WorldWideScience

Sample records for linear integral equation

  1. Linear integral equations and soliton systems

    Quispel, G.R.W.

    1983-01-01

    A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)

  2. Localization of the eigenvalues of linear integral equations with applications to linear ordinary differential equations.

    Sloss, J. M.; Kranzler, S. K.

    1972-01-01

    The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.

  3. Numerical method for solving linear Fredholm fuzzy integral equations of the second kind

    Abbasbandy, S. [Department of Mathematics, Imam Khomeini International University, P.O. Box 288, Ghazvin 34194 (Iran, Islamic Republic of)]. E-mail: saeid@abbasbandy.com; Babolian, E. [Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618 (Iran, Islamic Republic of); Alavi, M. [Department of Mathematics, Arak Branch, Islamic Azad University, Arak 38135 (Iran, Islamic Republic of)

    2007-01-15

    In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.

  4. Integral equations

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  5. Integration of differential equations by the pseudo-linear (PL) approximation

    Bonalumi, Riccardo A.

    1998-01-01

    A new method of integrating differential equations was originated with the technique of approximately calculating the integrals called the pseudo-linear (PL) procedure: this method is A-stable. This article contains the following examples: 1st order ordinary differential equations (ODEs), 2nd order linear ODEs, stiff system of ODEs (neutron kinetics), one-dimensional parabolic (diffusion) partial differential equations. In this latter case, this PL method coincides with the Crank-Nicholson method

  6. Optimal Homotopy Asymptotic Method for Solving the Linear Fredholm Integral Equations of the First Kind

    Mohammad Almousa

    2013-01-01

    Full Text Available The aim of this study is to present the use of a semi analytical method called the optimal homotopy asymptotic method (OHAM for solving the linear Fredholm integral equations of the first kind. Three examples are discussed to show the ability of the method to solve the linear Fredholm integral equations of the first kind. The results indicated that the method is very effective and simple.

  7. Local linearization methods for the numerical integration of ordinary differential equations: An overview

    Jimenez, J.C.

    2009-06-01

    Local Linearization (LL) methods conform a class of one-step explicit integrators for ODEs derived from the following primary and common strategy: the vector field of the differential equation is locally (piecewise) approximated through a first-order Taylor expansion at each time step, thus obtaining successive linear equations that are explicitly integrated. Hereafter, the LL approach may include some additional strategies to improve that basic affine approximation. Theoretical and practical results have shown that the LL integrators have a number of convenient properties. These include arbitrary order of convergence, A-stability, linearization preserving, regularity under quite general conditions, preservation of the dynamics of the exact solution around hyperbolic equilibrium points and periodic orbits, integration of stiff and high-dimensional equations, low computational cost, and others. In this paper, a review of the LL methods and their properties is presented. (author)

  8. Path integral solution of linear second order partial differential equations I: the general construction

    LaChapelle, J.

    2004-01-01

    A path integral is presented that solves a general class of linear second order partial differential equations with Dirichlet/Neumann boundary conditions. Elementary kernels are constructed for both Dirichlet and Neumann boundary conditions. The general solution can be specialized to solve elliptic, parabolic, and hyperbolic partial differential equations with boundary conditions. This extends the well-known path integral solution of the Schroedinger/diffusion equation in unbounded space. The construction is based on a framework for functional integration introduced by Cartier/DeWitt-Morette

  9. Anti-symmetrically fused model and non-linear integral equations in the three-state Uimin-Sutherland model

    Fujii, Akira; Kluemper, Andreas

    1999-01-01

    We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation

  10. Asymptotic integration of a linear fourth order differential equation of Poincaré type

    Anibal Coronel

    2015-11-01

    Full Text Available This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of constants. We define a change of variable and deduce that the new variable satisfies a third order nonlinear differential equation. We assume three hypotheses. The first hypothesis is related to the constant coefficients and set up that the characteristic polynomial associated with the fourth order linear equation has simple and real roots. The other two hypotheses are related to the behavior of the perturbation functions and establish asymptotic integral smallness conditions of the perturbations. Under these general hypotheses, we obtain four main results. The first two results are related to the application of a fixed point argument to prove that the nonlinear third order equation has a unique solution. The next result concerns with the asymptotic behavior of the solutions of the nonlinear third order equation. The fourth main theorem is introduced to establish the existence of a fundamental system of solutions and to precise the formulas for the asymptotic behavior of the linear fourth order differential equation. In addition, we present an example to show that the results introduced in this paper can be applied in situations where the assumptions of some classical theorems are not satisfied.

  11. Properties of linear integral equations related to the six-vertex model with disorder parameter II

    Boos, Hermann; Göhmann, Frank

    2012-01-01

    We study certain functions arising in the context of the calculation of correlation functions of the XXZ spin chain and of integrable field theories related to various scaling limits of the underlying six-vertex model. We show that several of these functions that are related to linear integral equations can be obtained by acting with (deformed) difference operators on a master function Φ. The latter is defined in terms of a functional equation and of its asymptotic behavior. Concentrating on the so-called temperature case, we show that these conditions uniquely determine the high-temperature series expansions of the master function. This provides an efficient calculation scheme for the high-temperature expansions of the derived functions as well. (paper)

  12. Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations.

    Fu, Wei; Nijhoff, Frank W

    2017-07-01

    A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtained.

  13. Handbook of integral equations

    Polyanin, Andrei D

    2008-01-01

    This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.

  14. An arbitrary-order staggered time integrator for the linear acoustic wave equation

    Lee, Jaejoon; Park, Hyunseo; Park, Yoonseo; Shin, Changsoo

    2018-02-01

    We suggest a staggered time integrator whose order of accuracy can arbitrarily be extended to solve the linear acoustic wave equation. A strategy to select the appropriate order of accuracy is also proposed based on the error analysis that quantitatively predicts the truncation error of the numerical solution. This strategy not only reduces the computational cost several times, but also allows us to flexibly set the modelling parameters such as the time step length, grid interval and P-wave speed. It is demonstrated that the proposed method can almost eliminate temporal dispersive errors during long term simulations regardless of the heterogeneity of the media and time step lengths. The method can also be successfully applied to the source problem with an absorbing boundary condition, which is frequently encountered in the practical usage for the imaging algorithms or the inverse problems.

  15. Quantum linear Boltzmann equation

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  16. Analytical solutions of linear diffusion and wave equations in semi-infinite domains by using a new integral transform

    Gao Lin

    2017-01-01

    Full Text Available Recently, a new integral transform similar to Sumudu transform has been proposed by Yang [1]. Some of the properties of the integral transform are expanded in the present article. Meanwhile, new applications to the linear wave and diffusion equations in semi-infinite domains are discussed in detail. The proposed method provides an alternative approach to solve the partial differential equations in mathematical physics.

  17. On the asymptotic solution to a class of linear integral equations

    Gautesen, A.K.

    1988-01-01

    The authors consider Fredholm integral equations of the first kind whose kernels are a function of the difference between two points times a large parameter. Conditions on the kernel are stated in terms of a function corresponding to a Wiener-Hopf factorization of the Fourier transform of the kernel. They give the complete asymptotic expansions of the solution to the integral equations. As applications of the author's results, the author considers the steady-state, acoustical scattering of a plane wave by both a hard strip and a soft strip. The author's results are uniform with respect to the direction of incidence

  18. On preconditioning techniques for dense linear systems arising from singular boundary integral equations

    Chen, Ke [Univ. of Liverpool (United Kingdom)

    1996-12-31

    We study various preconditioning techniques for the iterative solution of boundary integral equations, and aim to provide a theory for a class of sparse preconditioners. Two related ideas are explored here: singularity separation and inverse approximation. Our preliminary conclusion is that singularity separation based preconditioners perform better than approximate inverse based while it is desirable to have both features.

  19. On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order.

    Tunç, Cemil; Tunç, Osman

    2016-01-01

    In this paper, certain system of linear homogeneous differential equations of second-order is considered. By using integral inequalities, some new criteria for bounded and [Formula: see text]-solutions, upper bounds for values of improper integrals of the solutions and their derivatives are established to the considered system. The obtained results in this paper are considered as extension to the results obtained by Kroopnick (2014) [1]. An example is given to illustrate the obtained results.

  20. On the removal of boundary errors caused by Runge-Kutta integration of non-linear partial differential equations

    Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.

    1994-01-01

    It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.

  1. Linear q-nonuniform difference equations

    Bangerezako, Gaspard

    2010-01-01

    We introduce basic concepts of q-nonuniform differentiation and integration and study linear q-nonuniform difference equations and systems, as well as their application in q-nonuniform difference linear control systems. (author)

  2. A constrained regularization method for inverting data represented by linear algebraic or integral equations

    Provencher, Stephen W.

    1982-09-01

    CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the analysis of data from a wide variety experiments. They are generally ill-posed problems, which means that errors in an unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any statistical prior knowledge into the regularizor and absolute prior knowledge into equallity and inequality constraints. This can be greatly increase the resolution and accuracyh of the solution. CONTIN is very flexible, consisting of a core of about 50 subprograms plus 13 small "USER" subprograms, which the user can easily modify to specify special-purpose constraints, regularizors, operator equations, simulations, statistical weighting, etc. Specjial collections of USER subprograms are available for photon correlation spectroscopy, multicomponent spectra, and Fourier-Bessel, Fourier and Laplace transforms. Numerically stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region. The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following paper.

  3. Multidimensional singular integrals and integral equations

    Mikhlin, Solomon Grigorievich; Stark, M; Ulam, S

    1965-01-01

    Multidimensional Singular Integrals and Integral Equations presents the results of the theory of multidimensional singular integrals and of equations containing such integrals. Emphasis is on singular integrals taken over Euclidean space or in the closed manifold of Liapounov and equations containing such integrals. This volume is comprised of eight chapters and begins with an overview of some theorems on linear equations in Banach spaces, followed by a discussion on the simplest properties of multidimensional singular integrals. Subsequent chapters deal with compounding of singular integrals

  4. Correct Linearization of Einstein's Equations

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.

  5. Saturation and linear transport equation

    Kutak, K.

    2009-03-01

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)

  6. Linear causal modeling with structural equations

    Mulaik, Stanley A

    2009-01-01

    Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal

  7. Completely integrable operator evolutionary equations

    Chudnovsky, D.V.

    1979-01-01

    The authors present natural generalizations of classical completely integrable equations where the functions are replaced by arbitrary operators. Among these equations are the non-linear Schroedinger, the Korteweg-de Vries, and the modified KdV equations. The Lax representation and the Baecklund transformations are presented. (Auth.)

  8. Emmy Noether and Linear Evolution Equations

    P. G. L. Leach

    2013-01-01

    Full Text Available Noether’s Theorem relates the Action Integral of a Lagrangian with symmetries which leave it invariant and the first integrals consequent upon the variational principle and the existence of the symmetries. These each have an equivalent in the Schrödinger Equation corresponding to the Lagrangian and by extension to linear evolution equations in general. The implications of these connections are investigated.

  9. Rigorous Integration of Non-Linear Ordinary Differential Equations in Chebyshev Basis

    Dzetkulič, Tomáš

    2015-01-01

    Roč. 69, č. 1 (2015), s. 183-205 ISSN 1017-1398 R&D Projects: GA MŠk OC10048; GA ČR GD201/09/H057 Institutional research plan: CEZ:AV0Z10300504 Keywords : Initial value problem * Rigorous integration * Taylor model * Chebyshev basis Subject RIV: IN - Informatics, Computer Science Impact factor: 1.366, year: 2015

  10. Basic linear partial differential equations

    Treves, Francois

    1975-01-01

    Focusing on the archetypes of linear partial differential equations, this text for upper-level undergraduates and graduate students features most of the basic classical results. The methods, however, are decidedly nontraditional: in practically every instance, they tend toward a high level of abstraction. This approach recalls classical material to contemporary analysts in a language they can understand, as well as exploiting the field's wealth of examples as an introduction to modern theories.The four-part treatment covers the basic examples of linear partial differential equations and their

  11. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially. linear model are compared to those

  12. High-order boundary integral equation solution of high frequency wave scattering from obstacles in an unbounded linearly stratified medium

    Barnett, Alex H.; Nelson, Bradley J.; Mahoney, J. Matthew

    2015-09-01

    We apply boundary integral equations for the first time to the two-dimensional scattering of time-harmonic waves from a smooth obstacle embedded in a continuously-graded unbounded medium. In the case we solve, the square of the wavenumber (refractive index) varies linearly in one coordinate, i.e. (Δ + E +x2) u (x1 ,x2) = 0 where E is a constant; this models quantum particles of fixed energy in a uniform gravitational field, and has broader applications to stratified media in acoustics, optics and seismology. We evaluate the fundamental solution efficiently with exponential accuracy via numerical saddle-point integration, using the truncated trapezoid rule with typically 102 nodes, with an effort that is independent of the frequency parameter E. By combining with a high-order Nyström quadrature, we are able to solve the scattering from obstacles 50 wavelengths across to 11 digits of accuracy in under a minute on a desktop or laptop.

