WorldWideScience

Sample records for linear liquid surface

  1. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.

  2. Effect of liquid surface tension on circular and linear hydraulic jumps; theory and experiments

    Bhagat, Rajesh Kumar; Jha, Narsing Kumar; Linden, Paul F.; Wilson, David Ian

    2017-11-01

    The hydraulic jump has attracted considerable attention since Rayleigh published his account in 1914. Watson (1964) proposed the first satisfactory explanation of the circular hydraulic jump by balancing the momentum and hydrostatic pressure across the jump, but this solution did not explain what actually causes the jump to form. Bohr et al. (1992) showed that the hydraulic jump happens close to the point where the local Froude number equals to one, suggesting a balance between inertial and hydrostatic contributions. Bush & Aristoff (2003) subsequently incorporated the effect of surface tension and showed that this is important when the jump radius is small. In this study, we propose a new account to explain the formation and evolution of hydraulic jumps under conditions where the jump radius is strongly influenced by the liquid surface tension. The theory is compared with experiments employing liquids of different surface tension and different viscosity, in circular and linear configurations. The model predictions and the experimental results show excellent agreement. Commonwealth Scholarship Commission, St. John's college, University of Cambridge.

  3. Linear and Star Poly(ionic liquid) Assemblies: Surface Monolayers and Multilayers.

    Erwin, Andrew J; Xu, Weinan; He, Hongkun; Matyjaszewski, Krzysztof; Tsukruk, Vladimir V

    2017-04-04

    The surface morphology and organization of poly(ionic liquid)s (PILs), poly[1-(4-vinylbenzyl)-3-butylimidazolium bis(trifluoromethylsulfonyl)imide] are explored in conjunction with their molecular architecture, adsorption conditions, and postassembly treatments. The formation of stable PIL Langmuir and Langmuir-Blodgett (LB) monolayers at the air-water and air-solid interfaces is demonstrated. The hydrophobic bis(trifluoromethylsulfonyl)imide (Tf 2 N - ) is shown to be a critical agent governing the assembly morphology, as observed in the reversible condensation of LB monolayers into dense nanodroplets. The PIL is then incorporated as an unconventional polyelectrolyte component in the layer-by-layer (LbL) films of hydrophobic character. We demonstrate that the interplay of capillary forces, macromolecular mobility, and structural relaxation of the polymer chains influence the dewetting mechanisms in the PIL multilayers, thereby enabling access to a diverse set of highly textured, porous, and interconnected network morphologies for PIL LbL films that would otherwise be absent in conventional LbL films. Their compartmentalized internal structure is relevant to molecular separation membranes, ultrathin hydrophobic coatings, targeted cargo delivery, and highly conductive films.

  4. Non linear thermal radiation effect on Williamson fluid with particle-liquid suspension past a stretching surface

    K. Ganesh Kumar

    Full Text Available A mathematical analysis of two-phase boundary layer flow and heat transfer of a Williamson fluid with fluid particle suspension over a stretching sheet has been carried out in this paper. The region of temperature jump and nonlinear thermal radiation is considered in the energy transfer process. The principal equations of boundary layer flow and temperature transmission are reformed to a set of non-linear ordinary differential equations under suitable similarity transformations. The transfigured equalities are solved numerically with the help of RKF-45 order method. The effect of influencing parameters on velocity and temperature transfer of fluid is examined and deliberated by plotted graphs and tabulated values. Significances of the mass concentration of dust particle parameter play a key role in controlling flow and thermal behavior of non-Newtonian fluids. Further, the temperature and concern boundary layer girth are declines for increasing values of Williamson parameter. Keywords: Two-phase flow, Williamson fluid, Nonlinear thermal radiation, Magnetic field, Temperature jump

  5. Surface boiling of superheated liquid

    Reinke, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-01-01

    A basic vaporization mechanism that possibly affects the qualitative and quantitative prediction of the consequences of accidental releases of hazardous superheated liquids was experimentally and analytically investigated. The studies are of relevance for the instantaneous failure of a containment vessel filled with liquefied gas. Even though catastrophical vessel failure is a rare event, it is considered to be a major technological hazard. Modeling the initial phase of depressurisation and vaporization of the contents is an essential step for the subsequent analysis of the spread and dispersion of the materials liberated. There is only limited understanding of this inertial expansion stage of the superheated liquid, before gravity and atmospheric turbulence begin to dominate the expansion. This work aims at a better understanding of the vaporization process and to supply more precise source-term data. It is also intended to provide knowledge for the prediction of the behavior of large-scale releases by the investigation of boiling on a small scale. Release experiments with butane, propane, R-134a and water were conducted. The vaporization of liquids that became superheated by sudden depressurisation was studied in nucleation-site-free glass receptacles. Several novel techniques for preventing undesired nucleation and for opening the test-section were developed. Releases from pipes and from a cylindrical geometry allowed both linear one-dimensional, and radial-front two-dimensional propagation to be investigated. Releases were made to atmospheric pressure over a range of superheats. It was found that, above a certain superheat temperature, the free surface of the metastable liquid rapidly broke up and ejected a high-velocity vapor/liquid stream. The zone of intense vaporization and liquid fragmentation proceeded as a front that advanced into the test fluids. No nucleation of bubbles in the bulk of the superheated liquid was observed. (author) figs., tabs., refs.

  6. Surface boiling of superheated liquid

    Reinke, P.

    1997-01-01

    A basic vaporization mechanism that possibly affects the qualitative and quantitative prediction of the consequences of accidental releases of hazardous superheated liquids was experimentally and analytically investigated. The studies are of relevance for the instantaneous failure of a containment vessel filled with liquefied gas. Even though catastrophical vessel failure is a rare event, it is considered to be a major technological hazard. Modeling the initial phase of depressurisation and vaporization of the contents is an essential step for the subsequent analysis of the spread and dispersion of the materials liberated. There is only limited understanding of this inertial expansion stage of the superheated liquid, before gravity and atmospheric turbulence begin to dominate the expansion. This work aims at a better understanding of the vaporization process and to supply more precise source-term data. It is also intended to provide knowledge for the prediction of the behavior of large-scale releases by the investigation of boiling on a small scale. Release experiments with butane, propane, R-134a and water were conducted. The vaporization of liquids that became superheated by sudden depressurisation was studied in nucleation-site-free glass receptacles. Several novel techniques for preventing undesired nucleation and for opening the test-section were developed. Releases from pipes and from a cylindrical geometry allowed both linear one-dimensional, and radial-front two-dimensional propagation to be investigated. Releases were made to atmospheric pressure over a range of superheats. It was found that, above a certain superheat temperature, the free surface of the metastable liquid rapidly broke up and ejected a high-velocity vapor/liquid stream. The zone of intense vaporization and liquid fragmentation proceeded as a front that advanced into the test fluids. No nucleation of bubbles in the bulk of the superheated liquid was observed. (author) figs., tabs., refs

  7. Surface Tension Confines Cryogenic Liquid

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  8. Active liquid/liquid interfaces: contributions of non linear optics and tensiometry

    Gassin, P.M.

    2013-01-01

    Liquid-liquid extraction processes are widely used in the industrial fields of selective separation. Despite its numerous applications, the microscopic mechanisms which occur during a liquid-liquid extraction processes are really unknown specially at the liquid/liquid interface. Thus, this work deals on the understanding of the phenomena which drive the mass transfer across a liquid/liquid interface. Two experimental techniques were used in this work: dynamic interfacial tension measurement and non-linear optical experiments. Along with the use of this experimental approach, a numerical model describing the mass transfer dynamic has been developed. This model works under the assumption that both diffusion and a chemical step describing adsorption and desorption processes contribute to the global transfer kinetics. Model systems of surfactant molecules, chromophore molecules and complexing molecule were investigated at liquid/liquid and air/liquid interface. Interfacial phenomena like adsorption, surface aggregation and ion complexing were studied. Finally, the methodology developed in this work was applied to studied an extractant molecule with potential industrial application. (author) [fr

  9. Determination of eight pesticides of varying polarity in surface waters using solid phase extraction with multiwalled carbon nanotubes and liquid chromatography-linear ion trap mass spectrometry

    Dahane, Soraya; Derdour, Aicha; García, María Dolores Gil; Moreno, Ana Uclés; Galera, María Martínez; Viciana, María del Mar Socías

    2015-01-01

    We describe a MWCNT-based method for the solid-phase extraction of eight pesticides from environmental water samples. The analytes are extracted from 100 mL samples at pH 5.0 (containing 5 mmol L −1 of KCl) by passing the solution through a column filled with 20 mg of multiwalled carbon nanotubes. Following elution, the pesticides were determined by LC and electrospray ionization hybrid quadrupole linear ion trap MS. Two selected reaction monitoring transitions were monitored per compound, the most intense one being used for quantification and the second one for confirmation. In addition, an information-dependent acquisition experiment was performed for unequivocal confirmation of positive findings. Matrix effect was not found in real waters and therefore the quantitation was carried out with calibration graphs built with solvent based standards. Except for cymoxanil, the detection and quantitation limits in surface waters are in the range from 0.3 to 9.5 ng L −1 and 1.6 to 45.2 ng L −1 , respectively. Recoveries from spiked ultrapure water are ∼100 %, except for the most polar pesticides methomyl and cymoxanil. The same behavior is found for real water samples (except for phosalone). The relative standard deviation is <10 % in all cases. (author)

  10. Optical surfacing via linear ion source

    Wu, Lixiang; Wei, Chaoyang; Shao, Jianda

    2017-01-01

    We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. The modified Fourier series, or sinusoidal wave surfaces, build a relationship between the fabrication process of optical surfaces and the surface characterization based on power spectral density (PSD) analysis. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of mid-spatial frequency (MSF) errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approach.

  11. Optical surfacing via linear ion source

    Wu, Lixiang, E-mail: wulx@hdu.edu.cn [Key Lab of RF Circuits and Systems of Ministry of Education, Zhejiang Provincial Key Lab of LSI Design, Microelectronics CAD Center, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou (China); Wei, Chaoyang, E-mail: siomwei@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Shao, Jianda, E-mail: jdshao@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2017-04-15

    We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. The modified Fourier series, or sinusoidal wave surfaces, build a relationship between the fabrication process of optical surfaces and the surface characterization based on power spectral density (PSD) analysis. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of mid-spatial frequency (MSF) errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approach.

  12. LINEARLY POLARIZED PROBES OF SURFACE CHIRALITY

    VERBIEST, T; KAURANEN, M; MAKI, JJ; TEERENSTRA, MN; SCHOUTEN, AJ; NOLTE, RJM; PERSOONS, A

    1995-01-01

    We present a new nonlinear optical technique to study surface chirality. We demonstrate experimentally that the efficiency of second-harmonic generation from isotropic chiral surfaces is different for excitation with fundamental light that is +45 degrees and -45 degrees linearly polarized with

  13. Surface tensor estimation from linear sections

    Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel

    From Crofton's formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....

  14. Surface tensor estimation from linear sections

    Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel

    2015-01-01

    From Crofton’s formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....

  15. Surface parameter characterization of surface vibrations in linear chains

    Majlis, N.; Selzer, S.; Puszkarski, H.; Diep-The-Hung

    1982-12-01

    We consider the vibrations of a linear monatomic chain with a complex surface potential defined by the surface pinning parameter a=Aesup(-i psi). It is found that in the case of a semi-infinite chain a is connected with the surface vibration wave number k=s+it by the exact relations: s=psi, t=lnA. We also show that the solutions found can be regarded as approximate ones (in the limit L>>1) for surface vibrations of a finite chain consisting of L atoms. (author)

  16. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    Hantao Ji; William Fox; David Pace; H.L. Rappaport

    2004-05-13

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

  17. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    Hantao Ji; William Fox; David Pace; Rappaport, H.L.

    2004-01-01

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed

  18. Linear and non-linear simulation of joints contact surface using ...

    The joint modelling including non-linear effects needs accurate and precise study of their behaviors. When joints are under the dynamic loading, micro, macro- slip happens in contact surface which is non-linear reason of the joint contact surface. The non-linear effects of joint contact surface on total behavior of structure are ...

  19. Surface structure evolution in a homologous series of ionic liquids.

    Haddad, Julia; Pontoni, Diego; Murphy, Bridget M; Festersen, Sven; Runge, Benjamin; Magnussen, Olaf M; Steinrück, Hans-Georg; Reichert, Harald; Ocko, Benjamin M; Deutsch, Moshe

    2018-02-06

    Interfaces of room temperature ionic liquids (RTILs) are important for both applications and basic science and are therefore intensely studied. However, the evolution of their interface structure with the cation's alkyl chain length [Formula: see text] from Coulomb to van der Waals interaction domination has not yet been studied for even a single broad homologous RTIL series. We present here such a study of the liquid-air interface for [Formula: see text], using angstrom-resolution X-ray methods. For [Formula: see text], a typical "simple liquid" monotonic surface-normal electron density profile [Formula: see text] is obtained, like those of water and organic solvents. For [Formula: see text], increasingly more pronounced nanoscale self-segregation of the molecules' charged moieties and apolar chains yields surface layering with alternating regions of headgroups and chains. The layering decays into the bulk over a few, to a few tens, of nanometers. The layering periods and decay lengths, their linear [Formula: see text] dependence, and slopes are discussed within two models, one with partial-chain interdigitation and the other with liquid-like chains. No surface-parallel long-range order is found within the surface layer. For [Formula: see text], a different surface phase is observed above melting. Our results also impact general liquid-phase issues like supramolecular self-aggregation and bulk-surface structure relations.

  20. Electrons on the surface of liquid helium

    Lambert, D.K.

    1979-05-01

    Spectroscopic techniques were used to study transitions of electrons between bound states in the potential well near a helium surface. The charge density distribution of electrons on the surface was independently obtained from electrical measurements. From the measurements, information was obtained both about the interaction of the bound state electrons with the surface of liquid helium and about local disorder in the positions of electrons on the surface

  1. Surface studies of liquid metals and alloys

    Bastasz, Robert

    2003-01-01

    Liquid metals and alloys have been proposed for use in nuclear fusion reactors to serve as replaceable plasma-facing surfaces that remove particles and heat from reacting plasmas. Several materials are being considered for this purpose including lithium, gallium, and tin as well as some of the alloys made from these elements. In order to better understand the properties of liquid surfaces, the technique of low-energy ion scattering was used to examine the surface composition of several of these materials in vacuum as a function of temperature. Oxygen is found to rapidly segregate to the surface of several metallic liquids. The segregation process can be interpreted using a simple thermodynamic model based on Gibbs theory. In the case of an alloy of Sn and Li, Li also segregates to the liquid surface. This provides a means to produce a surface enriched in Li, which is more plasma compatible than Sn, without the need to handle large quantities of liquid Li. (author)

  2. Liquid-vapour surface sensors for liquid nitrogen and hydrogen

    Siegwarth, J. D.; Voth, R. O.; Snyder, S. M.

    1992-01-01

    The present paper identifies devices to serve as liquid-vapor detectors in zero gravity. The testing in LH2 was done in a sealed glass Dewar system to eliminate any chance of mixing H2 and air. Most of the tests were performed with the leads to the sensor horizontal. Some results of rapid cycle testing of LVDG in LH2 are presented. Findings of rapid-cycle testing of LVDG in LH2 are discussed. The sensor crossed the liquid surface when the position sensor registered 1.9 V, which occurred at about 0.4075 s. The delay time was about 1.5 ms. From the estimated slope of the position sensor curve at 1.9 V, the velocity of the sensor through the liquid surface is over 3 m/s. Results of tests of optical sensors are presented as well.

  3. Surface study of liquid 3He using surface state electrons

    Shirahama, K.; Ito, S.; Suto, H.; Kono, K.

    1995-01-01

    We have measured the mobility of surface state electrons (SSE) on liquid 3 He, μ 3 , aiming to study the elementary surface excitations of the Fermi liquid. A gradual increase of μ 3 below 300 mK is attributed to the scattering of electrons by ripplons. Ripplons do exist in 3 He down to 100 mK. We observe an abrupt decrease of μ 3 , due to the transition to the Wigner solid (WS). The dependences of the WS conductivity and mobility on temperature and magnetic field differ from the SSE behavior on liquid 4 He

  4. On the stability of an evaporating liquid surface

    Krahl, R; Bänsch, E

    2012-01-01

    The stability of the interface between a volatile liquid and a gaseous phase has been studied in this paper. We consider the case when the liquid volume is not a film and thus the thin-film approximation might not be valid. A linear stability analysis leads to the Orr–Sommerfeld equation for the stream function and a second-order differential equation for the temperature. This system is solved semi-analytically. A parameter study shows that surface tension is stabilizing, while viscosity is destabilizing the liquid surface. The capillary number is identified as the most significant factor. The analytical results were compared with the growth of an initial perturbation for the full system by direct numerical simulations, and excellent agreement was observed. (paper)

  5. Linear and Non-Linear Response of Liquid and Solid Particles to Energetic Radiation

    1991-03-11

    but with the beam left within and upon the surface of a spherical particle illuminat - circularly polarized. (The fifth-order corrected, linearly po...specific situation. Figure 1 shows a schematic of the imaging system under consideration. The incident illuminat - ing radiation is generated from a pulsed

  6. Interaction between liquid droplets and heated surface

    Nigmatulin, B I [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation); Vasiliev, N I [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation); Guguchkin, V V [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation)

    1993-06-01

    In this paper, experimental methods and investigation results of interaction between droplets of different liquids and a heated surface are presented. Wetted area, contact time period and transition boundary from wetted to non-wetted interaction regimes are experimentally evaluated. A simple connection of the wetted area value and contact time period with the heat removal efficiency is shown. (orig.)

  7. Evaporation of liquids on chemically patterned surfaces

    Vieyra Salas, J.A.; Darhuber, A.A.

    2011-01-01

    We studied evaporation rates of volatile liquids deposited onto chemically patterned surfaces by means of experiments and numerical simulations. We quantified the influence of the droplet geometry, in particular circular, triangular, rectangular and square shapes, as well as the influence of contact

  8. Biologically inspired hairy surfaces for liquid repellency

    Hsu, Shu-Hau

    Owing to remarkable features, such as self-cleaning, anti-biofouling and drag reduction, interest on rendering surfaces water-repellent has significantly grown within this decade. Attempts on making surfaces "superhydrophobic", where high water contact angle (θc >150°) accompanied with only few degrees of roll-off angle, have been extensively demonstrated through the mimicking of the surface chemistry and morphology of lotus leaves. This appealing phenomenon also exists on another structure from nature: surfaces comprising soft hairs. Although the role of this piliferous integument has long been recognized for providing life, arthropods in particular, waterrepellency, the synthetic superhydrophobic surfaces based on this structure are still very limited. In this study, the goal was to develop a novel liquid-repellent surface by mimicking the hairy exterior of species. The artificial hairy surfaces were prepared by means of pressurized membrane casting, in which thermoplastic sheets were forced to flow into porous membranes at elevated temperature. The G-shaped pillars on the membrane cast polypropylene substrate are particularly similar to the conformation of natural hairs. The principle of this fabrication technique is relatively accessible and is expected to be compatible with large-area fabrication of superhydrophobic interfaces. The artificial hairy surface features perfectly hydrophobic response where no contact angle hysteresis was observed from video assessment. Thus the artificial hairy surface of the current work appears to be the first report to have such extreme hydrophobicity with only structural modification from the original substrate. This ultralow adhesion to water droplet is believed to be attributed to the hydrophobic methyl groups and the mechanical response of the artificial hairs. Liquid repellency of the hairy surfaces was further enhanced by coating with fluorocarbon (CF) layers via deep reactive ion etching (DRIE). The contact angle of

  9. Nonflat equilibrium liquid shapes on flat surfaces.

    Starov, Victor M

    2004-01-15

    The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.

  10. Stability of thin liquid films containing surface active particles

    Umashankar, Hariharan; Kalpathy, Sreeram; Dixit, Harish

    2017-11-01

    The stability and dynamics of thin liquid films(industrial settings like coating and printing processes and extraction of oil from porous rocks. In this study a hydrodynamic model is introduced to capture the long term evolution of a Newtonian liquid film containing insoluble surfaceactive particles.We consider here the possibility of four distinct interaction regimes based on the surface rheological effects of the particles, such that either, both or neither of Marangoni and surface viscosity effects would be present at the leading order in the governing equations. The liquid film is bounded by a rigid impermeable solid below and covered by passive air phase above.A standard linear stability analysis and nonlinear simulations are performed on the set of highly coupled partial differential evolution equations. Linear stability analysis gives insights on whether a particular imposed perturbationwavenumber will grow or decay in time and also evaluating the fastest growing wavenumber. Parametric studies for all four regimes provides a strong confirmation that surface viscosity and Marangoni effects are indeed rupture delaying effects.

  11. Rupture of thin liquid films on structured surfaces.

    Ajaev, Vladimir S; Gatapova, Elizaveta Ya; Kabov, Oleg A

    2011-10-01

    We investigate stability and breakup of a thin liquid film on a solid surface under the action of disjoining pressure. The solid surface is structured by parallel grooves. Air is trapped in the grooves under the liquid film. Our mathematical model takes into account the effect of slip due to the presence of menisci separating the liquid film from the air inside the grooves, the deformation of these menisci due to local variations of pressure in the liquid film, and nonuniformities of the Hamaker constant which measures the strength of disjoining pressure. Both linear stability and strongly nonlinear evolution of the film are analyzed. Surface structuring results in decrease of the fastest growing instability wavelength and the rupture time. It is shown that a simplified description of film dynamics based on the standard formula for effective slip leads to significant deviations from the behavior seen in our simulations. Self-similar decay over several orders of magnitude of the film thickness near the rupture point is observed. We also show that the presence of the grooves can lead to instability in otherwise stable films if the relative groove width is above a critical value, found as a function of disjoining pressure parameters.

  12. The inherent dynamics of a molecular liquid: Geodesic pathways through the potential energy landscape of a liquid of linear molecules

    Jacobson, Daniel; Stratt, Richard M.

    2014-05-01

    Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation—molecules largely thread their way through narrow channels available in the potential energy landscape.

  13. Non-linearity parameter of binary liquid mixtures at elevated pressures

    . Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid ...

  14. Design integration of liquid surface divertors

    Nygren, R.E.; Cowgill, D.F.; Ulrickson, M.A.; Nelson, B.E.; Fogarty, P.J.; Rognlien, T.D.; Rensink, M.E.; Hassanein, A.; Smolentsev, S.S.; Kotschenreuther, M.

    2004-01-01

    The US Enabling Technology Program in fusion is investigating the use of free flowing liquid surfaces facing the plasma. We have been studying the issues in integrating a liquid surface divertor into a configuration based upon an advanced tokamak, specifically the ARIES-RS configuration. The simplest form of such a divertor is to extend the flow of the liquid first wall into the divertor and thereby avoid introducing additional fluid streams. In this case, one can modify the flow above the divertor to enhance thermal mixing. For divertors with flowing liquid metals (or other electrically conductive fluids) MHD (magneto-hydrodynamics) effects are a major concern and can produce forces that redirect flow and suppress turbulence. An evaluation of Flibe (a molten salt) as a working fluid was done to assess a case in which the MHD forces could be largely neglected. Initial studies indicate that, for a tokamak with high power density, an integrated Flibe first wall and divertor does not seem workable. We have continued work with molten salts and replaced Flibe with Flinabe, a mixture of lithium, sodium and beryllium fluorides, that has some potential because of its lower melting temperature. Sn and Sn-Li have also been considered, and the initial evaluations on heat removal with minimal plasma contamination show promise, although the complicated 3D MHD flows cannot yet be fully modeled. Particle pumping in these design concepts is accomplished by conventional means (ports and pumps). However, trapping of hydrogen in these flowing liquids seems plausible and novel concepts for entrapping helium are also being studied

  15. Density and surface tension of ionic liquids.

    Kolbeck, C; Lehmann, J; Lovelock, K R J; Cremer, T; Paape, N; Wasserscheid, P; Fröba, A P; Maier, F; Steinrück, H-P

    2010-12-30

    We measured the density and surface tension of 9 bis[(trifluoromethyl)sulfonyl]imide ([Tf(2)N](-))-based and 12 1-methyl-3-octylimidazolium ([C(8)C(1)Im](+))-based ionic liquids (ILs) with the vibrating tube and the pendant drop method, respectively. This comprehensive set of ILs was chosen to probe the influence of the cations and anions on density and surface tension. When the alkyl chain length in the [C(n)C(1)Im][Tf(2)N] series (n = 1, 2, 4, 6, 8, 10, 12) is increased, a decrease in density is observed. The surface tension initially also decreases but reaches a plateau for alkyl chain lengths greater than n = 8. Functionalizing the alkyl chains with ethylene glycol groups results in a higher density as well as a higher surface tension. For the dependence of density and surface tension on the chemical nature of the anion, relations are only found for subgroups of the studied ILs. Density and surface tension values are discussed with respect to intermolecular interactions and surface composition as determined by angle-resolved X-ray photoelectron spectroscopy (ARXPS). The absence of nonvolatile surface-active contaminants was proven by ARXPS.

  16. Synchrotron x-ray diffraction study of liquid surfaces

    Als-Nielsen, Jens Aage; Pershan, P.S.

    1983-01-01

    A spectrometer for X-ray diffraction and refraction studies of horizontal, free surfaces of liquids is described. As an illustration smetic-A layering at the surface of a liquid crystal is presented.......A spectrometer for X-ray diffraction and refraction studies of horizontal, free surfaces of liquids is described. As an illustration smetic-A layering at the surface of a liquid crystal is presented....

  17. A new facility for studying plasma interacting with flowing liquid lithium surface

    Cao, X.; Ou, W.; Tian, S.; Wang, C.; Zhu, Z.; Wang, J.; Gou, F.; Yang, D.; Chen, S.

    2014-01-01

    A new facility to study plasmas interacting with flowing liquid lithium surface was designed and is constructing in Sichuan University. The integrated setup includes the liquid lithium circulating part and linear high density plasma generator. The circulating part is consisted of main loop, on-line monitor system, lithium purification system and temperature programmed desorption system. In our group a linear high density plasma generator was built in 2012. Three coils were mounted along the vessel to produce an axial magnetic field inside. The magnetic field strength is up to 0.45 T and work continuously. Experiments on plasmas interacting with free flowing liquid lithium surface will be performed

  18. Analysis of polar organic contaminants in surface water of the northern Adriatic Sea by solid-phase extraction followed by ultrahigh-pressure liquid chromatography-QTRAP® MS using a hybrid triple-quadrupole linear ion trap instrument.

    Loos, Robert; Tavazzi, Simona; Paracchini, Bruno; Canuti, Elisabetta; Weissteiner, Christof

    2013-07-01

    Water-soluble polar organic contaminants are discharged by rivers, cities, and ships into the oceans. Little is known on the fate, pollution effects, and thresholds of toxic chemical mixtures in the marine environment. A new trace analytical method was developed for the multi-compound analysis of polar organic chemical contaminants in marine waters. The method is based on automated solid-phase extraction (SPE) of one-liter water samples followed by ultrahigh-pressure liquid chromatography triple-quadrupole linear ion-trap mass spectrometry (UHPLC-QTRAP(®) MS). Marine water samples from the open Adriatic Sea taken 16 km offshore from Venice (Italy) were analyzed. Method limits of quantification (LOQs) in the low picogram per liter (pg/l) concentration range were achieved. Among the 67 target chemicals analyzed, 45 substances could be detected above the LOQ. The chemicals detected at the highest concentrations were caffeine (up to 367 ng/l), nitrophenol (36 ng/l), 2,4-dinitrophenol (34 ng/l), 5-methyl-1H-benzotriazole (18.5 ng/l), sucralose (11 ng/l), 1H-benzotriazole (9.2 ng/l), terbuthylazine (9 ng/l), alachlor (7.7 ng/l), atrazine-desisopropyl (6.6 ng/l), diethyltoluamide (DEET) (5.0 ng/l), terbuthylazine-desethyl (4.3 ng/l), metolachlor (2.8 ng/l), perfluorooctanoic acid (PFOA) (2.5 ng/l), perfluoropentanoic acid (PFPeA) (2.3 ng/l), linuron (2.3 ng/l), perfluorohexanoic acid (PFHxA) (2.2 ng/l), diuron (2.0 ng/l), perfluorohexane sulfonate (PFHxS) (1.6 ng/l), simazine (1.6 ng/l), atrazine (1.5 ng/l), and perfluorooctane sulfonate (PFOS) (1.3 ng/l). Higher concentrations were detected during summer due to increased levels of tourist activity during this period.

  19. Neutrons on a surface of liquid helium

    Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.

    2016-08-01

    We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.

  20. Electrostatics in liquids: from electrolytes and suspensions towards emulsions and patchy surfaces

    van Roij, R.H.H.G.

    2010-01-01

    These lecture notes describe ionic screening of liquid-immersed charged surfaces within the linear and the nonlinear Poisson–Boltzmann theory. The classic Gouy–Chapman description of a single charged planar surface is extensively described, as well as its linearised version and the connection with

  1. Ultrasonically triggered ignition at liquid surfaces.

    Simon, Lars Hendrik; Meyer, Lennart; Wilkens, Volker; Beyer, Michael

    2015-01-01

    Ultrasound is considered to be an ignition source according to international standards, setting a threshold value of 1mW/mm(2) [1] which is based on theoretical estimations but which lacks experimental verification. Therefore, it is assumed that this threshold includes a large safety margin. At the same time, ultrasound is used in a variety of industrial applications where it can come into contact with explosive atmospheres. However, until now, no explosion accidents have been reported in connection with ultrasound, so it has been unclear if the current threshold value is reasonable. Within this paper, it is shown that focused ultrasound coupled into a liquid can in fact ignite explosive atmospheres if a specific target positioned at a liquid's surface converts the acoustic energy into a hot spot. Based on ignition tests, conditions could be derived that are necessary for an ultrasonically triggered explosion. These conditions show that the current threshold value can be significantly augmented. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Characterization of the intrinsic density profiles for liquid surfaces

    Chacon, Enrique; Tarazona, Pedro

    2005-01-01

    This paper presents recent advances in the characterization of the intrinsic structures in computer simulations of liquid surfaces. The use of operational definitions for the intrinsic surface, associated with each molecular configuration of a liquid slab, gives direct access to the intrinsic profile and to the wavevector dependent surface tension. However, the characteristics of these functions depend on the definition used for the intrinsic surface. We discuss the pathologies associated with a local Gibbs dividing surface definition, and consider the alternative definition of a minimal area surface, going though a set of surface pivots, self-consistently chosen to represent the first liquid layer

  3. Liquid surface model for carbon nanotube energetics

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  4. Ionic liquids at the surface of graphite: Wettability and structure

    Bordes, Emilie; Douce, Laurent; Quitevis, Edward L.; Pádua, Agílio A. H.; Costa Gomes, Margarida

    2018-05-01

    The aim of this work is to provide a better understanding of the interface between graphite and different molecular and ionic liquids. Experimental measurements of the liquid surface tension and of the graphite-liquid contact angle for sixteen ionic liquids and three molecular liquids are reported. These experimental values allowed the calculation of the solid/liquid interfacial energy that varies, for the ionic liquids studied, between 14.5 mN m-1 for 1-ethyl-3-methylimidazolium dicyanamide and 37.8 mN m-1 for 3-dodecyl-1-(naphthalen-1-yl)-1H-imidazol-3-ium tetrafluoroborate. Imidazolium-based ionic liquids with large alkyl side-chains or functionalized with benzyl groups seem to interact more favourably with freshly peeled graphite surfaces. Even if the interfacial energy seems a good descriptor to assess the affinity of a liquid for a carbon-based solid material, we conclude that both the surface tension of the liquid and the contact angle between the liquid and the solid can be significant. Molecular dynamics simulations were used to investigate the ordering of the ions near the graphite surface. We conclude that the presence of large alkyl side-chains in the cations increases the ordering of ions at the graphite surface. Benzyl functional groups in the cations lead to a large affinity towards the graphite surface.

  5. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  6. Initial surface deformations during impact on a liquid pool

    Bouwhuis, W.; Hendrix, M.H.W.; van der Meer, Roger M.; Snoeijer, Jacobus Hendrikus

    2015-01-01

    A tiny air bubble can be entrapped at the bottom of a solid sphere that impacts onto a liquid pool. The bubble forms due to the deformation of the liquid surface by a local pressure buildup inside the surrounding gas, as also observed during the impact of a liquid drop on a solid wall. Here, we

  7. Linear response theory of activated surface diffusion with interacting adsorbates

    Marti' nez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A.S.; Vega, J.L. [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Rojas-Lorenzo, G. [Instituto Superior de Tecnologi' as y Ciencias Aplicadas, Ave. Salvador Allende, esq. Luaces, 10400 La Habana (Cuba); Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain); Miret-Artes, S., E-mail: s.miret@imaff.cfmac.csic.es [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain)

    2010-05-12

    Graphical abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed. - Abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed.

  8. Dynamic interactions of Leidenfrost droplets on liquid metal surface

    Ding, Yujie; Liu, Jing

    2016-09-01

    Leidenfrost dynamic interaction effects of the isopentane droplets on the surface of heated liquid metal were disclosed. Unlike conventional rigid metal, such conductive and deformable liquid metal surface enables the levitating droplets to demonstrate rather abundant and complex dynamics. The Leidenfrost droplets at different diameters present diverse morphologies and behaviors like rotation and oscillation. Depending on the distance between the evaporating droplets, they attract and repulse each other through the curved surfaces beneath them and their vapor flows. With high boiling point up to 2000 °C, liquid metal offers a unique platform for testing the evaporating properties of a wide variety of liquid even solid.

  9. Surface tension of liquid Cu-Ti binary alloys measured by electromagnetic levitation and thermodynamic modelling

    Amore, S.; Brillo, J.; Egry, I.; Novakovic, R.

    2011-01-01

    The surface tension of liquid Cu-Ti alloys has been measured by using the containerless technique of electromagnetic levitation and theoretically calculated in the framework of the compound formation model. Measurements have been carried out on alloys covering the entire range of composition and over the temperature range 1275-2050 K. For all investigated alloys the surface tension can be described by a linear function of the temperature with negative slope. Due to the presence of different intermetallic compounds in the solid state the surface properties of liquid Cu-Ti alloys are satisfactory described by the compound formation model.

  10. Refining and end use study of coal liquids II - linear programming analysis

    Lowe, C.; Tam, S.

    1995-12-31

    A DOE-funded study is underway to determine the optimum refinery processing schemes for producing transportation fuels that will meet CAAA regulations from direct and indirect coal liquids. The study consists of three major parts: pilot plant testing of critical upgrading processes, linear programming analysis of different processing schemes, and engine emission testing of final products. Currently, fractions of a direct coal liquid produced form bituminous coal are being tested in sequence of pilot plant upgrading processes. This work is discussed in a separate paper. The linear programming model, which is the subject of this paper, has been completed for the petroleum refinery and is being modified to handle coal liquids based on the pilot plant test results. Preliminary coal liquid evaluation studies indicate that, if a refinery expansion scenario is adopted, then the marginal value of the coal liquid (over the base petroleum crude) is $3-4/bbl.

  11. Evaluation of Surface Slope Irregularity in Linear Parabolic Solar Collectors

    F. Francini

    2012-01-01

    Full Text Available The paper describes a methodology, very simple in its application, for measuring surface irregularities of linear parabolic collectors. This technique was principally developed to be applied in cases where it is difficult to use cumbersome instruments and to facilitate logistic management. The instruments to be employed are a digital camera and a grating. If the reflector surface is defective, the image of the grating, reflected on the solar collector, appears distorted. Analyzing the reflected image, we can obtain the local slope of the defective surface. These profilometric tests are useful to identify and monitor the mirror portions under mechanical stress and to estimate the losses caused by the light rays deflected outside the absorber.

  12. Ionic liquid nanotribology: stiction suppression and surface induced shear thinning.

    Asencio, Rubén Álvarez; Cranston, Emily D; Atkin, Rob; Rutland, Mark W

    2012-07-03

    The friction and adhesion between pairs of materials (silica, alumina, and polytetrafluoroethylene) have been studied and interpreted in terms of the long-ranged interactions present. In ambient laboratory air, the interactions are dominated by van der Waals attraction and strong adhesion leading to significant frictional forces. In the presence of the ionic liquid (IL) ethylammonium nitrate (EAN) the van der Waals interaction is suppressed and the attractive/adhesive interactions which lead to "stiction" are removed, resulting in an at least a 10-fold reduction in the friction force at large applied loads. The friction coefficient for each system was determined; coefficients obtained in air were significantly larger than those obtained in the presence of EAN (which ranged between 0.1 and 0.25), and variation in the friction coefficients between systems was correlated with changes in surface roughness. As the viscosity of ILs can be relatively high, which has implications for the lubricating properties, the hydrodynamic forces between the surfaces have therefore also been studied. The linear increase in repulsive force with speed, expected from hydrodynamic interactions, is clearly observed, and these forces further inhibit the potential for stiction. Remarkably, the viscosity extracted from the data is dramatically reduced compared to the bulk value, indicative of a surface ordering effect which significantly reduces viscous losses.

  13. X-ray scattering at liquid surfaces and interfaces

    Daillant, Jean

    2000-01-01

    X-ray and neutron reflectivity techniques have become quite popular for the analysis of surfaces and interfaces over the last ten years. In this review, we discuss the specific aspects of both specular and diffuse x-ray reflectivity at liquid interfaces. We start from a model liquid surface for which the scattering cross-section can be calculated in terms of thermally excited capillary and acoustic waves, and we examine in detail the experimental consequences of the large bulk scattering and of the low q divergence of the surface scattering. Deviations from the simple calculated behaviour point to interesting phenomena which can be studied in detail, like the appearance of a bending stiffness. The method is illustrated through the discussion of representative studies of liquid surfaces, of surfactant monolayers, of liquid-liquid interfaces and of microemulsions. (author)

  14. Surface tension of liquid Al-Cu binary alloys.

    Schmitz, Julianna; Brillo, Jürgen; Egry, Ivan; Schmid-Fetzer, Rainer

    2009-01-01

    Surface tension data of liquid Al–Cu binary alloys have been measured contactlessly using the technique of electromagnetic levitation. A digital CMOS-camera (400 fps) recorded image sequences of the oscillating liquid sample and surface tensions were determined from analysis of the frequency spectra. Measurements were performed for samples covering the entire range of composition and precise data were obtained in a broad temperature range. It was found that the surface tensions can ...

  15. Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces.

    Henkel, S; Beyrau, F; Hardalupas, Y; Taylor, A M K P

    2016-02-08

    This paper describes the development and application of a novel optical technique for the measurement of liquid film thickness formed on surfaces during the impingement of automotive fuel sprays. The technique makes use of the change of the light scattering characteristics of a metal surface with known roughness, when liquid is deposited. Important advantages of the technique over previously established methods are the ability to measure the time-dependent spatial distribution of the liquid film without a need to add a fluorescent tracer to the liquid, while the measurement principle is not influenced by changes of the pressure and temperature of the liquid or the surrounding gas phase. Also, there is no need for non-fluorescing surrogate fuels. However, an in situ calibration of the dependence of signal intensity on liquid film thickness is required. The developed method can be applied to measure the time-dependent and two-dimensional distribution of the liquid fuel film thickness on the piston or the liner of gasoline direct injection (GDI) engines. The applicability of this technique was evaluated with impinging sprays of several linear alkanes and alcohols with different thermo-physical properties. The surface temperature of the impingement plate was controlled to simulate the range of piston surface temperatures inside a GDI engine. Two sets of liquid film thickness measurements were obtained. During the first set, the surface temperature of the plate was kept constant, while the spray of different fuels interacted with the surface. In the second set, the plate temperature was adjusted to match the boiling temperature of each fuel. In this way, the influence of the surface temperature on the liquid film created by the spray of different fuels and their evaporation characteristics could be demonstrated.

  16. Evaporation of a liquid drop on a hot liquid surface, (1)

    Iida, Yoshihiro; Takashima, Takeo

    1980-01-01

    As for the phenomena occurring when two kinds of liquid at different temperature come in contact, the clarification of the basic, general matters of the phenomena has not been made yet. Such situation has been caused by the facts that the detailed observation of the aspect in liquid-liquid contact becomes impossible as the disturbance on the interface becomes violent, and it is difficult to obtain the quantitative data and to change temperature difference largely in practice. In this study, liquid drops were dropped on the free surface of another liquid at the temperature higher than the saturation temperature of the dropping liquid, and it was attempted to obtain the basic knowledge concerning the general behavior at the time of liquid-liquid contact by determining the aspect of evaporation and its change and evaporation time. For this experiment, the silicone oil with four different kinematic viscosity was used as the high temperature liquid, and n-pentane and dichloromethane soluble in the mother liquid, and acetone and methyl alcohol insoluble in the mother liquid were used as the liquid drops. The experimental apparatuses and method and the results are reported. The evaporation time curves presented lying S-shape basically, similarly to the evaporation on solid surfaces. The point of maximum evaporation time and the point of maximum heat transfer rate existed. (J.P.N.)

  17. Thermodynamics and structure of liquid surfaces investigated directly with surface analytical tools

    Andersson, Gunther [Flinders Univ., Adelaide, SA (Australia). Centre for NanoScale Science and Technology; Morgner, Harald [Leipzig Univ. (Germany). Wilhelm Ostwald Inst. for Physical and Theoretical Chemistry

    2017-06-15

    Measuring directly the composition, the distribution of constituents as function of the depth and the orientation of molecules at liquid surfaces is essential for determining physicochemical properties of liquid surfaces. While the experimental tools that have been developed for analyzing solid surfaces can in principal be applied to liquid surfaces, it turned out that they had to be adjusted to the particular challenges imposed by liquid samples, e.g. by the unavoidable vapor pressure and by the mobility of the constituting atoms/molecules. In the present work it is shown, how electron spectroscopy and ion scattering spectroscopy have been used for analyzing liquid surfaces. The emphasis of this review is on using the structural information gained for determining the physicochemical properties of liquid surfaces. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Acoustic characteristics of bubble bursting at the surface of a high-viscosity liquid

    Liu Xiao-Bo; Zhang Jian-Run; Li Pu

    2012-01-01

    An acoustic pressure model of bubble bursting is proposed. An experiment studying the acoustic characteristics of the bursting bubble at the surface of a high-viscosity liquid is reported. It is found that the sudden bursting of a bubble at the high-viscosity liquid surface generates N-shape wave at first, then it transforms into a jet wave. The fundamental frequency of the acoustic signal caused by the bursting bubble decreases linearly as the bubble size increases. The results of the investigation can be used to understand the acoustic characteristics of bubble bursting. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Liquid Atomization Induced by Pulse Laser Reflection underneath Liquid Surface

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2009-05-01

    We observed a novel effect of pulse laser reflection at the interface between transparent materials with different refractive indices. The electric field intensity doubles when a laser beam is completely reflected from a material with a higher refractive index to a material with a lower index. This effect appreciably reduces pulse laser ablation threshold of transparent materials. We performed experiments to observe the entire ablation process for laser incidence on the water-air interface using pulse laser shadowgraphy with high-resolution film; the minimum laser fluence for laser ablation at the water-air interface was approximately 12-16 J/cm2. We confirmed that this laser ablation occurs only when the laser beam is incident on the water-air interface from water. Many slender liquid ligaments extend like a milk crown and seem to be atomized at the tip. Their detailed structures can be resolved only by pulse laser photography using high-resolution film.

  20. Ionic-Liquid-Infused Nanostructures as Repellent Surfaces.

    Galvan, Yaraset; Phillips, Katherine R; Haumann, Marco; Wasserscheid, Peter; Zarraga, Ramon; Vogel, Nicolas

    2018-02-02

    In order to prepare lubricant-infused repellent coatings on silica nanostructures using low vapor pressure ionic liquids as lubricants, we study the wetting behavior of a set of imidazolium-based ionic liquids with different alkyl side chains as a function of the applied surface functionalities. We take advantage of the structural color of inverse opals prepared from a colloidal coassembly technique to study the infiltration of ionic liquids into these nanoporous structures. We find that the more hydrophobic ionic liquids with butyl and hexyl side chains can completely infiltrate inverse opals functionalized with mixed self-assembled monolayers composed of imidazole groups and aliphatic hydrocarbon chains, which we introduce via silane chemistry. These molecular species reflect the chemical nature of the ionic liquid, thereby increasing the affinity between the liquid and solid surface. The mixed surface chemistry provides sufficiently small contact angles with the ionic liquid to infiltrate the nanopores while maximizing the contact angle with water. As a result, the mixed monolayers enable the design of a stable ionic liquid/solid interface that is able to repel water as a test liquid. Our results underline the importance of matching chemical affinities to predict and control the wetting behavior in complex, multiphase systems.

  1. Screening model for nanowire surface-charge sensors in liquid

    Sørensen, Martin Hedegård; Mortensen, Asger; Brandbyge, Mads

    2007-01-01

    The conductance change of nanowire field-effect transistors is considered a highly sensitive probe for surface charge. However, Debye screening of relevant physiological liquid environments challenge device performance due to competing screening from the ionic liquid and nanowire charge carriers....

  2. Surface Science at the Solid Liquid Interface

    1993-10-06

    prominent experimental avenue, developed originally by Hubbard et al,_ involves emersing monocrystalline elec- As for metal surfaces in ultrahigh vacuum...reliable means of both preparing and dosateizn ordered monocrystalline metal surfaces in UHV has led to ing appropriate molecular components of...surface atoms in place of bottom panel of Fig. 2, equal intensity contours are shown 23 underlying surface atoms, the compression is 24/23 - I in the

  3. Liquid Water may Stick on Hydrophobic Surfaces

    IAS Admin

    Common Perception. A surface can be classified as. > Wetting. > Non-wetting. Depending on the spreading characteristics of a droplet of water that splashes on the surface. The behavior of fluid on a solid surface under static and dynamic ..... color of the number density profile. Ions at the interface tend to form pinning zones ...

  4. Modified Antifreeze Liquids for Use on Surfaces

    Lynn, R. O.

    1983-01-01

    Report presents results of evaluation of two antifreeze liquids, dimethyl sulfoxide and ethylene glycol and five viscosity modifiers: gelatin, gum tragacanth, starch, agarose powder and citrus pectin. Purpose of evaluation to find best way of dealing with frost formation on Space Shuttle.

  5. Surface tension modelling of liquid Cd-Sn-Zn alloys

    Fima, Przemyslaw; Novakovic, Rada

    2018-06-01

    The thermodynamic model in conjunction with Butler equation and the geometric models were used for the surface tension calculation of Cd-Sn-Zn liquid alloys. Good agreement was found between the experimental data for limiting binaries and model calculations performed with Butler model. In the case of ternary alloys, the surface tension variation with Cd content is better reproduced in the case of alloys lying on vertical sections defined by high Sn to Zn molar fraction ratio. The calculated surface tension is in relatively good agreement with the available experimental data. In addition, the surface segregation of liquid ternary Cd-Sn-Zn and constituent binaries has also been calculated.

  6. Surface wave propagation in a double liquid layer over a liquid ...

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. The frequency equation is derived for surface waves in a liquid- saturated porous half-space supporting a double layer, that of inhomogeneous and homogeneous liquids. Asymptotic approximations of Bessel functions are used for long and short wavelength cases. Certain other problems are discussed as spe-.

  7. Simulation of liquid crystals. Disclinations and surface modification

    Downton, M.

    2001-01-01

    In this thesis we investigate the behaviour of molecular models liquid crystals in several different situations. Basic introductory material on liquid crystals and computer simulations is discussed in the first two chapters, we then discuss the research. The third chapter investigates the interaction between a liquid crystal and a modified surface. A confined system of hard spherocylinders in a slab geometry is examined. The surface consists of planar hard walls with elongated molecules grafted perpendicularly onto them. The concentration of grafted molecules is varied to give different surfaces. Several different behaviours are found including planar, homeotropic and tilted anchorings of the liquid crystal. Molecular dynamics simulations of a nematic liquid crystal in slab geometry with twisted boundary conditions are performed. By arranging the initial configuration suitably it is possible to create a simulation cell with two regions of opposite twist separated by a strength half disclination line. The properties of the line are examined both with and without an applied external field. Finally, we again examine the system of grafted molecules on a flat substrate using an atomistic model of both the liquid crystal and the surface molecules. Again the effect of varying the density of grafted molecules is found to change the anchoring characteristics of the surface; both homeotropic and planar anchorings are observed. (author)

  8. Filtering Non-Linear Transfer Functions on Surfaces.

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few

  9. Bubble entrapment during sphere impact onto quiescent liquid surfaces

    Marston, Jeremy

    2011-06-20

    We report observations of air bubble entrapment when a solid sphere impacts a quiescent liquid surface. Using high-speed imaging, we show that a small amount of air is entrapped at the bottom tip of the impacting sphere. This phenomenon is examined across a broad range of impact Reynolds numbers, 0.2 a Re = (DU0/Il) a 1.2\\' 105. Initially, a thin air pocket is formed due to the lubrication pressure in the air layer between the sphere and the liquid surface. As the liquid surface deforms, the liquid contacts the sphere at a finite radius, producing a thin sheet of air which usually contracts to a nearly hemispherical bubble at the bottom tip of the sphere depending on the impact parameters and liquid properties. When a bubble is formed, the final bubble size increases slightly with the sphere diameter, decreases with impact speed but appears independent of liquid viscosity. In contrast, for the largest viscosities tested herein, the entrapped air remains in the form of a sheet, which subsequently deforms upon close approach to the base of the tank. The initial contact diameter is found to conform to scalings based on the gas Reynolds number whilst the initial thickness of the air pocket or adimplea scales with a Stokes\\' number incorporating the influence of the air viscosity, sphere diameter and impact speed and liquid density. © 2011 Cambridge University Press.

  10. Determination of Surface Properties of Liquid Transition Metals

    Korkmaz, S. D.

    2008-01-01

    Certain surface properties of liquid simple metals are reported. Using the expression derived by Gosh and coworkers we investigated the surface entropy of liquid transition metals namely Fe, Co and Ni. We have also computed surface tensions of the metals concerned. The pair distribution functions are calculated from the solution of Ornstein-Zernike integral equation with Rogers-Young closure using the individual version of the electron-ion potential proposed by Fioalhais and coworkers which was originally developed for solid state. The predicted values of surface tension and surface entropy are in very good agreement with available experimental data. The present study results show that the expression derived by Gosh and coworkers is very useful for the surface entropy by using Fioalhais pseudopotential and Rogers-Young closure

  11. Temporal instability of viscous liquid microjets with spatially varying surface tension

    Furlani, E P [Integrated Materials and Microstructures Laboratory, Electronic Imaging Products, Eastman Kodak Company, Rochester, NY 14650-2121 (United States)

    2005-01-07

    A linear theory is developed for the temporal instability of a viscous liquid microjet of Newtonian fluid with a spatially periodic variation of surface tension imposed along its length. The variation of surface tension induces Marangoni flow within the jet that leads to breakup and drop formation. An analytical expression is derived for the behaviour of the free surface of the microjet. This expression is useful for parametric analysis of jet instability and breakup as a function of jet radius, wavelength and fluid properties.

  12. Temporal instability of viscous liquid microjets with spatially varying surface tension

    Furlani, E P

    2005-01-01

    A linear theory is developed for the temporal instability of a viscous liquid microjet of Newtonian fluid with a spatially periodic variation of surface tension imposed along its length. The variation of surface tension induces Marangoni flow within the jet that leads to breakup and drop formation. An analytical expression is derived for the behaviour of the free surface of the microjet. This expression is useful for parametric analysis of jet instability and breakup as a function of jet radius, wavelength and fluid properties

  13. Beyer's non-linearity parameter (B/A) in benzylidene aniline Schiff base liquid crystalline systems

    Nagi Reddy, M.V.V.; Pisipati, V.G.K.M.; Madhavi Latha, D.; Datta Prasad, P.V.

    2011-01-01

    The non-linearity parameter B/A is estimated for a number of liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-n-alkyl anilines, popularly known as nO.m, where n and m are the aliphatic chains on either side of the rigid core, which can be varied from 1 to 18 to realize a number of LC materials with a variety LC phase variants. The B/A values are computed from both density and sound velocity data following standard relations reported in literature. This systematic study in a homologous series provides an opportunity to study how this parameter behaves with (1) either the alkoxy and/or alkyl chain number, (2) with the total chain number (n+m), (3) with increase in molecular weight and (4) whether the linear relations reported in literature either with αT [thermal expansion coefficient (α) and temperature (T)] and sound velocity (u) will hold good or not and if so to what extent. The results are discussed with the body of data available in literature on liquids, liquid mixtures and other LC materials. -- Research highlights: → The Bayer's non-linearity parameter (B/A) is estimated for the first time for a number liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-nalkyl anilines. → The magnitude of B/A estimated from sound velocity data is higher compared to that estimated thermal expansion data. → The B/A value decreases with increase in molecular weight with an even odd fashion and reaches a minimum value and saturates. → These studies reveal that both the thermal expansion coefficient and sound velocity are the tools to estimate the non-linear parameter B/A in the case of liquid crystals.

  14. Quantum density fluctuations in liquid neon from linearized path-integral calculations

    Poulsen, Jens Aage; Scheers, Johan; Nyman, Gunnar; Rossky, Peter J.

    2007-01-01

    The Feynman-Kleinert linearized path-integral [J. A. Poulsen et al., J. Chem. Phys. 119, 12179 (2003)] representation of quantum correlation functions is applied to compute the spectrum of density fluctuations for liquid neon at T=27.6 K, p=1.4 bar, and Q vector 1.55 Aa -1 . The calculated spectrum as well as the kinetic energy of the liquid are in excellent agreement with the experiment of Cunsolo et al. [Phys. Rev. B 67, 024507 (2003)

  15. Ionic liquids as transesterification catalysts: applications for the synthesis of linear and cyclic organic carbonates

    Maurizio Selva

    2016-08-01

    Full Text Available The use of ionic liquids (ILs as organocatalysts is reviewed for transesterification reactions, specifically for the conversion of nontoxic compounds such as dialkyl carbonates to both linear mono-transesterification products or alkylene carbonates. An introductory survey compares pros and cons of classic catalysts based on both acidic and basic systems, to ionic liquids. Then, innovative green syntheses of task-specific ILs and their representative applications are introduced to detail the efficiency and highly selective outcome of ILs-catalyzed transesterification reactions. A mechanistic hypothesis is discussed by the concept of cooperative catalysis based on the dual (electrophilic/nucleophilic activation of reactants.

