Inverse Modelling Problems in Linear Algebra Undergraduate Courses
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
Alkhalifah, Tariq Ali
2012-09-25
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Alkhalifah, Tariq Ali; Choi, Yun Seok
2012-01-01
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Fukuda, J.; Johnson, K. M.
2009-12-01
Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress
Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H
2016-05-01
The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.
Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses
Martinez-Luaces, Victor
2009-01-01
In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…
Fitting the two-compartment model in DCE-MRI by linear inversion.
Flouri, Dimitra; Lesnic, Daniel; Sourbron, Steven P
2016-09-01
Model fitting of dynamic contrast-enhanced-magnetic resonance imaging-MRI data with nonlinear least squares (NLLS) methods is slow and may be biased by the choice of initial values. The aim of this study was to develop and evaluate a linear least squares (LLS) method to fit the two-compartment exchange and -filtration models. A second-order linear differential equation for the measured concentrations was derived where model parameters act as coefficients. Simulations of normal and pathological data were performed to determine calculation time, accuracy and precision under different noise levels and temporal resolutions. Performance of the LLS was evaluated by comparison against the NLLS. The LLS method is about 200 times faster, which reduces the calculation times for a 256 × 256 MR slice from 9 min to 3 s. For ideal data with low noise and high temporal resolution the LLS and NLLS were equally accurate and precise. The LLS was more accurate and precise than the NLLS at low temporal resolution, but less accurate at high noise levels. The data show that the LLS leads to a significant reduction in calculation times, and more reliable results at low noise levels. At higher noise levels the LLS becomes exceedingly inaccurate compared to the NLLS, but this may be improved using a suitable weighting strategy. Magn Reson Med 76:998-1006, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
An Entropic Estimator for Linear Inverse Problems
Directory of Open Access Journals (Sweden)
Amos Golan
2012-05-01
Full Text Available In this paper we examine an Information-Theoretic method for solving noisy linear inverse estimation problems which encompasses under a single framework a whole class of estimation methods. Under this framework, the prior information about the unknown parameters (when such information exists, and constraints on the parameters can be incorporated in the statement of the problem. The method builds on the basics of the maximum entropy principle and consists of transforming the original problem into an estimation of a probability density on an appropriate space naturally associated with the statement of the problem. This estimation method is generic in the sense that it provides a framework for analyzing non-normal models, it is easy to implement and is suitable for all types of inverse problems such as small and or ill-conditioned, noisy data. First order approximation, large sample properties and convergence in distribution are developed as well. Analytical examples, statistics for model comparisons and evaluations, that are inherent to this method, are discussed and complemented with explicit examples.
Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Faggiani Dias, D.; Subramanian, A. C.; Zanna, L.; Miller, A. J.
2017-12-01
Sea surface temperature (SST) in the Pacific sector is well known to vary on time scales from seasonal to decadal, and the ability to predict these SST fluctuations has many societal and economical benefits. Therefore, we use a suite of statistical linear inverse models (LIMs) to understand the remote and local SST variability that influences SST predictions over the North Pacific region and further improve our understanding on how the long-observed SST record can help better guide multi-model ensemble forecasts. Observed monthly SST anomalies in the Pacific sector (between 15oS and 60oN) are used to construct different regional LIMs for seasonal to decadal prediction. The forecast skills of the LIMs are compared to that from two operational forecast systems in the North American Multi-Model Ensemble (NMME) revealing that the LIM has better skill in the Northeastern Pacific than NMME models. The LIM is also found to have comparable forecast skill for SST in the Tropical Pacific with NMME models. This skill, however, is highly dependent on the initialization month, with forecasts initialized during the summer having better skill than those initialized during the winter. The forecast skill with LIM is also influenced by the verification period utilized to make the predictions, likely due to the changing character of El Niño in the 20th century. The North Pacific seems to be a source of predictability for the Tropics on seasonal to interannual time scales, while the Tropics act to worsen the skill for the forecast in the North Pacific. The data were also bandpassed into seasonal, interannual and decadal time scales to identify the relationships between time scales using the structure of the propagator matrix. For the decadal component, this coupling occurs the other way around: Tropics seem to be a source of predictability for the Extratropics, but the Extratropics don't improve the predictability for the Tropics. These results indicate the importance of temporal
International Nuclear Information System (INIS)
Spurr, Robert; Stamnes, Knut; Eide, Hans; Li Wei; Zhang Kexin; Stamnes, Jakob
2007-01-01
In this paper and the sequel, we investigate the application of classic inverse methods based on iterative least-squares cost-function minimization to the simultaneous retrieval of aerosol and ocean properties from visible and near infrared spectral radiance measurements such as those from the SeaWiFS and MODIS instruments. Radiance measurements at the satellite are simulated directly using an accurate coupled atmosphere-ocean-discrete-ordinate radiative transfer (CAO-DISORT) code as the main component of the forward model. For this kind of cost-function inverse problem, we require the forward model to generate weighting functions (radiance partial derivatives) with respect to the aerosol and marine properties to be retrieved, and to other model parameters which are sources of error in the retrievals. In this paper, we report on the linearization of the CAO-DISORT model. This linearization provides a complete analytic differentiation of the coupled-media radiative transfer theory, and it allows the model to generate analytic weighting functions for any atmospheric or marine parameter. For high solar zenith angles, we give an implementation of the pseudo-spherical (P-S) approach to solar beam attenuation in the atmosphere in the linearized model. We summarize a number of performance enhancements such as the use of an exact single-scattering calculation to improve accuracy. We derive inherent optical property inputs for the linearized CAO-DISORT code for a simple 2-parameter bio-optical model for the marine environment coupled to a 2-parameter bimodal atmospheric aerosol medium
Inverse problems in linear transport theory
International Nuclear Information System (INIS)
Dressler, K.
1988-01-01
Inverse problems for a class of linear kinetic equations are investigated. The aim is to identify the scattering kernel of a transport equation (corresponding to the structure of a background medium) by observing the 'albedo' part of the solution operator for the corresponding direct initial boundary value problem. This means to get information on some integral operator in an integrodifferential equation through on overdetermined boundary value problem. We first derive a constructive method for solving direct halfspace problems and prove a new factorization theorem for the solutions. Using this result we investigate stationary inverse problems with respect to well posedness (e.g. reduce them to classical ill-posed problems, such as integral equations of first kind). In the time-dependent case we show that a quite general inverse problem is well posed and solve it constructively. (orig.)
Microlocal analysis of a seismic linearized inverse problem
Stolk, C.C.
1999-01-01
The seismic inverse problem is to determine the wavespeed c x in the interior of a medium from measurements at the boundary In this paper we analyze the linearized inverse problem in general acoustic media The problem is to nd a left inverse of the linearized forward map F or equivalently to nd the
Saloranta, Tuomo M; Andersen, Tom; Naes, Kristoffer
2006-01-01
Rate constant bioaccumulation models are applied to simulate the flow of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the coastal marine food web of Frierfjorden, a contaminated fjord in southern Norway. We apply two different ways to parameterize the rate constants in the model, global sensitivity analysis of the models using Extended Fourier Amplitude Sensitivity Test (Extended FAST) method, as well as results from general linear system theory, in order to obtain a more thorough insight to the system's behavior and to the flow pathways of the PCDD/Fs. We calibrate our models against observed body concentrations of PCDD/Fs in the food web of Frierfjorden. Differences between the predictions from the two models (using the same forcing and parameter values) are of the same magnitude as their individual deviations from observations, and the models can be said to perform about equally well in our case. Sensitivity analysis indicates that the success or failure of the models in predicting the PCDD/F concentrations in the food web organisms highly depends on the adequate estimation of the truly dissolved concentrations in water and sediment pore water. We discuss the pros and cons of such models in understanding and estimating the present and future concentrations and bioaccumulation of persistent organic pollutants in aquatic food webs.
Energy Technology Data Exchange (ETDEWEB)
Lebrun, D.
1997-05-22
The aim of the dissertation is the linearized inversion of multicomponent seismic data for 3D elastic horizontally stratified media, using Born approximation. A Jacobian matrix is constructed; it will be used to model seismic data from elastic parameters. The inversion technique, relying on single value decomposition (SVD) of the Jacobian matrix, is described. Next, the resolution of inverted elastic parameters is quantitatively studies. A first use of the technique is shown in the frame of an evaluation of a sea bottom acquisition (synthetic data). Finally, a real data set acquired with conventional marine technique is inverted. (author) 70 refs.
Ronchin, Erika; Masterlark, Timothy; Dawson, John; Saunders, Steve; Martì Molist, Joan
2017-06-01
We test an innovative inversion scheme using Green's functions from an array of pressure sources embedded in finite-element method (FEM) models to image, without assuming an a-priori geometry, the composite and complex shape of a volcano deformation source. We invert interferometric synthetic aperture radar (InSAR) data to estimate the pressurization and shape of the magma reservoir of Rabaul caldera, Papua New Guinea. The results image the extended shallow magmatic system responsible for a broad and long-term subsidence of the caldera between 2007 February and 2010 December. Elastic FEM solutions are integrated into the regularized linear inversion of InSAR data of volcano surface displacements in order to obtain a 3-D image of the source of deformation. The Green's function matrix is constructed from a library of forward line-of-sight displacement solutions for a grid of cubic elementary deformation sources. Each source is sequentially generated by removing the corresponding cubic elements from a common meshed domain and simulating the injection of a fluid mass flux into the cavity, which results in a pressurization and volumetric change of the fluid-filled cavity. The use of a single mesh for the generation of all FEM models avoids the computationally expensive process of non-linear inversion and remeshing a variable geometry domain. Without assuming an a-priori source geometry other than the configuration of the 3-D grid that generates the library of Green's functions, the geodetic data dictate the geometry of the magma reservoir as a 3-D distribution of pressure (or flux of magma) within the source array. The inversion of InSAR data of Rabaul caldera shows a distribution of interconnected sources forming an amorphous, shallow magmatic system elongated under two opposite sides of the caldera. The marginal areas at the sides of the imaged magmatic system are the possible feeding reservoirs of the ongoing Tavurvur volcano eruption of andesitic products on the
LinvPy : a Python package for linear inverse problems
Beaud, Guillaume François Paul
2016-01-01
The goal of this project is to make a Python package including the tau-estimator algorithm to solve linear inverse problems. The package must be distributed, well documented, easy to use and easy to extend for future developers.
MODEL SELECTION FOR SPECTROPOLARIMETRIC INVERSIONS
International Nuclear Information System (INIS)
Asensio Ramos, A.; Manso Sainz, R.; Martínez González, M. J.; Socas-Navarro, H.; Viticchié, B.; Orozco Suárez, D.
2012-01-01
Inferring magnetic and thermodynamic information from spectropolarimetric observations relies on the assumption of a parameterized model atmosphere whose parameters are tuned by comparison with observations. Often, the choice of the underlying atmospheric model is based on subjective reasons. In other cases, complex models are chosen based on objective reasons (for instance, the necessity to explain asymmetries in the Stokes profiles) but it is not clear what degree of complexity is needed. The lack of an objective way of comparing models has, sometimes, led to opposing views of the solar magnetism because the inferred physical scenarios are essentially different. We present the first quantitative model comparison based on the computation of the Bayesian evidence ratios for spectropolarimetric observations. Our results show that there is not a single model appropriate for all profiles simultaneously. Data with moderate signal-to-noise ratios (S/Ns) favor models without gradients along the line of sight. If the observations show clear circular and linear polarization signals above the noise level, models with gradients along the line are preferred. As a general rule, observations with large S/Ns favor more complex models. We demonstrate that the evidence ratios correlate well with simple proxies. Therefore, we propose to calculate these proxies when carrying out standard least-squares inversions to allow for model comparison in the future.
Adaptive regularization of noisy linear inverse problems
DEFF Research Database (Denmark)
Hansen, Lars Kai; Madsen, Kristoffer Hougaard; Lehn-Schiøler, Tue
2006-01-01
In the Bayesian modeling framework there is a close relation between regularization and the prior distribution over parameters. For prior distributions in the exponential family, we show that the optimal hyper-parameter, i.e., the optimal strength of regularization, satisfies a simple relation: T......: The expectation of the regularization function, i.e., takes the same value in the posterior and prior distribution. We present three examples: two simulations, and application in fMRI neuroimaging....
Directory of Open Access Journals (Sweden)
Tanwiwat Jaikuna
2017-02-01
Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel
El-Gebeily, M.; Yushau, B.
2008-01-01
In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…
The possibilities of linearized inversion of internally scattered seismic data
Aldawood, Ali; Alkhalifah, Tariq Ali; Hoteit, Ibrahim; Zuberi, Mohammad; Turkiyyah, George
2014-01-01
Least-square migration is an iterative linearized inversion scheme that tends to suppress the migration artifacts and enhance the spatial resolution of the migrated image. However, standard least-square migration, based on imaging single scattering energy, may not be able to enhance events that are mainly illuminated by internal multiples such as vertical and nearly vertical faults. To alleviate this problem, we propose a linearized inversion framework to migrate internally multiply scattered energy. We applied this least-square migration of internal multiples to image a vertical fault. Tests on synthetic data demonstrate the ability of the proposed method to resolve a vertical fault plane that is poorly resolved by least-square imaging using primaries only. We, also, demonstrate the robustness of the proposed scheme in the presence of white Gaussian random observational noise and in the case of imaging the fault plane using inaccurate migration velocities.
The possibilities of linearized inversion of internally scattered seismic data
Aldawood, Ali
2014-08-05
Least-square migration is an iterative linearized inversion scheme that tends to suppress the migration artifacts and enhance the spatial resolution of the migrated image. However, standard least-square migration, based on imaging single scattering energy, may not be able to enhance events that are mainly illuminated by internal multiples such as vertical and nearly vertical faults. To alleviate this problem, we propose a linearized inversion framework to migrate internally multiply scattered energy. We applied this least-square migration of internal multiples to image a vertical fault. Tests on synthetic data demonstrate the ability of the proposed method to resolve a vertical fault plane that is poorly resolved by least-square imaging using primaries only. We, also, demonstrate the robustness of the proposed scheme in the presence of white Gaussian random observational noise and in the case of imaging the fault plane using inaccurate migration velocities.
A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems
Czech Academy of Sciences Publication Activity Database
Benzi, M.; Tůma, Miroslav
1998-01-01
Roč. 19, č. 3 (1998), s. 968-994 ISSN 1064-8275 R&D Projects: GA ČR GA201/93/0067; GA AV ČR IAA230401 Keywords : large sparse systems * interative methods * preconditioning * approximate inverse * sparse linear systems * sparse matrices * incomplete factorizations * conjugate gradient -type methods Subject RIV: BA - General Mathematics Impact factor: 1.378, year: 1998
Inverse and Predictive Modeling
Energy Technology Data Exchange (ETDEWEB)
Syracuse, Ellen Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-27
The LANL Seismo-Acoustic team has a strong capability in developing data-driven models that accurately predict a variety of observations. These models range from the simple – one-dimensional models that are constrained by a single dataset and can be used for quick and efficient predictions – to the complex – multidimensional models that are constrained by several types of data and result in more accurate predictions. Team members typically build models of geophysical characteristics of Earth and source distributions at scales of 1 to 1000s of km, the techniques used are applicable for other types of physical characteristics at an even greater range of scales. The following cases provide a snapshot of some of the modeling work done by the Seismo- Acoustic team at LANL.
Faraway, Julian J
2014-01-01
A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.New to the Second EditionReorganiz
Foundations of linear and generalized linear models
Agresti, Alan
2015-01-01
A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,
A Projected Non-linear Conjugate Gradient Method for Interactive Inverse Kinematics
DEFF Research Database (Denmark)
Engell-Nørregård, Morten; Erleben, Kenny
2009-01-01
Inverse kinematics is the problem of posing an articulated figure to obtain a wanted goal, without regarding inertia and forces. Joint limits are modeled as bounds on individual degrees of freedom, leading to a box-constrained optimization problem. We present A projected Non-linear Conjugate...... Gradient optimization method suitable for box-constrained optimization problems for inverse kinematics. We show application on inverse kinematics positioning of a human figure. Performance is measured and compared to a traditional Jacobian Transpose method. Visual quality of the developed method...
Linearized versus non-linear inverse methods for seismic localization of underground sources
DEFF Research Database (Denmark)
Oh, Geok Lian; Jacobsen, Finn
2013-01-01
The problem of localization of underground sources from seismic measurements detected by several geophones located on the ground surface is addressed. Two main approaches to the solution of the problem are considered: a beamforming approach that is derived from the linearized inversion problem, a...
Modelling Loudspeaker Non-Linearities
DEFF Research Database (Denmark)
Agerkvist, Finn T.
2007-01-01
This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...
DEFF Research Database (Denmark)
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....
Inverse chaos synchronization in linearly and nonlinearly coupled systems with multiple time-delays
International Nuclear Information System (INIS)
Shahverdiev, E.M.; Hashimov, R.H.; Nuriev, R.A.; Hashimova, L.H.; Huseynova, E.M.; Shore, K.A.
2005-04-01
We report on inverse chaos synchronization between two unidirectionally linearly and nonlinearly coupled chaotic systems with multiple time-delays and find the existence and stability conditions for different synchronization regimes. We also study the effect of parameter mismatches on synchonization regimes. The method is tested on the famous Ikeda model. Numerical simulations fully support the analytical approach. (author)
Point source reconstruction principle of linear inverse problems
International Nuclear Information System (INIS)
Terazono, Yasushi; Matani, Ayumu; Fujimaki, Norio; Murata, Tsutomu
2010-01-01
Exact point source reconstruction for underdetermined linear inverse problems with a block-wise structure was studied. In a block-wise problem, elements of a source vector are partitioned into blocks. Accordingly, a leadfield matrix, which represents the forward observation process, is also partitioned into blocks. A point source is a source having only one nonzero block. An example of such a problem is current distribution estimation in electroencephalography and magnetoencephalography, where a source vector represents a vector field and a point source represents a single current dipole. In this study, the block-wise norm, a block-wise extension of the l p -norm, was defined as the family of cost functions of the inverse method. The main result is that a set of three conditions was found to be necessary and sufficient for block-wise norm minimization to ensure exact point source reconstruction for any leadfield matrix that admit such reconstruction. The block-wise norm that satisfies the conditions is the sum of the cost of all the observations of source blocks, or in other words, the block-wisely extended leadfield-weighted l 1 -norm. Additional results are that minimization of such a norm always provides block-wisely sparse solutions and that its solutions form cones in source space
DEFF Research Database (Denmark)
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....... of these criteria are widely used ones, while the remaining four are ones derived from the H-principle of mathematical modeling. Many examples from practice show that the criteria derived from the H-principle function better than the known and popular criteria for the number of components. We shall briefly review...
Inverse kinematics of a dual linear actuator pitch/roll heliostat
Freeman, Joshua; Shankar, Balakrishnan; Sundaram, Ganesh
2017-06-01
This work presents a simple, computationally efficient inverse kinematics solution for a pitch/roll heliostat using two linear actuators. The heliostat design and kinematics have been developed, modeled and tested using computer simulation software. A physical heliostat prototype was fabricated to validate the theoretical computations and data. Pitch/roll heliostats have numerous advantages including reduced cost potential and reduced space requirements, with a primary disadvantage being the significantly more complicated kinematics, which are solved here. Novel methods are applied to simplify the inverse kinematics problem which could be applied to other similar problems.
Non linear viscoelastic models
DEFF Research Database (Denmark)
Agerkvist, Finn T.
2011-01-01
Viscoelastic eects are often present in loudspeaker suspensions, this can be seen in the displacement transfer function which often shows a frequency dependent value below the resonance frequency. In this paper nonlinear versions of the standard linear solid model (SLS) are investigated....... The simulations show that the nonlinear version of the Maxwell SLS model can result in a time dependent small signal stiness while the Kelvin Voight version does not....
Approximate inverse preconditioning of iterative methods for nonsymmetric linear systems
Energy Technology Data Exchange (ETDEWEB)
Benzi, M. [Universita di Bologna (Italy); Tuma, M. [Inst. of Computer Sciences, Prague (Czech Republic)
1996-12-31
A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods.
Linearized inversion frameworks toward high-resolution seismic imaging
Aldawood, Ali
2016-09-01
internally multiply scattered seismic waves to obtain highly resolved images delineating vertical faults that are otherwise not easily imaged by primaries. Seismic interferometry is conventionally based on the cross-correlation and convolution of seismic traces to transform seismic data from one acquisition geometry to another. The conventional interferometric transformation yields virtual data that suffers from low temporal resolution, wavelet distortion, and correlation/convolution artifacts. I therefore incorporate a least-squares datuming technique to interferometrically transform vertical-seismic-profile surface-related multiples to surface-seismic-profile primaries. This yields redatumed data with high temporal resolution and less artifacts, which are subsequently imaged to obtain highly resolved subsurface images. Tests on synthetic examples demonstrate the efficiency of the proposed techniques, yielding highly resolved migrated sections compared with images obtained by imaging conventionally redatumed data. I further advance the recently developed cost-effective Generalized Interferometric Multiple Imaging procedure, which aims to not only image first but also higher-order multiples as well. I formulate this procedure as a linearized inversion framework and solve it as a least-squares problem. Tests of the least-squares Generalized Interferometric Multiple imaging framework on synthetic datasets and demonstrate that it could provide highly resolved migrated images and delineate vertical fault planes compared with the standard procedure. The results support the assertion that this linearized inversion framework can illuminate subsurface zones that are mainly illuminated by internally scattered energy.
The linearized inversion of the generalized interferometric multiple imaging
Aldawood, Ali
2016-09-06
The generalized interferometric multiple imaging (GIMI) procedure can be used to image duplex waves and other higher order internal multiples. Imaging duplex waves could help illuminate subsurface zones that are not easily illuminated by primaries such as vertical and nearly vertical fault planes, and salt flanks. To image first-order internal multiple, the GIMI framework consists of three datuming steps, followed by applying the zero-lag cross-correlation imaging condition. However, the standard GIMI procedure yields migrated images that suffer from low spatial resolution, migration artifacts, and cross-talk noise. To alleviate these problems, we propose a least-squares GIMI framework in which we formulate the first two steps as a linearized inversion problem when imaging first-order internal multiples. Tests on synthetic datasets demonstrate the ability to localize subsurface scatterers in their true positions, and delineate a vertical fault plane using the proposed method. We, also, demonstrate the robustness of the proposed framework when imaging the scatterers or the vertical fault plane with erroneous migration velocities.
Automatic Flight Controller With Model Inversion
Meyer, George; Smith, G. Allan
1992-01-01
Automatic digital electronic control system based on inverse-model-follower concept being developed for proposed vertical-attitude-takeoff-and-landing airplane. Inverse-model-follower control places inverse mathematical model of dynamics of controlled plant in series with control actuators of controlled plant so response of combination of model and plant to command is unity. System includes feedback to compensate for uncertainties in mathematical model and disturbances imposed from without.
Frequency-domain full-waveform inversion with non-linear descent directions
Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.
2018-05-01
Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a
Wake Vortex Inverse Model User's Guide
Lai, David; Delisi, Donald
2008-01-01
NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input
Ronchin, Erika; Masterlark, Timothy; Dawson, John; Saunders, Steve; Martí Molist, Joan
2015-04-01
In this study, we present a method to fully integrate a family of finite element models (FEMs) into the regularized linear inversion of InSAR data collected at Rabaul caldera (PNG) between February 2007 and December 2010. During this period the caldera experienced a long-term steady subsidence that characterized surface movement both inside the caldera and outside, on its western side. The inversion is based on an array of FEM sources in the sense that the Green's function matrix is a library of forward numerical displacement solutions generated by the sources of an array common to all FEMs. Each entry of the library is the LOS surface displacement generated by injecting a unity mass of fluid, of known density and bulk modulus, into a different source cavity of the array for each FEM. By using FEMs, we are taking advantage of their capability of including topography and heterogeneous distribution of elastic material properties. All FEMs of the family share the same mesh in which only one source is activated at the time by removing the corresponding elements and applying the unity fluid flux. The domain therefore only needs to be discretized once. This precludes remeshing for each activated source, thus reducing computational requirements, often a downside of FEM-based inversions. Without imposing an a-priori source, the method allows us to identify, from a least-squares standpoint, a complex distribution of fluid flux (or change in pressure) with a 3D free geometry within the source array, as dictated by the data. The results of applying the proposed inversion to Rabaul InSAR data show a shallow magmatic system under the caldera made of two interconnected lobes located at the two opposite sides of the caldera. These lobes could be consistent with feeding reservoirs of the ongoing Tavuvur volcano eruption of andesitic products, on the eastern side, and of the past Vulcan volcano eruptions of more evolved materials, on the western side. The interconnection and
National Research Council Canada - National Science Library
Hatch, Andrew G; Smith, Ralph C; De, Tathagata; Salapaka, Murti V
2005-01-01
.... In this paper, we illustrate the construction of inverse filters, based on homogenized energy models, which can be used to approximately linearize the piezoceramic transducer behavior for linear...
Monahan, John F
2008-01-01
Preface Examples of the General Linear Model Introduction One-Sample Problem Simple Linear Regression Multiple Regression One-Way ANOVA First Discussion The Two-Way Nested Model Two-Way Crossed Model Analysis of Covariance Autoregression Discussion The Linear Least Squares Problem The Normal Equations The Geometry of Least Squares Reparameterization Gram-Schmidt Orthonormalization Estimability and Least Squares Estimators Assumptions for the Linear Mean Model Confounding, Identifiability, and Estimability Estimability and Least Squares Estimators F
Forward modeling. Route to electromagnetic inversion
Energy Technology Data Exchange (ETDEWEB)
Groom, R; Walker, P [PetRos EiKon Incorporated, Ontario (Canada)
1996-05-01
Inversion of electromagnetic data is a topical subject in the literature, and much time has been devoted to understanding the convergence properties of various inverse methods. The relative lack of success of electromagnetic inversion techniques is partly attributable to the difficulties in the kernel forward modeling software. These difficulties come in two broad classes: (1) Completeness and robustness, and (2) convergence, execution time and model simplicity. If such problems exist in the forward modeling kernel, it was demonstrated that inversion can fail to generate reasonable results. It was suggested that classical inversion techniques, which are based on minimizing a norm of the error between data and the simulated data, will only be successful when these difficulties in forward modeling kernels are properly dealt with. 4 refs., 5 figs.
Multiscattering inversion for low-model wavenumbers
Alkhalifah, Tariq Ali; Wu, Zedong
2016-01-01
A successful full-waveform inversion implementation updates the low-wavenumber model components first for a proper description of the wavefield propagation and slowly adds the high wavenumber potentially scattering parts of the model. The low
Campagnoli, Patrizia; Petris, Giovanni
2009-01-01
State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.
Multiscattering inversion for low-model wavenumbers
Alkhalifah, Tariq Ali
2016-09-21
A successful full-waveform inversion implementation updates the low-wavenumber model components first for a proper description of the wavefield propagation and slowly adds the high wavenumber potentially scattering parts of the model. The low-wavenumber components can be extracted from the transmission parts of the recorded wavefield emanating directly from the source or the transmission parts from the single- or double-scattered wavefield computed from a predicted scatter field acting as secondary sources.We use a combined inversion of data modeled from the source and those corresponding to single and double scattering to update the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most of the potential model wavenumber information that may be embedded in the data. A scattering-angle filter is used to divide the gradient of the combined inversion, so initially the high-wavenumber (low-scattering-angle) components of the gradient are directed to the perturbation model and the low-wavenumber (highscattering- angle) components are directed to the velocity model. As our background velocity matures, the scatteringangle divide is slowly lowered to allow for more of the higher wavenumbers to contribute the velocity model. Synthetic examples including the Marmousi model are used to demonstrate the additional illumination and improved velocity inversion obtained when including multiscattered energy. © 2016 Society of Exploration Geophysicists.
International Nuclear Information System (INIS)
Alvarez-Estrada, R.F.
1979-01-01
A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly
Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations
Nakamura, Gen; Vashisth, Manmohan
2017-01-01
In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...
Introduction to generalized linear models
Dobson, Annette J
2008-01-01
Introduction Background Scope Notation Distributions Related to the Normal Distribution Quadratic Forms Estimation Model Fitting Introduction Examples Some Principles of Statistical Modeling Notation and Coding for Explanatory Variables Exponential Family and Generalized Linear Models Introduction Exponential Family of Distributions Properties of Distributions in the Exponential Family Generalized Linear Models Examples Estimation Introduction Example: Failure Times for Pressure Vessels Maximum Likelihood Estimation Poisson Regression Example Inference Introduction Sampling Distribution for Score Statistics Taylor Series Approximations Sampling Distribution for MLEs Log-Likelihood Ratio Statistic Sampling Distribution for the Deviance Hypothesis Testing Normal Linear Models Introduction Basic Results Multiple Linear Regression Analysis of Variance Analysis of Covariance General Linear Models Binary Variables and Logistic Regression Probability Distributions ...
Resolution limits of migration and linearized waveform inversion images in a lossy medium
Schuster, Gerard T.; Dutta, Gaurav; Li, Jing
2017-01-01
The vertical-and horizontal-resolution limits Delta x(lossy) and Delta z(lossy) of post-stack migration and linearized waveform inversion images are derived for lossy data in the far-field approximation. Unlike the horizontal resolution limit Delta x proportional to lambda z/L in a lossless medium which linearly worsens in depth z, Delta x(lossy) proportional to z(2)/QL worsens quadratically with depth for a medium with small Q values. Here, Q is the quality factor, lambda is the effective wavelength, L is the recording aperture, and loss in the resolution formulae is accounted for by replacing lambda with z/Q. In contrast, the lossy vertical-resolution limit Delta z(lossy) only worsens linearly in depth compared to Delta z proportional to lambda for a lossless medium. For both the causal and acausal Q models, the resolution limits are linearly proportional to 1/Q for small Q. These theoretical predictions are validated with migration images computed from lossy data.
Resolution limits of migration and linearized waveform inversion images in a lossy medium
Schuster, Gerard T.
2017-03-10
The vertical-and horizontal-resolution limits Delta x(lossy) and Delta z(lossy) of post-stack migration and linearized waveform inversion images are derived for lossy data in the far-field approximation. Unlike the horizontal resolution limit Delta x proportional to lambda z/L in a lossless medium which linearly worsens in depth z, Delta x(lossy) proportional to z(2)/QL worsens quadratically with depth for a medium with small Q values. Here, Q is the quality factor, lambda is the effective wavelength, L is the recording aperture, and loss in the resolution formulae is accounted for by replacing lambda with z/Q. In contrast, the lossy vertical-resolution limit Delta z(lossy) only worsens linearly in depth compared to Delta z proportional to lambda for a lossless medium. For both the causal and acausal Q models, the resolution limits are linearly proportional to 1/Q for small Q. These theoretical predictions are validated with migration images computed from lossy data.
(Non) linear regression modelling
Cizek, P.; Gentle, J.E.; Hardle, W.K.; Mori, Y.
2012-01-01
We will study causal relationships of a known form between random variables. Given a model, we distinguish one or more dependent (endogenous) variables Y = (Y1,…,Yl), l ∈ N, which are explained by a model, and independent (exogenous, explanatory) variables X = (X1,…,Xp),p ∈ N, which explain or
Directory of Open Access Journals (Sweden)
Caiyan Qin
2017-12-01
Full Text Available Due to its simple mechanical structure and high motion stability, the H-shaped platform has been increasingly widely used in precision measuring, numerical control machining and semiconductor packaging equipment, etc. The H-shaped platform is normally driven by multiple (three permanent magnet synchronous linear motors. The main challenges for H-shaped platform-control include synchronous control between the two linear motors in the Y direction as well as total positioning error of the platform mover, a combination of position deviation in X and Y directions. To deal with the above challenges, this paper proposes a control strategy based on the inverse system method through state feedback and dynamic decoupling of the thrust force. First, mechanical dynamics equations have been deduced through the analysis of system coupling based on the platform structure. Second, the mathematical model of the linear motors and the relevant coordinate transformation between dq-axis currents and ABC-phase currents are analyzed. Third, after the main concept of inverse system method being explained, the inverse system model of the platform control system has been designed after defining relevant system variables. Inverse system model compensates the original nonlinear coupled system into pseudo-linear decoupled linear system, for which typical linear control methods, like PID, can be adopted to control the system. The simulation model of the control system is built in MATLAB/Simulink and the simulation result shows that the designed control system has both small synchronous deviation and small total trajectory tracking error. Furthermore, the control program has been run on NI controller for both fixed-loop-time and free-loop-time modes, and the test result shows that the average loop computation time needed is rather small, which makes it suitable for real industrial applications. Overall, it proves that the proposed new control strategy can be used in
Explorative methods in linear models
DEFF Research Database (Denmark)
Høskuldsson, Agnar
2004-01-01
The author has developed the H-method of mathematical modeling that builds up the model by parts, where each part is optimized with respect to prediction. Besides providing with better predictions than traditional methods, these methods provide with graphic procedures for analyzing different feat...... features in data. These graphic methods extend the well-known methods and results of Principal Component Analysis to any linear model. Here the graphic procedures are applied to linear regression and Ridge Regression....
Atmospheric inverse modeling via sparse reconstruction
Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten
2017-10-01
Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.
Continuity and general perturbation of the Drazin inverse for closed linear operators
Directory of Open Access Journals (Sweden)
N. Castro González
2002-01-01
Full Text Available We study perturbations and continuity of the Drazin inverse of a closed linear operator A and obtain explicit error estimates in terms of the gap between closed operators and the gap between ranges and nullspaces of operators. The results are used to derive a theorem on the continuity of the Drazin inverse for closed operators and to describe the asymptotic behavior of operator semigroups.
Two-Dimensional Linear Inversion of GPR Data with a Shifting Zoom along the Observation Line
Directory of Open Access Journals (Sweden)
Raffaele Persico
2017-09-01
Full Text Available Linear inverse scattering problems can be solved by regularized inversion of a matrix, whose calculation and inversion may require significant computing resources, in particular, a significant amount of RAM memory. This effort is dependent on the extent of the investigation domain, which drives a large amount of data to be gathered and a large number of unknowns to be looked for, when this domain becomes electrically large. This leads, in turn, to the problem of inversion of excessively large matrices. Here, we consider the problem of a ground-penetrating radar (GPR survey in two-dimensional (2D geometry, with antennas at an electrically short distance from the soil. In particular, we present a strategy to afford inversion of large investigation domains, based on a shifting zoom procedure. The proposed strategy was successfully validated using experimental radar data.
Generalized, Linear, and Mixed Models
McCulloch, Charles E; Neuhaus, John M
2011-01-01
An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m
Treating experimental data of inverse kinetic method by unitary linear regression analysis
International Nuclear Information System (INIS)
Zhao Yusen; Chen Xiaoliang
2009-01-01
The theory of treating experimental data of inverse kinetic method by unitary linear regression analysis was described. Not only the reactivity, but also the effective neutron source intensity could be calculated by this method. Computer code was compiled base on the inverse kinetic method and unitary linear regression analysis. The data of zero power facility BFS-1 in Russia were processed and the results were compared. The results show that the reactivity and the effective neutron source intensity can be obtained correctly by treating experimental data of inverse kinetic method using unitary linear regression analysis and the precision of reactivity measurement is improved. The central element efficiency can be calculated by using the reactivity. The result also shows that the effect to reactivity measurement caused by external neutron source should be considered when the reactor power is low and the intensity of external neutron source is strong. (authors)
Zha, Yuanyuan; Yeh, Tian-Chyi J.; Illman, Walter A.; Zeng, Wenzhi; Zhang, Yonggen; Sun, Fangqiang; Shi, Liangsheng
2018-03-01
Hydraulic tomography (HT) is a recently developed technology for characterizing high-resolution, site-specific heterogeneity using hydraulic data (nd) from a series of cross-hole pumping tests. To properly account for the subsurface heterogeneity and to flexibly incorporate additional information, geostatistical inverse models, which permit a large number of spatially correlated unknowns (ny), are frequently used to interpret the collected data. However, the memory storage requirements for the covariance of the unknowns (ny × ny) in these models are prodigious for large-scale 3-D problems. Moreover, the sensitivity evaluation is often computationally intensive using traditional difference method (ny forward runs). Although employment of the adjoint method can reduce the cost to nd forward runs, the adjoint model requires intrusive coding effort. In order to resolve these issues, this paper presents a Reduced-Order Successive Linear Estimator (ROSLE) for analyzing HT data. This new estimator approximates the covariance of the unknowns using Karhunen-Loeve Expansion (KLE) truncated to nkl order, and it calculates the directional sensitivities (in the directions of nkl eigenvectors) to form the covariance and cross-covariance used in the Successive Linear Estimator (SLE). In addition, the covariance of unknowns is updated every iteration by updating the eigenvalues and eigenfunctions. The computational advantages of the proposed algorithm are demonstrated through numerical experiments and a 3-D transient HT analysis of data from a highly heterogeneous field site.
Modeling of uncertainties in statistical inverse problems
International Nuclear Information System (INIS)
Kaipio, Jari
2008-01-01
In all real world problems, the models that tie the measurements to the unknowns of interest, are at best only approximations for reality. While moderate modeling and approximation errors can be tolerated with stable problems, inverse problems are a notorious exception. Typical modeling errors include inaccurate geometry, unknown boundary and initial data, properties of noise and other disturbances, and simply the numerical approximations of the physical models. In principle, the Bayesian approach to inverse problems, in which all uncertainties are modeled as random variables, is capable of handling these uncertainties. Depending on the type of uncertainties, however, different strategies may be adopted. In this paper we give an overview of typical modeling errors and related strategies within the Bayesian framework.
The Inverse System Method Applied to the Derivation of Power System Non—linear Control Laws
Institute of Scientific and Technical Information of China (English)
DonghaiLI; XuezhiJIANG; 等
1997-01-01
The differential geometric method has been applied to a series of power system non-linear control problems effectively.However a set of differential equations must be solved for obtaining the required diffeomorphic transformation.Therefore the derivation of control laws is very complicated.In fact because of the specificity of power system models the required diffeomorphic transformation may be obtained directly,so it is unnecessary to solve a set of differential equations.In addition inverse system method is equivalent to differential geometric method in reality and not limited to affine nonlinear systems,Its physical meaning is able to be viewed directly and its deduction needs only algebraic operation and derivation,so control laws can be obtained easily and the application to engineering is very convenient.Authors of this paper take steam valving control of power system as a typical case to be studied.It is demonstrated that the control law deduced by inverse system method is just the same as one by differential geometric method.The conclusion will simplify the control law derivations of steam valving,excitation,converter and static var compensator by differential geometric method and may be suited to similar control problems in other areas.