  13. Variational linear algebraic equations method

    Moiseiwitsch, B.L.

    1982-01-01

    A modification of the linear algebraic equations method is described which ensures a variational bound on the phaseshifts for potentials having a definite sign at all points. The method is illustrated by the elastic scattering of s-wave electrons by the static field of atomic hydrogen. (author)

  14. Singular Linear Differential Equations in Two Variables

    Braaksma, B.L.J.; Put, M. van der

    2008-01-01

    The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no

  15. Systems of Inhomogeneous Linear Equations

    Scherer, Philipp O. J.

    Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.

  16. A Lie-admissible method of integration of Fokker-Planck equations with non-linear coefficients (exact and numerical solutions)

    Fronteau, J.; Combis, P.

    1984-08-01

    A Lagrangian method is introduced for the integration of non-linear Fokker-Planck equations. Examples of exact solutions obtained in this way are given, and also the explicit scheme used for the computation of numerical solutions. The method is, in addition, shown to be of a Lie-admissible type

  17. Linearized gyro-kinetic equation

    Catto, P.J.; Tsang, K.T.

    1976-01-01

    An ordering of the linearized Fokker-Planck equation is performed in which gyroradius corrections are retained to lowest order and the radial dependence appropriate for sheared magnetic fields is treated without resorting to a WKB technique. This description is shown to be necessary to obtain the proper radial dependence when the product of the poloidal wavenumber and the gyroradius is large (k rho much greater than 1). A like particle collision operator valid for arbitrary k rho also has been derived. In addition, neoclassical, drift, finite β (plasma pressure/magnetic pressure), and unperturbed toroidal electric field modifications are treated

  18. Linear determining equations for differential constraints

    Kaptsov, O V

    1998-01-01

    A construction of differential constraints compatible with partial differential equations is considered. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the classical determining equations used in the search for admissible Lie operators. As applications of this approach equations of an ideal incompressible fluid and non-linear heat equations are discussed

  19. Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses

    Joseph, Rose M.; Hagness, Susan C.; Taflove, Allen

    1991-01-01

    The initial results for femtosecond pulse propagation and scattering interactions for a Lorentz medium obtained by a direct time integration of Maxwell's equations are reported. The computational approach provides reflection coefficients accurate to better than 6 parts in 10,000 over the frequency range of dc to 3 x 10 to the 16th Hz for a single 0.2-fs Gaussian pulse incident upon a Lorentz-medium half-space. New results for Sommerfeld and Brillouin precursors are shown and compared with previous analyses. The present approach is robust and permits 2D and 3D electromagnetic pulse propagation directly from the full-vector Maxwell's equations.

  20. Linear superposition solutions to nonlinear wave equations

    Liu Yu

    2012-01-01

    The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed

  1. Integration of Chandrasekhar's integral equation

    Tanaka, Tasuku

    2003-01-01

    We solve Chandrasekhar's integration equation for radiative transfer in the plane-parallel atmosphere by iterative integration. The primary thrust in radiative transfer has been to solve the forward problem, i.e., to evaluate the radiance, given the optical thickness and the scattering phase function. In the area of satellite remote sensing, our problem is the inverse problem: to retrieve the surface reflectance and the optical thickness of the atmosphere from the radiance measured by satellites. In order to retrieve the optical thickness and the surface reflectance from the radiance at the top-of-the atmosphere (TOA), we should express the radiance at TOA 'explicitly' in the optical thickness and the surface reflectance. Chandrasekhar formalized radiative transfer in the plane-parallel atmosphere in a simultaneous integral equation, and he obtained the second approximation. Since then no higher approximation has been reported. In this paper, we obtain the third approximation of the scattering function. We integrate functions derived from the second approximation in the integral interval from 1 to ∞ of the inverse of the cos of zenith angles. We can obtain the indefinite integral rather easily in the form of a series expansion. However, the integrals at the upper limit, ∞, are not yet known to us. We can assess the converged values of those series expansions at ∞ through calculus. For integration, we choose coupling pairs to avoid unnecessary terms in the outcome of integral and discover that the simultaneous integral equation can be deduced to the mere integral equation. Through algebraic calculation, we obtain the third approximation as a polynomial of the third degree in the atmospheric optical thickness

  2. Completely integrable operator evolution equations. II

    Chudnovsky, D.V.

    1979-01-01

    The author continues the investigation of operator classical completely integrable systems. The main attention is devoted to the stationary operator non-linear Schroedinger equation. It is shown that this equation can be used for separation of variables for a large class of completely integrable equations. (Auth.)

  3. Linear integrated circuits

    Carr, Joseph

    1996-01-01

    The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa

  4. Invariant imbedding equations for linear scattering problems

    Apresyan, L.

    1988-01-01

    A general form of the invariant imbedding equations is investigated for the linear problem of scattering by a bounded scattering volume. The conditions for the derivability of such equations are described. It is noted that the possibility of the explicit representation of these equations for a sphere and for a layer involves the separation of variables in the unperturbed wave equation

  5. Isomorphism of Intransitive Linear Lie Equations

    Jose Miguel Martins Veloso

    2009-11-01

    Full Text Available We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan.

  6. Iterative solution of linear equations in ODE codes. [Krylov subspaces

    Gear, C. W.; Saad, Y.

    1981-01-01

    Each integration step of a stiff equation involves the solution of a nonlinear equation, usually by a quasi-Newton method that leads to a set of linear problems. Iterative methods for these linear equations are studied. Of particular interest are methods that do not require an explicit Jacobian, but can work directly with differences of function values using J congruent to f(x + delta) - f(x). Some numerical experiments using a modification of LSODE are reported. 1 figure, 2 tables.

  7. Linear and quasi-linear equations of parabolic type

    Ladyženskaja, O A; Ural′ceva, N N; Uralceva, N N

    1968-01-01

    Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.

  8. Lie algebras and linear differential equations.

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  9. Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

    Hamidreza Rezazadeh

    2014-05-01

    Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.

  10. Computing with linear equations and matrices

    Churchhouse, R.F.

    1983-01-01

    Systems of linear equations and matrices arise in many disciplines. The equations may accurately represent conditions satisfied by a system or, more likely, provide an approximation to a more complex system of non-linear or differential equations. The system may involve a few or many thousand unknowns and each individual equation may involve few or many of them. Over the past 50 years a vast literature on methods for solving systems of linear equations and the associated problems of finding the inverse or eigenvalues of a matrix has been produced. These lectures cover those methods which have been found to be most useful for dealing with such types of problem. References are given where appropriate and attention is drawn to the possibility of improved methods for use on vector and parallel processors. (orig.)

  11. Diffusion phenomenon for linear dissipative wave equations

    Said-Houari, Belkacem

    2012-01-01

    In this paper we prove the diffusion phenomenon for the linear wave equation. To derive the diffusion phenomenon, a new method is used. In fact, for initial data in some weighted spaces, we prove that for {equation presented} decays with the rate {equation presented} [0,1] faster than that of either u or v, where u is the solution of the linear wave equation with initial data {equation presented} [0,1], and v is the solution of the related heat equation with initial data v 0 = u 0 + u 1. This result improves the result in H. Yang and A. Milani [Bull. Sci. Math. 124 (2000), 415-433] in the sense that, under the above restriction on the initial data, the decay rate given in that paper can be improved by t -γ/2. © European Mathematical Society.

  12. Students’ difficulties in solving linear equation problems

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  13. Dual exponential polynomials and linear differential equations

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  14. On integrability of the Killing equation

    Houri, Tsuyoshi; Tomoda, Kentaro; Yasui, Yukinori

    2018-04-01

    Killing tensor fields have been thought of as describing the hidden symmetry of space(-time) since they are in one-to-one correspondence with polynomial first integrals of geodesic equations. Since many problems in classical mechanics can be formulated as geodesic problems in curved space and spacetime, solving the defining equation for Killing tensor fields (the Killing equation) is a powerful way to integrate equations of motion. Thus it has been desirable to formulate the integrability conditions of the Killing equation, which serve to determine the number of linearly independent solutions and also to restrict the possible forms of solutions tightly. In this paper, we show the prolongation for the Killing equation in a manner that uses Young symmetrizers. Using the prolonged equations, we provide the integrability conditions explicitly.

  15. Simplified Linear Equation Solvers users manual

    Gropp, W. [Argonne National Lab., IL (United States); Smith, B. [California Univ., Los Angeles, CA (United States)

    1993-02-01

    The solution of large sparse systems of linear equations is at the heart of many algorithms in scientific computing. The SLES package is a set of easy-to-use yet powerful and extensible routines for solving large sparse linear systems. The design of the package allows new techniques to be used in existing applications without any source code changes in the applications.

  16. Hypocoercivity for linear kinetic equations conserving mass

    Dolbeault, Jean; Mouhot, Clé ment; Schmeiser, Christian

    2015-01-01

    We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf

  17. Hypocoercivity for linear kinetic equations conserving mass

    Dolbeault, Jean

    2015-02-03

    We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf

  18. Diffusive limits for linear transport equations

    Pomraning, G.C.

    1992-01-01

    The authors show that the Hibert and Chapman-Enskog asymptotic treatments that reduce the nonlinear Boltzmann equation to the Euler and Navier-Stokes fluid equations have analogs in linear transport theory. In this linear setting, these fluid limits are described by diffusion equations, involving familiar and less familiar diffusion coefficients. Because of the linearity extant, one can carry out explicitly the initial and boundary layer analyses required to obtain asymptotically consistent initial and boundary conditions for the diffusion equations. In particular, the effects of boundary curvature and boundary condition variation along the surface can be included in the boundary layer analysis. A brief review of heuristic (nonasymptotic) diffusion description derivations is also included in our discussion

  19. Spectral theories for linear differential equations

    Sell, G.R.

    1976-01-01

    The use of spectral analysis in the study of linear differential equations with constant coefficients is not only a fundamental technique but also leads to far-reaching consequences in describing the qualitative behaviour of the solutions. The spectral analysis, via the Jordan canonical form, will not only lead to a representation theorem for a basis of solutions, but will also give a rather precise statement of the (exponential) growth rates of various solutions. Various attempts have been made to extend this analysis to linear differential equations with time-varying coefficients. The most complete such extensions is the Floquet theory for equations with periodic coefficients. For time-varying linear differential equations with aperiodic coefficients several authors have attempted to ''extend'' the Foquet theory. The precise meaning of such an extension is itself a problem, and we present here several attempts in this direction that are related to the general problem of extending the spectral analysis of equations with constant coefficients. The main purpose of this paper is to introduce some problems of current research. The primary problem we shall examine occurs in the context of linear differential equations with almost periodic coefficients. We call it ''the Floquet problem''. (author)

  20. Asymptotic integration of differential and difference equations

    Bodine, Sigrun

    2015-01-01

    This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...

  1. Solvable linear potentials in the Dirac equation

    Dominguez-Adame, F.; Gonzalez, M.A.

    1990-01-01

    The Dirac equation for some linear potentials leading to Schroedinger-like oscillator equations for the upper and lower components of the Dirac spinor have been solved. Energy levels for the bound states appear in pairs, so that both particles and antiparticles may be bound with the same energy. For weak coupling, the spacing between levels is proportional to the coupling constant while in the strong limit those levels are depressed compared to the nonrelativistic ones

  2. On a Volterra Stieltjes integral equation

    P. T. Vaz

    1990-01-01

    Full Text Available The paper deals with a study of linear Volterra integral equations involving Lebesgue-Stieltjes integrals in two independent variables. The authors prove an existence theorem using the Banach fixed-point principle. An explicit example is also considered.