  16. Liquid infused porous surfaces for mineral fouling mitigation.

    Charpentier, Thibaut V J; Neville, Anne; Baudin, Sophie; Smith, Margaret J; Euvrard, Myriam; Bell, Ashley; Wang, Chun; Barker, Richard

    2015-04-15

    Prevention of mineral fouling, known as scale, is a long-standing problem in a wide variety of industrial applications, such as oil production, water treatment, and many others. The build-up of inorganic scale such as calcium carbonate on surfaces and facilities is undesirable as it can result in safety risks and associated flow assurance issues. To date the overwhelming amount of research has mainly focused on chemical inhibition of scale bulk precipitation and little attention has been paid to deposition onto surfaces. The development of novel more environmentally-friendly strategies to control mineral fouling will most probably necessitate a multifunctional approach including surface engineering. In this study, we demonstrate that liquid infused porous surfaces provide an appealing strategy for surface modification to reduce mineral scale deposition. Microporous polypyrrole (PPy) coatings were fabricated onto stainless steel substrates by electrodeposition in potentiostatic mode. Subsequent infusion of low surface energy lubricants (fluorinated oil Fluorinert FC-70 and ionic liquid 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIm)) into the porous coatings results in liquid-repellent slippery surfaces. To assess their ability to reduce surface scaling the coatings were subjected to a calcium carbonate scaling environment and the scale on the surface was quantified using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). PPy surfaces infused with BMIm (and Fluorinert to a lesser extent) exhibit remarkable antifouling properties with the calcium carbonate deposition reduced by 18 times in comparison to untreated stainless steel. These scaling tests suggest a correlation between the stability of the liquid infused surfaces in artificial brines and fouling reduction efficiency. The current work shows the great potential of such novel coatings for the management of mineral scale fouling. Copyright © 2014 Elsevier Inc. All rights

  17. Surface tension confined liquid cryogen cooler

    Castles, Stephen H. (Inventor); Schein, Michael E. (Inventor)

    1989-01-01

    A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.

  18. Transport Powder and Liquid Samples by Surface Acoustic Waves

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Louyeh, Sahar

    2009-01-01

    Sample transport is an important requirement for In-situ analysis of samples in NASA planetary exploration missions. Tests have shown that powders or liquid drops on a surface can be transported by surface acoustic waves (SAW) that are generated on the surface using interdigital transducers. The phenomena were investigated experimentally and to generate SAWs interdigital electrodes were deposited on wafers of 128 deg rotated Y-cut LiNbO?. Transporting capability of the SAW device was tested using particles of various sizes and drops of various viscosities liquids. Because of different interaction mechanisms with the SAWs, the powders and the liquid drops were observed to move in opposite directions. In the preliminary tests, a speed of 180 mm/s was achieved for powder transportation. The detailed experimental setup and results are presented in this paper. The transporting mechanism can potentially be applied to miniaturize sample analysis system or " lab-on-chip" devices.

  19. Improvements and validation of the linear surface characteristics scheme

    Santandrea, S.; Jaboulay, J.C.; Bellier, P.; Fevotte, F.; Golfier, H.

    2009-01-01

    In this paper we present the last improvements of the recently proposed linear surface (LS) characteristics scheme for unstructured meshes. First we introduce a new numerical tracking technique, specifically adapted to the LS method, which tailors transverse integration weights to take into account the geometrical discontinuities that appear along the pipe affected to every trajectory in classical characteristics schemes. Another development allows using the volumetric flux variation of the LS method to re-compute step-wise constant fluxes to be used in other parts of a computational scheme. This permits to take greater advantage of the higher precision of the LS method without necessarily conceiving specialized theories for all the modular functionalities of a spectral code such as APOLLO2. Moreover we present a multi-level domain decomposition method for solving the synthetic acceleration operator that is used to accelerate the free iterations for the LS method. We discuss all these new developments by illustrating some benchmarks results obtained with the LS method. This is done by detailed comparisons with Monte-Carlo calculations. In particular we show that the new method can be used not only as a reference tool, but also inside a suitable industrial calculation scheme

  20. Evaporation and condensation at a liquid methanol surface

    Matsumoto, Mitsuhiro; Yasuoka, Kenji; Kataoka, Yosuke

    1994-07-01

    The dynamics of evaporation and condensation at a flat liquid surface of methanol were studied under the liquidvapor equilibrium condition at room temperature with molecular dynamics computer simulation techniques. Analysis of molecular trajectories shows that the condensation coefficient is 89%. It suggests that only a tenth of incident vapor molecules are reflected at the liquid surface, contrary to a prediction of a classical transition state theory. To investigate the potential barrier of the evaporation-condensation process, a particle insertion method was applied and the local chemical potential near the surface was evaluated. The calculated chemical potential is constant in the whole region including the surface layer and no potential barrier is observed in the vincinity of the surface, which casts strong doubt on the explanation of a transition state theory.

  1. AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe

    Van Berkel, Gary J.

    2015-06-23

    An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.

  2. A Class of Optimal Portfolio Liquidation Problems with a Linear Decreasing Impact

    Jiangming Ma

    2017-01-01

    Full Text Available A problem of an optimal liquidation is investigated by using the Almgren-Chriss market impact model on the background that the n agents liquidate assets completely. The impact of market is divided into three components: unaffected price process, permanent impact, and temporary impact. The key element is that the variable temporary market impact is analyzed. When the temporary market impact is decreasing linearly, the optimal problem is described by a Nash equilibrium in finite time horizon. The stochastic component of the price process is eliminated from the mean-variance. Mathematically, the Nash equilibrium is considered as the second-order linear differential equation with variable coefficients. We prove the existence and uniqueness of solutions for the differential equation with two boundaries and find the closed-form solutions in special situations. The numerical examples and properties of the solution are given. The corresponding finance phenomenon is interpreted.

  3. Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami.

    Ariga, Katsuhiko; Mori, Taizo; Nakanishi, Waka; Hill, Jonathan P

    2017-09-13

    The investigation of molecules and materials at interfaces is critical for the accumulation of new scientific insights and technological advances in the chemical and physical sciences. Immobilization on solid surfaces permits the investigation of different properties of functional molecules or materials with high sensitivity and high spatial resolution. Liquid surfaces also present important media for physicochemical innovation and insight based on their great flexibility and dynamicity, rapid diffusion of molecular components for mixing and rearrangements, as well as drastic spatial variation in the prevailing dielectric environment. Therefore, a comparative discussion of the relative merits of the properties of materials when positioned at solid or liquid surfaces would be informative regarding present-to-future developments of surface-based technologies. In this perspective article, recent research examples of nanoarchitectonics, molecular machines, DNA nanotechnology, and DNA origami are compared with respect to the type of surface used, i.e. solid surfaces vs. liquid surfaces, for future perspectives of interfacial physics and chemistry.

  4. Characterization of linear interfacial waves in a turbulent gas-liquid pipe flow

    Ayati, A. A.; Farias, P. S. C.; Azevedo, L. F. A.; de Paula, I. B.

    2017-06-01

    The evolution of interfacial waves on a stratified flow was investigated experimentally for air-water flow in a horizontal pipe. Waves were introduced in the liquid level of stratified flow near the pipe entrance using an oscillating plate. The mean height of liquid layer and the fluctuations superimposed on this mean level were captured using high speed cameras. Digital image processing techniques were used to detect instantaneous interfaces along the pipe. The driving signal of the oscillating plate was controlled by a D/A board that was synchronized with acquisitions. This enabled to perform phase-locked acquisitions and to use ensemble average procedures. Thereby, it was possible to measure the temporal and spatial evolution of the disturbances introduced in the flow. In addition, phase-locked measurements of the velocity field in the liquid layer were performed using standard planar Particle Image Velocimetry (PIV). The velocity fields were extracted at a fixed streamwise location, whereas the measurements of the liquid level were performed at several locations along the pipe. The assessment of the setup was important for validation of the methodology proposed in this work, since it aimed at providing results for further comparisons with theoretical models and numerical simulations. Therefore, the work focuses on validation and characterization of interfacial waves within the linear regime. Results show that under controlled conditions, the wave development can be well captured and reproduced. In addition, linear waves were observed for liquid level oscillations lower than about 1.5% of the pipe diameter. It was not possible to accurately define an amplitude threshold for the appearance of nonlinear effects because it strongly depended on the wave frequency. According to the experimental findings, longer waves display characteristics similar to linear waves, while short ones exhibit a more complex evolution, even for low amplitudes.

  5. Liquid Lithium Limiter Effects on Tokamak Plasmas and Plasma-Liquid Surface Interactions

    R. Kaita; R. Majeski; R. Doerner; G. Antar; M. Baldwin; R. Conn; P. Efthimion; M. Finkenthal; D. Hoffman; B. Jones; S. Krashenninikov; H. Kugel; S. Luckhardt; R. Maingi; J. Menard; T. Munsat; D. Stutman; G. Taylor; J. Timberlake; V. Soukhanovskii; D. Whyte; R. Woolley; L. Zakharov

    2002-10-15

    We present results from the first experiments with a large area liquid lithium limiter in a magnetic fusion device, and its effect on improving plasma performance by reducing particle recycling. Using large area liquid metal surfaces in any major fusion device is unlikely before a test on a smaller scale. This has motivated its demonstration in the CDX-U spherical torus with a unique, fully toroidal lithium limiter. The highest current discharges were obtained with a liquid lithium limiter. There was a reduction in recycling, as indicated by a significant decrease in the deuterium-alpha emission and oxygen radiation. How these results might extrapolate to reactors is suggested in recycling/retention experiments with liquid lithium surfaces under high-flux deuterium and helium plasma bombardment in PISCES-B. Data on deuterium atoms retained in liquid lithium indicate retention of all incident ions until full volumetric conversion to lithium deuteride. The PISCES-B results also show a material loss mechanism that lowers the maximum operating temperature compared to that for the liquid surface equilibrium vapor pressure. This may restrict the lithium temperature in reactors.

  6. Liquid Lithium Limiter Effects on Tokamak Plasmas and Plasma-Liquid Surface Interactions

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Baldwin, M.; Conn, R.; Efthimion, P.; Finkenthal, M.; Hoffman, D.; Jones, B.; Krashenninikov, S.; Kugel, H.; Luckhardt, S.; Maingi, R.; Menard, J.; Munsat, T.; Stutman, D.; Taylor, G.; Timberlake, J.; Soukhanovskii, V.; Whyte, D.; Woolley, R.; Zakharov, L.

    2002-01-01

    We present results from the first experiments with a large area liquid lithium limiter in a magnetic fusion device, and its effect on improving plasma performance by reducing particle recycling. Using large area liquid metal surfaces in any major fusion device is unlikely before a test on a smaller scale. This has motivated its demonstration in the CDX-U spherical torus with a unique, fully toroidal lithium limiter. The highest current discharges were obtained with a liquid lithium limiter. There was a reduction in recycling, as indicated by a significant decrease in the deuterium-alpha emission and oxygen radiation. How these results might extrapolate to reactors is suggested in recycling/retention experiments with liquid lithium surfaces under high-flux deuterium and helium plasma bombardment in PISCES-B. Data on deuterium atoms retained in liquid lithium indicate retention of all incident ions until full volumetric conversion to lithium deuteride. The PISCES-B results also show a material loss mechanism that lowers the maximum operating temperature compared to that for the liquid surface equilibrium vapor pressure. This may restrict the lithium temperature in reactors

  7. Liquid lithium limiter effects on tokamak plasmas and plasma-liquid surface interactions

    Kaita, R.; Majeski, R.; Doerner, R.

    2003-01-01

    We present results from the first experiments with a large area liquid lithium limiter in a magnetic fusion device, and its effect on improving plasma performance by reducing particle recycling. Using large area liquid metal surfaces in any major fusion device is unlikely before a test on a smaller scale. This has motivated its demonstration in the CDX-U spherical torus with a unique, fully toroidal lithium limiter. The highest current discharges were obtained with a liquid lithium limiter. There was a reduction in recycling, as indicated by a significant decrease in the deuterium-alpha emission and oxygen radiation. How these results might extrapolate to reactors is suggested in recycling/retention experiments with liquid lithium surfaces under high-flux deuterium and helium plasma bombardment in PISCES-B. Data on deuterium atoms retained in liquid lithium indicate retention of all incident ions until full volumetric conversion to lithium deuteride. The PISCES-B results also show a material loss mechanism that lowers the maximum operating temperature compared to that for the liquid surface equilibrium vapor pressure. This may restrict the lithium temperature in reactors. (author)

  8. Reaction of water vapor with a clean liquid uranium surface

    Siekhaus, W.

    1985-01-01

    To study the reaction of water vapor with uranium, we have exposed clean liquid uranium surfaces to H 2 O under UHV conditions. We have measured the surface concentration of oxygen as a function of exposure, and determined the maximum attainable surface oxygen concentration X 0 /sup s/ as a function of temperature. We have used these measurements to estimate, close to the melting point, the solubility of oxygen (X 0 /sup b/, -4 ) and its surface segregation coefficient β/sup s/(> 10 3 ). 8 refs., 5 figs., 1 tab

  9. Liquid nitrogen cryotherapy for surface eye disease (an AOS thesis).

    Fraunfelder, Frederick Web

    2008-01-01

    To evaluate the effects of new treatments with liquid nitrogen cryotherapy on some external eye conditions. In this retrospective case study, 6 separate series from a single tertiary care referral center practice are described. Liquid nitrogen cryotherapy was used to treat conjunctival amyloidosis, primary pterygia, recurrent pterygia, advancing wavelike epitheliopathy (AWLE), superior limbic keratoconjunctivitis (SLK), and palpebral vernal keratoconjunctivitis (VKC). The main outcome measure was the resolution of the disease process after treatment. Four patients with primary localized conjunctival amyloidosis were treated with liquid nitrogen cryotherapy. Two of them had recurrence of the amyloidosis, which cleared with subsequent treatment. Eighteen patients with primary pterygia had excision and cryotherapy with 1 recurrence. Of 6 subjects who presented with recurrent pterygia, 4 had a second recurrence after excision and cryotherapy. In 5 patients with AWLE, the condition resolved within 2 weeks without recurrence or the need for subsequent cryotherapy. Four patients with SLK were treated with liquid nitrogen cryotherapy. Disease recurred in 2 patients and 3 of 7 eyes, although subsequent cryotherapy eradicated SLK in all cases. Two patients and 3 eyelids with palpebral VKC were treated with liquid nitrogen cryotherapy. VKC recurred in all cases. Liquid nitrogen cryotherapy to the surface of the eye is effective in treating AWLE, and SLK. Excision followed by cryotherapy is successful in treating conjunctival amyloidosis and primary pterygia Liquid nitrogen cryotherapy is unsuccessful in the treatment of recurrent pterygia and VKC.

  10. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  11. Ultrasonic pumping of liquids in the two directions of a vertical tube by a vibrating surface

    Santillan, Arturo Orozco; Cutanda Henriquez, Vicente

    2010-01-01

    of the oscillations of the vibrating horizontal surface determine the direction in which the liquid is pumped. In addition, the size of the gap is also a relevant factor, which has to be significantly small. The carried out numerical simulations show that the Lagrangian excess pressure and the density of linear......It has been reported that it is possible to pump a liquid into the interior of a vertical pipe when its lower end is facing a vibrating plane surface immersed in the liquid. The column of liquid pumped in a thin pipe can be higher than 2 m if the gap between the pipe end and the vibrating...... horizontal surface is very small, around 0.01 mm. In this paper we present experimental results showing that, with a similar set up as the one mentioned above, it is also possible to pump liquids in the opposite direction, from the interior of the pipe through the gap. The general objective of the work has...

  12. Surface dynamics and mechanics in liquid crystal polymer coatings

    Liu, D.; Broer, D.J.; Chien, L.-C.; Coles, H.J.; Kikuchi, H.; Smalyukh, I.I.

    2015-01-01

    Based on liquid crystal networks we developed 'smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that

  13. Surface effects on the propagation of sound in Fermi liquids

    Nagai, K.; Woelfle, P.

    1981-01-01

    The propagation of sound in a resonator is discussed in both the normal and superfluid Fermi liquids. A set of model hydrodynamic equations is developed for describing the transition from the hydrodynamic regime to the collisionless regime. Surface effects are incorporated by using a slip boundary condition. The resonance condition for the sound propagation in a cylindrical resonator is derived

  14. Silicon surface barrier detectors used for liquid hydrogen density measurement

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  15. Bubble entrapment during sphere impact onto quiescent liquid surfaces

    Marston, Jeremy; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2011-01-01

    We report observations of air bubble entrapment when a solid sphere impacts a quiescent liquid surface. Using high-speed imaging, we show that a small amount of air is entrapped at the bottom tip of the impacting sphere. This phenomenon is examined

  16. Surface Structures of Binary Mixture of Ionic Liquids.

    Nakajima, K.; Nakanishi, S.; Lísal, Martin; Kimura, K.

    2017-01-01

    Roč. 230, MARCH (2017), s. 542-549 ISSN 0167-7322 R&D Projects: GA ČR(CZ) GA16-12291S Institutional support: RVO:67985858 Keywords : ionic liquids * mixture * surface structure Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.648, year: 2016

  17. Local structural ordering in surface-confined liquid crystals

    Śliwa, I.; Jeżewski, W.; Zakharov, A. V.

    2017-06-01

    The effect of the interplay between attractive nonlocal surface interactions and attractive pair long-range intermolecular couplings on molecular structures of liquid crystals confined in thin cells with flat solid surfaces has been studied. Extending the McMillan mean field theory to include finite systems, it has been shown that confining surfaces can induce complex orientational and translational ordering of molecules. Typically, local smectic A, nematic, and isotropic phases have been shown to coexist in certain temperature ranges, provided that confining cells are sufficiently thick, albeit finite. Due to the nonlocality of surface interactions, the spatial arrangement of these local phases can display, in general, an unexpected complexity along the surface normal direction. In particular, molecules located in the vicinity of surfaces can still be organized in smectic layers, even though nematic and/or isotropic order can simultaneously appear in the interior of cells. The resulting surface freezing of smectic layers has been confirmed to occur even for rather weak surface interactions. The surface interactions cannot, however, prevent smectic layers from melting relatively close to system boundaries, even when molecules are still arranged in layers within the central region of the system. The internal interfaces, separating individual liquid-crystal phases, are demonstrated here to form fronts of local finite-size transitions that move across cells under temperature changes. Although the complex molecular ordering in surface confined liquid-crystal systems can essentially be controlled by temperature variations, specific thermal properties of these systems, especially the nature of the local transitions, are argued to be strongly conditioned to the degree of molecular packing.

  18. Surface energies of metals in both liquid and solid states

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension (γ m ), surface energy (γ SV ), surface excess entropy (-dγ/dT), surface excess enthalpy (H s ), coefficient of thermal expansion (α m and α b ), sound velocity (c m ) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  19. Drop splashing: the role of surface wettability and liquid viscosity

    Almohammadi, Hamed; Amirfazli, Alidad; -Team

    2017-11-01

    There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.

  20. The appearance of liquid surfaces and layers in routine radiographs

    Nilson, A.E.; Sahlgrenska Sjukhuset, Goeteborg

    1986-01-01

    As has been demonstrated, the interfaces between a gas and a body fluid or a contrast medium may be visualized in the radiographic image as various kinds of boundaries, as also may interfaces between a contrast medium and a body fluid. These can provide little diagnostic information. Data of clinical value are usually derived from boundaries that represent bounding surfaces of anatomic structures touched by the roentgen rays. In the interpretation of the radiographic image it is important to recognize whether a boundary represents an anatomic structure, a liquid surface or a diffusion layer. It is a traditional view that a liquid surface is visualized by a horizontal beam as a straight horizontal boundary and that the imaged surface is then also horizontal. As has been shown in the earlier investigations and the present one, this is not always the case, for these boundaries are usually curved with an upward concavity. It is important to bear in mind that also rays departing considerably from the horizontal may still touch the liquid surface in its meniscoid. Even a vertical beam will form a boundary when touching a meniscoid. It would also appear that the simple layering phenomenon can present difficulty in interpretation. Examples of this phenomenon that illustrate particularly important situations have been presented. Ambiguity associated with the interpretation of images produced by a vertical beam may be resolved with the aid of supplementary films exposed with a horizontal beam. (orig.)

  1. Hydrometer calibration by hydrostatic weighing with automated liquid surface positioning

    Aguilera, Jesus; Wright, John D; Bean, Vern E

    2008-01-01

    We describe an automated apparatus for calibrating hydrometers by hydrostatic weighing (Cuckow's method) in tridecane, a liquid of known, stable density, and with a relatively low surface tension and contact angle against glass. The apparatus uses a laser light sheet and a laser power meter to position the tridecane surface at the hydrometer scale mark to be calibrated with an uncertainty of 0.08 mm. The calibration results have an expanded uncertainty (with a coverage factor of 2) of 100 parts in 10 6 or less of the liquid density. We validated the apparatus by comparisons using water, toluene, tridecane and trichloroethylene, and found agreement within 40 parts in 10 6 or less. The new calibration method is consistent with earlier, manual calibrations performed by NIST. When customers use calibrated hydrometers, they may encounter uncertainties of 370 parts in 10 6 or larger due to surface tension, contact angle and temperature effects

  2. Hydrometer calibration by hydrostatic weighing with automated liquid surface positioning

    Aguilera, Jesus; Wright, John D.; Bean, Vern E.

    2008-01-01

    We describe an automated apparatus for calibrating hydrometers by hydrostatic weighing (Cuckow's method) in tridecane, a liquid of known, stable density, and with a relatively low surface tension and contact angle against glass. The apparatus uses a laser light sheet and a laser power meter to position the tridecane surface at the hydrometer scale mark to be calibrated with an uncertainty of 0.08 mm. The calibration results have an expanded uncertainty (with a coverage factor of 2) of 100 parts in 106 or less of the liquid density. We validated the apparatus by comparisons using water, toluene, tridecane and trichloroethylene, and found agreement within 40 parts in 106 or less. The new calibration method is consistent with earlier, manual calibrations performed by NIST. When customers use calibrated hydrometers, they may encounter uncertainties of 370 parts in 106 or larger due to surface tension, contact angle and temperature effects.

  3. The approximate determination of the critical temperature of a liquid by measuring surface tension versus the temperature

    Maroto, J A; Nieves, F J de las; Quesada-Perez, M

    2004-01-01

    A classical experience in a physics student laboratory is to determine the surface tension of a liquid versus the temperature and to check the linear appearance of the obtained graph. In this work we show a simple method to estimate the critical temperature of three liquids by using experimental data of surface tension at different temperatures. By a logarithm fitting between surface tension and temperature, the critical temperature can be determined and compared with data from the literature. For two liquids (butanol and nitrobenzene) the comparison is acceptable but the differences are too high for the third liquid (water). By discussing the results it seems to be clear that the difference between the critical temperature of the liquid and the maximum temperature of the surface tension measurements is the determining factor in obtaining acceptable results. From this study it is possible to obtain more information on the liquid characteristics from surface tension measurements that are currently carried out in a student laboratory. Besides, in this paper it is shown how to select the most suitable liquids which provide both acceptable values for the critical temperature and measurements of the surface tension at moderate temperatures. The complementary use of numerical methods permits us to offer a complete experience for the students with a simple laboratory experiment which we recommend for physics students in advanced university courses

  4. Surface wave propagation in a double liquid layer over a liquid ...

    The frequency equation is derived for surface waves in a liquidsaturated porous half-space supporting a double layer, that of inhomogeneous and homogeneous liquids. Asymptotic approximations of Bessel functions are used for long and short wavelength cases. Certain other problems are discussed as special cases.

  5. Surface tension and density of liquid In-Sn-Zn alloys

    Pstruś, Janusz

    2013-01-01

    Using the dilatometric method, measurements of the density of liquid alloys of the ternary system In-Sn-Zn in four sections with a constant ratio Sn:In = 24:1, 3:1, 1:1, 1:3, for various Zn additions (5, 10, 14, 20, 3 5, 50 and 75 at.% Zn) were performed at the temperature ranges of 500-1150 K. Density decreases linearly for all compositions. The molar volume calculated from density data exhibits close to ideal dependence on composition. Measurements of the surface tension of liquid alloys have been conducted using the method of maximum pressure in the gas bubbles. There were observed linear dependences on temperature with a negative gradients dσ/dT. Generally, with two exceptions, there was observed the increase of surface tension with increasing content of zinc. Using the Butler's model, the surface tension isotherms were calculated for temperatures T = 673 and 1073 K. Calculations show that only for high temperatures and for low content of zinc (up to about 35 at.%), the modeling is in very good agreement with experiment. Using the mentioned model, the composition of the surface phase was defined at two temperatures T = 673 and 973 K. Regardless of the temperature and of the defined section, the composition of the bulk is very different in comparison with the composition of the surface.

  6. Structure and dynamics at the liquid surface of benzyl alcohol

    Dietter, J.; Morgner, H.

    1999-01-01

    A molecular dynamics simulation of a liquid layer of benzyl alcohol has been performed in order to compare the results with those obtained in experimental studies of our group. The main result of the experimental work was a strong orientational ordering of the benzyl alcohol molecules in the surface as well as an exceptionally large surface potential of ca. 0.6 V. According to the experiments the surface molecules orientate in such a way that the benzene ring points toward the vapor phase while the CH 2 group and the OH group are directed towards the bulk of the liquid. The simulation confirms this orientation of the surface molecules. The surface potential resulting from the simulation is 350 mV. The simulation reveals that the rather large surface potential can be understood as a consequence of the mean orientation of the molecular dipole moment in the surface region. The mean orientation of the molecules themselves in the surface is due to the tendency of the system to maintain the hydrogen bonding structure of the bulk in the surface region as well. The preferential orientation of the surface molecules causes a change of the dynamics of the individual components of the molecules when switching from bulk to surface which depends on the separation of these components from the polar group. This becomes most obvious in case of the reorientation dynamics of the molecular axes, e.g. the reorientation of the benzene ring is faster than the reorientation of the OH group. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Reducing Friction with a Liquid Film on the Body Surface

    Nikolay Klyuev

    2018-03-01

    Full Text Available A flow of a thin layer of liquid is simulated on a flat surface of a body located in a stream of air. Liquid film on the surface of the body reduces frictional resistance and can be used as a boundary layer control element. The paper presents a mathematical model of the film flow on a half-plane, located at an angle to the horizon. The fluid flow is determined by the force of gravity and friction from the external air current. A model of an incompressible viscous fluid is used in the boundary-layer approximation. The terms of the motion equation are averaged over the film thickness according to the Leibniz rule. In the cross section of the film, a quadratic law is adopted for the distribution of the longitudinal velocity, taking into account friction on the film surface. An analytical solution of the problem is obtained in the form of series in powers of the small parameter for determining the film thickness and the average longitudinal velocity along the length of the plate. It is shown that the friction decreases with flow around a half-plane with a film of liquid on the surface.

  8. Linear stability of liquid films with phase change at the interface

    Spindler, Bertrand

    1980-01-01

    The objective of this research thesis is to study the linear stability of the flow of a liquid film on an inclined plane with a heat flow on the wall and an interfacial phase change, and to highlight the influence of the phase change on the flow stability. In order to do so, the author first proposed a rational simplification of equations by studying the order of magnitude of different terms, and based on some simple hypotheses regarding flow physics. Two stability studies are then addressed, one regarding a flow with a pre-existing film, and the other regarding the flow of a condensation film. In both cases, it is assumed that there is no imposed heat flow, but that the driving effect of vapour by the liquid film is taken into account [fr

  9. Solvent effects in ionic liquids: empirical linear energy-density relationships.

    Cerda-Monje, A; Aizman, A; Tapia, R A; Chiappe, C; Contreras, R

    2012-07-28

    Multiparameter linear energy-density relationships to model solvent effects in room temperature ionic liquids (RTILs) are introduced and tested. The model incorporates two solvent dependent and two specific solute-solvent parameters represented by a set of electronic indexes derived from the conceptual density functional theory. The specific solute-solvent interactions are described in terms of the electronic chemical potential for proton migration between the anion or cation and the transition state structure of a specific reaction. These indexes provide a quantitative estimation of the hydrogen bond (HB) acceptor basicity and the hydrogen bond donor acidity of the ionic solvent, respectively. A sound quantitative scale of HB strength is thereby obtained. The solvent dependent contributions are described by the global electrophilicity of the cation and nucleophilicity of the anion forming the ionic liquid. The model is illustrated for the kinetics of cycloaddition of cyclopentadiene towards acrolein. In general, cation HB acidity outweighs the remaining parameters for this reaction.

  10. Capillary origami: superhydrophobic ribbon surfaces and liquid marbles

    Glen McHale

    2011-03-01

    Full Text Available In the wetting of a solid by a liquid it is often assumed that the substrate is rigid. However, for an elastic substrate the rigidity depends on the cube of its thickness and so reduces rapidly as the substrate becomes thinner as it approaches becoming a thin sheet. In such circumstances, it has been shown that the capillary forces caused by a contacting droplet of a liquid can shape the solid rather than the solid shaping the liquid. A substrate can be bent and folded as a (pinned droplet evaporates or even instantaneously and spontaneously wrapped on contact with a droplet. When this effect is used to create three dimensional shapes from initially flat sheets, the effect is called capillary origami or droplet wrapping.In this work, we consider how the conditions for the spontaneous, capillary induced, folding of a thin ribbon substrate might be altered by a rigid surface structure that, for a rigid substrate, would be expected to create Cassie–Baxter and Wenzel effects. For smooth thin substrates, droplet wrapping can occur for all liquids, including those for which the Young’s law contact angle (defined by the interfacial tensions is greater than 90° and which would therefore normally be considered relatively hydrophobic. However, consideration of the balance between bending and interfacial energies suggests that the tendency for droplet wrapping can be suppressed for some liquids by providing the flexible solid surface with a rigid topographic structure. In general, it is known that when a liquid interacts with such a structure it can either fully penetrate the structure (the Wenzel case or it can bridge between the asperities of the structure (the Cassie–Baxter case.In this report, we show theoretically that droplet wrapping should occur with both types of solid–liquid contact. We also derive a condition for the transition between the Cassie–Baxter and Wenzel type droplet wrapping and relate it to the same transition condition

  11. Instability of flow of liquid film over a heated surface

    Sha, W.T.

    1994-01-01

    Fundamental concepts and basic equations of a flowing thin liquid film cooling a heated surfaced by its vaporization and the effect of dry patches were treated. Stable film flow prior to the appearance of dry patches on the heated surface is maintained by a balance of various forces due to surface tension, shear stress, heat and mass transfer, and gravity. Film splitting at a critical film thickness produces dry patches due to perturbation by waves on a perfect surface, and often by surface imperfection and uneven heating. This work is primarily motivated by the design of next-generation nuclear reactors, which employ many novel passive heat-removal systems via natural circulation. These systems are design to prevent damage to the reactor core and containment without action by the reactor operators during or after a design basis accident such as a loss of coolant accident (LOCA) or a main steam-line break (MSLB) accident

  12. Study on surface wave characteristics of free surface flow of liquid metal lithium for IFMIF

    Hoashi, Eiji; Sugiura, Hirokazu; Yoshihashi-Suzuki, Sachiko; Yamaoka, Nobuo; Horiike, Hiroshi; Kanemura, Takuji; Kondo, Hiroo

    2011-01-01

    The international fusion materials irradiation facility (IFMIF) presents an intense neutron source to develop fusion reactor materials. The free surface flow of a liquid metal Lithium (Li) is planned as a target irradiated by two deuteron beams to generate intense neutrons and it is thus important to obtain knowledge of the surface wave characteristic for the safety and the efficiency of system in the IFMIF. We have been studying on surface wave characteristics experimentally using the liquid metal Li circulation facility at Osaka University and numerically using computational fluid dynamics (CFD) code, FLUENT. This paper reports the results of the surface fluctuation, the wave height and the surface velocity in the free surface flow of the liquid metal Li examined experimentally and numerically. In the experiment, an electro-contact probe apparatus was used to obtain the surface fluctuation and the wave height, and a high speed video was used to measure the surface velocity. We resulted in knowledge of the surface wave growth mechanism. On the other hand, a CFD simulation was also conducted to obtain information on the relation of the free surface with the inner flow. In the simulation, the model included from a two-staged contraction nozzle to a flow channel with a free surface flow region and simulation results were compared with the experimental data. (author)

  13. Time-Dependent Liquid Transport on a Biomimetic Topological Surface.

    Yu, Cunlong; Li, Chuxin; Gao, Can; Dong, Zhichao; Wu, Lei; Jiang, Lei

    2018-05-02

    Liquid drops impacting on a solid surface is a familiar phenomenon. On rainy days, it is quite important for leaves to drain off impacting raindrops. Water can bounce off or flow down a water-repellent leaf easily, but with difficulty on a hydrophilic leaf. Here, we show an interesting phenomenon in which impacting drops on the hydrophilic pitcher rim of Nepenthes alata can spread outward to prohibit water filling the pitcher tank. We mimic the peristome surface through a designed 3D printing and replicating way and report a time-dependently switchable liquid transport based on biomimetic topological structures, where surface curvature can work synergistically with the surface microtextures to manipulate the switchable spreading performance. Motived by this strange behavior, we construct a large-scaled peristome-mimetic surface in a 3D profile, demonstrating the ability to reduce the need to mop or to squeegee drops that form during the drop impacting process on pipes or other curved surfaces in food processing, moisture transfer, heat management, etc.

  14. Surface dynamics and mechanics in liquid crystal polymer coatings

    Liu, Danqing; Broer, Dirk J.

    2015-03-01

    Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.

  15. Theory of the surface dipole layer and of surface tension in liquids of charged particles

    Senatore, G.; Tosi, M.P.

    1980-01-01

    The problem of the surface density profiles and of the surface tension of a two-component liquid of charged particles in equilibrium with its vapour is examined. The exact equilibrium conditions for the profiles are given in terms of the inverse response functions of the inhomogeneous fluid, and alternative exact expressions for the surface tension are derived. The use of a density gradient expansion reduces the problem to knowledge of properties of a homogeneous charged fluid on a uniform neutralizing background, in which the total particle density and the charge density are independent variables. Additional simplifications are discussed for special cases for which a perturbative treatment of the surface charge density profile can be developed, and in particular for nearly symmetric ionic liquids and for simple liquid metals. (author)

  16. Behavior of a Liquid Bridge between Nonparallel Hydrophobic Surfaces.

    Ataei, Mohammadmehdi; Chen, Huanchen; Amirfazli, Alidad

    2017-12-26

    When a liquid bridge is formed between two nonparallel identical surfaces, it can move along the surfaces. Literature indicates that the direction of bridge movement is governed by the wettability of surfaces. When the surfaces are hydrophilic, the motion of the bridge is always toward the cusp (intersection of the plane of the two bounding surfaces). On the other hand, the movement is hitherto thought to be always pointing away from the cusp when the surfaces are hydrophobic. In this study, through experiments, numerical simulations, and analytical reasoning, we demonstrate that for hydrophobic surfaces, wettability is not the only factor determining the direction of the motion. A new geometrical parameter, i.e., confinement (cf), was defined as the ratio of the distance of the farthest contact point of the bridge to the cusp, and that of the closest contact point to the cusp. The direction of the motion depends on the amount of confinement (cf). When the distance between the surfaces is large (resulting in a small cf), the bridge tends to move toward the cusp through a pinning/depinning mechanism of contact lines. When the distance between the surfaces is small (large cf), the bridge tends to move away from the cusp. For a specific system, a maximum cf value (cf max ) exists. A sliding behavior (i.e., simultaneous advancing on the wider side and receding on the narrower side) can also be seen when a liquid bridge is compressed such that the cf exceeds the cf max . Contact angle hysteresis (CAH) is identified as an underpinning phenomenon that together with cf fundamentally explains the movement of a trapped liquid between two hydrophobic surfaces. If there is no CAH, however, i.e., the case of ideal hydrophobic surfaces, the cf will be a constant; we show that the bridge slides toward the cusp when it is stretched, while it slides away from the cusp when it is compressed (note sliding motion is different from motion due to pinning/depinning mechanism of contact

  17. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Zhou, Xiang; Zhang, Zhenyu [Wuhan University, Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan (China); Liu, Qian; Zheng, Yangheng [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Han, Junbo [Huazhong University of Science and Technology, Wuhan National High Magnetic Field Center, Wuhan (China); Zhang, Xuan; Ding, Yayun; Zhou, Li; Cao, Jun; Wang, Yifang [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2015-11-15

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments. (orig.)

  18. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    Zhou, Xiang, E-mail: xiangzhou@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Liu, Qian, E-mail: liuqian@ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Han, Junbo [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan (China); Zhang, Zhenyu [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan (China); Zhang, Xuan; Ding, Yayun [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China); Zheng, Yangheng [School of Physics, University of Chinese Academy of Sciences, 100049, Beijing (China); Zhou, Li; Cao, Jun; Wang, Yifang [Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing (China)

    2015-11-21

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√(E(MeV)) required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments.

  19. Growth of linear Ni-filled carbon nanotubes by local arc discharge in liquid ethanol

    Sagara, Takuya [Department of Electric Engineering, Graduated School of Science and Technology, Nihon University, 1-8-14 Surugadai Kanda, Chiyoda, Tokyo 101-8308 (Japan); Kurumi, Satoshi [Department of Electric Engineering, College of Science and Technology, Nihon University, 1-8-14 Surugadai Kanda, Chiyoda, Tokyo 101-8308 (Japan); Suzuki, Kaoru, E-mail: kaoru@ele.cst.nihon-u.ac.jp [Department of Electric Engineering, College of Science and Technology, Nihon University, 1-8-14 Surugadai Kanda, Chiyoda, Tokyo 101-8308 (Japan)

    2014-02-15

    The cylindrical geometry of carbon nanotubes (CNTs) allows them to be filled with metal catalysts; the resulting metal-filled CNTs possess different properties depending on the filler metal. Here we report the synthesis of Ni-filled CNTs in which Ni is situated linearly and homogeneously by local arc discharge in liquid ethanol. The structural characteristics of synthesized Ni-filled CNTs were determined by transmission electron microscopy (TEM), and the relationship between pyrolysis conditions and the length and diameter of Ni-filled CNTs was examined. The encapsulated Ni was identified by a TEM-equipped energy-dispersive X-ray spectroscope and found to have a single-crystal fcc structure by nano-beam diffraction. The features of linear Ni-filled CNT are expected to be applicable to probes for magnetic force microscopy.

  20. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-01-01

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field

  1. Warm electrons on the liquid 4He surface

    Saitoh, Motohiko

    1977-01-01

    Detailed theoretical analysis of non-Ohmic transport of electrons on the liquid 4 He surface is given. The correct form of the electron-ripplon scattering as well as the electron- 4 He gas scattering is taken into account. A characteristic electric field at which electron mobility deviates from the Ohmic value is estimated as a function of temperature and the holding field on the basis of the electron effective temperature approximation. (auth.)

  2. Monochromator on a synchrotron undulator source for liquid surface studies

    Als-Nielsen, Jens Aage; Freund, A.K.

    1992-01-01

    For liquid surface studies a monochromatic beam of relative bandwidth between 0.1% and 1% at a variable angle in the vertical plane between 0-degrees and 10-degrees is needed. The beam should be like a sheet some tens of mu-m thick and some mm wide, and as intense as possible. We discuss a monoch......For liquid surface studies a monochromatic beam of relative bandwidth between 0.1% and 1% at a variable angle in the vertical plane between 0-degrees and 10-degrees is needed. The beam should be like a sheet some tens of mu-m thick and some mm wide, and as intense as possible. We discuss......% of the useful x rays, in full agreement with diffraction theory including secondary extinction. Heat load experiments reported elsewhere in this conference prove that Be crystals can withstand high beam power density and that the thermal deformation is small compared to the mosaic spread. The results...... of the flux calculations are most encouraging: a gain of order 10(3) to 10(4) can be expected as compared to existing liquid surface spectrometers....

  3. Liquid metal actuator driven by electrochemical manipulation of surface tension

    Russell, Loren; Wissman, James; Majidi, Carmel

    2017-12-01

    We examine the electrocapillary properties of a fluidic actuator composed of a liquid metal droplet that is submerged in electrolytic solution and attached to an elastic beam. The beam deflection is controlled by electrochemically driven changes in the surface energy of the droplet. The metal is a eutectic gallium-indium alloy that is liquid at room temperature and forms an nm-thin Ga2O3 skin when oxidized. The effective surface tension of the droplet changes dramatically with oxidation and reduction, which are reversibly controlled by applying low voltage to the electrolytic bath. Wetting the droplet to two copper pads allows for a controllable tensile force to be developed between the opposing surfaces. We demonstrate the ability to reliably control force by changing the applied oxidizing voltage. Actuator forces and droplet geometries are also examined by performing a computational fluid mechanics simulation using Surface Evolver. The theoretical predictions are in qualitative agreement with the experimental measurements and provide additional confirmation that actuation is driven by surface tension.

  4. Static phenomena at the charged surface of liquid hydrogen

    Levchenko, A.A.; Kolmakov, G.V.; Mezhov-Deglin, L.P.; Mikhjlov, M.G.; Trusov, A.B.

    1999-01-01

    The shape evolution of the equipotentially charged surface of liquid hydrogen layer covering the lower plate of a horizontally arranged diode in external electric fields has been studied experimentally for the first time. A reconstruction phenomenon (the formation of a stationary hump) at the flat charged surface at voltages higher than a certain critical U c1 was observed under the conditions of total compensation of the electric field in the bulk liquid by a surface charge. It is shown that the transition of the flat charged surface into the reconstructed state is a phase transition closed to the second order phase transition. The height of the hump increased with increasing the voltage and at U c2 > 1,2 U c1 the reconstructed surface lost the stability, and a stream discharge pulse was observed. The shape evolution of a changed droplet of constant volume suspended at the upper plate of the diode when the stretching electric field and gravity forces act in the same direction was studied as the voltage was increased up to the discharge

  5. Non-linear self-reinforced growth of tearing modes with multiple rational surfaces

    Maschke, E.K.; Persson, M.; Dewar, R.L.; Australian National Univ., Canberra, ACT

    1993-06-01

    The non-linear evolution of tearing modes with multiple rational surfaces is discussed. It is demonstrated that, in the presence of small differential rotation, the non-linear growth might be faster than exponential. This growth occurs as the rotation frequencies of the plasma at the different rational surfaces go into equilibrium

  6. Visualization of high speed liquid jet impaction on a moving surface.

    Guo, Yuchen; Green, Sheldon

    2015-04-17

    Two apparatuses for examining liquid jet impingement on a high-speed moving surface are described: an air cannon device (for examining surface speeds between 0 and 25 m/sec) and a spinning disk device (for examining surface speeds between 15 and 100 m/sec). The air cannon linear traverse is a pneumatic energy-powered system that is designed to accelerate a metal rail surface mounted on top of a wooden projectile. A pressurized cylinder fitted with a solenoid valve rapidly releases pressurized air into the barrel, forcing the projectile down the cannon barrel. The projectile travels beneath a spray nozzle, which impinges a liquid jet onto its metal upper surface, and the projectile then hits a stopping mechanism. A camera records the jet impingement, and a pressure transducer records the spray nozzle backpressure. The spinning disk set-up consists of a steel disk that reaches speeds of 500 to 3,000 rpm via a variable frequency drive (VFD) motor. A spray system similar to that of the air cannon generates a liquid jet that impinges onto the spinning disc, and cameras placed at several optical access points record the jet impingement. Video recordings of jet impingement processes are recorded and examined to determine whether the outcome of impingement is splash, splatter, or deposition. The apparatuses are the first that involve the high speed impingement of low-Reynolds-number liquid jets on high speed moving surfaces. In addition to its rail industry applications, the described technique may be used for technical and industrial purposes such as steelmaking and may be relevant to high-speed 3D printing.

  7. Liquid Phase Micro-Extraction of Linear Alkylbenzene Sulfonate Anionic Surfactants in Aqueous Samples

    Jan Åke Jönsson

    2011-10-01

    Full Text Available Hollow fiber liquid phase micro-extraction (LPME of linear alkylbenzene sulfonates (LAS from aqueous samples was studied. Ion pair extraction of C10, C11, C12 and C13 homologues was facilitated with trihexylamine as ion-pairing agent, using di-n-hexylether as solvent for the supported liquid membrane (SLM. Effects of extraction time, acceptor buffer concentration, stirring speed, sample volume, NaCl and humic acids were studied. At 10–50 µg L−1 linear R2-coefficients were 0.99 for C10 and C11 and 0.96 for C12. RSD was typically ~15%. Three observations were especially made. Firstly, LPME for these analytes was unusually slow with maximum enrichment observed after 15–24 h (depending on sample volume. Secondly, the enrichment depended on LAS sample concentration with 35–150 times enrichment below ~150 µg L−1 and 1850–4400 times enrichment at 1 mg L−1. Thirdly, lower homologues were enriched more than higher homologues at low sample concentrations, with reversed conditions at higher concentrations. These observations may be due to the fact that LAS and the amine counter ion themselves influence the mass transfer at the water-SLM interface. The observations on LPME of LAS may aid in LPME application to other compounds with surfactant properties or in surfactant enhanced membrane extraction of other compounds.

  8. Turbulent Motion of Liquids in Hydraulic Resistances with a Linear Cylindrical Slide-Valve

    C. Velescu

    2015-01-01

    Full Text Available We analyze the motion of viscous and incompressible liquids in the annular space of controllable hydraulic resistances with a cylindrical linear slide-valve. This theoretical study focuses on the turbulent and steady-state motion regimes. The hydraulic resistances mentioned above are the most frequent type of hydraulic resistances used in hydraulic actuators and automation systems. To study the liquids’ motion in the controllable hydraulic resistances with a linear cylindrical slide-valve, the report proposes an original analytic method. This study can similarly be applied to any other type of hydraulic resistance. Another purpose of this study is to determine certain mathematical relationships useful to approach the theoretical functionality of hydraulic resistances with magnetic controllable fluids as incompressible fluids in the presence of a controllable magnetic field. In this report, we established general analytic equations to calculate (i velocity and pressure distributions, (ii average velocity, (iii volume flow rate of the liquid, (iv pressures difference, and (v radial clearance.

  9. Experimental study of liquid drop impact onto a powder surface

    Marston, Jeremy; Thoroddsen, Sigurdur T; Ng, Waikiong; Tan, Reginald

    2010-01-01

    The initial dynamics of liquid drop impact onto powder surfaces is studied experimentally using high-speed photography. For a range of bed packing fractions, φ, liquid physical properties and impact velocities, ui, we observe a variety of phenomena that can be representative of a hydrophobic surface, a rough surface or a porous medium. The solids packing fraction in the bed, 0.38≤φ≤0.65, and the impact Weber number, 3.5≤We=ρDui 2/φ≤750, (where ρ, D and φ are the drop density, diameter and surface tension respectively) are shown to be the critical parameters governing the outcome of an impact. For high packing fractions, φ≳0.5, we show that the observed spreading, rebound and splashing can be broadly characterised in terms of the Weber number while for looser packing fractions, φ≲0.5, we observe powder ejectas and provide a qualitative description of the granule nucleation at the centre of the impact sites. © 2010 Elsevier B.V.

  10. Experimental study of liquid drop impact onto a powder surface

    Marston, Jeremy

    2010-11-01

    The initial dynamics of liquid drop impact onto powder surfaces is studied experimentally using high-speed photography. For a range of bed packing fractions, φ, liquid physical properties and impact velocities, ui, we observe a variety of phenomena that can be representative of a hydrophobic surface, a rough surface or a porous medium. The solids packing fraction in the bed, 0.38≤φ≤0.65, and the impact Weber number, 3.5≤We=ρDui 2/φ≤750, (where ρ, D and φ are the drop density, diameter and surface tension respectively) are shown to be the critical parameters governing the outcome of an impact. For high packing fractions, φ≳0.5, we show that the observed spreading, rebound and splashing can be broadly characterised in terms of the Weber number while for looser packing fractions, φ≲0.5, we observe powder ejectas and provide a qualitative description of the granule nucleation at the centre of the impact sites. © 2010 Elsevier B.V.

  11. Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces

    Petrishchev, Vitaly; Leonov, Sergey; Adamovich, Igor V

    2014-01-01

    Surface ionization wave discharges generated by high-voltage nanosecond pulses, propagating over a planar quartz surface and over liquid surfaces (distilled water and 1-butanol) have been studied in a rectangular cross section test cell. The discharge was initiated using a custom-made, alternating polarity, high-voltage nanosecond pulse plasma generator, operated at a pulse repetition rate of 100–500 Hz, with a pulse peak voltage and current of 10–15 kV and 7–20 A, respectively, a pulse FWHM of ∼100 ns, and a coupled pulse energy of 2–9 mJ/pulse. Wave speed was measured using a capacitive probe. ICCD camera images demonstrated that the ionization wave propagated predominantly over the quartz wall or over the liquid surface adjacent to the grounded waveguide placed along the bottom wall of the test cell. Under all experimental conditions tested, the surface plasma ‘sheet’ was diffuse and fairly uniform, both for positive and negative polarities. The parameters of ionization wave discharge propagating over distilled water and 1-butanol surfaces were close to those of the discharge over a quartz wall. No perturbation of the liquid surface by the discharge was detected. In most cases, the positive polarity surface ionization wave propagated at a higher speed and over a longer distance compared to the negative polarity wave. For all three sets of experiments (surface ionization wave discharge over quartz, water and 1-butanol), wave speed and travel distance decreased with pressure. Diffuse, highly reproducible surface ionization wave discharge was also observed over the liquid butanol–saturated butanol vapor interface, as well as over the distilled water–saturated water vapor interface, without buffer gas flow. No significant difference was detected between surface ionization discharges sustained using single-polarity (positive or negative), or alternating polarity high-voltage pulses. Plasma emission images yielded preliminary evidence of charge

  12. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  13. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant; Ó Náraigh, Lennon

    2016-01-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  14. Alphas and surface backgrounds in liquid argon dark matter detectors

    Stanford, Christopher J.

    Current observations from astrophysics indicate the presence of dark matter, an invisible form of matter that makes up a large part of the mass of the universe. One of the leading theories for dark matter is that it is made up of Weakly Interacting Massive Particles (WIMPs). One of the ways we try to discover WIMPs is by directly detecting their interaction with regular matter. This can be done using a scintillator such as liquid argon, which gives off light when a particle interacts with it. Liquid argon (LAr) is a favorable means of detecting WIMPs because it has an inherent property that enables a technique called pulse-shape discrimination (PSD). PSD can distinguish a WIMP signal from the constant background of electromagnetic signals from other sources, like gamma rays. However, there are other background signals that PSD is not as capable of rejecting, such as those caused by alpha decays on the interior surfaces of the detector. Radioactive elements that undergo alpha decay are introduced to detector surfaces during construction by radon gas that is naturally present in the air, as well as other means. When these surface isotopes undergo alpha decay, they can produce WIMP-like signals in the detector. We present here two LAr experiments. The first (RaDOSE) discovered a property of an organic compound that led to a technique for rejecting surface alpha decays in LAr detectors with high efficiency. The second (DarkSide-50) is a dark matter experiment operated at LNGS in Italy and is the work of an international collaboration. A detailed look is given into alpha decays and surface backgrounds present in the detector, and projections are made of alpha-related backgrounds for 500 live days of data. The technique developed with RaDOSE is applied to DarkSide-50 to determine its effectiveness in practice. It is projected to suppress the surface background in DarkSide-50 by more than a factor of 1000.

  15. A liquid aluminum corrosion resistance surface on steel substrate

    Wang Deqing; Shi Ziyuan; Zou Longjiang

    2003-01-01

    The process of hot dipping pure aluminum on a steel substrate followed by oxidation was studied to form a surface layer of aluminum oxide resistant to the corrosion of aluminum melt. The thickness of the pure aluminum layer on the steel substrate is reduced with the increase in temperature and time in initial aluminizing, and the thickness of the aluminum layer does not increase with time at given temperature when identical temperature and complete wetting occur between liquid aluminum and the substrate surface. The thickness of the Fe-Al intermetallic layer on the steel base is increased with increasing bath temperature and time. Based on the experimental data and the mathematics model developed by the study, a maximum exists in the thickness of the Fe-Al intermetallic at certain dipping temperature. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis reveals that the top portion of the steel substrate is composed of a thin layer of α-Al 2 O 3 , followed by a thinner layer of FeAl 3 , and then a much thicker one of Fe 2 Al 5 on the steel base side. In addition, there is a carbon enrichment zone in diffusion front. The aluminum oxide surface formed on the steel substrate is in perfect condition after corrosion test in liquid aluminum at 750 deg. C for 240 h, showing extremely good resistance to aluminum melt corrosion

  16. Linear-time general decoding algorithm for the surface code

    Darmawan, Andrew S.; Poulin, David

    2018-05-01

    A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.

  17. Multipole surface solitons supported by the interface between linear media and nonlocal nonlinear media

    Shi, Zhiwei; Li, Huagang; Guo, Qi

    2012-01-01

    We address multipole surface solitons occurring at the interface between a linear medium and a nonlocal nonlinear medium. We show the impact of nonlocality, the propagation constant, and the linear index difference of two media on the properties of the surface solitons. We find that there exist a threshold value of the degree of the nonlocality at the same linear index difference of two media, only when the degree of the nonlocality goes beyond the value, the multipole surface solitons can be stable. -- Highlights: ► We show the impact of nonlocality and the linear index difference of two media on the properties of the surface solitons. ► For the surface solitons, only when the degree of the nonlocality goes beyond a threshold value, they can be stable. ► The number of poles and the index difference of two media can all influence the threshold value.

  18. Anomalous magnetotransport of a surface electron layer above liquid helium

    Grigor'ev, V.N.; Kovdrya, Yu.Z.; Nikolaenko, V.A.; Kirichek, O.I.; Shcherbachenko, R.I.