Incorporating modelled subglacial hydrology into inversions for basal drag
Directory of Open Access Journals (Sweden)
C. P. Koziol
2017-12-01
Full Text Available A key challenge in modelling coupled ice-flow–subglacial hydrology is initializing the state and parameters of the system. We address this problem by presenting a workflow for initializing these values at the start of a summer melt season. The workflow depends on running a subglacial hydrology model for the winter season, when the system is not forced by meltwater inputs, and ice velocities can be assumed constant. Key parameters of the winter run of the subglacial hydrology model are determined from an initial inversion for basal drag using a linear sliding law. The state of the subglacial hydrology model at the end of winter is incorporated into an inversion of basal drag using a non-linear sliding law which is a function of water pressure. We demonstrate this procedure in the Russell Glacier area and compare the output of the linear sliding law with two non-linear sliding laws. Additionally, we compare the modelled winter hydrological state to radar observations and find that it is in line with summer rather than winter observations.
Sparse Linear Identifiable Multivariate Modeling
DEFF Research Database (Denmark)
Henao, Ricardo; Winther, Ole
2011-01-01
and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable......In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...
Modelling and inversion of local magnetic anomalies
International Nuclear Information System (INIS)
Quesnel, Y; Langlais, B; Sotin, C; Galdéano, A
2008-01-01
We present a method—named as MILMA for modelling and inversion of local magnetic anomalies—that combines forward and inverse modelling of aeromagnetic data to characterize both magnetization properties and location of unconstrained local sources. Parameters of simple-shape magnetized bodies (cylinder, prism or sphere) are first adjusted by trial and error to predict the signal. Their parameters provide a priori information for inversion of the measurements. Here, a generalized nonlinear approach with a least-squares criterion is adopted to seek the best parameters of the sphere (dipole). This inversion step allows the model to be more objectively adjusted to fit the magnetic signal. The validity of the MILMA method is demonstrated through synthetic and real cases using aeromagnetic measurements. Tests with synthetic data reveal accurate results in terms of depth source, whatever be the number of sources. The MILMA method is then used with real measurements to constrain the properties of the magnetized units of the Champtoceaux complex (France). The resulting parameters correlate with the crustal structure and properties revealed by other geological and geophysical surveys in the same area. The MILMA method can therefore be used to investigate the properties of poorly constrained lithospheric magnetized sources
Linear GPR inversion for lossy soil and a planar air-soil interface
DEFF Research Database (Denmark)
Meincke, Peter
2001-01-01
A three-dimensional inversion scheme for fixed-offset ground penetrating radar (GPR) is derived that takes into account the loss in the soil and the planar air-soil interface. The forward model of this inversion scheme is based upon the first Born approximation and the dyadic Green function...
Data inversion in coupled subsurface flow and geomechanics models
International Nuclear Information System (INIS)
Iglesias, Marco A; McLaughlin, Dennis
2012-01-01
We present an inverse modeling approach to estimate petrophysical and elastic properties of the subsurface. The aim is to use the fully coupled geomechanics-flow model of Girault et al (2011 Math. Models Methods Appl. Sci. 21 169–213) to jointly invert surface deformation and pressure data from wells. We use a functional-analytic framework to construct a forward operator (parameter-to-output map) that arises from the geomechanics-flow model of Girault et al. Then, we follow a deterministic approach to pose the inverse problem of finding parameter estimates from measurements of the output of the forward operator. We prove that this inverse problem is ill-posed in the sense of stability. The inverse problem is then regularized with the implementation of the Newton-conjugate gradient (CG) algorithm of Hanke (1997 Numer. Funct. Anal. Optim. 18 18–971). For a consistent application of the Newton-CG scheme, we establish the differentiability of the forward map and characterize the adjoint of its linearization. We provide assumptions under which the theory of Hanke ensures convergence and regularizing properties of the Newton-CG scheme. These properties are verified in our numerical experiments. In addition, our synthetic experiments display the capabilities of the proposed inverse approach to estimate parameters of the subsurface by means of data inversion. In particular, the added value of measurements of surface deformation in the estimation of absolute permeability is quantified with respect to the standard history matching approach of inverting production data with flow models. The proposed methodology can be potentially used to invert satellite geodetic data (e.g. InSAR and GPS) in combination with production data for optimal monitoring and characterization of the subsurface. (paper)
Parameterized Linear Longitudinal Airship Model
Kulczycki, Eric; Elfes, Alberto; Bayard, David; Quadrelli, Marco; Johnson, Joseph
2010-01-01
A parameterized linear mathematical model of the longitudinal dynamics of an airship is undergoing development. This model is intended to be used in designing control systems for future airships that would operate in the atmospheres of Earth and remote planets. Heretofore, the development of linearized models of the longitudinal dynamics of airships has been costly in that it has been necessary to perform extensive flight testing and to use system-identification techniques to construct models that fit the flight-test data. The present model is a generic one that can be relatively easily specialized to approximate the dynamics of specific airships at specific operating points, without need for further system identification, and with significantly less flight testing. The approach taken in the present development is to merge the linearized dynamical equations of an airship with techniques for estimation of aircraft stability derivatives, and to thereby make it possible to construct a linearized dynamical model of the longitudinal dynamics of a specific airship from geometric and aerodynamic data pertaining to that airship. (It is also planned to develop a model of the lateral dynamics by use of the same methods.) All of the aerodynamic data needed to construct the model of a specific airship can be obtained from wind-tunnel testing and computational fluid dynamics
On The Structure of The Inverse of a Linear Constant Multivariable ...
African Journals Online (AJOL)
On The Structure of The Inverse of a Linear Constant Multivariable System. ... It is shown that the use of this representation has certain advantages in the design of multivariable feedback systems. typical examples were considered to indicate the corresponding application. Keywords: Stability Functions, multivariable ...
Tectonic forward modelling of positive inversion structures
Energy Technology Data Exchange (ETDEWEB)
Brandes, C. [Leibniz Univ. Hannover (Germany). Inst. fuer Geologie; Schmidt, C. [Landesamt fuer Bergbau, Energie und Geologie (LBEG), Hannover (Germany)
2013-08-01
Positive tectonic inversion structures are common features that were recognized in many deformed sedimentary basins (Lowell, 1995). They are characterized by a two phase fault evolution, where initial normal faulting was followed by reverse faulting along the same fault, accompanied by the development of hanging wall deformation. Analysing the evolution of such inversion structures is important for understanding the tectonics of sedimentary basins and the formation of hydrocarbon traps. We used a 2D tectonic forward modelling approach to simulate the stepwise structural evolution of inversion structures in cross-section. The modelling was performed with the software FaultFold Forward v. 6, which is based on trishear kinematics (Zehnder and Allmendinger, 2000). Key aspect of the study was to derive the controlling factors for the geometry of inversion structures. The simulation results show, that the trishear approach is able to reproduce the geometry of tectonic inversion structures in a realistic way. This implies that inversion structures are simply fault-related folds that initiated as extensional fault-propagation folds, which were subsequently transformed into compressional fault-propagation folds when the stress field changed. The hanging wall deformation is a consequence of the decrease in slip towards the tip line of the fault. Trishear angle and propagation-to-slip ratio are the key controlling factors for the geometry of the fault-related deformation. We tested trishear angles in the range of 30 - 60 and propagation-to-slip ratios between 1 and 2 in increments of 0.1. Small trishear angles and low propagation-to-slip ratios produced tight folds, whereas large trishear angles and high propagation-to-slip ratios led to more open folds with concentric shapes. This has a direct effect on the size and geometry of potential hydrocarbon traps. The 2D simulations can be extended to a pseudo 3D approach, where a set of parallel cross-sections is used to describe
Inverse hydrochemical models of aqueous extracts tests
Energy Technology Data Exchange (ETDEWEB)
Zheng, L.; Samper, J.; Montenegro, L.
2008-10-10
Aqueous extract test is a laboratory technique commonly used to measure the amount of soluble salts of a soil sample after adding a known mass of distilled water. Measured aqueous extract data have to be re-interpreted in order to infer porewater chemical composition of the sample because porewater chemistry changes significantly due to dilution and chemical reactions which take place during extraction. Here we present an inverse hydrochemical model to estimate porewater chemical composition from measured water content, aqueous extract, and mineralogical data. The model accounts for acid-base, redox, aqueous complexation, mineral dissolution/precipitation, gas dissolution/ex-solution, cation exchange and surface complexation reactions, of which are assumed to take place at local equilibrium. It has been solved with INVERSE-CORE{sup 2D} and been tested with bentonite samples taken from FEBEX (Full-scale Engineered Barrier EXperiment) in situ test. The inverse model reproduces most of the measured aqueous data except bicarbonate and provides an effective, flexible and comprehensive method to estimate porewater chemical composition of clays. Main uncertainties are related to kinetic calcite dissolution and variations in CO2(g) pressure.
Park, J. J.
2017-12-01
Sheared Layers in the Continental Crust: Nonlinear and Linearized inversion for Ps receiver functions Jeffrey Park, Yale University The interpretation of seismic receiver functions (RFs) in terms of isotropic and anisotropic layered structure can be complex. The relationship between structure and body-wave scattering is nonlinear. The anisotropy can involve more parameters than the observations can readily constrain. Finally, reflectivity-predicted layer reverberations are often not prominent in data, so that nonlinear waveform inversion can search in vain to match ghost signals. Multiple-taper correlation (MTC) receiver functions have uncertainties in the frequency domain that follow Gaussian statistics [Park and Levin, 2016a], so grid-searches for the best-fitting collections of interfaces can be performed rapidly to minimize weighted misfit variance. Tests for layer-reverberations can be performed in the frequency domain without reflectivity calculations, allowing flexible modelling of weak, but nonzero, reverberations. Park and Levin [2016b] linearized the hybridization of P and S body waves in an anisotropic layer to predict first-order Ps conversion amplitudes at crust and mantle interfaces. In an anisotropic layer, the P wave acquires small SV and SH components. To ensure continuity of displacement and traction at the top and bottom boundaries of the layer, shear waves are generated. Assuming hexagonal symmetry with an arbitrary symmetry axis, theory confirms the empirical stacking trick of phase-shifting transverse RFs by 90 degrees in back-azimuth [Shiomi and Park, 2008; Schulte-Pelkum and Mahan, 2014] to enhance 2-lobed and 4-lobed harmonic variation. Ps scattering is generated by sharp interfaces, so that RFs resemble the first derivative of the model. MTC RFs in the frequency domain can be manipulated to obtain a first-order reconstruction of the layered anisotropy, under the above modeling constraints and neglecting reverberations. Examples from long
Sparse contrast-source inversion using linear-shrinkage-enhanced inexact Newton method
Desmal, Abdulla
2014-07-01
A contrast-source inversion scheme is proposed for microwave imaging of domains with sparse content. The scheme uses inexact Newton and linear shrinkage methods to account for the nonlinearity and ill-posedness of the electromagnetic inverse scattering problem, respectively. Thresholded shrinkage iterations are accelerated using a preconditioning technique. Additionally, during Newton iterations, the weight of the penalty term is reduced consistently with the quadratic convergence of the Newton method to increase accuracy and efficiency. Numerical results demonstrate the applicability of the proposed method.
Sparse contrast-source inversion using linear-shrinkage-enhanced inexact Newton method
Desmal, Abdulla; Bagci, Hakan
2014-01-01
A contrast-source inversion scheme is proposed for microwave imaging of domains with sparse content. The scheme uses inexact Newton and linear shrinkage methods to account for the nonlinearity and ill-posedness of the electromagnetic inverse scattering problem, respectively. Thresholded shrinkage iterations are accelerated using a preconditioning technique. Additionally, during Newton iterations, the weight of the penalty term is reduced consistently with the quadratic convergence of the Newton method to increase accuracy and efficiency. Numerical results demonstrate the applicability of the proposed method.
Effects of induced stress on seismic forward modelling and inversion
Tromp, Jeroen; Trampert, Jeannot
2018-05-01
We demonstrate how effects of induced stress may be incorporated in seismic modelling and inversion. Our approach is motivated by the accommodation of pre-stress in global seismology. Induced stress modifies both the equation of motion and the constitutive relationship. The theory predicts that induced pressure linearly affects the unstressed isotropic moduli with a slope determined by their adiabatic pressure derivatives. The induced deviatoric stress produces anisotropic compressional and shear wave speeds; the latter result in shear wave splitting. For forward modelling purposes, we determine the weak form of the equation of motion under induced stress. In the context of the inverse problem, we determine induced stress sensitivity kernels, which may be used for adjoint tomography. The theory is illustrated by considering 2-D propagation of SH waves and related Fréchet derivatives based on a spectral-element method.
Decomposable log-linear models
DEFF Research Database (Denmark)
Eriksen, Poul Svante
can be characterized by a structured set of conditional independencies between some variables given some other variables. We term the new model class decomposable log-linear models, which is illustrated to be a much richer class than decomposable graphical models.It covers a wide range of non...... The present paper considers discrete probability models with exact computational properties. In relation to contingency tables this means closed form expressions of the maksimum likelihood estimate and its distribution. The model class includes what is known as decomposable graphicalmodels, which......-hierarchical models, models with structural zeroes, models described by quasi independence and models for level merging. Also, they have a very natural interpretation as they may be formulated by a structured set of conditional independencies between two events given some other event. In relation to contingency...
Planktonic food webs revisited: Reanalysis of results from the linear inverse approach
Hlaili, Asma Sakka; Niquil, Nathalie; Legendre, Louis
2014-01-01
Identification of the trophic pathway that dominates a given planktonic assemblage is generally based on the distribution of biomasses among food-web compartments, or better, the flows of materials or energy among compartments. These flows are obtained by field observations and a posteriori analyses, including the linear inverse approach. In the present study, we re-analysed carbon flows obtained by inverse analysis at 32 stations in the global ocean and one large lake. Our results do not support two "classical" views of plankton ecology, i.e. that the herbivorous food web is dominated by mesozooplankton grazing on large phytoplankton, and the microbial food web is based on microzooplankton significantly consuming bacteria; our results suggest instead that phytoplankton are generally grazed by microzooplankton, of which they are the main food source. Furthermore, we identified the "phyto-microbial food web", where microzooplankton largely feed on phytoplankton, in addition to the already known "poly-microbial food web", where microzooplankton consume more or less equally various types of food. These unexpected results led to a (re)definition of the conceptual models corresponding to the four trophic pathways we found to exist in plankton, i.e. the herbivorous, multivorous, and two types of microbial food web. We illustrated the conceptual trophic pathways using carbon flows that were actually observed at representative stations. The latter can be calibrated to correspond to any field situation. Our study also provides researchers and managers with operational criteria for identifying the dominant trophic pathway in a planktonic assemblage, these criteria being based on the values of two carbon ratios that could be calculated from flow values that are relatively easy to estimate in the field.
Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping
2015-10-01
We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.
Energy Technology Data Exchange (ETDEWEB)
Sakurai, K; Shima, H [OYO Corp., Tokyo (Japan)
1996-10-01
This paper proposes a modeling method of one-dimensional complex resistivity using linear filter technique which has been extended to the complex resistivity. In addition, a numerical test of inversion was conducted using the monitoring results, to discuss the measured frequency band. Linear filter technique is a method by which theoretical potential can be calculated for stratified structures, and it is widely used for the one-dimensional analysis of dc electrical exploration. The modeling can be carried out only using values of complex resistivity without using values of potential. In this study, a bipolar method was employed as a configuration of electrodes. The numerical test of one-dimensional complex resistivity inversion was conducted using the formulated modeling. A three-layered structure model was used as a numerical model. A multi-layer structure with a thickness of 5 m was analyzed on the basis of apparent complex resistivity calculated from the model. From the results of numerical test, it was found that both the chargeability and the time constant agreed well with those of the original model. A trade-off was observed between the chargeability and the time constant at the stage of convergence. 3 refs., 9 figs., 1 tab.
Linear and Generalized Linear Mixed Models and Their Applications
Jiang, Jiming
2007-01-01
This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models, and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it has included recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested
Li, Guo; Xia, Jun; Li, Lei; Wang, Lidai; Wang, Lihong V.
2015-03-01
Linear transducer arrays are readily available for ultrasonic detection in photoacoustic computed tomography. They offer low cost, hand-held convenience, and conventional ultrasonic imaging. However, the elevational resolution of linear transducer arrays, which is usually determined by the weak focus of the cylindrical acoustic lens, is about one order of magnitude worse than the in-plane axial and lateral spatial resolutions. Therefore, conventional linear scanning along the elevational direction cannot provide high-quality three-dimensional photoacoustic images due to the anisotropic spatial resolutions. Here we propose an innovative method to achieve isotropic resolutions for three-dimensional photoacoustic images through combined linear and rotational scanning. In each scan step, we first elevationally scan the linear transducer array, and then rotate the linear transducer array along its center in small steps, and scan again until 180 degrees have been covered. To reconstruct isotropic three-dimensional images from the multiple-directional scanning dataset, we use the standard inverse Radon transform originating from X-ray CT. We acquired a three-dimensional microsphere phantom image through the inverse Radon transform method and compared it with a single-elevational-scan three-dimensional image. The comparison shows that our method improves the elevational resolution by up to one order of magnitude, approaching the in-plane lateral-direction resolution. In vivo rat images were also acquired.
Directory of Open Access Journals (Sweden)
Xin-Jia Meng
2015-01-01
Full Text Available Multidisciplinary reliability is an important part of the reliability-based multidisciplinary design optimization (RBMDO. However, it usually has a considerable amount of calculation. The purpose of this paper is to improve the computational efficiency of multidisciplinary inverse reliability analysis. A multidisciplinary inverse reliability analysis method based on collaborative optimization with combination of linear approximations (CLA-CO is proposed in this paper. In the proposed method, the multidisciplinary reliability assessment problem is first transformed into a problem of most probable failure point (MPP search of inverse reliability, and then the process of searching for MPP of multidisciplinary inverse reliability is performed based on the framework of CLA-CO. This method improves the MPP searching process through two elements. One is treating the discipline analyses as the equality constraints in the subsystem optimization, and the other is using linear approximations corresponding to subsystem responses as the replacement of the consistency equality constraint in system optimization. With these two elements, the proposed method realizes the parallel analysis of each discipline, and it also has a higher computational efficiency. Additionally, there are no difficulties in applying the proposed method to problems with nonnormal distribution variables. One mathematical test problem and an electronic packaging problem are used to demonstrate the effectiveness of the proposed method.
On the internal stability of non-linear dynamic inversion: application to flight control
Czech Academy of Sciences Publication Activity Database
Alam, M.; Čelikovský, Sergej
2017-01-01
Roč. 11, č. 12 (2017), s. 1849-1861 ISSN 1751-8644 R&D Projects: GA ČR(CZ) GA17-04682S Institutional support: RVO:67985556 Keywords : flight control * non-linear dynamic inversion * stability Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 2.536, year: 2016 http://library.utia.cas.cz/separaty/2017/TR/celikovsky-0476150.pdf
Multicollinearity in hierarchical linear models.
Yu, Han; Jiang, Shanhe; Land, Kenneth C
2015-09-01
This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model. Copyright © 2015 Elsevier Inc. All rights reserved.
Humanoid Walking Robot: Modeling, Inverse Dynamics, and Gain Scheduling Control
Directory of Open Access Journals (Sweden)
Elvedin Kljuno
2010-01-01
Full Text Available This article presents reference-model-based control design for a 10 degree-of-freedom bipedal walking robot, using nonlinear gain scheduling. The main goal is to show concentrated mass models can be used for prediction of the required joint torques for a bipedal walking robot. Relatively complicated architecture, high DOF, and balancing requirements make the control task of these robots difficult. Although linear control techniques can be used to control bipedal robots, nonlinear control is necessary for better performance. The emphasis of this work is to show that the reference model can be a bipedal walking model with concentrated mass at the center of gravity, which removes the problems related to design of a pseudo-inverse system. Another significance of this approach is the reduced calculation requirements due to the simplified procedure of nominal joint torques calculation. Kinematic and dynamic analysis is discussed including results for joint torques and ground force necessary to implement a prescribed walking motion. This analysis is accompanied by a comparison with experimental data. An inverse plant and a tracking error linearization-based controller design approach is described. We propose a novel combination of a nonlinear gain scheduling with a concentrated mass model for the MIMO bipedal robot system.
Surface waves tomography and non-linear inversion in the southeast Carpathians
International Nuclear Information System (INIS)
Raykova, R.B.; Panza, G.F.
2005-11-01
A set of shear-wave velocity models of the lithosphere-asthenosphere system in the southeast Carpathians is determined by the non-linear inversion of surface wave group velocity data, obtained from a tomographic analysis. The local dispersion curves are assembled for the period range 7 s - 150 s, combining regional group velocity measurements and published global Rayleigh wave dispersion data. The lithosphere-asthenosphere velocity structure is reliably reconstructed to depths of about 250 km. The thickness of the lithosphere in the region varies from about 120 km to 250 km and the depth of the asthenosphere between 150 km and 250 km. Mantle seismicity concentrates where the high velocity lid is detected just below the Moho. The obtained results are in agreement with recent seismic refraction, receiver function, and travel time P-wave tomography investigations in the region. The similarity among the results obtained from different kinds of structural investigations (including the present work) highlights some new features of the lithosphere-asthenosphere system in southeast Carpathians, as the relatively thin crust under Transylvania basin and Vrancea zone. (author)
Directory of Open Access Journals (Sweden)
YanBin Liu
2017-01-01
Full Text Available The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller.
Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA
Energy Technology Data Exchange (ETDEWEB)
Thimmisetty, Charanraj A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Zhao, Wenju [Florida State Univ., Tallahassee, FL (United States). Dept. of Scientific Computing; Chen, Xiao [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Tong, Charles H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Atmospheric, Earth and Energy Division
2017-10-18
Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). This approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.
Multivariate covariance generalized linear models
DEFF Research Database (Denmark)
Bonat, W. H.; Jørgensen, Bent
2016-01-01
are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...
Constraint on Parameters of Inverse Compton Scattering Model for ...
Indian Academy of Sciences (India)
B2319+60, two parameters of inverse Compton scattering model, the initial Lorentz factor and the factor of energy loss of relativistic particles are constrained. Key words. Pulsar—inverse Compton scattering—emission mechanism. 1. Introduction. Among various kinds of models for pulsar radio emission, the inverse ...
DEFF Research Database (Denmark)
Oh, Geok Lian
properties such as the elastic wave speeds and soil densities. One processing method is casting the estimation problem into an inverse problem to solve for the unknown material parameters. The forward model for the seismic signals used in the literatures include ray tracing methods that consider only...... density values of the discretized ground medium, which leads to time-consuming computations and instability behaviour of the inversion process. In addition, the geophysics inverse problem is generally ill-posed due to non-exact forward model that introduces errors. The Bayesian inversion method through...... the first arrivals of the reflected compressional P-waves from the subsurface structures, or 3D elastic wave models that model all the seismic wave components. The ray tracing forward model formulation is linear, whereas the full 3D elastic wave model leads to a nonlinear inversion problem. In this Ph...
Stochastic inverse problems: Models and metrics
International Nuclear Information System (INIS)
Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.
2015-01-01
In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds
Stochastic inverse problems: Models and metrics
Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.
2015-03-01
In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.
An investigation on the solutions for the linear inverse problem in gamma ray tomography
International Nuclear Information System (INIS)
Araujo, Bruna G.M.; Dantas, Carlos C.; Santos, Valdemir A. dos; Finkler, Christine L.L.; Oliveira, Eric F. de; Melo, Silvio B.; Santos, M. Graca dos
2009-01-01
This paper the results obtained in single beam gamma ray tomography are investigated according to direct problem formulation and the applied solution for the linear system of equations. By image reconstruction based algebraic computational algorithms are used. The sparse under and over-determined linear system of equations was analyzed. Build in functions of Matlab software were applied and optimal solutions were investigate. Experimentally a section of the tube is scanned from various positions and at different angles. The solution, to find the vector of coefficients μ, from the vector of measured p values through the W matrix inversion, constitutes an inverse problem. A industrial tomography process requires a numerical solution of the system of equations. The definition of inverse problem according to Hadmard's is considered and as well the requirement of a well posed problem to find stable solutions. The formulation of the basis function and the computational algorithm to structure the weight matrix W were analyzed. For W full rank matrix the obtained solution is unique as expected. Total Least Squares was implemented which theory and computation algorithm gives adequate treatment for the problems due to non-unique solutions of the system of equations. Stability of the solution was investigating by means of a regularization technique and the comparison shows that it improves the results. An optimal solution as a function of the image quality, computation time and minimum residuals were quantified. The corresponding reconstructed images are shown in 3D graphics in order to compare with the solution. (author)
Matrix algebra for linear models
Gruber, Marvin H J
2013-01-01
Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f
Brown, Malcolm
2009-01-01
Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…
Confidence bands for inverse regression models
International Nuclear Information System (INIS)
Birke, Melanie; Bissantz, Nicolai; Holzmann, Hajo
2010-01-01
We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two periodic functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt (1973 Ann. Stat. 1 1071–95) we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap and prove consistency of the bootstrap procedure. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract
A nonlinear inversion for the velocity background and perturbation models
Wu, Zedong
2015-08-19
Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect diving waves, which is an important source of information for extracting the long wavelength components of the velocity model. Thus, we propose a new optimization problem through breaking the velocity model into the background and the perturbation in the wave equation directly. In this case, the perturbed model is no longer the single scattering model, but includes all scattering. We optimize both components simultaneously, and thus, the objective function is nonlinear with respect to both the background and perturbation. The new introduced w can absorb the non-smooth update of background naturally. Application to the Marmousi model with frequencies that start at 5 Hz shows that this method can converge to the accurate velocity starting from a linearly increasing initial velocity. Application to the SEG2014 demonstrates the versatility of the approach.
Guliyev, Namig J.
2008-01-01
International audience; Inverse problems of recovering the coefficients of Sturm–Liouville problems with the eigenvalue parameter linearly contained in one of the boundary conditions are studied: 1) from the sequences of eigenvalues and norming constants; 2) from two spectra. Necessary and sufficient conditions for the solvability of these inverse problems are obtained.
Nonabelian Gauged Linear Sigma Model
Institute of Scientific and Technical Information of China (English)
Yongbin RUAN
2017-01-01
The gauged linear sigma model (GLSM for short) is a 2d quantum field theory introduced by Witten twenty years ago.Since then,it has been investigated extensively in physics by Hori and others.Recently,an algebro-geometric theory (for both abelian and nonabelian GLSMs) was developed by the author and his collaborators so that he can start to rigorously compute its invariants and check against physical predications.The abelian GLSM was relatively better understood and is the focus of current mathematical investigation.In this article,the author would like to look over the horizon and consider the nonabelian GLSM.The nonabelian case possesses some new features unavailable to the abelian GLSM.To aid the future mathematical development,the author surveys some of the key problems inspired by physics in the nonabelian GLSM.
The effect of dendrimer charge inversion in complexes with linear polyelectrolytes
Lyulin, S.V.; Lyulin, A.V.; Darinskii, A.A.; Emri, I.
2005-01-01
The structure of complexes formed by charged dendrimers and oppositely charged linear chains with a charge of at least the same as that of dendrimers was studied by computer simulation using the Brownian dynamics method. The freely jointed, free-draining model of the dendrimer and the linear chain
Voxel inversion of airborne electromagnetic data for improved model integration
Fiandaca, Gianluca; Auken, Esben; Kirkegaard, Casper; Vest Christiansen, Anders
2014-05-01
Inversion of electromagnetic data has migrated from single site interpretations to inversions including entire surveys using spatial constraints to obtain geologically reasonable results. Though, the model space is usually linked to the actual observation points. For airborne electromagnetic (AEM) surveys the spatial discretization of the model space reflects the flight lines. On the contrary, geological and groundwater models most often refer to a regular voxel grid, not correlated to the geophysical model space, and the geophysical information has to be relocated for integration in (hydro)geological models. We have developed a new geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which then allows for informing directly geological/hydrogeological models. The new voxel model space defines the soil properties (like resistivity) on a set of nodes, and the distribution of the soil properties is computed everywhere by means of an interpolation function (e.g. inverse distance or kriging). Given this definition of the voxel model space, the 1D forward responses of the AEM data are computed as follows: 1) a 1D model subdivision, in terms of model thicknesses, is defined for each 1D data set, creating "virtual" layers. 2) the "virtual" 1D models at the sounding positions are finalized by interpolating the soil properties (the resistivity) in the center of the "virtual" layers. 3) the forward response is computed in 1D for each "virtual" model. We tested the new inversion scheme on an AEM survey carried out with the SkyTEM system close to Odder, in Denmark. The survey comprises 106054 dual mode AEM soundings, and covers an area of approximately 13 km X 16 km. The voxel inversion was carried out on a structured grid of 260 X 325 X 29 xyz nodes (50 m xy spacing), for a total of 2450500 inversion parameters. A classical spatially constrained inversion (SCI) was carried out on the same data set, using 106054
Linear Regression Models for Estimating True Subsurface ...
Indian Academy of Sciences (India)
47
The objective is to minimize the processing time and computer memory required. 10 to carry out inversion .... to the mainland by two long bridges. .... term. In this approach, the model converges when the squared sum of the differences. 143.
Nonlinear adaptive inverse control via the unified model neural network
Jeng, Jin-Tsong; Lee, Tsu-Tian
1999-03-01
In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.
An inverse method for non linear ablative thermics with experimentation of automatic differentiation
Energy Technology Data Exchange (ETDEWEB)
Alestra, S [Simulation Information Technology and Systems Engineering, EADS IW Toulouse (France); Collinet, J [Re-entry Systems and Technologies, EADS ASTRIUM ST, Les Mureaux (France); Dubois, F [Professor of Applied Mathematics, Conservatoire National des Arts et Metiers Paris (France)], E-mail: stephane.alestra@eads.net, E-mail: jean.collinet@astrium.eads.net, E-mail: fdubois@cnam.fr
2008-11-01
Thermal Protection System is a key element for atmospheric re-entry missions of aerospace vehicles. The high level of heat fluxes encountered in such missions has a direct effect on mass balance of the heat shield. Consequently, the identification of heat fluxes is of great industrial interest but is in flight only available by indirect methods based on temperature measurements. This paper is concerned with inverse analyses of highly evolutive heat fluxes. An inverse problem is used to estimate transient surface heat fluxes (convection coefficient), for degradable thermal material (ablation and pyrolysis), by using time domain temperature measurements on thermal protection. The inverse problem is formulated as a minimization problem involving an objective functional, through an optimization loop. An optimal control formulation (Lagrangian, adjoint and gradient steepest descent method combined with quasi-Newton method computations) is then developed and applied, using Monopyro, a transient one-dimensional thermal model with one moving boundary (ablative surface) that has been developed since many years by ASTRIUM-ST. To compute numerically the adjoint and gradient quantities, for the inverse problem in heat convection coefficient, we have used both an analytical manual differentiation and an Automatic Differentiation (AD) engine tool, Tapenade, developed at INRIA Sophia-Antipolis by the TROPICS team. Several validation test cases, using synthetic temperature measurements are carried out, by applying the results of the inverse method with minimization algorithm. Accurate results of identification on high fluxes test cases, and good agreement for temperatures restitutions, are obtained, without and with ablation and pyrolysis, using bad fluxes initial guesses. First encouraging results with an automatic differentiation procedure are also presented in this paper.
Multivariate generalized linear mixed models using R
Berridge, Damon Mark
2011-01-01
Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R. A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model...
Kuchment, Peter
2015-05-10
© 2015, Springer Basel. In the previous paper (Kuchment and Steinhauer in Inverse Probl 28(8):084007, 2012), the authors introduced a simple procedure that allows one to detect whether and explain why internal information arising in several novel coupled physics (hybrid) imaging modalities could turn extremely unstable techniques, such as optical tomography or electrical impedance tomography, into stable, good-resolution procedures. It was shown that in all cases of interest, the Fréchet derivative of the forward mapping is a pseudo-differential operator with an explicitly computable principal symbol. If one can set up the imaging procedure in such a way that the symbol is elliptic, this would indicate that the problem was stabilized. In the cases when the symbol is not elliptic, the technique suggests how to change the procedure (e.g., by adding extra measurements) to achieve ellipticity. In this article, we consider the situation arising in acousto-optical tomography (also called ultrasound modulated optical tomography), where the internal data available involves the Green’s function, and thus depends globally on the unknown parameter(s) of the equation and its solution. It is shown that the technique of (Kuchment and Steinhauer in Inverse Probl 28(8):084007, 2012) can be successfully adopted to this situation as well. A significant part of the article is devoted to results on generic uniqueness for the linearized problem in a variety of situations, including those arising in acousto-electric and quantitative photoacoustic tomography.
Linearity of bulk-controlled inverter ring VCO in weak and strong inversion
DEFF Research Database (Denmark)
Wismar, Ulrik Sørensen; Wisland, D.; Andreani, Pietro
2007-01-01
In this paper linearity of frequency modulation in voltage controlled inverter ring oscillators for non feedback sigma delta converter applications is studied. The linearity is studied through theoretical models of the oscillator operating at supply voltages above and below the threshold voltage......, process variations and temperature variations have also been simulated to indicate the advantages of having the soft rail bias transistor in the VCO....
Nonlinear Modeling by Assembling Piecewise Linear Models
Yao, Weigang; Liou, Meng-Sing
2013-01-01
To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.
Isomorphs in the phase diagram of a model liquid without inverse power law repulsion
DEFF Research Database (Denmark)
Veldhorst, Arnold Adriaan; Bøhling, Lasse; Dyre, J. C.
2012-01-01
scattering function are calculated. The results are shown to reflect a hidden scale invariance; despite its exponential repulsion the Buckingham potential is well approximated by an inverse power-law plus a linear term in the region of the first peak of the radial distribution function. As a consequence...... the dynamics of the viscous Buckingham liquid is mimicked by a corresponding model with purely repulsive inverse-power-law interactions. The results presented here closely resemble earlier results for Lennard-Jones type liquids, demonstrating that the existence of strong correlations and isomorphs does...... not depend critically on the mathematical form of the repulsion being an inverse power law....
Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging
Energy Technology Data Exchange (ETDEWEB)
Fowler, Michael James [Clarkson Univ., Potsdam, NY (United States)
2014-04-25
In industrial and engineering applications, X-ray radiography has attained wide use as a data collection protocol for the assessment of material properties in cases where direct observation is not possible. The direct measurement of nuclear materials, particularly when they are under explosive or implosive loading, is not feasible, and radiography can serve as a useful tool for obtaining indirect measurements. In such experiments, high energy X-rays are pulsed through a scene containing material of interest, and a detector records a radiograph by measuring the radiation that is not attenuated in the scene. One approach to the analysis of these radiographs is to model the imaging system as an operator that acts upon the object being imaged to produce a radiograph. In this model, the goal is to solve an inverse problem to reconstruct the values of interest in the object, which are typically material properties such as density or areal density. The primary objective in this work is to provide quantitative solutions with uncertainty estimates for three separate applications in X-ray radiography: deconvolution, Abel inversion, and radiation spot shape reconstruction. For each problem, we introduce a new hierarchical Bayesian model for determining a posterior distribution on the unknowns and develop efficient Markov chain Monte Carlo (MCMC) methods for sampling from the posterior. A Poisson likelihood, based on a noise model for photon counts at the detector, is combined with a prior tailored to each application: an edge-localizing prior for deconvolution; a smoothing prior with non-negativity constraints for spot reconstruction; and a full covariance sampling prior based on a Wishart hyperprior for Abel inversion. After developing our methods in a general setting, we demonstrate each model on both synthetically generated datasets, including those from a well known radiation transport code, and real high energy radiographs taken at two U. S. Department of Energy
Linear Logistic Test Modeling with R
Baghaei, Purya; Kubinger, Klaus D.
2015-01-01
The present paper gives a general introduction to the linear logistic test model (Fischer, 1973), an extension of the Rasch model with linear constraints on item parameters, along with eRm (an R package to estimate different types of Rasch models; Mair, Hatzinger, & Mair, 2014) functions to estimate the model and interpret its parameters. The…
Multi-scattering inversion for low model wavenumbers
Alkhalifah, Tariq Ali; Wu, Zedong
2015-01-01
modeled from the source and those corresponding to single and double scattering to update both the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most
Stochastic forward and inverse groundwater flow and solute transport modeling
Janssen, G.M.C.M.
2008-01-01
Keywords: calibration, inverse modeling, stochastic modeling, nonlinear biodegradation, stochastic-convective, advective-dispersive, travel time, network design, non-Gaussian distribution, multimodal distribution, representers
This thesis offers three new approaches that contribute
Data-Driven Model Order Reduction for Bayesian Inverse Problems
Cui, Tiangang; Youssef, Marzouk; Willcox, Karen
2014-01-01
One of the major challenges in using MCMC for the solution of inverse problems is the repeated evaluation of computationally expensive numerical models. We develop a data-driven projection- based model order reduction technique to reduce
Inverse estimation of multiple muscle activations based on linear logistic regression.
Sekiya, Masashi; Tsuji, Toshiaki
2017-07-01
This study deals with a technology to estimate the muscle activity from the movement data using a statistical model. A linear regression (LR) model and artificial neural networks (ANN) have been known as statistical models for such use. Although ANN has a high estimation capability, it is often in the clinical application that the lack of data amount leads to performance deterioration. On the other hand, the LR model has a limitation in generalization performance. We therefore propose a muscle activity estimation method to improve the generalization performance through the use of linear logistic regression model. The proposed method was compared with the LR model and ANN in the verification experiment with 7 participants. As a result, the proposed method showed better generalization performance than the conventional methods in various tasks.
Modeling and inverse feedforward control for conducting polymer actuators with hysteresis
International Nuclear Information System (INIS)
Wang, Xiangjiang; Alici, Gursel; Tan, Xiaobo
2014-01-01
Conducting polymer actuators are biocompatible with a small footprint, and operate in air or liquid media under low actuation voltages. This makes them excellent actuators for macro- and micro-manipulation devices, however, their positioning ability or accuracy is adversely affected by their hysteresis non-linearity under open-loop control strategies. In this paper, we establish a hysteresis model for conducting polymer actuators, based on a rate-independent hysteresis model known as the Duhem model. The hysteresis model is experimentally identified and integrated with the linear dynamics of the actuator. This combined model is inverted to control the displacement of the tri-layer actuators considered in this study, without using any external feedback. The inversion requires an inverse hysteresis model which was experimentally identified using an inverse neural network model. Experimental results show that the position tracking errors are reduced by more than 50% when the hysteresis inverse model is incorporated into an inversion-based feedforward controller, indicating the potential of the proposed method in enabling wider use of such smart actuators. (paper)
Inverse modeling with RZWQM2 to predict water quality
Nolan, Bernard T.; Malone, Robert W.; Ma, Liwang; Green, Christopher T.; Fienen, Michael N.; Jaynes, Dan B.