  3. On index-2 linear implicit difference equations

    Nguyen Huu Du, [No Value; Le Cong Loi, [No Value; Trinh Khanh Duy, [No Value; Vu Tien Viet, [No Value

    2011-01-01

    This paper deals with an index-2 notion for linear implicit difference equations (LIDEs) and with the solvability of initial value problems (IVPs) for index-2 LIDEs. Besides, the cocycle property as well as the multiplicative ergodic theorem of Oseledets type are also proved. (C) 2010 Elsevier Inc.

  4. Integral equations and their applications

    Rahman, M

    2007-01-01

    For many years, the subject of functional equations has held a prominent place in the attention of mathematicians. In more recent years this attention has been directed to a particular kind of functional equation, an integral equation, wherein the unknown function occurs under the integral sign. The study of this kind of equation is sometimes referred to as the inversion of a definite integral. While scientists and engineers can already choose from a number of books on integral equations, this new book encompasses recent developments including some preliminary backgrounds of formulations of integral equations governing the physical situation of the problems. It also contains elegant analytical and numerical methods, and an important topic of the variational principles. Primarily intended for senior undergraduate students and first year postgraduate students of engineering and science courses, students of mathematical and physical sciences will also find many sections of direct relevance. The book contains eig...

  5. Darboux transformations and linear parabolic partial differential equations

    Arrigo, Daniel J.; Hickling, Fred

    2002-01-01

    Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor

  6. On the Liouvillian solution of second-order linear differential equations and algebraic invariant curves

    Man, Yiu-Kwong

    2010-01-01

    In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided. (fast track communication)

  7. Introduction to linear systems of differential equations

    Adrianova, L Ya

    1995-01-01

    The theory of linear systems of differential equations is one of the cornerstones of the whole theory of differential equations. At its root is the concept of the Lyapunov characteristic exponent. In this book, Adrianova presents introductory material and further detailed discussions of Lyapunov exponents. She also discusses the structure of the space of solutions of linear systems. Classes of linear systems examined are from the narrowest to widest: 1)�autonomous, 2)�periodic, 3)�reducible to autonomous, 4)�nearly reducible to autonomous, 5)�regular. In addition, Adrianova considers the following: stability of linear systems and the influence of perturbations of the coefficients on the stability the criteria of uniform stability and of uniform asymptotic stability in terms of properties of the solutions several estimates of the growth rate of solutions of a linear system in terms of its coefficients How perturbations of the coefficients change all the elements of the spectrum of the system is defin...

  8. Nonoscillation of half-linear dynamic equations

    Matucci, S.; Řehák, Pavel

    2010-01-01

    Roč. 60, č. 5 (2010), s. 1421-1429 ISSN 0898-1221 R&D Projects: GA AV ČR KJB100190701 Grant - others:GA ČR(CZ) GA201/07/0145 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear dynamic equation * time scale * (non)oscillation * Riccati technique Subject RIV: BA - General Mathematics Impact factor: 1.472, year: 2010 http://www.sciencedirect.com/science/article/pii/S0898122110004384

  9. On a representation of linear differential equations

    Neuman, František

    2010-01-01

    Roč. 52, 1-2 (2010), s. 355-360 ISSN 0895-7177 Grant - others:GA ČR(CZ) GA201/08/0469 Institutional research plan: CEZ:AV0Z10190503 Keywords : Brandt and Ehresmann groupoinds * transformations * canonical forms * linear differential equations Subject RIV: BA - General Mathematics Impact factor: 1.066, year: 2010 http://www.sciencedirect.com/science/article/pii/S0895717710001184

  10. Geophysical interpretation using integral equations

    Eskola, L

    1992-01-01

    Along with the general development of numerical methods in pure and applied to apply integral equations to geophysical modelling has sciences, the ability improved considerably within the last thirty years or so. This is due to the successful derivation of integral equations that are applicable to the modelling of complex structures, and efficient numerical algorithms for their solution. A significant stimulus for this development has been the advent of fast digital computers. The purpose of this book is to give an idea of the principles by which boundary-value problems describing geophysical models can be converted into integral equations. The end results are the integral formulas and integral equations that form the theoretical framework for practical applications. The details of mathematical analysis have been kept to a minimum. Numerical algorithms are discussed only in connection with some illustrative examples involving well-documented numerical modelling results. The reader is assu­ med to have a back...

  11. Integral equation methods for electromagnetics

    Volakis, John

    2012-01-01

    This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo

  12. Integral equation for Coulomb problem

    Sasakawa, T.

    1986-01-01

    For short range potentials an inhomogeneous (homogeneous) Lippmann-Schwinger integral equation of the Fredholm type yields the wave function of scattering (bound) state. For the Coulomb potential, this statement is no more valid. It has been felt difficult to express the Coulomb wave function in a form of an integral equation with the Coulomb potential as the perturbation. In the present paper, the author shows that an inhomogeneous integral equation of a Volterra type with the Coulomb potential as the perturbation can be constructed both for the scattering and the bound states. The equation yielding the binding energy is given in an integral form. The present treatment is easily extended to the coupled Coulomb problems

  13. Complete integrability of the difference evolution equations

    Gerdjikov, V.S.; Ivanov, M.I.; Kulish, P.P.

    1980-01-01

    The class of exactly solvable nonlinear difference evolution equations (DEE) related to the discrete analog of the one-dimensional Dirac problem L is studied. For this starting from L we construct a special linear non-local operator Λ and obtain the expansions of w and σ 3 deltaw over its eigenfunctions, w being the potential in L. This allows us to obtain compact expressions for the integrals of motion and to prove that these DEE are completely integrable Hamiltonian systems. Moreover, it is shown that there exists a hierarchy of Hamiltonian structures, generated by Λ, and the action-angle variables are explicity calculated. As particular cases the difference analog of the non-linear Schroedinger equation and the modified Korteweg-de-Vries equation are considered. The quantization of these Hamiltonian system through the use of the quantum inverse scattering method is briefly discussed [ru

  14. Non-linear effects in the Boltzmann equation

    Barrachina, R.O.

    1985-01-01

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es

  15. Inhomogeneous linear equation in Rota-Baxter algebra

    Pietrzkowski, Gabriel

    2014-01-01

    We consider a complete filtered Rota-Baxter algebra of weight $\\lambda$ over a commutative ring. Finding the unique solution of a non-homogeneous linear algebraic equation in this algebra, we generalize Spitzer's identity in both commutative and non-commutative cases. As an application, considering the Rota-Baxter algebra of power series in one variable with q-integral as the Rota-Baxter operator, we show certain Eulerian identities.

  16. Linear fractional diffusion-wave equation for scientists and engineers

    Povstenko, Yuriy

    2015-01-01

    This book systematically presents solutions to the linear time-fractional diffusion-wave equation. It introduces the integral transform technique and discusses the properties of the Mittag-Leffler, Wright, and Mainardi functions that appear in the solutions. The time-nonlocal dependence between the flux and the gradient of the transported quantity with the “long-tail” power kernel results in the time-fractional diffusion-wave equation with the Caputo fractional derivative. Time-nonlocal generalizations of classical Fourier’s, Fick’s and Darcy’s laws are considered and different kinds of boundary conditions for this equation are discussed (Dirichlet, Neumann, Robin, perfect contact). The book provides solutions to the fractional diffusion-wave equation with one, two and three space variables in Cartesian, cylindrical and spherical coordinates. The respective sections of the book can be used for university courses on fractional calculus, heat and mass transfer, transport processes in porous media and ...

  17. Inequalities for differential and integral equations

    Ames, William F

    1997-01-01

    Inequalities for Differential and Integral Equations has long been needed; it contains material which is hard to find in other books. Written by a major contributor to the field, this comprehensive resource contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools in the development of applications in the theory of new classes of differential and integral equations. For researchers working in this area, it will be a valuable source of reference and inspiration. It could also be used as the text for an advanced graduate course.Key Features* Covers a variety of linear and nonlinear inequalities which find widespread applications in the theory of various classes of differential and integral equations* Contains many inequalities which have only recently appeared in literature and cannot yet be found in other books* Provides a valuable reference to engineers and graduate students

  18. Feynman integrals and difference equations

    Moch, S.; Schneider, C.

    2007-09-01

    We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called ΠΣ * -fields. We test the implementation of the Mathematica package Sigma on examples from recent higher order perturbative calculations in Quantum Chromodynamics. (orig.)

  19. Feynman integrals and difference equations

    Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation

    2007-09-15

    We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called {pi}{sigma}{sup *}-fields. We test the implementation of the Mathematica package Sigma on examples from recent higher order perturbative calculations in Quantum Chromodynamics. (orig.)

  20. Integration rules for scattering equations

    Baadsgaard, Christian; Bjerrum-Bohr, N.E.J.; Bourjaily, Jacob L.; Damgaard, Poul H.

    2015-01-01

    As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints for any Möbius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.

  1. Linear measure functional differential equations with infinite delay

    Monteiro, G. (Giselle Antunes); Slavík, A.

    2014-01-01

    We use the theory of generalized linear ordinary differential equations in Banach spaces to study linear measure functional differential equations with infinite delay. We obtain new results concerning the existence, uniqueness, and continuous dependence of solutions. Even for equations with a finite delay, our results are stronger than the existing ones. Finally, we present an application to functional differential equations with impulses.

  2. Abel integral equations analysis and applications

    Gorenflo, Rudolf

    1991-01-01

    In many fields of application of mathematics, progress is crucially dependent on the good flow of information between (i) theoretical mathematicians looking for applications, (ii) mathematicians working in applications in need of theory, and (iii) scientists and engineers applying mathematical models and methods. The intention of this book is to stimulate this flow of information. In the first three chapters (accessible to third year students of mathematics and physics and to mathematically interested engineers) applications of Abel integral equations are surveyed broadly including determination of potentials, stereology, seismic travel times, spectroscopy, optical fibres. In subsequent chapters (requiring some background in functional analysis) mapping properties of Abel integral operators and their relation to other integral transforms in various function spaces are investi- gated, questions of existence and uniqueness of solutions of linear and nonlinear Abel integral equations are treated, and for equatio...

  3. Integrability and Linear Stability of Nonlinear Waves

    Degasperis, Antonio; Lombardo, Sara; Sommacal, Matteo

    2018-03-01

    It is well known that the linear stability of solutions of 1+1 partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general N× N matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for N=3 for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.

  4. Schwarz maps of algebraic linear ordinary differential equations

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  5. Construction of a Roe linearization for the ideal MHD equations

    Cargo, P.; Gallice, G.; Raviart, P.A.

    1996-01-01

    In [3], Munz has constructed a Roe linearization for the equations of gas dynamics in Lagrangian coordinates. We extend this construction to the case of the ideal magnetohydrodynamics equations again in Lagrangian coordinates. As a consequence we obtain a Roe linearization for the MHD equations in Eulerian coordinates. (author)

  6. Quadratic algebras in the noncommutative integration method of wave equation

    Varaksin, O.L.

    1995-01-01

    The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras

  7. Mathematical methods linear algebra normed spaces distributions integration

    Korevaar, Jacob

    1968-01-01

    Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector

  8. Application of the Galerkin's method to the solution of the one-dimensional integral transport equation: generalized collision probabilities taken in account the flux gradient and the linearly anisotropic scattering

    Sanchez, Richard.

