid (derivable in the corresponding calculus) in
Fuzzy logic an introductory course for engineering students
Trillas, Enric
2015-01-01
This book introduces readers to fundamental concepts in fuzzy logic. It describes the necessary theoretical background and a number of basic mathematical models. Moreover, it makes them familiar with fuzzy control, an important topic in the engineering field. The book offers an unconventional introductory textbook on fuzzy logic, presenting theory together with examples and not always following the typical mathematical style of theorem-corollaries. Primarily intended to support engineers during their university studies, and to spark their curiosity about fuzzy logic and its applications, the book is also suitable for self-study, providing a valuable resource for engineers and professionals who deal with imprecision and non-random uncertainty in real-world applications.
Logics and falsifications a new perspective on constructivist semantics
Kapsner, Andreas
2014-01-01
This volume examines the concept of falsification as a central notion of semantic theories and its effects on logical laws. The point of departure is the general constructivist line of argument that Michael Dummett has offered over the last decades. From there, the author examines the ways in which falsifications can enter into a constructivist semantics, displays the full spectrum of options, and discusses the logical systems most suitable to each one of them. While the idea of introducing falsifications into the semantic account is Dummett's own, the many ways in which falsificationism departs quite radically from verificationism are here spelled out in detail for the first time. The volume is divided into three large parts. The first part provides important background information about Dummett’s program, intuitionism and logics with gaps and gluts. The second part is devoted to the introduction of falsifications into the constructive account, and shows that there is more than one way in which one can do ...
What conceptual spaces can do for Carnap's late inductive logic.
Sznajder, Marta
2016-04-01
In the last published account of his late inductive logic, the Basic System of Inductive Logic, Rudolf Carnap introduced a new element to the systems of inductive logic, namely the so-called attribute spaces. These geometrical structures model the meanings of the predicates of the object language and have a similar structure as the conceptual spaces employed by cognitive scientists like Peter Gärdenfors. I show how the development of the theory of conceptual spaces helps us to see the addition of attribute spaces as a step forward in explicating the concept of confirmation. I discuss the differences and similarities of the two theories and investigate the possibilities for developing further connections. Copyright © 2016 Elsevier Ltd. All rights reserved.
Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty
Starczewski, Janusz T
2013-01-01
This book generalizes fuzzy logic systems for different types of uncertainty, including - semantic ambiguity resulting from limited perception or lack of knowledge about exact membership functions - lack of attributes or granularity arising from discretization of real data - imprecise description of membership functions - vagueness perceived as fuzzification of conditional attributes. Consequently, the membership uncertainty can be modeled by combining methods of conventional and type-2 fuzzy logic, rough set theory and possibility theory. In particular, this book provides a number of formulae for implementing the operation extended on fuzzy-valued fuzzy sets and presents some basic structures of generalized uncertain fuzzy logic systems, as well as introduces several of methods to generate fuzzy membership uncertainty. It is desirable as a reference book for under-graduates in higher education, master and doctor graduates in the courses of computer science, computational intelligence, or...
Breaking the fault tree circular logic
Lankin, M.
2000-01-01
Event tree - fault tree approach to model failures of nuclear plants as well as of other complex facilities is noticeably dominant now. This approach implies modeling an object in form of unidirectional logical graph - tree, i.e. graph without circular logic. However, genuine nuclear plants intrinsically demonstrate quite a few logical loops (circular logic), especially where electrical systems are involved. This paper shows the incorrectness of existing practice of circular logic breaking by elimination of part of logical dependencies and puts forward a formal algorithm, which enables the analyst to correctly model the failure of complex object, which involves logical dependencies between system and components, in form of fault tree. (author)
Proposal for the Formalization of Dialectical Logic
José Luis Usó-Doménech
2016-12-01
Full Text Available Classical logic is typically concerned with abstract analysis. The problem for a synthetic logic is to transcend and unify available data to reconstruct the object as a totality. Three rules are proposed to pass from classic logic to synthetic logic. We present the category logic of qualitative opposition using examples from various sciences. This logic has been defined to include the neuter as part of qualitative opposition. The application of these rules to qualitative opposition, and, in particular, its neuter, demonstrated that a synthetic logic allows the truth of some contradictions. This synthetic logic is dialectical with a multi-valued logic, which gives every proposition a truth value in the interval [0,1] that is the square of the modulus of a complex number. In this dialectical logic, contradictions of the neuter of an opposition may be true.
Type-2 fuzzy logic uncertain systems’ modeling and control
Antão, Rómulo
2017-01-01
This book focuses on a particular domain of Type-2 Fuzzy Logic, related to process modeling and control applications. It deepens readers’understanding of Type-2 Fuzzy Logic with regard to the following three topics: using simpler methods to train a Type-2 Takagi-Sugeno Fuzzy Model; using the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on a locally linear n-step ahead predictor; and developing model-based control algorithms according to the Generalized Predictive Control principles using Type-2 Fuzzy Sets. Throughout the book, theory is always complemented with practical applications and readers are invited to take their learning process one step farther and implement their own applications using the algorithms’ source codes (provided). As such, the book offers avaluable referenceguide for allengineers and researchers in the field ofcomputer science who are interested in intelligent systems, rule-based systems and modeling uncertainty.
Axially modulated arch resonator for logic and memory applications
Hafiz, Md Abdullah Al
2018-01-17
We demonstrate reconfigurable logic and random access memory devices based on an axially modulated clamped-guided arch resonator. The device is electrostatically actuated and the motional signal is capacitively sensed, while the resonance frequency is modulated through an axial electrostatic force from the guided side of the microbeam. A multi-physics finite element model is used to verify the effectiveness of the axial modulation. We present two case studies: first, a reconfigurable two-input logic gate based on the linear resonance frequency modulation, and second, a memory element based on the hysteretic frequency response of the resonator working in the nonlinear regime. The energy consumptions of the device for both logic and memory operations are in the range of picojoules, promising for energy efficient alternative computing paradigm.
A Resolution Prover for Coalition Logic
Nalon, Cláudia; Zhang, Lan; Dixon, Clare; Hustadt, Ullrich
2014-01-01
We present a prototype tool for automated reasoning for Coalition Logic, a non-normal modal logic that can be used for reasoning about cooperative agency. The theorem prover CLProver is based on recent work on a resolution-based calculus for Coalition Logic that operates on coalition problems, a normal form for Coalition Logic. We provide an overview of coalition problems and of the resolution-based calculus for Coalition Logic. We then give details of the implementation of CLProver and prese...
A vindication of logical necessity against scepticism
Philie, Patrice
2002-01-01
Some philosophers dispute the claim that there is a notion of logical necessity involved in the concept of logical consequence. They are sceptical about logical necessity. They argue that a proper characterisation of logical consequence - of what follows from what - need not and should not appeal to the notion of necessity at all. Quine is the most prominent philosopher holding such a view. In this doctoral dissertation, I argue that scepticism about logical necessity is not successful. Quine...