2011-01-01
reflect the total information provided by the observations for a parameter, indicated that most of the RZWQM2 parameters at the California study site (CA) and Iowa study site (IA) could be reliably estimated by regression. Correlations obtained in the CA case indicated that all model parameters could be uniquely estimated by inverse modeling. Although water content at field capacity was highly correlated with bulk density (−0.94), the correlation is less than the threshold for nonuniqueness (0.95, absolute value basis). Additionally, we used truncated singular value decomposition (SVD) at CA to mitigate potential problems with highly correlated and insensitive parameters. Singular value decomposition estimates linear combinations (eigenvectors) of the original process-model parameters. Parameter confidence intervals (CIs) at CA indicated that parameters were reliably estimated with the possible exception of an organic pool transfer coefficient (R45), which had a comparatively wide CI. However, the 95% confidence interval for R45 (0.03–0.35) is mostly within the range of values reported for this parameter. Predictive analysis at CA generated confidence intervals that were compared with independently measured annual water flux (groundwater recharge) and median nitrate concentration in a collocated monitoring well as part of model evaluation. Both the observed recharge (42.3 cm yr−1) and nitrate concentration (24.3 mg L−1) were within their respective 90% confidence intervals, indicating that overall model error was within acceptable limits.
Core seismic behaviour: linear and non-linear models
International Nuclear Information System (INIS)
Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.
1981-08-01
The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here
Composite Linear Models | Division of Cancer Prevention
By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty
Directory of Open Access Journals (Sweden)
Murray L. Ireland
2015-06-01
Full Text Available Multirotor is the umbrella term for the family of unmanned aircraft, which include the quadrotor, hexarotor and other vertical take-off and landing (VTOL aircraft that employ multiple main rotors for lift and control. Development and testing of novel multirotor designs has been aided by the proliferation of 3D printing and inexpensive flight controllers and components. Different multirotor configurations exhibit specific strengths, while presenting unique challenges with regards to design and control. This article highlights the primary differences between three multirotor platforms: a quadrotor; a fully-actuated hexarotor; and an octorotor. Each platform is modelled and then controlled using non-linear dynamic inversion. The differences in dynamics, control and performance are then discussed.
Application Of Shared Gamma And Inverse-Gaussian Frailty Models ...
African Journals Online (AJOL)
Shared Gamma and Inverse-Gaussian Frailty models are used to analyze the survival times of patients who are clustered according to cancer/tumor types under Parametric Proportional Hazard framework. The result of the ... However, no evidence is strong enough for preference of either Gamma or Inverse Gaussian Frailty.
Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion
DEFF Research Database (Denmark)
Zunino, Andrea; Lange, Katrine; Melnikova, Yulia
2014-01-01
We present a study on the inversion of seismic reflection data generated from a synthetic reservoir model. Our aim is to invert directly for rock facies and porosity of the target reservoir zone. We solve this inverse problem using a Markov chain Monte Carlo (McMC) method to handle the nonlinear...
Actuarial statistics with generalized linear mixed models
Antonio, K.; Beirlant, J.
2007-01-01
Over the last decade the use of generalized linear models (GLMs) in actuarial statistics has received a lot of attention, starting from the actuarial illustrations in the standard text by McCullagh and Nelder [McCullagh, P., Nelder, J.A., 1989. Generalized linear models. In: Monographs on Statistics
Large-scale inverse model analyses employing fast randomized data reduction
Lin, Youzuo; Le, Ellen B.; O'Malley, Daniel; Vesselinov, Velimir V.; Bui-Thanh, Tan
2017-08-01
When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally efficient technique for solving inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called "sketching" matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.
Soft-sensing Modeling Based on MLS-SVM Inversion for L-lysine Fermentation Processes
Directory of Open Access Journals (Sweden)
Bo Wang
2015-06-01
Full Text Available A modeling approach 63 based on multiple output variables least squares support vector machine (MLS-SVM inversion is presented by a combination of inverse system and support vector machine theory. Firstly, a dynamic system model is developed based on material balance relation of a fed-batch fermentation process, with which it is analyzed whether an inverse system exists or not, and into which characteristic information of a fermentation process is introduced to set up an extended inversion model. Secondly, an initial extended inversion model is developed off-line by the use of the fitting capacity of MLS-SVM; on-line correction is made by the use of a differential evolution (DE algorithm on the basis of deviation information. Finally, a combined pseudo-linear system is formed by means of a serial connection of a corrected extended inversion model behind the L-lysine fermentation processes; thereby crucial biochemical parameters of a fermentation process could be predicted on-line. The simulation experiment shows that this soft-sensing modeling method features very high prediction precision and can predict crucial biochemical parameters of L-lysine fermentation process very well.
Parker, Peter A.; Geoffrey, Vining G.; Wilson, Sara R.; Szarka, John L., III; Johnson, Nels G.
2010-01-01
The calibration of measurement systems is a fundamental but under-studied problem within industrial statistics. The origins of this problem go back to basic chemical analysis based on NIST standards. In today's world these issues extend to mechanical, electrical, and materials engineering. Often, these new scenarios do not provide "gold standards" such as the standard weights provided by NIST. This paper considers the classic "forward regression followed by inverse regression" approach. In this approach the initial experiment treats the "standards" as the regressor and the observed values as the response to calibrate the instrument. The analyst then must invert the resulting regression model in order to use the instrument to make actual measurements in practice. This paper compares this classical approach to "reverse regression," which treats the standards as the response and the observed measurements as the regressor in the calibration experiment. Such an approach is intuitively appealing because it avoids the need for the inverse regression. However, it also violates some of the basic regression assumptions.
Research Note: Full-waveform inversion of the unwrapped phase of a model
Alkhalifah, Tariq Ali
2013-12-06
Reflections in seismic data induce serious non-linearity in the objective function of full- waveform inversion. Thus, without a good initial velocity model that can produce reflections within a half cycle of the frequency used in the inversion, convergence to a solution becomes difficult. As a result, we tend to invert for refracted events and damp reflections in data. Reflection induced non-linearity stems from cycle skipping between the imprint of the true model in observed data and the predicted model in synthesized data. Inverting for the phase of the model allows us to address this problem by avoiding the source of non-linearity, the phase wrapping phenomena. Most of the information related to the location (or depths) of interfaces is embedded in the phase component of a model, mainly influenced by the background model, while the velocity-contrast information (responsible for the reflection energy) is mainly embedded in the amplitude component. In combination with unwrapping the phase of data, which mitigates the non-linearity introduced by the source function, I develop a framework to invert for the unwrapped phase of a model, represented by the instantaneous depth, using the unwrapped phase of the data. The resulting gradient function provides a mechanism to non-linearly update the velocity model by applying mainly phase shifts to the model. In using the instantaneous depth as a model parameter, we keep track of the model properties unfazed by the wrapping phenomena. © 2013 European Association of Geoscientists & Engineers.
On a finite moment perturbation of linear functionals and the inverse Szegö transformation
Directory of Open Access Journals (Sweden)
Edinson Fuentes
2016-05-01
Full Text Available Given a sequence of moments $\\{c_{n}\\}_{n\\in\\ze}$ associated with an Hermitian linear functional $\\mathcal{L}$ defined in the space of Laurent polynomials, we study a new functional $\\mathcal{L}_{\\Omega}$ which is a perturbation of $\\mathcal{L}$ in such a way that a finite number of moments are perturbed. Necessary and sufficient conditions are given for the regularity of $\\mathcal{L}_{\\Omega}$, and a connection formula between the corresponding families of orthogonal polynomials is obtained. On the other hand, assuming $\\mathcal{L}_{\\Omega}$ is positive definite, the perturbation is analyzed through the inverse Szegö transformation. Resumen. Dada una sucesión de momentos $\\{c_{n}\\}_{n\\in\\ze}$ asociada a un funcional lineal hermitiano $\\mathcal{L}$ definido en el espacio de los polinomios de Laurent, estudiamos un nuevo funcional $\\mathcal{L}_{\\Omega}$ que consiste en una perturbación de $\\mathcal{L}$ de tal forma que se perturba un número finito de momentos de la sucesión. Se encuentran condiciones necesarias y suficientes para la regularidad de $\\mathcal{L}_{\\Omega}$, y se obtiene una fórmula de conexión que relaciona las familias de polinomios ortogonales correspondientes. Por otro lado, suponiendo que $\\mathcal{L}_{\\Omega}$ es definido positivo, se analiza la perturbación mediante de la transformación inversa de Szegö.
International Nuclear Information System (INIS)
Ranaivo Nomenjanahary, F.; Rakoto, H.; Ratsimbazafy, J.B.
1994-08-01
This paper is concerned with resistivity sounding measurements performed from single site (vertical sounding) or from several sites (profiles) within a bounded area. The objective is to present an accurate information about the study area and to estimate the likelihood of the produced quantitative models. The achievement of this objective obviously requires quite relevant data and processing methods. It also requires interpretation methods which should take into account the probable effect of an heterogeneous structure. In front of such difficulties, the interpretation of resistivity sounding data inevitably involves the use of inversion methods. We suggest starting the interpretation in simple situation (1-D approximation), and using the rough but correct model obtained as an a-priori model for any more refined interpretation. Related to this point of view, special attention should be paid for the inverse problem applied to the resistivity sounding data. This inverse problem is nonlinear, while linearity inherent in the functional response used to describe the physical experiment. Two different approaches are used to build an approximate but higher dimensional inversion of geoelectrical data: the linear approach and the bayesian statistical approach. Some illustrations of their application in resistivity sounding data acquired at Tritrivakely volcanic lake (single site) and at Mahitsy area (several sites) will be given. (author). 28 refs, 7 figs
CICAAR - Convolutive ICA with an Auto-Regressive Inverse Model
DEFF Research Database (Denmark)
Dyrholm, Mads; Hansen, Lars Kai
2004-01-01
We invoke an auto-regressive IIR inverse model for convolutive ICA and derive expressions for the likelihood and its gradient. We argue that optimization will give a stable inverse. When there are more sensors than sources the mixing model parameters are estimated in a second step by least square...... estimation. We demonstrate the method on synthetic data and finally separate speech and music in a real room recording....
Temporal rainfall estimation using input data reduction and model inversion
Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.
2016-12-01
Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a
Comparing linear probability model coefficients across groups
DEFF Research Database (Denmark)
Holm, Anders; Ejrnæs, Mette; Karlson, Kristian Bernt
2015-01-01
of the following three components: outcome truncation, scale parameters and distributional shape of the predictor variable. These results point to limitations in using linear probability model coefficients for group comparisons. We also provide Monte Carlo simulations and real examples to illustrate......This article offers a formal identification analysis of the problem in comparing coefficients from linear probability models between groups. We show that differences in coefficients from these models can result not only from genuine differences in effects, but also from differences in one or more...... these limitations, and we suggest a restricted approach to using linear probability model coefficients in group comparisons....
Geodynamic inversion to constrain the non-linear rheology of the lithosphere
Baumann, T. S.; Kaus, Boris J. P.
2015-08-01
One of the main methods to determine the strength of the lithosphere is by estimating it's effective elastic thickness. This method assumes that the lithosphere is a thin elastic plate that floats on the mantle and uses both topography and gravity anomalies to estimate the plate thickness. Whereas this seems to work well for oceanic plates, it has given controversial results in continental collision zones. For most of these locations, additional geophysical data sets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere as this also requires knowledge of the rheology of the lithosphere. Laboratory experiments suggest that rocks deform in a viscous manner if temperatures are high and stresses low, or in a plastic/brittle manner if the yield stress is exceeded. Yet, the experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent method is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. The goal of this paper is to discuss such an approach. Our method relies on performing numerical thermomechanical forward models of the present-day lithosphere with an initial geometry that is constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
Spaghetti Bridges: Modeling Linear Relationships
Kroon, Cindy D.
2016-01-01
Mathematics and science are natural partners. One of many examples of this partnership occurs when scientific observations are made, thus providing data that can be used for mathematical modeling. Developing mathematical relationships elucidates such scientific principles. This activity describes a data-collection activity in which students employ…
Forecasting wind-driven wildfires using an inverse modelling approach
Directory of Open Access Journals (Sweden)
O. Rios
2014-06-01
Full Text Available A technology able to rapidly forecast wildfire dynamics would lead to a paradigm shift in the response to emergencies, providing the Fire Service with essential information about the ongoing fire. This paper presents and explores a novel methodology to forecast wildfire dynamics in wind-driven conditions, using real-time data assimilation and inverse modelling. The forecasting algorithm combines Rothermel's rate of spread theory with a perimeter expansion model based on Huygens principle and solves the optimisation problem with a tangent linear approach and forward automatic differentiation. Its potential is investigated using synthetic data and evaluated in different wildfire scenarios. The results show the capacity of the method to quickly predict the location of the fire front with a positive lead time (ahead of the event in the order of 10 min for a spatial scale of 100 m. The greatest strengths of our method are lightness, speed and flexibility. We specifically tailor the forecast to be efficient and computationally cheap so it can be used in mobile systems for field deployment and operativeness. Thus, we put emphasis on producing a positive lead time and the means to maximise it.
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...
Inverse modelling for flow and transport in porous media
International Nuclear Information System (INIS)
Giudici, M.
2004-01-01
The problem of parameter identification for flow and transport model in porous media is discussed in this communication. First, a general framework for the development and application of environmental models is discussed. Then the forward and inverse problems for discrete models are described in detail, introducing fundamental concepts (uniqueness, identifiability, stability, conditioning). The importance of model scales is reviewed and is shown its link with the stability and conditioning issues. Finally some remarks are given to the use of several independent sets of data in inverse modelling
Correlations and Non-Linear Probability Models
DEFF Research Database (Denmark)
Breen, Richard; Holm, Anders; Karlson, Kristian Bernt
2014-01-01
the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....
Extended Linear Models with Gaussian Priors
DEFF Research Database (Denmark)
Quinonero, Joaquin
2002-01-01
In extended linear models the input space is projected onto a feature space by means of an arbitrary non-linear transformation. A linear model is then applied to the feature space to construct the model output. The dimension of the feature space can be very large, or even infinite, giving the model...... a very big flexibility. Support Vector Machines (SVM's) and Gaussian processes are two examples of such models. In this technical report I present a model in which the dimension of the feature space remains finite, and where a Bayesian approach is used to train the model with Gaussian priors...... on the parameters. The Relevance Vector Machine, introduced by Tipping, is a particular case of such a model. I give the detailed derivations of the expectation-maximisation (EM) algorithm used in the training. These derivations are not found in the literature, and might be helpful for newcomers....
Linear mixed models for longitudinal data
Molenberghs, Geert
2000-01-01
This paperback edition is a reprint of the 2000 edition. This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, conditional linear mixed models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. However, some other commerc...
Linear mixed models in sensometrics
DEFF Research Database (Denmark)
Kuznetsova, Alexandra
quality of decision making in Danish as well as international food companies and other companies using the same methods. The two open-source R packages lmerTest and SensMixed implement and support the methodological developments in the research papers as well as the ANOVA modelling part of the Consumer...... an open-source software tool ConsumerCheck was developed in this project and now is available for everyone. will represent a major step forward when concerns this important problem in modern consumer driven product development. Standard statistical software packages can be used for some of the purposes......Today’s companies and researchers gather large amounts of data of different kind. In consumer studies the objective is the collection of the data to better understand consumer acceptance of products. In such studies a number of persons (generally not trained) are selected in order to score products...
Linear causal modeling with structural equations
Mulaik, Stanley A
2009-01-01
Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal
Statistical Tests for Mixed Linear Models
Khuri, André I; Sinha, Bimal K
2011-01-01
An advanced discussion of linear models with mixed or random effects. In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models a
Matrix Tricks for Linear Statistical Models
Puntanen, Simo; Styan, George PH
2011-01-01
In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and
Affordable and personalized lighting using inverse modeling and virtual sensors
Basu, Chandrayee; Chen, Benjamin; Richards, Jacob; Dhinakaran, Aparna; Agogino, Alice; Martin, Rodney
2014-03-01
Wireless sensor networks (WSN) have great potential to enable personalized intelligent lighting systems while reducing building energy use by 50%-70%. As a result WSN systems are being increasingly integrated in state-ofart intelligent lighting systems. In the future these systems will enable participation of lighting loads as ancillary services. However, such systems can be expensive to install and lack the plug-and-play quality necessary for user-friendly commissioning. In this paper we present an integrated system of wireless sensor platforms and modeling software to enable affordable and user-friendly intelligent lighting. It requires ⇠ 60% fewer sensor deployments compared to current commercial systems. Reduction in sensor deployments has been achieved by optimally replacing the actual photo-sensors with real-time discrete predictive inverse models. Spatially sparse and clustered sub-hourly photo-sensor data captured by the WSN platforms are used to develop and validate a piece-wise linear regression of indoor light distribution. This deterministic data-driven model accounts for sky conditions and solar position. The optimal placement of photo-sensors is performed iteratively to achieve the best predictability of the light field desired for indoor lighting control. Using two weeks of daylight and artificial light training data acquired at the Sustainability Base at NASA Ames, the model was able to predict the light level at seven monitored workstations with 80%-95% accuracy. We estimate that 10% adoption of this intelligent wireless sensor system in commercial buildings could save 0.2-0.25 quads BTU of energy nationwide.
Chai, Xintao; Tang, Genyang; Peng, Ronghua; Liu, Shaoyong
2018-03-01
Full-waveform inversion (FWI) reconstructs the subsurface properties from acquired seismic data via minimization of the misfit between observed and simulated data. However, FWI suffers from considerable computational costs resulting from the numerical solution of the wave equation for each source at each iteration. To reduce the computational burden, constructing supershots by combining several sources (aka source encoding) allows mitigation of the number of simulations at each iteration, but it gives rise to crosstalk artifacts because of interference between the individual sources of the supershot. A modified Gauss-Newton FWI (MGNFWI) approach showed that as long as the difference between the initial and true models permits a sparse representation, the ℓ _1-norm constrained model updates suppress subsampling-related artifacts. However, the spectral-projected gradient ℓ _1 (SPGℓ _1) algorithm employed by MGNFWI is rather complicated that makes its implementation difficult. To facilitate realistic applications, we adapt a linearized Bregman (LB) method to sparsity-promoting FWI (SPFWI) because of the efficiency and simplicity of LB in the framework of ℓ _1-norm constrained optimization problem and compressive sensing. Numerical experiments performed with the BP Salt model, the Marmousi model and the BG Compass model verify the following points. The FWI result with LB solving ℓ _1-norm sparsity-promoting problem for the model update outperforms that generated by solving ℓ _2-norm problem in terms of crosstalk elimination and high-fidelity results. The simpler LB method performs comparably and even superiorly to the complicated SPGℓ _1 method in terms of computational efficiency and model quality, making the LB method a viable alternative for realistic implementations of SPFWI.
A linear model for flow over complex terrain
Energy Technology Data Exchange (ETDEWEB)
Frank, H P [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1999-03-01
A linear flow model similar to WA{sup s}P or LINCOM has been developed. Major differences are an isentropic temperature equation which allows internal gravity waves, and vertical advection of the shear of the mean flow. The importance of these effects are illustrated by examples. Resource maps are calculated from a distribution of geostrophic winds and stratification for Pyhaetunturi Fell in northern Finland and Acqua Spruzza in Italy. Stratification becomes important if the inverse Froude number formulated with the width of the hill becomes of order one or greater. (au) EU-JOULE-3. 16 refs.
Modelling and genetic algorithm based optimisation of inverse supply chain
Bányai, T.
2009-04-01
(Recycling of household appliances with emphasis on reuse options). The purpose of this paper is the presentation of a possible method for avoiding the unnecessary environmental risk and landscape use through unprovoked large supply chain of collection systems of recycling processes. In the first part of the paper the author presents the mathematical model of recycling related collection systems (applied especially for wastes of electric and electronic products) and in the second part of the work a genetic algorithm based optimisation method will be demonstrated, by the aid of which it is possible to determine the optimal structure of the inverse supply chain from the point of view economical, ecological and logistic objective functions. The model of the inverse supply chain is based on a multi-level, hierarchical collection system. In case of this static model it is assumed that technical conditions are permanent. The total costs consist of three parts: total infrastructure costs, total material handling costs and environmental risk costs. The infrastructure-related costs are dependent only on the specific fixed costs and the specific unit costs of the operation points (collection, pre-treatment, treatment, recycling and reuse plants). The costs of warehousing and transportation are represented by the material handling related costs. The most important factors determining the level of environmental risk cost are the number of out of time recycled (treated or reused) products, the number of supply chain objects and the length of transportation routes. The objective function is the minimization of the total cost taking into consideration the constraints. However a lot of research work discussed the design of supply chain [8], but most of them concentrate on linear cost functions. In the case of this model non-linear cost functions were used. The non-linear cost functions and the possible high number of objects of the inverse supply chain leaded to the problem of choosing a
Modeling digital switching circuits with linear algebra
Thornton, Mitchell A
2014-01-01
Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf
Why operational risk modelling creates inverse incentives
Doff, R.
2015-01-01
Operational risk modelling has become commonplace in large international banks and is gaining popularity in the insurance industry as well. This is partly due to financial regulation (Basel II, Solvency II). This article argues that operational risk modelling is fundamentally flawed, despite efforts
Updating Linear Schedules with Lowest Cost: a Linear Programming Model
Biruk, Sławomir; Jaśkowski, Piotr; Czarnigowska, Agata
2017-10-01
Many civil engineering projects involve sets of tasks repeated in a predefined sequence in a number of work areas along a particular route. A useful graphical representation of schedules of such projects is time-distance diagrams that clearly show what process is conducted at a particular point of time and in particular location. With repetitive tasks, the quality of project performance is conditioned by the ability of the planner to optimize workflow by synchronizing the works and resources, which usually means that resources are planned to be continuously utilized. However, construction processes are prone to risks, and a fully synchronized schedule may expire if a disturbance (bad weather, machine failure etc.) affects even one task. In such cases, works need to be rescheduled, and another optimal schedule should be built for the changed circumstances. This typically means that, to meet the fixed completion date, durations of operations have to be reduced. A number of measures are possible to achieve such reduction: working overtime, employing more resources or relocating resources from less to more critical tasks, but they all come at a considerable cost and affect the whole project. The paper investigates the problem of selecting the measures that reduce durations of tasks of a linear project so that the cost of these measures is kept to the minimum and proposes an algorithm that could be applied to find optimal solutions as the need to reschedule arises. Considering that civil engineering projects, such as road building, usually involve less process types than construction projects, the complexity of scheduling problems is lower, and precise optimization algorithms can be applied. Therefore, the authors put forward a linear programming model of the problem and illustrate its principle of operation with an example.
Retrieval of collision kernels from the change of droplet size distributions with linear inversion
Energy Technology Data Exchange (ETDEWEB)
Onishi, Ryo; Takahashi, Keiko [Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama Kanagawa 236-0001 (Japan); Matsuda, Keigo; Kurose, Ryoichi; Komori, Satoru [Department of Mechanical Engineering and Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: onishi.ryo@jamstec.go.jp, E-mail: matsuda.keigo@t03.mbox.media.kyoto-u.ac.jp, E-mail: takahasi@jamstec.go.jp, E-mail: kurose@mech.kyoto-u.ac.jp, E-mail: komori@mech.kyoto-u.ac.jp
2008-12-15
We have developed a new simple inversion scheme for retrieving collision kernels from the change of droplet size distribution due to collision growth. Three-dimensional direct numerical simulations (DNS) of steady isotropic turbulence with colliding droplets are carried out in order to investigate the validity of the developed inversion scheme. In the DNS, air turbulence is calculated using a quasi-spectral method; droplet motions are tracked in a Lagrangian manner. The initial droplet size distribution is set to be equivalent to that obtained in a wind tunnel experiment. Collision kernels retrieved by the developed inversion scheme are compared to those obtained by the DNS. The comparison shows that the collision kernels can be retrieved within 15% error. This verifies the feasibility of retrieving collision kernels using the present inversion scheme.
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
African Journals Online (AJOL)
A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological decomposition of pollutants in the reactor. The neural network has been trained with experimental data ...
Data-Driven Model Order Reduction for Bayesian Inverse Problems
Cui, Tiangang
2014-01-06
One of the major challenges in using MCMC for the solution of inverse problems is the repeated evaluation of computationally expensive numerical models. We develop a data-driven projection- based model order reduction technique to reduce the computational cost of numerical PDE evaluations in this context.
Multi-scattering inversion for low model wavenumbers
Alkhalifah, Tariq Ali
2015-08-19
A successful full wavenumber inversion (FWI) implementation updates the low wavenumber model components first for proper wavefield propagation description, and slowly adds the high-wavenumber potentially scattering parts of the model. The low-wavenumber components can be extracted from the transmission parts of the recorded data given by direct arrivals or the transmission parts of the single and double-scattering wave-fields developed from a predicted scatter field. We develop a combined inversion of data modeled from the source and those corresponding to single and double scattering to update both the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most of the potential model wavenumber information that may be embedded in the data. A scattering angle filter is used to divide the gradient of the combined inversion so initially the high wavenumber (low scattering angle) components of the gradient is directed to the perturbation model and the low wavenumber (high scattering angle) components to the velocity model. As our background velocity matures, the scattering angle divide is slowly lowered to allow for more of the higher wavenumbers to contribute the velocity model.
A linear model of ductile plastic damage
International Nuclear Information System (INIS)
Lemaitre, J.
1983-01-01
A three-dimensional model of isotropic ductile plastic damage based on a continuum damage variable on the effective stress concept and on thermodynamics is derived. As shown by experiments on several metals and alloys, the model, integrated in the case of proportional loading, is linear with respect to the accumulated plastic strain and shows a large influence of stress triaxiality [fr
Ruggeri, Fabrizio
2016-05-12
In this work we develop a Bayesian setting to infer unknown parameters in initial-boundary value problems related to linear parabolic partial differential equations. We realistically assume that the boundary data are noisy, for a given prescribed initial condition. We show how to derive the joint likelihood function for the forward problem, given some measurements of the solution field subject to Gaussian noise. Given Gaussian priors for the time-dependent Dirichlet boundary values, we analytically marginalize the joint likelihood using the linearity of the equation. Our hierarchical Bayesian approach is fully implemented in an example that involves the heat equation. In this example, the thermal diffusivity is the unknown parameter. We assume that the thermal diffusivity parameter can be modeled a priori through a lognormal random variable or by means of a space-dependent stationary lognormal random field. Synthetic data are used to test the inference. We exploit the behavior of the non-normalized log posterior distribution of the thermal diffusivity. Then, we use the Laplace method to obtain an approximated Gaussian posterior and therefore avoid costly Markov Chain Monte Carlo computations. Expected information gains and predictive posterior densities for observable quantities are numerically estimated using Laplace approximation for different experimental setups.
Inverse modeling of FIB milling by dose profile optimization
International Nuclear Information System (INIS)
Lindsey, S.; Waid, S.; Hobler, G.; Wanzenböck, H.D.; Bertagnolli, E.
2014-01-01
FIB technologies possess a unique ability to form topographies that are difficult or impossible to generate with binary etching through typical photo-lithography. The ability to arbitrarily vary the spatial dose distribution and therefore the amount of milling opens possibilities for the production of a wide range of functional structures with applications in biology, chemistry, and optics. However in practice, the realization of these goals is made difficult by the angular dependence of the sputtering yield and redeposition effects that vary as the topography evolves. An inverse modeling algorithm that optimizes dose profiles, defined as the superposition of time invariant pixel dose profiles (determined from the beam parameters and pixel dwell times), is presented. The response of the target to a set of pixel dwell times in modeled by numerical continuum simulations utilizing 1st and 2nd order sputtering and redeposition, the resulting surfaces are evaluated with respect to a target topography in an error minimization routine. Two algorithms for the parameterization of pixel dwell times are presented, a direct pixel dwell time method, and an abstracted method that uses a refineable piecewise linear cage function to generate pixel dwell times from a minimal number of parameters. The cage function method demonstrates great flexibility and efficiency as compared to the direct fitting method with performance enhancements exceeding ∼10× as compared to direct fitting for medium to large simulation sets. Furthermore, the refineable nature of the cage function enables solutions to adapt to the desired target function. The optimization algorithm, although working with stationary dose profiles, is demonstrated to be applicable also outside the quasi-static approximation. Experimental data confirms the viability of the solutions for 5 × 7 μm deep lens like structures defined by 90 pixel dwell times
Energy Technology Data Exchange (ETDEWEB)
Tonellot, Th.L.
2000-03-24
In this thesis, we propose a method which takes into account a priori information (geological, diagraphic and stratigraphic knowledge) in linearized pre-stack seismic data inversion. The approach is based on a formalism in which the a priori information is incorporated in an a priori model of elastic parameters - density, P and S impedances - and a model covariance operator which describes the uncertainties in the model. The first part of the thesis is dedicated to the study of this covariance operator and to the norm associated to its inverse. We have generalized the exponential covariance operator in order to describe the uncertainties in the a priori model elastic parameters and their correlations at each location. We give the analytical expression of the covariance operator inverse in 1-D, 2-D, and 3-D, and we discretized the associated norm with a finite element method. The second part is dedicated to synthetic and real examples. In a preliminary step, we have developed a pre-stack data well calibration method which allows the estimation of the source signal. The impact of different a priori information is then demonstrated on synthetic and real data. (author)
Ker, H. W.
2014-01-01
Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…
Faraway, Julian J
2005-01-01
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...
Hybrid Adaptive Flight Control with Model Inversion Adaptation
Nguyen, Nhan
2011-01-01
This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.
Heeding the waveform inversion nonlinearity by unwrapping the model and data
Alkhalifah, Tariq Ali; Choi, Yun Seok
2012-01-01
Unlike traveltime inversion, waveform inversion provides relatively higher-resolution inverted models. This feature, however, comes at the cost of introducing complex nonlinearity to the inversion operator complicating the convergence process. We
Ground Motion Models for Future Linear Colliders
International Nuclear Information System (INIS)
Seryi, Andrei
2000-01-01
Optimization of the parameters of a future linear collider requires comprehensive models of ground motion. Both general models of ground motion and specific models of the particular site and local conditions are essential. Existing models are not completely adequate, either because they are too general, or because they omit important peculiarities of ground motion. The model considered in this paper is based on recent ground motion measurements performed at SLAC and at other accelerator laboratories, as well as on historical data. The issues to be studied for the models to become more predictive are also discussed
Inverse Gaussian model for small area estimation via Gibbs sampling
African Journals Online (AJOL)
We present a Bayesian method for estimating small area parameters under an inverse Gaussian model. The method is extended to estimate small area parameters for finite populations. The Gibbs sampler is proposed as a mechanism for implementing the Bayesian paradigm. We illustrate the method by application to ...
Influence of seeing effects on cloud model inversions
Czech Academy of Sciences Publication Activity Database
Tziotziou, K.; Heinzel, Petr; Tsiropoula, G.
2007-01-01
Roč. 472, č. 1 (2007), s. 287-292 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : cloud model * inversions * seeing effects Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007
Numerical modeling of Harmonic Imaging and Pulse Inversion fields
Humphrey, Victor F.; Duncan, Tracy M.; Duck, Francis
2003-10-01
Tissue Harmonic Imaging (THI) and Pulse Inversion (PI) Harmonic Imaging exploit the harmonics generated as a result of nonlinear propagation through tissue to improve the performance of imaging systems. A 3D finite difference model, that solves the KZK equation in the frequency domain, is used to investigate the finite amplitude fields produced by rectangular transducers driven with short pulses and their inverses, in water and homogeneous tissue. This enables the characteristic of the fields and the effective PI field to be calculated. The suppression of the fundamental field in PI is monitored, and the suppression of side lobes and a reduction in the effective beamwidth for each field are calculated. In addition, the differences between the pulse and inverse pulse spectra resulting from the use of very short pulses are noted, and the differences in the location of the fundamental and second harmonic spectral peaks observed.
Modelling female fertility traits in beef cattle using linear and non-linear models.
Naya, H; Peñagaricano, F; Urioste, J I
2017-06-01
Female fertility traits are key components of the profitability of beef cattle production. However, these traits are difficult and expensive to measure, particularly under extensive pastoral conditions, and consequently, fertility records are in general scarce and somehow incomplete. Moreover, fertility traits are usually dominated by the effects of herd-year environment, and it is generally assumed that relatively small margins are kept for genetic improvement. New ways of modelling genetic variation in these traits are needed. Inspired in the methodological developments made by Prof. Daniel Gianola and co-workers, we assayed linear (Gaussian), Poisson, probit (threshold), censored Poisson and censored Gaussian models to three different kinds of endpoints, namely calving success (CS), number of days from first calving (CD) and number of failed oestrus (FE). For models involving FE and CS, non-linear models overperformed their linear counterparts. For models derived from CD, linear versions displayed better adjustment than the non-linear counterparts. Non-linear models showed consistently higher estimates of heritability and repeatability in all cases (h 2 linear models; h 2 > 0.23 and r > 0.24, for non-linear models). While additive and permanent environment effects showed highly favourable correlations between all models (>0.789), consistency in selecting the 10% best sires showed important differences, mainly amongst the considered endpoints (FE, CS and CD). In consequence, endpoints should be considered as modelling different underlying genetic effects, with linear models more appropriate to describe CD and non-linear models better for FE and CS. © 2017 Blackwell Verlag GmbH.
Bergamaschi, Peter; Karstens, Ute; Manning, Alistair J.; Saunois, Marielle; Tsuruta, Aki; Berchet, Antoine; Vermeulen, Alexander T.; Arnold, Tim; Janssens-Maenhout, Greet; Hammer, Samuel; Levin, Ingeborg; Schmidt, Martina; Ramonet, Michel; Lopez, Morgan; Lavric, Jost; Aalto, Tuula; Chen, Huilin; Feist, Dietrich G.; Gerbig, Christoph; Haszpra, László; Hermansen, Ove; Manca, Giovanni; Moncrieff, John; Meinhardt, Frank; Necki, Jaroslaw; Galkowski, Michal; O'Doherty, Simon; Paramonova, Nina; Scheeren, Hubertus A.; Steinbacher, Martin; Dlugokencky, Ed
2018-01-01
We present inverse modelling (top down) estimates of European methane (CH4) emissions for 2006-2012 based on a new quality-controlled and harmonised in situ data set from 18 European atmospheric monitoring stations. We applied an ensemble of seven inverse models and performed four inversion experiments, investigating the impact of different sets of stations and the use of a priori information on emissions. The inverse models infer total CH4 emissions of 26.8 (20.2-29.7) Tg CH4 yr-1 (mean, 10th and 90th percentiles from all inversions) for the EU-28 for 2006-2012 from the four inversion experiments. For comparison, total anthropogenic CH4 emissions reported to UNFCCC (bottom up, based on statistical data and emissions factors) amount to only 21.3 Tg CH4 yr-1 (2006) to 18.8 Tg CH4 yr-1 (2012). A potential explanation for the higher range of top-down estimates compared to bottom-up inventories could be the contribution from natural sources, such as peatlands, wetlands, and wet soils. Based on seven different wetland inventories from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP), total wetland emissions of 4.3 (2.3-8.2) Tg CH4 yr-1 from the EU-28 are estimated. The hypothesis of significant natural emissions is supported by the finding that several inverse models yield significant seasonal cycles of derived CH4 emissions with maxima in summer, while anthropogenic CH4 emissions are assumed to have much lower seasonal variability. Taking into account the wetland emissions from the WETCHIMP ensemble, the top-down estimates are broadly consistent with the sum of anthropogenic and natural bottom-up inventories. However, the contribution of natural sources and their regional distribution remain rather uncertain. Furthermore, we investigate potential biases in the inverse models by comparison with regular aircraft profiles at four European sites and with vertical profiles obtained during the Infrastructure for Measurement of the European Carbon
Modelling point patterns with linear structures
DEFF Research Database (Denmark)
Møller, Jesper; Rasmussen, Jakob Gulddahl
2009-01-01
processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....
Modelling point patterns with linear structures
DEFF Research Database (Denmark)
Møller, Jesper; Rasmussen, Jakob Gulddahl
processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....
Optimal designs for linear mixture models
Mendieta, E.J.; Linssen, H.N.; Doornbos, R.
1975-01-01
In a recent paper Snee and Marquardt [8] considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of this
Optimal designs for linear mixture models
Mendieta, E.J.; Linssen, H.N.; Doornbos, R.
1975-01-01
In a recent paper Snee and Marquardt (1974) considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of
Linear factor copula models and their properties
Krupskii, Pavel; Genton, Marc G.
2018-01-01
We consider a special case of factor copula models with additive common factors and independent components. These models are flexible and parsimonious with O(d) parameters where d is the dimension. The linear structure allows one to obtain closed form expressions for some copulas and their extreme‐value limits. These copulas can be used to model data with strong tail dependencies, such as extreme data. We study the dependence properties of these linear factor copula models and derive the corresponding limiting extreme‐value copulas with a factor structure. We show how parameter estimates can be obtained for these copulas and apply one of these copulas to analyse a financial data set.
Linear factor copula models and their properties
Krupskii, Pavel
2018-04-25
We consider a special case of factor copula models with additive common factors and independent components. These models are flexible and parsimonious with O(d) parameters where d is the dimension. The linear structure allows one to obtain closed form expressions for some copulas and their extreme‐value limits. These copulas can be used to model data with strong tail dependencies, such as extreme data. We study the dependence properties of these linear factor copula models and derive the corresponding limiting extreme‐value copulas with a factor structure. We show how parameter estimates can be obtained for these copulas and apply one of these copulas to analyse a financial data set.
Two radiative inverse seesaw models, dark matter, and baryogenesis
International Nuclear Information System (INIS)
Baldes, Iason; Bell, Nicole F.; Petraki, Kalliopi; Volkas, Raymond R.
2013-01-01
The inverse seesaw mechanism allows the neutrino masses to be generated by new physics at an experimentally accessible scale, even with O(1) Yukawa couplings. In the inverse seesaw scenario, the smallness of neutrino masses is linked to the smallness of a lepton number violating parameter. This parameter may arise radiatively. In this paper, we study the cosmological implications of two contrasting radiative inverse seesaw models, one due to Ma and the other to Law and McDonald. The former features spontaneous, the latter explicit lepton number violation. First, we examine the effect of the lepton-number violating interactions introduced in these models on the baryon asymmetry of the universe. We investigate under what conditions a pre-existing baryon asymmetry does not get washed out. While both models allow a baryon asymmetry to survive only once the temperature has dropped below the mass of their heaviest fields, the Ma model can create the baryon asymmetry through resonant leptogenesis. Then we investigate the viability of the dark matter candidates arising within these models, and explore the prospects for direct detection. We find that the Law/McDonald model allows a simple dark matter scenario similar to the Higgs portal, while in the Ma model the simplest cold dark matter scenario would tend to overclose the universe
Diagnostics for Linear Models With Functional Responses
Xu, Hongquan; Shen, Qing
2005-01-01
Linear models where the response is a function and the predictors are vectors are useful in analyzing data from designed experiments and other situations with functional observations. Residual analysis and diagnostics are considered for such models. Studentized residuals are defined and their properties are studied. Chi-square quantile-quantile plots are proposed to check the assumption of Gaussian error process and outliers. Jackknife residuals and an associated test are proposed to det...
Non-linear Loudspeaker Unit Modelling
DEFF Research Database (Denmark)
Pedersen, Bo Rohde; Agerkvist, Finn T.
2008-01-01
Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....