    1975-04-01

    For the one-dimensional geometries, the transport equation with linearly anisotropic scattering can be reduced to a single integral equation; this is a singular-kernel FREDHOLM equation of the second kind. When applying a conventional projective method that of GALERKIN, to the solution of this equation the well-known collision probability algorithm is obtained. Piecewise polynomial expansions are used to represent the flux. In the ANILINE code, the flux is supposed to be linear in plane geometry and parabolic in both cylindrical and spherical geometries. An integral relationship was found between the one-dimensional isotropic and anisotropic kernels; this allows to reduce the new matrix elements (issuing from the anisotropic kernel) to classic collision probabilities of the isotropic scattering equation. For cylindrical and spherical geometries used an approximate representation of the current was used to avoid an additional numerical integration. Reflective boundary conditions were considered; in plane geometry the reflection is supposed specular, for the other geometries the isotropic reflection hypothesis has been adopted. Further, the ANILINE code enables to deal with an incoming isotropic current. Numerous checks were performed in monokinetic theory. Critical radii and albedos were calculated for homogeneous slabs, cylinders and spheres. For heterogeneous media, the thermal utilization factor obtained by this method was compared with the theoretical result based upon a formula by BENOIST. Finally, ANILINE was incorporated into the multigroup APOLLO code, which enabled to analyse the MINERVA experimental reactor in transport theory with 99 groups. The ANILINE method is particularly suited to the treatment of strongly anisotropic media with considerable flux gradients. It is also well adapted to the calculation of reflectors, and in general, to the exact analysis of anisotropic effects in large-sized media [fr

  9. Runge-Kutta Methods for Linear Ordinary Differential Equations

    Zingg, David W.; Chisholm, Todd T.

    1997-01-01

    Three new Runge-Kutta methods are presented for numerical integration of systems of linear inhomogeneous ordinary differential equations (ODES) with constant coefficients. Such ODEs arise in the numerical solution of the partial differential equations governing linear wave phenomena. The restriction to linear ODEs with constant coefficients reduces the number of conditions which the coefficients of the Runge-Kutta method must satisfy. This freedom is used to develop methods which are more efficient than conventional Runge-Kutta methods. A fourth-order method is presented which uses only two memory locations per dependent variable, while the classical fourth-order Runge-Kutta method uses three. This method is an excellent choice for simulations of linear wave phenomena if memory is a primary concern. In addition, fifth- and sixth-order methods are presented which require five and six stages, respectively, one fewer than their conventional counterparts, and are therefore more efficient. These methods are an excellent option for use with high-order spatial discretizations.

  10. Linear stochastic differential equations with anticipating initial conditions

    Khalifa, Narjess; Kuo, Hui-Hsiung; Ouerdiane, Habib

    In this paper we use the new stochastic integral introduced by Ayed and Kuo (2008) and the results obtained by Kuo et al. (2012b) to find a solution to a drift-free linear stochastic differential equation with anticipating initial condition. Our solution is based on well-known results from...... classical Itô theory and anticipative Itô formula results from Kue et al. (2012b). We also show that the solution obtained by our method is consistent with the solution obtained by the methods of Malliavin calculus, e.g. Buckdahn and Nualart (1994)....

  11. Hamiltonian structures of some non-linear evolution equations

    Tu, G.Z.

    1983-06-01

    The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)

  12. Stability of Linear Equations--Algebraic Approach

    Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.

    2012-01-01

    This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…

  13. Oscillation theory of linear differential equations

    Došlý, Ondřej

    2000-01-01

    Roč. 36, č. 5 (2000), s. 329-343 ISSN 0044-8753 R&D Projects: GA ČR GA201/98/0677 Keywords : discrete oscillation theory %Sturm-Liouville equation%Riccati equation Subject RIV: BA - General Mathematics

  14. Geometric Insight into Scalar Combination of Linear Equations

    ... Journals; Resonance – Journal of Science Education; Volume 14; Issue 11. Geometric Insight into Scalar Combination of Linear Equations. Ranjit Konkar. Classroom Volume 14 Issue 11 November 2009 pp 1092-1097 ... Keywords. Linear algebra; linear dependence; linear combination; family of lines; family of planes.

  15. Stochastic integration and differential equations

    Protter, Philip E

    2003-01-01

    It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, t...

  16. Students' errors in solving linear equation word problems: Case ...

    The study examined errors students make in solving linear equation word problems with a view to expose the nature of these errors and to make suggestions for classroom teaching. A diagnostic test comprising 10 linear equation word problems, was administered to a sample (n=130) of senior high school first year Home ...

  17. Linear orbit parameters for the exact equations of motion

    Parzen, G.

    1995-01-01

    This paper defines the beta function and other linear orbit parameters using the exact equations of motion. The β, α and ψ functions are redefined using the exact equations. Expressions are found for the transfer matrix and the emittance. The differential equations for η = x/β 1/2 is found. New relationships between α, β, ψ and ν are derived

  18. GLOBAL LINEARIZATION OF DIFFERENTIAL EQUATIONS WITH SPECIAL STRUCTURES

    2011-01-01

    This paper introduces the global linearization of the differential equations with special structures.The function in the differential equation is unbounded.We prove that the differential equation with unbounded function can be topologically linearlized if it has a special structure.

  19. On some perturbation techniques for quasi-linear parabolic equations

    Igor Malyshev

    1990-01-01

    Full Text Available We study a nonhomogeneous quasi-linear parabolic equation and introduce a method that allows us to find the solution of a nonlinear boundary value problem in “explicit” form. This task is accomplished by perturbing the original equation with a source function, which is then found as a solution of some nonlinear operator equation.

  20. A General Linear Method for Equating with Small Samples

    Albano, Anthony D.

    2015-01-01

    Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…

  1. PREFACE: Symmetries and Integrability of Difference Equations

    Doliwa, Adam; Korhonen, Risto; Lafortune, Stéphane

    2007-10-01

    M Sergeev on quantization of three-wave equations. Random matrix theory. This section contains a paper by A V Kitaev on the boundary conditions for scaled random matrix ensembles in the bulk of the spectrum. Symmetries and conservation laws. In this section we have five articles. H Gegen, X-B Hu, D Levi and S Tsujimoto consider a difference-analogue of Davey-Stewartson system giving its discrete Gram-type determinant solution and Lax pair. The paper by D Levi, M Petrera, and C Scimiterna is about the lattice Schwarzian KDV equation and its symmetries, while O G Rasin and P E Hydon study the conservation laws for integrable difference equations. S Saito and N Saitoh discuss recurrence equations associated with invariant varieties of periodic points, and P H van der Kamp presents closed-form expressions for integrals of MKDV and sine-Gordon maps. Ultra-discrete systems. This final category contains an article by C Ormerod on connection matrices for ultradiscrete linear problems. We would like to express our sincerest thanks to all contributors, and to everyone involved in compiling this special issue.

  2. Numerical integration of asymptotic solutions of ordinary differential equations

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  3. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

    Tisdell, C. C.

    2017-01-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

  4. Is Yang-Mills equation a totally integrable system. Lecture III

    Chau Wang, L.L.

    1981-01-01

    Topics covered include: loop-space formulation of gauge theory - loop-space chiral equation; two dimensional chiral equation - conservation laws, linear system and integrability; and parallel development for the loop-space chiral equation - subtlety

  5. Linear algebra a first course with applications to differential equations

    Apostol, Tom M

    2014-01-01

    Developed from the author's successful two-volume Calculus text this book presents Linear Algebra without emphasis on abstraction or formalization. To accommodate a variety of backgrounds, the text begins with a review of prerequisites divided into precalculus and calculus prerequisites. It continues to cover vector algebra, analytic geometry, linear spaces, determinants, linear differential equations and more.

  6. Solving polynomial differential equations by transforming them to linear functional-differential equations

    Nahay, John Michael

    2008-01-01

    We present a new approach to solving polynomial ordinary differential equations by transforming them to linear functional equations and then solving the linear functional equations. We will focus most of our attention upon the first-order Abel differential equation with two nonlinear terms in order to demonstrate in as much detail as possible the computations necessary for a complete solution. We mention in our section on further developments that the basic transformation idea can be generali...

  7. Transformation properties of the integrable evolution equations

    Konopelchenko, B.G.

    1981-01-01

    Group-theoretical properties of partial differential equations integrable by the inverse scattering transform method are discussed. It is shown that nonlinear transformations typical to integrable equations (symmetry groups, Baecklund-transformations) and these equations themselves are contained in a certain universal nonlinear transformation group. (orig.)

  8. Resonance tongues in the linear Sitnikov equation

    Misquero, Mauricio

    2018-04-01

    In this paper, we deal with a Hill's equation, depending on two parameters e\\in [0,1) and Λ >0, that has applications to some problems in Celestial Mechanics of the Sitnikov type. Due to the nonlinearity of the eccentricity parameter e and the coexistence problem, the stability diagram in the (e,Λ )-plane presents unusual resonance tongues emerging from points (0,(n/2)^2), n=1,2,\\ldots The tongues bounded by curves of eigenvalues corresponding to 2π -periodic solutions collapse into a single curve of coexistence (for which there exist two independent 2π -periodic eigenfunctions), whereas the remaining tongues have no pockets and are very thin. Unlike most of the literature related to resonance tongues and Sitnikov-type problems, the study of the tongues is made from a global point of view in the whole range of e\\in [0,1). Indeed, an interesting behavior of the tongues is found: almost all of them concentrate in a small Λ -interval [1, 9 / 8] as e→ 1^-. We apply the stability diagram of our equation to determine the regions for which the equilibrium of a Sitnikov (N+1)-body problem is stable in the sense of Lyapunov and the regions having symmetric periodic solutions with a given number of zeros. We also study the Lyapunov stability of the equilibrium in the center of mass of a curved Sitnikov problem.

  9. The H-N method for solving linear transport equation: theory and application

    Kaskas, A.; Gulecyuz, M.C.; Tezcan, C.

    2002-01-01

    The system of singular integral equation which is obtained from the integro-differential form of the linear transport equation as a result of Placzec lemma is solved. Application are given using the exit distributions and the infinite medium Green's function. The same theoretical results are also obtained with the use of the singular eigenfunction of the method of elementary solutions

  10. Diffusion phenomenon for linear dissipative wave equations in an exterior domain

    Ikehata, Ryo

    Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.

  11. Subroutine for series solutions of linear differential equations

    Tasso, H.; Steuerwald, J.

    1976-02-01

    A subroutine for Taylor series solutions of systems of ordinary linear differential equations is descriebed. It uses the old idea of Lie series but allows simple implementation and is time-saving for symbolic manipulations. (orig.) [de

  12. On a class of fourth order linear recurrence equations

    Sui-Sun Cheng

    1984-01-01

    Full Text Available This paper is concerned with sequences that satisfy a class of fourth order linear recurrence equations. Basic properties of such sequences are derived. In addition, we discuss the oscillatory and nonoscillatory behavior of such sequences.

  13. Exact solution of some linear matrix equations using algebraic methods

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  14. An integral transform of the Salpeter equation

    Krolikowski, W.

    1980-03-01

    We find a new form of relativistic wave equation for two spin-1/2 particles, which arises by an integral transformation (in the position space) of the wave function in the Salpeter equation. The non-locality involved in this transformation is extended practically over the Compton wavelength of the lighter of two particles. In the case of equal masses the new equation assumes the form of the Breit equation with an effective integral interaction. In the one-body limit it reduces to the Dirac equation also with an effective integral interaction. (author)

  15. Approximate Method for Solving the Linear Fuzzy Delay Differential Equations

    S. Narayanamoorthy

    2015-01-01

    Full Text Available We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.

  16. Linear matrix differential equations of higher-order and applications

    Mustapha Rachidi

    2008-07-01

    Full Text Available In this article, we study linear differential equations of higher-order whose coefficients are square matrices. The combinatorial method for computing the matrix powers and exponential is adopted. New formulas representing auxiliary results are obtained. This allows us to prove properties of a large class of linear matrix differential equations of higher-order, in particular results of Apostol and Kolodner are recovered. Also illustrative examples and applications are presented.