Isaac Pergher
2011-01-01
Full Text Available Este estudo apresenta uma reflexão teórica a respeito dos possíveis impactos nos indicadores da Teoria das Restrições (TOC provocados pelas Sete Perdas abordadas no Sistema Toyota de Produção (STP e por um tipo de perda não relatada neste contexto. Trata-se da 'Perda por má definição do mix de produtos' influenciada pelo uso de métodos inadequados para formular o mix de produtos. Desta forma é construído um neologismo conceitual identificado como as 'Pergas' para demostrar as perdas de Ganho global (TOC, derivadas desta prática. A necessidade de combater as perdas nos processos deve-se a não agregação de valor ao produto, bem como a geração de custos, motivando, em algumas situações, o compromentimento à competitividade da organização. Em sentido similar, o combate às Pergas proporciona um incremento nos índices monitorados pelos indicadores Globais da TOC por meio da constiuição de um mix de produtos que contribua com a meta da empresa. Um referencial estrutural é desenvolvido relacionando as Sete Perdas abordadas no STP e os indicadores da TOC, o qual fornecerá subsídios para fundamentar as relações impactantes e possibilitará a proposição de ações de melhoria tendo por objetivo minimizar os impactos apresentados.This study presents a theoretical reflection about the possible impacts on of the Theory of Constraints (TOC indicators caused by the Seven Wastes in the Toyota Production System (TPS and a type of waste which is not included in that context. It refers to the 'waste due to unsatisfactory definition of product mix' influenced by the use of inappropriate methods to formulate the product mix. Therefore, a conceptual neologism is introduced, identified as the "Pergas" to demonstrate the overall gain waste derived from this practice. The need to reduce process waste is due to the fact that no value is added to the product and the cost increase putting at risk, in some situations, the organizational
Designing Experiments to Discriminate Families of Logic Models.
Videla, Santiago; Konokotina, Irina; Alexopoulos, Leonidas G; Saez-Rodriguez, Julio; Schaub, Torsten; Siegel, Anne; Guziolowski, Carito
2015-01-01
Logic models of signaling pathways are a promising way of building effective in silico functional models of a cell, in particular of signaling pathways. The automated learning of Boolean logic models describing signaling pathways can be achieved by training to phosphoproteomics data, which is particularly useful if it is measured upon different combinations of perturbations in a high-throughput fashion. However, in practice, the number and type of allowed perturbations are not exhaustive. Moreover, experimental data are unavoidably subjected to noise. As a result, the learning process results in a family of feasible logical networks rather than in a single model. This family is composed of logic models implementing different internal wirings for the system and therefore the predictions of experiments from this family may present a significant level of variability, and hence uncertainty. In this paper, we introduce a method based on Answer Set Programming to propose an optimal experimental design that aims to narrow down the variability (in terms of input-output behaviors) within families of logical models learned from experimental data. We study how the fitness with respect to the data can be improved after an optimal selection of signaling perturbations and how we learn optimal logic models with minimal number of experiments. The methods are applied on signaling pathways in human liver cells and phosphoproteomics experimental data. Using 25% of the experiments, we obtained logical models with fitness scores (mean square error) 15% close to the ones obtained using all experiments, illustrating the impact that our approach can have on the design of experiments for efficient model calibration.
A new hierarchy of infinitary logics in abstract algebraic logic
Lávička, Tomáš; Noguera, Carles
2017-01-01
Roč. 105, č. 3 (2017), s. 521-551 ISSN 0039-3215 R&D Projects: GA ČR GA13-14654S EU Projects: European Commission(XE) 689176 - SYSMICS Institutional support: RVO:67985556 ; RVO:67985807 Keywords : Abstract algebraic logic * consequence relations * infinitary logics * completeness properties Subject RIV: BA - General Mathematics; BA - General Mathematics (UIVT-O) OBOR OECD: Pure mathematics; Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) (UIVT-O) Impact factor: 0.589, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/noguera-0469118.pdf
Strategies and logics of internationalization
Mahjouba Ben Salem
2013-07-01
Full Text Available The race between firms to acquire capacities worldwide has evolved in a chronological order which centered at first around products, then around position to move later on to skills and to focus currently on networks. Similarly, when observing the evolution of the different international development strategies, it was found out that they have started by the exportation and the setting up of production subsidiaries to move more recently to such strategies as mergers & acquisitions and international alliances. The present paper investigates the relationship between the internationalization strategies and logics and comes to the conclusion that, a particular logic is behind every choice made. Indeed, the present work was conducted within the Tunisian food enterprises and helped confirm this hypothesis as it was found out that the position logic is behind the choice of exportation and the creation of production subsidiaries while the choice of partnership is based on the logic of skills. The option for merger, on the other hand, is motivated by the networks logic.
Iryna Khomenko
2018-04-01
Full Text Available The challenges of the global time require new solutions and up-to-date ways of thinking and communication. These challenges call for the ability to use critical thinking to face the ever-changing world and the ability to maintain a dialog based on the effective skills of communication. Studies in the fields of logic and argumentation theory are of particular importance in this regard. Nowadays they can be presented as a mix of theoretical and practical approaches. In this paper, I will present my reflections on informal logic, which was formed in the late 1970s. Unfortunately, in spite of numerous papers, books, and text-books published over the last forty years, consensus on many issues in this field has not been achieved so far. Therefore, it is difficult to treat informal logic as one of the well-defined approaches to argumentation. The goal of this paper is to take a look at the place of informal logic in state-of-the art study of argumentation by clarifying its subject matter and figuring out the realm to which informal logic belongs.
A fuzzy logic pitch angle controller for power system stabilization
Jauch, Clemens; Cronin, Tom; Sorensen, Poul [Wind Energy Department, Riso National Laboratory, PO Box 49, DK-4000 Roskilde, (Denmark); Jensen, Birgitte Bak [Institute of Energy Technology, Aalborg University, Pontoppidanstraede 101, DK-9220 Aalborg East, (Denmark)
2006-07-12
In this article the design of a fuzzy logic pitch angle controller for a fixed speed, active-stall wind turbine, which is used for power system stabilization, is presented. The system to be controlled, which is the wind turbine and the power system to which the turbine is connected, is described. The advantages of fuzzy logic control when applied to large-signal control of active-stall wind turbines are outlined. The general steps of the design process for a fuzzy logic controller, including definition of the controller inputs, set-up of the fuzzy rules and the method of defuzzification, are described. The performance of the controller is assessed by simulation, where the wind turbine's task is to dampen power system oscillations. In the scenario simulated for this work, the wind turbine has to ride through a transient short-circuit fault and subsequently contribute to the damping of the grid frequency oscillations that are caused by the transient fault. It is concluded that the fuzzy logic controller enables the wind turbine to dampen power system oscillations. It is also concluded that, owing to the inherent non-linearities in a wind turbine and the unpredictability of the whole system, the fuzzy logic controller is very suitable for this application. (Author).