Polynomial model inversion control: numerical tests and applications
Novara, Carlo
2015-01-01
A novel control design approach for general nonlinear systems is described in this paper. The approach is based on the identification of a polynomial model of the system to control and on the on-line inversion of this model. Extensive simulations are carried out to test the numerical efficiency of the approach. Numerical examples of applicative interest are presented, concerned with control of the Duffing oscillator, control of a robot manipulator and insulin regulation in a type 1 diabetic p...
Friedrich, R.; Drewelow, W.
1978-01-01
An algorithm is described that is based on the method of breaking the Laplace transform down into partial fractions which are then inverse-transformed separately. The sum of the resulting partial functions is the wanted time function. Any problems caused by equation system forms are largely limited by appropriate normalization using an auxiliary parameter. The practical limits of program application are reached when the degree of the denominator of the Laplace transform is seven to eight.
Energy Technology Data Exchange (ETDEWEB)
Dobranszky, G.
2005-12-15
Stratigraphic modeling aims at rebuilding the history of the sedimentary basins by simulating the processes of erosion, transport and deposit of sediments using physical models. The objective is to determine the location of the bed-rocks likely to contain the organic matter, the location of the porous rocks that could trap the hydrocarbons during their migration and the location of the impermeable rocks likely to seal the reservoir. The model considered within this thesis is based on a multi-lithological diffusive transport model and applies to large scales of time and space. Due to the complexity of the phenomena and scales considered, none of the model parameters is directly measurable. Therefore it is essential to inverse them. The standard approach, which consists in inverting all the parameters by minimizing a cost function using a gradient method, proved very sensitive to the choice of the parameterization, to the weights given to the various terms of the cost function (hearing on data of very diverse nature) and to the numerical noise. These observations led us to give up this method and to carry out the in-version step by step by decoupling the parameters. This decoupling is not obtained by fixing the parameters but by making several assumptions on the model resulting in a range of reduced but relevant models. In this thesis, we show how these models enable us to inverse all the parameters in a robust and interactive way. (author)
High effective inverse dynamics modelling for dual-arm robot
Shen, Haoyu; Liu, Yanli; Wu, Hongtao
2018-05-01
To deal with the problem of inverse dynamics modelling for dual arm robot, a recursive inverse dynamics modelling method based on decoupled natural orthogonal complement is presented. In this model, the concepts and methods of Decoupled Natural Orthogonal Complement matrices are used to eliminate the constraint forces in the Newton-Euler kinematic equations, and the screws is used to express the kinematic and dynamics variables. On this basis, the paper has developed a special simulation program with symbol software of Mathematica and conducted a simulation research on the a dual-arm robot. Simulation results show that the proposed method based on decoupled natural orthogonal complement can save an enormous amount of CPU time that was spent in computing compared with the recursive Newton-Euler kinematic equations and the results is correct and reasonable, which can verify the reliability and efficiency of the method.
Ojo, A. O.; Xie, Jun; Olorunfemi, M. O.
2018-01-01
To reduce ambiguity related to nonlinearities in the resistivity model-data relationships, an efficient direct-search scheme employing the Neighbourhood Algorithm (NA) was implemented to solve the 1-D resistivity problem. In addition to finding a range of best-fit models which are more likely to be global minimums, this method investigates the entire multi-dimensional model space and provides additional information about the posterior model covariance matrix, marginal probability density function and an ensemble of acceptable models. This provides new insights into how well the model parameters are constrained and make assessing trade-offs between them possible, thus avoiding some common interpretation pitfalls. The efficacy of the newly developed program is tested by inverting both synthetic (noisy and noise-free) data and field data from other authors employing different inversion methods so as to provide a good base for comparative performance. In all cases, the inverted model parameters were in good agreement with the true and recovered model parameters from other methods and remarkably correlate with the available borehole litho-log and known geology for the field dataset. The NA method has proven to be useful whilst a good starting model is not available and the reduced number of unknowns in the 1-D resistivity inverse problem makes it an attractive alternative to the linearized methods. Hence, it is concluded that the newly developed program offers an excellent complementary tool for the global inversion of the layered resistivity structure.
Three-dimensional gravity modeling and focusing inversion using rectangular meshes.
Energy Technology Data Exchange (ETDEWEB)
Commer, M.
2011-03-01
Rectangular grid cells are commonly used for the geophysical modeling of gravity anomalies, owing to their flexibility in constructing complex models. The straightforward handling of cubic cells in gravity inversion algorithms allows for a flexible imposition of model regularization constraints, which are generally essential in the inversion of static potential field data. The first part of this paper provides a review of commonly used expressions for calculating the gravity of a right polygonal prism, both for gravity and gradiometry, where the formulas of Plouff and Forsberg are adapted. The formulas can be cast into general forms practical for implementation. In the second part, a weighting scheme for resolution enhancement at depth is presented. Modelling the earth using highly digitized meshes, depth weighting schemes are typically applied to the model objective functional, subject to minimizing the data misfit. The scheme proposed here involves a non-linear conjugate gradient inversion scheme with a weighting function applied to the non-linear conjugate gradient scheme's gradient vector of the objective functional. The low depth resolution due to the quick decay of the gravity kernel functions is counteracted by suppressing the search directions in the parameter space that would lead to near-surface concentrations of gravity anomalies. Further, a density parameter transformation function enabling the imposition of lower and upper bounding constraints is employed. Using synthetic data from models of varying complexity and a field data set, it is demonstrated that, given an adequate depth weighting function, the gravity inversion in the transform space can recover geologically meaningful models requiring a minimum of prior information and user interaction.
[From clinical judgment to linear regression model.
Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O
2013-01-01
When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.
Testing Parametric versus Semiparametric Modelling in Generalized Linear Models
Härdle, W.K.; Mammen, E.; Müller, M.D.
1996-01-01
We consider a generalized partially linear model E(Y|X,T) = G{X'b + m(T)} where G is a known function, b is an unknown parameter vector, and m is an unknown function.The paper introduces a test statistic which allows to decide between a parametric and a semiparametric model: (i) m is linear, i.e.
Modeling of Volatility with Non-linear Time Series Model
Kim Song Yon; Kim Mun Chol
2013-01-01
In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.
Inverse grey-box model-based control of a dielectric elastomer actuator
DEFF Research Database (Denmark)
Jones, Richard William; Sarban, Rahimullah
2012-01-01
control performance across the operating range of the DE actuator, a gain scheduling term, which linearizes the operating characteristics of the tubular dielectric elastomer actuator, is developed and implemented in series with the IMC controller. The IMC-based approach is investigated for servo control......An accurate physical-based electromechanical model of a commercially available tubular dielectric elastomer (DE) actuator has been developed and validated. In this contribution, the use of the physical-based electromechanical model to formulate a model-based controller is examined. The choice...... of control scheme was dictated by the desire for transparency in both controller design and operation. The internal model control (IMC) approach was chosen. In this particular application, the inverse of the linearized form of the grey-box model is used to formulate the IMC controller. To ensure consistent...
Anatomy of Higgs mass in supersymmetric inverse seesaw models
Energy Technology Data Exchange (ETDEWEB)
Chun, Eung Jin, E-mail: ejchun@kias.re.kr [Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Mummidi, V. Suryanarayana, E-mail: soori9@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India); Vempati, Sudhir K., E-mail: vempati@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India)
2014-09-07
We compute the one loop corrections to the CP-even Higgs mass matrix in the supersymmetric inverse seesaw model to single out the different cases where the radiative corrections from the neutrino sector could become important. It is found that there could be a significant enhancement in the Higgs mass even for Dirac neutrino masses of O(30) GeV if the left-handed sneutrino soft mass is comparable or larger than the right-handed neutrino mass. In the case where right-handed neutrino masses are significantly larger than the supersymmetry breaking scale, the corrections can utmost account to an upward shift of 3 GeV. For very heavy multi TeV sneutrinos, the corrections replicate the stop corrections at 1-loop. We further show that general gauge mediation with inverse seesaw model naturally accommodates a 125 GeV Higgs with TeV scale stops.
Thresholding projection estimators in functional linear models
Cardot, Hervé; Johannes, Jan
2010-01-01
We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squ...
Decomposed Implicit Models of Piecewise - Linear Networks
Directory of Open Access Journals (Sweden)
J. Brzobohaty
1992-05-01
Full Text Available The general matrix form of the implicit description of a piecewise-linear (PWL network and the symbolic block diagram of the corresponding circuit model are proposed. Their decomposed forms enable us to determine quite separately the existence of the individual breakpoints of the resultant PWL characteristic and their coordinates using independent network parameters. For the two-diode and three-diode cases all the attainable types of the PWL characteristic are introduced.
Inverse Modeling of Emissions and their Time Profiles
Czech Academy of Sciences Publication Activity Database
Resler, Jaroslav; Eben, Kryštof; Juruš, Pavel; Liczki, Jitka
2010-01-01
Roč. 1, č. 4 (2010), s. 288-295 ISSN 1309-1042 R&D Projects: GA MŽP SP/1A4/107/07 Grant - others:COST(XE) ES0602 Institutional research plan: CEZ:AV0Z10300504 Keywords : 4DVar * inverse modeling * diurnal time profile of emission * CMAQ adjoint * satellite observations Subject RIV: DG - Athmosphere Sciences, Meteorology
Sparse optimization for inverse problems in atmospheric modelling
Czech Academy of Sciences Publication Activity Database
Adam, Lukáš; Branda, Martin
2016-01-01
Roč. 79, č. 3 (2016), s. 256-266 ISSN 1364-8152 R&D Projects: GA MŠk(CZ) 7F14287 Institutional support: RVO:67985556 Keywords : Inverse modelling * Sparse optimization * Integer optimization * Least squares * European tracer experiment * Free Matlab codes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.404, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/adam-0457037.pdf
Core flow inversion tested with numerical dynamo models
Rau, Steffen; Christensen, Ulrich; Jackson, Andrew; Wicht, Johannes
2000-05-01
We test inversion methods of geomagnetic secular variation data for the pattern of fluid flow near the surface of the core with synthetic data. These are taken from self-consistent 3-D models of convection-driven magnetohydrodynamic dynamos in rotating spherical shells, which generate dipole-dominated magnetic fields with an Earth-like morphology. We find that the frozen-flux approximation, which is fundamental to all inversion schemes, is satisfied to a fair degree in the models. In order to alleviate the non-uniqueness of the inversion, usually a priori conditions are imposed on the flow; for example, it is required to be purely toroidal or geostrophic. Either condition is nearly satisfied by our model flows near the outer surface. However, most of the surface velocity field lies in the nullspace of the inversion problem. Nonetheless, the a priori constraints reduce the nullspace, and by inverting the magnetic data with either one of them we recover a significant part of the flow. With the geostrophic condition the correlation coefficient between the inverted and the true velocity field can reach values of up to 0.65, depending on the choice of the damping parameter. The correlation is significant at the 95 per cent level for most spherical harmonic degrees up to l=26. However, it degrades substantially, even at long wavelengths, when we truncate the magnetic data sets to l currents, similar to those seen in core-flow models derived from geomagnetic data, occur in the equatorial region. However, the true flow does not contain this flow component. The results suggest that some meaningful information on the core-flow pattern can be retrieved from secular variation data, but also that the limited resolution of the magnetic core field could produce serious artefacts.
From spiking neuron models to linear-nonlinear models.
Ostojic, Srdjan; Brunel, Nicolas
2011-01-20
Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.
Inversion of the Jacobi-Porstendorfer room model for the radon progeny
International Nuclear Information System (INIS)
Thomas, J.; Jilek, K.; Brabec, M.
2010-01-01
The Jacobi-Porstendoerfer (J-P) room model describes the behaviour of radon progeny in the atmosphere of a room. It distinguishes between free and attached radon progeny in air. It has been successfully used without substantial changes for nearly 40 years. There have been several attempts to invert the model approximately to determine the parameters describing the physical processes. Here, an exact solution is aimed at as an algebraic inversion of the system of six linear equations for the five unknown physical parameters k, X, R, q f , q a of the room model. Two strong linear dependencies in this system, unfortunately do not allow to obtain a general solution (especially not for the ventilation coefficient k), but only a parameterized one or for reduced sets of unknown parameters. More, the impossibility to eliminate one of the two linear dependencies and the departures of the measured concentrations forces to solve a set of allowed combinations of equations of the algebraic system and to accept its mean values (therefore with variances) as a result of the algebraic inversion. These results are in agreement with results of the least squares method as well as of a sophisticated modern statistical approach. The algebraic approach provides, of course, a lot of analytical relations to study the mutual dependencies between the model parameters and the measurable quantities. (authors)
Stochastic linear programming models, theory, and computation
Kall, Peter
2011-01-01
This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...
Larin, S.V.; Lyulin, S.V.; Lyulin, A.V.; Darinskii, A.A.
2009-01-01
Complexes of fully ionized third-generation dendrimers with oppositely charged linear polyelectrolyte chains are studied by the Brownian dynamics method. A freely jointed model of a dendrimer and a linear chain is used. Electrostatic interactions are considered within the Debye-Hückel approximation
Inverse modeling of geochemical and mechanical compaction in sedimentary basins
Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto
2015-04-01
We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model
Three-dimensional magnetotelluric axial anisotropic forward modeling and inversion
Cao, Hui; Wang, Kunpeng; Wang, Tao; Hua, Boguang
2018-06-01
Magnetotelluric (MT) data has been widely used to image underground electrical structural. However, when the significant axial resistivity anisotropy presents, how this influences three-dimensional MT data has not been resolved clearly yet. We here propose a scheme for three-dimensional modeling of MT data in presence of axial anisotropic resistivity, where the electromagnetic fields are decomposed into primary and secondary components. A 3D staggered-grid finite difference method is then used to resolve the resulting 3D governing equations. Numerical tests have completed to validate the correctness and accuracy of the present algorithm. A limited-memory Broyden-Fletcher-Goldfarb-Shanno method is then utilized to realize the 3D MT axial anisotropic inversion. The testing results show that, compared to the results of isotropic resistivity inversion, taking account the axial anisotropy can much improve the inverted results.
Full-model wavenumber inversion: An emphasis on the appropriate wavenumber continuation
Alkhalifah, Tariq Ali
2016-04-06
A model of the earth can be described using a Fourier basis represented by its wavenumber content. In full-waveform inversion (FWI), the wavenumber description of the model is natural because our Born-approximation-based velocity updates are made up of wavefields. Our objective in FWI is to access all the model wavenumbers available in our limited aperture and bandwidth recorded data that are not yet accurately present in the initial velocity model. To invert for those model wavenumbers, we need to locate their imprint in the data. Thus, I review the relation between the model wavenumber buildup and the inversion process. Specifically, I emphasize a focus on the model wavenumber components and identified their individual influence on the data. Missing the energy for a single vertical low-model wavenumber from the residual between the true Marmousi model and some initial linearly increasing velocity model produced a worse least-squares fit to the data than the initial model itself, in which all the residual model wavenumbers were missing. This stern realization validated the importance of wavenumber continuation, specifically starting from the low-model wavenumbers, to higher (resolution) wavenumbers, especially those attained in an order dictated by the scattering angle filter. A numerical Marmousi example determined the important role that the scattering angle filter played in managing the wavenumber continuation from low to high. An application on the SEG2014 blind test data set with frequencies lower than 7 Hz muted out further validated the versatility of the scattering angle filtering.
Full-model wavenumber inversion: An emphasis on the appropriate wavenumber continuation
Alkhalifah, Tariq Ali
2016-01-01
A model of the earth can be described using a Fourier basis represented by its wavenumber content. In full-waveform inversion (FWI), the wavenumber description of the model is natural because our Born-approximation-based velocity updates are made up of wavefields. Our objective in FWI is to access all the model wavenumbers available in our limited aperture and bandwidth recorded data that are not yet accurately present in the initial velocity model. To invert for those model wavenumbers, we need to locate their imprint in the data. Thus, I review the relation between the model wavenumber buildup and the inversion process. Specifically, I emphasize a focus on the model wavenumber components and identified their individual influence on the data. Missing the energy for a single vertical low-model wavenumber from the residual between the true Marmousi model and some initial linearly increasing velocity model produced a worse least-squares fit to the data than the initial model itself, in which all the residual model wavenumbers were missing. This stern realization validated the importance of wavenumber continuation, specifically starting from the low-model wavenumbers, to higher (resolution) wavenumbers, especially those attained in an order dictated by the scattering angle filter. A numerical Marmousi example determined the important role that the scattering angle filter played in managing the wavenumber continuation from low to high. An application on the SEG2014 blind test data set with frequencies lower than 7 Hz muted out further validated the versatility of the scattering angle filtering.
Inverse Analysis and Modeling for Tunneling Thrust on Shield Machine
Directory of Open Access Journals (Sweden)
Qian Zhang
2013-01-01
Full Text Available With the rapid development of sensor and detection technologies, measured data analysis plays an increasingly important role in the design and control of heavy engineering equipment. The paper proposed a method for inverse analysis and modeling based on mass on-site measured data, in which dimensional analysis and data mining techniques were combined. The method was applied to the modeling of the tunneling thrust on shield machines and an explicit expression for thrust prediction was established. Combined with on-site data from a tunneling project in China, the inverse identification of model coefficients was carried out using the multiple regression method. The model residual was analyzed by statistical methods. By comparing the on-site data and the model predicted results in the other two projects with different tunneling conditions, the feasibility of the model was discussed. The work may provide a scientific basis for the rational design and control of shield tunneling machines and also a new way for mass on-site data analysis of complex engineering systems with nonlinear, multivariable, time-varying characteristics.
Model study of the compact gravity reconstruction; Juryoku inversion `CGR` no model kento
Energy Technology Data Exchange (ETDEWEB)
Ishii, Y; Muraoka, A [Sogo Geophysical Exploration Co. Ltd., Tokyo (Japan)
1996-05-01
An examination was made on gravity inversion using a compact gravity reconstruction (CGR) method in gravity tomography analysis. In a model analysis, an analytical region of 100m{times}50m was divided into cells of 10m{times}10m, on the assumption that two density anomalous bodies with a density difference of 1.0g/cm{sup 3} existed with one shallow and the other deep density distribution. The result of the analysis revealed that, in a linear analysis by a general inverse matrix, blurs and blotting were plenty with a tendency of making gravity anomaly attributable to an anomalous distribution of shallow density; that CGR provided a large effect in making a clear contrast of an anomalous part; that, where structures of shallow and deep density anomalies existed, the analysis by CGR was inferior in the restoration of a deep structure with errors enlarged; that, if a gravity traverse was taken long compared with the distribution depth of density anomalies, the analytical precision of a deep part was improved; that an analytical convergence was better with the restriction of density difference given on the large side than on the small side; and so on. 3 refs., 10 figs.
Joint Inversion Modelling of Geophysical Data From Lough Neagh Basin
Vozar, J.; Moorkamp, M.; Jones, A. G.; Rath, V.; Muller, M. R.
2015-12-01
Multi-dimensional modelling of geophysical data collected in the Lough Neagh Basin is presented in the frame of the IRETHERM project. The Permo-Triassic Lough Neagh Basin, situated in the southeastern part of Northern Ireland, exhibits elevated geothermal gradient (~30 °C/km) in the exploratory drilled boreholes. This is taken to indicate good geothermal exploitation potential in the Sherwood Sandstone aquifer for heating, and possibly even electricity production, purposes. We have used a 3-D joint inversion framework for modelling the magnetotelluric (MT) and gravity data collected to the north of the Lough Neagh to derive robust subsurface geological models. Comprehensive supporting geophysical and geological data (e.g. borehole logs and reflection seismic images) have been used in order to analyze and model the MT and gravity data. The geophysical data sets were provided by the Geological Survey of Northern Ireland (GSNI). Considering correct objective function weighting in favor of noise-free MT response functions is particularly important in joint inversion. There is no simple way how to correct distortion effects the 3-D responses as can be done in 1-D or 2-D case. We have used the Tellus Project airborne EM data to constrain magnetotelluric data and correct them for near surface effects. The shallow models from airborne data are used to constrain the uppermost part of 3-D inversion model. Preliminary 3-D joint inversion modeling reveals that the Sherwood Sandstone Group and the Permian Sandstone Formation are imaged as a conductive zone at the depth range of 500 m to 2000 m with laterally varying thickness, depth, and conductance. The conductive target sediments become shallower and thinner to the north and they are laterally continuous. To obtain better characterization of thermal transport properties of investigated area we used porosity and resistivity data from the Annaghmore and Ballymacilroy boreholes to estimate the relations between porosity
Linear accelerator modeling: development and application
International Nuclear Information System (INIS)
Jameson, R.A.; Jule, W.D.
1977-01-01
Most of the parameters of a modern linear accelerator can be selected by simulating the desired machine characteristics in a computer code and observing how the parameters affect the beam dynamics. The code PARMILA is used at LAMPF for the low-energy portion of linacs. Collections of particles can be traced with a free choice of input distributions in six-dimensional phase space. Random errors are often included in order to study the tolerances which should be imposed during manufacture or in operation. An outline is given of the modifications made to the model, the results of experiments which indicate the validity of the model, and the use of the model to optimize the longitudinal tuning of the Alvarez linac
Running vacuum cosmological models: linear scalar perturbations
Energy Technology Data Exchange (ETDEWEB)
Perico, E.L.D. [Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP (Brazil); Tamayo, D.A., E-mail: elduartep@usp.br, E-mail: tamayo@if.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, SP (Brazil)
2017-08-01
In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ( H {sup 2}) or Λ( R ). Such models assume an equation of state for the vacuum given by P-bar {sub Λ} = - ρ-bar {sub Λ}, relating its background pressure P-bar {sub Λ} with its mean energy density ρ-bar {sub Λ} ≡ Λ/8π G . This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely ρ-bar {sub Λ} = Σ {sub i} ρ-bar {sub Λ} {sub i} . Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ( H {sup 2}) scenario the vacuum is coupled with every matter component, whereas the Λ( R ) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.
Linear Parametric Model Checking of Timed Automata
DEFF Research Database (Denmark)
Hune, Tohmas Seidelin; Romijn, Judi; Stoelinga, Mariëlle
2001-01-01
We present an extension of the model checker Uppaal capable of synthesize linear parameter constraints for the correctness of parametric timed automata. The symbolic representation of the (parametric) state-space is shown to be correct. A second contribution of this paper is the identication...... of a subclass of parametric timed automata (L/U automata), for which the emptiness problem is decidable, contrary to the full class where it is know to be undecidable. Also we present a number of lemmas enabling the verication eort to be reduced for L/U automata in some cases. We illustrate our approach...
Retrieving global aerosol sources from satellites using inverse modeling
Directory of Open Access Journals (Sweden)
O. Dubovik
2008-01-01
Full Text Available Understanding aerosol effects on global climate requires knowing the global distribution of tropospheric aerosols. By accounting for aerosol sources, transports, and removal processes, chemical transport models simulate the global aerosol distribution using archived meteorological fields. We develop an algorithm for retrieving global aerosol sources from satellite observations of aerosol distribution by inverting the GOCART aerosol transport model.
The inversion is based on a generalized, multi-term least-squares-type fitting, allowing flexible selection and refinement of a priori algorithm constraints. For example, limitations can be placed on retrieved quantity partial derivatives, to constrain global aerosol emission space and time variability in the results. Similarities and differences between commonly used inverse modeling and remote sensing techniques are analyzed. To retain the high space and time resolution of long-period, global observational records, the algorithm is expressed using adjoint operators.
Successful global aerosol emission retrievals at 2°×2.5 resolution were obtained by inverting GOCART aerosol transport model output, assuming constant emissions over the diurnal cycle, and neglecting aerosol compositional differences. In addition, fine and coarse mode aerosol emission sources were inverted separately from MODIS fine and coarse mode aerosol optical thickness data, respectively. These assumptions are justified, based on observational coverage and accuracy limitations, producing valuable aerosol source locations and emission strengths. From two weeks of daily MODIS observations during August 2000, the global placement of fine mode aerosol sources agreed with available independent knowledge, even though the inverse method did not use any a priori information about aerosol sources, and was initialized with a "zero aerosol emission" assumption. Retrieving coarse mode aerosol emissions was less successful
Alloy design as an inverse problem of cluster expansion models
DEFF Research Database (Denmark)
Larsen, Peter Mahler; Kalidindi, Arvind R.; Schmidt, Søren
2017-01-01
Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding the configurat......Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding...... the inverse problem in terms of energetically distinct configurations, using a constraint satisfaction model to identify constructible configurations, and show that a convex hull can be used to identify ground states. To demonstrate the approach, we solve for all ground states for a binary alloy in a 2D...
Evaluation of a Linear Mixing Model to Retrieve Soil and Vegetation Temperatures of Land Targets
International Nuclear Information System (INIS)
Yang, Jinxin; Jia, Li; Cui, Yaokui; Zhou, Jie; Menenti, Massimo
2014-01-01
A simple linear mixing model of heterogeneous soil-vegetation system and retrieval of component temperatures from directional remote sensing measurements by inverting this model is evaluated in this paper using observations by a thermal camera. The thermal camera was used to obtain multi-angular TIR (Thermal Infra-Red) images over vegetable and orchard canopies. A whole thermal camera image was treated as a pixel of a satellite image to evaluate the model with the two-component system, i.e. soil and vegetation. The evaluation included two parts: evaluation of the linear mixing model and evaluation of the inversion of the model to retrieve component temperatures. For evaluation of the linear mixing model, the RMSE is 0.2 K between the observed and modelled brightness temperatures, which indicates that the linear mixing model works well under most conditions. For evaluation of the model inversion, the RMSE between the model retrieved and the observed vegetation temperatures is 1.6K, correspondingly, the RMSE between the observed and retrieved soil temperatures is 2.0K. According to the evaluation of the sensitivity of retrieved component temperatures on fractional cover, the linear mixing model gives more accurate retrieval accuracies for both soil and vegetation temperatures under intermediate fractional cover conditions
Support minimized inversion of acoustic and elastic wave scattering
International Nuclear Information System (INIS)
Safaeinili, A.
1994-01-01
This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion
Aspects of general linear modelling of migration.
Congdon, P
1992-01-01
"This paper investigates the application of general linear modelling principles to analysing migration flows between areas. Particular attention is paid to specifying the form of the regression and error components, and the nature of departures from Poisson randomness. Extensions to take account of spatial and temporal correlation are discussed as well as constrained estimation. The issue of specification bears on the testing of migration theories, and assessing the role migration plays in job and housing markets: the direction and significance of the effects of economic variates on migration depends on the specification of the statistical model. The application is in the context of migration in London and South East England in the 1970s and 1980s." excerpt
Model Selection with the Linear Mixed Model for Longitudinal Data
Ryoo, Ji Hoon
2011-01-01
Model building or model selection with linear mixed models (LMMs) is complicated by the presence of both fixed effects and random effects. The fixed effects structure and random effects structure are codependent, so selection of one influences the other. Most presentations of LMM in psychology and education are based on a multilevel or…
Smith, G. A.; Meyer, G.; Nordstrom, M.
1986-01-01
A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.
Inverse geothermal modelling applied to Danish sedimentary basins
Poulsen, Søren E.; Balling, Niels; Bording, Thue S.; Mathiesen, Anders; Nielsen, Søren B.
2017-10-01
This paper presents a numerical procedure for predicting subsurface temperatures and heat-flow distribution in 3-D using inverse calibration methodology. The procedure is based on a modified version of the groundwater code MODFLOW by taking advantage of the mathematical similarity between confined groundwater flow (Darcy's law) and heat conduction (Fourier's law). Thermal conductivity, heat production and exponential porosity-depth relations are specified separately for the individual geological units of the model domain. The steady-state temperature model includes a model-based transient correction for the long-term palaeoclimatic thermal disturbance of the subsurface temperature regime. Variable model parameters are estimated by inversion of measured borehole temperatures with uncertainties reflecting their quality. The procedure facilitates uncertainty estimation for temperature predictions. The modelling procedure is applied to Danish onshore areas containing deep sedimentary basins. A 3-D voxel-based model, with 14 lithological units from surface to 5000 m depth, was built from digital geological maps derived from combined analyses of reflection seismic lines and borehole information. Matrix thermal conductivity of model lithologies was estimated by inversion of all available deep borehole temperature data and applied together with prescribed background heat flow to derive the 3-D subsurface temperature distribution. Modelled temperatures are found to agree very well with observations. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature gradients to depths of 2000-3000 m are generally around 25-30 °C km-1, locally up to about 35 °C km-1. Large regions have geothermal reservoirs with characteristic temperatures
Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models.
de Jesus, Karla; Ayala, Helon V H; de Jesus, Kelly; Coelho, Leandro Dos S; Medeiros, Alexandre I A; Abraldes, José A; Vaz, Mário A P; Fernandes, Ricardo J; Vilas-Boas, João Paulo
2018-03-01
Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances.
A model for the inverse 1-median problem on trees under uncertain costs
Directory of Open Access Journals (Sweden)
Kien Trung Nguyen
2016-01-01
Full Text Available We consider the problem of justifying vertex weights of a tree under uncertain costs so that a prespecified vertex become optimal and the total cost should be optimal in the uncertainty scenario. We propose a model which delivers the information about the optimal cost which respect to each confidence level \\(\\alpha \\in [0,1]\\. To obtain this goal, we first define an uncertain variable with respect to the minimum cost in each confidence level. If all costs are independently linear distributed, we present the inverse distribution function of this uncertain variable in \\(O(n^{2}\\log n\\ time, where \\(n\\ is the number of vertices in the tree.
[Crop geometry identification based on inversion of semiempirical BRDF models].
Zhao, Chun-jiang; Huang, Wen-jiang; Mu, Xu-han; Wang, Jin-diz; Wang, Ji-hua
2009-09-01
With the rapid development of remote sensing technology, the application of remote sensing has extended from single view angle to multi-view angles. It was studied for the qualitative and quantitative effect of average leaf angle (ALA) on crop canopy reflected spectrum. Effect of ALA on canopy reflected spectrum can not be ignored with inversion of leaf area index (LAI) and monitoring of crop growth condition by remote sensing technology. Investigations of the effect of erective and horizontal varieties were conducted by bidirectional canopy reflected spectrum and semiempirical bidirectional reflectance distribution function (BRDF) models. The sensitive analysis was done based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso) at red band (680 nm) and near infrared band (800 nm). By combining the weights of the red and near-infrared bands, the semiempirical models can obtain structural information by retrieving biophysical parameters from the physical BRDF model and a number of bidirectional observations. So, it will allow an on-site and non-sampling mode of crop ALA identification, which is useful for using remote sensing for crop growth monitoring and for improving the LAI inversion accuracy, and it will help the farmers in guiding the fertilizer and irrigation management in the farmland without a priori knowledge.
Modeling patterns in data using linear and related models
International Nuclear Information System (INIS)
Engelhardt, M.E.
1996-06-01
This report considers the use of linear models for analyzing data related to reliability and safety issues of the type usually associated with nuclear power plants. The report discusses some of the general results of linear regression analysis, such as the model assumptions and properties of the estimators of the parameters. The results are motivated with examples of operational data. Results about the important case of a linear regression model with one covariate are covered in detail. This case includes analysis of time trends. The analysis is applied with two different sets of time trend data. Diagnostic procedures and tests for the adequacy of the model are discussed. Some related methods such as weighted regression and nonlinear models are also considered. A discussion of the general linear model is also included. Appendix A gives some basic SAS programs and outputs for some of the analyses discussed in the body of the report. Appendix B is a review of some of the matrix theoretic results which are useful in the development of linear models
Electron Model of Linear-Field FFAG
Koscielniak, Shane R
2005-01-01
A fixed-field alternating-gradient accelerator (FFAG) that employs only linear-field elements ushers in a new regime in accelerator design and dynamics. The linear-field machine has the ability to compact an unprecedented range in momenta within a small component aperture. With a tune variation which results from the natural chromaticity, the beam crosses many strong, uncorrec-table, betatron resonances during acceleration. Further, relativistic particles in this machine exhibit a quasi-parabolic time-of-flight that cannot be addressed with a fixed-frequency rf system. This leads to a new concept of bucketless acceleration within a rotation manifold. With a large energy jump per cell, there is possibly strong synchro-betatron coupling. A few-MeV electron model has been proposed to demonstrate the feasibility of these untested acceleration features and to investigate them at length under a wide range of operating conditions. This paper presents a lattice optimized for a 1.3 GHz rf, initial technology choices f...
Linear models in the mathematics of uncertainty
Mordeson, John N; Clark, Terry D; Pham, Alex; Redmond, Michael A
2013-01-01
The purpose of this book is to present new mathematical techniques for modeling global issues. These mathematical techniques are used to determine linear equations between a dependent variable and one or more independent variables in cases where standard techniques such as linear regression are not suitable. In this book, we examine cases where the number of data points is small (effects of nuclear warfare), where the experiment is not repeatable (the breakup of the former Soviet Union), and where the data is derived from expert opinion (how conservative is a political party). In all these cases the data is difficult to measure and an assumption of randomness and/or statistical validity is questionable. We apply our methods to real world issues in international relations such as nuclear deterrence, smart power, and cooperative threat reduction. We next apply our methods to issues in comparative politics such as successful democratization, quality of life, economic freedom, political stability, and fail...
Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling
Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon
2010-01-01
We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.
Generalized Linear Models in Vehicle Insurance
Directory of Open Access Journals (Sweden)
Silvie Kafková
2014-01-01
Full Text Available Actuaries in insurance companies try to find the best model for an estimation of insurance premium. It depends on many risk factors, e.g. the car characteristics and the profile of the driver. In this paper, an analysis of the portfolio of vehicle insurance data using a generalized linear model (GLM is performed. The main advantage of the approach presented in this article is that the GLMs are not limited by inflexible preconditions. Our aim is to predict the relation of annual claim frequency on given risk factors. Based on a large real-world sample of data from 57 410 vehicles, the present study proposed a classification analysis approach that addresses the selection of predictor variables. The models with different predictor variables are compared by analysis of deviance and Akaike information criterion (AIC. Based on this comparison, the model for the best estimate of annual claim frequency is chosen. All statistical calculations are computed in R environment, which contains stats package with the function for the estimation of parameters of GLM and the function for analysis of deviation.
A nonlinear inversion for the velocity background and perturbation models
Wu, Zedong; Alkhalifah, Tariq Ali
2015-01-01
Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect
Incorporating model parameter uncertainty into inverse treatment planning
International Nuclear Information System (INIS)
Lian Jun; Xing Lei
2004-01-01
Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made possible by using a statistical analysis-based frameset developed by our group. In this formalism, the uncertainties of model parameters, such as the parameter a that describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by probability density function and are included in the dose optimization process. We found that the final solution strongly depends on distribution functions of the model parameters. Considering that currently available models for computing biological effects of radiation are simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the uncertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT treatment
Cho, Jeongho; Principe, Jose C.; Erdogmus, Deniz; Motter, Mark A.
2005-01-01
The next generation of aircraft will have dynamics that vary considerably over the operating regime. A single controller will have difficulty to meet the design specifications. In this paper, a SOM-based local linear modeling scheme of an unmanned aerial vehicle (UAV) is developed to design a set of inverse controllers. The SOM selects the operating regime depending only on the embedded output space information and avoids normalization of the input data. Each local linear model is associated with a linear controller, which is easy to design. Switching of the controllers is done synchronously with the active local linear model that tracks the different operating conditions. The proposed multiple modeling and control strategy has been successfully tested in a simulator that models the LoFLYTE UAV.
Nonlinear price impact from linear models
Patzelt, Felix; Bouchaud, Jean-Philippe
2017-12-01
The impact of trades on asset prices is a crucial aspect of market dynamics for academics, regulators, and practitioners alike. Recently, universal and highly nonlinear master curves were observed for price impacts aggregated on all intra-day scales (Patzelt and Bouchaud 2017 arXiv:1706.04163). Here we investigate how well these curves, their scaling, and the underlying return dynamics are captured by linear ‘propagator’ models. We find that the classification of trades as price-changing versus non-price-changing can explain the price impact nonlinearities and short-term return dynamics to a very high degree. The explanatory power provided by the change indicator in addition to the order sign history increases with increasing tick size. To obtain these results, several long-standing technical issues for model calibration and testing are addressed. We present new spectral estimators for two- and three-point cross-correlations, removing the need for previously used approximations. We also show when calibration is unbiased and how to accurately reveal previously overlooked biases. Therefore, our results contribute significantly to understanding both recent empirical results and the properties of a popular class of impact models.
Ruggeri, Fabrizio; Sawlan, Zaid A; Scavino, Marco; Tempone, Raul
2016-01-01
that the thermal diffusivity parameter can be modeled a priori through a lognormal random variable or by means of a space-dependent stationary lognormal random field. Synthetic data are used to test the inference. We exploit the behavior of the non-normalized log
Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.
2009-01-01
This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…
An inverse problem for a mathematical model of aquaponic agriculture
Bobak, Carly; Kunze, Herb
2017-01-01
Aquaponic agriculture is a sustainable ecosystem that relies on a symbiotic relationship between fish and macrophytes. While the practice has been growing in popularity, relatively little mathematical models exist which aim to study the system processes. In this paper, we present a system of ODEs which aims to mathematically model the population and concetrations dynamics present in an aquaponic environment. Values of the parameters in the system are estimated from the literature so that simulated results can be presented to illustrate the nature of the solutions to the system. As well, a brief sensitivity analysis is performed in order to identify redundant parameters and highlight those which may need more reliable estimates. Specifically, an inverse problem with manufactured data for fish and plants is presented to demonstrate the ability of the collage theorem to recover parameter estimates.
International Nuclear Information System (INIS)
Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sökmen, I.
2012-01-01
In this present work, we have investigated theoretically the effects of applied electric and magnetic fields on the linear and nonlinear optical properties in a GaAs/Al x Ga 1−x As inverse parabolic quantum well for different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The energy levels and wave functions are calculated within the effective mass approximation and the envelope function approach. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The linear, third-order nonlinear and total absorption and refractive index changes depending on the Al concentration at the well center are investigated as a function of the incident photon energy for the different values of the applied electric and magnetic fields. The results show that the applied electric and magnetic fields have a great effect on these optical quantities. - Highlights: ► The x c concentration has a great effect on the optical characteristics of these structures. ► The EM fields have a great effect on the optical properties of these structures. ► The total absorption coefficients increased as the electric and magnetic field increases. ► The RICs reduced as the electric and magnetic field increases.
Truong-Loi, My-Linh; Saatchi, Sassan; Jaruwatanadilok, Sermsak
2012-01-01
A semi-empirical algorithm for the retrieval of soil moisture, root mean square (RMS) height and biomass from polarimetric SAR data is explained and analyzed in this paper. The algorithm is a simplification of the distorted Born model. It takes into account the physical scattering phenomenon and has three major components: volume, double-bounce and surface. This simplified model uses the three backscattering coefficients ( sigma HH, sigma HV and sigma vv) at low-frequency (P-band). The inversion process uses the Levenberg-Marquardt non-linear least-squares method to estimate the structural parameters. The estimation process is entirely explained in this paper, from initialization of the unknowns to retrievals. A sensitivity analysis is also done where the initial values in the inversion process are varying randomly. The results show that the inversion process is not really sensitive to initial values and a major part of the retrievals has a root-mean-square error lower than 5% for soil moisture, 24 Mg/ha for biomass and 0.49 cm for roughness, considering a soil moisture of 40%, roughness equal to 3cm and biomass varying from 0 to 500 Mg/ha with a mean of 161 Mg/ha
Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots
Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.