  17. Local energy decay for linear wave equations with variable coefficients

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  18. Integral equations with contrasting kernels

    Theodore Burton

    2008-01-01

    Full Text Available In this paper we study integral equations of the form $x(t=a(t-\\int^t_0 C(t,sx(sds$ with sharply contrasting kernels typified by $C^*(t,s=\\ln (e+(t-s$ and $D^*(t,s=[1+(t-s]^{-1}$. The kernel assigns a weight to $x(s$ and these kernels have exactly opposite effects of weighting. Each type is well represented in the literature. Our first project is to show that for $a\\in L^2[0,\\infty$, then solutions are largely indistinguishable regardless of which kernel is used. This is a surprise and it leads us to study the essential differences. In fact, those differences become large as the magnitude of $a(t$ increases. The form of the kernel alone projects necessary conditions concerning the magnitude of $a(t$ which could result in bounded solutions. Thus, the next project is to determine how close we can come to proving that the necessary conditions are also sufficient. The third project is to show that solutions will be bounded for given conditions on $C$ regardless of whether $a$ is chosen large or small; this is important in real-world problems since we would like to have $a(t$ as the sum of a bounded, but badly behaved function, and a large well behaved function.

  19. Analytical exact solution of the non-linear Schroedinger equation

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da

    2011-01-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  20. Focal decompositions for linear differential equations of the second order

    L. Birbrair

    2003-01-01

    two-points problems to itself such that the image of the focal decomposition associated to the first equation is a focal decomposition associated to the second one. In this paper, we present a complete classification for linear second-order equations with respect to this equivalence relation.

  1. Asymptotic properties for half-linear difference equations

    Cecchi, M.; Došlá, Z.; Marini, M.; Vrkoč, Ivo

    2006-01-01

    Roč. 131, č. 4 (2006), s. 347-363 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GA201/04/0580 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear second order difference equation * nonoscillatory solutions * Riccati difference equation Subject RIV: BA - General Mathematics

  2. A Hamiltonian structure for the linearized Einstein vacuum field equations

    Torres del Castillo, G.F.

    1991-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained (Author)

  3. An implicit spectral formula for generalized linear Schroedinger equations

    Schulze-Halberg, A.; Garcia-Ravelo, J.; Pena Gil, Jose Juan

    2009-01-01

    We generalize the semiclassical Bohr–Sommerfeld quantization rule to an exact, implicit spectral formula for linear, generalized Schroedinger equations admitting a discrete spectrum. Special cases include the position-dependent mass Schroedinger equation or the Schroedinger equation for weighted energy. Requiring knowledge of the potential and the solution associated with the lowest spectral value, our formula predicts the complete spectrum in its exact form. (author)

  4. Visual construction of characteristic equations of linear electric circuits

    V.V. Kostyukov

    2013-12-01

    Full Text Available A visual identification method with application of partial circuits is developed for characteristic equation coefficients of transients in linear electric circuits. The method is based on interrelationship between the roots of algebraic polynomial and its coefficients. The method is illustrated with an example of a third-order linear electric circuit.

  5. A local-global problem for linear differential equations

    Put, Marius van der; Reversat, Marc

    2008-01-01

    An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is

  6. A local-global problem for linear differential equations

    Put, Marius van der; Reversat, Marc

    An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is

  7. Linear differential equations to solve nonlinear mechanical problems: A novel approach

    Nair, C. Radhakrishnan

    2004-01-01

    Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...

  8. Differential equations and integrable models: the SU(3) case

    Dorey, Patrick; Tateo, Roberto

    2000-01-01

    We exhibit a relationship between the massless a 2 (2) integrable quantum field theory and a certain third-order ordinary differential equation, thereby extending a recent result connecting the massless sine-Gordon model to the Schroedinger equation. This forms part of a more general correspondence involving A 2 -related Bethe ansatz systems and third-order differential equations. A non-linear integral equation for the generalised spectral problem is derived, and some numerical checks are performed. Duality properties are discussed, and a simple variant of the non-linear equation is suggested as a candidate to describe the finite volume ground state energies of minimal conformal field theories perturbed by the operators phi 12 , phi 21 and phi 15 . This is checked against previous results obtained using the thermodynamic Bethe ansatz

  9. Rational approximations to solutions of linear differential equations.

    Chudnovsky, D V; Chudnovsky, G V

    1983-08-01

    Rational approximations of Padé and Padé type to solutions of differential equations are considered. One of the main results is a theorem stating that a simultaneous approximation to arbitrary solutions of linear differential equations over C(x) cannot be "better" than trivial ones implied by the Dirichlet box principle. This constitutes, in particular, the solution in the linear case of Kolchin's problem that the "Roth's theorem" holds for arbitrary solutions of algebraic differential equations. Complete effective proofs for several valuations are presented based on the Wronskian methods and graded subrings of Picard-Vessiot extensions.

  10. Non-local quasi-linear parabolic equations

    Amann, H

    2005-01-01

    This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing

  11. Prolongation structure and linear eigenvalue equations for Einstein-Maxwell fields

    Kramer, D.; Neugebauer, G.

    1981-01-01

    The Einstein-Maxwell equations for stationary axisymmetric exterior fields are shown to be the integrability conditions of a set of linear eigenvalue equations for pseudopotentials. Using the method of Wahlquist and Estabrook (J. Math Phys.; 16:1 (1975)) it is shown that the prolongation structure of the Einstein-Maxwell equations contains the SU(2,1) Lie algebra. A new mapping of known solutions to other solutions has been found. (author)

  12. Method of mechanical quadratures for solving singular integral equations of various types

    Sahakyan, A. V.; Amirjanyan, H. A.

    2018-04-01

    The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.

  13. A Proposed Method for Solving Fuzzy System of Linear Equations

    Reza Kargar

    2014-01-01

    Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.

  14. Periodic feedback stabilization for linear periodic evolution equations

    Wang, Gengsheng

    2016-01-01

    This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equations. Secondly, it identifies several criteria for the periodic feedback stabilization from the perspective of geometry, algebra and analyses respectively. Next, it describes several ways to design periodic feedback laws. Lastly, the book introduces readers to key methods for designing the control machines. Given its coverage and scope, it offers a helpful guide for graduate students and researchers in the areas of control theory and applied mathematics.

  15. Dynamical symmetries of semi-linear Schrodinger and diffusion equations

    Stoimenov, Stoimen; Henkel, Malte

    2005-01-01

    Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed

  16. Mellin-Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions

    Kalmykov, Mikhail Yu.; Kniehl, Bernd A.

    2012-05-01

    We argue that the Mellin-Barnes representations of Feynman diagrams can be used for obtaining linear systems of homogeneous differential equations for the original Feynman diagrams with arbitrary powers of propagators without recourse to the integration-by-parts technique. These systems of differential equation can be used (i) for the differential reductions to sets of basic functions and (ii) for counting the numbers of master-integrals.

  17. New Equating Methods and Their Relationships with Levine Observed Score Linear Equating under the Kernel Equating Framework

    Chen, Haiwen; Holland, Paul

    2010-01-01

    In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…

  18. Integrable discretizations of the short pulse equation

    Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2010-01-01

    In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi-discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.

  19. Numerical solution of the potential problem by integral equations without Green's functions

    De Mey, G.

    1977-01-01

    An integral equation technique will be presented to solve Laplace's equation in a two-dimensional area S. The Green's function has been replaced by a particular solution of Laplace equation in order to establish the integral equation. It is shown that accurate results can be obtained provided the pivotal elimination method is used to solve the linear algebraic set

  20. Baecklund transformations for integrable lattice equations

    Atkinson, James

    2008-01-01

    We give new Baecklund transformations (BTs) for some known integrable (in the sense of being multidimensionally consistent) quadrilateral lattice equations. As opposed to the natural auto-BT inherent in every such equation, these BTs are of two other kinds. Specifically, it is found that some equations admit additional auto-BTs (with Baecklund parameter), whilst some pairs of apparently distinct equations admit a BT which connects them

  1. ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY

    Enrique Gonzalo Reyes Garcia

    2004-01-01

    ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY Equations in partial derivatives appeared in the 18th century as essential tools for the analytic study of physical models and, later, they proved to be fundamental for the progress of mathematics. For example, fundamental results of modern differential geometry are based on deep theorems on differential equations. Reciprocally, it is possible to study differential equations through geometrical means just like it was done by o...

  2. Integrable boundary conditions and modified Lax equations

    Avan, Jean; Doikou, Anastasia

    2008-01-01

    We consider integrable boundary conditions for both discrete and continuum classical integrable models. Local integrals of motion generated by the corresponding 'transfer' matrices give rise to time evolution equations for the initial Lax operator. We systematically identify the modified Lax pairs for both discrete and continuum boundary integrable models, depending on the classical r-matrix and the boundary matrix

  3. The Cauchy problem for non-linear Klein-Gordon equations

    Simon, J.C.H.; Taflin, E.

    1993-01-01

    We consider in R n+1 , n≥2, the non-linear Klein-Gordon equation. We prove for such an equation that there is neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincare covariant then the non-linear representation of the Poincare-Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincare group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the wave operator. The Hilbert space is, in both cases, the closure of the space of the differentiable vectors for the linear representation of the Poincare group, associated with the Klein-Gordon equation, with respect to a norm defined by the representation of the enveloping algebra. (orig.)

  4. HESS Opinions: Linking Darcy's equation to the linear reservoir

    Savenije, Hubert H. G.

    2018-03-01

    In groundwater hydrology, two simple linear equations exist describing the relation between groundwater flow and the gradient driving it: Darcy's equation and the linear reservoir. Both equations are empirical and straightforward, but work at different scales: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they appear similar, it is not trivial to upscale Darcy's equation to the watershed scale without detailed knowledge of the structure or shape of the underlying aquifers. This paper shows that these two equations, combined by the water balance, are indeed identical provided there is equal resistance in space for water entering the subsurface network. This implies that groundwater systems make use of an efficient drainage network, a mostly invisible pattern that has evolved over geological timescales. This drainage network provides equally distributed resistance for water to access the system, connecting the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance. As a result, the timescale of the linear reservoir appears to be inversely proportional to Darcy's conductance, the proportionality being the product of the porosity and the resistance to entering the drainage network. The main question remaining is which physical law lies behind pattern formation in groundwater systems, evolving in a way that resistance to drainage is constant in space. But that is a fundamental question that is equally relevant for understanding the hydraulic properties of leaf veins in plants or of blood veins in animals.

  5. Linear measure functional differential equations with infinite delay

    Monteiro, Giselle Antunes; Slavík, A.

    2014-01-01

    Roč. 287, 11-12 (2014), s. 1363-1382 ISSN 0025-584X Institutional support: RVO:67985840 Keywords : measure functional differential equations * generalized ordinary differential equations * Kurzweil-Stieltjes integral Subject RIV: BA - General Mathematics Impact factor: 0.683, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/mana.201300048/abstract

  6. The numerical solution of linear multi-term fractional differential equations: systems of equations

    Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

    2002-11-01

    In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

  7. Geometrical-integrability constraints and equations of motion in four plus extended super spaces

    Chau, L.L.

    1987-01-01

    It is pointed out that many equations of motion in physics, including gravitational and Yang-Mills equations, have a common origin: i.e. they are the results of certain geometrical integrability conditions. These integrability conditions lead to linear systems and conservation laws that are important in integrating these equations of motion

  8. High-order quantum algorithm for solving linear differential equations

    Berry, Dominic W

    2014-01-01

    Linear differential equations are ubiquitous in science and engineering. Quantum computers can simulate quantum systems, which are described by a restricted type of linear differential equations. Here we extend quantum simulation algorithms to general inhomogeneous sparse linear differential equations, which describe many classical physical systems. We examine the use of high-order methods (where the error over a time step is a high power of the size of the time step) to improve the efficiency. These provide scaling close to Δt 2 in the evolution time Δt. As with other algorithms of this type, the solution is encoded in amplitudes of the quantum state, and it is possible to extract global features of the solution. (paper)

  9. Solution methods for large systems of linear equations in BACCHUS

    Homann, C.; Dorr, B.