Noise-based logic hyperspace with the superposition of 2N states in a single wire
Kish, Laszlo B.; Khatri, Sunil; Sethuraman, Swaminathan
2009-01-01
In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have 'on/off' states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2 N orthogonal system states. This is equivalent to a multi-valued logic system with 2 2 N logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O(√(M)) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.
Noise-based logic hyperspace with the superposition of 2 states in a single wire
Kish, Laszlo B.; Khatri, Sunil; Sethuraman, Swaminathan
2009-05-01
In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have “on/off” states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2 orthogonal system states. This is equivalent to a multi-valued logic system with 2 logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O(√{M}) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.
Special set linear algebra and special set fuzzy linear algebra
Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.
2009-01-01
The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...
Lu, Jiao Yang; Zhang, Xin Xing; Huang, Wei Tao; Zhu, Qiu Yan; Ding, Xue Zhi; Xia, Li Qiu; Luo, Hong Qun; Li, Nian Bing
2017-09-19
The most serious and yet unsolved problems of molecular logic computing consist in how to connect molecular events in complex systems into a usable device with specific functions and how to selectively control branchy logic processes from the cascading logic systems. This report demonstrates that a Boolean logic tree is utilized to organize and connect "plug and play" chemical events DNA, nanomaterials, organic dye, biomolecule, and denaturant for developing the dual-signal electrochemical evolution aptasensor system with good resettability for amplification detection of thrombin, controllable and selectable three-state logic computation, and keypad lock security operation. The aptasensor system combines the merits of DNA-functionalized nanoamplification architecture and simple dual-signal electroactive dye brilliant cresyl blue for sensitive and selective detection of thrombin with a wide linear response range of 0.02-100 nM and a detection limit of 1.92 pM. By using these aforementioned chemical events as inputs and the differential pulse voltammetry current changes at different voltages as dual outputs, a resettable three-input biomolecular keypad lock based on sequential logic is established. Moreover, the first example of controllable and selectable three-state molecular logic computation with active-high and active-low logic functions can be implemented and allows the output ports to assume a high impediment or nothing (Z) state in addition to the 0 and 1 logic levels, effectively controlling subsequent branchy logic computation processes. Our approach is helpful in developing the advanced controllable and selectable logic computing and sensing system in large-scale integration circuits for application in biomedical engineering, intelligent sensing, and control.
Logical foundation of quantum mechanics
Stachow, E.W.
1980-01-01
The subject of this article is the reconstruction of quantum mechanics on the basis of a formal language of quantum mechanical propositions. During recent years, research in the foundations of the language of science has given rise to a dialogic semantics that is adequate in the case of a formal language for quantum physics. The system of sequential logic which is comprised by the language is more general than classical logic; it includes the classical system as a special case. Although the system of sequential logic can be founded without reference to the empirical content of quantum physical propositions, it establishes an essential part of the structure of the mathematical formalism used in quantum mechanics. It is the purpose of this paper to demonstrate the connection between the formal language of quantum physics and its representation by mathematical structures in a self-contained way. (author)
Logic, probability, and human reasoning.
Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P
2015-04-01
This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Semidefinite linear complementarity problems
Eckhardt, U.
1978-04-01
Semidefinite linear complementarity problems arise by discretization of variational inequalities describing e.g. elastic contact problems, free boundary value problems etc. In the present paper linear complementarity problems are introduced and the theory as well as the numerical treatment of them are described. In the special case of semidefinite linear complementarity problems a numerical method is presented which combines the advantages of elimination and iteration methods without suffering from their drawbacks. This new method has very attractive properties since it has a high degree of invariance with respect to the representation of the set of all feasible solutions of a linear complementarity problem by linear inequalities. By means of some practical applications the properties of the new method are demonstrated. (orig.) [de
Synthesis of logic circuits with evolutionary algorithms
JONES,JAKE S.; DAVIDSON,GEORGE S.
2000-01-26
In the last decade there has been interest and research in the area of designing circuits with genetic algorithms, evolutionary algorithms, and genetic programming. However, the ability to design circuits of the size and complexity required by modern engineering design problems, simply by specifying required outputs for given inputs has as yet eluded researchers. This paper describes current research in the area of designing logic circuits using an evolutionary algorithm. The goal of the research is to improve the effectiveness of this method and make it a practical aid for design engineers. A novel method of implementing the algorithm is introduced, and results are presented for various multiprocessing systems. In addition to evolving standard arithmetic circuits, work in the area of evolving circuits that perform digital signal processing tasks is described.
Digital systems from logic gates to processors
Deschamps, Jean-Pierre; Terés, Lluís
2017-01-01
This textbook for a one-semester course in Digital Systems Design describes the basic methods used to develop “traditional” Digital Systems, based on the use of logic gates and flip flops, as well as more advanced techniques that enable the design of very large circuits, based on Hardware Description Languages and Synthesis tools. It was originally designed to accompany a MOOC (Massive Open Online Course) created at the Autonomous University of Barcelona (UAB), currently available on the Coursera platform. Readers will learn what a digital system is and how it can be developed, preparing them for steps toward other technical disciplines, such as Computer Architecture, Robotics, Bionics, Avionics and others. In particular, students will learn to design digital systems of medium complexity, describe digital systems using high level hardware description languages, and understand the operation of computers at their most basic level. All concepts introduced are reinforced by plentiful illustrations, examples, ...
The logical foundations of mathematics
Hatcher, William S
1981-01-01
The Logical Foundations of Mathematics offers a study of the foundations of mathematics, stressing comparisons between and critical analyses of the major non-constructive foundational systems. The position of constructivism within the spectrum of foundational philosophies is discussed, along with the exact relationship between topos theory and set theory.Comprised of eight chapters, this book begins with an introduction to first-order logic. In particular, two complete systems of axioms and rules for the first-order predicate calculus are given, one for efficiency in proving metatheorems, and
Symmetric normalisation for intuitionistic logic
Guenot, Nicolas; Straßburger, Lutz
2014-01-01
We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus......, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...