2013-01-01
Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…
From linear to generalized linear mixed models: A case study in repeated measures
Compared to traditional linear mixed models, generalized linear mixed models (GLMMs) can offer better correspondence between response variables and explanatory models, yielding more efficient estimates and tests in the analysis of data from designed experiments. Using proportion data from a designed...
Bayesian inversion using a geologically realistic and discrete model space
Jaeggli, C.; Julien, S.; Renard, P.
2017-12-01
Since the early days of groundwater modeling, inverse methods play a crucial role. Many research and engineering groups aim to infer extensive knowledge of aquifer parameters from a sparse set of observations. Despite decades of dedicated research on this topic, there are still several major issues to be solved. In the hydrogeological framework, one is often confronted with underground structures that present very sharp contrasts of geophysical properties. In particular, subsoil structures such as karst conduits, channels, faults, or lenses, strongly influence groundwater flow and transport behavior of the underground. For this reason it can be essential to identify their location and shape very precisely. Unfortunately, when inverse methods are specially trained to consider such complex features, their computation effort often becomes unaffordably high. The following work is an attempt to solve this dilemma. We present a new method that is, in some sense, a compromise between the ergodicity of Markov chain Monte Carlo (McMC) methods and the efficient handling of data by the ensemble based Kalmann filters. The realistic and complex random fields are generated by a Multiple-Point Statistics (MPS) tool. Nonetheless, it is applicable with any conditional geostatistical simulation tool. Furthermore, the algorithm is independent of any parametrization what becomes most important when two parametric systems are equivalent (permeability and resistivity, speed and slowness, etc.). When compared to two existing McMC schemes, the computational effort was divided by a factor of 12.
NACP Regional: Original Observation Data and Biosphere and Inverse Model Outputs
National Aeronautics and Space Administration — This data set contains the originally-submitted observation measurement data, terrestrial biosphere model output data, and inverse model simulations that various...
NACP Regional: Original Observation Data and Biosphere and Inverse Model Outputs
National Aeronautics and Space Administration — ABSTRACT: This data set contains the originally-submitted observation measurement data, terrestrial biosphere model output data, and inverse model simulations that...
Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.
2011-01-01
Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.
Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.
Lin, Huiming; Fu, Bo; Qin, Guoyou; Zhu, Zhongyi
2017-12-01
We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed method and use simulation studies to compare its finite sample performance with that of Qu's method, the complete-case generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated using data from a longitudinal cohort study. © 2017, The International Biometric Society.
Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A
2017-02-01
This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r = 0.71-0.88, RMSE: 1.11-1.61 METs; p > 0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r = 0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r = 0.88, RMSE: 1.10-1.11 METs; p > 0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r = 0.88, RMSE: 1.12 METs. Linear models-correlations: r = 0.86, RMSE: 1.18-1.19 METs; p linear models for the wrist-worn accelerometers (ANN-correlations: r = 0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r = 0.71-0.73, RMSE: 1.55-1.61 METs; p models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh
Anthropomorphic Coding of Speech and Audio: A Model Inversion Approach
Directory of Open Access Journals (Sweden)
W. Bastiaan Kleijn
2005-06-01
Full Text Available Auditory modeling is a well-established methodology that provides insight into human perception and that facilitates the extraction of signal features that are most relevant to the listener. The aim of this paper is to provide a tutorial on perceptual speech and audio coding using an invertible auditory model. In this approach, the audio signal is converted into an auditory representation using an invertible auditory model. The auditory representation is quantized and coded. Upon decoding, it is then transformed back into the acoustic domain. This transformation converts a complex distortion criterion into a simple one, thus facilitating quantization with low complexity. We briefly review past work on auditory models and describe in more detail the components of our invertible model and its inversion procedure, that is, the method to reconstruct the signal from the output of the auditory model. We summarize attempts to use the auditory representation for low-bit-rate coding. Our approach also allows the exploitation of the inherent redundancy of the human auditory system for the purpose of multiple description (joint source-channel coding.
Natural vs. artificial groundwater recharge, quantification through inverse modeling
Directory of Open Access Journals (Sweden)
H. Hashemi
2013-02-01
Full Text Available Estimating the change in groundwater recharge from an introduced artificial recharge system is important in order to evaluate future water availability. This paper presents an inverse modeling approach to quantify the recharge contribution from both an ephemeral river channel and an introduced artificial recharge system based on floodwater spreading in arid Iran. The study used the MODFLOW-2000 to estimate recharge for both steady- and unsteady-state conditions. The model was calibrated and verified based on the observed hydraulic head in observation wells and model precision, uncertainty, and model sensitivity were analyzed in all modeling steps. The results showed that in a normal year without extreme events, the floodwater spreading system is the main contributor to recharge with 80% and the ephemeral river channel with 20% of total recharge in the studied area. Uncertainty analysis revealed that the river channel recharge estimation represents relatively more uncertainty in comparison to the artificial recharge zones. The model is also less sensitive to the river channel. The results show that by expanding the artificial recharge system, the recharge volume can be increased even for small flood events, while the recharge through the river channel increases only for major flood events.
Evaluating the double Poisson generalized linear model.
Zou, Yaotian; Geedipally, Srinivas Reddy; Lord, Dominique
2013-10-01
The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data. Copyright © 2013 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Liu, Yishan; Han, Ping [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Li, Xiao-yan; Shih, Kaimin [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Gu, Ji-Dong, E-mail: jdgu@hkucc.hku.hk [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); The Swire Institute of Marine Science, The University of Hong Kong, Shek O, Cape d' Aguilar, Hong Kong (China)
2011-09-15
Highlights: {yields} We isolated a Xanthobacter flavus strain PA1 utilizing the racemic 2-PBA and the single enantiomers as the sole source of carbon and energy. {yields} Both (R) and (S) forms of enantiomers can be degraded in a sequential manner in which the (S) disappeared before the (R) form. {yields} The biochemical degradation pathway involves an initial oxidation of the alkyl side chain before aromatic ring cleavage. - Abstract: Microbial degradation of the chiral 2-phenylbutyric acid (2-PBA), a metabolite of surfactant linear alkylbenzene sulfonates (LAS), was investigated using both racemic and enantiomer-pure compounds together with quantitative stereoselective analyses. A pure culture of bacteria, identified as Xanthobacter flavus strain PA1 isolated from the mangrove sediment of Hong Kong Mai Po Nature Reserve, was able to utilize the racemic 2-PBA as well as the single enantiomers as the sole source of carbon and energy. In the presence of the racemic compounds, X. flavus PA1 degraded both (R) and (S) forms of enantiomers to completion in a sequential manner in which the (S) enantiomer disappeared much faster than the (R) enantiomer. When the single pure enantiomer was supplied as the sole substrate, a unidirectional chiral inversion involving (S) enantiomer to (R) enantiomer was evident. No major difference was observed in the degradation intermediates with either of the individual enantiomers when used as the growth substrate. Two major degradation intermediates were detected and identified as 3-hydroxy-2-phenylbutanoic acid and 4-methyl-3-phenyloxetan-2-one, using a combination of liquid chromatography-mass spectrometry (LC-MS), and {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) spectroscopy. The biochemical degradation pathway follows an initial oxidation of the alkyl side chain before aromatic ring cleavage. This study reveals new evidence for enantiomeric inversion catalyzed by pure culture of environmental bacteria and emphasizes the
Inverse Force Determination on a Small Scale Launch Vehicle Model Using a Dynamic Balance
Ngo, Christina L.; Powell, Jessica M.; Ross, James C.
2017-01-01
A launch vehicle can experience large unsteady aerodynamic forces in the transonic regime that, while usually only lasting for tens of seconds during launch, could be devastating if structural components and electronic hardware are not designed to account for them. These aerodynamic loads are difficult to experimentally measure and even harder to computationally estimate. The current method for estimating buffet loads is through the use of a few hundred unsteady pressure transducers and wind tunnel test. Even with a large number of point measurements, the computed integrated load is not an accurate enough representation of the total load caused by buffeting. This paper discusses an attempt at using a dynamic balance to experimentally determine buffet loads on a generic scale hammer head launch vehicle model tested at NASA Ames Research Center's 11' x 11' transonic wind tunnel. To use a dynamic balance, the structural characteristics of the model needed to be identified so that the natural modal response could be and removed from the aerodynamic forces. A finite element model was created on a simplified version of the model to evaluate the natural modes of the balance flexures, assist in model design, and to compare to experimental data. Several modal tests were conducted on the model in two different configurations to check for non-linearity, and to estimate the dynamic characteristics of the model. The experimental results were used in an inverse force determination technique with a psuedo inverse frequency response function. Due to the non linearity, the model not being axisymmetric, and inconsistent data between the two shake tests from different mounting configuration, it was difficult to create a frequency response matrix that satisfied all input and output conditions for wind tunnel configuration to accurately predict unsteady aerodynamic loads.
UCODE, a computer code for universal inverse modeling
Poeter, E.P.; Hill, M.C.
1999-01-01
This article presents the US Geological Survey computer program UCODE, which was developed in collaboration with the US Army Corps of Engineers Waterways Experiment Station and the International Ground Water Modeling Center of the Colorado School of Mines. UCODE performs inverse modeling, posed as a parameter-estimation problem, using nonlinear regression. Any application model or set of models can be used; the only requirement is that they have numerical (ASCII or text only) input and output files and that the numbers in these files have sufficient significant digits. Application models can include preprocessors and postprocessors as well as models related to the processes of interest (physical, chemical and so on), making UCODE extremely powerful for model calibration. Estimated parameters can be defined flexibly with user-specified functions. Observations to be matched in the regression can be any quantity for which a simulated equivalent value can be produced, thus simulated equivalent values are calculated using values that appear in the application model output files and can be manipulated with additive and multiplicative functions, if necessary. Prior, or direct, information on estimated parameters also can be included in the regression. The nonlinear regression problem is solved by minimizing a weighted least-squares objective function with respect to the parameter values using a modified Gauss-Newton method. Sensitivities needed for the method are calculated approximately by forward or central differences and problems and solutions related to this approximation are discussed. Statistics are calculated and printed for use in (1) diagnosing inadequate data or identifying parameters that probably cannot be estimated with the available data, (2) evaluating estimated parameter values, (3) evaluating the model representation of the actual processes and (4) quantifying the uncertainty of model simulated values. UCODE is intended for use on any computer operating
Unified dark energy-dark matter model with inverse quintessence
Energy Technology Data Exchange (ETDEWEB)
Ansoldi, Stefano [ICRA — International Center for Relativistic Astrophysics, INFN — Istituto Nazionale di Fisica Nucleare, and Dipartimento di Matematica e Informatica, Università degli Studi di Udine, via delle Scienze 206, I-33100 Udine (UD) (Italy); Guendelman, Eduardo I., E-mail: ansoldi@fulbrightmail.org, E-mail: guendel@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negeev, Beer-Sheva 84105 (Israel)
2013-05-01
We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.
Determination of hydraulic properties of unsaturated soil via inverse modeling
International Nuclear Information System (INIS)
Kodesova, R.
2004-01-01
The method for determining the hydraulic properties of unsaturated soil with inverse modeling is presented. A modified cone penetrometer has been designed to inject water into the soil through a screen, and measure the progress of the wetting front with two tensiometer rings positioned above the screen. Cumulative inflow and pressure head readings are analyzed to obtain estimates of the hydraulic parameters describing K(h) and θ(h). Optimization results for tests at one side are used to demonstrate the possibility to evaluate either the wetting branches of the soil hydraulic properties, or the wetting and drying curves simultaneously, via analysis of different parts of the experiment. The optimization results are compared to the results of standard laboratory and field methods. (author)
Unified dark energy-dark matter model with inverse quintessence
International Nuclear Information System (INIS)
Ansoldi, Stefano; Guendelman, Eduardo I.
2013-01-01
We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future
Electron electric dipole moment in Inverse Seesaw models
Energy Technology Data Exchange (ETDEWEB)
Abada, Asmaa; Toma, Takashi [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, Université Paris-Saclay,91405 Orsay (France)
2016-08-11
We consider the contribution of sterile neutrinos to the electric dipole moment of charged leptons in the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. Our study shows that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity if their masses are above the electroweak scale. The major contribution comes from two-loop diagrams with pseudo-Dirac neutrino states running in the loops. In our analysis we further discuss the possibility of having a successful leptogenesis in this framework, compatible with a large electron electric dipole moment.
Electron electric dipole moment in Inverse Seesaw models
International Nuclear Information System (INIS)
Abada, Asmaa; Toma, Takashi
2016-01-01
We consider the contribution of sterile neutrinos to the electric dipole moment of charged leptons in the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. Our study shows that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity if their masses are above the electroweak scale. The major contribution comes from two-loop diagrams with pseudo-Dirac neutrino states running in the loops. In our analysis we further discuss the possibility of having a successful leptogenesis in this framework, compatible with a large electron electric dipole moment.
The Inverse Problem of Identification of Hydrogen Permeability Model
Directory of Open Access Journals (Sweden)
Yury V. Zaika
2018-01-01
Full Text Available One of the technological challenges for hydrogen materials science is the currently active search for structural materials with important applications (including the ITER project and gas-separation plants. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones. The article presents boundary value problems of hydrogen permeability and thermal desorption with dynamical boundary conditions. A numerical method is developed for TDS spectrum simulation, where only integration of a nonlinear system of low order ordinary differential equations is required. The main final output of the article is a noise-resistant algorithm for solving the inverse problem of parametric identification for the aggregated experiment where desorption and diffusion are dynamically interrelated (without the artificial division of studies into the diffusion limited regime (DLR and the surface limited regime (SLR.
Petri Nets as Models of Linear Logic
DEFF Research Database (Denmark)
Engberg, Uffe Henrik; Winskel, Glynn
1990-01-01
The chief purpose of this paper is to appraise the feasibility of Girad's linear logic as a specification language for parallel processes. To this end we propose an interpretation of linear logic in Petri nets, with respect to which we investigate the expressive power of the logic...
Directory of Open Access Journals (Sweden)
Xiaochao Tang
2013-03-01
Full Text Available With the movement towards the implementation of mechanistic-empirical pavement design guide (MEPDG, an accurate determination of pavement layer moduli is vital for predicting pavement critical mechanistic responses. A backcalculation procedure is commonly used to estimate the pavement layer moduli based on the non-destructive falling weight deflectometer (FWD tests. Backcalculation of flexible pavement layer properties is an inverse problem with known input and output signals based upon which unknown parameters of the pavement system are evaluated. In this study, an inverse analysis procedure that combines the finite element analysis and a population-based optimization technique, Genetic Algorithm (GA has been developed to determine the pavement layer structural properties. A lightweight deflectometer (LWD was used to infer the moduli of instrumented three-layer scaled flexible pavement models. While the common practice in backcalculating pavement layer properties still assumes a static FWD load and uses only peak values of the load and deflections, dynamic analysis was conducted to simulate the impulse LWD load. The recorded time histories of the LWD load were used as the known inputs into the pavement system while the measured time-histories of surface central deflections and subgrade deflections measured with a linear variable differential transformers (LVDT were considered as the outputs. As a result, consistent pavement layer moduli can be obtained through this inverse analysis procedure.
Directory of Open Access Journals (Sweden)
R. Locatelli
2013-10-01
Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively. At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly
Linear approximation model network and its formation via ...
Indian Academy of Sciences (India)
To overcome the deficiency of `local model network' (LMN) techniques, an alternative `linear approximation model' (LAM) network approach is proposed. Such a network models a nonlinear or practical system with multiple linear models fitted along operating trajectories, where individual models are simply networked ...
Inverse modelling of thermal histories with apatite fission tracks
International Nuclear Information System (INIS)
El Lmrani, A.; Zine El Abidine, H.; Limouri, M.; Essaid, A.; POupeau, G.
1998-01-01
The problem of modelling thermal histories lies in the exploration of a time-temperature space, usually so broad, in order to identify the optimal paths. For overcoming this difficulty, many approaches were proposed, using linear and non-linear optimisation algorithms. Generally, these approaches do not take into account the experimental data (fission track age [FTA] and fission track length distribution [FTLD]) to better aim the search strategy. The present work shows that experimental data hold some precious information, for which it should be known how to extract it. In fact, it allows us to tighten the time-temperature space of search, supposed to contain the optimal solutions. A genetic algorithm is also used in this work to perform the search for these optimal solutions. (authors)
Linear regression crash prediction models : issues and proposed solutions.
2010-05-01
The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...
Game Theory and its Relationship with Linear Programming Models ...
African Journals Online (AJOL)
Game Theory and its Relationship with Linear Programming Models. ... This paper shows that game theory and linear programming problem are closely related subjects since any computing method devised for ... AJOL African Journals Online.
A Note on the Identifiability of Generalized Linear Mixed Models
DEFF Research Database (Denmark)
Labouriau, Rodrigo
2014-01-01
I present here a simple proof that, under general regularity conditions, the standard parametrization of generalized linear mixed model is identifiable. The proof is based on the assumptions of generalized linear mixed models on the first and second order moments and some general mild regularity...... conditions, and, therefore, is extensible to quasi-likelihood based generalized linear models. In particular, binomial and Poisson mixed models with dispersion parameter are identifiable when equipped with the standard parametrization...
Inverse mathematical modelling and identification in metal powder compaction process
International Nuclear Information System (INIS)
Gakwaya, A.; Hrairi, M.; Guillot, M.
2000-01-01
An online assessment of the quality of advanced integrated computer aided manufacturing systems require the knowledge of accurate and reliable non-linear constitutive material behavior. This paper is concerned with material parameter identification based on experimental data for which non uniform distribution of stresses and deformation within the volume of the specimen is considered. Both geometric and material non linearities as well interfacial frictional contact are taken into account during the simulation. Within the framework of finite deformation theory, a multisurface multiplicative plasticity model for metal powder compaction process is presented. The model is seen to involve several parameters which are not always activated by a single state variable even though it may be technologically important in assessing the final product quality and manufacturing performance. The resulting expressions are presented in spatial setting and gradient based descent method utilizing the modified Levenberg-Marquardt scheme is used for the minimization of least square functional so as to obtain the best agreement between relevant experimental data and simulated data in a specified energy norm. The identification of a subset of material parameters of the cap model for stainless steel powder compaction is performed. The obtained parameters are validated through a simulation of an industrial part manufacturing case. A very good agreement between simulated final density and measured density is obtained thus demonstrating the practical usefulness of the proposed approach. (author)
Directory of Open Access Journals (Sweden)
J. F. Meirink
2008-11-01
Full Text Available A four-dimensional variational (4D-Var data assimilation system for inverse modelling of atmospheric methane emissions is presented. The system is based on the TM5 atmospheric transport model. It can be used for assimilating large volumes of measurements, in particular satellite observations and quasi-continuous in-situ observations, and at the same time it enables the optimization of a large number of model parameters, specifically grid-scale emission rates. Furthermore, the variational method allows to estimate uncertainties in posterior emissions. Here, the system is applied to optimize monthly methane emissions over a 1-year time window on the basis of surface observations from the NOAA-ESRL network. The results are rigorously compared with an analogous inversion by Bergamaschi et al. (2007, which was based on the traditional synthesis approach. The posterior emissions as well as their uncertainties obtained in both inversions show a high degree of consistency. At the same time we illustrate the advantage of 4D-Var in reducing aggregation errors by optimizing emissions at the grid scale of the transport model. The full potential of the assimilation system is exploited in Meirink et al. (2008, who use satellite observations of column-averaged methane mixing ratios to optimize emissions at high spatial resolution, taking advantage of the zooming capability of the TM5 model.
A linear-encoding model explains the variability of the target morphology in regeneration
Lobo, Daniel; Solano, Mauricio; Bubenik, George A.; Levin, Michael
2014-01-01
A fundamental assumption of today's molecular genetics paradigm is that complex morphology emerges from the combined activity of low-level processes involving proteins and nucleic acids. An inherent characteristic of such nonlinear encodings is the difficulty of creating the genetic and epigenetic information that will produce a given self-assembling complex morphology. This ‘inverse problem’ is vital not only for understanding the evolution, development and regeneration of bodyplans, but also for synthetic biology efforts that seek to engineer biological shapes. Importantly, the regenerative mechanisms in deer antlers, planarian worms and fiddler crabs can solve an inverse problem: their target morphology can be altered specifically and stably by injuries in particular locations. Here, we discuss the class of models that use pre-specified morphological goal states and propose the existence of a linear encoding of the target morphology, making the inverse problem easy for these organisms to solve. Indeed, many model organisms such as Drosophila, hydra and Xenopus also develop according to nonlinear encodings producing linear encodings of their final morphologies. We propose the development of testable models of regeneration regulation that combine emergence with a top-down specification of shape by linear encodings of target morphology, driving transformative applications in biomedicine and synthetic bioengineering. PMID:24402915
Linear control theory for gene network modeling.
Shin, Yong-Jun; Bleris, Leonidas
2010-09-16
Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.
LINEAR MODEL FOR NON ISOSCELES ABSORBERS.
Energy Technology Data Exchange (ETDEWEB)
BERG,J.S.
2003-05-12
Previous analyses have assumed that wedge absorbers are triangularly shaped with equal angles for the two faces. In this case, to linear order, the energy loss depends only on the position in the direction of the face tilt, and is independent of the incoming angle. One can instead construct an absorber with entrance and exit faces facing rather general directions. In this case, the energy loss can depend on both the position and the angle of the particle in question. This paper demonstrates that and computes the effect to linear order.
Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.
Ovesy, Marzieh; Nazari, Mohammad Ali; Mahdavian, Mohammad
2016-02-01
In the current research, the muscle equivalent linear damping coefficient which is introduced as the force-velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force-stiffness relationship (Hill-type model) and a nonlinear one have been implemented. The OpenSim platform was used for verification of the model. The isometric activation has been used for the simulation. The equivalent linear damping and the time constant of each model were extracted by using the results obtained from the simulation. The results provide a better insight into the characteristics of each model. It is found that the nonlinear models had a response rate closer to the reality compared to the Hill-type models.
An online re-linearization scheme suited for Model Predictive and Linear Quadratic Control
DEFF Research Database (Denmark)
Henriksen, Lars Christian; Poulsen, Niels Kjølstad
This technical note documents the equations for primal-dual interior-point quadratic programming problem solver used for MPC. The algorithm exploits the special structure of the MPC problem and is able to reduce the computational burden such that the computational burden scales with prediction...... horizon length in a linear way rather than cubic, which would be the case if the structure was not exploited. It is also shown how models used for design of model-based controllers, e.g. linear quadratic and model predictive, can be linearized both at equilibrium and non-equilibrium points, making...
Tried and True: Springing into Linear Models
Darling, Gerald
2012-01-01
In eighth grade, students usually learn about forces in science class and linear relationships in math class, crucial topics that form the foundation for further study in science and engineering. An activity that links these two fundamental concepts involves measuring the distance a spring stretches as a function of how much weight is suspended…
Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems
Directory of Open Access Journals (Sweden)
Bambang Riyanto
2005-11-01
Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.
Ordinal Log-Linear Models for Contingency Tables
Directory of Open Access Journals (Sweden)
Brzezińska Justyna
2016-12-01
Full Text Available A log-linear analysis is a method providing a comprehensive scheme to describe the association for categorical variables in a contingency table. The log-linear model specifies how the expected counts depend on the levels of the categorical variables for these cells and provide detailed information on the associations. The aim of this paper is to present theoretical, as well as empirical, aspects of ordinal log-linear models used for contingency tables with ordinal variables. We introduce log-linear models for ordinal variables: linear-by-linear association, row effect model, column effect model and RC Goodman’s model. Algorithm, advantages and disadvantages will be discussed in the paper. An empirical analysis will be conducted with the use of R.
Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model
Chen, Huaizhen; Zhang, Guangzhi
2018-03-01
Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.
Recent Updates to the GEOS-5 Linear Model
Holdaway, Dan; Kim, Jong G.; Errico, Ron; Gelaro, Ronald; Mahajan, Rahul
2014-01-01
Global Modeling and Assimilation Office (GMAO) is close to having a working 4DVAR system and has developed a linearized version of GEOS-5.This talk outlines a series of improvements made to the linearized dynamics, physics and trajectory.Of particular interest is the development of linearized cloud microphysics, which provides the framework for 'all-sky' data assimilation.
Three-dimensional inverse modelling of damped elastic wave propagation in the Fourier domain
Petrov, Petr V.; Newman, Gregory A.
2014-09-01
3-D full waveform inversion (FWI) of seismic wavefields is routinely implemented with explicit time-stepping simulators. A clear advantage of explicit time stepping is the avoidance of solving large-scale implicit linear systems that arise with frequency domain formulations. However, FWI using explicit time stepping may require a very fine time step and (as a consequence) significant computational resources and run times. If the computational challenges of wavefield simulation can be effectively handled, an FWI scheme implemented within the frequency domain utilizing only a few frequencies, offers a cost effective alternative to FWI in the time domain. We have therefore implemented a 3-D FWI scheme for elastic wave propagation in the Fourier domain. To overcome the computational bottleneck in wavefield simulation, we have exploited an efficient Krylov iterative solver for the elastic wave equations approximated with second and fourth order finite differences. The solver does not exploit multilevel preconditioning for wavefield simulation, but is coupled efficiently to the inversion iteration workflow to reduce computational cost. The workflow is best described as a series of sequential inversion experiments, where in the case of seismic reflection acquisition geometries, the data has been laddered such that we first image highly damped data, followed by data where damping is systemically reduced. The key to our modelling approach is its ability to take advantage of solver efficiency when the elastic wavefields are damped. As the inversion experiment progresses, damping is significantly reduced, effectively simulating non-damped wavefields in the Fourier domain. While the cost of the forward simulation increases as damping is reduced, this is counterbalanced by the cost of the outer inversion iteration, which is reduced because of a better starting model obtained from the larger damped wavefield used in the previous inversion experiment. For cross-well data, it is
Microstrip natural wave spectrum mathematical model using partial inversion method
International Nuclear Information System (INIS)
Pogarsky, S.A.; Litvinenko, L.N.; Prosvirnin, S.L.
1995-01-01
It is generally agreed that both microstrip lines itself and different discontinuities based on microstrips are the most difficult problem for accurate electrodynamic analysis. Over the last years much has been published about principles and accurate (or full wave) methods of microstrip lines investigations. The growing interest for this problem may be explained by the microstrip application in the millimeter-wave range for purpose of realizing interconnects and a variety of passive components. At these higher operating rating frequencies accurate component modeling becomes more critical. A creation, examination and experimental verification of the accurate method for planar electrodynamical structures natural wave spectrum investigations are the objects of this manuscript. The moment method with partial inversion operator method using may be considered as a basical way for solving this problem. This method is outlook for accurate analysis of different planar discontinuities in microstrip: such as step discontinuities, microstrip turns, Y- and X-junctions and etc., substrate space steps dielectric constants and other anisotropy types
Shell Model Far From Stability: Island of Inversion Mergers
Nowacki, F.; Poves, A.
2018-02-01
In this study we propose a common mechanism for the disappearance of shell closures far from stabilty. With the use of Large Scale Shell Model calculations (SM-CI), we predict that the region of deformation which comprises the heaviest Chromium and Iron isotopes at and beyond N=40 will merge with a new one at N=50 in an astonishing parallel to the N=20 and N=28 case in the Neon and Magnesium isotopes. We propose a valence space including the full pf-shell for the protons and the full sdg shell for the neutrons, which represents a come-back of the the harmonic oscillator shells in the very neutron rich regime. Our calculations preserve the doubly magic nature of the ground state of 78Ni, which, however, exhibits a well deformed prolate band at low excitation energy, providing a striking example of shape coexistence far from stability. This new Island of Inversion (IoI) adds to the four well documented ones at N=8, 20, 28 and 40.
Double generalized linear compound poisson models to insurance claims data
DEFF Research Database (Denmark)
Andersen, Daniel Arnfeldt; Bonat, Wagner Hugo
2017-01-01
This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution...... implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances....
Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis
Luo, Wen; Azen, Razia
2013-01-01
Dominance analysis (DA) is a method used to evaluate the relative importance of predictors that was originally proposed for linear regression models. This article proposes an extension of DA that allows researchers to determine the relative importance of predictors in hierarchical linear models (HLM). Commonly used measures of model adequacy in…
Thurstonian models for sensory discrimination tests as generalized linear models
DEFF Research Database (Denmark)
Brockhoff, Per B.; Christensen, Rune Haubo Bojesen
2010-01-01
as a so-called generalized linear model. The underlying sensory difference 6 becomes directly a parameter of the statistical model and the estimate d' and it's standard error becomes the "usual" output of the statistical analysis. The d' for the monadic A-NOT A method is shown to appear as a standard......Sensory discrimination tests such as the triangle, duo-trio, 2-AFC and 3-AFC tests produce binary data and the Thurstonian decision rule links the underlying sensory difference 6 to the observed number of correct responses. In this paper it is shown how each of these four situations can be viewed...
Directory of Open Access Journals (Sweden)
O. Tichý
2016-11-01
Full Text Available Estimation of pollutant releases into the atmosphere is an important problem in the environmental sciences. It is typically formalized as an inverse problem using a linear model that can explain observable quantities (e.g., concentrations or deposition values as a product of the source-receptor sensitivity (SRS matrix obtained from an atmospheric transport model multiplied by the unknown source-term vector. Since this problem is typically ill-posed, current state-of-the-art methods are based on regularization of the problem and solution of a formulated optimization problem. This procedure depends on manual settings of uncertainties that are often very poorly quantified, effectively making them tuning parameters. We formulate a probabilistic model, that has the same maximum likelihood solution as the conventional method using pre-specified uncertainties. Replacement of the maximum likelihood solution by full Bayesian estimation also allows estimation of all tuning parameters from the measurements. The estimation procedure is based on the variational Bayes approximation which is evaluated by an iterative algorithm. The resulting method is thus very similar to the conventional approach, but with the possibility to also estimate all tuning parameters from the observations. The proposed algorithm is tested and compared with the standard methods on data from the European Tracer Experiment (ETEX where advantages of the new method are demonstrated. A MATLAB implementation of the proposed algorithm is available for download.
Tichý, Ondřej; Šmídl, Václav; Hofman, Radek; Stohl, Andreas
2016-11-01
Estimation of pollutant releases into the atmosphere is an important problem in the environmental sciences. It is typically formalized as an inverse problem using a linear model that can explain observable quantities (e.g., concentrations or deposition values) as a product of the source-receptor sensitivity (SRS) matrix obtained from an atmospheric transport model multiplied by the unknown source-term vector. Since this problem is typically ill-posed, current state-of-the-art methods are based on regularization of the problem and solution of a formulated optimization problem. This procedure depends on manual settings of uncertainties that are often very poorly quantified, effectively making them tuning parameters. We formulate a probabilistic model, that has the same maximum likelihood solution as the conventional method using pre-specified uncertainties. Replacement of the maximum likelihood solution by full Bayesian estimation also allows estimation of all tuning parameters from the measurements. The estimation procedure is based on the variational Bayes approximation which is evaluated by an iterative algorithm. The resulting method is thus very similar to the conventional approach, but with the possibility to also estimate all tuning parameters from the observations. The proposed algorithm is tested and compared with the standard methods on data from the European Tracer Experiment (ETEX) where advantages of the new method are demonstrated. A MATLAB implementation of the proposed algorithm is available for download.
Linear control theory for gene network modeling.
Directory of Open Access Journals (Sweden)
Yong-Jun Shin
Full Text Available Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain and linear state-space (time domain can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.
Probabilistic inversion in priority setting of emerging zoonoses.
Kurowicka, D.; Bucura, C.; Cooke, R.; Havelaar, A.H.
2010-01-01
This article presents methodology of applying probabilistic inversion in combination with expert judgment in priority setting problem. Experts rank scenarios according to severity. A linear multi-criteria analysis model underlying the expert preferences is posited. Using probabilistic inversion, a
Forecasting Volatility of Dhaka Stock Exchange: Linear Vs Non-linear models
Directory of Open Access Journals (Sweden)
Masudul Islam
2012-10-01
Full Text Available Prior information about a financial market is very essential for investor to invest money on parches share from the stock market which can strengthen the economy. The study examines the relative ability of various models to forecast daily stock indexes future volatility. The forecasting models that employed from simple to relatively complex ARCH-class models. It is found that among linear models of stock indexes volatility, the moving average model ranks first using root mean square error, mean absolute percent error, Theil-U and Linex loss function criteria. We also examine five nonlinear models. These models are ARCH, GARCH, EGARCH, TGARCH and restricted GARCH models. We find that nonlinear models failed to dominate linear models utilizing different error measurement criteria and moving average model appears to be the best. Then we forecast the next two months future stock index price volatility by the best (moving average model.
Directory of Open Access Journals (Sweden)
Patrick Piprek
2018-02-01
Full Text Available This paper presents an approach to model a ski jumper as a multi-body system for an optimal control application. The modeling is based on the constrained Newton-Euler-Equations. Within this paper the complete multi-body modeling methodology as well as the musculoskeletal modeling is considered. For the musculoskeletal modeling and its incorporation in the optimization model, we choose a nonlinear dynamic inversion control approach. This approach uses the muscle models as nonlinear reference models and links them to the ski jumper movement by a control law. This strategy yields a linearized input-output behavior, which makes the optimal control problem easier to solve. The resulting model of the ski jumper can then be used for trajectory optimization whose results are compared to literature jumps. Ultimately, this enables the jumper to get a very detailed feedback of the flight. To achieve the maximal jump length, exact positioning of his body with respect to the air can be displayed.
DEFF Research Database (Denmark)
Andersen, Per Kragh; Klein, John P.; Rosthøj, Susanne
2003-01-01
Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model......Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model...
Linear and non-linear autoregressive models for short-term wind speed forecasting
International Nuclear Information System (INIS)
Lydia, M.; Suresh Kumar, S.; Immanuel Selvakumar, A.; Edwin Prem Kumar, G.
2016-01-01
Highlights: • Models for wind speed prediction at 10-min intervals up to 1 h built on time-series wind speed data. • Four different multivariate models for wind speed built based on exogenous variables. • Non-linear models built using three data mining algorithms outperform the linear models. • Autoregressive models based on wind direction perform better than other models. - Abstract: Wind speed forecasting aids in estimating the energy produced from wind farms. The soaring energy demands of the world and minimal availability of conventional energy sources have significantly increased the role of non-conventional sources of energy like solar, wind, etc. Development of models for wind speed forecasting with higher reliability and greater accuracy is the need of the hour. In this paper, models for predicting wind speed at 10-min intervals up to 1 h have been built based on linear and non-linear autoregressive moving average models with and without external variables. The autoregressive moving average models based on wind direction and annual trends have been built using data obtained from Sotavento Galicia Plc. and autoregressive moving average models based on wind direction, wind shear and temperature have been built on data obtained from Centre for Wind Energy Technology, Chennai, India. While the parameters of the linear models are obtained using the Gauss–Newton algorithm, the non-linear autoregressive models are developed using three different data mining algorithms. The accuracy of the models has been measured using three performance metrics namely, the Mean Absolute Error, Root Mean Squared Error and Mean Absolute Percentage Error.
Directory of Open Access Journals (Sweden)
Jhih-Hong Lin
2016-08-01
Full Text Available Magnetic shape memory (MSM alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.
Lin, Jhih-Hong; Chiang, Mao-Hsiung
2016-08-25
Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.
Liu, Yi; Zhang, He; Liu, Siwei; Lin, Fuchang
2018-05-01
The J-A (Jiles-Atherton) model is widely used to describe the magnetization characteristics of magnetic cores in a low-frequency alternating field. However, this model is deficient in the quantitative analysis of the eddy current loss and residual loss in a high-frequency magnetic field. Based on the decomposition of magnetization intensity, an inverse J-A model is established which uses magnetic flux density B as an input variable. Static and dynamic core losses under high frequency excitation are separated based on the inverse J-A model. Optimized parameters of the inverse J-A model are obtained based on particle swarm optimization. The platform for the pulsed magnetization characteristic test is designed and constructed. The hysteresis curves of ferrite and Fe-based nanocrystalline cores at high magnetization rates are measured. The simulated and measured hysteresis curves are presented and compared. It is found that the inverse J-A model can be used to describe the magnetization characteristics at high magnetization rates and to separate the static loss and dynamic loss accurately.
Risk evaluation of uranium mining: A geochemical inverse modelling approach
Rillard, J.; Zuddas, P.; Scislewski, A.
2011-12-01
It is well known that uranium extraction operations can increase risks linked to radiation exposure. The toxicity of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. In areas where U mining is planned, a careful assessment of toxic and radioactive element concentrations is recommended before the start of mining activities. A background evaluation of harmful elements is important in order to prevent and/or quantify future water contamination resulting from possible migration of toxic metals coming from ore and waste water interaction. Controlled leaching experiments were carried out to investigate processes of ore and waste (leached ore) degradation, using samples from the uranium exploitation site located in Caetité-Bahia, Brazil. In experiments in which the reaction of waste with water was tested, we found that the water had low pH and high levels of sulphates and aluminium. On the other hand, in experiments in which ore was tested, the water had a chemical composition comparable to natural water found in the region of Caetité. On the basis of our experiments, we suggest that waste resulting from sulphuric acid treatment can induce acidification and salinization of surface and ground water. For this reason proper storage of waste is imperative. As a tool to evaluate the risks, a geochemical inverse modelling approach was developed to estimate the water-mineral interaction involving the presence of toxic elements. We used a method earlier described by Scislewski and Zuddas 2010 (Geochim. Cosmochim. Acta 74, 6996-7007) in which the reactive surface area of mineral dissolution can be estimated. We found that the reactive surface area of rock parent minerals is not constant during time but varies according to several orders of magnitude in only two months of interaction. We propose that parent mineral heterogeneity and particularly, neogenic phase formation may explain the observed variation of the
Losada, David E.; Barreiro, Alvaro
2003-01-01
Proposes an approach to incorporate term similarity and inverse document frequency into a logical model of information retrieval. Highlights include document representation and matching; incorporating term similarity into the measure of distance; new algorithms for implementation; inverse document frequency; and logical versus classical models of…
A Direct inverse model to determine permeability fields from pressure and flow rate measurements
Brouwer, G.K.; Fokker, P.A.; Wilschut, F.; Zijl, W.
2008-01-01
The determination of the permeability field from pressure and flow rate measurements in wells is a key problem in reservoir engineering. This paper presents a Double Constraint method for inverse modeling that is an example of direct inverse modeling. The method is used with a standard
Comparison of inverse modeling results with measured and interpolated hydraulic head data
International Nuclear Information System (INIS)
Jacobson, E.A.