    1991-01-01

    The magnetoconductivity σ xx of a surface electron layer above liquid helium has been measured at temperatures between 0.5-1.6 K, for concentrations up to about 4x10 8 cm -2 , in magnetic fields up to 25 kOe. As was observed, σ xx first decreases with lowering temperature, then has a minimum and at T xy , the earlier ascertained anomalous behaviour of the magnetoresistance ρ xx taken into consideration. The calculated dependence of ρ xx on T is in satisfactory agreement with the anomalous dependence ρ xx (T) found earlier by experiment

  19. Surface passivation of liquid phase epitaxial GaAs

    Alexiev, D.; Butcher, K.S.A.; Mo, L.; Edmondson, M.

    1995-10-01

    Passivation of the liquid phase epitaxial GaAs surface was attempted using aqueous P 2 S 5 -NH 4 OH, (NH 4 ) 2 S x and plasma nitrogenation and hydrogenation. Results indicate that plasma nitrogenation with pretreatment of plasma hydrogenation produced consistent reduction in reverse leakage current at room temperature for all p and n type Schottky diodes. Some diodes showed an order of magnitude improvement in current density. (NH 4 ) 2 S x passivation also results in improved I-V characteristics, though the long term stability of this passivation is questionable. 26 refs., 6 figs

  20. Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.

    Pino, Verónica; Afonso, Ana M

    2012-02-10

    Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K.

    Wang, S G; Mei, Y; Long, K; Zhang, Z D

    2009-09-17

    The linear thermal expansions (LTE) of bulk nanocrystalline ingot iron (BNII) at six directions on rolling plane and conventional polycrystalline ingot iron (CPII) at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  2. The Linear Thermal Expansion of Bulk Nanocrystalline Ingot Iron from Liquid Nitrogen to 300 K

    Mei Y

    2009-01-01

    Full Text Available Abstract The linear thermal expansions (LTE of bulk nanocrystalline ingot iron (BNII at six directions on rolling plane and conventional polycrystalline ingot iron (CPII at one direction were measured from liquid nitrogen temperature to 300 K. Although the volume fraction of grain boundary and residual strain of BNII are larger than those of CPII, LTE of BNII at the six measurement directions were less than those of CPII. This phenomenon could be explained with Morse potential function and the crystalline structure of metals. Our LTE results ruled out that the grain boundary and residual strain of BNII did much contribution to its thermal expansion. The higher interaction potential energy of atoms, the less partial derivative of interaction potential energy with respect to temperature T and the porosity free at the grain boundary of BNII resulted in less LTE in comparison with CPII from liquid nitrogen temperature to 300 K. The higher LTE of many bulk nanocrystalline materials resulted from the porosity at their grain boundaries. However, many authors attributed the higher LTE of many nanocrystalline metal materials to their higher volume fraction of grain boundaries.

  3. Transient surface liquid in Titan's south polar region from Cassini

    Hayes, A.G.; Aharonson, O.; Lunine, J.I.; Kirk, R.L.; Zebker, H.A.; Wye, L.C.; Lorenz, R.D.; Turtle, E.P.; Paillou, P.; Mitri, Giuseppe; Wall, S.D.; Stofan, E.R.; Mitchell, K.L.; Elachi, C.

    2011-01-01

    Cassini RADAR images of Titan's south polar region acquired during southern summer contain lake features which disappear between observations. These features show a tenfold increases in backscatter cross-section between images acquired one year apart, which is inconsistent with common scattering models without invoking temporal variability. The morphologic boundaries are transient, further supporting changes in lake level. These observations are consistent with the exposure of diffusely scattering lakebeds that were previously hidden by an attenuating liquid medium. We use a two-layer model to explain backscatter variations and estimate a drop in liquid depth of approximately 1-m-per-year. On larger scales, we observe shoreline recession between ISS and RADAR images of Ontario Lacus, the largest lake in Titan's south polar region. The recession, occurring between June 2005 and July 2009, is inversely proportional to slopes estimated from altimetric profiles and the exponential decay of near-shore backscatter, consistent with a uniform reduction of 4 ± 1.3 m in lake depth. Of the potential explanations for observed surface changes, we favor evaporation and infiltration. The disappearance of dark features and the recession of Ontario's shoreline represents volatile transport in an active methane-based hydrologic cycle. Observed loss rates are compared and shown to be consistent with available global circulation models. To date, no unambiguous changes in lake level have been observed between repeat images in the north polar region, although further investigation is warranted. These observations constrain volatile flux rates in Titan's hydrologic system and demonstrate that the surface plays an active role in its evolution. Constraining these seasonal changes represents the first step toward our understanding of longer climate cycles that may determine liquid distribution on Titan over orbital time periods.

  4. On quantum motion of particle in linear potential bounded by perfectly reflecting plane and parabolic surfaces

    Pokotilovskij, Yu.N.

    1999-01-01

    The motion of a particle in the linear potential bounded by an inclined plane or parabolic surfaces is considered. The quantization of energy and wave functions is obtained numerically by the separation of the variables method

  5. Biaxial potential of surface-stabilized ferroelectric liquid crystals

    Kaznacheev, Anatoly; Pozhidaev, Evgeny; Rudyak, Vladimir; Emelyanenko, Alexander V.; Khokhlov, Alexei

    2018-04-01

    A biaxial surface potential Φs of smectic-C* surface-stabilized ferroelectric liquid crystals (SSFLCs) is introduced in this paper to explain the experimentally observed electric-field dependence of polarization P˜cell(E ) , in particular the shape of the static hysteresis loops. Our potential consists of three independent parts. The first nonpolar part Φn describes the deviation of the prime director n (which is the most probable orientation of the long molecular axes) from the easy alignment axis R , which is located in the boundary surface plane. It is introduced in the same manner as the uniaxial Rapini potential. The second part Φp of the potential is a polar term associated with the presence of the polar axis in a FLC. The third part Φm relates to the inherent FLC biaxiality, which has not been taken into consideration previously. The Φm part takes into account the deviations of the secondary director m (which is the most probable orientation of the short molecular axes) from the normal to the boundary surface. The overall surface potential Φs, which is a sum of Φn,Φp , and Φm, allows one to model the conditions when either one, two, or three minima of the SSFLC cell free energy are realized depending on the biaxiality extent. A monodomain or polydomain structure, as well as the bistability or monostability of SSFLC cells, depends on the number of free-energy minima, as confirmed experimentally. In this paper, we analyze the biaxiality impact on the FLC alignment. We also answer the question of whether the bistable or monostable structure can be formed in an SSFLC cell. Our approach is essentially based on a consideration of the biaxial surface potential, while the uniaxial surface potential cannot adequately describe the experimental observations in the FLC.

  6. Dielectrophoretic deformation of thin liquid films induced by surface charge patterns on dielectric substrates

    Berendsen, C.W.J.; Kuijpers, C.J.; Zeegers, J.C.H.; Darhuber, A.A.

    2013-01-01

    We studied the deformation of thin liquid films induced by surface charge patterns at the solid–liquid interface quantitatively by experiments and numerical simulations. We deposited a surface charge distribution on dielectric substrates by applying potential differences between a conductive liquid

  7. Influence of surface effects on subsecond processes in liquid metals

    Tkachenko, S.I.; Vorob'ev, V.S.; Khishchenko, K.V.

    2001-01-01

    Full Text: We discuss a problem of experimental-data interpretation during subsecond measurements of thermophysical properties of matter at high temperatures and pressures. Peculiarity of these measurements is optical opaqueness of matter under interesting conditions (T∼1 eV, ρ∼10 4 kg m -3 ), so only at assuming of bulk specimen uniformity one can obtain a temperature dependencies of the specific properties of matter. Changing circuit current and changing sample geometry we can avoid a development of hydromagnetic instability and decrease a nonuniform heating due to skin effect. As temperature of wire surface reaches the boiling temperature under normal pressure so part of internal energy is lost because of evaporation and surface radiation at high temperature. So one can register a surface temperature and ascribe it to the whole sample bulk. Computer simulation of wire explosion taking into account surface radiation losses was carried out. Typical phase tracks for matter were obtained in both case as in consideration of radiation losses as without it. Comparison of the results with data concerning to isobaric-expansion experiments and semi-empirical multi-phase equation of state were carried out. It was proposed uniformity criterion for investigation of thermophysical properties of liquid metal by subsecond wire explosion. (author)

  8. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    Stout, R B

    2001-01-01

    one of the two models developed, the propagation velocity of the solid-liquid dissolution interface is assumed proportional to configurational entropy discontinuity across the interface. Based on this assumption, the derived functional forms for non-equilibrium rate-thermodynamic force relationships are different from the near-equilibrium, linear rate-thermodynamic force relationships derived from the non-negative entropy dissipation requirement used in the classical approach of Onsager. These analyses of non-equilibrium thermodynamic processes across a propagating discontinuity, along with other idealized dissolution processes that depend on surface adsorption and radiolysis kinetics, provide generic dissolution response functions for empirical and/or regression analysis of data

  9. In-syringe dispersive liquid-liquid microextraction with liquid chromatographic determination of synthetic pyrethroids in surface water

    Saeed S. Albaseer

    2012-03-01

    Full Text Available An indigenously fabricated in laboratory glass syringe was used for in-syringe dispersive liquid-liquid microextraction (is-DLLME and preconcentration of synthetic pyrethroids (SPs from surface waters suitable for their determination by high performance liquid chromatography. In contrast to classical DLLME, is-DLLME allows the use of lighter-than-water organic solvents and the analysis of environmental contaminants’ samples without prior filtration, which is of great importance due to the high affinity of pyrethroids to adsorb to solid particulates present in environmental samples. The effects of various parameters on the extraction efficiency were evaluated and optimized systemically using one-factor-at-a-time method (OFAT and statistically using full factorial design (24. Three SPs (viz.; cypermethrin, resmethrin and permethrin were analyzed. The method showed good accuracy with RSD% in the range of of 4.8–6.9%. The method detection limits of the three pesticides ranged from 0.14 to 0.16 ng mL-1. The proposed method was applied for the determination of synthetic pyrethroids in lake water

  10. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter; Maier, Florian, E-mail: florian.maier@fau.de [Lehrstuhl für Physikalische Chemie II, FAU Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen (Germany)

    2016-04-15

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

  11. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter; Maier, Florian

    2016-01-01

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

  12. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  13. Pore and surface diffusion in multicomponent adsorption and liquid chromatography systems

    Ma, Z.; Whitley, R.D.; Wang, N.H.L.

    1996-01-01

    A generalized parallel pore and surface diffusion model for multicomponent adsorption and liquid chromatography is formulated and solved numerically. Analytical solution for first- and second-order central moments for a pulse on a plateau input is used as benchmarks for the numerical solutions. Theoretical predictions are compared with experimental data for two systems: ion-exchange of strontium, sodium, and calcium in a zeolite and competitive adsorption of two organics on activated carbon. In a linear isotherm region of single-component systems, both surface and pore diffusion cause symmetric spreading in breakthrough curves. In a highly nonlinear isotherm region, however, surface diffusion causes pronounced tailing in breakthrough curves; the larger the step change in concentration, the more pronounced tailing, in contrast to relatively symmetric breakthroughs due to pore diffusion. If only a single diffusion mechanism is assumed in analyzing the data of parallel diffusion systems, a concentration-dependent apparent surface diffusivity or pore diffusivity results; for a convex isotherm, the apparent surface diffusivity increases, whereas the apparent pore diffusivity decreases with increasing concentration. For a multicomponent nonlinear system, elution order can change if pore diffusion dominates for a low-affinity solute, whereas surface diffusion dominates for a high-affinity solute

  14. Development and operation of a pixel segmented liquid-filled linear array for radiotherapy quality assurance

    Pardo, J [Departamento de Fisica de Particulas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Franco, L [Departamento de Fisica de Particulas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Gomez, F [Departamento de Fisica de Particulas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Iglesias, A [Departamento de Fisica de Particulas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Pazos, A [Departamento de Fisica de Particulas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Pena, J [Departamento de Fisica de Particulas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Lobato, R [Hospital Clinico Universitario de Santiago, Santiago (Spain); Mosquera, J [Hospital Clinico Universitario de Santiago, Santiago (Spain); Pombar, M [Hospital Clinico Universitario de Santiago, Santiago (Spain); Sendon, J [Hospital Clinico Universitario de Santiago, Santiago (Spain)

    2005-04-21

    A liquid isooctane (C{sub 8}H{sub 18}) filled ionization linear array for radiotherapy quality assurance has been designed, built and tested. The detector consists of 128 pixels, each of them with an area of 1.7 mm x 1.7 mm and a gap of 0.5 mm. The small pixel size makes the detector ideal for high gradient beam profiles such as those present in intensity modulated radiation therapy (IMRT) and radiosurgery. As the read-out electronics we use the X-ray Data Acquisition System with the Xchip developed by the CCLRC. Studies concerning the collection efficiency dependence on the polarization voltage and on the dose rate have been made in order to optimize the device operation. In the first tests, we have studied dose rate and energy dependences. Dose rate dependence was found to be lower than 2.1% up to 5 Gy min{sup -1}, and energy dependence lower than 2.5% up to 20 cm depth in solid water. Output factors and penumbras for several rectangular fields have been measured with the linear array and were compared with the results obtained with a 0.125 cm{sup 3} air ionization chamber and radiographic film, respectively. Finally, we have acquired profiles for an IMRT field and for a virtual wedge. These profiles have also been compared with radiographic film measurements. All the comparisons show a good correspondence. The device has proved its capability to verify on-line therapy beams with good spatial resolution and signal-to-noise ratio.

  15. Development and operation of a pixel segmented liquid-filled linear array for radiotherapy quality assurance

    Pardo, J; Franco, L; Gomez, F; Iglesias, A; Pazos, A; Pena, J; Lobato, R; Mosquera, J; Pombar, M; Sendon, J

    2005-01-01

    A liquid isooctane (C 8 H 18 ) filled ionization linear array for radiotherapy quality assurance has been designed, built and tested. The detector consists of 128 pixels, each of them with an area of 1.7 mm x 1.7 mm and a gap of 0.5 mm. The small pixel size makes the detector ideal for high gradient beam profiles such as those present in intensity modulated radiation therapy (IMRT) and radiosurgery. As the read-out electronics we use the X-ray Data Acquisition System with the Xchip developed by the CCLRC. Studies concerning the collection efficiency dependence on the polarization voltage and on the dose rate have been made in order to optimize the device operation. In the first tests, we have studied dose rate and energy dependences. Dose rate dependence was found to be lower than 2.1% up to 5 Gy min -1 , and energy dependence lower than 2.5% up to 20 cm depth in solid water. Output factors and penumbras for several rectangular fields have been measured with the linear array and were compared with the results obtained with a 0.125 cm 3 air ionization chamber and radiographic film, respectively. Finally, we have acquired profiles for an IMRT field and for a virtual wedge. These profiles have also been compared with radiographic film measurements. All the comparisons show a good correspondence. The device has proved its capability to verify on-line therapy beams with good spatial resolution and signal-to-noise ratio

  16. The instability of nonlinear surface waves in an electrified liquid jet

    Moatimid, Galal M

    2009-01-01

    We investigate the weakly nonlinear stability of surface waves of a liquid jet. In this work, the liquids are uniformly streaming through two porous media and the gravitational effects are neglected. The system is acted upon by a uniform tangential electric field, that is parallel to the jet axis. The equations of motion are linearly treated and solved in the light of nonlinear boundary conditions. Therefore, the boundary-value problem leads to a nonlinear characteristic second-order differential equation. This characterized equation has a complex nature. The nonlinearity is kept up to the third degree. It is used to judge the behavior of the surface evolution. According to the linear stability theory, we derive the dispersion relation that accounts for the growth waves. The stability criterion is discussed analytically and a stability picture is identified for a chosen sample system. Several special cases are recovered upon appropriate data choices. In order to derive the Ginsburg-Landau equation for the general case, in the nonlinear approach, we used the method of multiple timescales with the aid of the Taylor expansion. This equation describes the competition between nonlinearity and the linear dispersion relation. As a special case for non-porous media where there is no streaming, we obtained the well-known nonlinear Schroedinger equation as it has been derived by others. The stability criteria are expressed theoretically in terms of various parameters of the problem. Stability diagrams are obtained for a set of physical parameters. We found new instability regions in the parameter space. These regions are due to the nonlinear effects.

  17. Ionic liquid based vortex assisted liquid-liquid microextraction combined with liquid chromatography mass spectrometry for the determination of bisphenols in thermal papers with the aid of response surface methodology.

    Asati, Ankita; Satyanarayana, G N V; Panchal, Smita; Thakur, Ravindra Singh; Ansari, Nasreen G; Patel, Devendra K

    2017-08-04

    A sensitive, rapid and efficient ionic liquid-based vortex assisted liquid-liquid microextraction (IL-VALLME) with Liquid Chromatography Mass spectrometry (LC-MS/MS) method is proposed for the determination of bisphenols in thermal paper. Extraction factors were systematically optimized by response surface methodology. Experimental factors showing significant effects on the analytical responses were evaluated using design of experiment. The limit of detection for Bisphenol-A (BPA) and Bisphenol-S (BPS) in thermal paper were 1.25 and 0.93μgkg -1 respectively. The dynamic linearity range for BPA was between 4 and 100μgkg -1 and the determination of coefficient (R 2 ) was 0.996. The values of the same parameters were 3-100μgkg -1 and 0.998 for BPS. The extraction recoveries of BPA and BPS in thermal paper were 101% and 99%. Percent relative standard deviation (% RSD) for matrix effect and matrix match effects were not more than 10%, for both bisphenols. The proposed method uses a statistical approach for the analysis of bisphenols in environmental samples, and is easy, rapid, requires minimum organic solvents and efficient. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. New method for preparing a liquid crystal polymer that exhibits linearly polarized white fluorescence

    Zheng Shijun; Kun, Wang; Kobayashi, Takaomi

    2011-01-01

    With the aim of developing a single-chain white-light-emitting polymer, liquid crystal (LC) polymers with a shish-kebab-type moiety on their cross-conjugated (p-phenylene)s-poly(p-phenylenevinylene)s main chain were synthesized by Gilch polymerization. They were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and polarizing optical microscopy (POM). 1 H-NMR indicated that the polymers had a shish-kebab structure, which strongly suppressed the formation of structural defects in the polymers. DSC revealed that the polymers had thermotropic LC properties, indicating that the LC polymers were enantiotropic. XRD showed that the polymers had a mesophase, which implies that they were in a smectic LC phase. A polymer with 'kebabs' of 2,5-bis(4'-alkoxyphenyl)benzene was combined with an aligned polyimide film with orientated microgrooves. The polymer main chain was aligned due to the orientation of the 'kebabs' of the uniform cross-conjugated structure. It lay between the kebabs and the 'shish' of the polymer main chains. The aligned polymer main chain emitted yellow light while and the oriented LC side chains emitted blue light emission. These two emissions resulted in linearly polarized white fluorescence.

  19. Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.

    2013-01-01

    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 • Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. • Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. • Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. • Generate the key nonnuclear products to allow Agency

  20. Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects

    Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman

    2017-07-01

    Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.

  1. Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles.

    Krywonos, Andrey; Harvey, James E; Choi, Narak

    2011-06-01

    Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles.

  2. Liquid--liquid surface impaction. Annual progress report, July 1, 1975--June 30, 1976

    Bankoff, S.G.

    1976-01-01

    The critical Weber number for coalescence, when a droplet of Freon-22 or pentane falls on a pool of hot (80-180 0 C) silicone oil or glycerine, has been determined as a function of pool temperature and droplet size. Using this information, a splash theory for local propagation of a vapor explosion has been formulated, which agrees with intermediate-scale peak pressure data of Henry, et al. A hydrodynamic theory has been constructed for the minimum thickness of the gas film in the approach phase. The Board-Hall theory for fuel-coolant detonation waves has been modified to take into account the presence of a swarm of drops, rather than a single drop. On this basis the existence of a steady-state Chapman-Jouguet wave in either the tin-water or UO 2 -sodium systems seems highly unlikely. Scoping experiments on Leidenfrost boiling of droplets and pool boiling from liquid metal surfaces have been initiated

  3. Surface alignment of liquid crystal multilayers evaporated on a photoaligned polyimide film observed by surface profiler

    Oo, T.N.; Iwata, T.; Kimura, M.; Akahane, T.

    2005-01-01

    The investigation of the surface alignment of liquid crystal (LC) multilayers evaporated on a photoaligned polyimide vertical alignment (PI-VA) film was carried out by means of a novel three-dimensional (3-D) surface profiler. The photoinduced anisotropy of the partially UV-exposed PI-VA film can be visualized as a topological image of LC multilayers. It seems that the topology of LC multilayers is indicating the orientational distribution of LC molecules on the treated film. Moreover, it was shown that the surface profiler can be used to produce non-contact images with high vertical resolution (∼ 0.01 nm). Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  4. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-01-01

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were ∼ 4 x 10 -7 cm 2 /s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10 -5 to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form

  5. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-12-14

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  6. Method of driving liquid flow at or near the free surface using magnetic microparticles

    Snezhko, Oleksiy [Woodridge, IL; Aronson, Igor [Darien, IL; Kwok, Wai-Kwong [Evanston, IL; Belkin, Maxim V [Woodridge, IL

    2011-10-11

    The present invention provides a method of driving liquid flow at or near a free surface using self-assembled structures composed of magnetic particles subjected to an external AC magnetic field. A plurality of magnetic particles are supported at or near a free surface of liquid by surface tension or buoyancy force. An AC magnetic field traverses the free surface and dipole-dipole interaction between particles produces in self-assembled snake structures which oscillate at the frequency of the traverse AC magnetic field. The snake structures independently move across the free surface and may merge with other snake structures or break up and coalesce into additional snake structures experiencing independent movement across the liquid surface. During this process, the snake structures produce asymmetric flow vortices across substantially the entirety of the free surface, effectuating liquid flow across the free surface.

  7. Theory of hot electrons on the liquid 4He surface, 2

    Aoki, Takayuki; Saitoh, Motohiko

    1979-01-01

    Theoretical study is given of the high field transport of surface state electrons on the liquid 4 He. The explicit form of the electron distribution function is solved by the use of the Boltzmann transport equation where the electron-ripplon and electron-He gas interactions are considered as dominant scattering mechanisms, and the electron-electron interactions are completely neglected. Inter-subband and intra-subband transitions are treated equally. The S-shaped non-linear behaviors predicted to occur at low temperature region in the electron temperature approximation have been removed. Experimentally observed hysteresis, if any, in the widths of the plasmon resonance and cyclotron resonance may thus be attributed to the electron-electron interaction. (author)

  8. Ultraviolet curing of acrylated liquid natural rubber for surface coating application

    Kannikar Kwanming; Pairote Klinpituksa; Wae-asae Waehamad

    2009-01-01

    Ultraviolet curable acrylated liquid natural rubber was prepared by grafting of photosensitive molecule onto liquid natural rubber for surface coating application. The liquid natural rubber (LNR) was firstly obtained by degradation of natural rubber latex with hydrogen peroxide and cobalt acetylacetonate at 65oC for 72 hrs. The preparation of acrylated natural rubber was carried out by the reaction of acrylic acid and epoxidized liquid natural rubber (ELNR) prior obtained from LNR with formic...

  9. Crystallization of glass-forming liquids: Specific surface energy

    Schmelzer, Jürn W. P.; Abyzov, Alexander S.

    2016-01-01

    A generalization of the Stefan-Skapski-Turnbull relation for the melt-crystal specific interfacial energy is developed in terms of the generalized Gibbs approach extending its standard formulation to thermodynamic non-equilibrium states. With respect to crystal nucleation, this relation is required in order to determine the parameters of the critical crystal clusters being a prerequisite for the computation of the work of critical cluster formation. As one of its consequences, a relation for the dependence of the specific surface energy of critical clusters on temperature and pressure is derived applicable for small and moderate deviations from liquid-crystal macroscopic equilibrium states. Employing the Stefan-Skapski-Turnbull relation, general expressions for the size and the work of formation of critical crystal clusters are formulated. The resulting expressions are much more complex as compared to the respective relations obtained via the classical Gibbs theory. Latter relations are retained as limiting cases of these more general expressions for moderate undercoolings. By this reason, the formulated, here, general relations for the specification of the critical cluster size and the work of critical cluster formation give a key for an appropriate interpretation of a variety of crystallization phenomena occurring at large undercoolings which cannot be understood in terms of the Gibbs’ classical treatment.

  10. The structure of organic langmuir films on liquid metal surfaces

    Kraack, H.; Deutsch, M.; Ocko, B.M.; Pershan, P.S.

    2003-01-01

    Langmuir films (LFs) on water have long been studied for their interest for basic science and their numerous applications in chemistry, physics, materials science and biology. We present here A-resolution synchrotron X-ray studies of the structure of stearic acid LFs on a liquid mercury surface. At low coverage, ≥110 A 2 /mol, a 2D gas phase of flat-lying molecules is observed. At high coverage, ≤23 A 2 /mol, two different hexatic phases of standing-up molecules are observed. At intermediate coverage, 52≤A≤110 A 2 /mol, novel single- and double-layered phases of flat-lying molecular dimers are found, exhibiting a 1D in-layer order. Such flat-lying phases were not hitherto observed in any LF. Measurements on LFs of fatty acids of other chain lengths indicate that this structure is generic to chain molecules on mercury, although the existence of some of the flat-lying phases, and the observed phase sequence, depend on the chain length. Organic LFs on Hg, and in particular the new flat-lying phases, should provide a broader nano-structural tunability range for molecular electronic device construction than most solid-supported self-assembled monolayers used at present

  11. Physics of foam formation on a solid surface in carbonated liquids

    Zuidberg, A.F.

    1997-01-01

    The amount and size of bubbles in a foam layer that have originated from a solid surface in a gas supersaturated solution is largely determined by the physical properties of that solid and liquid surface and the supersaturation level of the gas in the liquid. The presence of pre-existent

  12. The surface tension of pure liquids. Thermodynamic components and corresponding states

    Lyklema, J.

    1999-01-01

    From the temperature dependency of surface and interfacial tensions the surface excess energy and entropy per unit area can be obtained. The excess energy is a liquid-specific property; it varies over about three decades between liquid helium and molten metals. On the other hand, the excess entropy

  13. Fine tuning the ionic liquid-vacuum outer atomic surface using ion mixtures.

    Villar-Garcia, Ignacio J; Fearn, Sarah; Ismail, Nur L; McIntosh, Alastair J S; Lovelock, Kevin R J

    2015-03-28

    Ionic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa).

  14. Tetra point wetting at the free surface of liquid Ga-Bi

    Huber, P.; Shpyrko, O.G.; Pershan, P.S.; Ocko, B.M.; Di Masi, E.; Deutsch, M.

    2002-01-01

    A continuous surface wetting transition, pinned to a solid-liquid-liquid-vapor tetra coexistence point, is studied by x-ray reflectivity in liquid Ga-Bi binary alloys. The short-range surface potential is determined from the measured temperature evolution of the wetting film. The thermal fluctuations are shown to be insufficient to induce a noticeable breakdown of mean-field behavior, expected in short-range-interacting systems due to their d u =3 upper critical dimensionality

  15. The estimation and prediction of the inventories for the liquid and gaseous radwaste systems using the linear regression analysis

    Kim, J. Y.; Shin, C. H.; Kim, J. K.; Lee, J. K.; Park, Y. J.

    2003-01-01

    The variation transitions of the inventories for the liquid radwaste system and the radioactive gas have being released in containment, and their predictive values according to the operation histories of Yonggwang(YGN) 3 and 4 were analyzed by linear regression analysis methodology. The results show that the variation transitions of the inventories for those systems are linearly increasing according to the operation histories but the inventories released to the environment are considerably lower than the recommended values based on the FSAR suggestions. It is considered that some conservation were presented in the estimation methodology in preparing stage of FSAR

  16. Mobile Interfaces: Liquids as a Perfect Structural Material for Multifunctional, Antifouling Surfaces

    Grinthal, A; Aizenberg, J

    2014-01-14

    Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design and fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions able to operate in harsh, changing environments not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. With nearly unlimited design possibilities and unmatched interfacial properties, liquid materials as long-term stable interfaces yet in their fully liquid state may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.

  17. Surface-wave solitons between linear media and nonlocal nonlinear media

    Shi Zhiwei; Li Huagang; Guo Qi

    2011-01-01

    We address surface solitons at the interface between linear media and nonlocal nonlinear media in the presence of a discontinuity in refractive index at the surface of these two materials. We investigated the influence of the degree of nonlocality on the stability, energy flow, and full width at half-maximum of the surface wave solitons. It is shown that surface solitons will be stable only if the degree of nonlocality exceeds a critical value. We find that the refractive index difference can affect the power distribution of the surface solitons in the two media. Also, different boundary values at the interface can lead to different relative peak positions of the surface solitons. However, neither the refractive index nor the boundary conditions can affect the stability of the solitons, for a given degree of nonlocality.

  18. "Liquid-liquid-solid"-type superoleophobic surfaces to pattern polymeric semiconductors towards high-quality organic field-effect transistors.

    Wu, Yuchen; Su, Bin; Jiang, Lei; Heeger, Alan J

    2013-12-03

    Precisely aligned organic-liquid-soluble semiconductor microwire arrays have been fabricated by "liquid-liquid-solid" type superoleophobic surfaces directed fluid drying. Aligned organic 1D micro-architectures can be built as high-quality organic field-effect transistors with high mobilities of >10 cm(2) ·V(-1) ·s(-1) and current on/off ratio of more than 10(6) . All these studies will boost the development of 1D microstructures of organic semiconductor materials for potential application in organic electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Internal Physical Features of a Land Surface Model Employing a Tangent Linear Model

    Yang, Runhua; Cohn, Stephen E.; daSilva, Arlindo; Joiner, Joanna; Houser, Paul R.

    1997-01-01

    The Earth's land surface, including its biomass, is an integral part of the Earth's weather and climate system. Land surface heterogeneity, such as the type and amount of vegetative covering., has a profound effect on local weather variability and therefore on regional variations of the global climate. Surface conditions affect local weather and climate through a number of mechanisms. First, they determine the re-distribution of the net radiative energy received at the surface, through the atmosphere, from the sun. A certain fraction of this energy increases the surface ground temperature, another warms the near-surface atmosphere, and the rest evaporates surface water, which in turn creates clouds and causes precipitation. Second, they determine how much rainfall and snowmelt can be stored in the soil and how much instead runs off into waterways. Finally, surface conditions influence the near-surface concentration and distribution of greenhouse gases such as carbon dioxide. The processes through which these mechanisms interact with the atmosphere can be modeled mathematically, to within some degree of uncertainty, on the basis of underlying physical principles. Such a land surface model provides predictive capability for surface variables including ground temperature, surface humidity, and soil moisture and temperature. This information is important for agriculture and industry, as well as for addressing fundamental scientific questions concerning global and local climate change. In this study we apply a methodology known as tangent linear modeling to help us understand more deeply, the behavior of the Mosaic land surface model, a model that has been developed over the past several years at NASA/GSFC. This methodology allows us to examine, directly and quantitatively, the dependence of prediction errors in land surface variables upon different vegetation conditions. The work also highlights the importance of accurate soil moisture information. Although surface

  20. Linear temporal and spatio-temporal stability analysis of a binary liquid film flowing down an inclined uniformly heated plate

    Hu, Jun; Hadid, Hamda Ben; Henry, Daniel; Mojtabi, Abdelkader

    Temporal and spatio-temporal instabilities of binary liquid films flowing down an inclined uniformly heated plate with Soret effect are investigated by using the Chebyshev collocation method to solve the full system of linear stability equations. Seven dimensionless parameters, i.e. the Kapitza, Galileo, Prandtl, Lewis, Soret, Marangoni, and Biot numbers (Ka, G, Pr, L, ) are used to control the flow system. In the case of pure spanwise perturbations, thermocapillary S- and P-modes are obtained. It is found that the most dangerous modes are stationary for positive Soret numbers (0), and oscillatory for =0 remains so for >0 and even merges with the long-wave S-mode. In the case of streamwise perturbations, a long-wave surface mode (H-mode) is also obtained. From the neutral curves, it is found that larger Soret numbers make the film flow more unstable as do larger Marangoni numbers. The increase of these parameters leads to the merging of the long-wave H- and S-modes, making the situation long-wave unstable for any Galileo number. It also strongly influences the short-wave P-mode which becomes the most critical for large enough Galileo numbers. Furthermore, from the boundary curves between absolute and convective instabilities (AI/CI) calculated for both the long-wave instability (S- and H-modes) and the short-wave instability (P-mode), it is shown that for small Galileo numbers the AI/CI boundary curves are determined by the long-wave instability, while for large Galileo numbers they are determined by the short-wave instability.

  1. Influence of liquid viscosity and surface tension on the gas-liquid mass transfer coefficient for solid foam packings in co-current two-phase flow

    Stemmet, C.P.; Bartelds, F.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.

    2008-01-01

    The gas–liquid mass transfer coefficient and other hydrodynamic parameters such as liquid holdup and frictional pressure drop are presented for gas and liquid moving in co-current upflow and downflow through solid foam packings of 10 and of 40 pores per linear inch (ppi). The effect of increasing

  2. Calorimetry by immersion into liquid nitrogen and liquid argon: a better way to determine the internal surface area of micropores.

    Navarrete, Ricardo; Llewellyn, Philip; Rouquerol, Françoise; Denoyel, Renaud; Rouquerol, Jean

    2004-09-15

    The aim of this work is to assess the internal surface area of a set of samples (either carbons or oxides, either porous or nonporous, either microporous or mesoporous) by microcalorimetry via immersion into liquid nitrogen or argon. We have made use of an isothermal, heat-flux microcalorimeter, initially designed and built in our laboratory for the sake of gas adsorption experiments at 77 or 87 K. It seems that immersion calorimetry into liquid nitrogen and argon makes it possible to go one step further in the determination of the internal surface area of micropores.

  3. Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids

    Vieira, N.S.M.; Luís, A.; Reis, P.M.; Carvalho, P.J.; Lopes-da-Silva, J.A.; Esperança, J.M.S.S.; Araújo, J.M.M.; Rebelo, L.P.N.; Freire, M.G.; Pereiro, A.B.

    2016-01-01

    Highlights: • Surface tension of fluorinated ionic liquids. • Thermophysical properties of fluorinated ionic liquids. • Thermal properties and thermodynamic functions. - Abstract: This paper reports the thermal, thermodynamic, thermophysical and surface properties of eight ionic liquids with fluorinated alkyl side chain lengths equal or greater than four carbon atoms. Melting and decomposition temperatures were determined together with experimental densities, surface tensions, refractive indices, dynamic viscosities and ionic conductivities in a temperature interval ranging from (293.15 to 353.15) K. The surface properties of these fluorinated ionic liquids were discussed and several thermodynamic functions, as well as critical temperatures, were estimated. Coefficients of isobaric thermal expansion, molecular volumes and free volume effects were calculated from experimental values of density and refractive index and compared with previous data. Finally, Walden plots were used to evaluate the ionicity of the investigated ionic liquids.

  4. Effect of potential attraction term on surface tension of ionic liquids

    Vaziri, N.; Khordad, R.; Rezaei, G.

    2018-03-01

    In this work, we have studied the effect of attraction term of molecular potential on surface tension of ionic liquids (ILs). For this purpose, we have introduced two different potential models to obtain analytical expressions for the surface tension of ILs. The introduced potential models have different attraction terms. The obtained surface tensions in this work have been compared with other theoretical methods and also experimental data. Using the calculated surface tension, the sound velocity is also estimated. We have studied the structural effects on the surface tensions of imidazolium-based ionic liquids. It is found that the cation alkyl chain length and the anion size play important roles to the surface tension of the selected ionic liquids. The calculated surface tensions show a good harmony with experimental data. It is clear that the attraction term of molecular potential has an important role on surface tension and sound velocity of our system.

  5. Hydrogenation of nitriles on a well-characterized nickel surface: From surface science studies to liquid phase catalytic activity measurements

    Gardin, Denis Emmanuel [Univ. of California, Berkeley, CA (United States)

    1993-12-01

    Nitrile hydrogenation is the most commonly used method for preparing diverse amines. This thesis is aimed at the mechanism and factors affecting the performance of Ni-based catalysts in nitrile hydrogenations. Surface science techniques are used to study bonding of nitriles and amines to a Ni(111) surface and to identify surface intermediates. Liquid-phase hydrogenations of cyclohexene and 1-hexene on a Pt foil were carried out successfully. Finally, knowledge about the surface structure, surface chemical bond, dynamics of surface atoms (diffusion, growth), and reactivity of metal surfaces from solid-gas interface studies, is discussed.

  6. Wear of Polished Steel Surfaces in Dry Friction Linear Contact on Polimer Composites with Glass Fibres

    D. Rus

    2013-12-01

    Full Text Available It is generally known that the friction and wear between polymers and polished steel surfaces has a special character, the behaviour to friction and wear of a certain polymer might not be valid for a different polymer, moreover in dry friction conditions. In this paper, we study the reaction to wear of certain polymers with short glass fibres on different steel surfaces, considering the linear friction contact, observing the friction influence over the metallic surfaces wear. The paper includes also its analysis over the steel’s wear from different points of view: the reinforcement content influence and tribological parameters (load, contact pressure, sliding speed, contact temperature, etc.. Thus, we present our findings related to the fact that the abrasive component of the friction force is more significant than the adhesive component, which generally is specific to the polymers’ friction. Our detections also state that, in the case of the polyamide with 30% glass fibres, the steel surface linear wear rate order are of 10-4 mm/h, respectively the order of volumetric wear rate is of 10-6 cm3 /h. The resulting volumetric wear coefficients are of the order (10-11 – 10-12 cm3/cm and respectively linear wear coefficients of 10-9 mm/cm.

  7. Ultrasound pulse-echo measurements on rough surfaces with linear array transducers

    Sjøj, Sidsel M. N.; Blanco, Esther N.; Wilhjelm, Jens E.

    2012-01-01

    The echo from planar surfaces with rms roughness, Rq, in the range from 0-155 μm was measured with a clinical linear array transducer at different angles of incidence at 6 MHz and 12 MHz. The echo-pulse from the surfaces was isolated with an equal sized window and the power of the echo-pulse was ......The echo from planar surfaces with rms roughness, Rq, in the range from 0-155 μm was measured with a clinical linear array transducer at different angles of incidence at 6 MHz and 12 MHz. The echo-pulse from the surfaces was isolated with an equal sized window and the power of the echo......-pulse was calculated. The power of the echo from the smooth surface (Rq = 0) is highly angle-dependent due to a high degree of specular reflection. Within the angular range considered here, -10° to 10°, the variation spans a range of 18 dB at both 6 MHz and 12 MHz. When roughness increases, the angle......-dependence decreases, as the echo process gradually changes from pure reflection to being predominantly governed by backscattering. The power of the echoes from the two roughest surfaces (Rq = 115 μm and 155 μm) are largely independent of angle at both 6 MHz and 12 MHz with a variation of 2 dB in the angular range...

  8. Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation

    Shrimali, M.K.; Jangid, R.S.

    2002-01-01

    Seismic response of the liquid storage tanks isolated by lead-rubber bearings is investigated for bi-directional earthquake excitation (i.e. two horizontal components). The biaxial force-deformation behaviour of the bearings is considered as bi-linear modelled by coupled non-linear differential equations. The continuous liquid mass of the tank is modelled as lumped masses known as convective mass, impulsive mass and rigid mass. The corresponding stiffness associated with these lumped masses has been worked out depending upon the properties of the tank wall and liquid mass. Since the force-deformation behaviour of the bearings is non-linear, as a result, the seismic response is obtained by the Newmark's step-by-step method. The seismic responses of two types of the isolated tanks (i.e. slender and broad) are investigated under several recorded earthquake ground to study the effects of bi-directional interaction. Further, a parametric study is also carried out to study the effects of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: (i) the period of isolation, (ii) the damping of isolation bearings and (iii) the yield strength level of the bearings. It has been observed that the seismic response of isolated tank is found to be insensitive to interaction effect of the bearing forces. Further, there exists an optimum value of isolation damping for which the base shear in the tank attains the minimum value. Therefore, increasing the bearing damping beyond a certain value may decrease the bearing and sloshing displacements but it may increase the base shear

  9. Novel method for the simultaneous estimation of density and surface tension of liquids

    Thirunavukkarasu, G.; Srinivasan, G.J.

    2003-01-01

    The conventional Hare's apparatus generally used for the determination of density of liquids has been modified by replacing its vertical arms (glass tubes) with capillary tubes of 30 cm length and 0.072 cm diameter. When the columns of liquids are drawn through the capillary tubes with reduced pressure at the top of the liquid columns and kept at equilibrium with the atmospheric pressure acting on the liquid surface outside the capillary tubes, the downward pressure due to gravity of the liquid columns has to be coupled with the pressure arising due to the effect of surface tension of the liquids. A fresh expression for the density and surface tension of liquids has been arrived at while equating the pressure balancing system for the two individual liquid columns of the modified Hare's apparatus. The experimental results showed that the proposed method is precise and accurate in the simultaneous estimation of density and surface tension of liquids, with an error of less than 5%

  10. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.

    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2015-05-29

    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity

    Miranda, Daniel F.; Urata, Chihiro; Masheder, Benjamin; Dunderdale, Gary J.; Hozumi, Atsushi, E-mail: a.hozumi@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560 (Japan); Yagihashi, Makoto [Nagoya Municipal Industrial Research Institute, Rokuban, Atsuta-ku, Nagoya 456-0058 (Japan)

    2014-05-01

    A fluorinated and hydrophobic ionic liquid (IL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, effectively served as an advantageous lubricating liquid for the preparation of physically and chemically stable omniphobic surfaces based on slippery liquid-infused porous surfaces. Here, we used particulate microstructures as supports, prepared by the chemical vapor deposition of 1,3,5,7-tetramethylcyclotetrasiloxane and subsequent surface modification with (3-aminopropyl)triethoxysilane. Confirmed by SEM and contact angle measurements, the resulting IL-infused microtextured surfaces are smooth and not only water but also various low surface tension liquids can easily slide off at low substrate tilt angles of <5°, even after exposure to high temperature, vacuum, and UV irradiation.

  12. Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity

    Daniel F. Miranda

    2014-05-01

    Full Text Available A fluorinated and hydrophobic ionic liquid (IL, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl imide, effectively served as an advantageous lubricating liquid for the preparation of physically and chemically stable omniphobic surfaces based on slippery liquid-infused porous surfaces. Here, we used particulate microstructures as supports, prepared by the chemical vapor deposition of 1,3,5,7-tetramethylcyclotetrasiloxane and subsequent surface modification with (3-aminopropyltriethoxysilane. Confirmed by SEM and contact angle measurements, the resulting IL-infused microtextured surfaces are smooth and not only water but also various low surface tension liquids can easily slide off at low substrate tilt angles of <5°, even after exposure to high temperature, vacuum, and UV irradiation.

  13. Phase transition detection by surface photo charge effect in liquid crystals

    Ivanov, O.; Petrov, M.; Naradikian, H.; Perez-Diaz, J. L.

    2018-05-01

    The surface photo charge effect (SPCE) was applied for the first time at structure and phase transitions study of hydrogen bonded in dimer liquid crystals (HBDLCs). Due to the high sensitivity of this method, besides first-order phase transitions, characteristic for the p,n-octyloxibenzoic acids (8OBA), an order transition was definitely detected within the nematic range. We state that the SPCE, arising at the solid-HBDLCs interface due to the double electrical layer, is invariably concomitant with solid surface-liquid interfaces, and indicates that the changes of the characteristics of this layer, under incident optical irradiation, induce surface charge rearrangement and alternating potential difference. A mechanism of induction of the SPCE at the interface of solid surface-anisotropic liquids is proposed. We also indicate that this mechanism can be adapted for solid surface-isotropic liquid interface, including colloids (milk) and fog (aerosols)-condensed medium.

  14. Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces

    Zutz, Amelia Marie

    Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.

  15. Analysis of spatial and temporal spectra of liquid film surface in annular gas-liquid flow

    Alekseenko, Sergey; Cherdantsev, Andrey; Heinz, Oksana; Kharlamov, Sergey; Markovich, Dmitriy

    2013-09-01

    Wavy structure of liquid film in annular gas-liquid flow without liquid entrainment consists of fast long-living primary waves and slow short-living secondary waves. In present paper, results of spectral analysis of this wavy structure are presented. Application of high-speed LIF technique allowed us to perform such analysis in both spatial and temporal domains. Power spectra in both domains are characterized by one-humped shape with long exponential tail. Influence of gas velocity, liquid Reynolds number, liquid viscosity and pipe diameter on frequency of the waves is investigated. When gravity effect is much lesser than the shear stress, similarity of power spectra at different gas velocities is observed. Using combination of spectral analysis and identification of characteristic lines of primary waves, frequency of generation of secondary waves by primary waves is measured.

  16. Determination of surface tension coefficient of liquids by diffraction of light on capillary waves

    Nikolić, D; Nešić, Lj

    2012-01-01

    This paper describes a simple technique for determining the coefficient of the surface tension of liquids, based on laser light diffraction on capillary waves. Capillary waves of given frequency are created by an exciter needle acting on the surface of liquid and represent a reflective diffraction grating, the constant of which (the wavelength of capillary waves) can be determined based on a known incidence angle of light (grazing angle). We obtain the coefficient of the surface tension of liquids by applying the dispersion relation for capillary waves and analyze the difficulties that arise when setting up and conducting the experiment in detail. (paper)

  17. Linear magnetoresistance and surface to bulk coupling in topological insulator thin films.

    Singh, Sourabh; Gopal, R K; Sarkar, Jit; Pandey, Atul; Patel, Bhavesh G; Mitra, Chiranjib

    2017-12-20

    We explore the temperature dependent magnetoresistance of bulk insulating topological insulator thin films. Thin films of Bi 2 Se 2 Te and BiSbTeSe 1.6 were grown using the pulsed laser deposition technique and subjected to transport measurements. Magnetotransport measurements indicate a non-saturating linear magnetoresistance (LMR) behavior at high magnetic field values. We present a careful analysis to explain the origin of LMR taking into consideration all the existing models of LMR. Here we consider that the bulk insulating states and the metallic surface states constitute two parallel conduction channels. Invoking this, we were able to explain linear magnetoresistance behavior as a competition between these parallel channels. We observe that the cross-over field, where LMR sets in, decreases with increasing temperature. We propose that this cross-over field can be used phenomenologically to estimate the strength of surface to bulk coupling.

  18. Linear and Nonlinear Gait Features in Older Adults Walking on Inclined Surfaces at Different Speeds.

    Vieira, Marcus Fraga; Rodrigues, Fábio Barbosa; de Sá E Souza, Gustavo Souto; Magnani, Rina Márcia; Lehnen, Georgia Cristina; Andrade, Adriano O

    2017-06-01

    This study evaluated linear and nonlinear gait features in healthy older adults walking on inclined surfaces at different speeds. Thirty-seven active older adults (experimental group) and fifty young adults (control group) walked on a treadmill at 100% and ±20% of their preferred walking speed for 4 min under horizontal (0%), upward (UP) (+8%), and downward (DOWN) (-8%) conditions. Linear gait variability was assessed using the average standard deviation of trunk acceleration between strides (VAR). Gait stability was assessed using the margin of stability (MoS). Nonlinear gait features were assessed by using the maximum Lyapunov exponent, as a measure of local dynamic stability (LDS), and sample entropy (SEn), as a measure of regularity. VAR increased for all conditions, but the interaction effects between treadmill inclination and age, and speed and age were higher for young adults. DOWN conditions showed the lowest stability in the medial-lateral MoS, but not in LDS. LDS was smaller in UP conditions. However, there were no effects of age for either MoS or LDS. The values of SEn decreased almost linearly from the DOWN to the UP conditions, with significant interaction effects of age for anterior-posterior SEn. The overall results supported the hypothesis that inclined surfaces modulate nonlinear gait features and alter linear gait variability, particularly in UP conditions, but there were no significant effects of age for active older adults.

  19. Levitation of Liquid Microdroplets Above A Solid Surface Subcooled to the Leidenfrost Temperature

    Kirichenko D. P.

    2016-01-01

    Full Text Available Evaporation of liquid microdroplets that fall on a solid surface with the temperature of below the Leidenfrost temperature is studied. It has been found out that sufficiently small liquid droplets of about 10 microns can suspend at some distance from the surface (levitate and do not reach the surface; at that, the rate of droplet evaporation is reduced by an order as compared to microdroplets, which touch the surface. It is determined that in contrast to microdroplets, which touch the surface, the specific evaporation rate of levitating droplets is constant in time.

  20. Simulating the performance of a distance-3 surface code in a linear ion trap

    Trout, Colin J.; Li, Muyuan; Gutiérrez, Mauricio; Wu, Yukai; Wang, Sheng-Tao; Duan, Luming; Brown, Kenneth R.

    2018-04-01

    We explore the feasibility of implementing a small surface code with 9 data qubits and 8 ancilla qubits, commonly referred to as surface-17, using a linear chain of 171Yb+ ions. Two-qubit gates can be performed between any two ions in the chain with gate time increasing linearly with ion distance. Measurement of the ion state by fluorescence requires that the ancilla qubits be physically separated from the data qubits to avoid errors on the data due to scattered photons. We minimize the time required to measure one round of stabilizers by optimizing the mapping of the two-dimensional surface code to the linear chain of ions. We develop a physically motivated Pauli error model that allows for fast simulation and captures the key sources of noise in an ion trap quantum computer including gate imperfections and ion heating. Our simulations showed a consistent requirement of a two-qubit gate fidelity of ≥99.9% for the logical memory to have a better fidelity than physical two-qubit operations. Finally, we perform an analysis of the error subsets from the importance sampling method used to bound the logical error rates to gain insight into which error sources are particularly detrimental to error correction.

  1. Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra

    Godet, Christian; David, Denis

    2017-12-01

    Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.

  2. Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry.

    Shen, Yan; Han, Chao; Liu, Bin; Lin, Zhengfeng; Zhou, Xiujin; Wang, Chengjun; Zhu, Zhenou

    2014-02-01

    A simple, precise, accurate, and validated liquid chromatography-quadrupole linear ion trap mass spectrometry method was developed for the determination of vanillin, ethyl vanillin, and coumarin in infant formula samples. Following ultrasonic extraction with methanol/water (1:1, vol/vol), and clean-up on an HLB solid-phase extraction cartridge (Waters Corp., Milford, MA), samples were separated on a Waters XSelect HSS T3 column (150 × 2.1-mm i.d., 5-μm film thickness; Waters Corp.), with 0.1% formic acid solution-acetonitrile as mobile phase at a flow rate of 0.25 mL/min. Quantification of the target was performed by the internal standard approach, using isotopically labeled compounds for each chemical group, to correct matrix effects. Data acquisition was carried out in multiple reaction monitoring transitions mode, monitoring 2 multiple reaction monitoring transitions to ensure an accurate identification of target compounds in the samples. Additional identification and confirmation of target compounds were performed using the enhanced product ion modus of the linear ion trap. The novel liquid chromatography-quadrupole linear ion trap mass spectrometry platform offers the best sensitivity and specificity for characterization and quantitative determination of vanillin, ethyl vanillin, and coumarin in infant formula and fulfills the quality criteria for routine laboratory application. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces.

    Kalpathy, Sreeram K; Shreyes, Amrita Ravi

    2017-06-07

    The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other.

  4. Non-linearity parameter of binary liquid mixtures at elevated pressures

    parameter B/A of four binary liquid mixtures using Tong and Dong equation at high pressures and .... in general as regular or ideal as no recognized association takes place between the unlike molecules. In this case ... Using the definition and.

  5. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  6. Direct mass spectrometric screening of antibiotics from bacterial surfaces using liquid extraction surface analysis.

    Kai, Marco; González, Ignacio; Genilloud, Olga; Singh, Sheo B; Svatoš, Aleš

    2012-10-30

    There is a need to find new antibiotic agents to fight resistant pathogenic bacteria. To search successfully for novel antibiotics from bacteria cultivated under diverse conditions, we need a fast and cost-effective screening method. A combination of Liquid Extraction Surface Analysis (LESA), automated chip-based nanoelectrospray ionization, and high-resolution mass or tandem mass spectrometry using an Orbitrap XL was tested as the screening platform. Actinobacteria, known to produce well-recognized thiazolyl peptide antibiotics, were cultivated on a plate of solid medium and the antibiotics were extracted by organic solvent mixtures from the surface of colonies grown on the plate and analyzed using mass spectrometry (MS). LESA combined with high-resolution MS is a powerful tool with which to extract and detect thiazolyl peptide antibiotics from different Actinobacteria. Known antibiotics were correctly detected with high mass accuracy (antibiotics in particular and natural products in general. The method described in this paper is suitable for (1) screening the natural products produced by bacterial colonies on cultivation plates within the first 2 min following extraction and (2) detecting antibiotics at high mass accuracy; the cost is around 2 Euro per sample. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Apparent contact angle and contact angle hysteresis on liquid infused surfaces.

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-12-21

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.

  8. Relation between bulk compressibility and surface energy of electron-hole liquids

    Singwi, K.S.; Tosi, M.P.

    1979-08-01

    Attention is drawn to the existence of an empirical relation chiσ/asup(*)sub(B) approximately 1 between the compressibility, the surface energy and the excitonic radius in electron-hole liquids. (author)

  9. Axial propagation of free surface boiling into superheated liquids in vertical tubes

    Grolmes, M.A.; Fauske, H.K.

    1974-01-01

    A unique free surface boiling phenomenon has been observed as a result of rapid depressurization of an initially saturated or slightly subcooled stagnant liquid column in the absence of wall and bulk nucleation sites. Closeup high-speed photographs of water, refrigerant-11, and methyl alcohol in tubes from 0.2 to 15 in. dia reveal that the initiation of violent free surface flashing (vapor plus entrained liquid) follows from the development of Marangoni-type surface waves. The rate of propagation of the flashing surface shows evidence of choked flow limitations and proceeds at a rate which is several orders of magnitude greater than surface evaporation (vapor only) alone. The onset of free surface flashing was found to be dependent upon both the degree of initial liquid superheat and the tube diameter. (U.S.)

  10. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    Kamiya, Hidehiro; Iijima, Motoyuki

    2010-01-01

    Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids. (topical review)

  11. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    Hidehiro Kamiya and Motoyuki Iijima

    2010-01-01

    Full Text Available Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM. Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.