Sequential logic analysis and synthesis
Cavanagh, Joseph
2007-01-01
Until now, there was no single resource for actual digital system design. Using both basic and advanced concepts, Sequential Logic: Analysis and Synthesis offers a thorough exposition of the analysis and synthesis of both synchronous and asynchronous sequential machines. With 25 years of experience in designing computing equipment, the author stresses the practical design of state machines. He clearly delineates each step of the structured and rigorous design principles that can be applied to practical applications. The book begins by reviewing the analysis of combinatorial logic and Boolean a
An exercise in 'anhomomorphic logic'
Sorkin, Rafael D
2007-01-01
A classical logic exhibits a threefold inner structure comprising an algebra of propositions U, a space of 'truth values' V, and a distinguished family of mappings φ from propositions to truth values. Classically U is a Boolean algebra, V = Z 2 , and the admissible maps φ: U Z 2 are homomorphisms. If one admits a larger set of maps, one obtains an anhomomorphic logic that seems better suited to quantal reality (and the needs of quantum gravity). I explain these ideas and illustrate them with three simple examples
Logic programming and metadata specifications
Lopez, Antonio M., Jr.; Saacks, Marguerite E.
1992-01-01
Artificial intelligence (AI) ideas and techniques are critical to the development of intelligent information systems that will be used to collect, manipulate, and retrieve the vast amounts of space data produced by 'Missions to Planet Earth.' Natural language processing, inference, and expert systems are at the core of this space application of AI. This paper presents logic programming as an AI tool that can support inference (the ability to draw conclusions from a set of complicated and interrelated facts). It reports on the use of logic programming in the study of metadata specifications for a small problem domain of airborne sensors, and the dataset characteristics and pointers that are needed for data access.
Design and experimentation of BSFQ logic devices
Hosoki, T.; Kodaka, H.; Kitagawa, M.; Okabe, Y.
1999-01-01
Rapid single flux quantum (RSFQ) logic needs synchronous pulses for each gate, so the clock-wiring problem is more serious when designing larger scale circuits with this logic. So we have proposed a new SFQ logic which follows Boolean algebra perfectly by using set and reset pulses. With this logic, the level information of current input is transmitted with these pulses generated by level-to-pulse converters, and each gate calculates logic using its phase level made by these pulses. Therefore, our logic needs no clock in each gate. We called this logic 'Boolean SFQ (BSFQ) logic'. In this paper, we report design and experimentation for an AND gate with inverting input based on BSFQ logic. The experimental results for OR and XOR gates are also reported. (author)
Logical space and the origins of pluralism in logic
Arazim, Pavel
-, č. 2 (2017), s. 7-26 ISSN 0567-8293 R&D Projects: GA ČR(CZ) GA17-15645S Institutional support: RVO:67985955 Keywords : pluralism * expressivism * logical space * geometry * holism Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology
Duality Theory and Categorical Universal Logic: With Emphasis on Quantum Structures
Yoshihiro Maruyama
2014-12-01
Full Text Available Categorical Universal Logic is a theory of monad-relativised hyperdoctrines (or fibred universal algebras, which in particular encompasses categorical forms of both first-order and higher-order quantum logics as well as classical, intuitionistic, and diverse substructural logics. Here we show there are those dual adjunctions that have inherent hyperdoctrine structures in their predicate functor parts. We systematically investigate into the categorical logics of dual adjunctions by utilising Johnstone-Dimov-Tholen's duality-theoretic framework. Our set-theoretical duality-based hyperdoctrines for quantum logic have both universal and existential quantifiers (and higher-order structures, giving rise to a universe of Takeuti-Ozawa's quantum sets via the tripos-to-topos construction by Hyland-Johnstone-Pitts. The set-theoretical hyperdoctrinal models of quantum logic, as well as all quantum hyperdoctrines with cartesian base categories, turn out to give sound and complete semantics for Faggian-Sambin's first-order quantum sequent calculus over cartesian type theory; in addition, quantum hyperdoctrines with monoidal base categories are sound and complete for the calculus over linear type theory. We finally consider how to reconcile Birkhoff-von Neumann's quantum logic and Abramsky-Coecke's categorical quantum mechanics (which is modernised quantum logic as an antithesis to the traditional one via categorical universal logic.
Evaluating system behavior through Dynamic Master Logic Diagram (DMLD) modeling
Hu, Y.-S.; Modarres, Mohammad
1999-01-01
In this paper, the Dynamic Master Logic Diagram (DMLD) is introduced for representing full-scale time-dependent behavior and uncertain behavior of complex physical systems. Conceptually, the DMLD allows one to decompose a complex system hierarchically to model and to represent: (1) partial success/failure of the system, (2) full-scale logical, physical and fuzzy connectivity relations, (3) probabilistic, resolutional or linguistic uncertainty, (4) multiple-state system dynamics, and (5) floating threshold and transition effects. To demonstrate the technique, examples of using DMLD to model, to diagnose and to control dynamic behavior of a system are presented. A DMLD-based expert system building tool, called Dynamic Reliability Expert System (DREXs), is introduced to automate the DMLD modeling process
Implicational (semilinear) logics III: completeness properties
Cintula, Petr; Noguera, Carles
2018-01-01
Roč. 57, 3-4 (2018), s. 391-420 ISSN 0933-5846 R&D Projects: GA ČR GA13-14654S EU Projects: European Commission(XE) 689176 - SYSMICS Institutional support: RVO:67985807 ; RVO:67985556 Keywords : abstract algebraic logic * protoalgebraic logics * implicational logics * disjunctional logics * semilinear logics * non-classical logics * completeness theorems * rational completeness Subject RIV: BA - General Mathematics; BA - General Mathematics (UTIA-B) OBOR OECD: Computer science s, information science , bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.394, year: 2016
Kawashima, Hideo.
1977-01-01
A fast-slow logic system has been made for use in multi-detector experiments in nuclear physics such as particle-gamma and particle-particle coincidence experiments. The system consists of a fast logic system and a slow logic system. The fast logic system has a function of fast coincidences and provides timing signals for the slow logic system. The slow logic system has a function of slow coincidences and a routing control of input analog signals to the ADCs. (auth.)
Microelectromechanical resonator based digital logic elements
Hafiz, Md Abdullah Al
2016-10-20
Micro/nano-electromechanical resonator based mechanical computing has recently attracted significant attention. However, its full realization has been hindered by the difficulty in realizing complex combinational logics, in which the logic function is constructed by cascading multiple smaller logic blocks. In this work we report an alternative approach for implementation of digital logic core elements, multiplexer and demultiplexer, which can be used to realize combinational logic circuits by suitable concatenation. Toward this, shallow arch shaped microresonators are electrically connected and their resonance frequencies are tuned based on an electrothermal frequency modulation scheme. This study demonstrates that by reconfiguring the same basic building block, the arch microresonator, complex logic circuits can be realized.
Aspects and modular reasoning in nonmonotonic logic
Ostermann, Klaus
2008-01-01
Nonmonotonic logic is a branch of logic that has been developed to model situations with incomplete information. We argue that there is a connection between AOP and nonmonotonic logic which deserves further study. As a concrete technical contribution and "appetizer", we outline an AO semantics de...... defined in default logic (a form of nonmonotonic logic), propose a definition of modular reasoning, and show that the default logic version of the language semantics admits modular reasoning whereas a conventional language semantics based on weaving does not....