1986-12-01
Inverse modeling of aquifers involves identification of effective parameters, such as transmissivities, based on hydraulic head data. The result of inverse modeling is a calibrated ground water flow model that reproduces the measured hydraulic head data as closely as is statistically possible. An inverse method that includes prior information about the parameters (i.e., kriged log transmissivity) was applied to the Avra Valley aquifer of southern Arizona using hydraulic heads obtained in three ways: measured at well locations, estimated at nodes by hand contouring, and estimated at nodes by kriging. Hand contouring yields only estimates of hydraulic head at node points, whereas kriging yields hydraulic head estimates at node points and their corresponding estimation errors. A comparison of the three inverse applications indicates the variations in the ground water flow model caused by the different treatments of the hydraulic head data. Estimates of hydraulic head computed by all three inverse models were more representative of the measured or interpolated hydraulic heads than those computed using the kriged estimates of log transmissivity. The large-scale trends in the estimates of log transmissivity determined by the three inverse models were generally similar except in the southern portion of the study area. The hydraulic head values and gradients produced by the three inverse models were similar in the interior of the study area, while the major differences between the inverse models occurred along the boundaries. 17 refs., 18 figs., 1 tab
Applicability of linear and non-linear potential flow models on a Wavestar float
DEFF Research Database (Denmark)
Bozonnet, Pauline; Dupin, Victor; Tona, Paolino
2017-01-01
as a model based on non-linear potential flow theory and weakscatterer hypothesis are successively considered. Simple tests, such as dip tests, decay tests and captive tests enable to highlight the improvements obtained with the introduction of nonlinearities. Float motion under wave actions and without...... control action, limited to small amplitude motion with a single float, is well predicted by the numerical models, including the linear one. Still, float velocity is better predicted by accounting for non-linear hydrostatic and Froude-Krylov forces.......Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...
A linear model of population dynamics
Lushnikov, A. A.; Kagan, A. I.
2016-08-01
The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).
DEFF Research Database (Denmark)
Hansen, Thomas Mejer; Cordua, Knud Skou; Holm Jacobsen, Bo
2014-01-01
forward models, can be more than an order of magnitude larger than the measurement uncertainty. We also found that the modeling error is strongly linked to the spatial variability of the assumed velocity field, i.e., the a priori velocity model.We discovered some general tools by which the modeling error...... synthetic ground-penetrating radar crosshole tomographic inverse problems. Ignoring the modeling error can lead to severe artifacts, which erroneously appear to be well resolved in the solution of the inverse problem. Accounting for the modeling error leads to a solution of the inverse problem consistent...
Necpálová, Magdalena; Anex, Robert P.; Fienen, Michael N.; Del Grosso, Stephen J.; Castellano, Michael J.; Sawyer, John E.; Iqbal, Javed; Pantoja, Jose L.; Barker, Daniel W.
2015-01-01
The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct integration with field observations. We report simultaneous calibration of 67 DayCent model parameters using multiple observation types through inverse modeling using the PEST parameter estimation software. Parameter estimation reduced the total sum of weighted squared residuals by 56% and improved model fit to crop productivity, soil carbon, volumetric soil water content, soil temperature, N2O, and soil3NO− compared to the default simulation. Inverse modeling substantially reduced predictive model error relative to the default model for all model predictions, except for soil 3NO− and 4NH+. Post-processing analyses provided insights into parameter–observation relationships based on parameter correlations, sensitivity and identifiability. Inverse modeling tools are shown to be a powerful way to systematize and accelerate the process of biogeochemical model interrogation, improving our understanding of model function and the underlying ecosystem biogeochemical processes that they represent.
On form factors of the conjugated field in the non-linear Schroedinger model
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K.
2011-05-15
Izergin-Korepin's lattice discretization of the non-linear Schroedinger model along with Oota's inverse problem provides one with determinant representations for the form factors of the lattice discretized conjugated field operator. We prove that these form factors converge, in the zero lattice spacing limit, to those of the conjugated field operator in the continuous model. We also compute the large-volume asymptotic behavior of such form factors in the continuous model. These are in particular characterized by Fredholm determinants of operators acting on closed contours. We provide a way of defining these Fredholm determinants in the case of generic paramaters. (orig.)
A test for the parameters of multiple linear regression models ...
African Journals Online (AJOL)
A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...
Modeling Non-Linear Material Properties in Composite Materials
2016-06-28
Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions
Murata, M; Uchida, T; Yang, Y; Lezhava, A; Kinashi, H
2011-04-01
We have comprehensively analyzed the linear chromosomes of Streptomyces griseus mutants constructed and kept in our laboratory. During this study, macrorestriction analysis of AseI and DraI fragments of mutant 402-2 suggested a large chromosomal inversion. The junctions of chromosomal inversion were cloned and sequenced and compared with the corresponding target sequences in the parent strain 2247. Consequently, a transposon-involved mechanism was revealed. Namely, a transposon originally located at the left target site was replicatively transposed to the right target site in an inverted direction, which generated a second copy and at the same time caused a 2.5-Mb chromosomal inversion. The involved transposon named TnSGR was grouped into a new subfamily of the resolvase-encoding Tn3 family transposons based on its gene organization. At the end, terminal diversity of S. griseus chromosomes is discussed by comparing the sequences of strains 2247 and IFO13350.
[Bare Soil Moisture Inversion Model Based on Visible-Shortwave Infrared Reflectance].
Zheng, Xiao-po; Sun, Yue-jun; Qin, Qi-ming; Ren, Hua-zhong; Gao, Zhong-ling; Wu, Ling; Meng, Qing-ye; Wang, Jin-liang; Wang, Jian-hua
2015-08-01
Soil is the loose solum of land surface that can support plants. It consists of minerals, organics, atmosphere, moisture, microbes, et al. Among its complex compositions, soil moisture varies greatly. Therefore, the fast and accurate inversion of soil moisture by using remote sensing is very crucial. In order to reduce the influence of soil type on the retrieval of soil moisture, this paper proposed a normalized spectral slope and absorption index named NSSAI to estimate soil moisture. The modeling of the new index contains several key steps: Firstly, soil samples with different moisture level were artificially prepared, and soil reflectance spectra was consequently measured using spectroradiometer produced by ASD Company. Secondly, the moisture absorption spectral feature located at shortwave wavelengths and the spectral slope of visible wavelengths were calculated after analyzing the regular spectral feature change patterns of different soil at different moisture conditions. Then advantages of the two features at reducing soil types' effects was synthesized to build the NSSAI. Thirdly, a linear relationship between NSSAI and soil moisture was established. The result showed that NSSAI worked better (correlation coefficient is 0.93) than most of other traditional methods in soil moisture extraction. It can weaken the influences caused by soil types at different moisture levels and improve the bare soil moisture inversion accuracy.
Reliability modelling and simulation of switched linear system ...
African Journals Online (AJOL)
Reliability modelling and simulation of switched linear system control using temporal databases. ... design of fault-tolerant real-time switching systems control and modelling embedded micro-schedulers for complex systems maintenance.
Cousquer, Yohann; Pryet, Alexandre; Atteia, Olivier; Ferré, Ty P. A.; Delbart, Célestine; Valois, Rémi; Dupuy, Alain
2018-03-01
The inverse problem of groundwater models is often ill-posed and model parameters are likely to be poorly constrained. Identifiability is improved if diverse data types are used for parameter estimation. However, some models, including detailed solute transport models, are further limited by prohibitive computation times. This often precludes the use of concentration data for parameter estimation, even if those data are available. In the case of surface water-groundwater (SW-GW) models, concentration data can provide SW-GW mixing ratios, which efficiently constrain the estimate of exchange flow, but are rarely used. We propose to reduce computational limits by simulating SW-GW exchange at a sink (well or drain) based on particle tracking under steady state flow conditions. Particle tracking is used to simulate advective transport. A comparison between the particle tracking surrogate model and an advective-dispersive model shows that dispersion can often be neglected when the mixing ratio is computed for a sink, allowing for use of the particle tracking surrogate model. The surrogate model was implemented to solve the inverse problem for a real SW-GW transport problem with heads and concentrations combined in a weighted hybrid objective function. The resulting inversion showed markedly reduced uncertainty in the transmissivity field compared to calibration on head data alone.
Multivariate statistical modelling based on generalized linear models
Fahrmeir, Ludwig
1994-01-01
This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...
Approximating chiral quark models with linear σ-models
International Nuclear Information System (INIS)
Broniowski, Wojciech; Golli, Bojan
2003-01-01
We study the approximation of chiral quark models with simpler models, obtained via gradient expansion. The resulting Lagrangian of the type of the linear σ-model contains, at the lowest level of the gradient-expanded meson action, an additional term of the form ((1)/(2))A(σ∂ μ σ+π∂ μ π) 2 . We investigate the dynamical consequences of this term and its relevance to the phenomenology of the soliton models of the nucleon. It is found that the inclusion of the new term allows for a more efficient approximation of the underlying quark theory, especially in those cases where dynamics allows for a large deviation of the chiral fields from the chiral circle, such as in quark models with non-local regulators. This is of practical importance, since the σ-models with valence quarks only are technically much easier to treat and simpler to solve than the quark models with the full-fledged Dirac sea
Latent log-linear models for handwritten digit classification.
Deselaers, Thomas; Gass, Tobias; Heigold, Georg; Ney, Hermann
2012-06-01
We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain competitive results with models proposed in the literature.
Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling
Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.
2011-12-01
A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4
Rosas-Carbajal, M.; Linde, N.; Kalscheuer, T.; Vrugt, J.A.
2014-01-01
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space
On the modeling and inversion of seismic data
Stolk, C.C.
2000-01-01
In this thesis we investigate some mathematical questions related to the inversion of seismic data. In Chapter 2 we review results in the literature and give some new results on wave equations with coefficients that are just bounded and measurable. We show that these equations have unique
Czech Academy of Sciences Publication Activity Database
Tichý, Ondřej; Šmídl, Václav; Hofman, Radek; Stohl, A.
2016-01-01
Roč. 9, č. 11 (2016), s. 4297-4311 ISSN 1991-959X R&D Projects: GA MŠk(CZ) 7F14287 Institutional support: RVO:67985556 Keywords : Linear inverse problem * Bayesian regularization * Source-term determination * Variational Bayes method Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.458, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/tichy-0466029.pdf
Numerical modelling in non linear fracture mechanics
Directory of Open Access Journals (Sweden)
Viggo Tvergaard
2007-07-01
Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.
Linear and nonlinear models for predicting fish bioconcentration factors for pesticides.
Yuan, Jintao; Xie, Chun; Zhang, Ting; Sun, Jinfang; Yuan, Xuejie; Yu, Shuling; Zhang, Yingbiao; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu
2016-08-01
This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structure-property relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macrochirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the obtained models was assessed by cross-validation and external validation using test set. Outliers were also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved the most accurate predictions. This study offers useful models and information for BCF prediction, risk assessment, and pesticide formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inverting reflections using full-waveform inversion with inaccurate starting models
AlTheyab, Abdullah
2015-08-19
We present a method for inverting seismic reflections using full-waveform inversion (FWI) with inaccurate starting models. For a layered medium, near-offset reflections (with zero angle of incidence) are unlikely to be cycle-skipped regardless of the low-wavenumber velocity error in the initial models. Therefore, we use them as a starting point for FWI, and the subsurface velocity model is then updated during the FWI iterations using reflection wavepaths from varying offsets that are not cycle-skipped. To enhance low-wavenumber updates and accelerate the convergence, we take several passes through the non-linear Gauss-Seidel iterations, where we invert traces from a narrow range of near offsets and finally end at the far offsets. Every pass is followed by applying smoothing to the cumulative slowness update. The smoothing is strong at the early stages and relaxed at later iterations to allow for a gradual reconstruction of the subsurface model in a multiscale manner. Applications to synthetic and field data, starting from inaccurate models, show significant low-wavenumber updates and flattening of common-image gathers after many iterations.
Directory of Open Access Journals (Sweden)
Lingen Chen
2012-01-01
Full Text Available A thermodynamic model of an open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle is established in this paper by using thermodynamic optimization theory. The flow processes of the working fluid with the pressure drops and the size constraint of the real power plant are modeled. There are 13 flow resistances encountered by the working fluid stream for the cycle model. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining nine flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, regenerator inlet and outlet, combustion chamber inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle, and control the air flow rate, the net power output and the thermal efficiency. The analytical formulae about the power output, efficiency and other coefficients are derived with 13 pressure drop losses. It is found that the combined cycle with regenerator can reach higher thermal efficiency but smaller power output than those of the base combined cycle at small compressor inlet relative pressure drop of the top cycle.
Random effect selection in generalised linear models
DEFF Research Database (Denmark)
Denwood, Matt; Houe, Hans; Forkman, Björn
We analysed abattoir recordings of meat inspection codes with possible relevance to onfarm animal welfare in cattle. Random effects logistic regression models were used to describe individual-level data obtained from 461,406 cattle slaughtered in Denmark. Our results demonstrate that the largest...
Model Order Reduction for Non Linear Mechanics
Pinillo, Rubén
2017-01-01
Context: Automotive industry is moving towards a new generation of cars. Main idea: Cars are furnished with radars, cameras, sensors, etc… providing useful information about the environment surrounding the car. Goals: Provide an efficient model for the radar input/output. Reducing computational costs by means of big data techniques.
Identification of Influential Points in a Linear Regression Model
Directory of Open Access Journals (Sweden)
Jan Grosz
2011-03-01
Full Text Available The article deals with the detection and identification of influential points in the linear regression model. Three methods of detection of outliers and leverage points are described. These procedures can also be used for one-sample (independentdatasets. This paper briefly describes theoretical aspects of several robust methods as well. Robust statistics is a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. A simulation model of the simple linear regression is presented.
Heterotic sigma models and non-linear strings
International Nuclear Information System (INIS)
Hull, C.M.
1986-01-01
The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)
Linear latent variable models: the lava-package
DEFF Research Database (Denmark)
Holst, Klaus Kähler; Budtz-Jørgensen, Esben
2013-01-01
are implemented including robust standard errors for clustered correlated data, multigroup analyses, non-linear parameter constraints, inference with incomplete data, maximum likelihood estimation with censored and binary observations, and instrumental variable estimators. In addition an extensive simulation......An R package for specifying and estimating linear latent variable models is presented. The philosophy of the implementation is to separate the model specification from the actual data, which leads to a dynamic and easy way of modeling complex hierarchical structures. Several advanced features...
On-line control models for the Stanford Linear Collider
International Nuclear Information System (INIS)
Sheppard, J.C.; Helm, R.H.; Lee, M.J.; Woodley, M.D.
1983-03-01
Models for computer control of the SLAC three-kilometer linear accelerator and damping rings have been developed as part of the control system for the Stanford Linear Collider. Some of these models have been tested experimentally and implemented in the control program for routine linac operations. This paper will describe the development and implementation of these models, as well as some of the operational results
An Inverse Problem Formulation Methodology for Stochastic Models
2010-05-02
form the surveillance data Infection control measures were implemented in the form of health care worker hand - hygiene before and after patients contact...manuscript derives from our interest in understanding the spread of infectious diseases in particular, nosocomial infections , in order to prevent major...given by the inverse of the parameter of the exponential distribution. A hand - hygiene policy applied to health care workers on isolated VRE colonized
Invariant models in the inversion of gravity and magnetic fields and their derivatives
Ialongo, Simone; Fedi, Maurizio; Florio, Giovanni
2014-11-01
In potential field inversion problems we usually solve underdetermined systems and realistic solutions may be obtained by introducing a depth-weighting function in the objective function. The choice of the exponent of such power-law is crucial. It was suggested to determine it from the field-decay due to a single source-block; alternatively it has been defined as the structural index of the investigated source distribution. In both cases, when k-order derivatives of the potential field are considered, the depth-weighting exponent has to be increased by k with respect that of the potential field itself, in order to obtain consistent source model distributions. We show instead that invariant and realistic source-distribution models are obtained using the same depth-weighting exponent for the magnetic field and for its k-order derivatives. A similar behavior also occurs in the gravity case. In practice we found that the depth weighting-exponent is invariant for a given source-model and equal to that of the corresponding magnetic field, in the magnetic case, and of the 1st derivative of the gravity field, in the gravity case. In the case of the regularized inverse problem, with depth-weighting and general constraints, the mathematical demonstration of such invariance is difficult, because of its non-linearity, and of its variable form, due to the different constraints used. However, tests performed on a variety of synthetic cases seem to confirm the invariance of the depth-weighting exponent. A final consideration regards the role of the regularization parameter; we show that the regularization can severely affect the depth to the source because the estimated depth tends to increase proportionally with the size of the regularization parameter. Hence, some care is needed in handling the combined effect of the regularization parameter and depth weighting.
Bayesian Subset Modeling for High-Dimensional Generalized Linear Models
Liang, Faming
2013-06-01
This article presents a new prior setting for high-dimensional generalized linear models, which leads to a Bayesian subset regression (BSR) with the maximum a posteriori model approximately equivalent to the minimum extended Bayesian information criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening and consistency with the existing sure independence screening (SIS) and iterative sure independence screening (ISIS) procedures. However, since the proposed procedure makes use of joint information from all predictors, it generally outperforms SIS and ISIS in real applications. This article also makes extensive comparisons of BSR with the popular penalized likelihood methods, including Lasso, elastic net, SIS, and ISIS. The numerical results indicate that BSR can generally outperform the penalized likelihood methods. The models selected by BSR tend to be sparser and, more importantly, of higher prediction ability. In addition, the performance of the penalized likelihood methods tends to deteriorate as the number of predictors increases, while this is not significant for BSR. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Generalized Linear Models with Applications in Engineering and the Sciences
Myers, Raymond H; Vining, G Geoffrey; Robinson, Timothy J
2012-01-01
Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities."-Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Ma
Modelling a linear PM motor including magnetic saturation
Polinder, H.; Slootweg, J.G.; Compter, J.C.; Hoeijmakers, M.J.
2002-01-01
The use of linear permanent-magnet (PM) actuators increases in a wide variety of applications because of the high force density, robustness and accuracy. The paper describes the modelling of a linear PM motor applied in, for example, wafer steppers, including magnetic saturation. This is important
Application of the simplex method of linear programming model to ...
African Journals Online (AJOL)
This work discussed how the simplex method of linear programming could be used to maximize the profit of any business firm using Saclux Paint Company as a case study. It equally elucidated the effect variation in the optimal result obtained from linear programming model, will have on any given firm. It was demonstrated ...
Genetic parameters for racing records in trotters using linear and generalized linear models.
Suontama, M; van der Werf, J H J; Juga, J; Ojala, M
2012-09-01
Heritability and repeatability and genetic and phenotypic correlations were estimated for trotting race records with linear and generalized linear models using 510,519 records on 17,792 Finnhorses and 513,161 records on 25,536 Standardbred trotters. Heritability and repeatability were estimated for single racing time and earnings traits with linear models, and logarithmic scale was used for racing time and fourth-root scale for earnings to correct for nonnormality. Generalized linear models with a gamma distribution were applied for single racing time and with a multinomial distribution for single earnings traits. In addition, genetic parameters for annual earnings were estimated with linear models on the observed and fourth-root scales. Racing success traits of single placings, winnings, breaking stride, and disqualifications were analyzed using generalized linear models with a binomial distribution. Estimates of heritability were greatest for racing time, which ranged from 0.32 to 0.34. Estimates of heritability were low for single earnings with all distributions, ranging from 0.01 to 0.09. Annual earnings were closer to normal distribution than single earnings. Heritability estimates were moderate for annual earnings on the fourth-root scale, 0.19 for Finnhorses and 0.27 for Standardbred trotters. Heritability estimates for binomial racing success variables ranged from 0.04 to 0.12, being greatest for winnings and least for breaking stride. Genetic correlations among racing traits were high, whereas phenotypic correlations were mainly low to moderate, except correlations between racing time and earnings were high. On the basis of a moderate heritability and moderate to high repeatability for racing time and annual earnings, selection of horses for these traits is effective when based on a few repeated records. Because of high genetic correlations, direct selection for racing time and annual earnings would also result in good genetic response in racing success.
Inverse problems in the design, modeling and testing of engineering systems
Alifanov, Oleg M.
1991-01-01
Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.
Estimating mass of σ-meson and study on application of the linear σ-model
International Nuclear Information System (INIS)
Ding Yibing; Li Xin; Li Xueqian; Liu Xiang; Shen Hong; Shen Pengnian; Wang Guoli; Zeng Xiaoqiang
2004-01-01
Whether the σ-meson (f 0 (600)) exists as a real particle is a long-standing problem in both particle physics and nuclear physics. In this work, we analyse the deuteron binding energy in the linear σ-model and by fitting the data, we are able to determine the range of m σ and also investigate applicability of the linear σ-model for the interaction between hadrons in the energy region of MeVs. Our result shows that the best fit to the data of the deuteron binding energy and others advocates a narrow range for the σ-meson mass as 520 ≤ m σ ≤ 580 MeV and the concrete values depend on the input parameters such as the couplings. Inversely by fitting the experimental data, one can set constraints on the couplings and the other relevant phenomenological parameters in the model
Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby
2013-12-01
This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.
Linear approximation model network and its formation via ...
Indian Academy of Sciences (India)
niques, an alternative `linear approximation model' (LAM) network approach is .... network is LPV, existing LTI theory is difficult to apply (Kailath 1980). ..... Beck J V, Arnold K J 1977 Parameter estimation in engineering and science (New York: ...
Sphaleron in a non-linear sigma model
International Nuclear Information System (INIS)
Sogo, Kiyoshi; Fujimoto, Yasushi.
1989-08-01
We present an exact classical saddle point solution in a non-linear sigma model. It has a topological charge 1/2 and mediates the vacuum transition. The quantum fluctuations and the transition rate are also examined. (author)
On D-branes from gauged linear sigma models
International Nuclear Information System (INIS)
Govindarajan, S.; Jayaraman, T.; Sarkar, T.
2001-01-01
We study both A-type and B-type D-branes in the gauged linear sigma model by considering worldsheets with boundary. The boundary conditions on the matter and vector multiplet fields are first considered in the large-volume phase/non-linear sigma model limit of the corresponding Calabi-Yau manifold, where we find that we need to add a contact term on the boundary. These considerations enable to us to derive the boundary conditions in the full gauged linear sigma model, including the addition of the appropriate boundary contact terms, such that these boundary conditions have the correct non-linear sigma model limit. Most of the analysis is for the case of Calabi-Yau manifolds with one Kaehler modulus (including those corresponding to hypersurfaces in weighted projective space), though we comment on possible generalisations
Optimization for decision making linear and quadratic models
Murty, Katta G
2010-01-01
While maintaining the rigorous linear programming instruction required, Murty's new book is unique in its focus on developing modeling skills to support valid decision-making for complex real world problems, and includes solutions to brand new algorithms.
Study of linear induction motor characteristics : the Mosebach model
1976-05-31
This report covers the Mosebach theory of the double-sided linear induction motor, starting with the ideallized model and accompanying assumptions, and ending with relations for thrust, airgap power, and motor efficiency. Solutions of the magnetic in...
Study of linear induction motor characteristics : the Oberretl model
1975-05-30
The Oberretl theory of the double-sided linear induction motor (LIM) is examined, starting with the idealized model and accompanying assumptions, and ending with relations for predicted thrust, airgap power, and motor efficiency. The effect of varyin...
Optimization Research of Generation Investment Based on Linear Programming Model
Wu, Juan; Ge, Xueqian
Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.
Lu, Xiao-Ping; Huang, Xiang-Jie; Ip, Wing-Huen; Hsia, Chi-Hao
2018-04-01
In the lightcurve inversion process where asteroid's physical parameters such as rotational period, pole orientation and overall shape are searched, the numerical calculations of the synthetic photometric brightness based on different shape models are frequently implemented. Lebedev quadrature is an efficient method to numerically calculate the surface integral on the unit sphere. By transforming the surface integral on the Cellinoid shape model to that on the unit sphere, the lightcurve inversion process based on the Cellinoid shape model can be remarkably accelerated. Furthermore, Matlab codes of the lightcurve inversion process based on the Cellinoid shape model are available on Github for free downloading. The photometric models, i.e., the scattering laws, also play an important role in the lightcurve inversion process, although the shape variations of asteroids dominate the morphologies of the lightcurves. Derived from the radiative transfer theory, the Hapke model can describe the light reflectance behaviors from the viewpoint of physics, while there are also many empirical models in numerical applications. Numerical simulations are implemented for the comparison of the Hapke model with the other three numerical models, including the Lommel-Seeliger, Minnaert, and Kaasalainen models. The results show that the numerical models with simple function expressions can fit well with the synthetic lightcurves generated based on the Hapke model; this good fit implies that they can be adopted in the lightcurve inversion process for asteroids to improve the numerical efficiency and derive similar results to those of the Hapke model.
DEFF Research Database (Denmark)
Mosegaard, Klaus
2012-01-01
For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our......-heuristics are inefficient for large-scale, non-linear inverse problems, and that the 'no-free-lunch' theorem holds. We discuss typical objections to the relevance of this theorem. A consequence of the no-free-lunch theorem is that algorithms adapted to the mathematical structure of the problem perform more efficiently than...... pure meta-heuristics. We study problem-adapted inversion algorithms that exploit the knowledge of the smoothness of the misfit function of the problem. Optimal sampling strategies exist for such problems, but many of these problems remain hard. © 2012 Springer-Verlag....
Inverting reflections using full-waveform inversion with inaccurate starting models
AlTheyab, Abdullah; Schuster, Gerard T.
2015-01-01
We present a method for inverting seismic reflections using full-waveform inversion (FWI) with inaccurate starting models. For a layered medium, near-offset reflections (with zero angle of incidence) are unlikely to be cycle-skipped regardless
CSIR Research Space (South Africa)
Evers-King, H
2014-05-01
Full Text Available phytoplankton functional type descriptors within known confidence limits from remotely sensed data has become a major objective to extend the use of ocean colour data beyond chlorophyll a retrievals. Here, a new forward and inverse modelling structure...
Application of Lead Field Theory and Computerized Thorax Modeling for the ECG Inverse Problem
National Research Council Canada - National Science Library
Puurtinen, H
2001-01-01
.... In this study, one anatomically detailed 3D FDM model of the human thorax as a volume conductor was employed for forward and inverse estimation of ECG potentials and cardiac sources, respectively...
Normal Inverse Gaussian Model-Based Image Denoising in the NSCT Domain
Directory of Open Access Journals (Sweden)
Jian Jia
2015-01-01
Full Text Available The objective of image denoising is to retain useful details while removing as much noise as possible to recover an original image from its noisy version. This paper proposes a novel normal inverse Gaussian (NIG model-based method that uses a Bayesian estimator to carry out image denoising in the nonsubsampled contourlet transform (NSCT domain. In the proposed method, the NIG model is first used to describe the distributions of the image transform coefficients of each subband in the NSCT domain. Then, the corresponding threshold function is derived from the model using Bayesian maximum a posteriori probability estimation theory. Finally, optimal linear interpolation thresholding algorithm (OLI-Shrink is employed to guarantee a gentler thresholding effect. The results of comparative experiments conducted indicate that the denoising performance of our proposed method in terms of peak signal-to-noise ratio is superior to that of several state-of-the-art methods, including BLS-GSM, K-SVD, BivShrink, and BM3D. Further, the proposed method achieves structural similarity (SSIM index values that are comparable to those of the block-matching 3D transformation (BM3D method.
EEG-distributed inverse solutions for a spherical head model
Riera, J. J.; Fuentes, M. E.; Valdés, P. A.; Ohárriz, Y.
1998-08-01
The theoretical study of the minimum norm solution to the MEG inverse problem has been carried out in previous papers for the particular case of spherical symmetry. However, a similar study for the EEG is remarkably more difficult due to the very complicated nature of the expression relating the voltage differences on the scalp to the primary current density (PCD) even for this simple symmetry. This paper introduces the use of the electric lead field (ELF) on the dyadic formalism in the spherical coordinate system to overcome such a drawback using an expansion of the ELF in terms of longitudinal and orthogonal vector fields. This approach allows us to represent EEG Fourier coefficients on a 2-sphere in terms of a current multipole expansion. The choice of a suitable basis for the Hilbert space of the PCDs on the brain region allows the current multipole moments to be related by spatial transfer functions to the PCD spectral coefficients. Properties of the most used distributed inverse solutions are explored on the basis of these results. Also, a part of the ELF null space is completely characterized and those spherical components of the PCD which are possible silent candidates are discussed.
Irving, J.; Koepke, C.; Elsheikh, A. H.
2017-12-01
Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward process model linking subsurface parameters to measured data, which is typically assumed to be known perfectly in the inversion procedure. However, in order to make the stochastic solution of the inverse problem computationally tractable using, for example, Markov-chain-Monte-Carlo (MCMC) methods, fast approximations of the forward model are commonly employed. This introduces model error into the problem, which has the potential to significantly bias posterior statistics and hamper data integration efforts if not properly accounted for. Here, we present a new methodology for addressing the issue of model error in Bayesian solutions to hydrogeophysical inverse problems that is geared towards the common case where these errors cannot be effectively characterized globally through some parametric statistical distribution or locally based on interpolation between a small number of computed realizations. Rather than focusing on the construction of a global or local error model, we instead work towards identification of the model-error component of the residual through a projection-based approach. In this regard, pairs of approximate and detailed model runs are stored in a dictionary that grows at a specified rate during the MCMC inversion procedure. At each iteration, a local model-error basis is constructed for the current test set of model parameters using the K-nearest neighbour entries in the dictionary, which is then used to separate the model error from the other error sources before computing the likelihood of the proposed set of model parameters. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar traveltime data for three different subsurface parameterizations of varying complexity. The synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed in the inversion
Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion
DEFF Research Database (Denmark)
Foged, N.; Marker, Pernille Aabye; Christiansen, A. V.
2014-01-01
resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity data set...... and the borehole data set in one variable. Finally, we use k-means clustering to generate a 3-D model of the subsurface structures. We apply the procedure to the Norsminde survey in Denmark, integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey...
Generalized linear mixed models modern concepts, methods and applications
Stroup, Walter W
2012-01-01
PART I The Big PictureModeling BasicsWhat Is a Model?Two Model Forms: Model Equation and Probability DistributionTypes of Model EffectsWriting Models in Matrix FormSummary: Essential Elements for a Complete Statement of the ModelDesign MattersIntroductory Ideas for Translating Design and Objectives into ModelsDescribing ""Data Architecture"" to Facilitate Model SpecificationFrom Plot Plan to Linear PredictorDistribution MattersMore Complex Example: Multiple Factors with Different Units of ReplicationSetting the StageGoals for Inference with Models: OverviewBasic Tools of InferenceIssue I: Data
A comparison of linear tyre models for analysing shimmy
Besselink, I.J.M.; Maas, J.W.L.H.; Nijmeijer, H.
2011-01-01
A comparison is made between three linear, dynamic tyre models using low speed step responses and yaw oscillation tests. The match with the measurements improves with increasing complexity of the tyre model. Application of the different tyre models to a two degree of freedom trailing arm suspension
Unification of three linear models for the transient visual system
Brinker, den A.C.
1989-01-01
Three different linear filters are considered as a model describing the experimentally determined triphasic impulse responses of discs. These impulse responses arc associated with the transient visual system. Each model reveals a different feature of the system. Unification of the models is
A BEHAVIORAL-APPROACH TO LINEAR EXACT MODELING
ANTOULAS, AC; WILLEMS, JC
1993-01-01
The behavioral approach to system theory provides a parameter-free framework for the study of the general problem of linear exact modeling and recursive modeling. The main contribution of this paper is the solution of the (continuous-time) polynomial-exponential time series modeling problem. Both
Linearized models for a new magnetic control in MAST
Energy Technology Data Exchange (ETDEWEB)
Artaserse, G., E-mail: giovanni.artaserse@enea.it [Associazione Euratom-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Maviglia, F.; Albanese, R. [Associazione Euratom-ENEA-CREATE sulla Fusione, Via Claudio 21, I-80125 Napoli (Italy); McArdle, G.J.; Pangione, L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)
2013-10-15
Highlights: ► We applied linearized models for a new magnetic control on MAST tokamak. ► A suite of procedures, conceived to be machine independent, have been used. ► We carried out model-based simulations, taking into account eddy currents effects. ► Comparison with the EFIT flux maps and the experimental magnetic signals are shown. ► A current driven model for the dynamic simulations of the experimental data have been performed. -- Abstract: The aim of this work is to provide reliable linearized models for the design and assessment of a new magnetic control system for MAST (Mega Ampère Spherical Tokamak) using rtEFIT, which can easily be exported to MAST Upgrade. Linearized models for magnetic control have been obtained using the 2D axisymmetric finite element code CREATE L. MAST linearized models include equivalent 2D axisymmetric schematization of poloidal field (PF) coils, vacuum vessel, and other conducting structures. A plasmaless and a double null configuration have been chosen as benchmark cases for the comparison with experimental data and EFIT reconstructions. Good agreement has been found with the EFIT flux map and the experimental signals coming from magnetic probes with only few mismatches probably due to broken sensors. A suite of procedures (equipped with a user friendly interface to be run even remotely) to provide linearized models for magnetic control is now available on the MAST linux machines. A new current driven model has been used to obtain a state space model having the PF coil currents as inputs. Dynamic simulations of experimental data have been carried out using linearized models, including modelling of the effects of the passive structures, showing a fair agreement. The modelling activity has been useful also to reproduce accurately the interaction between plasma current and radial position control loops.
Linearized models for a new magnetic control in MAST
International Nuclear Information System (INIS)
Artaserse, G.; Maviglia, F.; Albanese, R.; McArdle, G.J.; Pangione, L.
2013-01-01
Highlights: ► We applied linearized models for a new magnetic control on MAST tokamak. ► A suite of procedures, conceived to be machine independent, have been used. ► We carried out model-based simulations, taking into account eddy currents effects. ► Comparison with the EFIT flux maps and the experimental magnetic signals are shown. ► A current driven model for the dynamic simulations of the experimental data have been performed. -- Abstract: The aim of this work is to provide reliable linearized models for the design and assessment of a new magnetic control system for MAST (Mega Ampère Spherical Tokamak) using rtEFIT, which can easily be exported to MAST Upgrade. Linearized models for magnetic control have been obtained using the 2D axisymmetric finite element code CREATE L. MAST linearized models include equivalent 2D axisymmetric schematization of poloidal field (PF) coils, vacuum vessel, and other conducting structures. A plasmaless and a double null configuration have been chosen as benchmark cases for the comparison with experimental data and EFIT reconstructions. Good agreement has been found with the EFIT flux map and the experimental signals coming from magnetic probes with only few mismatches probably due to broken sensors. A suite of procedures (equipped with a user friendly interface to be run even remotely) to provide linearized models for magnetic control is now available on the MAST linux machines. A new current driven model has been used to obtain a state space model having the PF coil currents as inputs. Dynamic simulations of experimental data have been carried out using linearized models, including modelling of the effects of the passive structures, showing a fair agreement. The modelling activity has been useful also to reproduce accurately the interaction between plasma current and radial position control loops
Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper
2013-09-01
The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement
International Nuclear Information System (INIS)
Dinh Nho Hao; Nguyen Trung Thanh; Sahli, Hichem
2008-01-01
In this paper we consider a multi-dimensional inverse heat conduction problem with time-dependent coefficients in a box, which is well-known to be severely ill-posed, by a variational method. The gradient of the functional to be minimized is obtained by aids of an adjoint problem and the conjugate gradient method with a stopping rule is then applied to this ill-posed optimization problem. To enhance the stability and the accuracy of the numerical solution to the problem we apply this scheme to the discretized inverse problem rather than to the continuous one. The difficulties with large dimensions of discretized problems are overcome by a splitting method which only requires the solution of easy-to-solve one-dimensional problems. The numerical results provided by our method are very good and the techniques seem to be very promising.
Energy Technology Data Exchange (ETDEWEB)
Privette, J.L.
1994-12-31
The angular distribution of radiation scattered by the earth surface contains information on the structural and optical properties of the surface. Potentially, this information may be retrieved through the inversion of surface bidirectional reflectance distribution function (BRDF) models. This report details the limitations and efficient application of BRDF model inversions using data from ground- and satellite-based sensors. A turbid medium BRDF model, based on the discrete ordinates solution to the transport equation, was used to quantify the sensitivity of top-of-canopy reflectance to vegetation and soil parameters. Results were used to define parameter sets for inversions. Using synthetic reflectance values, the invertibility of the model was investigated for different optimization algorithms, surface and sampling conditions. Inversions were also conducted with field data from a ground-based radiometer. First, a soil BRDF model was inverted for different soil and sampling conditions. A condition-invariant solution was determined and used as the lower boundary condition in canopy model inversions. Finally, a scheme was developed to improve the speed and accuracy of inversions.
H∞ /H2 model reduction through dilated linear matrix inequalities
DEFF Research Database (Denmark)
Adegas, Fabiano Daher; Stoustrup, Jakob
2012-01-01
This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the $H_{infty}$ and $H_{2}$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order $n$ to be reduced to an order $r=n/s$ where $n,r,s in field{N}$. Arb......This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the $H_{infty}$ and $H_{2}$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order $n$ to be reduced to an order $r=n/s$ where $n,r,s in field...
A Comparison of Alternative Estimators of Linearly Aggregated Macro Models
Directory of Open Access Journals (Sweden)
Fikri Akdeniz
2012-07-01
Full Text Available Normal 0 false false false TR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman","serif"; mso-ansi-language:TR; mso-fareast-language:TR;} This paper deals with the linear aggregation problem. For the true underlying micro relations, which explain the micro behavior of the individuals, no restrictive rank conditions are assumed. Thus the analysis is presented in a framework utilizing generalized inverses of singular matrices. We investigate several estimators for certain linear transformations of the systematic part of the corresponding macro relations. Homogeneity of micro parameters is discussed. Best linear unbiased estimation for micro parameters is described.
Non-linear Growth Models in Mplus and SAS
Grimm, Kevin J.; Ram, Nilam
2013-01-01
Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134
Variance Function Partially Linear Single-Index Models1.
Lian, Heng; Liang, Hua; Carroll, Raymond J
2015-01-01
We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.
Metamodel-based inverse method for parameter identification: elastic-plastic damage model
Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb
2017-04-01
This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.
Comparison between linear quadratic and early time dose models
International Nuclear Information System (INIS)
Chougule, A.A.; Supe, S.J.
1993-01-01
During the 70s, much interest was focused on fractionation in radiotherapy with the aim of improving tumor control rate without producing unacceptable normal tissue damage. To compare the radiobiological effectiveness of various fractionation schedules, empirical formulae such as Nominal Standard Dose, Time Dose Factor, Cumulative Radiation Effect and Tumour Significant Dose, were introduced and were used despite many shortcomings. It has been claimed that a recent linear quadratic model is able to predict the radiobiological responses of tumours as well as normal tissues more accurately. We compared Time Dose Factor and Tumour Significant Dose models with the linear quadratic model for tumour regression in patients with carcinomas of the cervix. It was observed that the prediction of tumour regression estimated by the Tumour Significant Dose and Time Dose factor concepts varied by 1.6% from that of the linear quadratic model prediction. In view of the lack of knowledge of the precise values of the parameters of the linear quadratic model, it should be applied with caution. One can continue to use the Time Dose Factor concept which has been in use for more than a decade as its results are within ±2% as compared to that predicted by the linear quadratic model. (author). 11 refs., 3 figs., 4 tabs
Phylogenetic mixtures and linear invariants for equal input models.