    1993-05-01

    The computer programme BACCHUS is used to describe steady state and transient thermal-hydraulic behaviour of a coolant in a fuel element with intact geometry in a fast breeder reactor. In such computer programmes generally large systems of linear equations with sparse matrices of coefficients, resulting from discretization of coolant conservation equations, must be solved thousands of times giving rise to large demands of main storage and CPU time. Direct and iterative solution methods of the systems of linear equations, available in BACCHUS, are described, giving theoretical details and experience with their use in the programme. Besides use of a method of lines, a Runge-Kutta-method, for solution of the partial differential equation is outlined. (orig.) [de

  10. Linear Einstein equations and Kerr-Schild maps

    Gergely, Laszlo A

    2002-01-01

    We prove that given a solution of the Einstein equations g ab for the matter field T ab , an autoparallel null vector field l a and a solution (l a l c , T ac ) of the linearized Einstein equation on the given background, the Kerr-Schild metric g ac + λl a l c (λ arbitrary constant) is an exact solution of the Einstein equation for the energy-momentum tensor T ac + λT ac + λ 2 l (a T c)b l b . The mixed form of the Einstein equation for Kerr-Schild metrics with autoparallel null congruence is also linear. Some more technical conditions hold when the null congruence is not autoparallel. These results generalize previous theorems for vacuum due to Xanthopoulos and for flat seed spacetime due to Guerses and Guersey

  11. Non-monotone positive solutions of second-order linear differential equations: existence, nonexistence and criteria

    Mervan Pašić

    2016-10-01

    Full Text Available We study non-monotone positive solutions of the second-order linear differential equations: $(p(tx'' + q(t x = e(t$, with positive $p(t$ and $q(t$. For the first time, some criteria as well as the existence and nonexistence of non-monotone positive solutions are proved in the framework of some properties of solutions $\\theta (t$ of the corresponding integrable linear equation: $(p(t\\theta''=e(t$. The main results are illustrated by many examples dealing with equations which allow exact non-monotone positive solutions not necessarily periodic. Finally, we pose some open questions.

  12. A Hamiltonian functional for the linearized Einstein vacuum field equations

    Rosas-RodrIguez, R

    2005-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained

  13. Linearized pseudo-Einstein equations on the Heisenberg group

    Barletta, Elisabetta; Dragomir, Sorin; Jacobowitz, Howard

    2017-02-01

    We study the pseudo-Einstein equation R11bar = 0 on the Heisenberg group H1 = C × R. We consider first order perturbations θɛ =θ0 + ɛ θ and linearize the pseudo-Einstein equation about θ0 (the canonical Tanaka-Webster flat contact form on H1 thought of as a strictly pseudoconvex CR manifold). If θ =e2uθ0 the linearized pseudo-Einstein equation is Δb u - 4 | Lu|2 = 0 where Δb is the sublaplacian of (H1 ,θ0) and L bar is the Lewy operator. We solve the linearized pseudo-Einstein equation on a bounded domain Ω ⊂H1 by applying subelliptic theory i.e. existence and regularity results for weak subelliptic harmonic maps. We determine a solution u to the linearized pseudo-Einstein equation, possessing Heisenberg spherical symmetry, and such that u(x) → - ∞ as | x | → + ∞.

  14. New non-linear modified massless Klein-Gordon equation

    Asenjo, Felipe A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Facultad de Ingenieria y Ciencias, Santiago (Chile); Hojman, Sergio A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Santiago (Chile); Universidad de Chile, Departamento de Fisica, Facultad de Ciencias, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)

    2017-11-15

    The massless Klein-Gordon equation on arbitrary curved backgrounds allows for solutions which develop ''tails'' inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless Klein-Gordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved spacetimes. This new equation is derived from a Lagrangian which exhibits current-current interaction. Its non-linearity is due to a self-coupling term which is related to the quantum mechanical Bohm potential. (orig.)

  15. Exact non-linear equations for cosmological perturbations

    Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 41566 (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Wu, David Chan Lon; Yoo, Jaiyul, E-mail: jinn-ouk.gong@apctp.org, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr, E-mail: clwu@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, Universität Zürich, CH-8057 Zürich (Switzerland)

    2017-10-01

    We present a complete set of exact and fully non-linear equations describing all three types of cosmological perturbations—scalar, vector and tensor perturbations. We derive the equations in a thoroughly gauge-ready manner, so that any spatial and temporal gauge conditions can be employed. The equations are completely general without any physical restriction except that we assume a flat homogeneous and isotropic universe as a background. We also comment briefly on the application of our formulation to the non-expanding Minkowski background.

  16. Solving Fully Fuzzy Linear System of Equations in General Form

    A. Yousefzadeh

    2012-06-01

    Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  17. Linear Equating for the NEAT Design: Parameter Substitution Models and Chained Linear Relationship Models

    Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.

    2009-01-01

    This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…

  18. Picard-Fuchs equations of dimensionally regulated Feynman integrals

    Zayadeh, Raphael

    2013-12-15

    This thesis is devoted to studying differential equations of Feynman integrals. A Feynman integral depends on a dimension D. For integer values of D it can be written as a projective integral, which is called the Feynman parameter prescription. A major complication arises from the fact that for some values of D the integral can diverge. This problem is solved within dimensional regularization by continuing the integral as a meromorphic function on the complex plane and replacing the ill-defined quantity by a Laurent series in a dimensional regularization parameter. All terms in such a Laurent expansion are periods in the sense of Kontsevich and Zagier. We describe a new method to compute differential equations of Feynman integrals. So far, the standard has been to use integration-by-parts (IBP) identities to obtain coupled systems of linear differential equations for the master integrals. Our method is based on the theory of Picard-Fuchs equations. In the case we are interested in, that of projective and quasiprojective families, a Picard-Fuchs equation can be computed by means of the Griffiths-Dwork reduction. We describe a method that is designed for fixed integer dimension. After a suitable integer shift of dimension we obtain a period of a family of hypersurfaces, hence a Picard-Fuchs equation. This equation is inhomogeneous because the domain of integration has a boundary and we only obtain a relative cycle. As a second step we shift back the dimension using Tarasov's generalized dimensional recurrence relations. Furthermore, we describe a method to directly compute the differential equation for general D without shifting the dimension. This is based on the Griffiths-Dwork reduction. The success of this method depends on the ability to solve large systems of linear equations. We give examples of two and three-loop graphs. Tarasov classifies two-loop two-point functions and we give differential equations for these. For us the most interesting example is

  19. Picard-Fuchs equations of dimensionally regulated Feynman integrals

    Zayadeh, Raphael

    2013-12-01

    This thesis is devoted to studying differential equations of Feynman integrals. A Feynman integral depends on a dimension D. For integer values of D it can be written as a projective integral, which is called the Feynman parameter prescription. A major complication arises from the fact that for some values of D the integral can diverge. This problem is solved within dimensional regularization by continuing the integral as a meromorphic function on the complex plane and replacing the ill-defined quantity by a Laurent series in a dimensional regularization parameter. All terms in such a Laurent expansion are periods in the sense of Kontsevich and Zagier. We describe a new method to compute differential equations of Feynman integrals. So far, the standard has been to use integration-by-parts (IBP) identities to obtain coupled systems of linear differential equations for the master integrals. Our method is based on the theory of Picard-Fuchs equations. In the case we are interested in, that of projective and quasiprojective families, a Picard-Fuchs equation can be computed by means of the Griffiths-Dwork reduction. We describe a method that is designed for fixed integer dimension. After a suitable integer shift of dimension we obtain a period of a family of hypersurfaces, hence a Picard-Fuchs equation. This equation is inhomogeneous because the domain of integration has a boundary and we only obtain a relative cycle. As a second step we shift back the dimension using Tarasov's generalized dimensional recurrence relations. Furthermore, we describe a method to directly compute the differential equation for general D without shifting the dimension. This is based on the Griffiths-Dwork reduction. The success of this method depends on the ability to solve large systems of linear equations. We give examples of two and three-loop graphs. Tarasov classifies two-loop two-point functions and we give differential equations for these. For us the most interesting example is the two

  20. Integrated vehicle dynamics control using State Dependent Riccati Equations

    Bonsen, B.; Mansvelders, R.; Vermeer, E.

    2010-01-01

    In this paper we discuss a State Dependent Riccati Equations (SDRE) solution for Integrated Vehicle Dynamics Control (IVDC). The SDRE approach is a nonlinear variant of the well known Linear Quadratic Regulator (LQR) and implements a quadratic cost function optimization. A modified version of this

  1. Counting master integrals. Integration by parts vs. functional equations

    Kniehl, Bernd A.; Tarasov, Oleg V.

    2016-01-01

    We illustrate the usefulness of functional equations in establishing relationships between master integrals under the integration-by-parts reduction procedure by considering a certain two-loop propagator-type diagram as an example.

  2. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  3. Constructive Development of the Solutions of Linear Equations in Introductory Ordinary Differential Equations

    Mallet, D. G.; McCue, S. W.

    2009-01-01

    The solution of linear ordinary differential equations (ODEs) is commonly taught in first-year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognizing what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to…

  4. Nonoscillation criteria for half-linear second order difference equations

    Došlý, Ondřej; Řehák, Pavel

    2001-01-01

    Roč. 42, - (2001), s. 453-464 ISSN 0898-1221 R&D Projects: GA ČR GA201/98/0677; GA ČR GA201/99/0295 Keywords : half-linear difference equation%nonoscillation criteria%variational principle Subject RIV: BA - General Mathematics Impact factor: 0.383, year: 2001

  5. Lie symmetries and differential galois groups of linear equations

    Oudshoorn, W.R.; Put, M. van der

    2002-01-01

    For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In

  6. Asymptotic formulae for solutions of half-linear differential equations

    Řehák, Pavel

    2017-01-01

    Roč. 292, January (2017), s. 165-177 ISSN 0096-3003 Institutional support: RVO:67985840 Keywords : half-linear differential equation * nonoscillatory solution * regular variation Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300316304581

  7. On oscillation of second-order linear ordinary differential equations

    Lomtatidze, A.; Šremr, Jiří

    2011-01-01

    Roč. 54, - (2011), s. 69-81 ISSN 1512-0015 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear second-order ordinary differential equation * Kamenev theorem * oscillation Subject RIV: BA - General Mathematics http://www.rmi.ge/jeomj/memoirs/vol54/abs54-4.htm

  8. Quantum osp-invariant non-linear Schroedinger equation

    Kulish, P.P.

    1985-04-01

    The generalizations of the non-linear Schroedinger equation (NS) associated with the orthosymplectic superalgebras are formulated. The simplest osp(1/2)-NS model is solved by the quantum inverse scattering method on a finite interval under periodic boundary conditions as well as on the wholeline in the case of a finite number of excitations. (author)

  9. Exponential estimates for solutions of half-linear differential equations

    Řehák, Pavel

    2015-01-01

    Roč. 147, č. 1 (2015), s. 158-171 ISSN 0236-5294 Institutional support: RVO:67985840 Keywords : half-linear differential equation * decreasing solution * increasing solution * asymptotic behavior Subject RIV: BA - General Mathematics Impact factor: 0.469, year: 2015 http://link.springer.com/article/10.1007%2Fs10474-015-0522-9

  10. An inhomogeneous wave equation and non-linear Diophantine approximation

    Beresnevich, V.; Dodson, M. M.; Kristensen, S.

    2008-01-01

    A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...

  11. On nonnegative solutions of second order linear functional differential equations

    Lomtatidze, Alexander; Vodstrčil, Petr

    2004-01-01

    Roč. 32, č. 1 (2004), s. 59-88 ISSN 1512-0015 Institutional research plan: CEZ:AV0Z1019905 Keywords : second order linear functional differential equations * nonnegative solution * two-point boundary value problem Subject RIV: BA - General Mathematics

  12. Radial solutions to semilinear elliptic equations via linearized operators

    Phuong Le

    2017-04-01

    Full Text Available Let $u$ be a classical solution of semilinear elliptic equations in a ball or an annulus in $\\mathbb{R}^N$ with zero Dirichlet boundary condition where the nonlinearity has a convex first derivative. In this note, we prove that if the $N$-th eigenvalue of the linearized operator at $u$ is positive, then $u$ must be radially symmetric.

  13. Minimal solution of linear formed fuzzy matrix equations

    Maryam Mosleh

    2012-10-01

    Full Text Available In this paper according to the structured element method, the $mimes n$ inconsistent fuzzy matrix equation $Ailde{X}=ilde{B},$ which are linear formed by fuzzy structured element, is investigated. The necessary and sufficient condition for the existence of a fuzzy solution is also discussed. some examples are presented to illustrate the proposed method.