  12. Liquid crystal elastomer coatings with programmed response of surface profile

    Babakhanova, G.; Turiv, T.; Guo, Y.; Hendrikx, M.; Wei, Q.H.; Schenning, A.P.H.J.; Broer, D.J.; Lavrentovich, O.D.

    2018-01-01

    Stimuli-responsive liquid crystal elastomers with molecular orientation coupled to rubber-like elasticity show a great potential as elements in soft robotics, sensing, and transport systems. The orientational order defines their mechanical response to external stimuli, such as thermally activated

  13. The profile of a capillary liquid bridge between solid surfaces

    van Honschoten, J.W.; Tas, Niels Roelof; Elwenspoek, Michael Curt

    2010-01-01

    Scanning force microscopy, such as atomic force microscopy (AFM) is complicated by the capillary force of a water meniscus formed in air between the probe tip and the sample. This small liquid bridge between the hydrophilic sample and the sharp AFM tip can be formed by capillary condensation from

  14. Structures of simple liquids in contact with nanosculptured surfaces.

    Singh, Swarn Lata; Schimmele, Lothar; Dietrich, S

    2015-03-01

    We present a density functional study of Lennard-Jones liquids in contact with a nanocorrugated wall. The corresponding substrate potential is taken to exhibit a repulsive hard core and a Van der Waals attraction. The corrugation is modeled by a periodic array of square nanopits. We have used the modified Rosenfeld density functional in order to study the interfacial structure of these liquids which with respect to their thermodynamic bulk state are considered to be deep inside their liquid phase. We find that already considerably below the packing fraction of bulk freezing of these liquids, inside the nanopits a three-dimensional-like density localization sets in. If the sizes of the pits are commensurate with the packing requirements, we observe high-density spots separated from each other in all spatial directions by liquid of comparatively very low density. The number, shape, size, and density of these high-density spots depend sensitively on the depth and width of the pits. Outside the pits, only layering is observed; above the pit openings these layers are distorted with the distortion reaching up to a few molecular diameters. We discuss quantitatively how this density localization is affected by the geometrical features of the pits and how it evolves upon increasing the bulk packing fraction. Our results are transferable to colloidal systems and pit dimensions corresponding to several diameters of the colloidal particles. For such systems the predicted unfolding of these structural changes can be studied experimentally on much larger length scales and more directly (e.g., optically) than for molecular fluids which typically call for sophisticated x-ray scattering.

  15. Functional models for commutative systems of linear operators and de Branges spaces on a Riemann surface

    Zolotarev, Vladimir A

    2009-01-01

    Functional models are constructed for commutative systems {A 1 ,A 2 } of bounded linear non-self-adjoint operators which do not contain dissipative operators (which means that ξ 1 A 1 +ξ 2 A 2 is not a dissipative operator for any ξ 1 , ξ 2 element of R). A significant role is played here by the de Branges transform and the function classes occurring in this context. Classes of commutative systems of operators {A 1 ,A 2 } for which such a construction is possible are distinguished. Realizations of functional models in special spaces of meromorphic functions on Riemann surfaces are found, which lead to reasonable analogues of de Branges spaces on these Riemann surfaces. It turns out that the functions E(p) and E-tilde(p) determining the order of growth in de Branges spaces on Riemann surfaces coincide with the well-known Baker-Akhiezer functions. Bibliography: 11 titles.

  16. Expanding the linear dynamic range for quantitative liquid chromatography-high resolution mass spectrometry utilizing natural isotopologue signals

    Liu, Hanghui; Lam, Lily; Yan, Lin; Chi, Bert; Dasgupta, Purnendu K.

    2014-01-01

    Highlights: • Less abundant isotopologue ions were utilized to decrease detector saturation. • A 25–50 fold increase in the upper limit of dynamic range was demonstrated. • Linear dynamic range was expanded without compromising mass resolution. - Abstract: The linear dynamic range (LDR) for quantitative liquid chromatography–mass spectrometry can be extended until ionization saturation is reached by using a number of target isotopologue ions in addition to the normally used target ion that provides the highest sensitivity. Less abundant isotopologue ions extend the LDR: the lower ion abundance decreases the probability of ion detector saturation. Effectively the sensitivity decreases and the upper limit of the LDR increases. We show in this paper that the technique is particularly powerful with a high resolution time of flight mass spectrometer because the data for all ions are automatically acquired, and we demonstrated this for four small organic molecules; the upper limits of LDRs increased by 25–50 times

  17. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  18. On the Surface Breakup of a Non-turbulent Round Liquid Jet in Cross-flow

    Behzad, Mohsen; Ashgriz, Nasser

    2011-11-01

    The atomization of a non-turbulent liquid jet injected into a subsonic cross-flow consists of two parts: (1) primary breakup and (2) secondary breakup. Two distinct regimes for the liquid jet primary breakup have been recognized; the so called column breakup and surface breakup. In the column breakup mode, the entire liquid jet undergoes disintegration into large liquid lumps. Quiet differently in the surface breakup regime, liquid fragments with various sizes and shapes are separated from the surface of the jet. Despite many experimental studies the mechanisms of jet surface breakup is not fully understood. Thus this study aims at providing useful observations regarding the underlying physics involving the surface breakup mechanism of a liquid jet in cross-flow, using detailed numerical simulations. The results show that a two-stage mechanism can be responsible for surface breakup. In the first stage, a sheet-like structure extrudes towards the downstream, and in the second stage it disintegrates into ligaments and droplets due to aerodynamic instability.

  19. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    Abderrahmen, A.; Romdhane, F.F.; Ben Ouada, H.; Gharbi, A.

    2006-01-01

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results

  20. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    Abderrahmen, A. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia)]. E-mail: asma_abderrahmen@yahoo.fr; Romdhane, F.F. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia); Ben Ouada, H. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia); Gharbi, A. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia)

    2006-03-15

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results.

  1. Definition of the linearity loss of the surface temperature in static tensile tests

    A. Risitano

    2014-10-01

    Full Text Available Static tensile tests on material for mechanical constructions have pointed out the linearity loss of the surface temperature with the application of load. This phenomenon is due to the heat generation caused by the local microplasticizations which carry the material to deviate from its completely thermoelastic behavior,. The identification of the static load which determines the loss of linearity of the temperature under stress, becomes extremely important to define a first dynamic characterization of the material. The temperature variations that can be recorded during the static test are often very limited (a few tenths of degree for every 100 MPa in steels and they require the use of special sensors able to measure very low temperature variations. The experience acquired in such analysis highlighted that, dealing with highly accurate sensors or with particular materials, the identification of the first linearity loss (often by eye in the temperature curves, can be influenced by the sensibility of the investigator himself and can lead to incorrect estimates. The aim of this work is to validate the above mentioned observations on different steels, by applying the autocorrelation function to the data collected during the application of a static load. This, in order to make the results of the thermal analysis free from the sensitivity of the operator and to make the results as objective as possible, for defining the closest time of the linearity loss in the temperature-time function.

  2. Processing method and processing device for liquid waste containing surface active agent and radioactive material

    Nishi, Takashi; Matsuda, Masami; Baba, Tsutomu; Yoshikawa, Ryozo; Yukita, Atsushi.

    1998-01-01

    Washing liquid wastes containing surface active agents and radioactive materials are sent to a deaerating vessel. Ozone is blown into the deaerating vessel. The washing liquid wastes dissolved with ozone are introduced to a UV ray irradiation vessel. UV rays are irradiated to the washing liquid wastes, and hydroxy radicals generated by photodecomposition of dissolved ozone oxidatively decompose surface active agents contained in the washing liquid wastes. The washing liquid wastes discharged from the UV ray irradiation vessel are sent to an activated carbon mixing vessel and mixed with powdery activated carbon. The surface active agents not decomposed in the UV ray irradiation vessel are adsorbed to the activated carbon. Then, the activated carbon and washing liquid wastes are separated by an activated carbon separating/drying device. Radioactive materials (iron oxide and the like) contained in the washing liquid wastes are mostly granular, and they are separated and removed from the washing liquid wastes in the activated carbon separating/drying device. (I.N.)

  3. Liquid flow along a solid surface reversibly alters interfacial chemistry.

    Lis, Dan; Backus, Ellen H G; Hunger, Johannes; Parekh, Sapun H; Bonn, Mischa

    2014-06-06

    In nature, aqueous solutions often move collectively along solid surfaces (for example, raindrops falling on the ground and rivers flowing through riverbeds). However, the influence of such motion on water-surface interfacial chemistry is unclear. In this work, we combine surface-specific sum frequency generation spectroscopy and microfluidics to show that at immersed calcium fluoride and fused silica surfaces, flow leads to a reversible modification of the surface charge and subsequent realignment of the interfacial water molecules. Obtaining equivalent effects under static conditions requires a substantial change in bulk solution pH (up to 2 pH units), demonstrating the coupling between flow and chemistry. These marked flow-induced variations in interfacial chemistry should substantially affect our understanding and modeling of chemical processes at immersed surfaces. Copyright © 2014, American Association for the Advancement of Science.

  4. Theoretical calculations of the surface tension of Ag(1-x)-Cu(x) liquid alloys

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Highlights: → A thermodynamic model for calculating the surface tension, and its temperature and composition dependences, of liquid binary alloys is described. → The model does not require the prior knowledge of the surface concentration and Gibbs energy. → The surface tension of the liquid Ag-Cu binary alloys has been calculated as a function of temperature and concentration. → The calculated values agree well with existing experimental data. - Abstract: The surface tension of silver-copper binary liquid alloys is calculated, in the frame work of Eyring theory. The calculations were made for different compositions (mole fraction, x Cu = 0, 0.2, 0.4, 0.6, 0.8 and 1), in the temperature range 1100-1800 K. The surface tension decreases with temperature increase, at a fixed copper fraction x Cu , and increases with increasing copper content. The calculated results are appropriately compared with existing literature data.

  5. Measuring adhesion on rough surfaces using atomic force microscopy with a liquid probe

    Juan V. Escobar

    2017-04-01

    Full Text Available We present a procedure to perform and interpret pull-off force measurements during the jump-off-contact process between a liquid drop and rough surfaces using a conventional atomic force microscope. In this method, a micrometric liquid mercury drop is attached to an AFM tipless cantilever to measure the force required to pull this drop off a rough surface. We test the method with two surfaces: a square array of nanometer-sized peaks commonly used for the determination of AFM tip sharpness and a multi-scaled rough diamond surface containing sub-micrometer protrusions. Measurements are carried out in a nitrogen atmosphere to avoid water capillary interactions. We obtain information about the average force of adhesion between a single peak or protrusion and the liquid drop. This procedure could provide useful microscopic information to improve our understanding of wetting phenomena on rough surfaces.

  6. X-Ray Reflectivity from the Surface of a Liquid Crystal:

    Pershan, P.S.; Als-Nielsen, Jens Aage

    1984-01-01

    X-ray reflectivity from the surface of a nematic liquid crystal is interpreted as the coherent superposition of Fresnel reflection from the surface and Bragg reflection from smectic order induced by the surface. Angular dependence of the Fresnel effect yields information on surface structure....... Measurement of the intensity of diffuse critical scattering relative to the Fresnel reflection yields the absolute value of the critical part of the density-density correlation function....

  7. Estimating spatially distributed monthly evapotranspiration rates by linear transformations of MODIS daytime land surface temperature data

    J. Szilagyi

    2009-05-01

    Full Text Available Under simplifying conditions catchment-scale vapor pressure at the drying land surface can be calculated as a function of its watershed-representative temperature (<Ts> by the wet-surface equation (WSE, similar to the wet-bulb equation in meteorology for calculating the dry-bulb thermometer vapor pressure of the Complementary Relationship of evaporation. The corresponding watershed ET rate, , is obtained from the Bowen ratio with the help of air temperature, humidity and percent possible sunshine data. The resulting (<Ts>, pair together with the wet-environment surface temperature (<Tws> and ET rate (ETw, obtained by the Priestley-Taylor equation, define a linear transformation on a monthly basis by which spatially distributed ET rates can be estimated as a sole function of MODIS daytime land surface temperature, Ts, values within the watershed. The linear transformation preserves the mean which is highly desirable. <Tws>, in the lack of significant open water surfaces within the study watershed (Elkhorn, Nebraska, was obtained as the mean of the smallest MODIS Ts values each month. The resulting period-averaged (2000–2007 catchment-scale ET rate of 624 mm/yr is very close to the water-balance derived ET rate of about 617 mm/yr. The latter is a somewhat uncertain value due to the effects of (a observed groundwater depletion of about 1m over the study period caused by extensive irrigation, and; (b the uncertain rate of net regional groundwater supply toward the watershed. The spatially distributed ET rates correspond well with soil/aquifer properties and the resulting land use type (i.e. rangeland versus center-pivot irrigated crops.

  8. Transmission-lattice based geometric phase analysis for evaluating the dynamic deformation of a liquid surface.

    Shi, Wenxiong; Huang, Xianfu; Liu, Zhanwei

    2014-05-05

    Quantitatively measuring a dynamic liquid surface often presents a challenge due to high transparency, fluidity and specular reflection. Here, a novel Transmission-Lattice based Geometric Phase Analysis (TLGPA) method is introduced. In this method, a special lattice is placed underneath a liquid to be tested and, when viewed from above, the phase of the transmission-lattice image is modulated by the deformation of the liquid surface. Combining this with multi-directional Newton iteration algorithms, the dynamic deformation field of the liquid surface can be calculated from the phase variation of a series of transmission-lattice images captured at different moments. The developed method has the advantage of strong self-adaption ability to initial lattice rotational errors and this is discussed in detail. Dynamic 3D ripples formation and propagation was investigated and the results obtained demonstrated the feasibility of the method.

  9. Investigation of surface charge density on solid–liquid interfaces by modulating the electrical double layer

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-01-01

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid–liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid–liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid–liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid–liquid interfaces. (paper)

  10. Effect of Liquid Ga on Metal Surfaces: Characterization of Morphology and Chemical Composition of Metals Heated in Liquid Ga

    Eun Je Lee

    2013-01-01

    Full Text Available This study investigates the effect of liquid gallium (Ga on metal foils made of titanium (Ti, niobium (Nb, and molybdenum (Mo. The Ti, Nb, and Mo foils were heated in liquid Ga at 120°C for a maximum of two weeks. After heating, the changes in the morphology and the chemical composition of the metal foils were analyzed by using a field emission scanning electron microscope, energy-dispersive X-ray spectrometer, X-ray diffractometer, and X-ray photoelectron spectrometer. The results of the analysis indicated that the Nb foil showed the minimum adhesion of liquid Ga to the surface while the maximum amount of liquid Ga was observed to adhere to the Ti foil. In addition, the Nb foil was oxidized and the Mo foil was reduced during the heating process. Considering these effects, we conclude that Mo may be used as an alternative encapsulation material for Ga in addition to Nb, which is used as the conventional encapsulation material, due to its chemical resistance against oxidation in hot liquid Ga.

  11. Classification of Surface and Deep Soil Samples Using Linear Discriminant Analysis

    Wasim, M.; Ali, M.; Daud, M.

    2015-01-01

    A statistical analysis was made of the activity concentrations measured in surface and deep soil samples for natural and anthropogenic gamma-emitting radionuclides. Soil samples were obtained from 48 different locations in Gilgit, Pakistan covering about 50 km/sup 2/ areas at an average altitude of 1550 m above sea level. From each location two samples were collected: one from the top soil (2-6 cm) and another from a depth of 6-10 cm. Four radionuclides including /sup 226/Ra, /sup 232/Th, /sup 40/K and /sup 137/Cs were quantified. The data was analyzed using t-test to find out activity concentration difference between the surface and depth samples. At the surface, the median activity concentrations were 23.7, 29.1, 4.6 and 115 Bq kg/sup -1/ for 226Ra, 232Th, 137Cs and 40K respectively. For the same radionuclides, the activity concentrations were respectively 25.5, 26.2, 2.9 and 191 Bq kg/sup -1/ for the depth samples. Principal component analysis (PCA) was applied to explore patterns within the data. A positive significant correlation was observed between the radionuclides /sup 226/Ra and /sup 232/Th. The data from PCA was further utilized in linear discriminant analysis (LDA) for the classification of surface and depth samples. LDA classified surface and depth samples with good predictability. (author)

  12. Direct numerical simulation of turbulent flows over superhydrophobic surfaces with gas pockets using linearized boundary conditions

    Seo, Jongmin; Bose, Sanjeeb; Garcia-Mayoral, Ricardo; Mani, Ali

    2012-11-01

    Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  13. Design of Annular Linear Induction Pump for High Temperature Liquid Lead Transportation

    Kwak, Jae Sik; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    EM(Electro Magnetic) Pump is divided into two parts, which consisted of the primary one with electromagnetic core and exciting coils, and secondary one with liquid lead flow. The main geometrical variables of the pump included core length, inner diameter and flow gap while the electromagnetic ones covered pole pitch, turns of coil, number of pole pairs, input current and input frequency. The characteristics of design variables are analyzed by electrical equivalent circuit method taking into account hydraulic head loss in the narrow annular channel of the ALIP. The design program, which was composed by using MATLAB language, was developed to draw pump design variables according to input requirements of the flow rate, developing pressure and operation temperature from the analyses. The analysis on the design of ALIP for high temperature liquid lead transportation was carried for the produce of ALIP designing program based on MATLAB. By the using of ALIP designing program, we don't have to bother about geometrical relationship between each component during detail designing process because code calculate automatically. And prediction of outputs about designing pump can be done easily before manufacturing. By running the code, we also observe and analysis change of outputs caused by changing of pump factors. It will be helpful for the research about optimization of pump outputs.

  14. Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces

    Zhu, Yingxi; Granick, Steve

    2001-01-01

    Newtonian fluids were placed between molecularly smooth surfaces whose spacing was vibrated at spacings where the fluid responded as a continuum. Hydrodynamic forces agreed with predictions from the no-slip boundary condition only provided that flow rate (peak velocity normalized by spacing) was low, but implied partial slip when it exceeded a critical level, different in different systems, correlated with contact angle (surface wettability). With increasing flow rate and partially wetted surfaces, hydrodynamic forces became up to 2--4 orders of magnitude less than expected by assuming the no-slip boundary condition that is commonly stated in textbooks

  15. Evaporation and condensation at a liquid surface. II. Methanol

    Matsumoto, Mitsuhiro; Yasuoka, Kenji; Kataoka, Yosuke

    1994-11-01

    The rates of evaporation and condensation of methanol under the vapor-liquid equilibrium condition at the temperature of 300 and 350 K are investigated with a molecular dynamics computer simulation. Compared with the argon system (reported in part I), the ratio of self-reflection is similar (˜10%), but the ratio of molecule exchange is several times larger than the argon, which suggests that the conventional assumption of condensation as a unimolecular process completely fails for associating fluids. The resulting total condensation coefficient is 20%-25%, and has a quantitative agreement with a recent experiment. The temperature dependence of the evaporation-condensation behavior is not significant.

  16. Linear and nonlinear post-processing of numerically forecasted surface temperature

    M. Casaioli

    2003-01-01

    Full Text Available In this paper we test different approaches to the statistical post-processing of gridded numerical surface air temperatures (provided by the European Centre for Medium-Range Weather Forecasts onto the temperature measured at surface weather stations located in the Italian region of Puglia. We consider simple post-processing techniques, like correction for altitude, linear regression from different input parameters and Kalman filtering, as well as a neural network training procedure, stabilised (i.e. driven into the absolute minimum of the error function over the learning set by means of a Simulated Annealing method. A comparative analysis of the results shows that the performance with neural networks is the best. It is encouraging for systematic use in meteorological forecast-analysis service operations.

  17. Asymmetric liquid wetting and spreading on surfaces with slanted micro-pillar arrays

    Yang, Xiaoming

    2013-01-01

    Uni-directional liquid spreading on asymmetric silicone-fabricated nanostructured surfaces has recently been reported. In this work, uniformly deflected polydimethylsiloxane (PDMS) micro-pillars covered with silver films were fabricated. Asymmetric liquid wetting and spreading behaviors in a preferential direction were observed on the slanted micro-pillar surfaces and a micro-scale thin liquid film advancing ahead of the bulk liquid droplet was clearly observed by high-speed video imaging. It is found that the slanted micro-pillar array is able to promote or inhibit the propagation of this thin liquid film in different directions by the asymmetric capillary force. The spreading behavior of the bulk liquid was guided and finally controlled by this micro-scale liquid film. Different spreading regimes are defined by the relationship between the liquid intrinsic contact angle and the critical angles, which were determined by the pillar height, pillar deflection angle and inter-pillar spacing. © The Royal Society of Chemistry 2013.

  18. Newtonian liquid jet impaction on a high-speed moving surface

    Keshavarz, B.; Green, S.I.; Davy, M.H.; Eadie, D.T.

    2011-01-01

    Highlights: ► We studied experimentally the interaction of a liquid jet with a moving surface. ► Decreasing the Reynolds number reduced the incidence of splash. ► The Weber number had a much smaller impact on splash than the Reynolds number. ► The jet impingement angle had only a small effect on the splash. ► Increasing the surface roughness substantially decreased the splash threshold. - Abstract: In the railroad industry a friction modifying agent may be applied to the rail or wheel in the form of a liquid jet. In this mode of application the interaction between the high-speed liquid jet and a fast moving surface is important. Seven different Newtonian liquids with widely varying shear viscosities were tested to isolate the effect of viscosity from other fluid properties. Tests were also done on five surfaces of different roughness heights to investigate the effects of surface roughness. High-speed video imaging was employed to scrutinize the interaction between the impacting jet and the moving surface. For all surfaces, decreasing the Reynolds number reduced the incidence of splash and consequently enhanced the transfer efficiency. At the elevated Weber numbers of the testing, the Weber number had a much smaller impact on splash than the Reynolds number. The ratio of the surface velocity to the jet velocity has only a small effect on the splash, whereas increasing the roughness-height-to-jet-diameter ratio substantially decreased the splash threshold.

  19. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study.

    Mancosu, Pietro; Fogliata, Antonella; Stravato, Antonella; Tomatis, Stefano; Cozzi, Luca; Scorsetti, Marta

    2016-01-01

    Frameless stereotactic radiosurgery (SRS) requires dedicated systems to monitor the patient position during the treatment to avoid target underdosage due to involuntary shift. The optical surface monitoring system (OSMS) is here evaluated in a phantom-based study. The new EDGE linear accelerator from Varian (Varian, Palo Alto, CA) integrates, for cranial lesions, the common cone beam computed tomography (CBCT) and kV-MV portal images to the optical surface monitoring system (OSMS), a device able to detect real-time patient׳s face movements in all 6 couch axes (vertical, longitudinal, lateral, rotation along the vertical axis, pitch, and roll). We have evaluated the OSMS imaging capability in checking the phantoms׳ position and monitoring its motion. With this aim, a home-made cranial phantom was developed to evaluate the OSMS accuracy in 4 different experiments: (1) comparison with CBCT in isocenter location, (2) capability to recognize predefined shifts up to 2° or 3cm, (3) evaluation at different couch angles, (4) ability to properly reconstruct the surface when the linac gantry visually block one of the cameras. The OSMS system showed, with a phantom, to be accurate for positioning in respect to the CBCT imaging system with differences of 0.6 ± 0.3mm for linear vector displacement, with a maximum rotational inaccuracy of 0.3°. OSMS presented an accuracy of 0.3mm for displacement up to 1cm and 1°, and 0.5mm for larger displacements. Different couch angles (45° and 90°) induced a mean vector uncertainty < 0.4mm. Coverage of 1 camera produced an uncertainty < 0.5mm. Translations and rotations of a phantom can be accurately detect with the optical surface detector system. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  20. Ballistic Evaporation and Solvation of Helium Atoms at the Surfaces of Protic and Hydrocarbon Liquids.

    Johnson, Alexis M; Lancaster, Diane K; Faust, Jennifer A; Hahn, Christine; Reznickova, Anna; Nathanson, Gilbert M

    2014-11-06

    Atomic and molecular solutes evaporate and dissolve by traversing an atomically thin boundary separating liquid and gas. Most solutes spend only short times in this interfacial region, making them difficult to observe. Experiments that monitor the velocities of evaporating species, however, can capture their final interactions with surface solvent molecules. We find that polarizable gases such as N2 and Ar evaporate from protic and hydrocarbon liquids with Maxwell-Boltzmann speed distributions. Surprisingly, the weakly interacting helium atom emerges from these liquids at high kinetic energies, exceeding the expected energy of evaporation from salty water by 70%. This super-Maxwellian evaporation implies in reverse that He atoms preferentially dissolve when they strike the surface at high energies, as if ballistically penetrating into the solvent. The evaporation energies increase with solvent surface tension, suggesting that He atoms require extra kinetic energy to navigate increasingly tortuous paths between surface molecules.

  1. Numerical simulation of liquid film flow on revolution surfaces with momentum integral method

    Bottoni Maurizio

    2005-01-01

    The momentum integral method is applied in the frame of safety analysis of pressure water reactors under hypothetical loss of coolant accident (LOCA) conditions to simulate numerically film condensation, rewetting and vaporization on the inner surface of pressure water reactor containment. From the conservation equations of mass and momentum of a liquid film arising from condensation of steam upon the inner of the containment during a LOCA in a pressure water reactor plant, an integro-differential equation is derived, referring to an arbitrary axisymmetric surface of revolution. This equation describes the velocity distribution of the liquid film along a meridian of a surface of revolution. From the integro-differential equation and ordinary differential equation of first order for the film velocity is derived and integrated numerically. From the velocity distribution the film thickness distribution is obtained. The solution of the enthalpy equation for the liquid film yields the temperature distribution on the inner surface of the containment. (authors)

  2. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.

    2018-01-01

    Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.

  3. Optimal Airport Surface Traffic Planning Using Mixed-Integer Linear Programming

    P. C. Roling

    2008-01-01

    Full Text Available We describe an ongoing research effort pertaining to the development of a surface traffic automation system that will help controllers to better coordinate surface traffic movements related to arrival and departure traffic. More specifically, we describe the concept for a taxi-planning support tool that aims to optimize the routing and scheduling of airport surface traffic in such a way as to deconflict the taxi plans while optimizing delay, total taxi-time, or some other airport efficiency metric. Certain input parameters related to resource demand, such as the expected landing times and the expected pushback times, are rather difficult to predict accurately. Due to uncertainty in the input data driving the taxi-planning process, the taxi-planning tool is designed such that it produces solutions that are robust to uncertainty. The taxi-planning concept presented herein, which is based on mixed-integer linear programming, is designed such that it is able to adapt to perturbations in these input conditions, as well as to account for failure in the actual execution of surface trajectories. The capabilities of the tool are illustrated in a simple hypothetical airport.

  4. Waves on the surface of a boiling liquid at various medium stratifications

    Sinkevich, O. A.

    2015-01-01

    The stability of relatively small perturbations of the stationary state consisting of a plane liquid layer and a vapor film is studied when no liquid evaporation or vapor condensation occurs in the stationary state. In this case, heat from a hot to cold wall is removed through a vapor–liquid layer via heat conduction. The boundary conditions that take into account liquid evaporation (appearance of a mass flux) at the vapor–liquid phase surface and the temperature dependence of the saturation pressure are derived. Dispersion equations are obtained. The wave processes for the stable (light vapor under a liquid layer) and unstable stratifications of the phases at rest and during their relative motion are studied. The deformation of the phase boundary results in liquid evaporation, changes in the boiling temperature and the saturation pressure, and generation of weakly damped low-amplitude waves of a new type. These waves ensure the stability of a vapor film under a liquid layer at rest or a liquid layer moving at a constant velocity in the gravity field. The velocities of these waves are much higher than the gravity wave velocities. The critical heat flows and wavelengths at which wave boiling regimes at normal pressure can exist are determined, and the calculated and experimental data are compared

  5. Refining femtosecond laser induced periodical surface structures with liquid assist

    Jiao, L.S.; Ng, E.Y.K.; Zheng, H.Y.

    2013-01-01

    Highlights: ► LIPSS on silicon wafer was made in air and in ethanol environment. ► Ethanol environment produce cleaner surface ripples. ► Ethanol environment decrease spatial wavelength of the LIPSS by 30%. ► More number of pulses produce smaller spatial wavelength in air. ► Number of pulses do not influence spatial wavelength in ethanol environment. - Abstract: Laser induced periodic surface structures were generated on silicon wafer using femtosecond laser. The medium used in this study is both air and ethanol. The laser process parameters such as wavelength, number of pulse, laser fluence were kept constant for both the mediums. The focus of the study is to analyze spatial wavelength. When generating surface structures with air as a medium and same process parameter of the laser, spatial wavelength results showed a 30% increase compared to ethanol. The cleanliness of the surface generated using ethanol showed considerably less debris than in air. The results observed from the above investigation showed that the medium plays a predominant role in the generation of surface structures.

  6. Non-linear dielectric signatures of entropy changes in liquids subject to time dependent electric fields

    Richert, Ranko [School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604 (United States)

    2016-03-21

    A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a “hump,” i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, N{sub corr}, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales.

  7. Effect of electrolytes on surface tension and surface adsorption of 1-hexyl-3-methylimidazolium chloride ionic liquid in aqueous solution

    Ghasemian, Ensieh; Najafi, Mojgan; Rafati, Amir Abbas; Felegari, Zahra

    2010-01-01

    Surface and bulk properties of 1-hexyl-3-methylimidazolium chloride [C 6 mim][Cl] as an ionic liquid (IL) have been investigated by surface tension and electrical conductivity techniques at various temperatures. Results reveal that the ionic liquid behaves as surfactant-like and aggregates in aqueous solution. Critical aggregation concentration (cac) values obtained by conductivity and surface tension measurements are in good agreement with values found in the literature. A series of important and useful adsorption parameters including cac, surface excess concentration (Γ), and minimum surface area per molecule (A min ) at the air + water interface were estimated from surface tension in the presence and absence of different electrolytes. Obtained data show that the surface tension as well as the cac of [C 6 mim][Cl] is reduced by electrolytes. Also, values of surface excess concentration (Γ) show that the IL ions in the presence of electrolyte have much larger affinity to adsorption at the surface and this affinity increased in aqueous electrolyte solution in the order of I - > Br - > Cl - for counter ion of salts that was explained in terms of a larger repulsion of chloride anions from interface to the bromide and iodide anion as well as difference in their excess polarizability.

  8. Structure in a confined smectic liquid crystal with competing surface and sample elasticities

    Idziak, S.H.; Koltover, I.; Israelachvili, J.N.; Safinya, C.R.

    1996-01-01

    We report on studies using the x-ray surface forces apparatus (XSFA) to compare the structure of a liquid crystal confined between hard surfaces and, for the first time, between soft surfaces that can deform due to the stresses imposed by the confined fluid. We find that the alignment of smectic domains in confined films depends critically on both the shape and compliance of the confining walls or surfaces: open-quote open-quote Soft surfaces close-quote close-quote exhibit a critical gap thickness of 3.4 μm for the liquid crystal studied at which maximum alignment occurs, while open-quote open-quote hard surfaces close-quote close-quote do not exhibit gap-dependent alignment. copyright 1996 The American Physical Society

  9. Influence of Zinc on the Surface Tension, Density and Molar Volume of (Ag-Sneut +Zn Liquid Alloys

    Gąsior W.

    2016-03-01

    Full Text Available The dilatometric and maximum bubble pressure methods were applied for the measurements of the density and surface tension of liquid (Ag-Sneut +Zn lead-free solders. The experiments were carried out in the temperature range from 515 to 1223 K for the alloys of the zinc concentration equaling 0.01, 0.02, 0.04, 0.05, 0.1 and 0.2 of the mole fraction. It was found that the temperature dependence of both the density and the surface tension could be thought as linear, so they were interpreted by straight line equations. The experimental data of the molar volume of the investigated alloys were described by the polynomial dependent on the composition and temperature.

  10. US assessment of free surface liquid metal divertors -- Design analysis and R and D needs

    Mattas, R.F.

    1997-01-01

    One of the objectives of the restructured US Fusion Energy Sciences Program is to identify and evaluate new high performance concepts for advanced technology with high neutron wall load capability and attractive safety and environmental features. One promising technology specified by the Advanced Technologies and Materials Working Group is liquid plasma-facing surfaces for divertors. Some of the possible advantages of using liquid surfaces in divertors, relative to conventional solid surface approaches, include higher surface heat flux capability, continuously renewable surfaces, and higher temperature operation. A planning activity has been undertaken to identify the work to be performed over approximately three years to evaluate liquid surface concepts on the basis of such factors as their compatibility with fusion plasmas, high power density handling capabilities, engineering feasibility, lifetime, safety, and R and D requirements. A group, known as the Advanced Liquid Plasma-facing Surface (ALPS) planning group, was organized to prepare a plan for the activities needed to conduct such an evaluation. This paper will summarize the work of the ALPS group including recommendations on specific activities and a tentative schedule

  11. Extreme Wetting-Resistant Multiscale Nano-/Microstructured Surfaces for Viscoelastic Liquid Repellence

    Aoythip Chunglok

    2016-01-01

    Full Text Available We demonstrate exceptional wetting-resistant surfaces capable of repelling low surface tension, non-Newtonian, and highly viscoelastic liquids. Theoretical analysis and experimental result confirm that a higher level of multiscale roughness topography composed of at least three structural length scales, ranging from nanometer to supermicron sizes, is crucial for the reduction of liquid-solid adhesion hysteresis. With Cassie-Baxter nonwetting state satisfied at all roughness length scales, the surface has been proven to effectively repel even highly adhesive liquid. Practically, this high-level hierarchical structure can be achieved through fractal-like structures of silica aggregates induced by siloxane oligomer interparticle bridges. The induced aggregation and surface functionalization of the silica particles can be performed simultaneously within a single reaction step, by utilizing trifunctional fluoroalkylsilane precursors that largely form a disordered fluoroalkylsiloxane grafting layer under the presence of sufficient native moisture preadsorbed at the silica surface. Spray-coating deposition of a particle surface layer on a precoated primer layer ensures facile processability and scalability of the fabrication method. The resulting low-surface-energy multiscale roughness exhibits outstanding liquid repellent properties, generating equivalent lotus effect for highly viscous and adhesive natural latex concentrate, with apparent contact angles greater than 160°, and very small roll-off angles of less than 3°.

  12. AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces

    Doktycz, M.J.; Sullivan, C.J.; Hoyt, P.R.; Pelletier, D.A.; Wu, S.; Allison, D.P

    2003-10-15

    Immobilization of particulates, especially biomolecules and cells, onto surfaces is critical for imaging with the atomic force microscope (AFM). In this paper, gelatin coated mica surfaces are shown to be suitable for immobilizing and imaging both gram positive, Staphylococcus aureus, and gram negative, Escherichia coli, bacteria in both air and liquid environments. Gelatin coated surfaces are shown to be superior to poly-L-lysine coated surfaces that are commonly used for the immobilization of cells. This cell immobilization technique is being developed primarily for live cell imaging of Rhodopseudomonas palustris. The genome of R. palustris has been sequenced and the organism is the target of intensive studies aimed at understanding genome function. Images of R. palustris grown both aerobically and anaerobically in liquid media are presented. Images in liquid media show the bacteria is rod shaped and smooth while images in air show marked irregularity and folding of the surface. Significant differences in the vertical dimension are also apparent with the height of the bacteria in liquid being substantially greater than images taken in air. In air immobilized bacterial flagella are clearly seen while in liquid this structure is not visible. Additionally, significant morphological differences are observed that depend on the method of bacterial growth.

  13. Stability conditions of stationary rupture of liquid layers on an immiscible fluid surface

    Viviani, A. [Seconda Univ. di Napoli, Aversa (Italy). Facolta di Ingegneria; Kostarev, K.; Shmyrov, A.; Zuev, A. [Inst. of Continuous Media Mechanics, Perm (Russian Federation)

    2009-07-01

    The stationary equilibrium shape of a 3-phase liquids-gas system was investigated. The system consisted of a horizontal liquid layer with an upper free boundary placed on the immiscible fluid interface. The study investigated the stability conditions of rupture of the liquid layer surface. The dependence of rupture parameters on the experimental cuvette diameter and layer thickness was investigated, as well as the difference in the values of surface tension of the examined fluids. The 2-layer system of horizontal fluid layers was formed in a glass cylindrical cuvette. The liquid substrate was tetrachloride carbon (CCI{sub 4}), while upper layers included water, glycerine, ethyleneglycol, and aqueous solutions of 1,4-butanediol C{sub 4}H{sub 10}O{sub 2} and isopropanol C{sub 3H8L}. Initially, the surface of the substrate fluid was overlaid with a horizontal liquid layer. The rupture was formed by subjecting the layer surface to short-time actions of a narrow directional air jet. After rupture formation, the layer thickness increased gradually. The measurements demonstrated that the rupture diameter depends on the initial thickness of the upper layer as well as the diameter of the cuvette, and the difference in the values of the surface tension of the examined fluids. Analysis of the experimental relationships indicated that the critical thickness of the breaking layer is a constant value for any specific pairs of fluids. 4 refs., 7 figs.

  14. Density-functional calculations of the surface tension of liquid Al and Na

    Stroud, D.; Grimson, M. J.

    1984-01-01

    Calculations of the surface tensions of liquid Al and Na are described using the full ionic density functional formalism of Wood and Stroud (1983). Surface tensions are in good agreement with experiment in both cases, with results substantially better for Al than those found previously in the gradient approximation. Preliminary minimization with respect to surface profile leads to an oscillatory profile superimposed on a nearly steplike ionic density disribution; the oscillations have a wavellength of about a hardsphere diameter.

  15. Quantized layer growth at liquid-crystal surfaces

    Ocko, B. M.; Braslau, A.; Pershan, P. S.

    1986-01-01

    of the specular reflectivity is consistent with a sinusoidal density modulation, starting at the surface and terminating abruptly, after an integral number of bilayers. As the transition is approached the number of layers increases in quantized steps from zero to five before the bulk undergoes a first...

  16. Apparent Contact Angle and Contact Angle Hysteresis on Liquid Infused Surfaces

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-01-01

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small b...

  17. Ultraviolet curing of acrylated liquid natural rubber for surface coating application

    Kannikar Kwanming

    2009-01-01

    Full Text Available Ultraviolet curable acrylated liquid natural rubber was prepared by grafting of photosensitive molecule onto liquid natural rubber for surface coating application. The liquid natural rubber (LNR was firstly obtained by degradation of natural rubber latex with hydrogen peroxide and cobalt acetylacetonate at 65oC for 72 hrs. The preparation of acrylated natural rubber was carried out by the reaction of acrylic acid and epoxidized liquid natural rubber (ELNR prior obtained from LNR with formic acid and hydrogen peroxide in the ratio of 2:1 by weight in toluene at 80oC for 6, 9, 12, 18, and 24 hrs. It was found that the percentage of acrylate grafted onto liquid natural rubber depended on the reaction time. Surface coating was performed by using acrylated liquid natural rubber and 1,6-hexanediol diacrylate (HDDA or tripropylene glycol diacrylate (TPGDA as a crosslinker and Irgarcure 184 or Irgarcure 651 as a photoinitiator under UV exposure for 30, 60, and 90 seconds. The hardness test of cured products was investigated using the Pencil hardness test at pencil level of 2B to 6H. It was found that the highest hardness of surface coating was at pencil level of 4H for the product using TPGDA and Irgacure 651 in the ratio of 80:10 parts per hundred of rubber (phr. The cured products were able to resist to 2% H2SO4 and distilled water for more than 24 hrs.

  18. Analysis of Disperse Dyes Using Liquid Chromatography/Linear Ion Trap Mass Spectrometry (LC/LIT-MSn) and Database Construction.

    Kato, Takao; Ikeue, Takahisa; Suzuki, Yasuhiro; Handa, Makoto

    2016-01-01

    Liquid chromatography/linear ion trap mass spectrometry (LC/LIT-MS(n)) was used to construct a database of disperse dyes. Fifty-three standard dyes were subjected to LC/LIT-MS(n) and characterized based on their mass spectra (MS, MS(2), and MS(3)), values of λmax (maximum absorption wavelength in the UV-visible spectrum), and retention times. The results demonstrate that it is possible to reliably identify coexisting dyes that cannot be separated by LC or detected by diode array detection due to their low molecular absorption coefficients. In addition, the by-products included in the standard dyes were found to provide important information for the identification and discrimination of dyestuffs synthesized using different processes. The confirmation of the effectiveness of LC/LIT-MS(n) analysis in detecting small amounts of disperse dyes in this study shows its potential for use in the discrimination of dyed fibers obtained at crime scenes.

  19. Laser-induced surface modification of metals and alloys in liquid argon medium

    Kazakevich, V S; Kazakevich, P V; Yaresko, P S; Kamynina, D A

    2016-01-01

    Micro and nanostructuring of metals and alloys surfaces (Ti, Mo, Ni, T30K4) was considered by subnanocosecond laser radiation in stationary and dynamic mode in the liquid argon, ethanol and air. Depending of structures size on the samples surface from the energy density and the number of pulses were built. Non-periodic (NSS) and periodic (PSS) surface structures with periods about λ-λ/2 were obtained. PSS formation took place as at the target surface so at the NSS surface. (paper)

  20. Deformation and instabilities at a free surface of liquid subject to a local rapid evaporation

    Marechal, Anne

    1993-01-01

    This research thesis first addresses theoretical aspects related to the study of stationary system (the deformation of the liquid-vapour interface) and to the study of the linear stability of this interface, and more particularly the study of the liquid-vapour interface of a fluid heated by electron bombardment in a vacuum enclosure. The author reports the analysis of Landau and Palmer systems, reports the study of the marginal stability of a simplified SILVA (isotopic separation by laser on atomic vapour) system which allows the identification of destabilizing mechanisms, and the comparison between a liquid system heated from underneath with liquid system heated from above. Results are then validated by experimental results. In the next part, the author sets the equations of a SILVA system closer to reality by addressing vapour in a more realistic way. Results of conventional kinetic theory are studied again by analysing sonic evaporation of a liquid. The author reports a study of the linear stability of this system, and reports an attempt to analyse the obtained results [fr

  1. Quantification of deexcitation processes for analyzing liquid surfaces

    Morgner, H.

    2014-01-01

    In the last two decades the mathematical tools for quantitative data evaluation have been developed for several surface spectroscopic techniques like Angular Resolved X-ray Photoelectron Spectroscopy (ARXPS), Neutral Impact Collision Ion Scattering Spectroscopy (NICISS) and Metastable Induced Electron Spectroscopy (MIES). Provided that the experimental data are of good quality, quantitative data processing can add a lot to the information that can be gained from surface spectroscopy. We give a selection of references that contain information on these methods. The emphasis of this contribution aims at providing motivation to apply quantitative data evaluation by presenting a few examples. We try to demonstrate, that careful data evaluation may lead to interesting insight into basic concepts as well as to results that are useful for practical applications

  2. Quantification of deexcitation processes for analyzing liquid surfaces

    Morgner, H., E-mail: hmorgner@rz.uni-leipzig.de

    2014-12-01

    In the last two decades the mathematical tools for quantitative data evaluation have been developed for several surface spectroscopic techniques like Angular Resolved X-ray Photoelectron Spectroscopy (ARXPS), Neutral Impact Collision Ion Scattering Spectroscopy (NICISS) and Metastable Induced Electron Spectroscopy (MIES). Provided that the experimental data are of good quality, quantitative data processing can add a lot to the information that can be gained from surface spectroscopy. We give a selection of references that contain information on these methods. The emphasis of this contribution aims at providing motivation to apply quantitative data evaluation by presenting a few examples. We try to demonstrate, that careful data evaluation may lead to interesting insight into basic concepts as well as to results that are useful for practical applications.

  3. Cage and linear structured polysiloxane/epoxy hybrids for coatings: Surface property and film permeability.

    Ma, Yanli; He, Ling; Jia, Mengjun; Zhao, Lingru; Zuo, Yanyan; Hu, Pingan

    2017-08-15

    Three polysiloxane/epoxy hybrids obtained by evolving cage- or linear-structured polysiloxane into poly glycidyl methacrylate (PGMA) matrix are compared used as coatings. One is the cage-structured hybrid of P(GMA/MA-POSS) copolymer obtained by GMA and methacrylisobutyl polyhedral oligomeric silsesquioxane (MA-POSS) via free radical polymerization, the other two are PGMA/NH 2 -POSS and PGMA/NH 2 -PDMS hybrids by cage-structured aminopropyllsobutyl POSS (NH 2 -POSS) or linear-structured diamino terminated poly(dimethylsiloxane) (NH 2 -PDMS) to cure PGMA. The effect of MA-POSS, NH 2 -POSS and NH 2 -PDMS on polysiloxane/epoxy hybrid films is characterized according to their surface morphology, transparency, permeability, adhesive strength and thermo-mechanical properties. Due to caged POSS tending to agglomerate onto the film surface, P(GMA/MA-POSS) and PGMA/NH 2 -POSS films exhibit much more heterogeneous surfaces than PGMA/NH 2 -PDMS film, but the well-compatibility between epoxy matrix and MA-POSS has provided P(GMA/MA-POSS) film with much higher transmittance (98%) than PGMA/NH 2 -POSS film (24%), PGMA/NH 2 -PDMS film (27%) and traditional epoxy resin film (5%). The introduction of polysiloxane into epoxy matrix is confirmed to create hybrids with strong adhesive strength (526-1113N) and high thermos-stability (T g =262-282°C), especially the cage-structured P(GMA/MA-POSS) hybrid (1113N and 282°C), but the flexible PDMS improves PGMA/NH 2 -PDMS hybrid with much higher storage modulus (519MPa) than PGMA/NH 2 -POSS (271MPa), which suggests that PDMS is advantage in improving the film stiffness than POSS cages. However, cage-structured P(GMA/MA-POSS) and PGMA/NH 2 -POSS indicate higher permeability than PGMA/NH 2 -PDMS and traditional epoxy resin. Comparatively, the cage-structured P(GMA/MA-POSS) hybrid is the best coating in transparency, permeability, adhesive strength and thermostability, but linear-structured PGMA/NH 2 -PDMS hybrid behaviors the best coating in

  4. Steady nanofluid flow with variable fluid possessions over a linearly extending surface: A Lie group exploration

    Kalidas Das

    2018-03-01

    Full Text Available The temperament of stream characteristic, heat and mass transfer of MHD forced convective flow over a linearly expanding porous medium has been scrutinized in the progress exploration. The germane possessions of the liquid like viscosity along with thermal conductivity are believed to be variable in nature, directly influenced by the temperature of flow. As soon as gaining the system of leading equations of the stream, Lie symmetric group transformations have been employed to come across the fitting parallel conversions to alter the central PDEs into a suit of ODEs. The renovated system of ODE with appropriate boundary conditions is numerically solved with the assistance of illustrative software MAPLE 17. The consequences of the relevant factors of the system have been exemplified through charts and graphs. An analogous qualified survey has been prepared among present inquiry and subsisting reads and achieved an admirable accord between them. The variable viscosity parameter has more significant effect on nanofluid velocity than regular fluid and temporal profile as well as nanoparticle concentration is also influenced with variable viscosity. Keywords: Nanofluid, Stretching sheet, Variable viscosity, Variable thermal conductivity, Lie symmetry group

  5. Holographic optical tweezers for object manipulations at an air-liquid surface.

    Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Bernet, Stefan; Ritsch-Marte, Monika

    2006-06-26

    We investigate holographic optical tweezers manipulating micro-beads at a suspended air-liquid interface. Axial confinement of the particles in the two-dimensional interface is maintained by the interplay between surface tension and gravity. Therefore, optical trapping of the micro-beads is possible even with a long distance air objective. Efficient micro-circulation of the liquid can be induced by fast rotating beads, driven by the orbital angular momentum transfer of incident Laguerre-Gaussian (doughnut) laser modes. Our setup allows various ways of creating a tailored dynamic flow of particles and liquid within the surface. We demonstrate examples of surface manipulations like efficient vortex pumps and mixers, interactive particle flow steering by arrays of vortex pumps, the feasibility of achieving a "clocked" traffic of micro beads, and size-selective guiding of beads along optical "conveyor belts".

  6. Model of a liquid droplet impinging on a high-temperature solid surface

    Gulikov, A.V.; Berlin, I.I.; Karpyshev, A.V.

    2004-01-01

    The model of the collision of the liquid droplet, vertically falling on the heated solid surface, is presented. The wall temperature is predeterminated so that the droplet interaction with the wall proceeds through the gas interlayer (T≥400 Deg C). The droplet liquid is incompressible, nonviscous. The droplet surface is assigned as free one. The pressure is composed of two components. The first component is the surface tension. The record component is the steam pressure between the droplet and the wall. The liquid motion inside the droplet is assumed to be potential, axisymmetric. The calculation of the droplet collision are carried out with application of the above model. The obtained results are compared with the data of other authors [ru

  7. Solutal Marangoni flows of miscible liquids drive transport without surface contamination

    Kim, Hyoungsoo; Muller, Koen; Shardt, Orest; Afkhami, Shahriar; Stone, Howard A.

    2017-11-01

    Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea, estuaries, food processing, cosmetic and beverage industries, lab-on-a-chip devices, and polymer processing. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.

  8. Inorganic Surface Coating with Fast Wetting-Dewetting Transitions for Liquid Manipulations.

    Yang, Yajie; Zhang, Liaoliao; Wang, Jue; Wang, Xinwei; Duan, Libing; Wang, Nan; Xiao, Fajun; Xie, Yanbo; Zhao, Jianlin

    2018-06-06

    Liquid manipulation is a fundamental issue for microfluidics and miniaturized sensors. Fast wetting-state transitions by optical methods have proven being efficient for liquid manipulations by organic surface coatings, however rarely been achieved by using inorganic coatings. Here, we report a fast optical-induced wetting-state transition surface achieved by inorganic coating, enabling tens of second transitions for a wetting-dewetting cycle, shortened from an hour, as typically reported. Here, we demonstrate a gravity-driven microfluidic reactor and switch it to a mixer after a second-step exposure in a minimum of within 80 s of UV exposure. The fast wetting-dewetting transition surfaces enable the fast switchable or erasable smart surfaces for water collection, miniature chemical reaction, or sensing systems by using inorganic surface coatings.

  9. Thermodynamic and surface properties of liquid Co–Cr–Ni alloys

    Costa, C.; Delsante, S.; Borzone, G.; Zivkovic, D.; Novakovic, R.

    2014-01-01

    Highlights: • The liquid phases of Co–Cr, Co–Ni and Cr–Ni were modelled by the Quasi Chemical Approximation for regular solutions. • The excess Gibbs free energy of mixing of the liquid Co–Cr–Ni phase is estimated by the three thermodynamic models. • Prediction of structure can compensate the lack of structural data of Co–Cr, Co–Ni and Cr–Ni melts. • Thermodynamic modelling of the surface properties of Co–Cr–Ni melts. • Weak effects of short range ordering among nearest neighbours in Co–Cr, Co–Ni and Cr–Ni liquid alloys can be deduced. -- Abstract: Direct measurements of bulk and surface properties of liquid alloys at elevated temperatures are often technically difficult or even impossible, and therefore, theoretical models can be used to estimate missing property values. The energetics of mixing in liquid Co–Cr, Cr–Ni and Co–Ni systems has been analysed through the study of the concentration dependence of various thermodynamic, surface (surface tension and surface composition) and structural properties (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) by the first or the Quasi-Chemical Approximation (QCA) for regular solutions, developed by Bhatia and Singh, in the framework of statistical mechanical theory in conjunction with the Quasi-Lattice Theory (QLT). The results obtained for these binary systems have been extended to study the thermodynamics and surface properties of ternary Co–Cr–Ni liquid alloys

  10. Effects of self-affine surface roughness on the friction coefficient of rubbers in the presence of a liquid interlayer

    Palasantzas, G; De Hosson, JTM

    2004-01-01

    In this article, we investigate how the friction coefficient is affected by the presence of a liquid layer in between a self-affine rough surface and a sliding rubber surface. The liquid layer will reduce energy dissipation from the small surface asperities and cavities of lateral sizes smaller than

  11. Direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface

    Chang, Jaehee; Jung, Taeyong; Choi, Haecheon; Kim, John

    2016-11-01

    Recently a superhydrophobic surface has drawn much attention as a passive device to achieve high drag reduction. Despite the high performance promised at ideal conditions, maintaining the interface in real flow conditions is an intractable problem. A non-wetting surface, known as the slippery liquid-infused porous surface (SLIPS) or the lubricant-impregnated surface (LIS), has shown a potential for drag reduction, as the working fluid slips at the interface but cannot penetrate into the lubricant layer. In the present study, we perform direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface to investigate the effects of this surface on the interfacial slip and drag reduction. The flow rate of water is maintained constant corresponding to Reτ 180 in a fully developed turbulent channel flow, and the lubricant layer is shear-driven by the turbulent water flow. The lubricant layer is also simulated with the assumption that the interface is flat (i.e. the surface tension effect is neglected). The solid substrate in which the lubricant is infused is modelled as straight ridges using an immersed boundary method. DNS results show that drag reduction by the liquid-infused surface is highly dependent on the viscosity of the lubricant.

  12. Enhanced spectrophotometric detection of Hg in water samples by surface plasmon resonance of Au nanoparticles after preconcentration with vortex-assisted liquid-liquid microextraction

    Martinis, Estefanía M.; Wuilloud, Rodolfo G.

    2016-10-01

    This article presents an efficient, simple, and cost-effective method for the determination of trace amounts of Hg by vortex-assisted liquid-liquid microextraction (VALLME) coupled to microvolume UV-Vis spectrophotometry. This method correlates changes in the intensity of localized surface plasmon resonance (LSPR) of tetraoctylammonium bromide (TOABr) coated Au nanoparticles (NPs) after interaction with Hg2+ ion. Spectroscopic measurements of the TOABr-coated Au NPs phase with particular absorption properties (strong and well-defined absorption bands) after analyte extraction by VALLME, provide an accurate and sensitive determination of Hg in water samples, comparable with measurements obtained by atomic absorption spectrometry (AAS). Different variables including sample volume, extraction time, and TOABr-coated Au NPs dispersion volume were carefully studied; final experimental conditions were 5 mL, 120 μL and 5 min respectively. The limit of detection (LOD) was 0.8 ng mL- 1. The calibration curve was linear at concentrations between the limit of quantification (LOQ) (4.9 ng mL- 1) and up to at least 120 ng mL- 1 of Hg. The relative standard deviation for six replicate determinations of 20 ng mL- 1 of Hg was 4.7%. This method exhibited an excellent analytical performance in terms of selectivity and sensitivity and it was finally applied for Hg determination in spiked tap and mineral water samples.