Implicational (semilinear) logics III: completeness properties
Cintula, Petr; Noguera, Carles
2018-01-01
Roč. 57, 3-4 (2018), s. 391-420 ISSN 0933-5846 R&D Projects: GA ČR GA13-14654S EU Projects: European Commission(XE) 689176 - SYSMICS Institutional support: RVO:67985807 ; RVO:67985556 Keywords : abstract algebraic logic * protoalgebraic logics * implicational logics * disjunctional logics * semilinear logics * non-classical logics * completeness theorems * rational completeness Subject RIV: BA - General Mathematics; BA - General Mathematics (UTIA-B) OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.394, year: 2016
Microelectromechanical resonator based digital logic elements
Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.; Fariborzi, Hossein
2016-01-01
Micro/nano-electromechanical resonator based mechanical computing has recently attracted significant attention. However, its full realization has been hindered by the difficulty in realizing complex combinational logics, in which the logic function is constructed by cascading multiple smaller logic blocks. In this work we report an alternative approach for implementation of digital logic core elements, multiplexer and demultiplexer, which can be used to realize combinational logic circuits by suitable concatenation. Toward this, shallow arch shaped microresonators are electrically connected and their resonance frequencies are tuned based on an electrothermal frequency modulation scheme. This study demonstrates that by reconfiguring the same basic building block, the arch microresonator, complex logic circuits can be realized.
HYPROLOG: A New Logic Programming Language with Assumptions and Abduction
Christiansen, Henning; Dahl, Veronica
2005-01-01
We present HYPROLOG, a novel integration of Prolog with assumptions and abduction which is implemented in and partly borrows syntax from Constraint Handling Rules (CHR) for integrity constraints. Assumptions are a mechanism inspired by linear logic and taken over from Assumption Grammars. The lan......We present HYPROLOG, a novel integration of Prolog with assumptions and abduction which is implemented in and partly borrows syntax from Constraint Handling Rules (CHR) for integrity constraints. Assumptions are a mechanism inspired by linear logic and taken over from Assumption Grammars....... The language shows a novel flexibility in the interaction between the different paradigms, including all additional built-in predicates and constraints solvers that may be available. Assumptions and abduction are especially useful for language processing, and we can show how HYPROLOG works seamlessly together...
Probabilistic Logic and Probabilistic Networks
Haenni, R.; Romeijn, J.-W.; Wheeler, G.; Williamson, J.
2009-01-01
While in principle probabilistic logics might be applied to solve a range of problems, in practice they are rarely applied at present. This is perhaps because they seem disparate, complicated, and computationally intractable. However, we shall argue in this programmatic paper that several approaches
Phonotactics in inductive logic programming
Nerbonne, J.; Konstantopoulos, S.; Klopotek, M.A.; Wierzchon, S.T.; Trojanowski, K.
2004-01-01
We examine the results of applying inductive logic programming (ILP) to a relatively simple linguistic task, that of recognizing monosyllables in one language. ILP is suited to linguistic problems given linguists' preference for formulating their theories in discrete rules, and because of ILP's
Logics of communication and change
van Benthem, Johan; van Eijck, Jan; Kooi, Barteld
2006-01-01
Current dynamic epistemic logics for analyzing effects of informational events often become cumbersome and opaque when common knowledge is added for groups of agents. Still, postconditions involving common knowledge are essential to successful multi-agent communication. We propose new systems that
Generic physical protection logic trees
Paulus, W.K.
1981-10-01
Generic physical protection logic trees, designed for application to nuclear facilities and materials, are presented together with a method of qualitative evaluation of the trees for design and analysis of physical protection systems. One or more defense zones are defined where adversaries interact with the physical protection system. Logic trees that are needed to describe the possible scenarios within a defense zone are selected. Elements of a postulated or existing physical protection system are tagged to the primary events of the logic tree. The likelihood of adversary success in overcoming these elements is evaluated on a binary, yes/no basis. The effect of these evaluations is propagated through the logic of each tree to determine whether the adversary is likely to accomplish the end event of the tree. The physical protection system must be highly likely to overcome the adversary before he accomplishes his objective. The evaluation must be conducted for all significant states of the site. Deficiencies uncovered become inputs to redesign and further analysis, closing the loop on the design/analysis cycle
Testing Superconductor Logic Integrated Circuits
Arun, A.J.; Kerkhoff, Hans G.
2005-01-01
Superconductor logic has the potential of extremely low-power consumption and ultra-fast digital signal processing. Unfortunately, the obtained yield of the present processes is low and specific faults occur. This paper deals with fault-modelling, Design-for-Test structures, and ATPG for these
Generic physical protection logic trees
Paulus, W.K.
1981-10-01
Generic physical protection logic trees, designed for application to nuclear facilities and materials, are presented together with a method of qualitative evaluation of the trees for design and analysis of physical protection systems. One or more defense zones are defined where adversaries interact with the physical protection system. Logic trees that are needed to describe the possible scenarios within a defense zone are selected. Elements of a postulated or existing physical protection system are tagged to the primary events of the logic tree. The likelihood of adversary success in overcoming these elements is evaluated on a binary, yes/no basis. The effect of these evaluations is propagated through the logic of each tree to determine whether the adversary is likely to accomplish the end event of the tree. The physical protection system must be highly likely to overcome the adversary before he accomplishes his objective. The evaluation must be conducted for all significant states of the site. Deficiencies uncovered become inputs to redesign and further analysis, closing the loop on the design/analysis cycle.
Hamkins, J.D.; Löwe, B.
2008-01-01
A set theoretical assertion psi is forceable or possible, written lozenge psi, if psi holds in some forcing extension, and necessary, written square psi, if psi holds in all forcing extensions. In this forcing interpretation of modal logic, we establish that if ZFC is consistent, then the
Logical Entity Level Sentiment Analysis
Petersen, Niklas Christoffer; Villadsen, Jørgen
2017-01-01
We present a formal logical approach using a combinatory categorial grammar for entity level sentiment analysis that utilizes machine learning techniques for efficient syntactical tagging and performs a deep structural analysis of the syntactical properties of texts in order to yield precise resu...
Suwono.