  14. Insights into the School Mathematics Tradition from Solving Linear Equations

    Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth

    2015-01-01

    In this article, we explore how the solving of linear equations is represented in English­-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…

  15. Students' errors in solving linear equation word problems: Case ...

    kofi.mereku

    Development in most areas of life is based on effective knowledge of science and ... Problem solving, as used in mathematics education literature, refers ... word problems, on the other hand, are those linear equation tasks or ... taught LEWPs in the junior high school, many of them reach the senior high school without a.

  16. Scattering integral equations and four nucleon problem

    Narodetskii, I.M.

    1980-01-01

    Existing results from the application of integral equation technique to the four-nucleon bound states and scattering are reviewed. The first numerical calculations of the four-body integral equations have been done ten years ago. Yet, it is still widely believed that these equations are too complicated to solve numerically. The purpose of this review is to provide a clear and elementary introduction in the integral equation method and to demonstrate its usefulness in physical applications. The presentation is based on the quasiparticle approach. This permits a simple interpretation of the equations in terms of quasiparticle scattering. The mathematical basis for the quasiparticle approach is the Hilbert-Schmidt method of the Fredholm integral equation theory. The first part of this review contains a detailed discussion of the Hilbert-Schmidt expansion as applied to the 2-particle amplitudes and to the kernel of the four-body equations. The second part contains the discussion of the four-body quasiparticle equations and of the resed forullts obtain bound states and scattering

  17. Coupling Integrable Couplings of an Equation Hierarchy

    Wang Hui; Xia Tie-Cheng

    2013-01-01

    Based on a kind of Lie algebra G proposed by Zhang, one isospectral problem is designed. Under the framework of zero curvature equation, a new kind of integrable coupling of an equation hierarchy is generated using the methods proposed by Ma and Gao. With the help of variational identity, we get the Hamiltonian structure of the hierarchy. (general)

  18. Asymptotic solutions and spectral theory of linear wave equations

    Adam, J.A.

    1982-01-01

    This review contains two closely related strands. Firstly the asymptotic solution of systems of linear partial differential equations is discussed, with particular reference to Lighthill's method for obtaining the asymptotic functional form of the solution of a scalar wave equation with constant coefficients. Many of the applications of this technique are highlighted. Secondly, the methods and applications of the theory of the reduced (one-dimensional) wave equation - particularly spectral theory - are discussed. While the breadth of application and power of the techniques is emphasised throughout, the opportunity is taken to present to a wider readership, developments of the methods which have occured in some aspects of astrophysical (particularly solar) and geophysical fluid dynamics. It is believed that the topics contained herein may be of relevance to the applied mathematician or theoretical physicist interest in problems of linear wave propagation in these areas. (orig./HSI)

  19. Non-linear wave equations:Mathematical techniques

    1978-01-01

    An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es

  20. Dark energy cosmology with generalized linear equation of state

    Babichev, E; Dokuchaev, V; Eroshenko, Yu

    2005-01-01

    Dark energy with the usually used equation of state p = wρ, where w const 0 ), where the constants α and ρ 0 are free parameters. This non-homogeneous linear equation of state provides the description of both hydrodynamically stable (α > 0) and unstable (α < 0) fluids. In particular, the considered cosmological model describes the hydrodynamically stable dark (and phantom) energy. The possible types of cosmological scenarios in this model are determined and classified in terms of attractors and unstable points by using phase trajectories analysis. For the dark energy case, some distinctive types of cosmological scenarios are possible: (i) the universe with the de Sitter attractor at late times, (ii) the bouncing universe, (iii) the universe with the big rip and with the anti-big rip. In the framework of a linear equation of state the universe filled with a phantom energy, w < -1, may have either the de Sitter attractor or the big rip

  1. A New time Integration Scheme for Cahn-hilliard Equations

    Schaefer, R.

    2015-06-01

    In this paper we present a new integration scheme that can be applied to solving difficult non-stationary non-linear problems. It is obtained by a successive linearization of the Crank- Nicolson scheme, that is unconditionally stable, but requires solving non-linear equation at each time step. We applied our linearized scheme for the time integration of the challenging Cahn-Hilliard equation, modeling the phase separation in fluids. At each time step the resulting variational equation is solved using higher-order isogeometric finite element method, with B- spline basis functions. The method was implemented in the PETIGA framework interfaced via the PETSc toolkit. The GMRES iterative solver was utilized for the solution of a resulting linear system at every time step. We also apply a simple adaptivity rule, which increases the time step size when the number of GMRES iterations is lower than 30. We compared our method with a non-linear, two stage predictor-multicorrector scheme, utilizing a sophisticated step length adaptivity. We controlled the stability of our simulations by monitoring the Ginzburg-Landau free energy functional. The proposed integration scheme outperforms the two-stage competitor in terms of the execution time, at the same time having a similar evolution of the free energy functional.

  2. A New time Integration Scheme for Cahn-hilliard Equations

    Schaefer, R.; Smol-ka, M.; Dalcin, L; Paszyn'ski, M.

    2015-01-01

    In this paper we present a new integration scheme that can be applied to solving difficult non-stationary non-linear problems. It is obtained by a successive linearization of the Crank- Nicolson scheme, that is unconditionally stable, but requires solving non-linear equation at each time step. We applied our linearized scheme for the time integration of the challenging Cahn-Hilliard equation, modeling the phase separation in fluids. At each time step the resulting variational equation is solved using higher-order isogeometric finite element method, with B- spline basis functions. The method was implemented in the PETIGA framework interfaced via the PETSc toolkit. The GMRES iterative solver was utilized for the solution of a resulting linear system at every time step. We also apply a simple adaptivity rule, which increases the time step size when the number of GMRES iterations is lower than 30. We compared our method with a non-linear, two stage predictor-multicorrector scheme, utilizing a sophisticated step length adaptivity. We controlled the stability of our simulations by monitoring the Ginzburg-Landau free energy functional. The proposed integration scheme outperforms the two-stage competitor in terms of the execution time, at the same time having a similar evolution of the free energy functional.

  3. Approximate Controllability for Linear Stochastic Differential Equations in Infinite Dimensions

    Goreac, D.

    2009-01-01

    The objective of the paper is to investigate the approximate controllability property of a linear stochastic control system with values in a separable real Hilbert space. In a first step we prove the existence and uniqueness for the solution of the dual linear backward stochastic differential equation. This equation has the particularity that in addition to an unbounded operator acting on the Y-component of the solution there is still another one acting on the Z-component. With the help of this dual equation we then deduce the duality between approximate controllability and observability. Finally, under the assumption that the unbounded operator acting on the state process of the forward equation is an infinitesimal generator of an exponentially stable semigroup, we show that the generalized Hautus test provides a necessary condition for the approximate controllability. The paper generalizes former results by Buckdahn, Quincampoix and Tessitore (Stochastic Partial Differential Equations and Applications, Series of Lecture Notes in Pure and Appl. Math., vol. 245, pp. 253-260, Chapman and Hall, London, 2006) and Goreac (Applied Analysis and Differential Equations, pp. 153-164, World Scientific, Singapore, 2007) from the finite dimensional to the infinite dimensional case

  4. Experimental quantum computing to solve systems of linear equations.

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  5. Stochastic modeling of mode interactions via linear parabolized stability equations

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  6. Hadronic equation of state in the statistical bootstrap model and linear graph theory

    Fre, P.; Page, R.

    1976-01-01

    Taking a statistical mechanical point og view, the statistical bootstrap model is discussed and, from a critical analysis of the bootstrap volume comcept, it is reached a physical ipothesis, which leads immediately to the hadronic equation of state provided by the bootstrap integral equation. In this context also the connection between the statistical bootstrap and the linear graph theory approach to interacting gases is analyzed

  7. PREFACE: Symmetries and integrability of difference equations Symmetries and integrability of difference equations

    Levi, Decio; Olver, Peter; Thomova, Zora; Winternitz, Pavel

    2009-11-01

    presented at the SIDE 8 meeting were organized into the following special sessions: geometry of discrete and continuous Painlevé equations; continuous symmetries of discrete equations—theory and computational applications; algebraic aspects of discrete equations; singularity confinement, algebraic entropy and Nevanlinna theory; discrete differential geometry; discrete integrable systems and isomonodromy transformations; special functions as solutions of difference and q-difference equations. This special issue of the journal is organized along similar lines. The first three articles are topical review articles appearing in alphabetical order (by first author). The article by Doliwa and Nieszporski describes the Darboux transformations in a discrete setting, namely for the discrete second order linear problem. The article by Grammaticos, Halburd, Ramani and Viallet concentrates on the integrability of the discrete systems, in particular they describe integrability tests for difference equations such as singularity confinement, algebraic entropy (growth and complexity), and analytic and arithmetic approaches. The topical review by Konopelchenko explores the relationship between the discrete integrable systems and deformations of associative algebras. All other articles are presented in alphabetical order (by first author). The contributions were solicited from all participants as well as from the general scientific community. The contributions published in this special issue can be loosely grouped into several overlapping topics, namely: •Geometry of discrete and continuous Painlevé equations (articles by Spicer and Nijhoff and by Lobb and Nijhoff). •Continuous symmetries of discrete equations—theory and applications (articles by Dorodnitsyn and Kozlov; Levi, Petrera and Scimiterna; Scimiterna; Ste-Marie and Tremblay; Levi and Yamilov; Rebelo and Winternitz). •Yang--Baxter maps (article by Xenitidis and Papageorgiou). •Algebraic aspects of discrete equations

  8. Integrable peakon equations with cubic nonlinearity

    Hone, Andrew N W; Wang, J P

    2008-01-01

    We present a new integrable partial differential equation found by Vladimir Novikov. Like the Camassa-Holm and Degasperis-Procesi equations, this new equation admits peaked soliton (peakon) solutions, but it has nonlinear terms that are cubic, rather than quadratic. We give a matrix Lax pair for V Novikov's equation, and show how it is related by a reciprocal transformation to a negative flow in the Sawada-Kotera hierarchy. Infinitely many conserved quantities are found, as well as a bi-Hamiltonian structure. The latter is used to obtain the Hamiltonian form of the finite-dimensional system for the interaction of N peakons, and the two-body dynamics (N = 2) is explicitly integrated. Finally, all of this is compared with some analogous results for another cubic peakon equation derived by Zhijun Qiao. (fast track communication)

  9. A fast iterative scheme for the linearized Boltzmann equation

    Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2017-06-01

    Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference

  10. On the multisummability of WKB solutions of certain singularly perturbed linear ordinary differential equations

    Yoshitsugu Takei

    2015-01-01

    Full Text Available Using two concrete examples, we discuss the multisummability of WKB solutions of singularly perturbed linear ordinary differential equations. Integral representations of solutions and a criterion for the multisummability based on the Cauchy-Heine transform play an important role in the proof.

  11. On the prolongation structure and Backlund transformation for new non-linear Klein-Gordon equations

    Roy Chowdhury, A.; Mukherjee, J.

    1986-07-01

    We have considered the complete integrability of two nonlinear equations which are some kind of extensions of usual Sine-Gordon and Sinh-Gordon equations. The first one is of non-autonomous version of Sinh-Gordon system and the second is closely related to the usual Sine-Gordon theory. The first problem indicates how (x,t) dependent non-linear equations can be treated in the prolongation theory and how a Backlund map can be constructed. The second one is a variation of the usual Sine-Gordon equation and suggests that there may be other equations (similar to Sine-Gordon) which are completely integrable. In both cases we have been able to construct the Lax pair. We then construct an auto-Backlund map by following the idea of Konno and Wadati, for the generation of multisolution states. (author)

  12. Dhage Iteration Method for Generalized Quadratic Functional Integral Equations

    Bapurao C. Dhage

    2015-01-01

    Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.

  13. Novel algorithm of large-scale simultaneous linear equations

    Fujiwara, T; Hoshi, T; Yamamoto, S; Sogabe, T; Zhang, S-L

    2010-01-01

    We review our recently developed methods of solving large-scale simultaneous linear equations and applications to electronic structure calculations both in one-electron theory and many-electron theory. This is the shifted COCG (conjugate orthogonal conjugate gradient) method based on the Krylov subspace, and the most important issue for applications is the shift equation and the seed switching method, which greatly reduce the computational cost. The applications to nano-scale Si crystals and the double orbital extended Hubbard model are presented.