  13. A nested observation and model approach to non linear groundwater surface water interactions.

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.

    2009-04-01

    Surface water quality measurements in The Netherlands are scattered in time and space. Therefore, water quality status and its variations and trends are difficult to determine. In order to reach the water quality goals according to the European Water Framework Directive, we need to improve our understanding of the dynamics of surface water quality and the processes that affect it. In heavily drained lowland catchment groundwater influences the discharge towards the surface water network in many complex ways. Especially a strong seasonal contracting and expanding system of discharging ditches and streams affects discharge and solute transport. At a tube drained field site the tube drain flux and the combined flux of all other flow routes toward a stretch of 45 m of surface water have been measured for a year. Also the groundwater levels at various locations in the field and the discharge at two nested catchment scales have been monitored. The unique reaction of individual flow routes on rainfall events at the field site allowed us to separate the discharge at a 4 ha catchment and at a 6 km2 into flow route contributions. The results of this nested experimental setup combined with the results of a distributed hydrological model has lead to the formulation of a process model approach that focuses on the spatial variability of discharge generation driven by temporal and spatial variations in groundwater levels. The main idea of this approach is that discharge is not generated by catchment average storages or groundwater heads, but is mainly generated by points scale extremes i.e. extreme low permeability, extreme high groundwater heads or extreme low surface elevations, all leading to catchment discharge. We focused on describing the spatial extremes in point scale storages and this led to a simple and measurable expression that governs the non-linear groundwater surface water interaction. We will present the analysis of the field site data to demonstrate the potential

  14. Linear theory period ratios for surface helium enhanced double-mode Cepheids

    Cox, A.N.; Hodson, S.W.; King, D.S.

    1979-01-01

    Linear nonadiabatic theory period ratios for models of double-mode Cepheids with their two periods between 1 and 7 days have been computed, assuming differing amounts and depths of surface helium enhancement. Evolution theory masses and luminosities are found to be consistent with the observed periods. All models give Pi 1 /Pi 0 approx. =0.70 as observed for the 11 known variables, contrary to previous theoretical conclusions. The composition structure that best fits the period ratios has the helium mass fraction in the outer 10 -3 of the stellar mass (T< or =250,000 K) as 0.65, similar to a previous model for the triple-mode pulsator AC And. This enrichment can be established by a Cepheid wind and downward inverted μ gradient instability mixing in the lifetime of these low-mass classical Cepheids

  15. Ionic liquids influence on the surface properties of electron beam irradiated wood

    Croitoru, Catalin [“Transilvania” University of Brasov, Product Design and Environment Department, 29 Eroilor Str., 500036, Brasov (Romania); Patachia, Silvia, E-mail: st.patachia@unitbv.ro [“Transilvania” University of Brasov, Product Design and Environment Department, 29 Eroilor Str., 500036, Brasov (Romania); Doroftei, Florica; Parparita, Elena; Vasile, Cornelia [“Petru Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department, 41A Gr. Ghica Voda Alley, Iasi (Romania)

    2014-09-30

    Highlights: • Wood veneers impregnated with three imidazolium-based ionic liquids and irradiated with electron beam were studied by FTIR-ATR, SEM/EDX, AFM, contact angle and image analysis. • ILs preserve the surface properties of the wood (surface energy, roughness, color) upon irradiation, in comparison with the reference wood, but the surface composition is changed by treatment with IL-s, mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. • Under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface. - Abstract: In this paper, the influence of three imidazolium-based ionic liquids (1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-hexyl-3-methylimidazolium chloride) on the structure and surface properties of sycamore maple (Acer pseudoplatanus) veneers submitted to electron beam irradiation with a dose of 50 kGy has been studied by using Fourier transform infrared spectroscopy, as well as image, scanning electron microscopy/SEM/EDX, atomic force microscopy and contact angle analysis. The experimental results have proven that the studied ionic liquids determine a better preservation of the structural features of wood (cellulose crystallinity index and lignin concentration on the surface) as well as some of surface properties such as surface energy, roughness, color upon irradiation with electron beam, in comparison with the reference wood, but surface composition is changed by treatment with imidazolium-based ionic liquids mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. Also, under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface.

  16. A Linear Regression Model for Global Solar Radiation on Horizontal Surfaces at Warri, Nigeria

    Michael S. Okundamiya

    2013-10-01

    Full Text Available The growing anxiety on the negative effects of fossil fuels on the environment and the global emission reduction targets call for a more extensive use of renewable energy alternatives. Efficient solar energy utilization is an essential solution to the high atmospheric pollution caused by fossil fuel combustion. Global solar radiation (GSR data, which are useful for the design and evaluation of solar energy conversion system, are not measured at the forty-five meteorological stations in Nigeria. The dearth of the measured solar radiation data calls for accurate estimation. This study proposed a temperature-based linear regression, for predicting the monthly average daily GSR on horizontal surfaces, at Warri (latitude 5.020N and longitude 7.880E an oil city located in the south-south geopolitical zone, in Nigeria. The proposed model is analyzed based on five statistical indicators (coefficient of correlation, coefficient of determination, mean bias error, root mean square error, and t-statistic, and compared with the existing sunshine-based model for the same study. The results indicate that the proposed temperature-based linear regression model could replace the existing sunshine-based model for generating global solar radiation data. Keywords: air temperature; empirical model; global solar radiation; regression analysis; renewable energy; Warri

  17. High-power spallation target using a heavy liquid metal free surface flow

    Litfin, K.; Fetzer, J.R.; Batta, A.; Class, A.G.; Wetzel, Th.

    2015-01-01

    A prototype of a heavy liquid metal free surface target as proposed for the multi-purpose hybrid research reactor for high-tech applications in Mol, Belgium, has been set up and experimentally investigated at the Karlsruhe Liquid Metal Laboratory. A stable operation was demonstrated in a wide range of operating conditions and the surface shape was detected and compared with numerical pre-calculations employing Star-CD. Results show a very good agreement of experiment and numerical predictions which is an essential input for other windowless target designs like the META:LIC target for the European Spallation Source. (author)

  18. A simple laboratory experiment to measure the surface tension of a liquid in contact with air

    Riba, Jordi-Roger; Esteban, Bernat

    2014-01-01

    A simple and accurate laboratory experiment to measure the surface tension of liquids has been developed, which is well suited to teach the behaviour of liquids to first- or second-year students of physics, engineering or chemistry. The experimental setup requires relatively inexpensive equipment usually found in physics and chemistry laboratories, since it consists of a used or recycled burette, an analytical balance and a stereoscopic microscope or a micrometer. Experimental data and error analysis show that the surface tension of distilled water, 1-butanol and glycerol can be determined with accuracy better than 1.4%. (paper)

  19. Swelling and Shrinking Properties of Thermo-Responsive Polymeric Ionic Liquid Hydrogels with Embedded Linear pNIPAAM

    Simon Gallagher

    2014-03-01

    Full Text Available In this study, varying concentrations of linear pNIPAAM have been incorporated for the first time into a thermo-responsive polymeric ionic liquid (PIL hydrogel, namely tributyl-hexyl phosphonium 3-sulfopropylacrylate (P-SPA, to produce semi-interpenetrating polymer networks. The thermal properties of the resulting hydrogels have been investigated along with their thermo-induced shrinking and reswelling capabilities. The semi-interpenetrating networks (IPN hydrogels were found to have improved shrinking and reswelling properties compared with their PIL counterpart. At elevated temperatures (50–80 °C, it was found that the semi-IPN with the highest concentration of hydrophobic pNIPAAM exhibited the highest shrinking percentage of ~40% compared to the conventional P-SPA, (27%. This trend was also found to occur for the reswelling measurements, with semi-IPN hydrogels producing the highest reswelling percentage of ~67%, with respect to its contracted state. This was attributed to an increase in water affinity due to the presence of hydrophilic pNIPAAM. Moreover, the presence of linear pNIPAAM in the polymer matrix leads to improved shrinking and reswelling response compared to the equivalent PIL.

  20. Corrosion inhibition performance of imidazolium ionic liquids and their influence on surface ferrous carbonate layer formation

    Yang, Dongrui

    Corrosion inhibitors as effective anti-corrosion applications were widely studied and drawn much attention in both academe and industrial area. In this work, a systematic work, including inhibitors selection, anti-corrosion property and characterization, influence on scale formation, testing system design and so on, were reported. The corrosion inhibition performance of four imidazolium ionic liquids in carbon dioxide saturated NaCl solution was investigated by using electrochemical and surface analysis technologies. The four compounds are 1-ethyl-3-methylimidazolium chloride (a), 1-butyl-3-methylimidazolium chloride (b), 1-hexyl-3-methylimidazolium chloride (c), 1-decyl-3-methylimidazolium chloride (d). Under the testing conditions, compound d showed the highest inhibition efficiency and selected as the main object of further study. As a selected representative formula, 1-decyl-3-methylimidazolium chloride was studied in detail about its corrosion inhibition performance on mild steel in carbon dioxide saturated NaCl brine at pH 3.8 and 6.8. Electrochemical and surface analysis techniques were used to characterize the specimen corrosion process during the immersion in the blank and inhibiting solutions. The precorrosion of specimen surface showed significant and different influences on the anti-corrosion property of DMICL at pH 3.8 and 6.8. The corrosion inhibition efficiency (IE) was calculated based on parameters obtained from electrochemical techniques; the achieved IE was higher than 98% at the 25th hour for the steel with a well-polished surface at pH 3.8. The fitting parameters obtained from electrochemical data helped to account for the interfacial changes. As proved in previous research, 1-decyl-3-methylimidazolium chloride could be used as good corrosion inhibitors under certain conditions. However, under other conditions, such chemicals, as well as other species in oil transporting system, could be a factor influencing the evolution of protective surface

  1. Standard reference data for the air-liquid and vapor-liquid surface tension of benzene

    Součková, Monika; Klomfar, Jaroslav; Pátek, Jaroslav

    2013-01-01

    Roč. 356, October (2013), s. 329-337 ISSN 0378-3812 R&D Projects: GA ČR GA101/09/0010 Institutional support: RVO:61388998 Keywords : benzene * surface tension * experimental data * standard reference data Subject RIV: BJ - Thermodynamics Impact factor: 2.241, year: 2013 http://www.sciencedirect.com/science/article/pii/S0378381213004196

  2. Observation of OH radicals produced by pulsed discharges on the surface of a liquid

    Kanazawa, Seiji; Kawano, Hirokazu; Watanabe, Satoshi; Furuki, Takashi; Akamine, Shuichi; Ichiki, Ryuta; Ohkubo, Toshikazu [Department of Electrical and Electronic Engineering, Oita University, 700 Dannoharu, Oita 870-1192 (Japan); Kocik, Marek; Mizeraczyk, Jerzy, E-mail: skana@cc.oita-u.ac.jp [Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences Fiszera 14, 80-952, Gdansk (Poland)

    2011-06-15

    The hydroxyl radical (OH) plays an important role in plasma chemistry at atmospheric pressure. OH radicals have a higher oxidation potential compared with other oxidative species such as free radical O, atomic oxygen, hydroperoxyl radical (HO{sub 2}), hydrogen peroxide(H{sub 2}O{sub 2}) and ozone. In this study, surface discharges on liquids (water and its solutions) were investigated experimentally. A pulsed streamer discharge was generated on the liquid surface using a point-to-plane electrode geometry. The primary generation process of OH radicals is closely related to the streamer propagation, and the subsequent secondary process after the discharge has an influence on the chemical reaction. Taking into account the timescale of these processes, we investigated the behavior of OH radicals using two different diagnostic methods. Time evolution of the ground-state OH radicals above the liquid surface after the discharge was observed by a laser-induced fluorescence (LIF) technique. In order to observe the ground-state OH, an OH [A {sup 2}{Sigma}{sup +}(v' = 1) <- X {sup 2}{Pi}(v'' = 0)] system at 282 nm was used. As the secondary process, a portion of OH radicals diffused from gas phase to the liquid surface and dissolved in the liquid. These dissolved OH radicals were measured by a chemical probe method. Terephthalic acid was used as an OH radical trap and fluorescence of the resulting 2-hydroxyterephthalic acid was measured. This paper directly presents visualization of OH radicals over the liquid surface by means of LIF, and indirectly describes OH radicals dissolved in water by means of a chemical method.

  3. Observation of OH radicals produced by pulsed discharges on the surface of a liquid

    Kanazawa, Seiji; Kawano, Hirokazu; Watanabe, Satoshi; Furuki, Takashi; Akamine, Shuichi; Ichiki, Ryuta; Ohkubo, Toshikazu; Kocik, Marek; Mizeraczyk, Jerzy

    2011-06-01

    The hydroxyl radical (OH) plays an important role in plasma chemistry at atmospheric pressure. OH radicals have a higher oxidation potential compared with other oxidative species such as free radical O, atomic oxygen, hydroperoxyl radical (HO2), hydrogen peroxide(H2O2) and ozone. In this study, surface discharges on liquids (water and its solutions) were investigated experimentally. A pulsed streamer discharge was generated on the liquid surface using a point-to-plane electrode geometry. The primary generation process of OH radicals is closely related to the streamer propagation, and the subsequent secondary process after the discharge has an influence on the chemical reaction. Taking into account the timescale of these processes, we investigated the behavior of OH radicals using two different diagnostic methods. Time evolution of the ground-state OH radicals above the liquid surface after the discharge was observed by a laser-induced fluorescence (LIF) technique. In order to observe the ground-state OH, an OH [A 2∑+(v' = 1) <-- X 2Π(v'' = 0)] system at 282 nm was used. As the secondary process, a portion of OH radicals diffused from gas phase to the liquid surface and dissolved in the liquid. These dissolved OH radicals were measured by a chemical probe method. Terephthalic acid was used as an OH radical trap and fluorescence of the resulting 2-hydroxyterephthalic acid was measured. This paper directly presents visualization of OH radicals over the liquid surface by means of LIF, and indirectly describes OH radicals dissolved in water by means of a chemical method.

  4. Liquid phase surface nitriding of Ti-6Al-4V pre-placed with chromium

    Vahedi Nemani, Alireza, E-mail: alireza_vahedi@ut.ac.ir; Sohi, M. Heydarzadeh; Amadeh, A.A.; Ghaffari, Mahya

    2016-08-01

    In this study, liquid phase surface nitriding of Ti-6Al-4V was carried out by pre-placing of chromium powder on the substrate and subsequent Tungsten Inert Gas (TIG) surface melting. The effect of the application of low and high heat inputs on the microstructure, microhardness and wear resistance of the treated layers were studied. Surface alloying with chromium in a nitrogen containing atmosphere resulted in the formation of hard intermetallic compounds such as TiN, Cr{sub 2}N and TiCr{sub 2}. Moreover, the presence of beta stabilizer chromium together with the application of high heat input during surface treatment resulted in the presence of beta phase at room temperature. However, applying low heat input could not prevent transformation of beta to martensite. The hardness of the layers fabricated at high and low heat inputs were respectively 1050 and 1200 HV{sub 0.3} compared to average 280 HV{sub 0.3} for the as-received material. Liquid phase surface treatment of titanium at the aforementioned conditions improved the wear resistance. The lowest weight loss belonged to the specimen with the beta phase matrix. The formation of the fairly ductile bcc-β phase hindered crack nucleation during wear. The weight loss in this condition was 7 times lower than that of the base material. - Highlights: • Liquid phase surface nitriding of Ti-6Al-4V was carried out by TIG surface melting. • Cr powder was pre-placed on the surface as the beta stabilizer alloying element. • The treated layers were characterized by OM, SEM and X-ray diffraction pattern. • Hardness of the layers increased up to 3 times higher than that of the base alloy. • Liquid phase surface alloying improved the wear resistance.

  5. Effect of liquid film on near-threshold laser ablation of a solid surface

    Kim, Dongsik; Oh, Bukuk; Lee, Ho

    2004-01-30

    Enhancement of material ablation and photoacoustic excitation by an artificially deposited liquid film in the process of pulsed-laser ablation (PLA) is investigated in this paper. Ablation threshold, ablation rate, surface topography, and acoustic-transient emission are also measured for dry and liquid film-coated surfaces. The physical mechanisms of enhanced ablation in the liquid-assisted process are analyzed at relatively low laser fluences with negligible effect of laser-produced plasma. Particularly, correlation between material ablation and acoustic-transient generation is examined. In the experiment, aluminum thin-films and bulk foils are ablated by Q-switched Nd:YAG laser pulses. The dependence of ablation rate and laser-induced topography on liquid film thickness and chemical composition is also examined. Photoacoustic emission is measured by the probe beam deflection method utilizing a CW HeNe laser and a microphone. In comparison with a dry ablation process, the liquid-assisted ablation process results in substantially augmented ablation efficiency and reduced ablation threshold. The results indicate that both increased laser-energy coupling, i.e., lowered reflectance, and amplified photoacoustic excitation in explosive vaporization of liquid are responsible for the enhanced material ablation.

  6. An analytical model for displacement velocity of liquid film on a hot vertical surface

    Yoshioka, Keisuke; Hasegawa, Shu

    1975-01-01

    The downward progress of the advancing front of a liquid film streaming down a heated vertical surface, as it would occur in emergency core cooling, is much slower than in the case of ordinary streaming down along a heated surface already wetted with the liquid. A two-dimensional heat conduction model is developed for evaluating this velocity of the liquid front, which takes account of the heat removal by ordinary flow boiling mechanism. In the analysis, the maximum heat flux and the calefaction temperature are taken up as parameters in addition to the initial dry heated wall temperature, the flow rate and the velocity of downward progress of the liquid front. The temperature profile is calculated for various combinations of these parameters. Two criteria are proposed for choosing the most suitable combination of the parameters. One is to reject solutions that represent an oscillating wall temperature distribution, and the second criterion requires that the length of the zone of violent boiling immediately following the liquid front should not be longer than about 1 mm, this value being determined from comparisons made between experiment and calculation. Application of the above two criteria resulted in reasonable values obtained for the calefaction temperature and the maximum heat flux, and the velocity of the liquid front derived therefrom showed good agreement with experiment. (auth.)

  7. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  8. Molar Surface Gibbs Energy of the Aqueous Solution of Ionic Liquid [C4mim][Oac

    TONG Jing; ZHENG Xu; TONG Jian; QU Ye; LIU Lu; LI Hui

    2017-01-01

    The values of density and surface tension for aqueous solution of ionic liquid(IL) 1-butyl-3-methylimidazolium acetate([C4mim][OAc]) with various molalities were measured in the range of 288.15-318.15 K at intervals of 5 K.On the basis of thermodynamics,a semi-empirical model-molar surface Gibbs energy model of the ionic liquid solution that could be used to predict the surface tension or molar volume of solutions was put forward.The predicted values of the surface tension for aqueous [C4im][OAc] and the corresponding experimental ones were highly correlated and extremely similar.In terms of the concept of the molar Gibbs energy,a new E(o)tv(o)s equation was obtained and each parameter of the new equation has a clear physical meaning.

  9. One - step nanosecond laser microstructuring, sulfur hyperdoping, and annealing of silicon surfaces in liquid carbondisulfide

    Van Luong, Nguyen; Danilov, P. A.; Ionin, A. A.; Khmel'nitskii, P. A.; Kudryashov, S. I.; Mel'nik, N. N.; Saraeva, I. N.; Смirnov, H. A.; Rudenko, A. A.; Zayarny, D. A.

    2017-09-01

    We perform a single-shot IR nanosecond laser processing of commercial silicon wafers in ambient air and under a 2 mm thick carbon disulfide liquid layer. We characterize the surface spots modified in the liquid ambient and the spots ablated under the same conditions in air in terms of its surface topography, chemical composition, band-structure modification, and crystalline structure by means of SEM and EDX microscopy, as well as of FT-IR and Raman spectroscopy. These studies indicate that single-step microstructuring and deep (up to 2-3% on the surface) hyperdoping of the crystalline silicon in its submicron surface layer, preserving via pulsed laser annealing its crystallinity and providing high (103 - 104 cm-1) spectrally at near- and mid-IR absorption coefficients, can be obtained in this novel approach, which is very promising for thin - film silicon photovoltaic devices

  10. Development of a Linear Ion Trap Mass Spectrometer (LITMS) Investigation for Future Planetary Surface Missions

    Brinckerhoff, W.; Danell, R.; Van Ameron, F.; Pinnick, V.; Li, X.; Arevalo, R.; Glavin, D.; Getty, S.; Mahaffy, P.; Chu, P.; hide

    2014-01-01

    Future surface missions to Mars and other planetary bodies will benefit from continued advances in miniature sensor and sample handling technologies that enable high-performance chemical analyses of natural samples. Fine-scale (approx.1 mm and below) analyses of rock surfaces and interiors, such as exposed on a drill core, will permit (1) the detection of habitability markers including complex organics in association with their original depositional environment, and (2) the characterization of successive layers and gradients that can reveal the time-evolution of those environments. In particular, if broad-based and highly-sensitive mass spectrometry techniques could be brought to such scales, the resulting planetary science capability would be truly powerful. The Linear Ion Trap Mass Spectrometer (LITMS) investigation is designed to conduct fine-scale organic and inorganic analyses of short (approx.5-10 cm) rock cores such as could be acquired by a planetary lander or rover arm-based drill. LITMS combines both pyrolysis/gas chromatograph mass spectrometry (GCMS) of sub-sampled core fines, and laser desorption mass spectrometry (LDMS) of the intact core surface, using a common mass analyzer, enhanced from the design used in the Mars Organic Molecule Analyzer (MOMA) instrument on the 2018 ExoMars rover. LITMS additionally features developments based on the Sample Analysis at Mars (SAM) investigation on MSL and recent NASA-funded prototype efforts in laser mass spectrometry, pyrolysis, and precision subsampling. LITMS brings these combined capabilities to achieve its four measurement objectives: (1) Organics: Broad Survey Detect organic molecules over a wide range of molecular weight, volatility, electronegativity, concentration, and host mineralogy. (2) Organic: Molecular Structure Characterize internal molecular structure to identify individual compounds, and reveal functionalization and processing. (3) Inorganic Host Environment Assess the local chemical

  11. Single-Step Fabrication of High-Density Microdroplet Arrays of Low-Surface-Tension Liquids.

    Feng, Wenqian; Li, Linxian; Du, Xin; Welle, Alexander; Levkin, Pavel A

    2016-04-01

    A facile approach for surface patterning that enables single-step fabrication of high-density arrays of low-surface-tension organic-liquid microdroplets is described. This approach enables miniaturized and parallel high-throughput screenings in organic solvents, formation of homogeneous arrays of hydrophobic nanoparticles, polymer micropads of specific shapes, and polymer microlens arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Surface properties and wetting behavior of liquid Ag-Sb-Sn alloys

    Sklyarchuk V.

    2012-01-01

    Full Text Available Surface tension and density measurements of liquid Ag-Sb-Sn alloys were carried out over a wide temperature range by using the sessile drop method. The surface tension experimental data were analyzed by the Butler thermodynamic model in the regular solution approximation. The wetting characteristics of these alloys on Cu and Ni substrates have been also determined. The new experimental results were compared with the calculated values as well as with data available in the literature.

  13. Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction

    Aguirre, M.A.; Legnaioli, S.; Almodóvar, F.; Hidalgo, M.; Palleschi, V.; Canals, A.

    2013-01-01

    In this work, the possibility of using Laser-Induced Breakdown Spectrometry (LIBS) combined with liquid–liquid microextraction techniques is evaluated as a simple and fast method for trace elemental analysis. Two different strategies for LIBS analysis of manganese contained in microdroplets of extraction solvent (Triton X-114) are studied: (i) analysis by direct laser irradiation of microdroplets; and (ii) analysis by laser irradiation of microdroplets dried on metallic substrates (surface-enhanced LIBS — SENLIBS). Experiments were carried out using synthetic samples with different concentrations of manganese in a 10% w/w Triton X-114 matrix. The analysis by direct laser irradiation of microdroplets showed low precision, sensitivity and poor linearity across the concentration range evaluated (R 2 −1 of Mn. - Highlights: ► LIBS combined with microextraction procedures for trace analysis is proposed. ► The proposed combination depends on LIBS ability to analyze sample microvolumes. ► A surface-enhanced LIBS methodology for microdroplet analysis was evaluated. ► Results indicate this combination to be promising for trace analysis in liquids

  14. Sensory and Postural Input in the Occurrence of a Gender Difference in Orienting Liquid Surfaces

    Robert, Michele; Longpre, Sophie

    2005-01-01

    In the water-level task, both spatial skill and physical knowledge contribute to representing the surface of a liquid as horizontal irrespective of the container's tilt. Under the standard visual format of the task, men systematically surpass women at drawing correct water lines in outlines of tilted containers. The present exploratory experiments…

  15. Density, viscosity and surface tension of liquid phase Beckmann rearrangement mixtures

    Zuidhof, K.T.; Croon, de M.H.J.M.; Schouten, J.C.; Tinge, J.T.

    2015-01-01

    We have determined the density, dynamic viscosity, and surface tension of liquid phase Beckmann rearrangement mixtures, consisting of e-caprolactam and fuming oleum. These important properties have been measured in wide ranges of both temperature and molar ratios of acid and e-caprolactam, covering

  16. Thermocapillary migration of liquids on patterned surfaces : design concept for microfluidic

    Darhuber, A.A.; Davis, J.M.; Reisner, W.W.; Troian, S.M.

    2001-01-01

    We present a novel method of fluidic transport on the open surface of a chemically patterned substrate using thermocapillary actuation. Our experimental and numerical studies provide the desired correlations between the microstream flow rate and tunable parameters like the liquid sample volume,

  17. Perfect Composition Depth Profiling of Ionic Liquid Surfaces Using High-Resolution RBS/ERDA.

    Nakajima, K.; Zolboo, E.; Ohashi, T.; Lísal, Martin; Kimura, K.

    2016-01-01

    Roč. 32, č. 10 (2016), s. 1089-1094 ISSN 0910-6340 R&D Projects: GA ČR(CZ) GA16-12291S Institutional support: RVO:67985858 Keywords : surface structure * ionic liquid * hydrogen Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.228, year: 2016

  18. Method for controlling a coolant liquid surface of cooling system instruments in an atomic power plant

    Monta, Kazuo.

    1974-01-01

    Object: To prevent coolant inventory within a cooling system loop in an atomic power plant from being varied depending on loads thereby relieving restriction of varied speed of coolant flow rate to lowering of a liquid surface due to short in coolant. Structure: Instruments such as a superheater, an evaporator, and the like, which constitute a cooling system loop in an atomic power plant, have a plurality of free liquid surface of coolant. Portions whose liquid surface is controlled and portions whose liquid surface is varied are adjusted in cross-sectional area so that the sum total of variation in coolant inventory in an instrument such as a superheater provided with an annulus portion in the center thereof and an inner cylindrical portion and a down-comer in the side thereof comes equal to that of variation in coolant inventory in an instrument such as an evaporator similar to the superheater. which is provided with an overflow pipe in its inner cylindrical portion or down-comer, thereby minimizing variation in coolant inventory of the entire coolant due to loads thus minimizing variation in varied speed of the coolant. (Kamimura, M.)

  19. Experiment and model for the surface tension of amine–ionic liquids aqueous solutions

    Zhang, Pan; Du, LeiXia; Fu, Dong

    2014-01-01

    Highlights: • The surface tensions of MEA/DEA–ionic liquids aqueous solutions were measured. • The experiments were modeled satisfactorily by using a thermodynamic equation. • The temperature dependence of the surface tension was illustrated. • The effects of the mass fractions of MEA/DEA and ionic liquids were demonstrated. - Abstract: The surface tension (γ) of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF 4 ])–monoethanolamine (MEA), 1-butyl-3-methylimidazolium bromide ([Bmim][Br])–MEA, [Bmim][BF 4 ]–diethanolamine (DEA) and [Bmim][Br]–DEA aqueous solutions was measured by using the BZY-1 surface tension meter. The temperature ranged from (293.2 to 323.2) K. The mass fraction of amines and ionic liquids (ILS) respectively ranged from 0.15 to 0.30 and 0.05 to 0.10. A thermodynamic equation was proposed to model the surface tension of amines–ILS aqueous solutions and the calculated results agreed well with the experiments. The effects of temperature, mass fraction of amines and ILS on the surface tension were demonstrated on the basis of experiments and calculations

  20. Surface Quality Improvement of AA6060 Aluminum Extruded Components through Liquid Nitrogen Mold Cooling

    Andrea Francesco Ciuffini

    2018-06-01

    Full Text Available 6xxx aluminum alloys are suitable for the realization of both structural applications and architectural decorative elements, thanks to the combination of high corrosion resistance and good surface finish. In areas where the aesthetic aspects are fundamental, further improvements in surface quality are significant. The cooling of the extrusion mold via internal liquid nitrogen fluxes is emerging as an important innovation in aluminum extrusion. Nowadays, this innovation is providing a large-scale solution to obtain high quality surface finishes in extruded aluminum semi-finished products. These results are also coupled to a significant increase in productivity. The aim of the work is to compare the surface quality of both cooled liquid nitrogen molds and classically extruded products. In this work, adhesion phenomena, occurring during the extrusion between the mold and the flowing material, have been detected as the main causes of the presence of surface defects. The analysis also highlighted a strong increase in the surface quality whenever the extrusion mold was cooled with liquid nitrogen fluxes. This improvement has further been confirmed by an analysis performed on the finished products, after painting and chromium plating. This work on the AA6060 alloy has moreover proceeded to roughness measurements and metallographic analyses, to investigate the eventual occurrence of other possible benefits stemming from this new extrusion mold cooling technology.

  1. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces

    Kibar, Ali, E-mail: alikibar@kocaeli.edu.tr [Department of Mechanical and Material Technologies, Kocaeli University, Arslanbey Campus, 41285, Kocaeli (Turkey)

    2017-02-15

    Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface. (paper)

  2. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces

    Kibar, Ali

    2017-01-01

    Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface. (paper)

  3. Electron mobility on the surface of liquid Helium: influence of surface level atoms and depopulation of lowest subbands

    Grigoriev, P. D.; Dyugaev, A. M.; Lebedeva, E. V.

    2008-01-01

    The temperature dependence of electron mobility is examined. We calculate the contribution to the electron scattering rate from the surface level atoms (SLAs), proposed in [10]. This contribution is substantial at low temperatures T < 0.5, when the He vapor concentration is exponentially small. We also study the effect of depopulation of the lowest energy subband, which leads to an increase in the electron mobility at high temperature. The results explain certain long-standing discrepancies between the existing theory and experiment on electron mobility on the surface of liquid helium

  4. Evaporation of a Volatile Liquid Lens on the Surface of an Immiscible Liquid.

    Sun, Wei; Yang, Fuqian

    2016-06-21

    The evaporation behavior of toluene and hexane lenses on the surface of deionized (DI) water is studied. The toluene and hexane lenses during evaporation experience an advancing stage and a receding stage. There exists a significant difference of the evaporation behavior between the toluene lenses and the hexane lenses. The lifetime and largest diameter of both the toluene and hexane lenses increase with increasing the initial volume of the lenses. For the evaporation of the toluene lenses, the lifetime and largest diameter of the lenses decrease with increasing the temperature of DI water. The effect of the residual of the oil molecules on the evaporation of toluene lenses at a temperature of 21 °C is investigated via the evaporation of a series of consecutive toluene lenses being placed on the same position of the surface of DI water. The temporal evolution of the toluene lenses placed after the first toluene lens deviates significantly from that of the first toluene lens. Significant increase of the receding speed occurs at the dimensionless time in a range 0.7-0.8.

  5. Liquid lithium surface control and its effect on plasma performance in the HT-7 tokamak

    Zuo, G.Z.; Ren, J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, J.S., E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Z.; Yang, Q.X.; Li, J.G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zakharov, L.E. [Princeton University Plasma Physics Laboratory Princeton, NJ 08543 (United States); Ruzic, David N. [University of Illinois, Urbana, IL 61801 (United States)

    2014-12-15

    Highlights: • Strong interaction between plasma and Li would cause strong Li emission and lead to disruptive plasmas, and probable reasons were analyzed. • Serious Li would be emitted from the free statics surface mainly due to J × B force leading to plasma instable and disruptions. • CPS surface would partially suppress the emission and be beneficial for plasma operation. • Li emission from flowing LLLs on free surfaces on SS trenches and on SS plate were compared. - Abstract: Experiments with liquid lithium limiters (LLLs) have been successfully performed in HT-7 since 2009 and the effects of different limiter surface structures on the ejection of Li droplets have been studied and compared. The experiments have demonstrated that strong interaction between the plasma and the liquid surface can cause intense Li efflux in the form of ejected Li droplets – which can, in turn, lead to plasma disruptions. The details of the LLL plasma-facing surface were observed to be extremely important in determining performance. Five different LLLs were evaluated in this work: two types of static free-surface limiters and three types of flowing liquid Li (FLLL) structures. It has been demonstrated that a FLLL with a slowly flowing thin liquid Li film on vertical flow plate which was pre-treated with evaporated Li was much less susceptible to Li droplet ejection than any of the other structures tested in this work. It was further observed that the plasmas run against this type of limiter were reproducibly well-behaved. These results provide technical references for the design of FLLLs in future tokamaks so as to avoid strong Li ejection and to decrease disruptive plasmas.

  6. Molecular dynamics study of room temperature ionic liquids with water at mica surface

    Huanhuan Zhang

    2018-04-01

    Full Text Available Water in room temperature ionic liquids (RTILs could impose significant effects on their interfacial properties at a charged surface. Although the interfaces between RTILs and mica surfaces exhibit rich microstructure, the influence of water content on such interfaces is little understood, in particular, considering the fact that RTILs are always associated with water due to their hygroscopicity. In this work, we studied how different types of RTILs and different amounts of water molecules affect the RTIL-mica interfaces, especially the water distribution at mica surfaces, using molecular dynamics (MD simulation. MD results showed that (1 there is more water and a thicker water layer adsorbed on the mica surface as the water content increases, and correspondingly the average location of K+ ions is farther from mica surface; (2 more water accumulated at the interface with the hydrophobic [Emim][TFSI] than in case of the hydrophilic [Emim][BF4] due to the respective RTIL hydrophobicity and ion size. A similar trend was also observed in the hydrogen bonds formed between water molecules. Moreover, the 2D number density map of adsorbed water revealed that the high-density areas of water seem to be related to K+ ions and silicon/aluminum atoms on mica surface. These results are of great importance to understand the effects of hydrophobicity/hydrophicility of RTIL and water on the interfacial microstructure at electrified surfaces. Keywords: Room temperature ionic liquids, Hydrophobicity/hydrophicility, Water content, Electrical double layer, Mica surface

  7. Trend analysis by a piecewise linear regression model applied to surface air temperatures in Southeastern Spain (1973–2014)

    Campra, Pablo; Morales, Maria

    2016-01-01

    The magnitude of the trends of environmental and climatic changes is mostly derived from the slopes of the linear trends using ordinary least-square fitting. An alternative flexible fitting model, piecewise regression, has been applied here to surface air temperature records in southeastern Spain for the recent warming period (1973–2014) to gain accuracy in the description of the inner structure of change, dividing the time series into linear segments with different slopes. Breakpoint y...

  8. Surface science and model catalysis with ionic liquid-modified materials.

    Steinrück, H-P; Libuda, J; Wasserscheid, P; Cremer, T; Kolbeck, C; Laurin, M; Maier, F; Sobota, M; Schulz, P S; Stark, M

    2011-06-17

    Materials making use of thin ionic liquid (IL) films as support-modifying functional layer open up a variety of new possibilities in heterogeneous catalysis, which range from the tailoring of gas-surface interactions to the immobilization of molecularly defined reactive sites. The present report reviews recent progress towards an understanding of "supported ionic liquid phase (SILP)" and "solid catalysts with ionic liquid layer (SCILL)" materials at the microscopic level, using a surface science and model catalysis type of approach. Thin film IL systems can be prepared not only ex-situ, but also in-situ under ultrahigh vacuum (UHV) conditions using atomically well-defined surfaces as substrates, for example by physical vapor deposition (PVD). Due to their low vapor pressure, these systems can be studied in UHV using the full spectrum of surface science techniques. We discuss general strategies and considerations of this approach and exemplify the information available from complementary methods, specifically photoelectron spectroscopy and surface vibrational spectroscopy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Initial adhesion of Listeria monocytogenes to solid surfaces under liquid flow

    Szlavik, Julie; Soares Paiva, Dionísio; Mørk, Nils

    2012-01-01

    .001) was observed but not of interactions between surface-shear stress. No correlation between surface hydrophobicity and IAR was observed. Addition of 5% NaCl during propagation resulted in a decrease in IAR whilst propagation in low nutrient media caused an increase indicating a general change in surface......Some strains of the food borne pathogen Listeria monocytogenes persist in food processing environments. The exact reason behind this phenomenon is not known, but strain differences in the ability to adhere to solid surfaces could offer an explanation. In the present work, initial adhesion of nine...... strains of L. monocytogenes was investigated under liquid flow at two levels of shear stress on six different surfaces using a flow chamber set-up with microscopy measurements. The surfaces tested were glass and PVC, and glass coated with beef extract, casein, and homogenised and unhomogenised milk...

  10. Improvement in Surface Characterisitcs of Polymers for Subsequent Electroless Plating Using Liquid Assisted Laser Processing

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    Metallization of polymers is a widely used process in the electronic industry that involves their surface modification as a pre-treatment step. Laser-based surface modification is one of the commonly used techniques for polymers due to its speed and precision. The process involves laser heating...... of the polymer surface to generate a rough or porous surface. Laser processing in liquid generates superior surface characteristics that result in better metal deposition. In this study, a comparison of the surface characteristics obtained by laser processing in water vis-à-vis air along with the deposition...... characteristics are presented. In addition, a numerical model based on the finite volume method is developed to predict the temperature profile during the process. Based on the model results, it is hypothesized that physical phenomena such as vapor bubble generation and plasma formation may occur in the presence...

  11. An experimental study of the surface chemistry and evaporation kinetics of liquid sodium

    Becker, C.H.

    1983-01-01

    The evaporation rate and internal energy distribution of Na 2 evaporating from clean liquid Na and liquid Na exposed separately to O 2 and benzene were investigated by laser spectroscopy. The evaporating Na 2 was always found to be in thermal equilibrium with the surface. Oxygen increased the evaporation rate while benzene diminished it. A 3 keV Ar + beam was used to examine the surface by monitoring secondary ion emission. Ion emission from clean and oxygen exposed Na was extremely low; only limits could be established. Ion emission from sodium exposed to benzene could be observed only at lowered temperatures. The secondary ion emission, as well as visual observations of Na( 2 P-> 2 S) emission, are found to correspond to the evaporation rate behavior indicating that the Na surface remains very metal rich even while reacting with impinging oxygen at high (10 monolayers/s) rates. (orig.)

  12. Tracking Traction Force Changes of Single Cells on the Liquid Crystal Surface

    Chin Fhong Soon

    2015-01-01

    Full Text Available Cell migration is a key contributor to wound repair. This study presents findings indicating that the liquid crystal based cell traction force transducer (LCTFT system can be used in conjunction with a bespoke cell traction force mapping (CTFM software to monitor cell/surface traction forces from quiescent state in real time. In this study, time-lapse photo microscopy allowed cell induced deformations in liquid crystal coated substrates to be monitored and analyzed. The results indicated that the system could be used to monitor the generation of cell/surface forces in an initially quiescent cell, as it migrated over the culture substrate, via multiple points of contact between the cell and the surface. Future application of this system is the real-time assaying of the pharmacological effects of cytokines on the mechanics of cell migration.

  13. Dependence of partial molecules surface area on the third component in lyotropic liquid crystals

    Badalyan, H.G.; Ghazaryan, Kh.M.; Yayloyan, S.M.

    2015-01-01

    Free surface of one amphiphilic molecule head of a lyotropic liquid crystal has been investigated by X-Ray diffraction method, at small and large angles, in the presence of the third component. The pentadecilsulphonat-water system in the presence of cholesterol as well as the lecithin-water system in the presence of decanol were investigated. It is shown that the above mentioned free surface decreases if the cholesterol concentration increases, while this surface increases in the case of water concentration increase. However, it increases slower than in the case of the two-component system. The same is observed for the lecithin-water-decanol system

  14. Quasi-one-dimensional electron transport over the surface of a liquid-helium film

    Sokolov, Sviatoslav; Studart, Nelson

    2003-01-01

    Quasi-one-dimensional mobility of surface electrons over a liquid-helium suspended film is studied for a conducting channel. The electron mobility is calculated taking into account the electron scattering by helium atoms in the vapor phase, ripplons, and surface defects of the film substrate both in one-electron regime and in the so-called complete-control limit where the influence of inter-electron collisions on the electron distribution function is taken into account. It is shown that the mobility for low temperatures is dominated by the surface-defect scattering and its temperature dependence is essentially different from that of the electron-ripplon scattering

  15. Equilibrium and surface stability of liquid dielectric interface in electrical and gravitational fields

    Ievlev, I I; Isers, A B

    1976-01-01

    An examination is made of the problem of locating the stable equilibrium surface shape of the interface between two liquid, uniform, isotropic, ideal dielectrics subject to the force of gravity, surface tension, and electrical forces. The conditions for the equilibrium and surface stability of the interface were obtained from the minimum free energy principle. These conditions are used for solving problems on locating the stable equilibrium interface boundary between two dielectrics positioned between infinite charged vertical plates, between infinite vertical coaxial cylinders, between infinite grounded plates and two horizontal charged thin cylinders placed between them. 8 references, 4 figures.

  16. Equilibrium configurations of the conducting liquid surface in a nonuniform electric field

    Zubarev, N. M.; Zubareva, O. V.

    2011-01-01

    Possible equilibrium configurations of the free surface of a conducting liquid deformed by a nonuniform external electric field are investigated. The liquid rests on an electrode that has the shape of a dihedral angle formed by two intersecting equipotential half-planes (conducting wedge). It is assumed that the problem has plane symmetry: the surface is invariant under shift along the edge of the dihedral angle. A one-parametric family of exact solutions for the shape of the surface is found in which the opening angle of the region above the wedge serves as a parameter. The solutions are valid when the pressure difference between the inside and outside of the liquid is zero. For an arbitrary pressure difference, approximate solutions to the problem are constructed and it is demonstrated the approximation error is small. It is found that, when the potential difference exceeds a certain threshold value, equilibrium solutions are absent. In this case, the region occupied by the liquid disintegrates, the disintegration scenario depending on the opening angle.

  17. Sum frequency and second harmonic generation from the surface of a liquid microjet

    Smolentsev, Nikolay; Chen, Yixing; Roke, Sylvie, E-mail: sylvie.roke@epfl.ch [Laboratory for Fundamental Biophotonics (LBP), Institute of Bioengineering (IBI), School of Engineering STI, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne (Switzerland); Jena, Kailash C. [Laboratory for Fundamental Biophotonics (LBP), Institute of Bioengineering (IBI), School of Engineering STI, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne (Switzerland); Department of Physics, Indian Institute of Technology Ropar, Rupnagar, 140001 (India); Brown, Matthew A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093 Zurich (Switzerland)

    2014-11-14

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.

  18. Sum frequency and second harmonic generation from the surface of a liquid microjet

    Smolentsev, Nikolay; Chen, Yixing; Jena, Kailash C.; Brown, Matthew A.; Roke, Sylvie

    2014-11-01

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.

  19. Sum frequency and second harmonic generation from the surface of a liquid microjet

    Smolentsev, Nikolay; Chen, Yixing; Roke, Sylvie; Jena, Kailash C.; Brown, Matthew A.

    2014-01-01

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena

  20. Undulations on the surface of elongated bubbles in confined gas-liquid flows

    Magnini, M.; Ferrari, A.; Thome, J. R.; Stone, H. A.

    2017-08-01

    A systematic analysis is presented of the undulations appearing on the surface of long bubbles in confined gas-liquid flows. CFD simulations of the flow are performed with a self-improved version of the open-source solver ESI OpenFOAM (release 2.3.1), for Ca =0.002 -0.1 and Re =0.1 -1000 , where Ca =μ U /σ and Re =2 ρ U R /μ , with μ and ρ being, respectively, the viscosity and density of the liquid, σ the surface tension, U the bubble velocity, and R the tube radius. A model, based on an extension of the classical axisymmetric Bretherton theory, accounting for inertia and for the curvature of the tube's wall, is adopted to better understand the CFD results. The thickness of the liquid film, and the wavelength and decay rate of the undulations extracted from the CFD simulations, agree well with those obtained with the theoretical model. Inertial effects appear when the Weber number of the flow We =Ca Re =O (10-1) and are manifest by a larger number of undulation crests that become evident on the surface of the rear meniscus of the bubble. This study demonstrates that the necessary bubble length for a flat liquid film region to exist between the rear and front menisci rapidly increases above 10 R when Ca >0.01 and the value of the Reynolds number approaches 1000.

  1. Surface waves tomography and non-linear inversion in the southeast Carpathians

    Raykova, R.B.; Panza, G.F.

    2005-11-01

    A set of shear-wave velocity models of the lithosphere-asthenosphere system in the southeast Carpathians is determined by the non-linear inversion of surface wave group velocity data, obtained from a tomographic analysis. The local dispersion curves are assembled for the period range 7 s - 150 s, combining regional group velocity measurements and published global Rayleigh wave dispersion data. The lithosphere-asthenosphere velocity structure is reliably reconstructed to depths of about 250 km. The thickness of the lithosphere in the region varies from about 120 km to 250 km and the depth of the asthenosphere between 150 km and 250 km. Mantle seismicity concentrates where the high velocity lid is detected just below the Moho. The obtained results are in agreement with recent seismic refraction, receiver function, and travel time P-wave tomography investigations in the region. The similarity among the results obtained from different kinds of structural investigations (including the present work) highlights some new features of the lithosphere-asthenosphere system in southeast Carpathians, as the relatively thin crust under Transylvania basin and Vrancea zone. (author)

  2. Unified theory of damping of linear surface Alfven waves in inhomogeneous incompressible plasmas

    Ruderman, M.S.; Goossens, M.

    1996-01-01

    The viscous damping of surface Alfven waves in a non-uniform plasma is studied in the context of linear and incompressible MHD. It is shown that damping due to resonant absorption and damping on a true discontinuity are two limiting cases of the continuous variation of the damping rate with respect to the dimensionless number Rg = Δλ 2 Re, where Δ is the relative variation of the local Alfven velocity, λ is the ratio of the thickness of the inhomogeneous layer to the wavelength, and Re is the viscous Reynolds number. The analysis is restricted to waves with wavelengths that are long in comparison with the extent of the non-uniform layer (λ '' >'' 1) values of Rg. For very small values of Rg, the damping rate agrees with that found for a true discontinuity, while for very large values of Rg, it agrees with the damping rate due to resonant absorption. The dispersion relation is subsequently studied numerically over a wide range of values of Rg, revealing a continuous but non-monotonic variation of the damping rate with respect to Rg. (Author)

  3. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    Lu, Renguo; Zhang, Hedong; Komada, Suguru; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2014-01-01

    Highlights: • We present fine UV-patterning of nm-thick liquid films for surface functionalization. • The patterned films exhibit both a morphological pattern and a functional pattern of different surface properties. • The finest pattern linewidth was 0.5 μm. • Fine patterning is crucial for improving surface and tribological properties. - Abstract: For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave–convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant

  4. Prediction of the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient-elution conditions.

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Ruggieri, Fabrizio

    2014-08-01

    In this paper, a multilayer artificial neural network is used to model simultaneously the effect of solute structure and eluent concentration profile on the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient elution. The retention data of 24 triazines, including common herbicides and their metabolites, are collected under 13 different elution modes, covering the following experimental domain: starting acetonitrile volume fraction ranging between 40 and 60% and gradient slope ranging between 0 and 1% acetonitrile/min. The gradient parameters together with five selected molecular descriptors, identified by quantitative structure-retention relationship modelling applied to individual separation conditions, are the network inputs. Predictive performance of this model is evaluated on six external triazines and four unseen separation conditions. For comparison, retention of triazines is modelled by both quantitative structure-retention relationships and response surface methodology, which describe separately the effect of molecular structure and gradient parameters on the retention. Although applied to a wider variable domain, the network provides a performance comparable to that of the above "local" models and retention times of triazines are modelled with accuracy generally better than 7%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation

    Kibar, Ali, E-mail: alikibar@kocaeli.edu.tr [Department of Mechanical and Material Technologies, Kocaeli University, 41285, Arslanbey Campus, Kocaeli (Turkey)

    2016-02-15

    This study presents the theory of impinging an oblique liquid jet onto a vertical superhydrophobic surface based on both experimental and numerical results. A Brassica oleracea leaf with a 160° apparent contact angle was used for the superhydrophobic surface. Distilled water was sent onto the vertical superhydrophobic surface in the range of 1750–3050 Reynolds number, with an inclination angle of 20°−40°, using a circular glass tube with a 1.75 mm inner diameter. The impinging liquid jet spread onto the surface governed by the inertia of the liquid and then reflected off the superhydrophobic surface due to the surface energy of the spreading liquid. Two different energy approaches, which have time-scale and per-unit length, were performed to determine transformation of the energy. The kinetic energy of the impinging liquid jet was transformed into the surface energy with an increasing interfacial surface area between the liquid and air during spreading. Afterwards, this surface energy of the spreading liquid was transformed into the reflection kinetic energy. (paper)

  6. Orientations of Liquid Crystals in Contact with Surfaces that Present Continuous Gradients of Chemical Functionality

    Clare, B.; Efimenko, K.; Fischer, D.; Genzer, J.; Abbott, N.

    2006-01-01

    We report the formation of continuous spatial gradients in the density of grafted semifluorinated chains on silicon oxide surfaces by vapor-phase diffusion of semifluorinated silanes. We quantify the orientations of the nematic liquid crystal (LC) 4-cyano-4'-pentylbiphenyl on these surfaces as a function of local surface composition obtained by using NEXAFS. These measurements demonstrate that it is possible to obtain the full range of tilt angles of a LC on these surfaces. We also use the data provided by these gradient surfaces to test hypotheses regarding the nature of the interaction between the LC and surfaces that give rise to the range of tilted orientations of the LC. We conclude that the orientations of the LC are not determined solely by the density of grafted semifluorinated chains or by the density of residual hydroxyl groups presented at these surfaces following reactions with the silanes. Instead, our results raise the possibility that the tilt angles of the semifluorinated chains on these surfaces (which are a function of the density of the grafted chains) may influence the orientation of the LC. These results, when combined, demonstrate the potential utility of gradient surfaces for screening surface chemistries that achieve desired orientations of LCs as well as for rapidly assembling experimental data sets that can be used to test propositions regarding mechanisms of anchoring LCs at surfaces

  7. Continuous-flow liquid microjunction surface sampling probe connected on-line with high-performance liquid chromatography/mass spectrometry for spatially resolved analysis of small molecules and proteins.

    Van Berkel, Gary J; Kertesz, Vilmos

    2013-06-30

    A continuous-flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by mass spectrometry. Demonstrated here is the on-line coupling of such a probe with high-performance liquid chromatography/mass spectrometry (HPLC/MS) enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. A continuous-flow liquid microjunction surface sampling probe was connected to a six-port, two-position valve for extract collection and injection to an HPLC column. A QTRAP® 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V™ ion source operated in positive electrospray ionization (ESI) mode was used for all experiments. The system operation was tested with the extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues, caffeine from a coffee bean, cocaine from paper currency, and proteins from dried sheep blood spots on paper. Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin α and β chains. Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous-flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. A thermodynamic perturbation theory for the surface tension and ion density profile of a liquid metal

    Evans, R.; Kumaravadivel, R.

    1976-01-01

    A simple scheme for determining the ion density profile and the surface tension of a liquid metal is described. Assuming that the interaction between metallic pseudo-ions is of the form introduced by Evans, an approximate expression for the excess free energy of the system is derived using the thermodynamic perturbation theory of Weeks, Chandler and Anderson. This excess free energy is then minimized with respect to a parameter which specifies the ion density profile, and the surface tension is given directly. From a consideration of the dependence of the interionic forces on the electron density it is predicted that the ions should take up a very steep density profile at the liquid metal surface. This behaviour is contrasted with that to be expected for rare-gas fluids in which the interatomic forces are density-independent. The values of the surface tension calculated for liquid Na, K and Al from a simplified version of the theory are in reasonable agreement with experiment. (author)

  9. Temperature dependence of the bulk and surface properties of liquid Zn-Cd alloys

    Awe, O.E. [University of Ibadan, Department of Physics, Ibadan (Nigeria); Azeez, A.A. [African University of Science and Technology, Abuja (Nigeria)

    2017-05-15

    The effects of temperature on the bulk and surface properties of liquid Zn-Cd alloys have been theoretically investigated, using a combination of self association model, Darken's thermodynamic equation for diffusion, empirical model for viscosity and a statistical mechanics model. The results from this study show that change in temperature resulted in cross-over effects in bulk and surface properties. We also found that with an increase in temperature, a pronounced asymmetry of viscosity isotherm is significantly reduced, and viscosity isotherm exhibited anomalous behaviour. Our results reveal that the homocoordination tendency in Zn-Cd liquid alloys is not strong and reduces with increasing temperature. The study further suggests a pronounced segregation of Cd-atoms at the surface of Zn-Cd liquid alloys and the extent of segregation reduces with temperature. We as well found that, in addition to the reported understanding that size-factor determines the compositional location of asymmetry of the viscosity isotherm, temperature is an operating parameter that has effect, not only on the composition of asymmetry, but also on the magnitude of asymmetry. In all the properties investigated, the most pronounced effect of temperature (52.9 %) is on the viscosity while the least effect (7.1 %) is on the surface tension. (orig.)

  10. Nucleation and growth of vapor bubbles in the liquid bulk and at a solid surface

    Yagov, V.V.