Casanellas, Marta; Steel, Mike
2017-04-01
The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).
Directory of Open Access Journals (Sweden)
Hikosaka Kenji
2012-11-01
Full Text Available Abstract Background Mitochondrial (mt genomes vary considerably in size, structure and gene content. The mt genomes of the phylum Apicomplexa, which includes important human pathogens such as the malaria parasite Plasmodium, also show marked diversity of structure. Plasmodium has a concatenated linear mt genome of the smallest size (6-kb; Babesia and Theileria have a linear monomeric mt genome (6.5-kb to 8.2-kb with terminal inverted repeats; Eimeria, which is distantly related to Plasmodium and Babesia/Theileria, possesses a mt genome (6.2-kb with a concatemeric form similar to that of Plasmodium; Cryptosporidium, the earliest branching lineage within the phylum Apicomplexa, has no mt genome. We are interested in the evolutionary origin of linear mt genomes of Babesia/Theileria, and have investigated mt genome structures in members of archaeopiroplasmid, a lineage branched off earlier from Babesia/Theileria. Results The complete mt genomes of archaeopiroplasmid parasites, Babesia microti and Babesia rodhaini, were sequenced. The mt genomes of B. microti (11.1-kb and B. rodhaini (6.9-kb possess two pairs of unique inverted repeats, IR-A and IR-B. Flip-flop inversions between two IR-As and between two IR-Bs appear to generate four distinct genome structures that are present at an equi-molar ratio. An individual parasite contained multiple mt genome structures, with 20 copies and 2 – 3 copies per haploid nuclear genome in B. microti and B. rodhaini, respectively. Conclusion We found a novel linear monomeric mt genome structure of B. microti and B. rhodhaini equipped with dual flip-flop inversion system, by which four distinct genome structures are readily generated. To our knowledge, this study is the first to report the presence of two pairs of distinct IR sequences within a monomeric linear mt genome. The present finding provides insight into further understanding of evolution of mt genome structure.
Inverse problems of geophysics
International Nuclear Information System (INIS)
Yanovskaya, T.B.
2003-07-01
This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given
Non-linear calibration models for near infrared spectroscopy
DEFF Research Database (Denmark)
Ni, Wangdong; Nørgaard, Lars; Mørup, Morten
2014-01-01
by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear...... models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS......-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration...
Estimation and variable selection for generalized additive partial linear models
Wang, Li
2011-08-01
We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.
Inverse problem for the mean-field monomer-dimer model with attractive interaction
International Nuclear Information System (INIS)
Contucci, Pierluigi; Luzi, Rachele; Vernia, Cecilia
2017-01-01
The inverse problem method is tested for a class of monomer-dimer statistical mechanics models that contain also an attractive potential and display a mean-field critical point at a boundary of a coexistence line. The inversion is obtained by analytically identifying the parameters in terms of the correlation functions and via the maximum-likelihood method. The precision is tested in the whole phase space and, when close to the coexistence line, the algorithm is used together with a clustering method to take care of the underlying possible ambiguity of the inversion. (paper)
Energy Technology Data Exchange (ETDEWEB)
Aguilo Valentin, Miguel Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-07-01
This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.
Energy Technology Data Exchange (ETDEWEB)
Liu Guanghui [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Guo Kangxian, E-mail: axguo@sohu.com [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Chao [Institute of Public Administration, Guangzhou University, Guangzhou 510006 (China)
2012-06-15
The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.
International Nuclear Information System (INIS)
Liu Guanghui; Guo Kangxian; Wang Chao
2012-01-01
The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.
Matrix model and time-like linear dila ton matter
International Nuclear Information System (INIS)
Takayanagi, Tadashi
2004-01-01
We consider a matrix model description of the 2d string theory whose matter part is given by a time-like linear dilaton CFT. This is equivalent to the c=1 matrix model with a deformed, but very simple Fermi surface. Indeed, after a Lorentz transformation, the corresponding 2d spacetime is a conventional linear dila ton background with a time-dependent tachyon field. We show that the tree level scattering amplitudes in the matrix model perfectly agree with those computed in the world-sheet theory. The classical trajectories of fermions correspond to the decaying D-boranes in the time-like linear dilaton CFT. We also discuss the ground ring structure. Furthermore, we study the properties of the time-like Liouville theory by applying this matrix model description. We find that its ground ring structure is very similar to that of the minimal string. (author)
Vortices, semi-local vortices in gauged linear sigma model
International Nuclear Information System (INIS)
Kim, Namkwon
1998-11-01
We consider the static (2+1)D gauged linear sigma model. By analyzing the governing system of partial differential equations, we investigate various aspects of the model. We show the existence of energy finite vortices under a partially broken symmetry on R 2 with the necessary condition suggested by Y. Yang. We also introduce generalized semi-local vortices and show the existence of energy finite semi-local vortices under a certain condition. The vacuum manifold for the semi-local vortices turns out to be graded. Besides, with a special choice of a representation, we show that the O(3) sigma model of which target space is nonlinear is a singular limit of the gauged linear sigma model of which target space is linear. (author)
TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS
Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.
2017-01-01
Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971
Linear mixed models a practical guide using statistical software
West, Brady T; Galecki, Andrzej T
2006-01-01
Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-navigate reference details the use of procedures for fitting LMMs in five popular statistical software packages: SAS, SPSS, Stata, R/S-plus, and HLM. The authors introduce basic theoretical concepts, present a heuristic approach to fitting LMMs based on bo
On the feasibility of inversion methods based on models of urban sky glow
International Nuclear Information System (INIS)
Kolláth, Z.; Kránicz, B.
2014-01-01
Multi-wavelength imaging luminance photometry of sky glow provides a huge amount of information on light pollution. However, the understanding of the measured data involves the combination of different processes and data of radiation transfer, atmospheric physics and atmospheric constitution. State-of-the-art numerical radiation transfer models provide the possibility to define an inverse problem to obtain information on the emission intensity distribution of a city and perhaps the physical properties of the atmosphere. We provide numerical tests on the solvability and feasibility of such procedures. - Highlights: • A method of urban sky glow inversion is introduced based on Monte-Carlo calculations. • Imaging photometry can provide enough information for basic inversions. • The inversion technique can be used to construct maps of light pollution. • The inclusion of multiple scattering in the models plays an important role
Optical linear algebra processors - Noise and error-source modeling
Casasent, D.; Ghosh, A.
1985-01-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Optical linear algebra processors: noise and error-source modeling.
Casasent, D; Ghosh, A
1985-06-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
CONTRIBUTIONS TO THE FINITE ELEMENT MODELING OF LINEAR ULTRASONIC MOTORS
Directory of Open Access Journals (Sweden)
Oana CHIVU
2013-05-01
Full Text Available The present paper is concerned with the main modeling elements as produced by means of thefinite element method of linear ultrasonic motors. Hence, first the model is designed and then a modaland harmonic analysis are carried out in view of outlining the main outcomes
Linear and Nonlinear Career Models: Metaphors, Paradigms, and Ideologies.
Buzzanell, Patrice M.; Goldzwig, Steven R.
1991-01-01
Examines the linear or bureaucratic career models (dominant in career research, metaphors, paradigms, and ideologies) which maintain career myths of flexibility and individualized routes to success in organizations incapable of offering such versatility. Describes nonlinear career models which offer suggestive metaphors for re-visioning careers…
AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S
Klumpp, A. R.
1994-01-01
This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
Aleardi, Mattia
2018-01-01
We apply a two-step probabilistic seismic-petrophysical inversion for the characterization of a clastic, gas-saturated, reservoir located in offshore Nile Delta. In particular, we discuss and compare the results obtained when two different rock-physics models (RPMs) are employed in the inversion. The first RPM is an empirical, linear model directly derived from the available well log data by means of an optimization procedure. The second RPM is a theoretical, non-linear model based on the Hertz-Mindlin contact theory. The first step of the inversion procedure is a Bayesian linearized amplitude versus angle (AVA) inversion in which the elastic properties, and the associated uncertainties, are inferred from pre-stack seismic data. The estimated elastic properties constitute the input to the second step that is a probabilistic petrophysical inversion in which we account for the noise contaminating the recorded seismic data and the uncertainties affecting both the derived rock-physics models and the estimated elastic parameters. In particular, a Gaussian mixture a-priori distribution is used to properly take into account the facies-dependent behavior of petrophysical properties, related to the different fluid and rock properties of the different litho-fluid classes. In the synthetic and in the field data tests, the very minor differences between the results obtained by employing the two RPMs, and the good match between the estimated properties and well log information, confirm the applicability of the inversion approach and the suitability of the two different RPMs for reservoir characterization in the investigated area.
Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5
Directory of Open Access Journals (Sweden)
P. Bergamaschi
2005-01-01
Full Text Available A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1° × 1° resolution that is two-way nested into the global model domain (with resolution of 6° × 4°. This approach ensures consistent boundary conditions for the zoom domain and thus European top-down estimates consistent with global CH4 observations. The TM5 model, driven by ECMWF analyses, simulates synoptic scale events at most European and global sites fairly well, and the use of high-frequency observations allows exploiting the information content of individual synoptic events. A detailed source attribution is presented for a comprehensive set of 56 monitoring sites, assigning the atmospheric signal to the emissions of individual European countries and larger global regions. The available observational data put significant constraints on emissions from different regions. Within Europe, in particular several Western European countries are well constrained. The inversion results suggest up to 50-90% higher anthropogenic CH4 emissions in 2001 for Germany, France and UK compared to reported UNFCCC values (EEA, 2003. A recent revision of the German inventory, however, resulted in an increase of reported CH4 emissions by 68.5% (EEA, 2004, being now in very good agreement with our top-down estimate. The top-down estimate for Finland is distinctly smaller than the a priori estimate, suggesting much smaller CH4 emissions from Finnish wetlands than derived from the bottom-up inventory. The EU-15 totals are relatively close to UNFCCC values (within 4-30% and appear very robust for different inversion scenarios.
Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling
Deng, F.; Chen, J.; Peters, W.; Krol, M.
2008-12-01
Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).
A model reduction approach to numerical inversion for a parabolic partial differential equation
International Nuclear Information System (INIS)
Borcea, Liliana; Druskin, Vladimir; Zaslavsky, Mikhail; Mamonov, Alexander V
2014-01-01
We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss–Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments. (paper)
A model reduction approach to numerical inversion for a parabolic partial differential equation
Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail
2014-12-01
We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.
Wu, Zedong
2017-07-04
Reflection-waveform inversion (RWI) can help us reduce the nonlinearity of the standard full-waveform inversion (FWI) by inverting for the background velocity model using the wave-path of a single scattered wavefield to an image. However, current RWI implementations usually neglect the multi-scattered energy, which will cause some artifacts in the image and the update of the background. To improve existing RWI implementations in taking multi-scattered energy into consideration, we split the velocity model into background and perturbation components, integrate them directly in the wave equation, and formulate a new optimization problem for both components. In this case, the perturbed model is no longer a single-scattering model, but includes all scattering. Through introducing a new cheap implementation of scattering angle enrichment, the separation of the background and perturbation components can be implemented efficiently. We optimize both components simultaneously to produce updates to the velocity model that is nonlinear with respect to both the background and the perturbation. The newly introduced perturbation model can absorb the non-smooth update of the background in a more consistent way. We apply the proposed approach on the Marmousi model with data that contain frequencies starting from 5 Hz to show that this method can converge to an accurate velocity starting from a linearly increasing initial velocity. Also, our proposed method works well when applied to a field data set.
Low-energy limit of the extended Linear Sigma Model
Energy Technology Data Exchange (ETDEWEB)
Divotgey, Florian [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Kovacs, Peter [Wigner Research Center for Physics, Hungarian Academy of Sciences, Institute for Particle and Nuclear Physics, Budapest (Hungary); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute, Darmstadt (Germany); Giacosa, Francesco [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Jan-Kochanowski University, Institute of Physics, Kielce (Poland); Rischke, Dirk H. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); University of Science and Technology of China, Interdisciplinary Center for Theoretical Study and Department of Modern Physics, Hefei, Anhui (China)
2018-01-15
The extended Linear Sigma Model is an effective hadronic model based on the linear realization of chiral symmetry SU(N{sub f}){sub L} x SU(N{sub f}){sub R}, with (pseudo)scalar and (axial-)vector mesons as degrees of freedom. In this paper, we study the low-energy limit of the extended Linear Sigma Model (eLSM) for N{sub f} = flavors by integrating out all fields except for the pions, the (pseudo-)Nambu-Goldstone bosons of chiral symmetry breaking. The resulting low-energy effective action is identical to Chiral Perturbation Theory (ChPT) after choosing a representative for the coset space generated by chiral symmetry breaking and expanding it in powers of (derivatives of) the pion fields. The tree-level values of the coupling constants of the effective low-energy action agree remarkably well with those of ChPT. (orig.)
Linear Power-Flow Models in Multiphase Distribution Networks: Preprint
Energy Technology Data Exchange (ETDEWEB)
Bernstein, Andrey; Dall' Anese, Emiliano
2017-05-26
This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.
DEFF Research Database (Denmark)
Gillet, N.; Jault, D.; Finlay, Chris
2013-01-01
Inferring the core dynamics responsible for the observed geomagnetic secular variation requires knowledge of the magnetic field at the core-mantle boundary together with its associated model covariances. However, most currently available field models have been built using regularization conditions...... variation error model in core flow inversions and geomagnetic data assimilation studies....
DEFF Research Database (Denmark)
Gillet, Nicolas; Jault, D.; Finlay, Chris
2013-01-01
Inferring the core dynamics responsible for the observed geomagnetic secular variation requires knowledge of the magnetic field at the core mantle boundary together with its associated model covariances. However, all currently available field models have been built using regularization conditions...... variation error model in core flow inversions and geomagnetic data assimilation studies....
Inverse modeling and animation of growing single-stemmed trees at interactive rates
S. Rudnick; L. Linsen; E.G. McPherson
2007-01-01
For city planning purposes, animations of growing trees of several species can be used to deduce which species may best fit a particular environment. The models used for the animation must conform to real measured data. We present an approach for inverse modeling to fit global growth parameters. The model comprises local production rules, which are iteratively and...
DEFF Research Database (Denmark)
Tordrup, Karl Woldum; Poulsen, Uffe Vestergaard; Nielsen, Carsten
2017-01-01
We use a modular approach to develop a TRNSYS model for a district heating facility by applying inverse modelling to one year of operational data for individual components. We assemble the components into a single TRNSYS model for the full system using the accumulation tanks as a central hub conn...
Identification of Loss-of-Coolant Accidents in LWRs by Inverse Models
International Nuclear Information System (INIS)
Cholewa, Wojciech; Frid, Wiktor; Bednarski, Marcin
2004-01-01
This paper describes a novel diagnostic method based on inverse models that could be applied to identification of transients and accidents in nuclear power plants. In particular, it is shown that such models could be successfully applied to identification of loss-of-coolant accidents (LOCAs). This is demonstrated for LOCA scenarios for a boiling water reactor. Two classes of inverse models are discussed: local models valid only in a selected neighborhood of an unknown element in the data set, representing a state of a considered object, and global models, in the form of partially unilateral models, valid over the whole learning data set. An interesting and useful property of local inverse models is that they can be considered as example-based models, i.e., models that are spanned on particular sets of pattern data. It is concluded that the optimal diagnostic method should combine the advantages of both models, i.e., the high quality of results obtained from a local inverse model and the information about the confidence interval for the expected output provided by a partially unilateral model
DEFF Research Database (Denmark)
Yoon, Daeung; Zhdanov, Michael; Cai, Hongzhu
2015-01-01
One of the major problems in the modeling and inversion of marine controlled source electromagnetic (MCSEM) data is related to the need for accurate representation of very complex geoelectrical models typical for marine environment. At the same time, the corresponding forward modeling algorithms...
Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions
Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.
2011-12-01
Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.
Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng
2017-10-01
Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.
Heeding the waveform inversion nonlinearity by unwrapping the model and data
Alkhalifah, Tariq Ali
2012-01-01
Unlike traveltime inversion, waveform inversion provides relatively higher-resolution inverted models. This feature, however, comes at the cost of introducing complex nonlinearity to the inversion operator complicating the convergence process. We use unwrapped-phase-based objective functions to reduce such nonlinearity in a domain in which the high-frequency component is given by the traveltime inversion. Such information is packaged in a frequency-dependent attribute (or traveltime) that can be easily manipulated at different frequencies. It unwraps the phase of the wavefield yielding far less nonlinearity in the objective function than those experienced with the conventional misfit objective function, and yet it still holds most of the critical waveform information in its frequency dependency. However, it suffers from nonlinearity introduced by the model (or reflectivity), as events interact with each other (something like cross talk). This stems from the sinusoidal nature of the band-limited reflectivity model. Unwrapping the phase for such a model can mitigate this nonlinearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced nonlinearity and, thus, make the inversion more convergent. Simple examples are used to highlight such features.
Modelling and measurement of a moving magnet linear compressor performance
International Nuclear Information System (INIS)
Liang, Kun; Stone, Richard; Davies, Gareth; Dadd, Mike; Bailey, Paul
2014-01-01
A novel moving magnet linear compressor with clearance seals and flexure bearings has been designed and constructed. It is suitable for a refrigeration system with a compact heat exchanger, such as would be needed for CPU cooling. The performance of the compressor has been experimentally evaluated with nitrogen and a mathematical model has been developed to evaluate the performance of the linear compressor. The results from the compressor model and the measurements have been compared in terms of cylinder pressure, the ‘P–V’ loop, stroke, mass flow rate and shaft power. The cylinder pressure was not measured directly but was derived from the compressor dynamics and the motor magnetic force characteristics. The comparisons indicate that the compressor model is well validated and can be used to study the performance of this type of compressor, to help with design optimization and the identification of key parameters affecting the system transients. The electrical and thermodynamic losses were also investigated, particularly for the design point (stroke of 13 mm and pressure ratio of 3.0), since a full understanding of these can lead to an increase in compressor efficiency. - Highlights: • Model predictions of the performance of a novel moving magnet linear compressor. • Prototype linear compressor performance measurements using nitrogen. • Reconstruction of P–V loops using a model of the dynamics and electromagnetics. • Close agreement between the model and measurements for the P–V loops. • The design point motor efficiency was 74%, with potential improvements identified
The minimal linear σ model for the Goldstone Higgs
International Nuclear Information System (INIS)
Feruglio, F.; Gavela, M.B.; Kanshin, K.; Machado, P.A.N.; Rigolin, S.; Saa, S.
2016-01-01
In the context of the minimal SO(5) linear σ-model, a complete renormalizable Lagrangian -including gauge bosons and fermions- is considered, with the symmetry softly broken to SO(4). The scalar sector describes both the electroweak Higgs doublet and the singlet σ. Varying the σ mass would allow to sweep from the regime of perturbative ultraviolet completion to the non-linear one assumed in models in which the Higgs particle is a low-energy remnant of some strong dynamics. We analyze the phenomenological implications and constraints from precision observables and LHC data. Furthermore, we derive the d≤6 effective Lagrangian in the limit of heavy exotic fermions.
A variational formulation for linear models in coupled dynamic thermoelasticity
International Nuclear Information System (INIS)
Feijoo, R.A.; Moura, C.A. de.
1981-07-01
A variational formulation for linear models in coupled dynamic thermoelasticity which quite naturally motivates the design of a numerical scheme for the problem, is studied. When linked to regularization or penalization techniques, this algorithm may be applied to more general models, namely, the ones that consider non-linear constraints associated to variational inequalities. The basic postulates of Mechanics and Thermodynamics as well as some well-known mathematical techniques are described. A thorough description of the algorithm implementation with the finite-element method is also provided. Proofs for existence and uniqueness of solutions and for convergence of the approximations are presented, and some numerical results are exhibited. (Author) [pt
DEFF Research Database (Denmark)
Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian
2014-01-01
In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...
Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables
Henson, Robert A.; Templin, Jonathan L.; Willse, John T.
2009-01-01
This paper uses log-linear models with latent variables (Hagenaars, in "Loglinear Models with Latent Variables," 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for…
Functional linear models for association analysis of quantitative traits.
Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao
2013-11-01
Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY
Energy Technology Data Exchange (ETDEWEB)
Passos de Figueiredo, Leandro, E-mail: leandrop.fgr@gmail.com [Physics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Grana, Dario [Department of Geology and Geophysics, University of Wyoming, Laramie (United States); Santos, Marcio; Figueiredo, Wagner [Physics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Roisenberg, Mauro [Informatic and Statistics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Schwedersky Neto, Guenther [Petrobras Research Center, Rio de Janeiro (Brazil)
2017-05-01
We propose a Bayesian approach for seismic inversion to estimate acoustic impedance, porosity and lithofacies within the reservoir conditioned to post-stack seismic and well data. The link between elastic and petrophysical properties is given by a joint prior distribution for the logarithm of impedance and porosity, based on a rock-physics model. The well conditioning is performed through a background model obtained by well log interpolation. Two different approaches are presented: in the first approach, the prior is defined by a single Gaussian distribution, whereas in the second approach it is defined by a Gaussian mixture to represent the well data multimodal distribution and link the Gaussian components to different geological lithofacies. The forward model is based on a linearized convolutional model. For the single Gaussian case, we obtain an analytical expression for the posterior distribution, resulting in a fast algorithm to compute the solution of the inverse problem, i.e. the posterior distribution of acoustic impedance and porosity as well as the facies probability given the observed data. For the Gaussian mixture prior, it is not possible to obtain the distributions analytically, hence we propose a Gibbs algorithm to perform the posterior sampling and obtain several reservoir model realizations, allowing an uncertainty analysis of the estimated properties and lithofacies. Both methodologies are applied to a real seismic dataset with three wells to obtain 3D models of acoustic impedance, porosity and lithofacies. The methodologies are validated through a blind well test and compared to a standard Bayesian inversion approach. Using the probability of the reservoir lithofacies, we also compute a 3D isosurface probability model of the main oil reservoir in the studied field.
Practical likelihood analysis for spatial generalized linear mixed models
DEFF Research Database (Denmark)
Bonat, W. H.; Ribeiro, Paulo Justiniano
2016-01-01
We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are......, respectively, examples of binomial and count datasets modeled by spatial generalized linear mixed models. Our results show that the Laplace approximation provides similar estimates to Markov Chain Monte Carlo likelihood, Monte Carlo expectation maximization, and modified Laplace approximation. Some advantages...... of Laplace approximation include the computation of the maximized log-likelihood value, which can be used for model selection and tests, and the possibility to obtain realistic confidence intervals for model parameters based on profile likelihoods. The Laplace approximation also avoids the tuning...
Stochastic modeling of mode interactions via linear parabolized stability equations
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo
2017-11-01
Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.
Inverse Problems in Geosciences: Modelling the Rock Properties of an Oil Reservoir
DEFF Research Database (Denmark)
Lange, Katrine
. We have developed and implemented the Frequency Matching method that uses the closed form expression of the a priori probability density function to formulate an inverse problem and compute the maximum a posteriori solution to it. Other methods for computing models that simultaneously fit data...... of the subsurface of the reservoirs. Hence the focus of this work has been on acquiring models of spatial parameters describing rock properties of the subsurface using geostatistical a priori knowledge and available geophysical data. Such models are solutions to often severely under-determined, inverse problems...
pyGIMLi: An open-source library for modelling and inversion in geophysics
Rücker, Carsten; Günther, Thomas; Wagner, Florian M.
2017-12-01
Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time
Linear modeling of possible mechanisms for parkinson tremor generation
Lohnberg, P.
1978-01-01
The power of Parkinson tremor is expressed in terms of possibly changed frequency response functions between relevant variables in the neuromuscular system. The derivation starts out from a linear loopless equivalent model of mechanisms for general tremor generation. Hypothetical changes in this
Current algebra of classical non-linear sigma models
International Nuclear Information System (INIS)
Forger, M.; Laartz, J.; Schaeper, U.
1992-01-01
The current algebra of classical non-linear sigma models on arbitrary Riemannian manifolds is analyzed. It is found that introducing, in addition to the Noether current j μ associated with the global symmetry of the theory, a composite scalar field j, the algebra closes under Poisson brackets. (orig.)
Mathematical modelling and linear stability analysis of laser fusion cutting
International Nuclear Information System (INIS)
Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich
2016-01-01
A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.
Non Linear signa models probing the string structure
International Nuclear Information System (INIS)
Abdalla, E.
1987-01-01
The introduction of a term depending on the extrinsic curvature to the string action, and related non linear sigma models defined on a symmetric space SO(D)/SO(2) x SO(d-2) is descussed . Coupling to fermions are also treated. (author) [pt
Confidence Intervals for Assessing Heterogeneity in Generalized Linear Mixed Models
Wagler, Amy E.
2014-01-01
Generalized linear mixed models are frequently applied to data with clustered categorical outcomes. The effect of clustering on the response is often difficult to practically assess partly because it is reported on a scale on which comparisons with regression parameters are difficult to make. This article proposes confidence intervals for…
Penalized Estimation in Large-Scale Generalized Linear Array Models
DEFF Research Database (Denmark)
Lund, Adam; Vincent, Martin; Hansen, Niels Richard
2017-01-01
Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...
Expressions for linearized perturbations in ideal-fluid cosmological models
International Nuclear Information System (INIS)
Ratra, B.
1988-01-01
We present closed-form solutions of the relativistic linear perturbation equations (in synchronous gauge) that govern the evolution of inhomogeneities in homogeneous, spatially flat, ideal-fluid, cosmological models. These expressions, which are valid for irregularities on any scale, allow one to analytically interpolate between the known approximate solutions which are valid at early times and at late times
S-AMP for non-linear observation models
DEFF Research Database (Denmark)
Cakmak, Burak; Winther, Ole; Fleury, Bernard H.
2015-01-01
Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...
Plane answers to complex questions the theory of linear models
Christensen, Ronald
1987-01-01
This book was written to rigorously illustrate the practical application of the projective approach to linear models. To some, this may seem contradictory. I contend that it is possible to be both rigorous and illustrative and that it is possible to use the projective approach in practical applications. Therefore, unlike many other books on linear models, the use of projections and sub spaces does not stop after the general theory. They are used wherever I could figure out how to do it. Solving normal equations and using calculus (outside of maximum likelihood theory) are anathema to me. This is because I do not believe that they contribute to the understanding of linear models. I have similar feelings about the use of side conditions. Such topics are mentioned when appropriate and thenceforward avoided like the plague. On the other side of the coin, I just as strenuously reject teaching linear models with a coordinate free approach. Although Joe Eaton assures me that the issues in complicated problems freq...
A simulation model of a coordinated decentralized linear supply chain
Ashayeri, Jalal; Cannella, S.; Lopez Campos, M.; Miranda, P.A.
2015-01-01
This paper presents a simulation-based study of a coordinated, decentralized linear supply chain (SC) system. In the proposed model, any supply tier considers its successors as part of its inventory system and generates replenishment orders on the basis of its partners’ operational information. We
Mathematical modelling and linear stability analysis of laser fusion cutting
Energy Technology Data Exchange (ETDEWEB)
Hermanns, Torsten; Schulz, Wolfgang [RWTH Aachen University, Chair for Nonlinear Dynamics, Steinbachstr. 15, 52047 Aachen (Germany); Vossen, Georg [Niederrhein University of Applied Sciences, Chair for Applied Mathematics and Numerical Simulations, Reinarzstr.. 49, 47805 Krefeld (Germany); Thombansen, Ulrich [RWTH Aachen University, Chair for Laser Technology, Steinbachstr. 15, 52047 Aachen (Germany)
2016-06-08
A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.
Performances Of Estimators Of Linear Models With Autocorrelated ...
African Journals Online (AJOL)
The performances of five estimators of linear models with Autocorrelated error terms are compared when the independent variable is autoregressive. The results reveal that the properties of the estimators when the sample size is finite is quite similar to the properties of the estimators when the sample size is infinite although ...
Performances of estimators of linear auto-correlated error model ...
African Journals Online (AJOL)
The performances of five estimators of linear models with autocorrelated disturbance terms are compared when the independent variable is exponential. The results reveal that for both small and large samples, the Ordinary Least Squares (OLS) compares favourably with the Generalized least Squares (GLS) estimators in ...
A non-linear dissipative model of magnetism
Czech Academy of Sciences Publication Activity Database
Durand, P.; Paidarová, Ivana
2010-01-01
Roč. 89, č. 6 (2010), s. 67004 ISSN 1286-4854 R&D Projects: GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : non-linear dissipative model of magnetism * thermodynamics * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry http://epljournal.edpsciences.org/
Modeling and verifying non-linearities in heterodyne displacement interferometry
Cosijns, S.J.A.G.; Haitjema, H.; Schellekens, P.H.J.
2002-01-01
The non-linearities in a heterodyne laser interferometer system occurring from the phase measurement system of the interferometer andfrom non-ideal polarization effects of the optics are modeled into one analytical expression which includes the initial polarization state ofthe laser source, the
DEFF Research Database (Denmark)
Holst, René; Jørgensen, Bent
2015-01-01
The paper proposes a versatile class of multiplicative generalized linear longitudinal mixed models (GLLMM) with additive dispersion components, based on explicit modelling of the covariance structure. The class incorporates a longitudinal structure into the random effects models and retains...... a marginal as well as a conditional interpretation. The estimation procedure is based on a computationally efficient quasi-score method for the regression parameters combined with a REML-like bias-corrected Pearson estimating function for the dispersion and correlation parameters. This avoids...... the multidimensional integral of the conventional GLMM likelihood and allows an extension of the robust empirical sandwich estimator for use with both association and regression parameters. The method is applied to a set of otholit data, used for age determination of fish....
As above, so below? Towards understanding inverse models in BCI
Lindgren, Jussi T.
2018-02-01
Objective. In brain-computer interfaces (BCI), measurements of the user’s brain activity are classified into commands for the computer. With EEG-based BCIs, the origins of the classified phenomena are often considered to be spatially localized in the cortical volume and mixed in the EEG. We investigate if more accurate BCIs can be obtained by reconstructing the source activities in the volume. Approach. We contrast the physiology-driven source reconstruction with data-driven representations obtained by statistical machine learning. We explain these approaches in a common linear dictionary framework and review the different ways to obtain the dictionary parameters. We consider the effect of source reconstruction on some major difficulties in BCI classification, namely information loss, feature selection and nonstationarity of the EEG. Main results. Our analysis suggests that the approaches differ mainly in their parameter estimation. Physiological source reconstruction may thus be expected to improve BCI accuracy if machine learning is not used or where it produces less optimal parameters. We argue that the considered difficulties of surface EEG classification can remain in the reconstructed volume and that data-driven techniques are still necessary. Finally, we provide some suggestions for comparing approaches. Significance. The present work illustrates the relationships between source reconstruction and machine learning-based approaches for EEG data representation. The provided analysis and discussion should help in understanding, applying, comparing and improving such techniques in the future.
Identifiability Results for Several Classes of Linear Compartment Models.
Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa
2015-08-01
Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.
The inverse niche model for food webs with parasites
Warren, Christopher P.; Pascual, Mercedes; Lafferty, Kevin D.; Kuris, Armand M.
2010-01-01
Although parasites represent an important component of ecosystems, few field and theoretical studies have addressed the structure of parasites in food webs. We evaluate the structure of parasitic links in an extensive salt marsh food web, with a new model distinguishing parasitic links from non-parasitic links among free-living species. The proposed model is an extension of the niche model for food web structure, motivated by the potential role of size (and related metabolic rates) in structuring food webs. The proposed extension captures several properties observed in the data, including patterns of clustering and nestedness, better than does a random model. By relaxing specific assumptions, we demonstrate that two essential elements of the proposed model are the similarity of a parasite's hosts and the increasing degree of parasite specialization, along a one-dimensional niche axis. Thus, inverting one of the basic rules of the original model, the one determining consumers' generality appears critical. Our results support the role of size as one of the organizing principles underlying niche space and food web topology. They also strengthen the evidence for the non-random structure of parasitic links in food webs and open the door to addressing questions concerning the consequences and origins of this structure.
Regime transitions in near-surface temperature inversions : a conceptual model
van de Wiel, B.J.H.; Vignon, E.; Baas, P.; Bosveld, F.C.; de Roode, S.R.; Moene, A.F.; Genthon, C.; van der Linden, Steven J.A.; van Hooft, J. Antoon; van Hooijdonk, I.G.S.
2017-01-01
A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes
Finite element modeling of nanotube structures linear and non-linear models
Awang, Mokhtar; Muhammad, Ibrahim Dauda
2016-01-01
This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.
Data and modelling requirements for CO2 inversions using high-frequency data
International Nuclear Information System (INIS)
Law, R.M.; Rayner, P.J.; Steele, L.P.; Enting, I.G.
2003-01-01
We explore the future possibilities for CO 2 source estimation from atmospheric concentration data by performing synthetic data experiments. Synthetic data are used to test seasonal CO 2 inversions using high-frequency data. Monthly CO 2 sources over the Australian region are calculated for inversions with data at 4-hourly frequency and averaged over 1 d, 2.5 d, 5 d, 12.17 d and 1 month. The inversion quality, as determined by bias and uncertainty, is degraded when averaging over longer periods. This shows the value of the strong but relatively short-lived signals present in high-frequency records that are removed in averaged and particularly filtered records. Sensitivity tests are performed in which the synthetic data are 'corrupted' to simulate systematic measurement errors such as intercalibration differences or to simulate transport modelling errors. The inversion is also used to estimate the effect of calibration offsets between sites. We find that at short data-averaging periods the inversion is reasonably robust to measurement-type errors. For transport-type errors, the best results are achieved for synoptic (2-5 d) timescales. Overall the tests indicate that improved source estimates should be possible by incorporating continuous measurements into CO 2 inversions
Kalman filtering and smoothing for linear wave equations with model error
International Nuclear Information System (INIS)
Lee, Wonjung; McDougall, D; Stuart, A M
2011-01-01
Filtering is a widely used methodology for the incorporation of observed data into time-evolving systems. It provides an online approach to state estimation inverse problems when data are acquired sequentially. The Kalman filter plays a central role in many applications because it is exact for linear systems subject to Gaussian noise, and because it forms the basis for many approximate filters which are used in high-dimensional systems. The aim of this paper is to study the effect of model error on the Kalman filter, in the context of linear wave propagation problems. A consistency result is proved when no model error is present, showing recovery of the true signal in the large data limit. This result, however, is not robust: it is also proved that arbitrarily small model error can lead to inconsistent recovery of the signal in the large data limit. If the model error is in the form of a constant shift to the velocity, the filtering and smoothing distributions only recover a partial Fourier expansion, a phenomenon related to aliasing. On the other hand, for a class of wave velocity model errors which are time dependent, it is possible to recover the filtering distribution exactly, but not the smoothing distribution. Numerical results are presented which corroborate the theory, and also propose a computational approach which overcomes the inconsistency in the presence of model error, by relaxing the model
Linear Dynamics Model for Steam Cooled Fast Power Reactors
Energy Technology Data Exchange (ETDEWEB)
Vollmer, H
1968-04-15
A linear analytical dynamic model is developed for steam cooled fast power reactors. All main components of such a plant are investigated on a general though relatively simple basis. The model is distributed in those parts concerning the core but lumped as to the external plant components. Coolant is considered as compressible and treated by the actual steam law. Combined use of analogue and digital computer seems most attractive.
Deterministic operations research models and methods in linear optimization
Rader, David J
2013-01-01
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations resear
One-loop dimensional reduction of the linear σ model
International Nuclear Information System (INIS)
Malbouisson, A.P.C.; Silva-Neto, M.B.; Svaiter, N.F.
1997-05-01
We perform the dimensional reduction of the linear σ model at one-loop level. The effective of the reduced theory obtained from the integration over the nonzero Matsubara frequencies is exhibited. Thermal mass and coupling constant renormalization constants are given, as well as the thermal renormalization group which controls the dependence of the counterterms on the temperature. We also recover, for the reduced theory, the vacuum instability of the model for large N. (author)
Artificial Neural Network versus Linear Models Forecasting Doha Stock Market
Yousif, Adil; Elfaki, Faiz
2017-12-01
The purpose of this study is to determine the instability of Doha stock market and develop forecasting models. Linear time series models are used and compared with a nonlinear Artificial Neural Network (ANN) namely Multilayer Perceptron (MLP) Technique. It aims to establish the best useful model based on daily and monthly data which are collected from Qatar exchange for the period starting from January 2007 to January 2015. Proposed models are for the general index of Qatar stock exchange and also for the usages in other several sectors. With the help of these models, Doha stock market index and other various sectors were predicted. The study was conducted by using various time series techniques to study and analyze data trend in producing appropriate results. After applying several models, such as: Quadratic trend model, double exponential smoothing model, and ARIMA, it was concluded that ARIMA (2,2) was the most suitable linear model for the daily general index. However, ANN model was found to be more accurate than time series models.
Seismic inverse scattering in the downward continuation approach
Stolk, C.C.; de Hoop, M.V.
Seismic data are commonly modeled by a linearization around a smooth background medium in combination with a high frequency approximation. The perturbation of the medium coefficient is assumed to contain the discontinuities. This leads to two inverse problems, first the linearized inverse problem
A linearized dispersion relation for orthorhombic pseudo-acoustic modeling
Song, Xiaolei; Alkhalifah, Tariq Ali
2012-01-01
Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen's parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.
Non-linear sigma model on the fuzzy supersphere
International Nuclear Information System (INIS)
Kurkcuoglu, Seckin
2004-01-01
In this note we develop fuzzy versions of the supersymmetric non-linear sigma model on the supersphere S (2,2) . In hep-th/0212133 Bott projectors have been used to obtain the fuzzy C P 1 model. Our approach utilizes the use of supersymmetric extensions of these projectors. Here we obtain these (super)-projectors and quantize them in a fashion similar to the one given in hep-th/0212133. We discuss the interpretation of the resulting model as a finite dimensional matrix model. (author)
Micromechanical modeling and inverse identification of damage using cohesive approaches
International Nuclear Information System (INIS)
Blal, Nawfal
2013-01-01
In this study a micromechanical model is proposed for a collection of cohesive zone models embedded between two each elements of a standard cohesive-volumetric finite element method. An equivalent 'matrix-inclusions' composite is proposed as a representation of the cohesive-volumetric discretization. The overall behaviour is obtained using homogenization approaches (Hashin Shtrikman scheme and the P. Ponte Castaneda approach). The derived model deals with elastic, brittle and ductile materials. It is available whatever the triaxiality loading rate and the shape of the cohesive law, and leads to direct relationships between the overall material properties and the local cohesive parameters and the mesh density. First, rigorous bounds on the normal and tangential cohesive stiffnesses are obtained leading to a suitable control of the inherent artificial elastic loss induced by intrinsic cohesive models. Second, theoretical criteria on damageable and ductile cohesive parameters are established (cohesive peak stress, critical separation, cohesive failure energy,... ). These criteria allow a practical calibration of the cohesive zone parameters as function of the overall material properties and the mesh length. The main interest of such calibration is its promising capacity to lead to a mesh-insensitive overall response in surface damage. (author) [fr
Directory of Open Access Journals (Sweden)
A.A. Fahmy
2013-12-01
Full Text Available This paper presents a new neuro-fuzzy controller for robot manipulators. First, an inductive learning technique is applied to generate the required inverse modeling rules from input/output data recorded in the off-line structure learning phase. Second, a fully differentiable fuzzy neural network is developed to construct the inverse dynamics part of the controller for the online parameter learning phase. Finally, a fuzzy-PID-like incremental controller was employed as Feedback servo controller. The proposed control system was tested using dynamic model of a six-axis industrial robot. The control system showed good results compared to the conventional PID individual joint controller.