1978-01-01
A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)
FUZZY LOGIC IN LEGAL EDUCATION
Z. Gonul BALKIR
2011-04-01
Full Text Available The necessity of examination of every case within its peculiar conditions in social sciences requires different approaches complying with the spirit and nature of social sciences. Multiple realities require different and various perceptual interpretations. In modern world and social sciences, interpretation of perception of valued and multi-valued have been started to be understood by the principles of fuzziness and fuzzy logic. Having the verbally expressible degrees of truthness such as true, very true, rather true, etc. fuzzy logic provides the opportunity for the interpretation of especially complex and rather vague set of information by flexibility or equivalence of the variables’ of fuzzy limitations. The methods and principles of fuzzy logic can be benefited in examination of the methodological problems of law, especially in the applications of filling the legal loopholes arising from the ambiguities and interpretation problems in order to understand the legal rules in a more comprehensible and applicable way and the efficiency of legal implications. On the other hand, fuzzy logic can be used as a technical legal method in legal education and especially in legal case studies and legal practice applications in order to provide the perception of law as a value and the more comprehensive and more quality perception and interpretation of value of justice, which is the core value of law. In the perception of what happened as it has happened in legal relationships and formations, the understanding of social reality and sociological legal rules with multi valued sense perspective and the their applications in accordance with the fuzzy logic’s methods could create more equivalent and just results. It can be useful for the young lawyers and law students as a facilitating legal method especially in the materialization of the perception and interpretation of multi valued and variables. Using methods and principles of fuzzy logic in legal
A new quantum flux parametron logic gate with large input margin
Hioe, W.; Hosoya, M.; Goto, E.
1991-01-01
This paper reports on the Quantum Flux Parametron (QFP) which is a flux transfer, flux activated Josephson logic device which realizes much lower power dissipation than other Josephson logic devices. Being a two-terminal device its correct operation may be affected by coupling to other QFPs. The problems include backcoupling from active QFPs through inactive QFPs (relay noise), coupling between QFPs activated at different times because of clock skew (homophase noise), and interaction between active QFPs (reaction hazard). Previous QFP circuits worked by wired-majority, which being a linear input logic, has low input margin. A new logic gate (D-gate) using a QFP to perform logic operations has been analyzed and tested by computer simulation. Relay noise, homophase noise and reaction hazard are substantially reduced. Moreover, the input have little interaction hence input margin is greatly improved
Acoustic logic gates and Boolean operation based on self-collimating acoustic beams
Zhang, Ting; Xu, Jian-yi; Cheng, Ying; Liu, Xiao-jun; Guo, Jian-zhong
2015-01-01
The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logic and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations
Logical and mathematical structures of quantum mechanics
Beltrametti, E.G.; Cassinelli, G.
1976-01-01
The logic associated with a physical system is first analysed, and the general properties of observable and states are discussed. The logic of the Hilbert-space formulation of quantum mechanics and of pure, ideal measurements is described
A superposition principle in quantum logics
Pulmannova, S.
1976-01-01
A new definition of the superposition principle in quantum logics is given which enables us to define the sectors. It is shown that the superposition principle holds only in the irreducible quantum logics. (orig.) [de
Mathematical logic foundations for information science
Li, Wei
2010-01-01
This book presents the basic principles and formal calculus of mathematical logic. It covers core contents, extensions and developments of classical mathematical logic, and it offers formal proofs and concrete examples for all theoretical results.
Logic functions and equations examples and exercises
Steinbach, Bernd
2009-01-01
With a free, downloadable software package available to help solve the exercises, this book focuses on practical and relevant problems that arise in the field of binary logics, with its two main applications - digital circuit design, and propositional logics.
Semantic foundation for preferential description logics
Britz, K
2011-12-01
Full Text Available Description logics are a well-established family of knowledge representation formalisms in Artificial Intelligence. Enriching description logics with non-monotonic reasoning capabilities, especially preferential reasoning as developed by Lehmann...
Towards practical defeasible reasoning for description logics
Casini, G
2013-07-01
Full Text Available The formalisation of defeasible reasoning in automated systems is becoming increasingly important. Description Logics (DLs) are nowadays the main logical formalism in the field of formal ontologies. Our focus in this paper is to devise a practical...
Error-Transparent Quantum Gates for Small Logical Qubit Architectures
Kapit, Eliot
2018-02-01
One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.
A Logical Characterisation of Static Equivalence
Hüttel, Hans; Pedersen, Michael D.
2007-01-01
-order logic for frames with quantification over environment knowledge which, under certain general conditions, characterizes static equivalence and is amenable to construction of characteristic formulae. The logic can be used to reason about environment knowledge and can be adapted to a particular application...... by defining a suitable signature and associated equational theory. The logic can furthermore be extended with modalities to yield a modal logic for e.g. the Applied Pi calculus....
BIO Logical Agents: Norms, Beliefs, Intentions in Defeasible Logic
Governatori, Guido; Rotolo, Antonino
2007-01-01
In this paper we follow the BOID (Belief, Obligation, Intention, Desire) architecture to describe agents and agent types in Defeasible Logic. We argue, in particular, that the introduction of obligations can provide a new reading of the concepts of intention and intentionality. Then we examine the notion of social agent (i.e., an agent where obligations prevail over intentions) and discuss some computational and philosophical issues related to it. We show th...
Introduced Terrestrial Species Richness (Future)
U.S. Environmental Protection Agency — These data represent predicted current distributions of all introduced fish in the Middle-Atlantic region. These data are available for both 8-digit HUCs and EMAP...
Ughade, A.V.; Singh, Ranjeet; Bhattacharya, P.K.; Kulkarni, R.K.; Chandra, Umesh
2005-01-01
PLC system was introduced for the first time in Kaiga-1,2 and RAPS-3,4 Nuclear Power Plants (NPPs) for Station Logic Control of Non Safety Related (NSR) and Safety related (SR) systems. However, the safety system logics are still relay based. The experience on the deployment of PLC system, which is computer-based, has brought out various implementation issues. This paper give details of such experiences, the solutions emerged and applied for plants under operation/construction. (author)
Definition of Strong Equality of Tautologies and Universal System for Various Propositional Logics
Anahit Chubaryan
2008-10-01
Full Text Available Earlier we have introduced a definition of strong equality of classical tautologies, according to which two tautologies are equal iff they have the same hardness. The strong equality implies well known equality, but not vice versa. The strong equality is based on the notion of determinitive conjunct, using of which some new deduction system for classical propositional logic were defined. Here the notions of strong equality of tautologies for various logics are suggested and the idea of construction of universal deduction system for various propositional logics is given.
The Dynamic Turn in Quantum Logic
Baltag, A.; Smets, S.
2012-01-01
In this paper we show how ideas coming from two areas of research in logic can reinforce each other. The first such line of inquiry concerns the "dynamic turn" in logic and especially the formalisms inspired by Propositional Dynamic Logic (PDL); while the second line concerns research into the
The dynamic turn in quantum logic
Baltag, Alexandru; Smets, Sonja
In this paper we show how ideas coming from two areas of research in logic can reinforce each other. The first such line of inquiry concerns the "dynamic turn" in logic and especially the formalisms inspired by Propositional Dynamic Logic (PDL); while the second line concerns research into the
Translating Dominant Institutional Logics in Practice
Agger Nielsen, Jeppe; Jensen, Tina Blegind
In this paper we examine the proliferation of a new mobile technology in a structured setting of home care in Denmark, focusing on how actions at multiple levels interact to enable technology diffusion and institutionalization. The case study shows how a dominating field level logic...... that combining an institutional logic perspective with a translation perspective furthers our understanding of the malleability of institutional logics....