    1977-01-01

    The main achievements in the study of the vapor phase origin in liquid and the subsequent growth of the vapor bubbles are presented briefly, and a number of issues on which there is no single opinion as yet are also outlined. The theory of homogeneous nucleation and a great number of experiments make it possible not only to explain qualitatively the causes of spontaneous formation of vapor nucleation centers in the metastable liquid but provides a simple computational relation for the estimating the intensity of this process. None of the existing hypotheses, however, can give a complete answer to the question of the mechanism of the vapor phase nucleation on a solid surface under ''pure conditions'', although this is a more pressing problem. At the same time, the role of cavities of reservoir type (with a narrow orifice) on the surface under heating as reliable stabilizers of the vapor formation (especially in liquid metals) is clarified from the practical point of view. Thus, the identification of technology for production of such cavities would make it possible to increase substantially the efficiency of heat transferring surfaces. Any computational relations for the growth of bubbles on the heating surface also are (and, according to the author, necessarily will be) approximate ones, although considerable success has been achieved in this field

  11. Transmission X-ray scattering as a probe for complex liquid-surface structures

    Fukuto, Masafumi; Yang, Lin; Nykypanchuk, Dmytro; Kuzmenko, Ivan

    2016-01-28

    The need for functional materials calls for increasing complexity in self-assembly systems. As a result, the ability to probe both local structure and heterogeneities, such as phase-coexistence and domain morphologies, has become increasingly important to controlling self-assembly processes, including those at liquid surfaces. The traditional X-ray scattering methods for liquid surfaces, such as specular reflectivity and grazing-incidence diffraction, are not well suited to spatially resolving lateral heterogeneities due to large illuminated footprint. A possible alternative approach is to use scanning transmission X-ray scattering to simultaneously probe local intermolecular structures and heterogeneous domain morphologies on liquid surfaces. To test the feasibility of this approach, transmission small- and wide-angle X-ray scattering (TSAXS/TWAXS) studies of Langmuir films formed on water meniscus against a vertically immersed hydrophilic Si substrate were recently carried out. First-order diffraction rings were observed in TSAXS patterns from a monolayer of hexagonally packed gold nanoparticles and in TWAXS patterns from a monolayer of fluorinated fatty acids, both as a Langmuir monolayer on water meniscus and as a Langmuir–Blodgett monolayer on the substrate. The patterns taken at multiple spots have been analyzed to extract the shape of the meniscus surface and the ordered-monolayer coverage as a function of spot position. These results, together with continual improvement in the brightness and spot size of X-ray beams available at synchrotron facilities, support the possibility of using scanning-probe TSAXS/TWAXS to characterize heterogeneous structures at liquid surfaces.

  12. Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid*

    Zhang Lan-Lan; Liu Wei; Li Ping; Yang Xi; Cao Xu

    2017-01-01

    With the method of replacing the surface layer of photonic crystal with tubes, a novel photonic crystal composite structure used as a tunable surface mode waveguide is designed. The tubes support tunable surface states. The tunable propagation capabilities of the structure are investigated by using the finite-difference time-domain. Simulation results show that the beam transmission distributions of the composite structure are sensitive to the frequency range of incident light and the surface morphology which can be modified by filling the tubes with different organic liquids. By adjusting the filler in tubes, the T-shaped, Y-shaped, and L-shaped propagations can be realized. The property can be applied to the tunable surface mode waveguide. Compared with a traditional single function photonic crystal waveguide, our designed structure not only has a small size, but also is a tunable device. (paper)

  13. Measurement of surface temperature profiles on liquid uranium metal during electron beam evaporation

    Ohba, Hironori; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    Surface temperature distributions of liquid uranium in a water-cooled copper crucible during electron beam evaporation were measured. Evaporation surface was imaged by a lens through a band-path filter (650{+-}5 nm) and a double mirror system on a charge coupled device (CCD) camera. The video signals of the recorded image were connected to an image processor and converted to two-dimensional spectral radiance profiles. The surface temperatures were obtained from the spectral radiation intensity ratio of the evaporation surface and a freezing point of uranium and/or a reference light source using Planck`s law of radiation. The maximum temperature exceeded 3000 K and had saturation tendency with increasing electron beam input. The measured surface temperatures agreed with those estimated from deposition rates and data of saturated vapor pressure of uranium. (author)

  14. Surface tension anomalies in room temperature ionic liquids-acetone solutions

    Abe, Hiroshi; Murata, Keisuke; Kiyokawa, Shota; Yoshimura, Yukihiro

    2018-05-01

    Surface tension anomalies were observed in room temperature ionic liquid (RTIL)-acetone solutions. The RTILs are 1-alkyl-3-methylimidazorium iodide with [Cnmim][I] in a [Cnmim][I]-x mol% acetone. The maximum value of the surface tension appeared at 40 mol% acetone, although density decreased monotonically with an increase in acetone concentration. A small alkyl chain length effect of the Cnmim+ cations was observed in the surface tension. By the Gibbs adsorption isotherm, it was found that I- anion-mediated surface structure became dominant above 40 mol%. In the different [Cnmim][TFSI]-acetone mixtures, normal decay of the surface tension was observed on the acetone concentration scale, where TFSI- is bis(trifluoromethanesulfonyl)imide.

  15. Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloy.

    Efthimiadis, Jim; Neil, Wayne C; Bunter, Andrew; Howlett, Patrick C; Hinton, Bruce R W; MacFarlane, Douglas R; Forsyth, Maria

    2010-05-01

    The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg-Zn-Rare Earth (RE)-Zr, nominal composition approximately 4 wt % Zn, approximately 1.7 wt % RE (Ce), approximately 0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate, denoted [P(6,6,6,14)][DPP]. During exposure to this IL, a bias potential, shifted from open circuit, was applied to the ZE41 surface. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to monitor the evolution of film formation on the metal surface during exposure. The EIS data indicate that, of the four bias potentials examined, applying a potential of -200 mV versus OCP during the exposure period resulted in surface films of greatest resistance. Both EIS measurements and scanning electron microscopy (SEM) imaging indicate that these surfaces are substantially different to those formed without potential bias. Time of flight-secondary ion mass spectrometry (ToF-SIMS) elemental mapping of the films was utilized to ascertain the distribution of the ionic liquid cationic and anionic species relative to the microstructural surface features of ZE41 and indicated a more uniform distribution compared with the surface following exposure in the absence of a bias potential. Immersion of the treated ZE41 specimens in a chloride contaminated salt solution clearly indicated that the ionic liquid generated surface films offered significant protection against pitting corrosion, although the intermetallics were still insufficiently protected by the IL and hence favored intergranular corrosion processes.

  16. Liquid-bridge stability and breakup on surfaces with contact-angle hysteresis.

    Akbari, Amir; Hill, Reghan J

    2016-08-10

    We study the stability and breakup of liquid bridges with a free contact line on surfaces with contact-angle hysteresis (CAH) under zero-gravity conditions. Non-ideal surfaces exhibit CAH because of surface imperfections, by which the constraints on three-phase contact lines are influenced. Given that interfacial instabilities are constraint-sensitive, understanding how CAH affects the stability and breakup of liquid bridges is crucial for predicting the drop size in contact-drop dispensing. Unlike ideal surfaces on which contact lines are always free irrespective of surface wettability, contact lines may undergo transitions from pinned to free and vice versa during drop deposition on non-ideal surfaces. Here, we experimentally and theoretically examine how stability and breakup are affected by CAH, highlighting cases where stability is lost during a transition from a pinned-pinned (more constrained) to pinned-free (less constrained) interface-rather than a critical state. This provides a practical means of expediting or delaying stability loss. We also demonstrate how the dynamic contact angle can control the contact-line radius following stability loss.

  17. Biomimetic Implant Surface Functionalization with Liquid L-PRF Products: In Vitro Study

    Marco Lollobrigida

    2018-01-01

    Full Text Available Objective. Platelet-rich fibrin (PRF clots and membranes are autologous blood concentrates widely used in oral surgical procedures; less is known, however, about the liquid formulations of such products. The aim of this in vitro study is to assess the behavior of different implant surfaces when in contact with two liquid leucocyte- and platelet-rich fibrin (L-PRF products. Methods. Six commercial pure titanium discs, of 9.5 mm diameter and 1.5 mm thickness, were used. Three of these samples had a micro/nano-rough surface; three were machined. Three different protocols were tested. Protocols involved the immersion of the samples in (1 a platelets, lymphocytes, and fibrinogen liquid concentrate (PLyF for 10 minutes, (2 an exudate obtained from L-PRF clots rich in fibronectin and vitronectin for 5 minutes, and (3 the fibronectin/vitronectin exudate for 2 minutes followed by immersion in the PLyF concentrate for further 8 minutes. After these treatments, the samples were fixed and observed using a scanning electron microscope (SEM. Results. Under microscopic observation, (1 the samples treated with the PLyF concentrate revealed a dense fibrin network in direct contact with the implant surface and a significant number of formed elements of blood; (2 in the samples treated with the fibronectin/vitronectin exudates, only a small number of white and red blood cells were detectable; and (3 in samples exposed to the combined treatment, there was an apparent increase in the thickness of the fibrin layer. When compared to the machined surface, the micro/nano-rough samples showed an overall increased retention of fibrin, leading to a thicker coating. Conclusions. Liquid L-PRF products promote the formation of a dense fibrin clot on micro/nano-rough implant surfaces in vitro. The adjunctive treatment of surfaces with the fibronectin/vitronectin exudate could provide support to contact of the fibrin with the surface, though it is not essential for the clot

  18. A high-performance lab-on-a-chip liquid sensor employing surface acoustic wave resonance

    Kustanovich, K.; Yantchev, V.; Kirejev, V.; Jeffries, G. D. M.; Lobovkina, T.; Jesorka, A.

    2017-11-01

    We demonstrate herein a new concept for lab-on-a-chip in-liquid sensing, through integration of surface acoustic wave resonance (SAR) in a one-port configuration with a soft polymer microfluidic delivery system. In this concept, the reflective gratings of a one-port surface acoustic wave (SAW) resonator are employed as mass loading-sensing elements, while the SAW transducer is protected from the measurement environment. We describe the design, fabrication, implementation, and characterization using liquid medium. The sensor operates at a frequency of 185 MHz and has demonstrated a comparable sensitivity to other SAW in-liquid sensors, while offering quality factor (Q) value in water of about 250, low impedance and fairly low susceptibility to viscous damping. For proof of principle, sensing performance was evaluated by means of binding 40 nm neutravidin-coated SiO2 nanoparticles to a biotin-labeled lipid bilayer deposited over the reflectors. Frequency shifts were determined for every step of the affinity assay. Demonstration of this integrated technology highlights the potential of SAR technology for in-liquid sensing.

  19. Dynamics of liquid nitrogen cooling process of solid surface at wetting contact coefficient

    Smakulski, P; Pietrowicz, S

    2015-01-01

    Liquid cryogens cooling by direct contact is very often used as a method for decreasing the temperature of electronic devices or equipment i.e. HTS cables. Somehow, cooldown process conducted in that way could not be optimized, because of cryogen pool boiling characteristic and low value of the heat transfer coefficient. One of the possibilities to increase the efficiency of heat transfer, as well as the efficiency of cooling itself, it is to use a spray cooling method. The paper shows dynamics analysis of liquid nitrogen cooling solid surface process. The model of heat transfer for the single droplet of liquid nitrogen, which hits on a flat and smooth surface with respect to the different Weber numbers, is shown. Temperature profiles in calculation domains are presented, as well as the required cooling time. The numerical calculations are performed for different initial and boundary conditions, to study how the wetting contact coefficient is changing, and how it contributed to heat transfer between solid and liquid cryogen. (paper)

  20. Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides

    Zhijie Ma

    2017-11-01

    Full Text Available We present a highly sensitive microfluidic sensing technique for the terahertz (THz region of the electromagnetic spectrum based on spoof surface plasmon polaritons (SPPs. By integrating a microfluidic channel in a spoof SPP waveguide, we take advantage of these highly confined electromagnetic modes to create a platform for dielectric sensing of liquids. Our design consists of a domino waveguide, that is, a series of periodically arranged rectangular metal blocks on top of a metal surface that supports the propagation of spoof SPPs. Through numerical simulations, we demonstrate that the transmission of spoof SPPs along the waveguide is extremely sensitive to the refractive index of a liquid flowing through a microfluidic channel crossing the waveguide to give an interaction volume on the nanoliter scale. Furthermore, by taking advantage of the insensitivity of the domino waveguide’s fundamental spoof SPP mode to the lateral width of the metal blocks, we design a tapered waveguide able to achieve further confinement of the electromagnetic field. Using this approach, we demonstrate the highly sensitive detection of individual subwavelength micro-particles flowing in the liquid. These results are promising for the creation of spoof SPP based THz lab-on-a-chip microfluidic devices that are suitable for the analysis of biological liquids such as proteins and circulating tumour cells in buffer solution.

  1. The evolution of droplet impacting on thin liquid film at superhydrophilic surface

    Li, Yun; Zheng, Yi; Lan, Zhong; Xu, Wei; Ma, Xuehu

    2017-12-01

    Thin films are ubiquitous in nature, and the evolution of a liquid film after droplet impact is critical in many industrial processes. In this paper, a series of experiments and numerical simulations are conducted to investigate the distribution and evolution features of local temperature as the droplet impacts a thin film on the superhydrophilic surface by the thermal tracing method. A cold area is formed in the center after droplet impacts on heated solid surfaces. For the droplet impact on thin heated liquid film, a ring-shaped low temperature zone is observed in this experiment. Meanwhile, numerical simulation is adopted to analyze the mechanism and the interaction between the droplet and the liquid film. It is found that due to the vortex velocity distribution formed inside the liquid film after the impact, a large part of the droplet has congested. The heating process is not obvious in the congested area, which leads to the formation of a low-temperature area in the results.

  2. Surface, dynamic and structural properties of liquid Al-Ti alloys

    Novakovic, R.; Giuranno, D.; Ricci, E.; Tuissi, A.; Wunderlich, R.; Fecht, H.-J.; Egry, I.

    2012-01-01

    The systems containing highly reactive element such as Ti are the most difficult to be determined experimentally and therefore, it is often necessary to estimate the missing values by theoretical models. The thermodynamic data of the Al-Ti system are scarce, its phase diagram is still incomplete and there are very few data on the thermophysical properties of Al-Ti melts. The study on surface, dynamic and static structural properties of liquid Al-Ti alloys has been carried out within the framework of the Compound Formation Model. In spite of the experimental difficulties, the surface tension of liquid Al-2 at.%Ti alloy has been measured over a temperature range by the pinned drop method.

  3. Liquid interfacial water and brines in the upper surface of Mars

    Moehlmann, Diedrich

    2013-04-01

    Liquid interfacial water and brines in the upper surface of Mars Diedrich T.F. Möhlmann DLR Institut für Planetenforschung, Rutherfordstr. 2, D - 12489 Berlin, Germany dirk.moehlmann@dlr.de Interfacial water films and numerous brines are known to remain liquid at temperatures far below 0° C. The physical processes behind are described in some detail. Deliquescence, i.e. the liquefaction of hygroscopic salts at the threshold of a specific "Deliquescence Relative Humidity", is shown to be that process, which on present Mars supports the formation of stable interfacial water and bulk liquids in form of temporary brines on and in a salty upper surface of present Mars in a diurnally temporary and repetitive process. Temperature and relative humidity are the governing conditions for deliquescence (and the counterpart "efflorescence") to evolve. The current thermo-dynamical conditions on Mars support these processes to evolve on present Mars. The deliquescence-driven presence of liquid brines in the soil of the upper surface of Mars can expected to be followed by physical and chemical processes like "surface cementation", down-slope flows, and physical and chemical weathering processes. A remarkable and possibly also biologically relevant evolution towards internally interfacial water bearing structures of dendritic capillaries is related to their freezing - thawing driven formation. The internal walls of these network-pores or -tubes can be covered by films of interfacial water, providing that way possibly habitable crack-systems in soil and rock. These evolutionary processes of networks, driven by their tip-growth, can expected to be ongoing also at present.

  4. Drop deposition on surfaces with contact-angle hysteresis: Liquid-bridge stability and breakup

    Akbari, Amir; Hill, Reghan J.

    2015-01-01

    We study the stability and breakup of liquid bridges with a free contact line on a surface with contact-angle hysteresis under zero-gravity conditions. Theoretical predictions of the stability limits are validated by experimental measurements. Experiments are conducted in a water-methanol-silicon oil system where the gravity force is offset by buoyancy. We highlight cases where stability is lost during the transition from a pinned-pinned to pinned-free interface when the receding contact angl...

  5. Surface-induced ordering of a liquid crystal in the isotropic phase

    Miyano, K.

    1979-01-01

    A detailed account of a measurement of order parameter of a liquid crystal at the boundary by means of the wall-induced pretransitional birefringence is given. Several surface treatments were studied including surfactants and evaporated films. Although all treatments produced good alignment in the nematic phase, the boundary order parameter (hence the strength of the aligning force) in the isotropic phase differed very much depending on the treatment, indicating the diverse nature of the alignment process

  6. Propagation of liquid surface waves over finite graphene structured arrays of cylinders

    2011-01-01

    Based on the multiple scattering method,this paper investigates a benchmark problem of the propagation of liquid surface waves over finite graphene (or honeycomb) structured arrays of cylinders.Comparing the graphene structured array with the square structured and with triangle structured arrays,it finds that the finite graphene structure can produce more complete band gaps than the other finite structures,and the finite graphene structure has less localized ability than the other finite structures.

  7. Effects of airway surface liquid height on the kinetics of extracellular nucleotides in airway epithelia.

    Amarante, Tauanne D; da Silva, Jafferson K L; Garcia, Guilherme J M

    2014-12-21

    Experimental techniques aimed at measuring the concentration of signaling molecules in the airway surface liquid (ASL) often require an unrealistically large ASL volume to facilitate sampling. This experimental limitation, prompted by the difficulty of pipetting liquid from a very shallow layer (~15 μm), leads to dilution and the under-prediction of physiologic concentrations of signaling molecules that are vital to the regulation of mucociliary clearance. Here, we use a computational model to describe the effect of liquid height on the kinetics of extracellular nucleotides in the airway surface liquid coating respiratory epithelia. The model consists of a reaction-diffusion equation with boundary conditions that represent the enzymatic reactions occurring on the epithelial surface. The simulations reproduce successfully the kinetics of extracellular ATP following hypotonic challenge for ASL volumes ranging from 25 μl to 500 μl in a 12-mm diameter cell culture. The model reveals that [ATP] and [ADO] reach 1200 nM and 2200 nM at the epithelial surface, respectively, while their volumetric averages remain less than 200 nM at all times in experiments with a large ASL volume (500 μl). These findings imply that activation of P2Y2 and A2B receptors is robust after hypotonic challenge, in contrast to what could be concluded based on experimental measurements of volumetric concentrations in large ASL volumes. Finally, given the central role that ATP and ADO play in regulating mucociliary clearance, we investigated which enzymes, when inhibited, provide the greatest increase in ATP and ADO concentrations. Our findings suggest that inhibition of NTPDase1/highTNAP would cause the greatest increase in [ATP] after hypotonic challenge, while inhibition of the transporter CNT3 would provide the greatest increase in [ADO]. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Atomistic modelling of evaporation and explosive boiling of thin film liquid argon over internally recessed nanostructured surface

    Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Shavik, Sheikh Mohammad, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com; Haque, Mominul, E-mail: mominulmarup@gmail.com [Department of Mechanical Engineering, Bangladesh University of Engineering & Technology (BUET) Dhaka-1000 (Bangladesh)

    2016-07-12

    Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in

  9. Light reflection from a rough liquid surface including wind-wave effects in a scattering atmosphere

    Salinas, Santo V.; Liew, S.C.

    2007-01-01

    Visible and near-IR images of the ocean surface, taken from remote satellites, often contain important information of near-surface or sub-surface processes, which occur on, or over the ocean. Remote measurements of near surface winds, sea surface temperature and salinity, ocean color and underwater bathymetry, all, one way or another, depend on how well we understand sea surface roughness. However, in order to extract useful information from our remote measurements, we need to construct accurate models of the transfer of solar radiation inside the atmosphere as well as, its reflection from the sea surface. To approach this problem, we numerically solve the radiative transfer equation (RTE) by implementing a model for the atmosphere-ocean system. A one-dimensional atmospheric radiation model is solved via the widely known doubling and adding method and the ocean body is treated as a boundary condition to the problem. The ocean surface is modeled as a rough liquid surface which includes wind interaction and wave states, such as wave age. The model can have possible applications to the retrieval of wind and wave states, such as wave age, near a Sun glint region

  10. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    Song, Zhibo

    2018-04-04

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  11. Measurement of the airway surface liquid volume with simple light refraction microscopy.

    Harvey, Peter R; Tarran, Robert; Garoff, Stephen; Myerburg, Mike M

    2011-09-01

    In the cystic fibrosis (CF) lung, the airway surface liquid (ASL) volume is depleted, impairing mucus clearance from the lung and leading to chronic airway infection and obstruction. Several therapeutics have been developed that aim to restore normal airway surface hydration to the CF airway, yet preclinical evaluation of these agents is hindered by the paucity of methods available to directly measure the ASL. Therefore, we sought to develop a straightforward approach to measure the ASL volume that would serve as the basis for a standardized method to assess mucosal hydration using readily available resources. Primary human bronchial epithelial (HBE) cells cultured at an air-liquid interface develop a liquid meniscus at the edge of the culture. We hypothesized that the size of the fluid meniscus is determined by the ASL volume, and could be measured as an index of the epithelial surface hydration status. A simple method was developed to measure the volume of fluid present in meniscus by imaging the refraction of light at the ASL interface with the culture wall using low-magnification microscopy. Using this method, we found that primary CF HBE cells had a reduced ASL volume compared with non-CF HBE cells, and that known modulators of ASL volume caused the predicted responses. Thus, we have demonstrated that this method can detect physiologically relevant changes in the ASL volume, and propose that this novel approach may be used to rapidly assess the effects of airway hydration therapies in high-throughput screening assays.

  12. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew

    2018-04-01

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  13. Antiferroelectric surface layers in a liquid crystal as observed by synchrotron x-ray scattering

    Gramsbergen, E. F.; de Jeu, W. H.; Als-Nielsen, Jens Aage

    1986-01-01

    The X-ray reflectivity form the surface of a liquid crystal with terminally polar (cyano substituted) molecules has been studied using a high-resolution triple-axis X-ray spectrometer in combination with a synchrotron source. It is demonstrated that at the surface of the smectic Al phase a few...... antiferroelectric double layers develop that can be distinguished from the bulk single layer structure. A model is developed that separates the electron density in a contribution from the molecular form factor, and from the structure factor of the mono- and the bilayers, respectively. It shows that (i) the first...

  14. Basic research on nonlinear instability phenomena of liquid surface. Fiscal year 1996 report on preceding basic engineering field

    Madarame, Haruki; Okamoto, Koji; Iida, Masao

    1997-03-01

    Various nonlinear behaviors caused by nonlinear boundary conditions have been observed, and it is feared that in large vessels like FBRs, the instability phenomena such as self-exciting sloshing may occur in the free liquid surface of coolant. In this research, the nonlinear instability phenomena in free liquid surface were examined by the basic experiment and the analysis. As to the self-exciting oscillation 'jet flutter' of upward plane jet that collides against liquid surface, in order to know the mechanism of determining the frequency and supplying energy, the amplitude and phase relation of various variable quantities were investigated. The simplified model for calculating the displacement of jet was made, and compared with the experiment. The jet flutter phenomena are explained. The interaction of free liquid surface and turbulent flow, which is important for considering the nonlinearity in free liquid surface, was measured by LDV and visualization, and the turbulent flow phenomena in free liquid surface were investigated. In the experiment, turbulent flow energy was given to the free liquid surfaces of water and polymers, and the effect that the Toms effect exerted to interface turbulent flow was observed. The results of these studies are reported. (K.I.) studies are reported. (K.I.)

  15. System and method for generating 3D images of non-linear properties of rock formation using surface seismic or surface to borehole seismic or both

    Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.; Guyer, Robert A.; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2016-06-07

    A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acoustic waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.

  16. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  17. Chemical characterization of neonicotinoids in surface waters by high performance liquid chromatography with Tandem Mass Spectrometry (HPLC MS/MS)

    Amaral, Priscila Oliveira

    2017-01-01

    The present study aimed to develop a method for the determination and validation of a method for the identification and quantification of Neonicotinoids in surface waters collected in the Bauru region, in the state of São Paulo. The analytical techniques studied for the development of this method were the high performance liquid chromatography with tandem mass spectrometry (HPLC - MS / MS), gas chromatography with mass spectrometry (GC / MS) and gas chromatography with electron capture detector (GC / ECD). The class of pesticides Neonicotinoids was chosen for this work because it is related to a sudden disappearance of bees in colonies around the world. This phenomenon is known as Colony Collapse Disorder (CCD) and it is characterized by a rapid loss in the population of adult bees. The Neonicotinoids used in this study were the compounds Clothianidin, Imidacloprid and Thiamethoxam which were banned in their use as pesticides in Europe by Implementing Regulation No. 540/2011. The samples were concentrated using solid phase extraction (SPE) and liquid liquid extraction (LLE) techniques and injected into HPLC-MS / MS, GC / MS and GC / ECD. The GC / ECD and GC / MS techniques were not satisfactory for determination in the water matrix because the detection limit (10 mg L -1 ) is above the maximum allowed by the US Environmental Protection Agency (0.6 μg L -1 ). The HPLC - MS / MS technique using the multiple reaction monitoring (MRM) proved to be adequate for this study because it obtained quantification limits between 5.89 and 8.06 μg L -1 and a linearity between 0.9963 and 0.9999 for the three compounds. (author)

  18. Effect of metal surface composition on deposition behavior of stainless steel component dissolved in liquid sodium

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1988-01-01

    Deposition behavior of corrosion products has been investigated to clarify the effect of metal surface composition on the deposition process in liquid sodium. For the study a sodium loop made of Type 304 stainless steel was employed. Deposition test pieces, which were Type 304 stainless steel, iron, nickel or Inconel 718, were immersed in the sodium pool of the test pot. Corrosion test pieces, which were Type 304 stainless steel, 50 at% Fe-50 at%Mn and Inconel 718, were set in a heater pin assembly along the axial direction of the heater pin surface. Sodium temperatures at the outlet and inlet of the heater pin assembly were controlled at 943 and 833 K, respectively. Sodium was purified at a cold trap temperature of 393 K and the deposition test was carried out for 4.3 x 10 2 - 2.9 x 10 4 ks. Several crystallized particles were observed on the surface of the deposition test pieces. The particles had compositions and crystal structures which depended on both the composition of deposition test pieces and the concentration of iron and manganese in sodium. Only iron-rich particles having a polyhedral shape deposited on the iron surface. Two types of particles, iron-rich α-phase and γ-phase with nearly the same composition as stainless steel, were deposited on Type 304 stainless steel. A Ni-Mn alloy was deposited on the nickel surface in the case of a higher concentration of manganese in sodium. On the other hand, for a lower manganese concentration, a Fe-Ni alloy was precipitated on the nickel surface. Particles deposited on nickel had a γ-phase crystal structure similar to the deposition test piece of nickel. Hence, the deposition process can be explained as follows: Corrosion products in liquid sodium were deposited on the metal surface by forming a metal alloy selectively with elements of the metal surface. (author)

  19. On a Linear Equation Arising in Isometric Embedding of Torus-like Surface

    Chunhe LI

    2009-01-01

    The solvability of a linear equation and the regularity of the solution are discussed.The equation is arising in a geometric problem which is concerned with the realization of Alexandroff's positive annul in R3.

  20. Electrochemical Impedance Response of the surface treated FMS in Liquid Sodium Environment

    Lee, Jeong Hyeon; Shin, Sang Hun; Kim, Ji Hyun

    2014-01-01

    HT9 and Gr.92 are known as compatible in sodium environment because the usual refueling time of SFRs is designed about 54 months. It is very important to investigate the corrosion-related behavior such as surface corrosion rate, carburization, decarburization and mechanical properties for its operation time. SiC and Si 3 N 4 CVD coating for decarburization barrier on the surface of FMS is considered in this study. The decarburization process where dissolved carbon near the specimen surface disused in to the liquid sodium. This process can originate from the difference between dissolved carbon in the material and liquid sodium. A compatibility test the cladding tube revealed that a decrease of the mechanical property instigated by the aging proves governed the whole mechanical property. To monitor the corrosion behavior of these candidate materials in sodium environment, Electrochemical Impedance Spectroscopy (EIS) method is first introduced and investigated in this study. The compatibility of cladding and structural materials with sodium has to be carefully investigated, as sodium could promote corrosion of cladding and structural materials in two ways. One is produced by the dissolution of alloy constituents into the sodium, and the other is produced through a chemical reaction with impurities (especially oxygen and carbon) in the sodium environment. EIS test with pre-oxidized Gr. 92 specimen in 200 .deg. C liquid sodium environment was carried out in this study. A clear Nyquist and Bode plots were obtained in liquid metal environment and the resistance of sodium and the oxide, and the capacitance of the oxide were measured from this result

  1. Predicting the minimum liquid surface tension activity of pseudomonads expressing biosurfactants.

    Mohammed, I U; Deeni, Y; Hapca, S M; McLaughlin, K; Spiers, A J

    2015-01-01

    Bacteria produce a variety of biosurfactants capable of significantly reducing liquid (aqueous) surface tension (γ) with a range of biological roles and biotechnological uses. To determine the lowest achievable surface tension (γMin ), we tested a diverse collection of Pseudomonas-like isolates from contaminated soil and activated sludge and identified those expressing biosurfactants by drop-collapse assay. Liquid surface tension-reducing ability was quantitatively determined by tensiometry, with 57 isolates found to significantly lower culture supernatant surface tensions to 24·5-49·1 mN m(-1) . Differences in biosurfactant behaviour determined by foaming, emulsion and oil-displacement assays were also observed amongst isolates producing surface tensions of 25-27 mN m(-1) , suggesting that a range of structurally diverse biosurfactants were being expressed. Individual distribution identification (IDI) analysis was used to identify the theoretical probability distribution that best fitted the surface tension data, which predicted a γMin of 24·24 mN m(-1) . This was in agreement with predictions based on earlier work of published mixed bacterial spp. data, suggesting a fundamental limit to the ability of bacterial biosurfactants to reduce surface tensions in aqueous systems. This implies a biological restriction on the synthesis and export of these agents or a physical-chemical restriction on their functioning once produced. Numerous surveys of biosurfactant-producing bacteria have been conducted, but only recently has an attempt been made to predict the minimum liquid surface tension these surface-active agents can achieve. Here, we determine a theoretical minimum of 24 mN m(-1) by statistical analysis of tensiometry data, suggesting a fundamental limit for biosurfactant activity in bacterial cultures incubated under standard growth conditions. This raises a challenge to our understanding of biosurfactant expression, secretion and function, as well as

  2. Experimental and numerical investigation of liquid-metal free-surface flows in spallation targets

    Batta, A., E-mail: batta@kit.edu [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Class, A.G.; Litfin, K.; Wetzel, Th. [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Moreau, V.; Massidda, L. [CRS4 Centre for Advanced Studies, Research and Development in Sardinia, Polaris, Edificio 1, 09010 Pula, CA (Italy); Thomas, S.; Lakehal, D. [ASCOMP GmbH Zurich, Zurich (Switzerland); Angeli, D.; Losi, G. [DIEF – Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Mooney, K.G. [University of Massachusetts Amherst, Department of Mechanical and Industrial Engineering, Amherst (United States); Van Tichelen, K. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium)

    2015-08-15

    Highlights: • Experimental study of free surface for lead bismuth eutectic target. • Numerical investigation of free surface of a liquid metal target. • Advanced free surface modelling. - Abstract: Accelerator Driven Systems (ADS) are extensively investigated for the transmutation of high-level nuclear waste within many worldwide research programs. The first advanced design of an ADS system is currently developed in SCK• CEN, Mol, Belgium: the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA). Many European research programs support the design of MYRRHA. In the framework of the Euratom project ‘Thermal Hydraulics of Innovative nuclear Systems (THINS)’ a liquid-metal free-surface experiment is performed at the Karlsruhe Liquid Metal Laboratory (KALLA) of Karlsruhe Institute of Technology (KIT). The experiment investigates a full-scale model of the concentric free-surface spallation target of MYRRHA using Lead Bismuth Eutectic (LBE) as coolant. In parallel, numerical free surface models are developed and tested which are reviewed in the article. A volume-of-fluid method, a moving mesh model, a free surface model combining the Level-Set method with Large-Eddy Simulation model and a smoothed-particle hydrodynamics approach are investigated. Verification of the tested models is based on the experimental results obtained within the THINS project and on previous water experiments performed at the University Catholic de Louvain (UCL) within the Euratom project ‘EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in Accelerator Driven System (EUROTRANS)’. The design of the target enables a high fluid velocity and a stable surface at the beam entry. The purpose of this paper is to present an overview of both experimental and numerical results obtained for free surface target characterization. Without entering in technical details, the status, the major achievements and lessons for the future with respect to

  3. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  4. Pressure and surface tension of solid-liquid interface using Tara zona density functional theory

    Moradi, M.; Kavosh Tehrani, M.

    2001-01-01

    The weighted density functional theory proposed by Tara zona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this research we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is pitted in three dimensions. We also calculate the pressure and compare it with the Carnahan-Starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation

  5. Pressure and surface tension of soild-liquid interface using Tarazona density functional theory

    M. M.

    2000-12-01

    Full Text Available   The weighted density functional theory proposed by Tarazona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this resarch we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is plotted in three dimensions. We also calculate the pressure and compare it with the Carnahan-starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation.

  6. A variational model of disjoining pressure: Liquid film on a nonplanar surface

    Silin, D.; Virnovsky, G.

    2009-06-01

    Variational methods have been successfully used in modelling thin liquid films in numerous theoretical studies of wettability. In this paper, the variational model of the disjoining pressure is extended to the general case of a two-dimensional solid surface. The Helmgoltz free energy functional depends both on the disjoining pressure isotherm and the shape of the solid surface. The augmented Young-Laplace equation (AYLE) is a nonlinear second-order partial differential equation. A number of solutions describing wetting films on spherical grains have been obtained. In the case of cylindrical films, the phase portrait technique describes the entire variety of mathematically feasible solutions. It turns out that a periodic solution, which would describe wave-like wetting films, does not satisfy the Jacobi's condition of the classical calculus of variations. Therefore, such a solution is nonphysical. The roughness of the solid surface significantly affects liquid film stability. AYLE solutions suggest that film rupture is more likely at a location where the pore-wall surface is most exposed into the pore space and the curvature is positive.

  7. Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.

    Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish

    2013-10-15

    A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Inactivation of Burkholderia pseudomallei on environmental surfaces using spray-applied, common liquid disinfectants.

    Calfee, M W; Wendling, M

    2015-11-01

    Five commercially available liquid antimicrobials were evaluated for their ability to decontaminate common environmental surface materials, contaminated with Burkholderia pseudomallei, using a spray-based disinfectant delivery procedure. Tests were conducted at both an ambient temperature (c. 20°C) and a lower temperature (c. 12°C) condition. Nonporous materials (glass and aluminium) were more easily decontaminated than porous materials (wood, concrete and carpet). Citric acid (1%) demonstrated poor efficacy in all test conditions. Bleach (pH-adjusted), ethanol (70%), quaternary ammonium and PineSol®, demonstrated high (>6 log10 reduction) efficacies on glass and aluminium at both temperatures, but achieved varying results for wood, carpet and concrete. Temperature had minimal effect on decontamination efficacy during these tests. Much of the antimicrobial efficacy data for pathogenic micro-organisms are generated with testing that utilizes hard nonporous surface materials. These data are not directly translatable for decontaminant selection following an incident whereby complex and porous environmental surfaces are contaminated. This study presents efficacy data for spray-applied antimicrobial liquids, when used to decontaminate common environmental surfaces contaminated with Burkholderia pseudomallei. These data can help responders develop effective remediation strategies following an environmental contamination incident involving B. pseudomallei. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  9. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary

    Mahanthesh, B.; Gireesha, B.J.; Gorla, R.S. Reddy; Abbasi, F.M.; Shehzad, S.A.

    2016-01-01

    Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases. - Highlights: • Hydromagnetic flow of nanofluid over a bidirectional non-linear stretching surface is examined. • Cu, Al 2 O3 and TiO 2 types nanoparticles are taken into account. • Numerical solutions have been computed and addressed. • The values of skin-friction and Nusselt number are presented.

  10. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary

    Mahanthesh, B., E-mail: bmanths@gmail.com [Department of Mathematics, AIMS Institutes, Peenya, 560058 Bangalore (India); Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Gireesha, B.J., E-mail: bjgireesu@rediffmail.com [Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Gorla, R.S. Reddy, E-mail: r.gorla@csuohio.edu [Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Abbasi, F.M., E-mail: abbasisarkar@gmail.com [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S.A., E-mail: ali_qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-11-01

    Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases. - Highlights: • Hydromagnetic flow of nanofluid over a bidirectional non-linear stretching surface is examined. • Cu, Al{sub 2}O3 and TiO{sub 2} types nanoparticles are taken into account. • Numerical solutions have been computed and addressed. • The values of skin-friction and Nusselt number are presented.

  11. Experimental Study of gas-liquid two-phase flow affected by wall surface wettability

    Takamasa, T.; Hazuku, T.; Hibiki, T.

    2008-01-01

    To evaluate the effect of wall surface wettability on the characteristics of upward gas-liquid two-phase flow in a vertical pipe, an experimental study was performed using three test pipes: an acrylic pipe, a hydrophilic pipe and a hydrophobic pipe. Basic flow characteristics such as flow patterns, pressure drop and void fraction were measured in these three pipes. In the hydrophilic pipe, a slug to churn flow transition boundary was shifted to a higher gas velocity at a given liquid velocity, whereas a churn to annular flow transition boundary was shifted to a lower gas velocity at a given liquid velocity. In the hydrophobic pipe, an inverted-churn flow regime was observed in the region where the churn flow regime was observed in the acrylic pipe, while a droplet flow regime was observed in the region where an annular flow regime was observed in the acrylic pipe. At a high gas flow rate, the mean void fraction in the hydrophobic pipe was higher than in the acrylic pipe. The effect of surface wettability on frictional pressure loss was confirmed to be insignificant under the present experimental conditions

  12. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    Kaita, R.; Majeski, R.; Boaz, M.; Efthimion, P.; Jones, B.; Hoffman, D.; Kugel, H.; Menard, J.; Munsat, T.; Post-Zwicker, A.; Soukhanovskii, V.; Spaleta, J.; Taylor, G.; Timberlake, J.; Woolley, R.; Zakharov, L.; Finkenthal, M.; Stutman, D.; Antar, G.; Doerner, R.; Luckhardt, S.; Maingi, R.; Maiorano, M.; Smith, S.

    2002-01-01

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance

  13. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    R. Kaita; R. Majeski; M. Boaz; P. Efthimion; B. Jones; D. Hoffman; H. Kugel; J. Menard; T. Munsat; A. Post-Zwicker; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; G. Antar; R. Doerner; S. Luckhardt; R. Maingi; M. Maiorano; S. Smith

    2002-01-18

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance.

  14. Application of High-Performance Liquid Chromatography Coupled with Linear Ion Trap Quadrupole Orbitrap Mass Spectrometry for Qualitative and Quantitative Assessment of Shejin-Liyan Granule Supplements

    Jifeng Gu; Weijun Wu; Mengwei Huang; Fen Long; Xinhua Liu; Yizhun Zhu

    2018-01-01

    A method for high-performance liquid chromatography coupled with linear ion trap quadrupole Orbitrap high-resolution mass spectrometry (HPLC-LTQ-Orbitrap MS) was developed and validated for the qualitative and quantitative assessment of Shejin-liyan Granule. According to the fragmentation mechanism and high-resolution MS data, 54 compounds, including fourteen isoflavones, eleven ligands, eight flavonoids, six physalins, six organic acids, four triterpenoid saponins, two xanthones, two alkaloi...

  15. Evaluation on Dorsey Method in Surface Tension Measurement of Solder Liquids Containing Surfactants

    Zhao, Xingke; Xie, Feiming; Fan, Jinsheng; Liu, Dayong; Huang, Jihua; Chen, Shuhai

    2018-06-01

    With the purpose of developing a feasible approach for measuring the surface tension of solders containing surfactants, the surface tension of Sn-3Ag-0.5Cu-xP solder alloys, with various drop sizes as well as different phosphorus (P) content, was evaluated using the Dorsey method based on the sessile drop test. The results show that the accuracy of the surface tension calculations depends on both of sessile drop size and the liquid metal composition. With a proper drop size, in the range of 4.5 mm to 5.3 mm in equivalent spherical diameters, the deviation of the surface tension calculation can be limited to 1.43 mN·m-1 and 6.30 mN·m-1 for SnAgCu and SnAgCu-P, respectively. The surface tension of SnAgCu-xP solder alloys decreases quickly to a minimum value when the P content reaches 0.5 wt% and subsequently increases slowly with the P content further increasing. The formation of a P-enriched surface layer and Sn4P3 intermetallic phases is regarded to be responsible for the decreasing and subsequent increasing of surface tension, respectively.

  16. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

    Love, Adam H; Bailey, Christopher G; Hanna, M Leslie; Hok, Saphon; Vu, Alex K; Reutter, Dennis J; Raber, Ellen

    2011-11-30

    Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Smooth perfluorinated surfaces with different chemical and physical natures: their unusual dynamic dewetting behavior toward polar and nonpolar liquids.

    Cheng, Dalton F; Masheder, Benjamin; Urata, Chihiro; Hozumi, Atsushi

    2013-09-10

    The effects of surface chemistry and the mobility of surface-tethered functional groups of various perfluorinated surfaces on their dewetting behavior toward polar (water) and nonpolar (n-hexadecane, n-dodecane, and n-decane) liquids were investigated. In this study, three types of common smooth perfluorinated surfaces, that is, a perfluoroalkylsilane (heptadecafluoro-1,1,2,2-tetrahydrooctyl-dimethylchlorosilane, FAS17) monomeric layer, an amorphous fluoropolymer film (Teflon AF 1600), and a perfluorinated polyether (PFPE)-terminated polymer brush film (Optool DSX), were prepared and their static/dynamic dewetting characteristics were compared. Although the apparent static contact angles (CAs) of these surfaces with all probe liquids were almost identical to each other, the ease of movement of liquid drops critically depended on the physical (solidlike or liquidlike) natures of the substrate surface. CA hysteresis and substrate tilt angles (TAs) of all probe liquids on the Optool DSX surface were found to be much lower than those of Teflon AF1600 and FAS17 surfaces due to its physical polymer chain mobility at room temperature and the resulting liquidlike nature. Only 6.0° of substrate incline was required to initiate movement for a small drop (5 μL) of n-decane, which was comparable to the reported substrate TA value (5.3°) for a superoleophobic surface (θ(S) > 160°, textured perfluorinated surface). Such unusual dynamic dewetting behavior of the Optool DSX surface was also markedly enhanced due to the significant increase in the chain mobility of PFPE by moderate heating (70 °C) of the surface, with substrate TA reducing to 3.0°. CA hysteresis and substrate TAs rather than static CAs were therefore determined to be of greater consequence for the estimation of the actual dynamic dewetting behavior of alkane probe liquids on these smooth perfluorinated surfaces. Their dynamic dewettability toward alkane liquids is in the order of Optool DSX > Teflon AF1600

  18. Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets.

    Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry

    2015-12-09

    We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles.

  19. What happens when iron becomes wet? Observation of reactions at interfaces between liquid and metal surfaces

    Kimura, M

    2003-01-01

    Synchrotron-radiation has been applied to investigation of interfaces between liquid and metal surfaces, with a special attention to corrosion. Three topics are shown: (1) nano structures of rusts formed on steel after atmospheric corrosion. Evolution of 'Fe(O, OH) sub 6 network' is the key to understand how the durable rusts prevent from formation of more rusts. (2) In situ observation of reactions at the interface has been carried out for localized corrosion of stainless steel. It is shown that change in states of Cr sup 3 sup + and Br sup - ions near the interface is deeply related with a breakout of the passivation film. (3) A structural phase transformation on a Cu sub 3 Au(001) surface was investigated. Ordering remains even at a temperature higher than the bulk-critical temperature, showing surface-induced ordering. These approaches gives us crucial information for a new steel-product. (author)

  20. Noncontact surface tension and viscosity measurements of rhenium in the liquid and undercooled states

    Ishikawa, Takehiko; Paradis, Paul-Francois; Yoda, Shinichi

    2004-01-01

    Surface tension and viscosity of liquid rhenium, which have hardly been measured due to the extremely high melting temperature of rhenium, were measured using an electrostatic levitation method combined with the oscillation drop technique. Sample position instability problems caused by the photon pressure of the heating lasers and by sample evaporation were solved by modifying the electrodes design. Good sample stability allowed the measurements of the surface tension and the viscosity over wide temperature ranges including the undercooled states. Over the 2800-3600 K interval, the surface tension of rhenium was measured as σ(T)=2.71x10 3 -0.23(T-T m ), where T m is the melting temperature, 3453 K. At T m , the datum agrees well with the literature values. Similarly, on the same temperature range, the viscosity was determined as η(T)=0.08 exp[1.33x10 5 /(RT)] (mPa s)

  1. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys

    Novakovic, R

    2011-01-01

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi 2 composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al 8 Cr 5 and CrNi 2 chemical complexes, respectively, as energetically favoured.

  2. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.

    Novakovic, R

    2011-06-15

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi(2) composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al(8)Cr(5) and CrNi(2) chemical complexes, respectively, as energetically favoured.

  3. Room-temperature single-photon sources with definite circular and linear polarizations based on single-emitter fluorescence in liquid crystal hosts

    Winkler, Justin M; Lukishova, Svetlana G; Bissell, Luke J

    2013-01-01

    Definite circular and linear polarizations of room-temperature single-photon sources, which can serve as polarization bases for quantum key distribution, are produced by doping planar-aligned liquid crystal hosts with single fluorescence emitters. Chiral 1-D photonic bandgap microcavities for a single handedness of circularly polarized light were prepared from both monomeric and oligomeric cholesteric liquid crystals. Fluorescent emitters, such as nanocrystal quantum dots, nitrogen vacancy color centers in nanodiamonds, and rare-earth ions in nanocrystals, were doped into these microcavity structures and used to produce circularly polarized fluorescence of definite handedness. Additionally, we observed circularly polarized resonances in the spectrum of nanocrystal quantum dot fluorescence at the edge of the cholesteric microcavity's photonic stopband. For this polarization we obtained a ∼4.9 enhancement of intensity compared to the polarization of the opposite handedness that propagates without photonic bandgap microcavity effects. Such a resonance is indicative of coupling of quantum dot fluorescence to the cholesteric microcavity mode. We have also used planar-aligned nematic liquid crystal hosts to align DiI dye molecules doped into the host, thereby providing a single-photon source of linear polarization of definite direction. Antibunching is demonstrated for fluorescence of nanocrystal quantum dots, nitrogen vacancy color centers, and dye molecules in these liquid crystal structures.

  4. Measurement of free-surface of liquid metal lithium jet for IFMIF target

    Hiroo Kondo; Nobuo Yamaoka; Takuji Kanemura; Seiji Miyamoto; Hiroshi Horiike; Mizuho Ida; Hiroo Nakamura; Izuru Matsushita; Takeo Muroga

    2006-01-01

    This reports an experimental study on flow characteristics of a lithium target flow of International Fusion Materials Irradiation Facility (IFMIF). Surface shapes of the target were tried to measure by pattern projection method that is a three dimensional image measurement method. Irregularity of the surface shape caused by surface wakes was successfully measured by the method. IFMIF liquid lithium target is formed a flat plane jet of 25 mm in depth and 260 mm in width, and flows in a flow velocity range of 10 to 20 m/s. Aim of this study is to develop measurement techniques for monitoring of the target when IFMIF is in operation. The lithium target flow is high speed jet and the temperature high is more than 500 K. Also, light is not transmitted into liquid metal lithium. Therefore, almost of all flow measurement techniques developed for water are not used for lithium flow. In this study, pattern projection method was employed to measure the surface irregularity of the target. In the method, stripe patterns are projected onto the flow surface. The projected patterns are deformed according the surface shape. Three-dimensional surface shape is measured by analyzing the deformed patterns recorded using a CCD camera. The method uses the property that lithium dose not transmit visible lights. The experiments were carried out using a lithium loop at Osaka University. In this facility, lithium plane jet of 10 mm in depth and 70 mm width is obtained in the velocity range of less than 15 m/s using a two contractions nozzle. The pattern projection method was used to measure the amplitude of surface irregularity caused by surface wakes. The surface wakes were generated from small damaged at the nozzle edge caused by erosion, and those were successfully measured by the method. The measurement results showed the amplitude of the surface wakes were approximately equal to a size of damage of a nozzle. The amplitude was decreasing with distance to down stream and with decreasing

  5. Theory of the surface-induced magnetism in liquid 3He

    Jichu, Hisao; Kuroda, Yoshihiro

    1982-01-01

    A theory of the surface-induced magnetism of liquid 3 He confined in a restricted geometry is presented. In a general model, three different types of contributions to the effective exchange interactions among spins of the 3 He atoms in a solid layer adsorbed on a substrate are distinguished on the basis of the second order perturbation theory; one is from a direct process and the others are mediated by the spins of the 3 He atoms in the remaining bulk liquid. By using a simplified model, the exchange constants are calculated to find that an RKKY-type indirect exchange interaction appears to be most dominant and to explain the observed ferromagnetic tendency. (author)

  6. High-resolution bistable nematic liquid crystal device realized on orientational surface patterns

    Kim, Jong-Hyun; Yoneya, Makoto; Yokoyama, Hiroshi

    2003-01-01

    The four-fold symmetry of a checkerboard-like surface alignment consisted of square domains arrived at the macroscopic orientational bistability of nematic liquid crystals. Switching between the two orientations took place with an appropriate electric field. Here the threshold field of bistable switching decreased as temperature increased, and the light could heat only the selected region in the cell including a light-absorbing medium. Irradiating the laser concurrently with an electric field, we addressed a selected region in the alignment pattern without the disturbance of neighboring regions. Extending this process, we realized an extremely fine bistable device of nematic liquid crystal with a pixel size down to about 2 μm

  7. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble-liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined. The predicted boundary layer thickness is found to be in good agreement with the experimental results. The calculated axial liquid velocity and the void fraction in the two-phase region are also presented along with the observed flow behavior

  8. Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds

    L. M. Zamora

    2017-06-01

    Full Text Available Aerosol indirect effects have potentially large impacts on the Arctic Ocean surface energy budget, but model estimates of regional-scale aerosol indirect effects are highly uncertain and poorly validated by observations. Here we demonstrate a new way to quantitatively estimate aerosol indirect effects on a regional scale from remote sensing observations. In this study, we focus on nighttime, optically thin, predominantly liquid clouds. The method is based on differences in cloud physical and microphysical characteristics in carefully selected clean, average, and aerosol-impacted conditions. The cloud subset of focus covers just ∼ 5 % of cloudy Arctic Ocean regions, warming the Arctic Ocean surface by ∼ 1–1.4 W m−2 regionally during polar night. However, within this cloud subset, aerosol and cloud conditions can be determined with high confidence using CALIPSO and CloudSat data and model output. This cloud subset is generally susceptible to aerosols, with a polar nighttime estimated maximum regionally integrated indirect cooling effect of ∼ −0.11 W m−2 at the Arctic sea ice surface (∼ 8 % of the clean background cloud effect, excluding cloud fraction changes. Aerosol presence is related to reduced precipitation, cloud thickness, and radar reflectivity, and in some cases, an increased likelihood of cloud presence in the liquid phase. These observations are inconsistent with a glaciation indirect effect and are consistent with either a deactivation effect or less-efficient secondary ice formation related to smaller liquid cloud droplets. However, this cloud subset shows large differences in surface and meteorological forcing in shallow and higher-altitude clouds and between sea ice and open-ocean regions. For example, optically thin, predominantly liquid clouds are much more likely to overlay another cloud over the open ocean, which may reduce aerosol indirect effects on the surface. Also, shallow clouds over

  9. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    Corvianawatie, Corry; Putri, Mutiara R.; Cahyarini, Sri Y.

    2015-01-01

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth

  10. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    Corvianawatie, Corry, E-mail: corvianawatie@students.itb.ac.id; Putri, Mutiara R., E-mail: mutiara.putri@fitb.itb.ac.id [Oceanography Study Program, Bandung Institute of Technology (ITB), Jl. Ganesha 10 Bandung (Indonesia); Cahyarini, Sri Y., E-mail: yuda@geotek.lipi.go.id [Research Center for Geotechnology, Indonesian Institute of Sciences (LIPI), Bandung (Indonesia)

    2015-09-30

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth.

  11. Comprehensive three-dimensional analysis of surface plasmon polariton modes at uniaxial liquid crystal-metal interface.

    Yen, Yin-Ray; Lee, Tsun-Hsiun; Wu, Zheng-Yu; Lin, Tsung-Hsien; Hung, Yu-Ju

    2015-12-14

    This paper describes the derivation of surface plasmon polariton modes associated with the generalized three-dimensional rotation of liquid crystal molecules on a metal film. The calculated dispersion relation was verified by coupling laser light into surface plasmon polariton waves in a one-dimensional grating device. The grating-assisted plasmon coupling condition was consistent with the formulated k(spp) value. This provides a general rule for the design of liquid-crystal tunable plasmonic devices.

  12. The effect of changing the contact surface area between pleural liquid and pleura on the turnover of pleural liquid.

    Nakamura, T; Hara, H; Ijima, F; Arai, T; Kira, S

    1984-03-01

    To study the dynamics of pleural liquid, 250 ml of saline labeled with markers were injected into the pleural cavity of anesthetized dogs. For 3 h, liquid volume and concentration of these markers were measured. In a control group of dogs, the turnover rate of pleural liquid was 19.6 +/- 5.6 ml/min and lymphatic flow was 0.58 +/- 0.07 ml/min. In a group of pneumonectomized dogs, the turnover rate and lymphatic flow fell to about one fourth of those in the control group. When the left pulmonary artery was occluded, the turnover rate was halved, but lymphatic flow was not significantly different from that in the control group. These results suggest that the turnover rate of pleural liquid is dependent on the area of contact between pleural liquid and pleura and on the blood flow of the pleura. In addition, it appears that changes in pleural liquid volume are dependent on lymphatic flow.