Optimal difference-based estimation for partially linear models
Zhou, Yuejin; Cheng, Yebin; Dai, Wenlin; Tong, Tiejun
2017-01-01
Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.
Modeling and analysis of linear hyperbolic systems of balance laws
Bartecki, Krzysztof
2016-01-01
This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...
Optimal difference-based estimation for partially linear models
Zhou, Yuejin
2017-12-16
Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.
Modeling and inversion Matlab algorithms for resistivity, induced polarization and seismic data
Karaoulis, M.; Revil, A.; Minsley, B. J.; Werkema, D. D.
2011-12-01
M. Karaoulis (1), D.D. Werkema (3), A. Revil (1,2), A., B. Minsley (4), (1) Colorado School of Mines, Dept. of Geophysics, Golden, CO, USA. (2) ISTerre, CNRS, UMR 5559, Université de Savoie, Equipe Volcan, Le Bourget du Lac, France. (3) U.S. EPA, ORD, NERL, ESD, CMB, Las Vegas, Nevada, USA . (4) USGS, Federal Center, Lakewood, 10, 80225-0046, CO. Abstract We propose 2D and 3D forward modeling and inversion package for DC resistivity, time domain induced polarization (IP), frequency-domain IP, and seismic refraction data. For the resistivity and IP case, discretization is based on rectangular cells, where each cell has as unknown resistivity in the case of DC modelling, resistivity and chargeability in the time domain IP modelling, and complex resistivity in the spectral IP modelling. The governing partial-differential equations are solved with the finite element method, which can be applied to both real and complex variables that are solved for. For the seismic case, forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wavepaths are materialized by Fresnel volumes rather than by conventional rays. This approach accounts for complicated velocity models and is advantageous because it considers frequency effects on the velocity resolution. The inversion can accommodate data at a single time step, or as a time-lapse dataset if the geophysical data are gathered for monitoring purposes. The aim of time-lapse inversion is to find the change in the velocities or resistivities of each model cell as a function of time. Different time-lapse algorithms can be applied such as independent inversion, difference inversion, 4D inversion, and 4D active time constraint inversion. The forward algorithms are benchmarked against analytical solutions and inversion results are compared with existing ones. The algorithms are packaged as Matlab codes with a simple Graphical User Interface. Although the code is parallelized for multi
Evangeliou, Nikolaos; Hamburger, Thomas; Cozic, Anne; Balkanski, Yves; Stohl, Andreas
2017-07-01
This paper describes the results of an inverse modeling study for the determination of the source term of the radionuclides 134Cs, 137Cs and 131I released after the Chernobyl accident. The accident occurred on 26 April 1986 in the Former Soviet Union and released about 1019 Bq of radioactive materials that were transported as far away as the USA and Japan. Thereafter, several attempts to assess the magnitude of the emissions were made that were based on the knowledge of the core inventory and the levels of the spent fuel. More recently, when modeling tools were further developed, inverse modeling techniques were applied to the Chernobyl case for source term quantification. However, because radioactivity is a sensitive topic for the public and attracts a lot of attention, high-quality measurements, which are essential for inverse modeling, were not made available except for a few sparse activity concentration measurements far from the source and far from the main direction of the radioactive fallout. For the first time, we apply Bayesian inversion of the Chernobyl source term using not only activity concentrations but also deposition measurements from the most recent public data set. These observations refer to a data rescue attempt that started more than 10 years ago, with a final goal to provide available measurements to anyone interested. In regards to our inverse modeling results, emissions of 134Cs were estimated to be 80 PBq or 30-50 % higher than what was previously published. From the released amount of 134Cs, about 70 PBq were deposited all over Europe. Similar to 134Cs, emissions of 137Cs were estimated as 86 PBq, on the same order as previously reported results. Finally, 131I emissions of 1365 PBq were found, which are about 10 % less than the prior total releases. The inversion pushes the injection heights of the three radionuclides to higher altitudes (up to about 3 km) than previously assumed (≈ 2.2 km) in order to better match both concentration
Directory of Open Access Journals (Sweden)
N. Evangeliou
2017-07-01
Full Text Available This paper describes the results of an inverse modeling study for the determination of the source term of the radionuclides 134Cs, 137Cs and 131I released after the Chernobyl accident. The accident occurred on 26 April 1986 in the Former Soviet Union and released about 1019 Bq of radioactive materials that were transported as far away as the USA and Japan. Thereafter, several attempts to assess the magnitude of the emissions were made that were based on the knowledge of the core inventory and the levels of the spent fuel. More recently, when modeling tools were further developed, inverse modeling techniques were applied to the Chernobyl case for source term quantification. However, because radioactivity is a sensitive topic for the public and attracts a lot of attention, high-quality measurements, which are essential for inverse modeling, were not made available except for a few sparse activity concentration measurements far from the source and far from the main direction of the radioactive fallout. For the first time, we apply Bayesian inversion of the Chernobyl source term using not only activity concentrations but also deposition measurements from the most recent public data set. These observations refer to a data rescue attempt that started more than 10 years ago, with a final goal to provide available measurements to anyone interested. In regards to our inverse modeling results, emissions of 134Cs were estimated to be 80 PBq or 30–50 % higher than what was previously published. From the released amount of 134Cs, about 70 PBq were deposited all over Europe. Similar to 134Cs, emissions of 137Cs were estimated as 86 PBq, on the same order as previously reported results. Finally, 131I emissions of 1365 PBq were found, which are about 10 % less than the prior total releases. The inversion pushes the injection heights of the three radionuclides to higher altitudes (up to about 3 km than previously assumed (≈ 2.2 km in order
A penalized framework for distributed lag non-linear models.
Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G
2017-09-01
Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.
General mirror pairs for gauged linear sigma models
Energy Technology Data Exchange (ETDEWEB)
Aspinwall, Paul S.; Plesser, M. Ronen [Departments of Mathematics and Physics, Duke University,Box 90320, Durham, NC 27708-0320 (United States)
2015-11-05
We carefully analyze the conditions for an abelian gauged linear σ-model to exhibit nontrivial IR behavior described by a nonsingular superconformal field theory determining a superstring vacuum. This is done without reference to a geometric phase, by associating singular behavior to a noncompact space of (semi-)classical vacua. We find that models determined by reflexive combinatorial data are nonsingular for generic values of their parameters. This condition has the pleasant feature that the mirror of a nonsingular gauged linear σ-model is another such model, but it is clearly too strong and we provide an example of a non-reflexive mirror pair. We discuss a weaker condition inspired by considering extremal transitions, which is also mirror symmetric and which we conjecture to be sufficient. We apply these ideas to extremal transitions and to understanding the way in which both Berglund-Hübsch mirror symmetry and the Vafa-Witten mirror orbifold with discrete torsion can be seen as special cases of the general combinatorial duality of gauged linear σ-models. In the former case we encounter an example showing that our weaker condition is still not necessary.
General mirror pairs for gauged linear sigma models
International Nuclear Information System (INIS)
Aspinwall, Paul S.; Plesser, M. Ronen
2015-01-01
We carefully analyze the conditions for an abelian gauged linear σ-model to exhibit nontrivial IR behavior described by a nonsingular superconformal field theory determining a superstring vacuum. This is done without reference to a geometric phase, by associating singular behavior to a noncompact space of (semi-)classical vacua. We find that models determined by reflexive combinatorial data are nonsingular for generic values of their parameters. This condition has the pleasant feature that the mirror of a nonsingular gauged linear σ-model is another such model, but it is clearly too strong and we provide an example of a non-reflexive mirror pair. We discuss a weaker condition inspired by considering extremal transitions, which is also mirror symmetric and which we conjecture to be sufficient. We apply these ideas to extremal transitions and to understanding the way in which both Berglund-Hübsch mirror symmetry and the Vafa-Witten mirror orbifold with discrete torsion can be seen as special cases of the general combinatorial duality of gauged linear σ-models. In the former case we encounter an example showing that our weaker condition is still not necessary.
Directory of Open Access Journals (Sweden)
P.D.Gujrati
2002-01-01
Full Text Available Theoretical evidence is presented in this review that architectural aspects can play an important role, not only in the bulk but also in confined geometries by using our recursive lattice theory, which is equally applicable to fixed architectures (regularly branched polymers, stars, dendrimers, brushes, linear chains, etc. and variable architectures, i.e. randomly branched structures. Linear chains possess an inversion symmetry (IS of a magnetic system (see text, whose presence or absence determines the bulk phase diagram. Fixed architectures possess the IS and yield a standard bulk phase diagram in which there exists a theta point at which two critical lines C and C' meet and the second virial coefficient A2 vanishes. The critical line C appears only for infinitely large polymers, and an order parameter is identified for this criticality. The critical line C' exists for polymers of all sizes and represents phase separation criticality. Variable architectures, which do not possess the IS, give rise to a topologically different phase diagram with no theta point in general. In confined regions next to surfaces, it is not the IS but branching and monodispersity, which becomes important in the surface regions. We show that branching plays no important role for polydisperse systems, but become important for monodisperse systems. Stars and linear chains behave differently near a surface.
Robust Linear Models for Cis-eQTL Analysis.
Rantalainen, Mattias; Lindgren, Cecilia M; Holmes, Christopher C
2015-01-01
Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives), and to some extent also type I errors (false positives). Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.
Sabbagh, Harold A; Sabbagh, Elias H; Aldrin, John C; Knopp, Jeremy S
2013-01-01
Computational Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy Current Nondestructive Evaluation describes the natural marriage of the computer to eddy-current NDE. Three distinct topics are emphasized in the book: (a) fundamental mathematical principles of volume-integral equations as a subset of computational electromagnetics, (b) mathematical algorithms applied to signal-processing and inverse scattering problems, and (c) applications of these two topics to problems in which real and model data are used. By showing how mathematics and the computer can solve problems more effectively than current analog practices, this book defines the modern technology of eddy-current NDE. This book will be useful to advanced students and practitioners in the fields of computational electromagnetics, electromagnetic inverse-scattering theory, nondestructive evaluation, materials evaluation and biomedical imaging. Users of eddy-current NDE technology in industries as varied as nuclear power, aerospace,...
Inverse geothermal modelling applied to Danish sedimentary basins
DEFF Research Database (Denmark)
Poulsen, Soren E.; Balling, Niels; Bording, Thue S.
2017-01-01
. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature...... gradients to depths of 2000-3000 m are generally around 25-30. degrees C km(-1), locally up to about 35. degrees C km(-1). Large regions have geothermal reservoirs with characteristic temperatures ranging from ca. 40-50. degrees C, at 1000-1500 m depth, to ca. 80-110. degrees C, at 2500-3500 m, however...
Theoretical study on the inverse modeling of deep body temperature measurement
International Nuclear Information System (INIS)
Huang, Ming; Chen, Wenxi
2012-01-01
We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation. (paper)
Implementation of a Monte Carlo based inverse planning model for clinical IMRT with MCNP code
International Nuclear Information System (INIS)
He, Tongming Tony
2003-01-01
Inaccurate dose calculations and limitations of optimization algorithms in inverse planning introduce systematic and convergence errors to treatment plans. This work was to implement a Monte Carlo based inverse planning model for clinical IMRT aiming to minimize the aforementioned errors. The strategy was to precalculate the dose matrices of beamlets in a Monte Carlo based method followed by the optimization of beamlet intensities. The MCNP 4B (Monte Carlo N-Particle version 4B) code was modified to implement selective particle transport and dose tallying in voxels and efficient estimation of statistical uncertainties. The resulting performance gain was over eleven thousand times. Due to concurrent calculation of multiple beamlets of individual ports, hundreds of beamlets in an IMRT plan could be calculated within a practical length of time. A finite-sized point source model provided a simple and accurate modeling of treatment beams. The dose matrix calculations were validated through measurements in phantoms. Agreements were better than 1.5% or 0.2 cm. The beamlet intensities were optimized using a parallel platform based optimization algorithm that was capable of escape from local minima and preventing premature convergence. The Monte Carlo based inverse planning model was applied to clinical cases. The feasibility and capability of Monte Carlo based inverse planning for clinical IMRT was demonstrated. Systematic errors in treatment plans of a commercial inverse planning system were assessed in comparison with the Monte Carlo based calculations. Discrepancies in tumor doses and critical structure doses were up to 12% and 17%, respectively. The clinical importance of Monte Carlo based inverse planning for IMRT was demonstrated
Linear models for joint association and linkage QTL mapping
Directory of Open Access Journals (Sweden)
Fernando Rohan L
2009-09-01
Full Text Available Abstract Background Populational linkage disequilibrium and within-family linkage are commonly used for QTL mapping and marker assisted selection. The combination of both results in more robust and accurate locations of the QTL, but models proposed so far have been either single marker, complex in practice or well fit to a particular family structure. Results We herein present linear model theory to come up with additive effects of the QTL alleles in any member of a general pedigree, conditional to observed markers and pedigree, accounting for possible linkage disequilibrium among QTLs and markers. The model is based on association analysis in the founders; further, the additive effect of the QTLs transmitted to the descendants is a weighted (by the probabilities of transmission average of the substitution effects of founders' haplotypes. The model allows for non-complete linkage disequilibrium QTL-markers in the founders. Two submodels are presented: a simple and easy to implement Haley-Knott type regression for half-sib families, and a general mixed (variance component model for general pedigrees. The model can use information from all markers. The performance of the regression method is compared by simulation with a more complex IBD method by Meuwissen and Goddard. Numerical examples are provided. Conclusion The linear model theory provides a useful framework for QTL mapping with dense marker maps. Results show similar accuracies but a bias of the IBD method towards the center of the region. Computations for the linear regression model are extremely simple, in contrast with IBD methods. Extensions of the model to genomic selection and multi-QTL mapping are straightforward.
Giudici, Mauro; Baratelli, Fulvia; Vassena, Chiara; Cattaneo, Laura
2014-05-01
Numerical modelling of the dynamic evolution of ice sheets and glaciers requires the solution of discrete equations which are based on physical principles (e.g. conservation of mass, linear momentum and energy) and phenomenological constitutive laws (e.g. Glen's and Fourier's laws). These equations must be accompanied by information on the forcing term and by initial and boundary conditions (IBC) on ice velocity, stress and temperature; on the other hand the constitutive laws involves many physical parameters, which possibly depend on the ice thermodynamical state. The proper forecast of the dynamics of ice sheets and glaciers (forward problem, FP) requires a precise knowledge of several quantities which appear in the IBCs, in the forcing terms and in the phenomenological laws and which cannot be easily measured at the study scale in the field. Therefore these quantities can be obtained through model calibration, i.e. by the solution of an inverse problem (IP). Roughly speaking, the IP aims at finding the optimal values of the model parameters that yield the best agreement of the model output with the field observations and data. The practical application of IPs is usually formulated as a generalised least squares approach, which can be cast in the framework of Bayesian inference. IPs are well developed in several areas of science and geophysics and several applications were proposed also in glaciology. The objective of this paper is to provide a further step towards a thorough and rigorous theoretical framework in cryospheric studies. Although the IP is often claimed to be ill-posed, this is rigorously true for continuous domain models, whereas for numerical models, which require the solution of algebraic equations, the properties of the IP must be analysed with more care. First of all, it is necessary to clarify the role of experimental and monitoring data to determine the calibration targets and the values of the parameters that can be considered to be fixed
Linear Model-Based Predictive Control of the LHC 1.8 K Cryogenic Loop
Blanco-Viñuela, E; De Prada-Moraga, C
1999-01-01
The LHC accelerator will employ 1800 superconducting magnets (for guidance and focusing of the particle beams) in a pressurized superfluid helium bath at 1.9 K. This temperature is a severely constrained control parameter in order to avoid the transition from the superconducting to the normal state. Cryogenic processes are difficult to regulate due to their highly non-linear physical parameters (heat capacity, thermal conductance, etc.) and undesirable peculiarities like non self-regulating process, inverse response and variable dead time. To reduce the requirements on either temperature sensor or cryogenic system performance, various control strategies have been investigated on a reduced-scale LHC prototype built at CERN (String Test). Model Based Predictive Control (MBPC) is a regulation algorithm based on the explicit use of a process model to forecast the plant output over a certain prediction horizon. This predicted controlled variable is used in an on-line optimization procedure that minimizes an approp...
A Graphical User Interface to Generalized Linear Models in MATLAB
Directory of Open Access Journals (Sweden)
Peter Dunn
1999-07-01
Full Text Available Generalized linear models unite a wide variety of statistical models in a common theoretical framework. This paper discusses GLMLAB-software that enables such models to be fitted in the popular mathematical package MATLAB. It provides a graphical user interface to the powerful MATLAB computational engine to produce a program that is easy to use but with many features, including offsets, prior weights and user-defined distributions and link functions. MATLAB's graphical capacities are also utilized in providing a number of simple residual diagnostic plots.
MAGDM linear-programming models with distinct uncertain preference structures.
Xu, Zeshui S; Chen, Jian
2008-10-01
Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.
DEFF Research Database (Denmark)
Kooths, Stefan; Mitze, Timo Friedel; Ringhut, Eric
2004-01-01
This paper compares the predictive power of linear econometric and non-linear computational models for forecasting the inflation rate in the European Monetary Union (EMU). Various models of both types are developed using different monetary and real activity indicators. They are compared according...
Linear models for assessing mechanisms of sperm competition: the trouble with transformations.
Eggert, Anne-Katrin; Reinhardt, Klaus; Sakaluk, Scott K
2003-01-01
Although sperm competition is a pervasive selective force shaping the reproductive tactics of males, the mechanisms underlying different patterns of sperm precedence remain obscure. Parker et al. (1990) developed a series of linear models designed to identify two of the more basic mechanisms: sperm lotteries and sperm displacement; the models can be tested experimentally by manipulating the relative numbers of sperm transferred by rival males and determining the paternity of offspring. Here we show that tests of the model derived for sperm lotteries can result in misleading inferences about the underlying mechanism of sperm precedence because the required inverse transformations may lead to a violation of fundamental assumptions of linear regression. We show that this problem can be remedied by reformulating the model using the actual numbers of offspring sired by each male, and log-transforming both sides of the resultant equation. Reassessment of data from a previous study (Sakaluk and Eggert 1996) using the corrected version of the model revealed that we should not have excluded a simple sperm lottery as a possible mechanism of sperm competition in decorated crickets, Gryllodes sigillatus.
Modelling of Asphalt Concrete Stiffness in the Linear Viscoelastic Region
Mazurek, Grzegorz; Iwański, Marek
2017-10-01
Stiffness modulus is a fundamental parameter used in the modelling of the viscoelastic behaviour of bituminous mixtures. On the basis of the master curve in the linear viscoelasticity range, the mechanical properties of asphalt concrete at different loading times and temperatures can be predicted. This paper discusses the construction of master curves under rheological mathematical models i.e. the sigmoidal function model (MEPDG), the fractional model, and Bahia and co-workers’ model in comparison to the results from mechanistic rheological models i.e. the generalized Huet-Sayegh model, the generalized Maxwell model and the Burgers model. For the purposes of this analysis, the reference asphalt concrete mix (denoted as AC16W) intended for the binder coarse layer and for traffic category KR3 (5×105 controlled strain mode. The fixed strain level was set at 25με to guarantee that the stiffness modulus of the asphalt concrete would be tested in a linear viscoelasticity range. The master curve was formed using the time-temperature superposition principle (TTSP). The stiffness modulus of asphalt concrete was determined at temperatures 10°C, 20°C and 40°C and at loading times (frequency) of 0.1, 0.3, 1, 3, 10, 20 Hz. The model parameters were fitted to the rheological models using the original programs based on the nonlinear least squares sum method. All the rheological models under analysis were found to be capable of predicting changes in the stiffness modulus of the reference asphalt concrete to satisfactory accuracy. In the cases of the fractional model and the generalized Maxwell model, their accuracy depends on a number of elements in series. The best fit was registered for Bahia and co-workers model, generalized Maxwell model and fractional model. As for predicting the phase angle parameter, the largest discrepancies between experimental and modelled results were obtained using the fractional model. Except the Burgers model, the model matching quality was
A Non-Gaussian Spatial Generalized Linear Latent Variable Model
Irincheeva, Irina
2012-08-03
We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.
Linear Model for Optimal Distributed Generation Size Predication
Directory of Open Access Journals (Sweden)
Ahmed Al Ameri
2017-01-01
Full Text Available This article presents a linear model predicting optimal size of Distributed Generation (DG that addresses the minimum power loss. This method is based fundamentally on strong coupling between active power and voltage angle as well as between reactive power and voltage magnitudes. This paper proposes simplified method to calculate the total power losses in electrical grid for different distributed generation sizes and locations. The method has been implemented and tested on several IEEE bus test systems. The results show that the proposed method is capable of predicting approximate optimal size of DG when compared with precision calculations. The method that linearizes a complex model showed a good result, which can actually reduce processing time required. The acceptable accuracy with less time and memory required can help the grid operator to assess power system integrated within large-scale distribution generation.
A non-linear model of economic production processes
Ponzi, A.; Yasutomi, A.; Kaneko, K.
2003-06-01
We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.
A Non-Gaussian Spatial Generalized Linear Latent Variable Model
Irincheeva, Irina; Cantoni, Eva; Genton, Marc G.
2012-01-01
We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.
NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS
Directory of Open Access Journals (Sweden)
Hasan YILDIZ
2004-03-01
Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.
Dynamic generalized linear models for monitoring endemic diseases
DEFF Research Database (Denmark)
Lopes Antunes, Ana Carolina; Jensen, Dan; Hisham Beshara Halasa, Tariq
2016-01-01
The objective was to use a Dynamic Generalized Linear Model (DGLM) based on abinomial distribution with a linear trend, for monitoring the PRRS (Porcine Reproductive and Respiratory Syndrome sero-prevalence in Danish swine herds. The DGLM was described and its performance for monitoring control...... and eradication programmes based on changes in PRRS sero-prevalence was explored. Results showed a declining trend in PRRS sero-prevalence between 2007 and 2014 suggesting that Danish herds are slowly eradicating PRRS. The simulation study demonstrated the flexibility of DGLMs in adapting to changes intrends...... in sero-prevalence. Based on this, it was possible to detect variations in the growth model component. This study is a proof-of-concept, demonstrating the use of DGLMs for monitoring endemic diseases. In addition, the principles stated might be useful in general research on monitoring and surveillance...
Estimation and Inference for Very Large Linear Mixed Effects Models
Gao, K.; Owen, A. B.
2016-01-01
Linear mixed models with large imbalanced crossed random effects structures pose severe computational problems for maximum likelihood estimation and for Bayesian analysis. The costs can grow as fast as $N^{3/2}$ when there are N observations. Such problems arise in any setting where the underlying factors satisfy a many to many relationship (instead of a nested one) and in electronic commerce applications, the N can be quite large. Methods that do not account for the correlation structure can...
Using Quartile-Quartile Lines as Linear Models
Gordon, Sheldon P.
2015-01-01
This article introduces the notion of the quartile-quartile line as an alternative to the regression line and the median-median line to produce a linear model based on a set of data. It is based on using the first and third quartiles of a set of (x, y) data. Dynamic spreadsheets are used as exploratory tools to compare the different approaches and…
NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS
International Nuclear Information System (INIS)
TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.
2004-01-01
For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability
Electromagnetic axial anomaly in a generalized linear sigma model
Fariborz, Amir H.; Jora, Renata
2017-06-01
We construct the electromagnetic anomaly effective term for a generalized linear sigma model with two chiral nonets, one with a quark-antiquark structure, the other one with a four-quark content. We compute in the leading order of this framework the decays into two photons of six pseudoscalars: π0(137 ), π0(1300 ), η (547 ), η (958 ), η (1295 ) and η (1760 ). Our results agree well with the available experimental data.
Inverse modeling of cloud-aerosol interactions -- Part 1: Detailed response surface analysis
Partridge, D.G.; Vrugt, J.A.; Tunved, P.; Ekman, A.M.L.; Gorea, D.; Sooroshian, A.
2011-01-01
New methodologies are required to probe the sensitivity of parameters describing cloud droplet activation. This paper presents an inverse modeling-based method for exploring cloud-aerosol interactions via response surfaces. The objective function, containing the difference between the measured and
Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model
Mondal, Anirban
2014-07-03
We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a random field (spatial or temporal). The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provide a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. The Karhunen-Loeve expansion is used for dimension reduction of the random field. Furthermore, we use a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we show that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of MCMC) and are compounded by high dimensionality of the posterior. We develop two-stage reversible jump MCMC that has the ability to screen the bad proposals in the first inexpensive stage. Numerical results are presented by analyzing simulated as well as real data from hydrocarbon reservoir. This article has supplementary material available online. © 2014 American Statistical Association and the American Society for Quality.
An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking
Koopman, Hubertus F.J.M.; Grootenboer, H.J.; de Jongh, Henk J.; Huijing, P.A.J.B.M.; de Vries, J.
1995-01-01
Walking is a constrained movement which may best be observed during the double stance phase when both feet contact the floor. When analyzing a measured movement with an inverse dynamics model, a violation of these constrains will always occur due to measuring errors and deviations of the segments
Digital Repository Service at National Institute of Oceanography (India)
Tripathy, G.R.; Das, Anirban.
used methods, the Least Square Regression (LSR) and Inverse Modeling (IM), to determine the contributions of (i) solutes from different sources to global river water, and (ii) various rocks to a glacial till. The purpose of this exercise is to compare...
Justiniano, A.; Jaya, Y.; Diephuis, G.; Veenhof, R.; Pringle, T.
2015-01-01
The objective of the study is to characterise the Triassic massive stacked sandstone deposits of the Main Buntsandstein Subgroup at Block Q16 located in the West Netherlands Basin. The characterisation was carried out through combining rock-physics modelling and seismic inversion techniques. The
Evaluation of inverse modeling techniques for pinpointing water leakages at building constructions
Schijndel, van A.W.M.
2015-01-01
The location and nature of the moisture leakages are sometimes difficult to detect. Moreover, the relation between observed inside surface moisture patterns and where the moisture enters the construction is often not clear. The objective of this paper is to investigate inverse modeling techniques as
A Systematic and Numerically Efficient Procedure for Stable Dynamic Model Inversion of LTI Systems
George, K.; Verhaegen, M.; Scherpen, J.M.A.
1999-01-01
Output tracking via the novel Stable Dynamic model Inversion (SDI) technique, applicable to non-minimum phase systems, and which naturally takes into account the presence of noise in target time histories, is considered here. We are motivated by the typical need to replicate time signals in the
Inverse problem theory methods for data fitting and model parameter estimation
Tarantola, A
2002-01-01
Inverse Problem Theory is written for physicists, geophysicists and all scientists facing the problem of quantitative interpretation of experimental data. Although it contains a lot of mathematics, it is not intended as a mathematical book, but rather tries to explain how a method of acquisition of information can be applied to the actual world.The book provides a comprehensive, up-to-date description of the methods to be used for fitting experimental data, or to estimate model parameters, and to unify these methods into the Inverse Problem Theory. The first part of the book deals wi
Comparison of Linear Prediction Models for Audio Signals
Directory of Open Access Journals (Sweden)
2009-03-01
Full Text Available While linear prediction (LP has become immensely popular in speech modeling, it does not seem to provide a good approach for modeling audio signals. This is somewhat surprising, since a tonal signal consisting of a number of sinusoids can be perfectly predicted based on an (all-pole LP model with a model order that is twice the number of sinusoids. We provide an explanation why this result cannot simply be extrapolated to LP of audio signals. If noise is taken into account in the tonal signal model, a low-order all-pole model appears to be only appropriate when the tonal components are uniformly distributed in the Nyquist interval. Based on this observation, different alternatives to the conventional LP model can be suggested. Either the model should be changed to a pole-zero, a high-order all-pole, or a pitch prediction model, or the conventional LP model should be preceded by an appropriate frequency transform, such as a frequency warping or downsampling. By comparing these alternative LP models to the conventional LP model in terms of frequency estimation accuracy, residual spectral flatness, and perceptual frequency resolution, we obtain several new and promising approaches to LP-based audio modeling.
A quasi-linear gyrokinetic transport model for tokamak plasmas
International Nuclear Information System (INIS)
Casati, A.
2009-10-01
After a presentation of some basics around nuclear fusion, this research thesis introduces the framework of the tokamak strategy to deal with confinement, hence the main plasma instabilities which are responsible for turbulent transport of energy and matter in such a system. The author also briefly introduces the two principal plasma representations, the fluid and the kinetic ones. He explains why the gyro-kinetic approach has been preferred. A tokamak relevant case is presented in order to highlight the relevance of a correct accounting of the kinetic wave-particle resonance. He discusses the issue of the quasi-linear response. Firstly, the derivation of the model, called QuaLiKiz, and its underlying hypotheses to get the energy and the particle turbulent flux are presented. Secondly, the validity of the quasi-linear response is verified against the nonlinear gyro-kinetic simulations. The saturation model that is assumed in QuaLiKiz, is presented and discussed. Then, the author qualifies the global outcomes of QuaLiKiz. Both the quasi-linear energy and the particle flux are compared to the expectations from the nonlinear simulations, across a wide scan of tokamak relevant parameters. Therefore, the coupling of QuaLiKiz within the integrated transport solver CRONOS is presented: this procedure allows the time-dependent transport problem to be solved, hence the direct application of the model to the experiment. The first preliminary results regarding the experimental analysis are finally discussed
Double point source W-phase inversion: Real-time implementation and automated model selection
Nealy, Jennifer; Hayes, Gavin
2015-01-01
Rapid and accurate characterization of an earthquake source is an extremely important and ever evolving field of research. Within this field, source inversion of the W-phase has recently been shown to be an effective technique, which can be efficiently implemented in real-time. An extension to the W-phase source inversion is presented in which two point sources are derived to better characterize complex earthquakes. A single source inversion followed by a double point source inversion with centroid locations fixed at the single source solution location can be efficiently run as part of earthquake monitoring network operational procedures. In order to determine the most appropriate solution, i.e., whether an earthquake is most appropriately described by a single source or a double source, an Akaike information criterion (AIC) test is performed. Analyses of all earthquakes of magnitude 7.5 and greater occurring since January 2000 were performed with extended analyses of the September 29, 2009 magnitude 8.1 Samoa earthquake and the April 19, 2014 magnitude 7.5 Papua New Guinea earthquake. The AIC test is shown to be able to accurately select the most appropriate model and the selected W-phase inversion is shown to yield reliable solutions that match published analyses of the same events.
Zhu, Lupei; Zhou, Xiaofeng
2016-10-01
Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the ;Cut-and-Paste; (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13-15 km on a plane dipping 40-47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.
Identification of Constitutive Parameters Using Inverse Strategy Coupled to an ANN Model
International Nuclear Information System (INIS)
Aguir, H.; Chamekh, A.; BelHadjSalah, H.; Hambli, R.
2007-01-01
This paper deals with the identification of material parameters using an inverse strategy. In the classical methods, the inverse technique is generally coupled with a finite element code which leads to a long computing time. In this work an inverse strategy coupled with an ANN procedure is proposed. This method has the advantage of being faster than the classical one. To validate this approach an experimental plane tensile and bulge tests are used in order to identify material behavior. The ANN model is trained from finite element simulations of the two tests. In order to reduce the gap between the experimental responses and the numerical ones, the proposed method is coupled with an optimization procedure to identify material parameters for the AISI304. The identified material parameters are the hardening curve and the anisotropic coefficients
Restricted DCJ-indel model: sorting linear genomes with DCJ and indels
2012-01-01
Background The double-cut-and-join (DCJ) is a model that is able to efficiently sort a genome into another, generalizing the typical mutations (inversions, fusions, fissions, translocations) to which genomes are subject, but allowing the existence of circular chromosomes at the intermediate steps. In the general model many circular chromosomes can coexist in some intermediate step. However, when the compared genomes are linear, it is more plausible to use the so-called restricted DCJ model, in which we proceed the reincorporation of a circular chromosome immediately after its creation. These two consecutive DCJ operations, which create and reincorporate a circular chromosome, mimic a transposition or a block-interchange. When the compared genomes have the same content, it is known that the genomic distance for the restricted DCJ model is the same as the distance for the general model. If the genomes have unequal contents, in addition to DCJ it is necessary to consider indels, which are insertions and deletions of DNA segments. Linear time algorithms were proposed to compute the distance and to find a sorting scenario in a general, unrestricted DCJ-indel model that considers DCJ and indels. Results In the present work we consider the restricted DCJ-indel model for sorting linear genomes with unequal contents. We allow DCJ operations and indels with the following constraint: if a circular chromosome is created by a DCJ, it has to be reincorporated in the next step (no other DCJ or indel can be applied between the creation and the reincorporation of a circular chromosome). We then develop a sorting algorithm and give a tight upper bound for the restricted DCJ-indel distance. Conclusions We have given a tight upper bound for the restricted DCJ-indel distance. The question whether this bound can be reduced so that both the general and the restricted DCJ-indel distances are equal remains open. PMID:23281630
GEMSFITS: Code package for optimization of geochemical model parameters and inverse modeling
International Nuclear Information System (INIS)
Miron, George D.; Kulik, Dmitrii A.; Dmytrieva, Svitlana V.; Wagner, Thomas
2015-01-01
Highlights: • Tool for generating consistent parameters against various types of experiments. • Handles a large number of experimental data and parameters (is parallelized). • Has a graphical interface and can perform statistical analysis on the parameters. • Tested on fitting the standard state Gibbs free energies of aqueous Al species. • Example on fitting interaction parameters of mixing models and thermobarometry. - Abstract: GEMSFITS is a new code package for fitting internally consistent input parameters of GEM (Gibbs Energy Minimization) geochemical–thermodynamic models against various types of experimental or geochemical data, and for performing inverse modeling tasks. It consists of the gemsfit2 (parameter optimizer) and gfshell2 (graphical user interface) programs both accessing a NoSQL database, all developed with flexibility, generality, efficiency, and user friendliness in mind. The parameter optimizer gemsfit2 includes the GEMS3K chemical speciation solver ( (http://gems.web.psi.ch/GEMS3K)), which features a comprehensive suite of non-ideal activity- and equation-of-state models of solution phases (aqueous electrolyte, gas and fluid mixtures, solid solutions, (ad)sorption. The gemsfit2 code uses the robust open-source NLopt library for parameter fitting, which provides a selection between several nonlinear optimization algorithms (global, local, gradient-based), and supports large-scale parallelization. The gemsfit2 code can also perform comprehensive statistical analysis of the fitted parameters (basic statistics, sensitivity, Monte Carlo confidence intervals), thus supporting the user with powerful tools for evaluating the quality of the fits and the physical significance of the model parameters. The gfshell2 code provides menu-driven setup of optimization options (data selection, properties to fit and their constraints, measured properties to compare with computed counterparts, and statistics). The practical utility, efficiency, and
Linear theory for filtering nonlinear multiscale systems with model error.
Berry, Tyrus; Harlim, John
2014-07-08
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering
Technical note: A linear model for predicting δ13 Cprotein.
Pestle, William J; Hubbe, Mark; Smith, Erin K; Stevenson, Joseph M
2015-08-01
Development of a model for the prediction of δ(13) Cprotein from δ(13) Ccollagen and Δ(13) Cap-co . Model-generated values could, in turn, serve as "consumer" inputs for multisource mixture modeling of paleodiet. Linear regression analysis of previously published controlled diet data facilitated the development of a mathematical model for predicting δ(13) Cprotein (and an experimentally generated error term) from isotopic data routinely generated during the analysis of osseous remains (δ(13) Cco and Δ(13) Cap-co ). Regression analysis resulted in a two-term linear model (δ(13) Cprotein (%) = (0.78 × δ(13) Cco ) - (0.58× Δ(13) Cap-co ) - 4.7), possessing a high R-value of 0.93 (r(2) = 0.86, P analysis of human osseous remains. These predicted values are ideal for use in multisource mixture modeling of dietary protein source contribution. © 2015 Wiley Periodicals, Inc.
Approaches to highly parameterized inversion-A guide to using PEST for groundwater-model calibration
Doherty, John E.; Hunt, Randall J.
2010-01-01
Highly parameterized groundwater models can create calibration difficulties. Regularized inversion-the combined use of large numbers of parameters with mathematical approaches for stable parameter estimation-is becoming a common approach to address these difficulties and enhance the transfer of information contained in field measurements to parameters used to model that system. Though commonly used in other industries, regularized inversion is somewhat imperfectly understood in the groundwater field. There is concern that this unfamiliarity can lead to underuse, and misuse, of the methodology. This document is constructed to facilitate the appropriate use of regularized inversion for calibrating highly parameterized groundwater models. The presentation is directed at an intermediate- to advanced-level modeler, and it focuses on the PEST software suite-a frequently used tool for highly parameterized model calibration and one that is widely supported by commercial graphical user interfaces. A brief overview of the regularized inversion approach is provided, and techniques for mathematical regularization offered by PEST are outlined, including Tikhonov, subspace, and hybrid schemes. Guidelines for applying regularized inversion techniques are presented after a logical progression of steps for building suitable PEST input. The discussion starts with use of pilot points as a parameterization device and processing/grouping observations to form multicomponent objective functions. A description of potential parameter solution methodologies and resources available through the PEST software and its supporting utility programs follows. Directing the parameter-estimation process through PEST control variables is then discussed, including guidance for monitoring and optimizing the performance of PEST. Comprehensive listings of PEST control variables, and of the roles performed by PEST utility support programs, are presented in the appendixes.
Neutron stars in non-linear coupling models
International Nuclear Information System (INIS)
Taurines, Andre R.; Vasconcellos, Cesar A.Z.; Malheiro, Manuel; Chiapparini, Marcelo
2001-01-01
We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, ∼ 0.72M s un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)
Neutron stars in non-linear coupling models
Energy Technology Data Exchange (ETDEWEB)
Taurines, Andre R.; Vasconcellos, Cesar A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil); Malheiro, Manuel [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Chiapparini, Marcelo [Universidade do Estado, Rio de Janeiro, RJ (Brazil)
2001-07-01
We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, {approx} 0.72M{sub s}un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)