Piaget's Logic of Meanings: Still Relevant Today
Wavering, Michael James
2011-01-01
In his last book, "Toward a Logic of Meanings" (Piaget & Garcia, 1991), Jean Piaget describes how thought can be categorized into a form of propositional logic, a logic of meanings. The intent of this article is to offer this analysis by Piaget as a means to understand the language and teaching of science. Using binary propositions, conjunctions,…
Dialogues as a dynamic framework for logic
Rückert, Helge
2007-01-01
Dialogical logic is a game-theoretical approach to logic. Logic is studied with the help of certain games, which can be thought of as idealized argumentations. Two players, the Proponent, who puts forward the initial thesis and tries to defend it, and the Opponent, who tries to attack the
Hybrid Logical Analyses of the Ambient Calculus
Bolander, Thomas; Hansen, Rene Rydhof
2010-01-01
In this paper, hybrid logic is used to formulate three control flow analyses for Mobile Ambients, a process calculus designed for modelling mobility. We show that hybrid logic is very well-suited to express the semantic structure of the ambient calculus and how features of hybrid logic can...
Mathematical Fuzzy Logic - State of Art 2001
Hájek, Petr
2003-01-01
Roč. 24, - (2003), s. 71-89 ISSN 0103-9059. [WOLLIC'2001. Brasília, 31.07.2001-03.08.2001] R&D Projects: GA MŠk LN00A056 Keywords : fuzzy logic * many valued logic * basic fuzzy logic BL Subject RIV: BA - General Mathematics http://www.mat.unb.br/~matcont/24_4.pdf
Venema, Y.
This contribution gives a short introduction to arrow logic. We start by explaining the basic idea underlying arrow logic and the motivation for studying it (sections 1 and 2) We discuss some elementary duality theory between arrow logic and the algebraic theory of binary relations (section 3).
Logics of Business Education for Sustainability
Andersson, Pernilla; Öhman, Johan
2016-01-01
This paper explores various kinds of logics of "business education for sustainability" and how these "logics" position the subject business person, based on eight teachers' reasoning of their own practices. The concept of logics developed within a discourse theoretical framework is employed to analyse the teachers' reasoning.…
General Logic-Systems and Consequence Operators
Herrmann, Robert A.
2005-01-01
In this paper, general logic-systems are investigated. It is shown that there are infinitely many finite consequence operators defined on a fixed language L that cannot be generated from a finite logic-system. It is shown that a set map is a finite consequence operator iff it is defined by a general logic-system.
Against All Odds: When Logic Meets Probability
van Benthem, J.; Katoen, J.-P.; Langerak, R.; Rensink, A.
2017-01-01
This paper is a light walk along interfaces between logic and probability, triggered by a chance encounter with Ed Brinksma. It is not a research paper, or a literature survey, but a pointer to issues. I discuss both direct combinations of logic and probability and structured ways in which logic can
Applications of Logic Coverage Criteria and Logic Mutation to Software Testing
Kaminski, Garrett K.
2011-01-01
Logic is an important component of software. Thus, software logic testing has enjoyed significant research over a period of decades, with renewed interest in the last several years. One approach to detecting logic faults is to create and execute tests that satisfy logic coverage criteria. Another approach to detecting faults is to perform mutation…
Optical NOR logic gate design on square lattice photonic crystal platform
D’souza, Nirmala Maria, E-mail: nirmala@cukerala.ac.in; Mathew, Vincent, E-mail: vincent@cukerala.ac.in [Department of Physics, Central University of Kerala, Kasaragod, Kerala-671 314 (India)
2016-05-06
We numerically demonstrate a new configuration of all-optical NOR logic gate with square lattice photonic crystal (PhC) waveguide using finite difference time domain (FDTD) method. The logic operations are based on interference effect of optical waves. We have determined the operating frequency range by calculating the band structure for a perfectly periodic PhC using plane wave expansion (PWE) method. Response time of this logic gate is 1.98 ps and it can be operated with speed about 513 GB/s. The proposed device consists of four linear waveguides and a square ring resonator waveguides on PhC platform.
Ranking Forestry Investments With Parametric Linear Programming
Paul A. Murphy
1976-01-01
Parametric linear programming is introduced as a technique for ranking forestry investments under multiple constraints; it combines the advantages of simple tanking and linear programming as capital budgeting tools.
Linear q-nonuniform difference equations
Bangerezako, Gaspard
2010-01-01
We introduce basic concepts of q-nonuniform differentiation and integration and study linear q-nonuniform difference equations and systems, as well as their application in q-nonuniform difference linear control systems. (author)
On the linear programming bound for linear Lee codes.
Astola, Helena; Tabus, Ioan
2016-01-01
Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.
Nanowire NMOS Logic Inverter Characterization.
Hashim, Yasir
2016-06-01
This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly.
Programming Games for Logical Thinking
H. Tsalapatas
2013-03-01
Full Text Available Analytical thinking is a transversal skill that helps learners synthesize knowledge across subject areas; from mathematics, science, and technology to critical reading, critical examination, and evaluation of lessons. While most would not doubt the importance of analytical capacity in academic settings and its growing demand for the skill in professional environments, school curricula do not comprehensively address its development. As a result, the responsibility for structuring related learning activities falls to teachers. This work examines learning paradigms that can be integrated into mathematics and science school education for developing logical thinking through game-based exercises based on programming. The proposed learning design promotes structured algorithmic mindsets, is based on inclusive universal logic present in all cultures, and promotes constructivism educational approaches encouraging learners to drive knowledge building by composing past and emerging experiences.
An Embedded Reconfigurable Logic Module
Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)
2002-01-01
A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.
The Relevance of Hegel's Logic
John W Burbidge
2007-12-01
Full Text Available Hegel defines his Logic as the science that thinks about thinking.nbsp; But when we interpret that work as outlining what happens when we reason we are vulnerable to Fregersquo;s charge of psychologism.nbsp; I use Hegelrsquo;s tripartite distinction among understanding, dialectical and speculative reason as operations of pure thought to suggest how thinking can work with objective concepts.nbsp; In the last analysis, however, our ability to move from the subjective contingency of representations and ideas to the pure concepts we think develops from mechanical memory, which separates sign from sense so hat we can focus simply on the latter.nbsp; By becoming aware of the connections that underlie our thinking processes we may be able to both move beyond the abstractions of symbolic logic and clarify what informal logicians call relevance.