  13. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS).

    Wilson, Peter W; Lu, Weizhe; Xu, Haojun; Kim, Philseok; Kreder, Michael J; Alvarenga, Jack; Aizenberg, Joanna

    2013-01-14

    Ice repellent coatings have been studied and keenly sought after for many years, where any advances in the durability of such coatings will result in huge energy savings across many fields. Progress in creating anti-ice and anti-frost surfaces has been particularly rapid since the discovery and development of slippery, liquid infused porous surfaces (SLIPS). Here we use SLIPS-coated differential scanning calorimeter (DSC) pans to investigate the effects of the surface modification on the nucleation of supercooled water. This investigation is inherently different from previous studies which looked at the adhesion of ice to SLIPS surfaces, or the formation of ice under high humidity conditions. Given the stochastic nature of nucleation of ice from supercooled water, multiple runs on the same sample are needed to determine if a given surface coating has a real and statistically significant effect on the nucleation temperature. We have cycled supercooling to freezing and then thawing of deionized water in hydrophilic (untreated aluminum), hydrophobic, superhydrophobic, and SLIPS-treated DSC pans multiple times to determine the effects of surface treatment on the nucleation and subsequent growth of ice. We find that SLIPS coatings lower the nucleation temperature of supercooled water in contact with statistical significance and show no deterioration or change in the coating performance even after 150 freeze-thaw cycles.

  14. Precision Interval Estimation of the Response Surface by Means of an Integrated Algorithm of Neural Network and Linear Regression

    Lo, Ching F.

    1999-01-01

    The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.

  15. Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.

    Iliev, Stanimir; Pesheva, Nina

    2016-06-01

    We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1-0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012)LANGD50743-746310.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.

  16. Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor

    McLean, A.G., E-mail: mclean@fusion.gat.com [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gan, K.F. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Ahn, J.-W.; Gray, T.K.; Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Abrams, T.; Jaworski, M.A.; Kaita, R.; Kugel, H.W. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nygren, R.E. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2013-07-15

    Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of T{sub surface} near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q{sub ⊥,peak} = 5 MW/m{sup 2} inter-ELM and up to 10 MW/m{sup 2} during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.

  17. Electric field stabilization of viscous liquid layers coating the underside of a surface

    Anderson, Thomas G.; Cimpeanu, Radu; Papageorgiou, Demetrios T.; Petropoulos, Peter G.

    2017-05-01

    We investigate the electrostatic stabilization of a viscous thin film wetting the underside of a horizontal surface in the presence of an electric field applied parallel to the surface. The model includes the effect of bounding solid dielectric regions above and below the liquid-air system that are typically found in experiments. The competition between gravitational forces, surface tension, and the nonlocal effect of the applied electric field is captured analytically in the form of a nonlinear evolution equation. A semispectral solution strategy is employed to resolve the dynamics of the resulting partial differential equation. Furthermore, we conduct direct numerical simulations (DNS) of the Navier-Stokes equations using the volume-of-fluid methodology and assess the accuracy of the obtained solutions in the long-wave (thin-film) regime when varying the electric field strength from zero up to the point when complete stabilization occurs. We employ DNS to examine the limitations of the asymptotically derived behavior as the liquid layer thickness increases and find excellent agreement even beyond the regime of strict applicability of the asymptotic solution. Finally, the asymptotic and computational approaches are utilized to identify robust and efficient active control mechanisms allowing the manipulation of the fluid interface in light of engineering applications at small scales, such as mixing.

  18. Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid

    Shin, Sangwoo; Choi, Geehong; Kim, Beom Seok; Cho, Hyung Hee

    2014-01-01

    Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior. - Highlights: • Observation of suppressed wettability in the presence of surface roughness (nanowires). • Significant reduction of critical heat flux in the presence of nanowires. • Nonmonotonic behavior of heat transfer coefficient vs. nanowire length and Reynolds number

  19. Modeling Replenishment of Ultrathin Liquid Perfluoro polyether Z Films on Solid Surfaces Using Monte Carlo Simulation

    Mayeed, M.S.; Kato, T.

    2014-01-01

    Applying the reptation algorithm to a simplified perfluoro polyether Z off-lattice polymer model an NVT Monte Carlo simulation has been performed. Bulk condition has been simulated first to compare the average radius of gyration with the bulk experimental results. Then the model is tested for its ability to describe dynamics. After this, it is applied to observe the replenishment of nano scale ultrathin liquid films on solid flat carbon surfaces. The replenishment rate for trenches of different widths (8, 12, and 16 nms for several molecular weights) between two films of perfluoro polyether Z from the Monte Carlo simulation is compared to that obtained solving the diffusion equation using the experimental diffusion coefficients of Ma et al. (1999), with room condition in both cases. Replenishment per Monte Carlo cycle seems to be a constant multiple of replenishment per second at least up to 2 nm replenished film thickness of the trenches over the carbon surface. Considerable good agreement has been achieved here between the experimental results and the dynamics of molecules using reptation moves in the ultrathin liquid films on solid surfaces.

  20. Liquid extraction surface analysis (LESA) of food surfaces employing chip-based nano-electrospray mass spectrometry.

    Eikel, Daniel; Henion, Jack

    2011-08-30

    An automated surface-sampling technique called liquid extraction surface analysis (LESA), coupled with infusion nano-electrospray high-resolution mass spectrometry and tandem mass spectrometry (MS/MS), is described and applied to the qualitative determination of surface chemical residues resulting from the artificial spraying of selected fresh fruits and vegetables with representative pesticides. Each of the targeted pesticides was readily detected with both high-resolution and full-scan collision-induced dissociation (CID) mass spectra. In the case of simazine and sevin, a mass resolution of 100,000 was insufficient to distinguish the isobaric protonated molecules for these compounds. When the surface of a spinach leaf was analyzed by LESA, trace levels of diazinon were readily detected on the spinach purchased directly from a supermarket before they were sprayed with the five-pesticide mixture. A 30 s rinse under hot running tap water appeared to quantitatively remove all remaining residues of this pesticide. Diazinon was readily detected by LESA analysis on the skin of the artificially sprayed spinach. Finally, incurred pyrimethanil at a level of 169 ppb in a batch slurry of homogenized apples was analyzed by LESA and this pesticide was readily detected by both high-resolution mass spectrometry and full-scan CID mass spectrometry, thus showing that pesticides may also be detected in whole fruit homogenized samples. This report shows that representative pesticides on fruit and vegetable surfaces present at levels 20-fold below generally allowed EPA tolerance levels are readily detected and confirmed by the title technologies making LESA-MS as interesting screening method for food safety purposes. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Surface tensions of binary mixtures of ionic liquids with bis(trifluoromethylsulfonyl)imide as the common anion

    Oliveira, M.B.; Domínguez-Pérez, M.; Cabeza, O.; Lopes-da-Silva, J.A.; Freire, M.G.; Coutinho, J.A.P.

    2013-01-01

    Highlights: • Novel data for the surface tensions of mixtures [C 4 mim][NTf 2 ] + [C 4 C 1 mim]/[C 3 mpy]/[C 3 mpyr]/[C 3 mpip][NTf 2 ] are presented. • γ were determined at a fixed temperature, 298.2 K, and at atmospheric pressure, for the whole composition range. • Surface tension deviations showed the near ideal behavior of the selected mixtures. • Gibbs adsorption isotherms showed the surface preferential adsorption of one ionic liquid over the other. -- Abstract: While values for thermophysical properties of ionic liquids are becoming widely available, data for ionic liquid mixtures are still scarce. In an effort to overcome this limitation and understand the behavior of ionic liquid mixtures, novel data for the surface tension of mixtures composed of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C 4 mim][NTf 2 ], with other ionic liquids with a common anion, namely 1-butyl-2,3-dimethylimidazolium, [C 4 C 1 mim] + , 3-methyl-1-propylpyridinium, [C 3 mpy] + , 1-methyl-1-propylpyrrolidinium, [C 3 mpyr] + , and 1-methyl-1-propylpiperidinium, [C 3 mpip] + , were measured at T = 298.2 K and atmospheric pressure over the entire composition range. From the surface tension deviations derived from the experimental results, it was possible to infer that the cation alkyl chain length of the second ionic liquid constituting the mixture has a stronger influence in the ideal mixture behavior than the type of family the ionic liquid cation belongs to. The Gibbs adsorption isotherms, estimated from the experimental values, show that the composition of the vapor–liquid interface is not the same as that of the bulk and that the interface is richer in the ionic liquid with the lowest surface tension, [C 4 mim][NTf 2

  2. Optimal Airport Surface Traffic Planning Using Mixed-Integer Linear Programming

    Roling, P.C.; Visser, H.G.

    2008-01-01

    We describe an ongoing research effort pertaining to the development of a surface traffic automation system that will help controllers to better coordinate surface traffic movements related to arrival and departure traffic. More specifically, we describe the concept for a taxi-planning support tool

  3. Effect of liquid environment on the titanium surface modification by laser ablation

    Ali, Nisar, E-mail: chnisarali@gmail.com [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria); Department of Basic Science and Humanities, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad (Pakistan); Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Department of Physics, GC University, Kachehri Road, Lahore (Pakistan); Bashir, Shazia [Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Umm-i-Kalsoom [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria); Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Department of Physics, GC University, Kachehri Road, Lahore (Pakistan); Department of Basic Science and Humanities, University of Engineering and Technology Lahore, Kala Shah Kaku Campus, Lahore (Pakistan); Begum, Narjis [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology Lahore (Pakistan); Husinsky, Wolfgang [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria)

    2017-05-31

    Highlights: • Liquid assisted ablation effects on the titanium under varying number of laser pulses is investigated. • SEM analysis reveals the growth of various features like ripples, dendritic structures, pores, grains and craters. • Raman and XRD analyses shows the presence of TiO{sub 2} & TiH in both media whereas, TiC, TiCxOy are only identified in propanol. • Hardness of ablated Ti explored by Nano indentation is found to decrease with increasing number of pulses in both media. • Relationship between surface, structural and mechanical modifications is established. - Abstract: The effect of liquid environment (de-ionized water and propanol) on surface, structural and mechanical properties of femtosecond laser ablated titanium has been investigated. For this purpose, Ti: sapphire laser (800 nm, 30 fs, 1 kHz) has been employed, at a fluence of 3.6 J/cm{sup 2} in ambient environments of de-ionized water, and propanol for various number of laser pulses i.e. 500, 1000, 1500 and 2000. The surface features, chemical composition, structural analysis and mechanical properties of irradiated targets have been evaluated by using Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X -ray Diffraction (XRD), Raman Spectroscopy and Nano-hardness tester. Various features like dendritic structures, globules, porous granular morphology, cones, crater, circular ripples and thermal stress cracking are observed at the ablated area after irradiation. These features are instigated by various thermal and chemical phenomena induced by laser heating at the solid–liquid interface. Decrease in nano-hardness observed in both ambient environments is attributable to the formation of hydrides after irradiation in both media.

  4. Experimental Study on the Tensile Strength and Linear Expansion Coefficient of Air Tunnel Terrazzo Surface

    Boping Li

    2015-01-01

    Full Text Available At present, studies on the surface tension of air tunnel terrazzo under wind load and how regularly it is affected by temperature are relatively less, and the measured results of the thermal expansion coefficient of terrazzo have not yet been given. In this paper, based on the top terrazzo surface structure of the inner wall of the wind tunnel, the tensile performance tests of terrazzo surface layer are conducted, while the thermal expansion coefficient of the six terrazzo test blocks were tested. The tests and analysis show that the construction of terrazzo surface, based on the proposed construction process, can effectively guarantee the reliable cement performance for the binding layer between mortar and concrete base layer, terrazzo surface layer and the cement mortar layer. And the thermal expansion coefficient of terrazzo can be valued at 1.06e-5/ºC.

  5. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.

    He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E

    2016-12-07

    Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim + ][Cl - ] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ∼85 kcal/mol to form a critical nucleus of size ∼3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (∼49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (∼3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (∼4.8 × 10 11 cm -3 s -1 ) is about one order of magnitude faster than the homogeneous rate (∼6.6 × 10 10 cm -3 s -1 ). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide

  6. Bonding two surfaces by exposing to actinic radiation an epoxide liquid composition

    Green, G.E.

    1981-01-01

    A method for preparing a film adhesive from an epoxide resin is described. A liquid containing an epoxide resin and a photopolymerizable compound is polymerized to form a solid continuous film by exposure to actinide radiation. A catalyst can be used but no thermal crosslinking should be allowed to occur. The film so obtained is used to bond surfaces together by the application of heat and pressure. The period of heating can be very short, as there need be no solvent to evaporate and the films need not be thick, typically 20 to 250 μm. (O.T.)

  7. Optimization of enzymatic esterification of dihydrocaffeic acid with hexanol in ionic liquid using response surface methodology.

    Gholivand, Somayeh; Lasekan, Ola; Tan, Chin Ping; Abas, Faridah; Wei, Leong Sze

    2017-05-26

    Developing an efficient lipophilization reaction system for phenolic derivatives could enhance their applications in food processing. Low solubility of phenolic acids reduces the efficiency of phenolic derivatives in most benign enzyme solvents. The conversion of phenolic acids through esterification alters their solubility and enhances their use as food antioxidant additives as well as their application in cosmetics. This study has shown that lipase-catalyzed esterification of dihydrocaffeic acid with hexanol in ionic liquid (1-butyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide) was the best approach for esterification reaction. In order to achieve the maximum yield, the process was optimized by response surface methodology (RSM) based on a five-level and four independent variables such as: dosage of enzyme; hexanol/dihydrocaffeic acid mole ratio; temperature and reaction time. The optimum esterification condition (Y = 84.4%) was predicted to be obtained at temperature of 39.4 °C, time of 77.5 h dosage of enzyme at 41.6% and hexanol/dihydrocaffeic acid mole ratio of 2.1. Finally, this study has produced an efficient enzymatic esterification method for the preparation of hexyl dihydrocaffeate in vitro using a lipase in an ionic liquid system. Concentration of hexanol was the most significant (p < 0.05) independent variable that influenced the yield of hexyl dihydrocaffeate. Graphical abstract Synthesis of different Hexyl dihydrocaffeates in ionic liquid.

  8. Protein conformational transitions at the liquid-gas interface as studied by dilational surface rheology.

    Noskov, Boris A

    2014-04-01

    Experimental results on the dynamic dilational surface elasticity of protein solutions are analyzed and compared. Short reviews of the protein behavior at the liquid-gas interface and the dilational surface rheology precede the main sections of this work. The kinetic dependencies of the surface elasticity differ strongly for the solutions of globular and non-globular proteins. In the latter case these dependencies are similar to those for solutions of non-ionic amphiphilic polymers and have local maxima corresponding to the formation of the distal region of the surface layer (type I). In the former case the dynamic surface elasticity is much higher (>60 mN/m) and the kinetic dependencies are monotonical and similar to the data for aqueous dispersions of solid nanoparticles (type II). The addition of strong denaturants to solutions of bovine serum albumin and β-lactoglobulin results in an abrupt transition from the type II to type I dependencies if the denaturant concentration exceeds a certain critical value. These results give a strong argument in favor of the preservation of the protein globular structure in the course of adsorption without any denaturants. The addition of cationic surfactants also can lead to the non-monotonical kinetic dependencies of the dynamic surface elasticity indicating destruction of the protein tertiary and secondary structures. The addition of anionic surfactants gives similar results only for the protein solutions of high ionic strength. The influence of cationic surfactants on the local maxima of the kinetic dependencies of the dynamic surface elasticity for solutions of a non-globular protein (β-casein) differs from the influence of anionic surfactants due to the heterogeneity of the charge distribution along the protein chain. In this case one can use small admixtures of ionic surfactants as probes of the adsorption mechanism. The effect of polyelectrolytes on the kinetic dependencies of the dynamic surface elasticity of protein

  9. Influence of weak anchoring upon the alignment of smectic A liquid crystals with surface pretilt

    De Vita, R [Department of Engineering Science and Mechanics, Virginia Tech, 230 Norris Hall, Blacksburg, VA 24061 (United States); Stewart, I W [Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH (United Kingdom)], E-mail: devita@vt.edu, E-mail: i.w.stewart@strath.ac.uk

    2008-08-20

    Equilibrium configurations for smectic A liquid crystals in a 'bookshelf' geometry are determined from a nonlinear continuum model under strong and weak anchoring conditions at the boundary for the usual director n. Natural boundary conditions are derived for n and the smectic layer normal a when a preferred director orientation n{sub p}, which generally induces a director pretilt, is prescribed on the boundaries. Two key aspects are examined via the nonlinear equilibrium equations: the separation of n from a and the influence of weak anchoring. The orientations of n and a relative to n{sub p} may differ significantly and depend very much upon the magnitude of the anchoring strength. These results from a nonlinear theory are natural and novel developments of previous classical linearized models for which n {identical_to} a. Comparisons are also drawn between solutions for strong and weak anchoring conditions.

  10. Influence of weak anchoring upon the alignment of smectic A liquid crystals with surface pretilt

    De Vita, R; Stewart, I W

    2008-01-01

    Equilibrium configurations for smectic A liquid crystals in a 'bookshelf' geometry are determined from a nonlinear continuum model under strong and weak anchoring conditions at the boundary for the usual director n. Natural boundary conditions are derived for n and the smectic layer normal a when a preferred director orientation n p , which generally induces a director pretilt, is prescribed on the boundaries. Two key aspects are examined via the nonlinear equilibrium equations: the separation of n from a and the influence of weak anchoring. The orientations of n and a relative to n p may differ significantly and depend very much upon the magnitude of the anchoring strength. These results from a nonlinear theory are natural and novel developments of previous classical linearized models for which n ≡ a. Comparisons are also drawn between solutions for strong and weak anchoring conditions

  11. Shapes of an Air Taylor Bubble in Stagnant Liquids Influenced by Different Surface Tensions

    Lertnuwat, B.

    2018-02-01

    The aim of this work is to propose an empirical model for predicting shapes of a Taylor bubble, which is a part of slug flows, under different values of the surface tension in stagnant liquids by employing numerical simulations. The k - Ɛ turbulence model was used in the framework of finite volume method for simulating flow fields in a unit of slug flow and also the pressure distribution on a Taylor bubble surface. Assuming that an air pressure distribution inside the Taylor bubble must be uniform, a grid search method was exploited to find an appropriate shape of a Taylor bubble for six values of surface tension. It was found that the shape of a Taylor bubble would be blunter if the surface tension was increased. This was because the surface tension affected the Froude number, controlling the flow around a Taylor bubble. The simulation results were also compared with the Taylor bubble shape, created by the Dumitrescu-and-Taylor model and former studies in order to ensure that they were consistent. Finally, the empirical model was presented from the simulation results.

  12. Thermal hydraulic numerical investigation of the heavy liquid metal free surface of MYRRHA spallation target experimental

    Batta, A.; Class, A.

    2015-01-01

    The first advanced design of accelerator-driven systems (ADS) is currently being built in SCK-CEN (Mol, Belgium): MYRRHA (Multi-purpose hybrid research reactor for high-tech applications). The experiment investigates the free surface design of the MYRRHA target. The free surface lead-bismuth eutectic (LBE) liquid metal experiment is a full-scale model of the concentric MYRRHA target. The design of the target is combined with CFD simulations using a volume of fluid method accounting for mass transfer across the free surface. The model used has been validated with water experimental results. The design of the target enables a high fluid velocity and a stable surface at the beam entry. In the current work, we present numerical results of Star- CD simulations employing a high-resolution interface-capturing scheme in conjunction with the cavitation model for the nominal operation conditions. Thermal hydraulic of the target is considered for the nominal flow rate and nominal heat load. Results show that the target has a very stable free surface configuration for the considered flow rate and heat load

  13. Lattice Boltzmann model for thermal free surface flows with liquid-solid phase transition

    Attar, Elham; Koerner, Carolin

    2011-01-01

    Purpose: The main objective of this work is to develop an algorithm to use the Lattice Boltzmann method for solving free surface thermal flow problems with solid/liquid phase changes. Approach: A multi-distribution function model is applied to simulate hydrodynamic flow and the coupled thermal diffusion-convection problem. Findings: The free surface problem, i.e. the reconstruction of the missing distribution functions at the interface, can be solved by applying a physical transparent momentum and heat flux based methodology. The developed method is subsequently applied to some test cases in order to assess its computational potentials. Practical implications: Many industrial processes involve problems where non-isothermal motion and simultaneous solidification of fluids with free surface is important. Examples are all castings processes and especially foaming processes which are characterized by a huge and strongly changing surface. Value: A reconstruction algorithm to treat a thermal hydrodynamic problem with free surfaces is presented which is physically transparent and easy to implement.

  14. Combined influence of inertia, gravity, and surface tension on the linear stability of Newtonian fiber spinning

    Bechert, M.; Scheid, B.

    2017-11-01

    The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.

  15. Calculating the Maximum Density of the Surface Packing of Ions in Ionic Liquids

    Kislenko, S. A.; Moroz, Yu. O.; Karu, K.; Ivaništšev, V. B.; Fedorov, M. V.

    2018-05-01

    The maximum density of monolayer packing on a graphene surface is calculated by means of molecular dynamics (MD) for ions of characteristic size and symmetry: 1-butyl-3-methylimidazolium [BMIM]+, tetrabutylammonium [TBA]+, tetrafluoroborate [BF4]-, dicyanamide [DCA]-, and bis(trifluoromethane) sulfonimide [TFSI]-. The characteristic orientations of ions in a closely packed monolayer are found. It is shown that the formation of a closely packed monolayer is possible for [DCA]- and [BF4]- anions only at surface charges that exceed the limit of the electrochemical stability of the corresponding ionic liquids. For the [TBA]+ cation, a monolayer structure can be observed at the charge of nearly 30 μC/cm2 attainable in electrochemical experiment.

  16. Influence of Surface Geometry of Grating Substrate on Director in Nematic Liquid Crystal Cell

    Ye Wenjiang; Xing Hongyu; Yang Guochen; Zhang Zhidong; Sun Yubao; Chen Guoying; Xuan Li

    2011-01-01

    The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z. The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage. The deepness of groove and the cell gap affect the distribution of director. For the relatively shallow groove and the relatively thick cell gap, the director is only dependent on the coordinate z. For the relatively deep groove and the relatively thin cell gap, the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface. (condensed matter: structural, mechanical, and thermal properties)

  17. Cavitation induced by high speed impact of a solid surface on a liquid jet

    Farhat, Mohamed; Tinguely, Marc; Rouvinez, Mathieu

    2009-11-01

    A solid surface may suffer from severe erosion if it impacts a liquid jet at high speed. The physics behind the erosion process remains unclear. In the present study, we have investigated the impact of a gun bullet on a laminar water jet with the help of a high speed camera. The bullet has a flat front and 11 mm diameter, which is half of jet diameter. The impact speed was varied between 200 and 500 ms-1. Immediately after the impact, a systematic shock wave and high speed jetting were observed. As the compression waves reflect on the jet boundary, a spectacular number of vapour cavities are generated within the jet. Depending on the bullet velocity, these cavities may grow and collapse violently on the bullet surface with a risk of cavitation erosion. We strongly believe that this transient cavitation is the main cause of erosion observed in many industrial applications such as Pelton turbines.

  18. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-10-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.

  19. Time-dependent liquid metal flows with free convection and free surfaces

    McClelland, M.A.

    1990-11-01

    A finite element analysis is given for time-dependent liquid metal flows with free convection and free surfaces. Consideration is given to a two-dimensional shallow trough with vertical walls maintained at different temperatures. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature, and interface position. The time integration method is performed using the Trapezoid Rule with step-size control. The Galerkin method is employed to reduce the problem to a set of nonlinear algebraic equations which are solved with the Newton-Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0.015, and Grashof numbers are in the transition region between laminar and turbulent flow. The results reveal the effects of flow intensity, surface-tension gradients, and mesh and time-step refinement

  20. Combined genetic algorithm and multiple linear regression (GA-MLR) optimizer: Application to multi-exponential fluorescence decay surface.

    Fisz, Jacek J

    2006-12-07

    The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression (MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear parameters, and the linear parameters are calculated from MLR. GA-MLR is an intuitive optimization approach and it exploits all advantages of the genetic algorithm technique. This optimization method results from an appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only one strictly mathematical "tool" involved in GA-MLR. The GA-MLR approach simplifies and accelerates considerably the optimization process because the linear parameters are not the fitted ones. Its properties are exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fréchet derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the GA method with the NR method, in which the minimum-value condition for the quadratic approximation to chi(2), obtained from the Taylor series expansion of chi(2), is recovered by means of the Newton-Raphson algorithm. The application of the GA-NR optimizer to model functions which are multi-linear

  1. Optimizing gradient conditions in online comprehensive two-dimensional reversed-phase liquid chromatography by use of the linear solvent strength model

    Græsbøll, Rune; Janssen, Hans-Gerd; Christensen, Jan H.

    2017-01-01

    The linear solvent strength model was used to predict coverage in online comprehensive two-dimensional reversed-phase liquid chromatography. The prediction model uses a parallelogram to describe the separation space covered with peaks in a system with limited orthogonality. The corners of the par......The linear solvent strength model was used to predict coverage in online comprehensive two-dimensional reversed-phase liquid chromatography. The prediction model uses a parallelogram to describe the separation space covered with peaks in a system with limited orthogonality. The corners...... of the parallelogram are assumed to behave like chromatographic peaks and the position of these pseudo-compounds was predicted. A mix of 25 polycyclic aromatic compounds were used as a test. The precision of the prediction, span 0-25, was tested by varying input parameters, and was found to be acceptable with root...... factors were low, or when gradient conditions affected parameters not included in the model, e.g. second dimension gradient time affects the second dimension equilibration time. The concept shows promise as a tool for gradient optimization in online comprehensive two-dimensional liquid chromatography...

  2. Uniform hexagonal graphene flakes and films grown on liquid copper surface.

    Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi

    2012-05-22

    Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm(2)), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films on liquid Cu surfaces. Employing a liquid Cu surface completely eliminates the grain boundaries in solid polycrystalline Cu, resulting in a uniform nucleation distribution and low graphene nucleation density, but also enables self-assembly of HGFs into compact and ordered structures. These HGFs show an average two-dimensional resistivity of 609 ± 200 Ω and saturation current density of 0.96 ± 0.15 mA/μm, demonstrating their good conductivity and capability for carrying high current density.

  3. Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor

    McLean, A. G.; Gan, K. F.; Ahn, J.-W.; Gray, T. K.; Maingi, R.; Abrams, T.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Nygren, R. E.; Skinner, C. H.; Soukhanovskii, V. A.

    2013-07-01

    Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of Tsurface near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q⊥,peak = 5 MW/m2 inter-ELM and up to 10 MW/m2 during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.

  4. Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties

    Kim, Jieun; Kim, Seok

    2014-01-01

    Highlights: • Reduced graphene oxide surface was modified by introduction of ionic liquids. • Microstructure and capacitance of modified electrode were dependent on the ionic liquids contents. • Modification gives electrode better charge transport and higher specific capacitance. • Modified electrode showed the better capacitive performance such as rate capability and cycle stability. - Abstract: In this work, reduced graphene oxide (rGO)/ionic liquids (IL) composites with different weight ratios of IL to rGO were synthesized by a simple method. In these composites, IL contributed to the exfoliation of rGO sheets and to the improvement of the electrochemical properties of the resulting composites by enhancing the ion diffusion and charge transport. The structure of the composites was examined by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The TEM images showed that IL was coated on the surface of rGO in a translucent manner. The electrochemical analysis of the prepared composites was carried out by performing cyclic voltammetry (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS). Among the prepared composites, the one with a weight ratio of rGO to IL of 1:7 showed the highest specific capacitance of 147.5 F g −1 at a scan rate of 10 mV s −1 . In addition, the rate capability and cycle performance of the composites were enhanced compared to pristine rGO. These enhanced properties make the composites suitable as electrode materials for the better performance supercapacitors

  5. Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces

    Patrícia M. Amorim

    2017-09-01

    Full Text Available In recent years, with the development of micro/nanoelectromechanical systems (MEMS/NEMS, the demand for efficient lubricants of silicon surfaces intensified. Although the use of ionic liquids (ILs as additives to base oils in the lubrication of steel/steel or other types of metal/ metal tribological pairs has been investigated, the number of studies involving Si is very low. In this work, we tested imidazolium-based ILs as additives to the base oil polyethylene glycol (PEG to lubricate Si surfaces. The friction coefficients were measured in a nanotribometer. The viscosity of the PEG + IL mixtures as well as their contact angles on the Si surface were measured. The topography and chemical composition of the substrates surfaces were determined with atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS, respectively. Due to the hygroscopic properties of PEG, the first step was to assess the effect of the presence of water. Then, a series of ILs based on the cations 1-ethyl-3-methylimidazolium [EMIM], 1-butyl-3-methylimidazolium [BMIM], 1-ethyl-3-vinylimidazolium [EVIM], 1-(2-hydroxyethyl-3-methylimidazolium [C2OHMIM] and 1-allyl-3-methylimidazolium [AMIM] combined with the anions dicyanamide [DCA], trifluoromethanesulfonate [TfO], and ethylsulfate [EtSO4] were added to dry PEG. All additives (2 wt % led to a decrease in friction coefficient as well as an increase in viscosity (with the exception of [AMIM][TfO] and improved the Si wettability. The additives based on the anion [EtSO4] exhibited the most promising tribological behavior, which was attributed to the strong interaction with the Si surface ensuring the formation of a stable surface layer, which hinders the contact between the sliding surfaces.

  6. Linear and nonlinear surface spectroscopy of supported size selected metal clusters and organic adsorbates

    Thaemer, Martin Georg

    2012-03-08

    The spectroscopic investigation of supported size selected metal clusters over a wide wavelength range plays an important role for understanding their outstanding catalytic properties. The challenge which must be overcome to perform such measurements is the difficult detection of the weak spectroscopic signals from these samples. As a consequence, highly sensitive spectroscopic methods are applied, such as surface Cavity Ringdown Spectroscopy and surface Second Harmonic Generation Spectroscopy. The spectroscopic apparatus developed is shown to have a sensitivity which is high enough to detect sub-monolayer coverages of adsorbates on surfaces. In the measured spectra of small supported silver clusters of the sizes Ag{sub 4}2, Ag{sub 2}1, Ag{sub 9}, and Ag atoms a stepwise transition from particles with purely metallic character to particles with molecule-like properties can be observed within this size range.

  7. Non-genomic estrogen regulation of ion transport and airway surface liquid dynamics in cystic fibrosis bronchial epithelium.

    Vinciane Saint-Criq

    Full Text Available Male cystic fibrosis (CF patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1 and CF (CuFi-1 bronchial epithelial monolayers. Live cell imaging using confocal microscopy revealed that airway surface liquid height was significantly higher in the non-CF cells compared to the CF cells. 17β-estradiol (0.1-10 nM reduced the airway surface liquid height in non-CF and CF cells after 30 min treatment. Treatment with the nuclear-impeded Estrogen Dendrimer Conjugate mimicked the effect of free estrogen by reducing significantly the airway surface liquid height in CF and non-CF cells. Inhibition of chloride transport or basolateral potassium recycling decreased the airway surface liquid height and 17β-estradiol had no additive effect in the presence of these ion transporter inhibitors. 17β-estradiol decreased bumetanide-sensitive transepithelial short-circuit current in non-CF cells and prevented the forskolin-induced increase in ASL height. 17β-estradiol stimulated an amiloride-sensitive transepithelial current and increased ouabain-sensitive basolateral short-circuit current in CF cells. 17β-estradiol increased PKCδ activity in CF and non-CF cells. These results demonstrate that estrogen dehydrates CF and non-CF ASL, and these responses to 17β-estradiol are non-genomic rather than involving the classical nuclear estrogen receptor pathway. 17β-estradiol acts on the airway surface liquid by inhibiting cAMP-mediated chloride secretion in non-CF cells and increasing sodium absorption via the stimulation of PKCδ, ENaC and the Na(+/K(+ATPase in CF cells.

  8. Numerical analysis of high-speed liquid lithium free-surface flow

    Gordeev, Sergej; Heinzel, Volker; Stieglitz, Robert

    2012-01-01

    Highlights: ► The free surface behavior of a high speed lithium jet is investigated by means of a CFD LES analysis. ► The study is aiming to validate adequate LES technique. ► The Osaka University experiments with liquid lithium jet have been simulated. ► Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. ► Calculation results show a good qualitative and a quantitative agreement with the experimental data. - Abstract: The free-surface stability of the target of the International Fusion Material Irradiation Facility (IFMIF) is one of the crucial issues, since the spatio-temporal behavior of the free-surface determines the neutron flux to be generated. This article investigates the relation between the evolution of a wall boundary layer in a convergent nozzle and the free surface shape of a high speed lithium jet by means of a CFD LES analysis using the Osaka University experiments. The study is aiming to validate adequate LES technique to analyze the individual flow phenomena observed. Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. First analyses of calculation results show that the simulation exhibits a good qualitative and a quantitative agreement with the experimental data, which allows in the future a more realistic prediction of the IFMIF target behavior.

  9. Immobilisation of linear and cyclic RGD-peptides on titanium surfaces and their impact on endothelial cell adhesion and proliferation

    PW Kämmerer

    2011-04-01

    Full Text Available Functional coatings on titanium vascular stents and endosseous dental implants could probably enhance endothelial cell (EC adhesion and activity with a shortening of the wound healing time and an increase of peri-implant angiogenesis during early bone formation. Therefore, the role of the structure of linear and cyclic cell adhesive peptides Arg-Gly-Asp (l-RGD and c-RGD on differently pre-treated titanium (Ti surfaces (untreated, silanised vs. functionalised with l- and c-RGD peptides on EC cell coverage and proliferation was evaluated. After 24 h and after 3 d, surface coverage of adherent cells was quantified and an alamarBlue® proliferation assay was conducted. After 24 h, l-RGD modified surfaces showed a significantly better coverage of adhered cells than untreated titanium (p=0.01. Differences between l-RGD surfaces and silanised Ti (p=0.066 as well as between l-RGD and c-RGD surfaces (p=0.191 were not significant. After 3 d, c-RGD surfaces showed a significantly higher cell coverage than untreated Ti, silanised and l-RGD titanium surfaces (all p<0.0001. After 24 h, c-RGD modified surfaces showed significant higher cell proliferation compared to untreated Ti (p=0.003. However, there were no differences in proliferation between c-RGD and l-RGD (p=0.126 or c-RGD and silanised titanium (p=0.196. After 3 d, proliferation on c-RGD surfaces outranged significantly untreated titanium (p=0.004, silanised (p=0.001 and l-RGD surfaces (p=0.023, whereas no significant difference could be found between untreated Ti and l-RGD surfaces (p=0.54. According to these results, the biomimetic coating of c-RGD peptides on conventional titanium surfaces showed a positive effect on EC cell coverage and proliferation. We were able to show that modifications of titanium surfaces with c-RGD are a promising approach in promoting endothelial cell growth.

  10. Influence of liquid temperature and flow rate on enamel erosion and surface softening.

    Eisenburger, M; Addy, M

    2003-11-01

    Enamel erosion and softening are based on chemical processes which could be influenced by many factors including temperature and acid flow rate. Knowledge of the influence of these variables could have relevance to research experiments and clinical outcomes. Both parameters were investigated using an ultrasonication and profilometry method to assess erosion depth and surface softening of enamel. The influence of temperature was studied by eroding polished human enamel samples at 4, 20, 35 or 50 degrees C for 2 h. Secondly, different liquid flow conditions were established by varying acid agitation. Additionally, a slow laminar flow and a jet of citric acid, to simulate drinking through a straw, were applied to specimens. Erosion depth increased significantly with acid temperature from 11.0 microm at 4 degrees C to 35.8 microm at 50 degrees C. Surface softening increased much more slowly and plateaued at 2.9 microm to 3.5 microm after 35 degrees C. A strong dependence of erosion on liquid flow was revealed. In unstirred conditions only 8.6 microm erosion occurred, which increased to 22.2 microm with slow stirring and 40.9 microm with fast stirring. Surface softening did not increase correspondingly with its largest extent at slow stirring at 3.4 microm.The implication of these data are: first, the conditions for erosion experiments in vitro or in situ need to be specified for reliable comparisons between studies. Secondly, erosion of teeth by soft drinks are likely to be influenced both by the temperature of the drink and individual drinking habits.

  11. Development of a novel infrared-based visualization technique to detect liquid-gas phase dynamics on boiling surfaces

    Kim, Hyung Dae

    2011-01-01

    Complex two-phase heat transfer phenomena such as nucleate boiling, critical heat flux, quenching and condensation govern the thermal performance of Light Water Reactors (LWRs) under normal operation and during transients/accidents. These phenomena are typically characterized by the presence of a liquid vapor- solid contact line on the surface from/to which the heat is transferred. For example, in nucleate boiling, a significant fraction of the energy needed for bubble growth comes from evaporation of a liquid meniscus, or microlayer, underneath the bubble itself. As the liquid vapor- solid line at the edge of the meniscus retreats, a circular dry patch in the middle of the bubble is exposed; the speed of the triple line retreat is a measure of the ability of the surface to transfer heat to the bubble. At very high heat fluxes, near the upper limit of the nucleate boiling regime, also known as Critical Heat Flux (CHF), the situation is characterized by larger dry areas on the surface, dispersed within an interconnected network of liquid menisci. In quenching heat transfer, which refers to the rapid cooling of a very hot object by immersion in a cooler liquid, the process is initially dominated by film boiling. In film boiling a continuous vapor film completely separates the liquid phase from the solid surface: however, as the temperature gets closer to the Leidenfrost point, intermittent and short-lived liquid-solid contacts occur at discrete locations on the surface, thus creating liquid vapor- solid interfaces once again. Ultimately, if bubble nucleation ensues at such contact points, the vapor film is disrupted and the heat transfer regime transitions from film boiling to transition boiling. Finally, in dropwise condensation, the phase transition from vapor to liquid occurs via formation of discrete droplets on the surface, and the resulting liquid-vapor-solid triple line is where heat transfer is most intense. To gain insight into and enable mechanistic

  12. Liquid entrainment and off-take from the two-phase mixture surface in a vessel

    Kim, Chang Hyun; No, Hee Cheon

    2003-01-01

    In order to determine the bleed capacity of the Safety Depressurization System (SDS) of Advanced Power Reactor 1400 (APR1400) in the case of Total Loss of Feed Water (TLOFW), we performed an experimental study of liquid entrainment and liquid off-take from the swelled two-phase mixture surface in a vessel. A total of 220 experimental data on the entrainment and off-take are obtained using a test vessel with a height of 2.0m and an inner diameter of 0.3m, and a top break with a diameter of 0.05m. Two-phase mixture levels are measured by an ultrasonic sensor within ±1.77% with respect to the visual level data. Droplet entrainment data are obtained with and without the top break and are compared with the existing pool entrainment data. The present droplet entrainment data have higher values than those of the existing pool entrainment due to (a) the pulling toward the break of the liquid deentrained on the top wall of the vessel and (b) gas acceleration in the vicinity of the break. In the present experiment, droplet entrainment, Efg, strongly depends upon jg/h and is proportional to the 7th power of jg/h in the same way as the off-take data. The empirical correlation for the onset of off-take is developed in terms of the Froude number (Frg) at the break and the non-dimensional inception height (hb/d). This correlation shows agreement with the present experimental data within ±15%. The present off-take quality data show agreement with Schrock's off-take quality correlation with the r.m.s. error of 15.8%

  13. Thermal Properties of 1-Alkyl-3-Methylimidazolium bis(trifluoromethylsulfonyl)Imide Ionic Liquids with Linear, Branched and Cyclic Alkyl Substituents.

    Rotrekl, Jan; Storch, Jan; Kloužek, Jaroslav; Vrbka, P.; Husson, P.; Andresová, Adéla; Bendová, Magdalena; Wagner, Zdeněk

    2017-01-01

    Roč. 443, JUL 15 (2017), s. 32-43 ISSN 0378-3812 R&D Projects: GA MŠk LD14090 Institutional support: RVO:67985858 ; RVO:67985891 Keywords : ionic liquids * thermophysical properties * structure-property relationship Subject RIV: CF - Physical ; Theoretical Chemistry; CC - Organic Chemistry (USMH-B) OBOR OECD: Physical chemistry; Organic chemistry (USMH-B) Impact factor: 2.473, year: 2016

  14. Generalized linear solvation energy model applied to solute partition coefficients in ionic liquid-supercritical carbon dioxide systems

    Planeta, Josef; Karásek, Pavel; Hohnová, Barbora; Šťavíková, Lenka; Roth, Michal

    2012-01-01

    Roč. 1250, SI (2012), s. 54-62 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GAP206/11/0138; GA ČR(CZ) GAP106/12/0522; GA ČR(CZ) GPP503/11/P523 Institutional research plan: CEZ:AV0Z40310501 Keywords : ionic liquid * supercritical carbon dioxide * solvation energy model Subject RIV: BJ - Thermodynamics Impact factor: 4.612, year: 2012

  15. Tile Drainage Management Influences on Surface-Water and Groundwater Quality following Liquid Manure Application.

    Frey, Steven K; Topp, Ed; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Zoski, Erin; Lapen, David R

    2013-01-01

    This study investigated the potential for controlled tile drainage (CD) to reduce bacteria and nutrient loading to surface water and groundwater from fall-season liquid manure application (LMA) on four macroporous clay loam plots, of which two had CD and two had free-draining (FD) tiles. Rhodamine WT (RWT) was mixed into the manure and monitored in the tile water and groundwater following LMA. Tile water and groundwater quality were influenced by drainage management. Following LMA on the FD plots, RWT, nutrients, and bacteria moved rapidly via tiles to surface water; at the CD plots, tiles did not flow until the first post-LMA rainfall, so the immediate risk of LMA-induced contamination of surface water was abated. During the 36-d monitoring period, flow-weighted average specific conductance, redox potential, and turbidity, as well as total Kjeldahl N (TKN), total P (TP), NH-N, reactive P, and RWT concentrations, were higher in the CD tile effluent; however, because of lower tile discharge from the CD plots, there was no significant ( ≤ 0.05) difference in surface water nutrient and RWT loading between the CD and FD plots when all tiles were flowing. The TKN, TP, and RWT concentrations in groundwater also tended to be higher at the CD plots. Bacteria behaved differently than nutrients and RWT, with no significant difference in total coliform, , fecal coliform, fecal streptococcus, and concentrations between the CD and FD tile effluent; however, for all but , hourly loading was higher from the FD plots. Results indicate that CD has potential for mitigating bacteria movement to surface water. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Electronic excited states as a probe of surface adsorbate structure and dynamics in liquid xenon

    Peterson, E.S.

    1992-08-01

    A combination of second harmonic generation (SHG) and a simple dipole-dipole interaction model is presented as a new technique for determining adsorbate geometries on surfaces. The polarization dependence of SHG is used to define possible geometries of the adsorbate about the surface normal. Absorption band shifts using geometry constraints imposed by SHG data are derived for a dimer constructed from two arbitrarily placed monomers on the surface using the dipole-dipole interaction potential. These formulae can be used to determine the orientation of the two monomers relative to each other. A simplified version of this formalism is used to interpret absorption band shifts for rhodamine B adsorbed on fused silica. A brief history of the exciton is given with particular detail to Xe. Data are presented for transient absorption at RT in liquid xenon on the picosecond time scale. These are observations of both tunneling through the barrier that separates the free and trapped exciton states and the subsequent trapping of the exciton. In high densities both of these processes are found to occur within 2 to 6 picoseconds in agreement with theories of Kmiecik and Schreiber and of Martin. A threshold density is observed that separates relaxation via single binary collisions and relaxation that proceeds via Martin's resonant energy transfer hopping mechanism.

  17. Electronic excited states as a probe of surface adsorbate structure and dynamics in liquid xenon

    Peterson, Eric Scott [Univ. of California, Berkeley, CA (United States)

    1992-08-01

    A combination of second harmonic generation (SHG) and a simple dipole-dipole interaction model is presented as a new technique for determining adsorbate geometries on surfaces. The polarization dependence of SHG is used to define possible geometries of the adsorbate about the surface normal. Absorption band shifts using geometry constraints imposed by SHG data are derived for a dimer constructed from two arbitrarily placed monomers on the surface using the dipole-dipole interaction potential. These formulae can be used to determine the orientation of the two monomers relative to each other. A simplified version of this formalism is used to interpret absorption band shifts for rhodamine B adsorbed on fused silica. A brief history of the exciton is given with particular detail to Xe. Data are presented for transient absorption at RT in liquid xenon on the picosecond time scale. These are observations of both tunneling through the barrier that separates the free and trapped exciton states and the subsequent trapping of the exciton. In high densities both of these processes are found to occur within 2 to 6 picoseconds in agreement with theories of Kmiecik and Schreiber and of Martin. A threshold density is observed that separates relaxation via single binary collisions and relaxation that proceeds via Martin`s resonant energy transfer hopping mechanism.

  18. The effects of surface topography control using liquid crystal elastomers on bodies in flow

    Settle, Michael; Guin, Tyler; Beblo, Richard; White, Timothy; Reich, Gregory

    2018-03-01

    Surface topography control has use across many applications including delayed separation of flow via selective boundary-layer tripping. Recently, advances with liquid crystal elastomers (LCE) have been leveraged for controlled, repeatable, out-of-plane deformations that could enable these topographical changes. An aligned LCE deforms when heated, associated with a loss in order. Circumferential patterns fabricated through the thickness of the LCE film yield a predictable conical out-of-plane deformation that can control surface topography. This study focuses on the experimental investigation of LCE behavior for flow control. Initially, the deformations of LCE samples 1/2" in diameter and 50 µm thick were characterized using Digital Image Correlation under uniform positive and negative gauge pressures at various temperatures. Surface topography showed strong dependence on boundary conditions, sample dimensions, and pattern location relative to the applied boundary conditions, informing adjustment of the LCE of the chemistry to produce higher modulus and glassy materials. As an initial demonstration of the ability to control flow, Then, to demonstrate the potential for flow control, 3D printed cylinders with varying arrangements of representative topographical features were characterized in a wind tunnel with Particle Image Velocimetry. Results showed that features with a maximum deflection height of 1.5 mm in a two-row arrangement can form an asymmetric wake about a 73 mm diameter cylinder that reduces drag while generating lift. These results inform subsequent investigation of active LCE elements on a cylinder that are currently under examination.

  19. Sodium vapor deposition onto a horizontal flat plate above liquid sodium surface, 2

    Kudo, Kazuhiko; Hirata, Masaru.

    1977-01-01

    The sodium vapor deposition onto a horizontal flat plate above liquid sodium surface was studied. The analysis was performed by assuming that the sodium mist is emitted into the main flow without condensation and then grows up in the main flow and drops on the sodium surface. The effects of growth of sodium mist to the system were investigated. The model of the phenomena is the sodium deposition onto a horizontal flat plate which is placed above the sodium surface with the medium cover gas. One-dimensional analysis can be done. The rate of deposition is greatly reduced when the temperature of the flat plate is lowered. For the analysis of this phenomena, it is assumed that the sodium mist grows by condensation. One of results is that the real state may be the state between the state that the condensation of mist is made in the boundary layer and the state that the mist is condensed in the main flow. Others are that there is no effect of sodium mist condensation on the rate of deposition, and that the rate of the vaporization of sodium is given by the original and the modified model. (Kato, T.)

  20. Faraday forcing of high-temperature levitated liquid metal drops for the measurement of surface tension.

    Brosius, Nevin; Ward, Kevin; Matsumoto, Satoshi; SanSoucie, Michael; Narayanan, Ranga

    2018-01-01

    In this work, a method for the measurement of surface tension using continuous periodic forcing is presented. To reduce gravitational effects, samples are electrostatically levitated prior to forcing. The method, called Faraday forcing, is particularly well suited for fluids that require high temperature measurements such as liquid metals where conventional surface tension measurement methods are not possible. It offers distinct advantages over the conventional pulse-decay analysis method when the sample viscosity is high or the levitation feedback control system is noisy. In the current method, levitated drops are continuously translated about a mean position at a small, constant forcing amplitude over a range of frequencies. At a particular frequency in this range, the drop suddenly enters a state of resonance, which is confirmed by large executions of prolate/oblate deformations about the mean spherical shape. The arrival at this resonant condition is a signature that the parametric forcing frequency is equal to the drop's natural frequency, the latter being a known function of surface tension. A description of the experimental procedure is presented. A proof of concept is given using pure Zr and a Ti 39.5 Zr 39.5 Ni 21 alloy as examples. The results compare favorably with accepted literature values obtained using the pulse-decay method.

  1. Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).

    Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P

    2014-01-01

    The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model

    Chen, Huaizhen; Zhang, Guangzhi

    2018-03-01

    Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.

  3. Application of high-performance liquid chromatography-tandem mass spectrometry with a quadrupole/linear ion trap instrument for the analysis of pesticide residues in olive oil.

    Hernando, M D; Ferrer, C; Ulaszewska, M; García-Reyes, J F; Molina-Díaz, A; Fernández-Alba, A R

    2007-11-01

    This article describes the development of an enhanced liquid chromatography-mass spectrometry (LC-MS) method for the analysis of pesticides in olive oil. One hundred pesticides belonging to different classes and that are currently used in agriculture have been included in this method. The LC-MS method was developed using a hybrid quadrupole/linear ion trap (QqQ(LIT)) analyzer. Key features of this technique are the rapid scan acquisition times, high specificity and high sensitivity it enables when the multiple reaction monitoring (MRM) mode or the linear ion-trap operational mode is employed. The application of 5 ms dwell times using a linearly accelerating (LINAC) high-pressure collision cell enabled the analysis of a high number of pesticides, with enough data points acquired for optimal peak definition in MRM operation mode and for satisfactory quantitative determinations to be made. The method quantifies over a linear dynamic range of LOQs (0.03-10 microg kg(-1)) up to 500 microg kg(-1). Matrix effects were evaluated by comparing the slopes of matrix-matched and solvent-based calibration curves. Weak suppression or enhancement of signals was observed (ion (EPI) and MS3 were developed.

  4. A Continuous Liquid-Level Sensor for Fuel Tanks Based on Surface Plasmon Resonance

    Antonio M. Pozo

    2016-05-01

    Full Text Available A standard problem in large tanks at oil refineries and petrol stations is that water and fuel usually occupy the same tank. This is undesirable and causes problems such as corrosion in the tanks. Normally, the water level in tanks is unknown, with the problems that this entails. We propose herein a method based on surface plasmon resonance (SPR to detect in real time the interfaces in a tank which can simultaneously contain water, gasoline (or diesel and air. The plasmonic sensor is composed of a hemispherical glass prism, a magnesium fluoride layer, and a gold layer. We have optimized the structural parameters of the sensor from the theoretical modeling of the reflectance curve. The sensor detects water-fuel and fuel-air interfaces and measures the level of each liquid in real time. This sensor is recommended for inflammable liquids because inside the tank there are no electrical or electronic signals which could cause explosions. The sensor proposed has a sensitivity of between 1.2 and 3.5 RIU−1 and a resolution of between 5.7 × 10−4 and 16.5 × 10−4 RIU.

  5. Optimizing pressurized liquid extraction of microbial lipids using the response surface method.

    Cescut, J; Severac, E; Molina-Jouve, C; Uribelarrea, J-L

    2011-01-21

    Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Gross alpha and gross beta determination in surface and groundwater water by liquid scintillation counting (LSC)

    Faria, Ligia S.; Moreira, Rubens M.

    2013-01-01

    The present study has used 40 samples of groundwater and surface water collected at four different sites along the period of one year in Brumadinho and Nova Lima, two municipalities in the State of Minas Gerais, Brazil, as part of a more extensive study aiming at determination of the natural radioactivity in the water used for domestic use. These two sites are inside an Environmental Protection Area is located in a region of very intensive iron ore exploration. In addition of mineral resources, the region has a geological characteristic that includes quartzitic conglomerates associated with uranium. Radioactivity levels were determined via liquid scintillation counting (LSC), a fast and high counting efficiency method that can be advantageously employed to determine gross alpha and gross beta activity in liquid samples. Previously to gross alpha and gross beta counting the samples were acidified with concentrated HNO 3 in the field. The technique involved a pre-concentration of the sample to obtain a low detection limit. Specific details of the employed methodology are commented. The results showed that concentrations of gross alpha natural activity and gross beta values ranged from less than the detection limit of the equipment (0.03 Bq.L -1 ) to 0.275 ± 0.05 Bq.L -1 for gross alpha. As regards gross beta, all samples were below the limit of detection. (author)

  7. Effect of surface wettability on flow patterns in vertical gas-liquid two-phase flow

    Nakamura, D.

    2005-01-01

    To examine the effect of the surface characteristics on the flow regime in two-phase flow, visualization study was performed using three test pipes, namely a no-coating pipe, a water-attracting coating pipe, a water-shedding coating pipe. Three flow regime maps were obtained based on the visual observation in the three pipes. In the water-attracting coating pipe, the slug flow-to-churn flow transition boundary was shifted to higher gas velocity at a given liquid velocity, whereas the churn flow-to-annular flow transition boundary was shifted to lower gas velocity at a given liquid velocity. In the water shedding coating pipe, the inverted-churn flow regime was observed in the region where the churn flow regime was to be observed in a no-coating pipe, whereas the droplet flow regime was observed in the region where the annular flow regime was to be observed in a no-coating pipe. The criteria for the slug flow-to-inverted-churn flow transition and the inverted-churn flow-to-droplet flow transition were modeled by force balance approaches. The modeled transition criteria could predict the observed flow transition boundaries reasonably well. (authors)

  8. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    Gusain, Rashi; Kokufu, Sho; Bakshi, Paramjeet S.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki; Khatri, Om P.

    2016-01-01

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF_6) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF_6 thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF_6 thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF_6 thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF_6 thin film, the covalent interaction between ImPF_6 ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  9. Liquid lens with double tunable surfaces for large power tunability and improved optical performance

    Li, Lei; Wang, Qiong-Hua; Jiang, Wei

    2011-01-01

    In this paper we propose a liquid lens with two tunable interfaces formed by two kinds of immiscible liquids. The proposed liquid lens uses liquid pressure to change the shape of the interfaces. It can provide a large tunable range of optical power and improved optical performance. By applying suitable liquids the gravity effect can also be negligible. To prove the principles, a liquid lens with 7 mm aperture was fabricated. The optical performance indicates that the proposed liquid lens can provide a large tunable range of both positive and negative powers even using liquids with small differences in refractive indices. The resolution is better than 50 lp mm −1 under white light environment. The spherical aberration and coma are also largely reduced. The proposed liquid lens can also provide the optical designer with the freedom to choose the combination of liquids to reduce or even correct aberrations

  10. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined

  11. Direct numerical simulations of a thin liquid film coating an axially oscillating cylindrical surface

    Binz, Matthias; Rohlfs, Wilko; Kneer, Reinhold, E-mail: rohlfs@wsa.rwth-aachen.de [Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, D-52056 Aachen (Germany)

    2014-08-01

    Liquid films on cylindrical bodies like wires or fibers disintegrate into droplets if their length exceeds a critical measure (Plateau–Rayleigh instability). Stabilization of such films can be achieved by an axial oscillation of the solid core provided that a suitable combination of forcing amplitude and frequency is given. To investigate the stabilizing effect, direct numerical simulations of the axisymmetric problem are conducted in this study. Thus, a modified volume-of-fluid solver is employed based on the open source library OpenFOAM{sup ®}. The effect of film stabilization is demonstrated and the required conditions for a stable film configuration are found to be in accordance with other studies. Finally, parameter variations are conducted to investigate the influence on the long-term shape of the stabilized film surface. (paper)

  12. Magnetohydrodynamic flow of Carreau fluid over a convectively heated surface in the presence of non-linear radiation

    Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hashim, E-mail: hashim_alik@yahoo.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan); Azam, M. [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)

    2016-08-15

    This paper presents a study of the magnetohydrodynamic (MHD) boundary layer flow of a non-Newtonian Carreau fluid over a convectively heated surface. The analysis of heat transfer is further performed in the presence of non-linear thermal radiation. The appropriate transformations are employed to bring the governing equations into dimensionless form. The numerical solutions of the partially coupled non-linear ordinary differential equations are obtained by using the Runge-Kutta Fehlberg integration scheme. The influence of non-dimensional governing parameters on the velocity, temperature, local skin friction coefficient and local Nusselt number is studied and discussed with the help of graphs and tables. Results proved that there is significant decrease in the velocity and the corresponding momentum boundary layer thickness with the growth in the magnetic parameter. However, a quite the opposite is true for the temperature and the corresponding thermal boundary layer thickness. - Highlights: • We investigated the Magnetohydrodynamic flow of Carreau constitutive fluid model. • Impact of non-linear thermal radiation is further taken into account. • Runge-Kutta Fehlberg method is employed to obtain the numerical solutions. • Fluid velocity is higher in case of hydromagnetic flow in comparison with hydrodynamic flow. • The local Nusselt number is a decreasing function of the thermal radiation parameter.

  13. Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid.

    Smith, D J; Gaffney, E A; Blake, J R

    2007-07-01

    We discuss in detail techniques for modelling flows due to finite and infinite arrays of beating cilia. An efficient technique, based on concepts from previous 'singularity models' is described, that is accurate in both near and far-fields. Cilia are modelled as curved slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities along their centrelines, leading to an integral equation that can be solved using a simple and efficient discretisation. The computed velocity on the cilium surface is found to compare favourably with the boundary condition. We then present results for two topics of current interest in biology. 1) We present the first theoretical results showing the mechanism by which rotating embryonic nodal cilia produce a leftward flow by a 'posterior tilt,' and track particle motion in an array of three simulated nodal cilia. We find that, contrary to recent suggestions, there is no continuous layer of negative fluid transport close to the ciliated boundary. The mean leftward particle transport is found to be just over 1 mum/s, within experimentally measured ranges. We also discuss the accuracy of models that represent the action of cilia by steady rotlet arrays, in particular, confirming the importance of image systems in the boundary in establishing the far-field fluid transport. Future modelling may lead to understanding of the mechanisms by which morphogen gradients or mechanosensing cilia convert a directional flow to asymmetric gene expression. 2) We develop a more complex and detailed model of flow patterns in the periciliary layer of the airway surface liquid. Our results confirm that shear flow of the mucous layer drives a significant volume of periciliary liquid in the direction of mucus transport even during the recovery stroke of the cilia. Finally, we discuss the advantages and disadvantages of the singularity technique and outline future theoretical and experimental developments required to apply this

  14. Role of Aquaporin Water Channels in Airway Fluid Transport, Humidification, and Surface Liquid Hydration

    Song, Yuanlin; Jayaraman, Sujatha; Yang, Baoxue; Matthay, Michael A.; Verkman, A.S.

    2001-01-01

    Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% efficient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 ± 5 μm and [Na+] was 115 ± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by ∼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption. PMID:11382807

  15. Catastrophe Optics Method to Determine the Micro-Nano Size Profiles at TPL of Liquid Films on a Solid Surface

    Chao, David F.; McQuillen, J. B.; Sankovic, J. M.; Zhang, Nengli

    2009-01-01

    As discovered by recent studies, what directly affects the wetting and spreading is curvature in micro-region rather than the macroscopic contact angle. Measuring the profile of the micro-region becomes an important research topic. Recently, catastrophe optics has been applied to this kind of measurements. Optical catastrophe occurring in far field of waves of liquid-refracted laser beam implies a wealth of information about the liquid spreading not only for liquid drops but also for films. When a parallel laser beam passes through a liquid film on a slide glass at three-phase-line (TPL), very interesting optical image patterns occur on a screen far from the film. An analysis based on catastrophe optics discloses and interprets the formation of these optical image patterns. The analysis reveals that the caustic line manifested as the bright-thick line on the screen implies the lowest hierarchy of optical catastrophes, called fold caustic. This optical catastrophe is produced by the inflexion line on liquid surface at the liquid foot, which is formed not only in the spreading of drops but also in spreading of films. The generalized catastrophe optics method enables to identify the edge profiles and determine the edge foot height of liquid films. Keywords: Crossover region, Inflexion line, liquid edge foot, Catastrophe optics, Caustic and diffraction

  16. Investigating Deliquescence of Mars-like Soils from the Atacama Desert and Implications for Liquid Water Near the Martian Surface

    Van Alstyne, A. M.; Tolbert, M. A.; Gough, R. V.; Primm, K.

    2017-12-01

    Recent images obtained from orbiters have shown that the Martian surface is more dynamic than previously thought. These images, showing dark features that resemble flowing water near the surface, have called into question the habitability of the Mars today. Recurring slope lineae (RSL), or the dark features seen in these images, are characterized as narrow, dark streaks that form and grow in the warm season, fade in the cold season, and recur seasonally. It is widely hypothesized that the movement of liquid water near the surface is what causes the appearance of RSL. However, the origin of the water and the potential for water to be stable near the surface is a question of great debate. Here, we investigate the potential for stable or metastable liquid water via deliquescence and efflorescence. The deliquescent properties of salts from the Atacama Desert, a popular terrestrial analog for Martian environments, were investigated using a Raman microscope outfitted with an environmental cell. The salts were put under Mars-relevant conditions and spectra were obtained to determine the presence or absence of liquid phases. The appearance of liquid phases under Mars-relevant conditions would demonstrate that liquid water could be available to cause or play a role in the formations of RSL.

  17. X-ray Reflectivity Study of Ionic Liquids at Electrified Surfaces

    Chu, Miaoqi

    previous chapters are employed to extract information about the solid-liquid interface. Electron density depletion due to methyl terminal of solvent molecules (methyl gap) and due to the reduced surface density compared to the bulk density (density gap) are analyzed. In the next Chapter, XRR technique is employed to study the structures and dynamics of room temperature ionic liquids (RTILs) at an electrified surface. RTILs are molten salts at room temperature, consisted purely by anions and cations, with potential applications in energy storage, electro-synthesis, electrodeposition etc. The solvent-free and high charge concentrated novel liquids process many unique properties that not seen in normal dilute salt solution. It is predicted that when a surface isn't highly charged, RTILs form alternating layers of anion/cation to screen the surface charge; when it's highly charged, a crowding layer with ions with like charge forms. The alternating structure has been observed experimentally but not the crowding layer. Following the rules of optimization XRR experiment in Chapter 2, conductive silicon which has small electron density is used which maximize the EDP contrast. This makes it possible to directly observe the formation of crowding layer. The thickness of this crowding layer, charge distributions and compositions as a function of applied voltage. The dynamics of anion/cation reorganization in RTILs determine the power density for RTILs? energy application. In Chapter 5, the time-dependence of the formation and dissipation of the crowding layer is studied with XRR. An ultra-slow dynamic, much longer than the typical RC time constant, is revealed. Comparisons with theoretical predications and experiments studies are made in order to understand the origin of this process. The thesis is summarized in Chapter 6, along with several proposals for future work.

  18. Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids.

    Hanc-Scherer, Florin A; Montiel, Miguel A; Montiel, Vicente; Herrero, Enrique; Sánchez-Sánchez, Carlos M

    2015-10-07

    The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim(+)][NTf2(-)], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH-CO2(-)] by a radical-radical coupling after the simultaneous reduction of CO2 and [C2mim(+)]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim(+)] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH-CO2(-)] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H(+)][NTf2(-)], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim(+)][NTf2(-)], with Pt(110) being the most active electrode studied.

  19. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  20. Making sense of enthalpy of vaporization trends for ionic liquids: new experimental and simulation data show a simple linear relationship and help reconcile previous data.

    Verevkin, Sergey P; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Yermalayeu, Andrei V; Schick, Christoph; Liu, Hongjun; Maginn, Edward J; Bulut, Safak; Krossing, Ingo; Kalb, Roland

    2013-05-30

    Vaporization enthalpy of an ionic liquid (IL) is a key physical property for applications of ILs as thermofluids and also is useful in developing liquid state theories and validating intermolecular potential functions used in molecular modeling of these liquids. Compilation of the data for a homologous series of 1-alkyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([C(n)mim][NTf2]) ILs has revealed an embarrassing disarray of literature results. New experimental data, based on the concurring results from quartz crystal microbalance, thermogravimetric analyses, and molecular dynamics simulation have revealed a clear linear dependence of IL vaporization enthalpies on the chain length of the alkyl group on the cation. Ambiguity of the procedure for extrapolation of vaporization enthalpies to the reference temperature 298 K was found to be a major source of the discrepancies among previous data sets. Two simple methods for temperature adjustment of vaporization enthalpies have been suggested. Resulting vaporization enthalpies obey group additivity, although the values of the additivity parameters for ILs are different from those for molecular compounds.

  1. Ultrafast electron, lattice and spin dynamics on rare earth metal surfaces. Investigated with linear and nonlinear optical techniques

    Radu, I.E.

    2006-03-15

    This thesis presents the femtosecond laser-induced electron, lattice and spin dynamics on two representative rare-earth systems: The ferromagnetic gadolinium Gd(0001) and the paramagnetic yttrium Y(0001) metals. The employed investigation tools are the time-resolved linear reflectivity and second-harmonic generation, which provide complementary information about the bulk and surface/interface dynamics, respectively. The femtosecond laser excitation of the exchange-split surface state of Gd(0001) triggers simultaneously the coherent vibrational dynamics of the lattice and spin subsystems in the surface region at a frequency of 3 THz. The coherent optical phonon corresponds to the vibration of the topmost atomic layer against the underlying bulk along the normal direction to the surface. The coupling mechanism between phonons and magnons is attributed to the modulation of the exchange interaction J between neighbour atoms due to the coherent lattice vibration. This leads to an oscillatory motion of the magnetic moments having the same frequency as the lattice vibration. Thus these results reveal a new type of phonon-magnon coupling mediated by the modulation of the exchange interaction and not by the conventional spin-orbit interaction. Moreover, we show that coherent spin dynamics in the THz frequency domain is achievable, which is at least one order of magnitude faster than previously reported. The laser-induced (de)magnetization dynamics of the ferromagnetic Gd(0001) thin films have been studied. Upon photo-excitation, the nonlinear magneto-optics measurements performed in this work show a sudden drop in the spin polarization of the surface state by more than 50% in a <100 fs time interval. Under comparable experimental conditions, the time-resolved photoemission studies reveal a constant exchange splitting of the surface state. The ultrafast decrease of spin polarization can be explained by the quasi-elastic spin-flip scattering of the hot electrons among spin

  2. Liquid metals as a divertor plasma-facing material explored using the Pilot-PSI and Magnum-PSI linear devices

    Morgan, T. W.; Rindt, P.; van Eden, G. G.; Kvon, V.; Jaworksi, M. A.; Lopes Cardozo, N. J.

    2018-01-01

    For DEMO and beyond, liquid metal plasma-facing components are considered due to their resilience to erosion through flowed replacement, potential for cooling beyond conduction and inherent immunity to many of the issues of neutron loading compared to solid materials. The development curve of liquid metals is behind that of e.g. tungsten however, and tokamak-based research is currently somewhat limited in scope. Therefore, investigation into linear plasma devices can provide faster progress under controlled and well-diagnosed conditions in assessing many of the issues surrounding the use of liquid metals. The linear plasma devices Magnum-PSI and Pilot-PSI are capable of producing DEMO-relevant plasma fluxes, which well replicate expected divertor conditions, and the exploration of physics issues for tin (Sn) and lithium (Li) such as vapour shielding, erosion under high particle flux loading and overall power handling are reviewed here. A deeper understanding of erosion and deposition through this work indicates that stannane formation may play an important role in enhancing Sn erosion, while on the other hand the strong hydrogen isotope affinity reduces the evaporation rate and sputtering yields for Li. In combination with the strong redeposition rates, which have been observed under this type of high-density plasma, this implies that an increase in the operational temperature range, implying a power handling range of 20-25 MW m-2 for Sn and up to 12.5 MW m-2 for Li could be achieved. Vapour shielding may be expected to act as a self-protection mechanism in reducing the heat load to the substrate for off-normal events in the case of Sn, but may potentially be a continual mode of operation for Li.

  3. Numerical simulations and linear stability analysis of a boundary layer developed on wavy surfaces

    Siconolfi, Lorenzo; Camarri, Simone; Fransson, Jens H. M.

    2015-11-01

    The development of passive methods leading to a laminar to turbulent transition delay in a boundary layer (BL) is a topic of great interest both for applications and academic research. In literature it has been shown that a proper and stable spanwise velocity modulation can reduce the growth rate of Tollmien-Schlichting (TS) waves and delay transition. In this study, we investigate numerically the possibility of obtaining a stabilizing effect of the TS waves through the use of a spanwise sinusoidal modulation of a flat plate. This type of control has been already successfully investigated experimentally. An extensive set of direct numerical simulations is carried out to study the evolution of a BL flow developed on wavy surfaces with different geometric characteristics, and the results will be presented here. Moreover, since this configuration is characterized by a slowly-varying flow field in streamwise direction, a local stability analysis is applied to define the neutral stability curves for the BL flow controlled by this type of wall modifications. These results give the possibility of investigating this control strategy and understanding the effect of the free parameters on the stabilization mechanism.

  4. Effects of backbone conformation and surface texture of polyimide alignment film on the pretilt angle of liquid crystals

    Chang, Chi-Jung; Chou, Ray-Lin; Lin, Yu-Chi; Liang, Bau-Jy; Chen, Jyun-Ji

    2011-01-01

    Polyimides (PIs) with different inclination angle of polymer backbones, together with polar hydroxyl group and/or nonpolar trifluoromethyl group at various sites of the backbone were synthesized and used as liquid crystal alignment layers. The molecular conformation, surface chemistry, surface energy, surface morphology, and pretilt angle of the PI film were investigated. The distributions of fluorinated group and hydroxyl group at different depths of the PI surfaces were analyzed by X-ray photoelectron spectroscopy. Effects of the conformation of the PI molecular backbone on the surface morphology of the rubbed PI layer, the pretilt angle and surface energy of the alignment film were studied. The PI which contains both nonpolar fluorinated groups sticking out of the surface and the polar hydroxyl groups on the surface exhibits high pretilt angle.

  5. Nucleation and growth of microdroplets of ionic liquids deposited by physical vapor method onto different surfaces

    Costa, José C. S.; Coelho, Ana F. S. M. G.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2018-01-01

    Nanoscience and technology has generated an important area of research in the field of properties and functionality of ionic liquids (ILs) based materials and their thin films. This work explores the deposition process of ILs droplets as precursors for the fabrication of thin films, by means of physical vapor deposition (PVD). It was found that the deposition (by PVD on glass, indium tin oxide, graphene/nickel and gold-coated quartz crystal surfaces) of imidazolium [C4mim][NTf2] and pyrrolidinium [C4C1Pyrr][NTf2] based ILs generates micro/nanodroplets with a shape, size distribution and surface coverage that could be controlled by the evaporation flow rate and deposition time. No indication of the formation of a wetting-layer prior to the island growth was found. Based on the time-dependent morphological analysis of the micro/nanodroplets, a simple model for the description of the nucleation process and growth of ILs droplets is presented. The proposed model is based on three main steps: minimum free area to promote nucleation; first order coalescence; second order coalescence.

  6. Nanoscale fabrication and characterization of chemically modified silicon surfaces using conductive atomic force microscopy in liquids

    Kinser, Christopher Reagan

    This dissertation examines the modification and characterization of hydrogen-terminated silicon surfaces in organic liquids. Conductive atomic force microscope (cAFM) lithography is used to fabricate structures with sub-100 nm line width on H:Si(111) in n-alkanes, 1-alkenes, and 1-alkanes. Nanopatterning is accomplished by applying a positive (n-alkanes and 1-alkenes) or a negative (1-alkanes) voltage pulse to the silicon substrate with the cAFM tip connected to ground. The chemical and kinetic behavior of the patterned features is characterized using AFM, lateral force microscopy, time-of-flight secondary ion mass spectroscopy (TOF SIMS), and chemical etching. Features patterned in hexadecane, 1-octadecene, and undecylenic acid methyl ester exhibited chemical and kinetic behavior consistent with AFM field induced oxidation. The oxide features are formed due to capillary condensation of a water meniscus at the AFM tip-sample junction. A space-charge limited growth model is proposed to explain the observed growth kinetics. Surface modifications produced in the presence of neat 1-dodecyne and 1-octadecyne exhibited a reduced lateral force compared to the background H:Si(111) substrate and were resistant to a hydrofluoric acid etch, characteristics which indicate that the patterned features are not due to field induced oxidation and which are consistent with the presence of the methyl-terminated 1-alkyne bound directly to the silicon surface through silicon-carbon bonds. In addition to the cAFM patterned surfaces, full monolayers of undecylenic acid methyl ester (SAM-1) and undec-10-enoic acid 2-bromoethyl ester (SAM-2) were grown on H:Si(111) substrates using ultraviolet light. The structure and chemistry of the monolayers were characterized using AFM, TOF SIMS, X-ray photoelectron spectroscopy (XPS), X-ray reflectivity (XRR), X-ray standing waves (XSW), and X-ray fluorescence (XRF). These combined analyses provide evidence that SAM-1 and SAM-2 form dense monolayers

  7. An apparatus with a horizontal capillary tube intended for measurement of the surface tension of supercooled liquids

    Vinš, Václav; Hošek, Jan; Hykl, Jiří; Hrubý, Jan

    2015-05-01

    New experimental apparatus for measurement of the surface tension of liquids under the metastable supercooled state has been designed and assembled in the study. The measuring technique is similar to the method employed by P.T. Hacker [NACA TN 2510] in 1951. A short liquid thread of the liquid sample was sucked inside a horizontal capillary tube partly placed in a temperature-controlled glass chamber. One end of the capillary tube was connected to a setup with inert gas which allowed for precise tuning of the gas overpressure in order of hundreds of Pa. The open end of the capillary tube was precisely grinded and polished before the measurement in order to assure planarity and perpendicularity of the outer surface. The liquid meniscus at the open end was illuminated by a laser beam and observed by a digital camera. Application of an increasing overpressure of the inert gas at the inner meniscus of the liquid thread caused variation of the outer meniscus such that it gradually changed from concave to flat and subsequently convex shape. The surface tension at the temperature of the inner meniscus could be evaluated from the overpressure corresponding to exactly planar outer meniscus. Detailed description of the new setup together with results of the preliminary tests is provided in the study.

  8. A Wide Linearity Range Method for the Determination of Lenalidomide in Plasma by High-Performance Liquid Chromatography: Application to Pharmacokinetic Studies.

    Guglieri-López, Beatriz; Pérez-Pitarch, Alejandro; Martinez-Gómez, Maria Amparo; Porta-Oltra, Begoña; Climente-Martí, Mónica; Merino-Sanjuán, Matilde

    2016-12-01

    A wide linearity range analytical method for the determination of lenalidomide in patients with multiple myeloma for pharmacokinetic studies is required. Plasma samples were ultrasonicated for protein precipitation. A solid-phase extraction was performed. The eluted samples were evaporated to dryness under vacuum, and the solid obtained was diluted and injected into the high-performance liquid chromatography (HPLC) system. Separation of lenalidomide was performed on an Xterra RP C18 (250 mm length × 4.6 mm i.d., 5 µm) using a mobile phase consisting of phosphate buffer/acetonitrile (85:15, v/v, pH 3.2) at a flow rate of 0.5 mL · min -1 The samples were monitored at a wavelength of 311 nm. A linear relationship with good correlation coefficient (r = 0.997, n = 9) was found between the peak area and lenalidomide concentrations in the range of 100 to 950 ng · mL -1 The limits of detection and quantitation were 28 and 100 ng · mL -1 , respectively. The intra- and interassay precisions were satisfactory, and the accuracy of the method was proved. In conclusion, the proposed method is suitable for the accurate quantification of lenalidomide in human plasma with a wide linear range, from 100 to 950 ng · mL -1 This is a valuable method for pharmacokinetic studies of lenalidomide in human subjects. © 2016 Society for Laboratory Automation and Screening.

  9. [Screening and confirmation of 24 hormones in cosmetics by ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry].

    Li, Zhaoyong; Wang, Fengmei; Niu, Zengyuan; Luo, Xin; Zhang, Gang; Chen, Junhui

    2014-05-01

    A method of ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry (UPLC-LTQ/Orbitrap MS) was established to screen and confirm 24 hormones in cosmetics. Various cosmetic samples were extracted with methanol. The extract was loaded onto a Waters ACQUITY UPLC BEH C18 column (50 mm x 2.1 mm, 1.7 microm) using a gradient elution of acetonitrile/water containing 0.1% (v/v) formic acid for the separation. The accurate mass of quasi-molecular ion was acquired by full scanning of electrostatic field orbitrap. The rapid screening was carried out by the accurate mass of quasi-molecular ion. The confirmation analysis for targeted compounds was performed with the retention time and qualitative fragments obtained by data dependent scan mode. Under the optimal conditions, the 24 hormones were routinely detected with mass accuracy error below 3 x 10(-6) (3 ppm), and good linearities were obtained in their respective linear ranges with correlation coefficients higher than 0.99. The LODs (S/N = 3) of the 24 compounds were hormones in 50 cosmetic samples. The results demonstrate that the method is a useful tool for the rapid screening and identification of the hormones in cosmetics.

  10. One-dimensional electron liquid at a surface. Gold nanowires on Ge(001)

    Blumenstein, Christian

    2012-09-11

    Self-organized nanowires at semiconductor surfaces offer the unique opportunity to study electrons in reduced dimensions. Notably the dimensionality of the system determines it's electronic properties, beyond the quasiparticle description. In the quasi-one-dimensional (1D) regime with weak lateral coupling between the chains, a Peierls instability can be realized. A nesting condition in the Fermi surface leads to a backfolding of the 1D electron band and thus to an insulating state. It is accompanied by a charge density wave (CDW) in real space that corresponds to the nesting vector. This effect has been claimed to occur in many surface-defined nanowire systems, such as the In chains on Si(111) or the Au reconstructions on the terraced Si(553) and Si(557) surfaces. Therefore a weak coupling between the nanowires in these systems has to be concluded. However theory proposes another state in the perfect 1D limit, which is completely destroyed upon slight coupling to higher dimensions. In this so-called Tomonaga-Luttinger liquid (TLL) state, the quasiparticle description of the Fermi liquid breaks down. Since the interaction between the electrons is enhanced due to the strong confinement, only collective excitations are allowed. This leads to novel effects like spin charge separation, where spin and charge degrees of freedom are decoupled and allowed to travel independently along the 1D-chain. Such rare state has not been realized at a surface until today. This thesis uses a novel approach to realize nanowires with improved confinement by studying the Au reconstructed Ge(001) surface. A new cleaning procedure using piranha solution is presented, in order to prepare a clean and long-range ordered substrate. To ensure optimal growth of the Au nanowires the phase diagram is extensively studied by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The structural elements of the chains are revealed and described in high detail. Remarkably

  11. Electrodeposition of ruthenium, rhodium and palladium from nitric acid and ionic liquid media: Recovery and surface morphology of the deposits

    Jayakumar, M.; Venkatesan, K.A.; Sudha, R. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Srinivasan, T.G., E-mail: tgs@igcar.gov.com [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Vasudeva Rao, P.R. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India)

    2011-07-15

    Research highlights: {yields} Platinum group metals are man-made noble metals. {yields} Electrochemical recovery of fission platinoids. {yields} Recovery from nitric acid medium. {yields} Recovery from ionic liquid medium. {yields} Platinoids with exotic surface morphologies. - Abstract: Electrodeposition is a promising technique for the recovery of platinum group metals with unique surface morphologies. The electrodeposition of palladium, ruthenium and rhodium from aqueous nitric acid, and non-aqueous 1-butyl-3-methylimidazolium chloride ionic liquid medium was studied at stainless steel electrode. The surface morphology and elemental composition of the resultant deposit were probed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analysis. Deposits with diverse surface morphologies and metal compositions were obtained by varying the composition of the electrolytic medium and applied potential. The results demonstrate the possibility of tailoring the morphologies of PGMs by controlling the composition and potential needed for electrodeposition.

  12. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.

    Ward, Keeran; Xi, Jingshu; Stuckey, David C

    2015-12-01

    The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Process and apparatus for removing layers of liquids floating on the surface of water

    1968-11-12

    This apparatus is towed or pushed by suitable means and collects a suitable thickness of the floating liquid and of water. The 2 liquids are then separated, the purified water is rejected outboard, and the polluting liquid is collected in a reservoir of the apparatus, from which it can easily be pumped and recovered in tanks.

  14. Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature.

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B

    2011-12-01

    Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. On the capillary restriction in start-up regimes of liquid metal evaporation from capillary-porous surfaces

    Prosvetov, V.V.

    1979-01-01

    Evaporation of liquid metals from capillary-porous structures is one of the most effective methods of surface cooling, to which essential heat quantity is delivered at high temperatures. The paper deals with heat flux limitation, caused by incapability of core capillary forces to overcome pressure differential in heat carrier circulation shape in such evaporation regimes, when average length of free path of vapour molecule exceeds core cell size. Suggested are theoretical correlations for determination of critical heat flux density and temperature of liquid surface in starting regimes of liquid metal evaporation from rectangular slots and compound cores with screens made of foil with round perforations. The catculative and experimental values of critical heat flux density in starting regimes of sodium evaporation from rectangular slots satisfactorily agree with each other

  16. Annotated bibliography for liquid metal surface tensions of groups III-A, IV-A, and V-A metals

    Murtha, M.J.; Burnet, G.

    1976-04-01

    An annotated bibliography has been prepared which includes summaries of 82 publications dating from 1920 and dealing with the measurement of the surface tensions of Groups III-A, IV-A, and V-A metals in the liquid state. The bibliography is organized by key element investigated, and contains a tabulation of correlations for surface tension as a function of temperature. A brief discussion dealing with variables and methods has been included

  17. Selective Area Modification of Silicon Surface Wettability by Pulsed UV Laser Irradiation in Liquid Environment.

    Liu, Neng; Moumanis, Khalid; Dubowski, Jan J

    2015-11-09

    The wettability of silicon (Si) is one of the important parameters in the technology of surface functionalization of this material and fabrication of biosensing devices. We report on a protocol of using KrF and ArF lasers irradiating Si (001) samples immersed in a liquid environment with low number of pulses and operating at moderately low pulse fluences to induce Si wettability modification. Wafers immersed for up to 4 hr in a 0.01% H2O2/H2O solution did not show measurable change in their initial contact angle (CA) ~75°. However, the 500-pulse KrF and ArF lasers irradiation of such wafers in a microchamber filled with 0.01% H2O2/H2O solution at 250 and 65 mJ/cm(2), respectively, has decreased the CA to near 15°, indicating the formation of a superhydrophilic surface. The formation of OH-terminated Si (001), with no measurable change of the wafer's surface morphology, has been confirmed by X-ray photoelectron spectroscopy and atomic force microscopy measurements. The selective area irradiated samples were then immersed in a biotin-conjugated fluorescein-stained nanospheres solution for 2 hr, resulting in a successful immobilization of the nanospheres in the non-irradiated area. This illustrates the potential of the method for selective area biofunctionalization and fabrication of advanced Si-based biosensing architectures. We also describe a similar protocol of irradiation of wafers immersed in methanol (CH3OH) using ArF laser operating at pulse fluence of 65 mJ/cm(2) and in situ formation of a strongly hydrophobic surface of Si (001) with the CA of 103°. The XPS results indicate ArF laser induced formation of Si-(OCH3)x compounds responsible for the observed hydrophobicity. However, no such compounds were found by XPS on the Si surface irradiated by KrF laser in methanol, demonstrating the inability of the KrF laser to photodissociate methanol and create -OCH3 radicals.

  18. Low dielectric and low surface free energy flexible linear aliphatic alkoxy core bridged bisphenol cyanate ester based POSS nanocomposites

    Muthukaruppan eAlagar

    2013-10-01

    Full Text Available The aim of the present work is to develop a new type of flexible linear aliphatic alkoxy core bridged bisphenol cyanate ester (AECE based POSS nanocomposites for low k applications. The POSS-AECE nanocomposites were developed by incorporating varying weight percentages (0, 5 and 10 wt % of octakis (dimethylsiloxypropylglycidylether silsesquioxane (OG-POSS into cyanate esters. Data from thermal and dielectric studies imply that the POSS reinforced nanocomposite exhibits higher thermal stability and low dielectric value of k=2.4 (10 wt% POSS-AECE4 compared than those of neat AECE. From the contact angle measurement, it is inferred that, the increase in the percentage incorporation of POSS in to AECE, the values of water contact angle was enhanced. Further, the value of surface free energy was lower when compared to that of neat AECE. The molecular level dispersion of POSS into AECE was ascertained from SEM and TEM analyses.

  19. Density, viscosity, and surface tension of synthesis grade imidazolium,pyridinium, and pyrrolidinium based room temperature ionic liquids

    Galan Sanchez, L.M.; Espel, J.R.; Onink, S.A.F.; Meindersma, G.W.; Haan, de A.B.

    2009-01-01

    Density, viscosity, and surface tension data sets of 13 ionic liquids formed by imidazolium, pyridinium, or pyrrolidinium cations paired with dicyanamide (DCA), tetrafluoroborate (BF4¯), thiocyanate (SCN¯),methylsulfate (MeSO4¯), and trifluoroacetate (TFA) anions are reported. The properties were

  20. Report on Microgravity Experiments of Dynamic Surface Deformation Effects on Marangoni Instability in High-Prandtl-Number Liquid Bridges

    Yano, Taishi; Nishino, Koichi; Matsumoto, Satoshi; Ueno, Ichiro; Komiya, Atsuki; Kamotani, Yasuhiro; Imaishi, Nobuyuki

    2018-04-01

    This paper reports an overview and some important results of microgravity experiments called Dynamic Surf, which have been conducted on board the International Space Station from 2013 to 2016. The present project mainly focuses on the relations between the Marangoni instability in a high-Prandtl-number (Pr= 67 and 112) liquid bridge and the dynamic free surface deformation (DSD) as well as the interfacial heat transfer. The dynamic free surface deformations of large-scale liquid bridges (say, for diameters greater than 10 mm) are measured with good accuracy by an optical imaging technique. It is found that there are two causes of the dynamic free surface deformation in the present study: the first is the time-dependent flow behavior inside the liquid bridge due to the Marangoni instability, and the second is the external disturbance due to the residual acceleration of gravity, i.e., g-jitter. The axial distributions of DSD along the free surface are measured for several conditions. The critical parameters for the onset of oscillatory Marangoni convection are also measured for various aspect ratios (i.e., relative height to the diameter) of the liquid bridge and various thermal boundary conditions. The characteristics of DSD and the onset conditions of instability are discussed in this paper.

  1. Volumetric and surface properties of pure ionic liquid n-octyl-pyridinium nitrate and its binary mixture with alcohol

    Jiang Haichao; Wang Jianying; Zhao Fengyun; Qi Guodi; Hu Yongqi

    2012-01-01

    Highlights: ► Density and surface tension of [Ocpy][NO 3 ] were measured. ► Thermal expansion coefficient, molecular volume, and standard entropies were obtained. ► The critical temperature and enthalpy of vaporization were discussed. ► Density and surface tension were measured for (ionic liquid + alcohols) mixtures. ► Excess molar volumes and surface tension deviations were fitted to Redlich–Kister equation. - Abstract: The density and surface tension for pure ionic liquid N-octyl-pyridinium nitrate were measured from (293.15 to 328.15) K. The coefficient of thermal expansion, molecular volume, standard entropies, and lattice energy were calculated from the experimental density values. The critical temperature, surface entropy, surface enthalpy, and enthalpy of vaporization were also studied from the experimental surface tension results. Density and surface tension were also determined for binary mixtures of (N-octyl-pyridinium nitrate + alcohol) (methanol, ethanol, and 1-butanol) systems over the whole composition range at 298.15 K and atmospheric pressure. Excess molar volumes and surface tension deviations for the binary systems have been calculated and were fitted to a Redlich–Kister equation to determine the fitting parameters and the root mean square deviations. The partial molar volume, excess partial molar volume, and apparent molar volume of the component IL and alcohol in the binary mixtures were also discussed.

  2. Studies on micro-structures at vapor-liquid interfaces of film boiling on hot liquid surface at arriving of a shock pressure

    Inoue, Akira; Lee, S. [Tokyo Inst. of Tech. (Japan)

    1998-01-01

    In vapor explosions, a pressure wave (shock wave) plays a fundamental role in the generation, propagation and escalation of the explosion. Transient volume change by rapid heat flow from a high temperature liquid to a low temperature volatile one and phase change generate micro-scale flow and the pressure wave. One of key issues for the vapor explosion is to make clear the mechanism to support the explosive energy release from hot drop to cold liquid. According to our observations by an Image Converter Camera, growth rate of vapor film around a hot tin drop became several times higher than that around a hot Platinum tube at the same conditions when a pressure pulse collapsed the film. The thermally induced fragmentation was followed by the explosive growth rate of the hot drop. In the previous report, we have proposed that the interface instability and fragmentation model in which the fine Taylor instability of vapor-liquid interface at the collapsing and re-growth phase of vapor film and the instability induced by the high pressure spots at the drop surface were assumed. In this study, the behavior of the vapor-liquid interface region at arrival of a pressure pulse was investigated by the CIPRIS code which is able to simulate dynamics of transient multi-phase interface regions. It is compared with the observation results. Through detailed investigations of these results, the mechanisms of the thermal fragmentation of single drop are discussed. (J.P.N.)

  3. Analysis of selected antibiotics in surface freshwater and seawater using direct injection in liquid chromatography electrospray ionization tandem mass spectrometry.

    Bayen, Stéphane; Yi, Xinzhu; Segovia, Elvagris; Zhou, Zhi; Kelly, Barry C

    2014-04-18

    Emerging contaminants such as antibiotics have received recent attention as they have been detected in natural waters and health concerns over potential antibiotic resistance. With the purpose to investigate fast and high-throughput analysis, and eventually the continuous on-line analysis of emerging contaminants, this study presents results on the analysis of seven selected antibiotics (sulfadiazine, sulfamethazine, sulfamerazine, sulfamethoxazole, chloramphenicol, lincomycin, tylosin) in surface freshwater and seawater using direct injection of a small sample volume (20μL) in liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Notably, direct injection of seawater in the LC-ESI-MS/MS was made possible on account of the post-column switch on the system, which allows diversion of salt-containing solutions flushed out of the column to the waste. Mean recoveries based on the isotope dilution method average 95±14% and 96±28% amongst the compounds for spiked freshwater and seawater, respectively. Linearity across six spiking levels was assessed and the response was linear (r(2)>0.99) for all compounds. Direct injection concentrations were compared for real samples to those obtained with the conventional SPE-based analysis and both techniques concurs on the presence/absence and levels of the compounds in real samples. These results suggest direct injection is a reliable method to detect antibiotics in both freshwater and seawater. Method detection limits for the direct injection technique (37pg/L to 226ng/L in freshwater, and from 16pg/to 26ng/L in seawater) are sufficient for a number of environmental applications, for example the fast screening of water samples for ecological risk assessments. In the present study of real samples, this new method allowed for example the positive detection of some compounds (e.g. lincomycin) down to the sub ng/L range. The direct injection method appears to be relatively cheaper and faster

  4. NON-LINEAR TRANSIENT HEAT CONDUCTION ANALYSIS OF INSULATION WALL OF TANK FOR TRANSPORTATION OF LIQUID ALUMINUM

    Miroslav M Živković

    2010-01-01

    Full Text Available This paper deals with transient nonlinear heat conduction through the insulation wall of the tank for transportation of liquid aluminum. Tanks designed for this purpose must satisfy certain requirements regarding temperature of loading and unloading, during transport. Basic theoretical equations are presented, which describe the problem of heat conduction finite element (FE analysis, starting from the differential equation of energy balance, taking into account the initial and boundary conditions of the problem. General 3D problem for heat conduction is considered, from which solutions for two- and one-dimensional heat conduction can be obtained, as special cases. Forming of the finite element matrices using Galerkin method is briefly described. The procedure for solving equations of energy balance is discussed, by methods of resolving iterative processes of nonlinear transient heat conduction. Solution of this problem illustrates possibilities of PAK-T software package, such as materials properties, given as tabular data, or analytical functions. Software also offers the possibility to solve nonlinear and transient problems with incremental methods. Obtained results for different thicknesses of the tank wall insulation materials enable its comparison in regards to given conditions

  5. Estimation of surface elasticity by the thickness change of liquid film and its correlation with foam stability

    Lim, Jung Ryoul; Park, Jai Koo [Hanyang University, Seoul (Korea, Republic of)

    1996-04-30

    The relationship between foam stability and surface elasticity by the thickness change of liquid film was investigated. Foam stability was measured by draining liquid volume and decreasing gas volume as a function of time. Foam was formed by the fixed gas-injection the surfactant aqueous solution of different concentration. The used surfactants were sodium lauryl sulfate, hexadecane sulfonic acid sodium salt, and octane sulfonic acid sodium salt. Thickness of liquid film was estimated by using the volume ratio of liquid to gas in foam and surface elasticity of lamella was calculated by the surface tension and adsorbed amount. The thinning of liquid film is due to the combined effects of gravity and capillary suction, it would be ruptured at the minimum of lamella thickness which is called critical thickness. The lamella thickness of bubble which was formed at CMC(critical micelle concentration) was very thin. In the case of sodium lauryl sulfate, the thinning of lamella was continued in the range of measurement. The critical thicknesses of octane sulfonic acid sodium salt solution, hexadecane sulfonic acid sodium salt solution were determined to 0.479{approx}0.316, 0.209{approx}0.200 {mu}m, respectively. It was found that the tendency for foam stability was similar to that of lamella thickness. It was considered that foam which was formed at CMC has very high stability, and the order of foam stability for surfactant aqueous solution was sodium lauryl sulfate > hexadecane sulfonic acid sodium salt > octane sulfonic acid sodium salt. These results was considered that the lamella-rupturing was retarded by the relatively high surface elasticity of lamella. The saturated adsorption of surfactant was determined to 3.25{approx}3.04 * 10{sup -6} mol/m{sup 2} and the surface elasticity of lamella was also determined to 3{approx}56 mN/m. (author). 19 refs., 1 tab., 11 figs.

  6. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors.

    Chen, R; Hahn, C E W; Farmery, A D

    2012-08-15

    The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Non-linear effects of initial melt temperatures on microstructures and mechanical properties during quenching process of liquid Cu{sub 46}Zr{sub 54} alloy

    Mo, Yun-Fei [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Liu, Rang-Su, E-mail: liurangsu@sina.com [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Tian, Ze-An; Liang, Yong-Chao [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Zhang, Hai-Tao [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Department of Electronic and Communication Engineering, Changsha University, Changsha 410003 (China); Hou, Zhao-Yang [Department of Applied Physics, Chang’an University, Xi’an 710064 (China); Liu, Hai-Rong [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Zhang, Ai-long [College of Physics and Electronics, Hunan University of Arts and Science, Changde 415000 (China); Zhou, Li-Li [Department of Information Engineering, Gannan Medical University, Ganzhou 341000 (China); Peng, Ping [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Xie, Zhong [School of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China)

    2015-05-15

    A MD simulation of liquid Cu{sub 46}Zr{sub 54} alloys has been performed for understanding the effects of initial melt temperatures on the microstructural evolution and mechanical properties during quenching process. By using several microstructural analyzing methods, it is found that the icosahedral and defective icosahedral clusters play a key role in the microstructure transition. All the final solidification structures obtained at different initial melt temperatures are of amorphous structures, and their structural and mechanical properties are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. Especially, there exists a best initial melt temperature, from which the glass configuration possesses the highest packing density, the optimal elastic constants, and the smaller extent of structural softening under deforming.

  8. Ab initio study of the atomic motion in liquid metal surfaces: comparison with Lennard-Jones systems

    Gonzalez, Luis E; Gonzalez, David J

    2006-01-01

    It is established that liquid metals exhibit surface layering at the liquid-vapour interface, while dielectric simple systems, like those interacting through Lennard-Jones potentials, show a monotonic decay from the liquid density to that of the vapour. First principles molecular dynamics simulations of the free liquid surface of several liquid metals (Li, Na, K, Rb, Cs, Mg, Ba, Al, Tl and Si), and the Na 3 K 7 alloy near their triple points have been performed in order to study the atomic motion at the interface, mainly at the outer layer. Comparison with the results of classical molecular dynamics simulations of a Lennard-Jones system shows interesting differences and similarities. The probability distribution function of the time of residence in a layer shows a peak at very short times and a long-lasting tail. The mean residence time in a layer increases when approaching the interfacial region, slightly in the Lennard-Jones system but strongly in the metallic systems. The motion within the layers, parallel to the interface, can be described as diffusion enhanced (strongly in the case of the outermost layer) with respect to the bulk, for both types of systems, despite its reduced dimensionality in metals

  9. Measurements of dose on build-up region, surface dose and outlet dose by a 10 MeV Linear accelerator

    Souza, C.N. de; Khoury, H.J.

    1987-01-01

    The dose on buildup region and the surface dose for a 10 MeV photon beam from a linear acelerator (Mevatrom-74, Siemens) is studied. The influence of the tray of polycarbonate on the surface dose is determined. (M.A.C.) [pt

  10. Analysis of antithyroid drugs in surface water by using liquid chromatography-tandem mass spectrometry.

    Pérez-Fernández, Virginia; Marchese, Stefano; Gentili, Alessandra; García, María Ángeles; Curini, Roberta; Caretti, Fulvia; Perret, Daniela

    2014-11-07

    This paper describes development and validation of a new method for the simultaneous determination of six antithyroid drugs (ATDs) in surface waters by using liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS). Target compounds include two ATD classes: thiouracil derivatives (thiouracil (TU), methyl-thiouracil (MTU), propyl-thiouracil (PTU), phenyl-thiouracil (PhTU)) and imidazole derivatives (tapazole (TAP), and mercaptobenzimidazole (MBI)). Sensitivity and selectivity of the LC-multiple reaction monitoring (MRM) analysis allowed applying a simple pre-concentration procedure and "shooting" the concentrated sample into the LC-MS/MS system without any other treatment. Recoveries were higher than 75% for all analytes. Intra-day precision and inter-day precision, calculated as relative standard deviation (RSD), were below 19 and 22%, respectively. Limits of detection (LODs) ranged from 0.05 to 0.25 μg/L; limits of quantitation (LOQs) varied between 0.15 and 0.75 μg/L. The validated method was successfully applied to the analysis of ATD residues in surface water samples collected from the Tiber River basin and three lakes of Lazio (central Italy). The analytes were quantified based on matrix-matched calibration curves with mercaptobenzimidazole-d4 (MBI-d4) as the internal standard (IS). The most widespread compound was TAP, one of the most common ATDs used in human medicine, but also TU and MBI were often detected in the analysed samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Simultaneous identification and quantification of tetrodotoxin in fresh pufferfish and pufferfish-based products using immunoaffinity columns and liquid chromatography/quadrupole-linear ion trap mass spectrometry

    Guo, Mengmeng; Wu, Haiyan; Jiang, Tao; Tan, Zhijun; Zhao, Chunxia; Zheng, Guanchao; Li, Zhaoxin; Zhai, Yuxiu

    2017-07-01

    In this study, we established a comprehensive method for simultaneous identification and quantification of tetrodotoxin (TTX) in fresh pufferfish tissues and pufferfish-based products using liquid chromatography/quadrupole-linear ion trap mass spectrometry (LC-QqLIT-MS). TTX was extracted by 1% acetic acid-methanol, and most of the lipids were then removed by freezing lipid precipitation, followed by purification and concentration using immunoaffinity columns (IACs). Matrix effects were substantially reduced due to the high specificity of the IACs, and thus, background interference was avoided. Quantitation analysis was therefore performed using an external calibration curve with standards prepared in mobile phase. The method was evaluated by fortifying samples at 1, 10, and 100 ng/g, respectively, and the recoveries ranged from 75.8%-107%, with a relative standard deviation of less than 15%. The TTX calibration curves were linear over the range of 1-1 000 μg/L, with a detection limit of 0.3 ng/g and a quantification limit of 1 ng/g. Using this method, samples can be further analyzed using an information-dependent acquisition (IDA) experiment, in the positive mode, from a single liquid chromatography-tandem mass spectrometry injection, which can provide an extra level of confirmation by matching the full product ion spectra acquired for a standard sample with those from an enhanced product ion (EPI) library. The scheduled multiple reaction monitoring method enabled TTX to be screened for, and TTX was positively identified using the IDA and EPI spectra. This method was successfully applied to analyze a total of 206 samples of fresh pufferfish tissues and pufferfish-based products. The results from this study show that the proposed method can be used to quantify and identify TTX in a single run with excellent sensitivity and reproducibility, and is suitable for the analysis of complex matrix pufferfish samples.

  12. Linear correlation between fractal dimension of surface EMG signal from Rectus Femoris and height of vertical jump

    Ancillao, Andrea; Galli, Manuela; Rigoldi, Chiara; Albertini, Giorgio

    2014-01-01

    Fractal dimension was demonstrated to be able to characterize the complexity of biological signals. The EMG time series are well known to have a complex behavior and some other studies already tried to characterize these signals by their fractal dimension. This paper is aimed at studying the correlation between the fractal dimension of surface EMG signal recorded over Rectus Femoris muscles during a vertical jump and the height reached in that jump. Healthy subjects performed vertical jumps at different heights. Surface EMG from Rectus Femoris was recorded and the height of each jump was measured by an optoelectronic motion capture system. Fractal dimension of sEMG was computed and the correlation between fractal dimension and eight of the jump was studied. Linear regression analysis showed a very high correlation coefficient between the fractal dimension and the height of the jump for all the subjects. The results of this study show that the fractal dimension is able to characterize the EMG signal and it can be related to the performance of the jump. Fractal dimension is therefore an useful tool for EMG interpretation

  13. Exopolysaccharide from surface-liquid culture of Clonostachys rosea originates from autolysis of the biomass.

    Viccini, Graciele; Martinelli, Thalita Romano; Cognialli, Regielly Caroline Raimundo; de Faria, Rodrigo Otávio; Carbonero, Elaine Rosechrer; Sassaki, Guilherme Lanzi; Mitchell, David Alexander

    2009-04-01

    We describe the purification and chemical characterization of galactomannans that appear both in the biomass and the culture broth during surface-liquid culture of the fungus Clonostachys rosea, a common facultative saprophyte that has potential to be used as a biological control agent against several plant pathogenic fungi, insects and nematodes. The galactomannans from both sources had comparable ratios of Man, Gal and Glc and the similarity were confirmed by (1)H, (13)C NMR, HMQC, and COSY spectra. We propose that the galactomannan in the culture broth originates from autolysis of the biomass, based not only on the similarity that it has with the galactomannan extracted from the biomass but also on the fact that its concentration increased rapidly after glucose depletion from the medium, when biomass concentration was falling. Polysaccharides from C. rosea have not previously been characterized; we show that the characteristics of the galactomannans are consistent with those that have been reported for other members of the Bionectriaceae, the family to which C. rosea belongs.

  14. 3He impurity states on liquid 4He: From thin films to the bulk surface

    Pavloff, N.; Treiner, J.

    1991-01-01

    The structure of the states accessible to 3 He impurities in films of liquid 4 He on Nuclepore is investigated using a density functional approach with a finite-range effective interaction. In thick films, one finds that the two lowest states are localized in the surface region. For thinner films, the variation with film thickness of the first three states results from a delicate balance between the attractive tail of the substrate potential and the quantum finite-size effect. The existence of states localized in the second layer of the films is discussed. The energy difference between the ground state and the first excited state agrees with the recent determination of Higley, Sprague, and Hallock from magnetization measurements. The effective mass of the ground state has a structure similar to that obtained by Krotscheck and coworkers and exhibits a maximum for a 4 He coverage of 0.15 angstrom -2 , in agreement with the data of Gasparini and coworkers. A similar behavior is predicted for the effective mass of the first, second, and third excited states. The structure of the energy spectrum may also explain former results on third-sound measurements in thin mixture films by Laheurte et al. and by Hallock

  15. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  16. Temperature-triggered micellization of block copolymers on an ionic liquid surface.

    Lu, Haiyun; Akgun, Bulent; Wei, Xinyu; Li, Le; Satija, Sushil K; Russell, Thomas P

    2011-10-18

    In situ neutron reflectivity was used to study thermally induced structural changes of the lamellae-forming polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films floating on the surface of an ionic liquid (IL). The IL, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, is a nonsolvent for PS and a temperature-tunable solvent for P2VP, and, as such, micellization can be induced at the air-IL interface by changing the temperature. Transmission electron microscopy and scanning force microscopy were used to investigate the resultant morphologies of the micellar films. It was found that highly ordered nanostructures consisting of spherical micelles with a PS core surrounded by a P2VP corona were produced. In addition, bilayer films of PS homopolymer on top of a PS-b-P2VP layer also underwent micellization with increasing temperature but the micellization was strongly dependent on the thickness of the PS and PS-b-P2VP layers. © 2011 American Chemical Society

  17. Influence of surface charge on the transport characteristics of nanowire-field effect transistors in liquid environments

    Nozaki, Daijiro, E-mail: daijiro.nozaki@gmail.com, E-mail: research@nano.tu-dresden.de [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Kunstmann, Jens [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Theoretical Chemistry, Department of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden (Germany); Zörgiebel, Felix [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden (cfAED), TU Dresden, 01062 Dresden (Germany); Cuniberti, Gianaurelio [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden (cfAED), TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science (DCCMS), TU Dresden, 01062 Dresden (Germany)

    2015-05-18

    One dimensional nanowire field effect transistors (NW-FETs) are a promising platform for sensor applications. The transport characteristics of NW-FETs are strongly modified in liquid environment due to the charging of surface functional groups accompanied with protonation or deprotonation. In order to investigate the influence of surface charges and ionic concentrations on the transport characteristics of Schottky-barrier NW-FETs, we have combined the modified Poisson-Boltzmann theory with the Landauer-Büttiker transport formalism. For a typical device, the model is able to capture the reduction of the sensitivity of NW-FETs in ionic solutions due to the screening from counter ions as well as a local gating from surface functional groups. Our approach allows to model, to investigate, and to optimize realistic Schottky-barrier NW-FET devices in liquid environment.

  18. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    Gusain, Rashi [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India); Kokufu, Sho [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Bakshi, Paramjeet S. [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Khatri, Om P., E-mail: opkhatri@iip.res.in [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India)

    2016-02-28

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF{sub 6}) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF{sub 6} thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF{sub 6} thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF{sub 6} thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF{sub 6} thin film, the covalent interaction between ImPF{sub 6} ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  19. Monolayer self-assembly at liquid-solid interfaces: chirality and electronic properties of molecules at surfaces

    Amabilino, David B; Gomar-Nadal, Elba; Veciana, Jaume; Rovira, Concepcio; Iavicoli, Patrizia; PuigmartI-Luis, Josep; Feyter, Steven De; Abdel-Mottaleb, Mohamed M; Mamdouh, Wael; Psychogyiopoulou, Krystallia; Xu Hong; Lazzaroni, Roberto; Linares, Mathieu; Minoia, Andrea

    2008-01-01

    The spontaneous formation of supramolecular assemblies at the boundary between solids and liquids is a process which encompasses a variety of systems with diverse characteristics: chemisorbed systems in which very strong and weakly reversible bonds govern the assembly and physisorbed aggregates which are dynamic thanks to the weaker interactions between adsorbate and surface. Here we review the interest and advances in the study of chiral systems at the liquid-solid interface, and also the application of this configuration for the study of systems of interest in molecular electronics, self-assembled from the bottom up

  20. Investigations on the propagation of free surface boiling in a vertical superheated liquid column

    Das, P.K.; Bhat, G.S.; Arakeri, V.H.

    1987-04-01

    Some experimental studies on boiling propagation in a suddenly depressurized superheated vertical liquid column are reported. The propagation velocity of this phase change has been measured using an optical method. This velocity is strongly dependent on liquid superheat, liquid purity and test section size. The measured velocities of less than 5 m s/sup -1/ are significantly lower than the sonic velocity. Present observations suggest that the dominant mechanism for boiling propagation is convection.