Crasmareanu Mircea
2017-12-01
Full Text Available We consider the paracomplex version of the notion of mixed linear spaces introduced by M. Jurchescu in [4] by replacing the complex unit i with the paracomplex unit j, j2 = 1. The linear algebra of these spaces is studied with a special view towards their morphisms.
Campagnoli, Patrizia; Petris, Giovanni
2009-01-01
State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.
Introduction to RF linear accelerators
Weiss, M.
1994-01-01
The basic features of RF linear accelerators are described. The concept of the 'loaded cavity', essential for the synchronism wave-particle, is introduced, and formulae describing the action of electromagnetic fields on the beam are given. The treatment of intense beams is mentioned, and various existing linear accelerators are presented as examples. (orig.)
Fuzzy Versions of Epistemic and Deontic Logic
Gounder, Ramasamy S.; Esterline, Albert C.
1998-01-01
Epistemic and deontic logics are modal logics, respectively, of knowledge and of the normative concepts of obligation, permission, and prohibition. Epistemic logic is useful in formalizing systems of communicating processes and knowledge and belief in AI (Artificial Intelligence). Deontic logic is useful in computer science wherever we must distinguish between actual and ideal behavior, as in fault tolerance and database integrity constraints. We here discuss fuzzy versions of these logics. In the crisp versions, various axioms correspond to various properties of the structures used in defining the semantics of the logics. Thus, any axiomatic theory will be characterized not only by its axioms but also by the set of properties holding of the corresponding semantic structures. Fuzzy logic does not proceed with axiomatic systems, but fuzzy versions of the semantic properties exist and can be shown to correspond to some of the axioms for the crisp systems in special ways that support dependency networks among assertions in a modal domain. This in turn allows one to implement truth maintenance systems. For the technical development of epistemic logic, and for that of deontic logic. To our knowledge, we are the first to address fuzzy epistemic and fuzzy deontic logic explicitly and to consider the different systems and semantic properties available. We give the syntax and semantics of epistemic logic and discuss the correspondence between axioms of epistemic logic and properties of semantic structures. The same topics are covered for deontic logic. Fuzzy epistemic and fuzzy deontic logic discusses the relationship between axioms and semantic properties for these logics. Our results can be exploited in truth maintenance systems.
The PLC: a logical development
Walker, Mark; Bissell, Christopher; Monk, John
2010-01-01
Programmable Logic Controllers (PLCs) have been used to control industrial processes and equipment for over 40 years, having their first commercially recognised application in 1969. Since then there have been enormous changes in the design and application of PLCs, yet developments were evolutionary rather than radical. The flexibility of the PLC does not confine it to industrial use and it has been used for disparate non-industrial control applications . This article reviews the history, deve...
Logic Learning in Hopfield Networks
Sathasivam, Saratha; Abdullah, Wan Ahmad Tajuddin Wan
2008-01-01
Synaptic weights for neurons in logic programming can be calculated either by using Hebbian learning or by Wan Abdullah's method. In other words, Hebbian learning for governing events corresponding to some respective program clauses is equivalent with learning using Wan Abdullah's method for the same respective program clauses. In this paper we will evaluate experimentally the equivalence between these two types of learning through computer simulations.
Is special relativity logically inconsistent
Prokhovnik, S.J.
1980-01-01
The author gives his view that Special Relativity is logically and mathematically consistent, as well as physically comprehensible if, and only if, it is firmly based on the single assumption of a unique fundamental reference frame for light propagation. The theory and all its results are derivable from this assumption; the Relativity and Light Principles become intelligible consequences of this assumption; the physical significance and source of time dilation and length contraction are made manifest thereby. (Auth.)
Cosmic logic: a computational model
Vanchurin, Vitaly
2016-01-01
We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps
Hybrid Logic and its Proof-Theory
Brauner, Torben
2011-01-01
This is the first book-length treatment of hybrid logic and its proof-theory. Hybrid logic is an extension of ordinary modal logic which allows explicit reference to individual points in a model (where the points represent times, possible worlds, states in a computer, or something else). This is useful for many applications, for example when reasoning about time one often wants to formulate a series of statements about what happens at specific times. There is little consensus about proof-theory for ordinary modal logic. Many modal-logical proof systems lack important properties and the relatio
A Resolution Prover for Coalition Logic
Cláudia Nalon
2014-04-01
Full Text Available We present a prototype tool for automated reasoning for Coalition Logic, a non-normal modal logic that can be used for reasoning about cooperative agency. The theorem prover CLProver is based on recent work on a resolution-based calculus for Coalition Logic that operates on coalition problems, a normal form for Coalition Logic. We provide an overview of coalition problems and of the resolution-based calculus for Coalition Logic. We then give details of the implementation of CLProver and present the results for a comparison with an existing tableau-based solver.
All-optical symmetric ternary logic gate
Chattopadhyay, Tanay
2010-09-01
Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.
Logic and discrete mathematics a concise introduction
Conradie, Willem
2015-01-01
A concise yet rigorous introduction to logic and discrete mathematics. This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. The chapters on logic - propositional and first-order - provide a robust toolkit for logical reasoning, emphasizing the conceptual understanding of the language and the semantics of classical logic as well as practical applications through the easy
Logical design for computers and control
Dodd, Kenneth N
1972-01-01
Logical Design for Computers and Control Logical Design for Computers and Control gives an introduction to the concepts and principles, applications, and advancements in the field of control logic. The text covers topics such as logic elements; high and low logic; kinds of flip-flops; binary counting and arithmetic; and Boolean algebra, Boolean laws, and De Morgan's theorem. Also covered are topics such as electrostatics and atomic theory; the integrated circuit and simple control systems; the conversion of analog to digital systems; and computer applications and control. The book is recommend
Asynchronous Operators of Sequential Logic Venjunction & Sequention
Vasyukevich, Vadim
2011-01-01
This book is dedicated to new mathematical instruments assigned for logical modeling of the memory of digital devices. The case in point is logic-dynamical operation named venjunction and venjunctive function as well as sequention and sequentional function. Venjunction and sequention operate within the framework of sequential logic. In a form of the corresponding equations, they organically fit analytical expressions of Boolean algebra. Thus, a sort of symbiosis is formed using elements of asynchronous sequential logic on the one hand and combinational logic on the other hand. So, asynchronous
Solow, Daniel
2014-01-01
This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Berberian, Sterling K
2014-01-01
Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.
Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
Analysis of Linear Hybrid Systems in CLP
Banda, Gourinath; Gallagher, John Patrick
2009-01-01
In this paper we present a procedure for representing the semantics of linear hybrid automata (LHAs) as constraint logic programs (CLP); flexible and accurate analysis and verification of LHAs can then be performed using generic CLP analysis and transformation tools. LHAs provide an expressive...