  14. New multidimensional partially integrable generalization of S-integrable N-wave equation

    Zenchuk, A. I.

    2007-01-01

    This paper develops a modification of the dressing method based on the inhomogeneous linear integral equation with integral operator having nonempty kernel. The method allows one to construct the systems of multidimensional partial differential equations having differential polynomial structure in any dimension n. The associated solution space is not full, although it is parametrized by certain number of arbitrary functions of (n-1) variables. We consider four-dimensional generalization of the classical (2+1)-dimensional S-integrable N-wave equation as an example

  15. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2011-01-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a

  16. What happens to linear properties as we move from the Klein-Gordon equation to the sine-Gordon equation

    Kovalyov, Mikhail

    2010-01-01

    In this article the sets of solutions of the sine-Gordon equation and its linearization the Klein-Gordon equation are discussed and compared. It is shown that the set of solutions of the sine-Gordon equation possesses a richer structure which partly disappears during linearization. Just like the solutions of the Klein-Gordon equation satisfy the linear superposition principle, the solutions of the sine-Gordon equation satisfy a nonlinear superposition principle.

  17. Oscillatory solutions of the Cauchy problem for linear differential equations

    Gro Hovhannisyan

    2015-06-01

    Full Text Available We consider the Cauchy problem for second and third order linear differential equations with constant complex coefficients. We describe necessary and sufficient conditions on the data for the existence of oscillatory solutions. It is known that in the case of real coefficients the oscillatory behavior of solutions does not depend on initial values, but we show that this is no longer true in the complex case: hence in practice it is possible to control oscillatory behavior by varying the initial conditions. Our Proofs are based on asymptotic analysis of the zeros of solutions, represented as linear combinations of exponential functions.

  18. Infinite sets of conservation laws for linear and non-linear field equations

    Niederle, J.

    1984-01-01

    The work was motivated by a desire to understand group theoretically the existence of an infinite set of conservation laws for non-interacting fields and to carry over these conservation laws to the case of interacting fields. The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of its space-time symmetry group was established. It is shown that in the case of the Korteweg-de Vries (KdV) equation to each symmetry of the corresponding linear equation delta sub(o)uxxx=u sub() determined by an element of the enveloping algebra of the space translation algebra, there corresponds a symmetry of the full KdV equation

  19. Refined Fuchs inequalities for systems of linear differential equations

    Gontsov, R R

    2004-01-01

    We refine the Fuchs inequalities obtained by Corel for systems of linear meromorphic differential equations given on the Riemann sphere. Fuchs inequalities enable one to estimate the sum of exponents of the system over all its singular points. We refine these well-known inequalities by considering the Jordan structure of the leading coefficient of the Laurent series for the matrix of the right-hand side of the system in the neighbourhood of a singular point

  20. A general method for enclosing solutions of interval linear equations

    Rohn, Jiří

    2012-01-01

    Roč. 6, č. 4 (2012), s. 709-717 ISSN 1862-4472 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval linear equations * solution set * enclosure * absolute value inequality Subject RIV: BA - General Mathematics Impact factor: 1.654, year: 2012

  1. Disformal invariance of continuous media with linear equation of state

    Celoria, Marco [Gran Sasso Science Institute (INFN), Viale Francesco Crispi 7, L' Aquila, I-67100 Italy (Italy); Matarrese, Sabino [Dipartimento di Fisica e Astronomia ' G. Galilei' , Università degli Studi di Padova, via Marzolo 8, Padova, I-35131 Italy (Italy); Pilo, Luigi, E-mail: marco.celoria@gssi.infn.it, E-mail: sabino.matarrese@pd.infn.it, E-mail: luigi.pilo@aquila.infn.it [Dipartimento di Fisica, Università di L' Aquila, L' Aquila, I-67010 Italy (Italy)

    2017-02-01

    We show that the effective theory describing single component continuous media with a linear and constant equation of state of the form p = w ρ is invariant under a 1-parameter family of continuous disformal transformations. In the special case of w =1/3 (ultrarelativistic gas), such a family reduces to conformal transformations. As examples, perfect fluids, irrotational dust (mimetic matter) and homogeneous and isotropic solids are discussed.

  2. A linearizing transformation for the Korteweg-de Vries equation; generalizations to higher-dimensional nonlinear partial differential equations

    Dorren, H.J.S.

    1998-01-01

    It is shown that the Korteweg–de Vries (KdV) equation can be transformed into an ordinary linear partial differential equation in the wave number domain. Explicit solutions of the KdV equation can be obtained by subsequently solving this linear differential equation and by applying a cascade of

  3. Adaptive integral equation methods in transport theory

    Kelley, C.T.

    1992-01-01

    In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented

  4. Piecewise-linear and bilinear approaches to nonlinear differential equations approximation problem of computational structural mechanics

    Leibov Roman

    2017-01-01

    This paper presents a bilinear approach to nonlinear differential equations system approximation problem. Sometimes the nonlinear differential equations right-hand sides linearization is extremely difficult or even impossible. Then piecewise-linear approximation of nonlinear differential equations can be used. The bilinear differential equations allow to improve piecewise-linear differential equations behavior and reduce errors on the border of different linear differential equations systems ...

  5. On the structure of the commutative Z2 graded algebra valued integrable equations

    Konopelchenko, B.G.

    1980-01-01

    Partial differential equations integrable by the linear matrix spectral problem of arbitrary order are considered for the case that the 'potentials' take their values in the commutative infinte-dimensional Z 2 graded algebra (superalgebra). The general form of the integrable equations and their Baecklund transformations are found. The infinite sets of the integrals of the motion are constructed. The hamiltonian character of the integrable equations is proved. (orig.)

  6. Algorithms For Integrating Nonlinear Differential Equations

    Freed, A. D.; Walker, K. P.

    1994-01-01

    Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.

  7. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    Alvarez-Estrada, R.F.

    1979-01-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly

  8. Integral equation hierarchy for continuum percolation

    Given, J.A.

    1988-01-01

    In this thesis a projection operator technique is presented that yields hierarchies of integral equations satisfied exactly by the n-point connectedness functions in a continuum version of the site-bond percolation problem. The n-point connectedness functions carry the same structural information for a percolation problem as then-point correlation functions do for a thermal problem. This method extends the Potts model mapping of Fortuin and Kastelyn to the continuum by exploiting an s-state generalization of the Widom-Rowlinson model, a continuum model for phase separation. The projection operator technique is used to produce an integral equation hierarchy for percolation similar to the Born-Green heirarchy. The Kirkwood superposition approximation (SA) is extended to percolation in order to close this hierarchy and yield a nonlinear integral equation for the two-point connectedness function. The fact that this function, in the SA, is the analytic continuation to negative density of the two-point correlation function in a corresponding thermal problem is discussed. The BGY equation for percolation is solved numerically, both by an expansion in powers of the density, and by an iterative technique due to Kirkwood. It is argued both analytically and numerically, that the BYG equation for percolation, unlike its thermal counterpart, shows non-classical critical behavior, with η = 1 and γ = 0.05 ± .1. Finally a sequence of refinements to the superposition approximations based in the theory of fluids by Rice and Lekner is discussed

  9. TBA-like integral equations from quantized mirror curves

    Okuyama, Kazumi [Department of Physics, Shinshu University,Matsumoto 390-8621 (Japan); Zakany, Szabolcs [Département de Physique Théorique, Université de Genève,Genève, CH-1211 (Switzerland)

    2016-03-15

    Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local ℙ{sup 2}. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.

  10. TBA-like integral equations from quantized mirror curves

    Okuyama, Kazumi; Zakany, Szabolcs

    2016-03-01

    Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local P2. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.

  11. Polynomial solutions of nonlinear integral equations

    Dominici, Diego

    2009-01-01

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials

  12. Polynomial solutions of nonlinear integral equations

    Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu

    2009-05-22

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.

  13. Unconditionally stable integration of Maxwell's equations

    Verwer, J.G.; Bochev, Mikhail A.

    Numerical integration of Maxwell's equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit finite difference

  14. Unconditionally stable integration of Maxwell's equations

    J.G. Verwer (Jan); M.A. Botchev

    2008-01-01

    htmlabstractNumerical integration of Maxwell''s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction

  15. Unconditionally stable integration of Maxwell's equations

    J.G. Verwer (Jan); M.A. Botchev

    2009-01-01

    textabstractNumerical integration of Maxwell’s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit –

  16. Chaotic dynamics and diffusion in a piecewise linear equation

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-01-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems

  17. Chaotic dynamics and diffusion in a piecewise linear equation

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-03-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.

  18. KAM for the non-linear Schroedinger equation

    Eliasson, L H

    2006-01-01

    We consider the $d$-dimensional nonlinear Schr\\"o\\-dinger equation under periodic boundary conditions:-i\\dot u=\\Delta u+V(x)*u+\\ep|u|^2u;\\quad u=u(t,x),\\;x\\in\\T^dwhere $V(x)=\\sum \\hat V(a)e^{i\\sc{a,x}}$ is an analytic function with $\\hat V$ real. (This equation is a popular model for the `real' NLS equation, where instead of the convolution term $V*u$ we have the potential term $Vu$.) For $\\ep=0$ the equation is linear and has time--quasi-periodic solutions $u$,u(t,x)=\\sum_{s\\in \\AA}\\hat u_0(a)e^{i(|a|^2+\\hat V(a))t}e^{i\\sc{a,x}}, \\quad 0<|\\hat u_0(a)|\\le1,where $\\AA$ is any finite subset of $\\Z^d$. We shall treat $\\omega_a=|a|^2+\\hat V(a)$, $a\\in\\AA$, as free parameters in some domain $U\\subset\\R^{\\AA}$. This is a Hamiltonian system in infinite degrees of freedom, degenerate but with external parameters, and we shall describe a KAM-theory which, in particular, will have the following consequence: \\smallskip {\\it If $|\\ep|$ is sufficiently small, then there is a large subset $U'$ of $U$ such that for all $...

  19. Approximate solution to neutron transport equation with linear anisotropic scattering

    Coppa, G.; Ravetto, P.; Sumini, M.

    1983-01-01

    A method to obtain an approximate solution to the transport equation, when both sources and collisions show a linearly anisotropic behavior, is outlined and the possible implications for numerical calculations in applied neutronics as well as shielding evaluations are investigated. The form of the differential system of equations taken by the method is quite handy and looks simpler and more manageable than any other today available technique. To go deeper into the efficiency of the method, some typical calculations concerning critical dimension of multiplying systems are then performed and the results are compared with the ones coming from the classical Ssub(N) approximations. The outcome of such calculations leads us to think of interesting developments of the method which could be quite useful in alternative to other today widespread approximate procedures, for any geometry, but especially for curved ones. (author)

  20. General solutions of second-order linear difference equations of Euler type

    Akane Hongyo

    2017-01-01

    Full Text Available The purpose of this paper is to give general solutions of linear difference equations which are related to the Euler-Cauchy differential equation \\(y^{\\prime\\prime}+(\\lambda/t^2y=0\\ or more general linear differential equations. We also show that the asymptotic behavior of solutions of the linear difference equations are similar to solutions of the linear differential equations.

  1. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  2. First order linear ordinary differential equations in associative algebras

    Gordon Erlebacher

    2004-01-01

    Full Text Available In this paper, we study the linear differential equation $$ frac{dx}{dt}=sum_{i=1}^n a_i(t x b_i(t + f(t $$ in an associative but non-commutative algebra $mathcal{A}$, where the $b_i(t$ form a set of commuting $mathcal{A}$-valued functions expressed in a time-independent spectral basis consisting of mutually annihilating idempotents and nilpotents. Explicit new closed solutions are derived, and examples are presented to illustrate the theory.

  3. A Solution to the Fundamental Linear Fractional Order Differential Equation

    Hartley, Tom T.; Lorenzo, Carl F.

    1998-01-01

    This paper provides a solution to the fundamental linear fractional order differential equation, namely, (sub c)d(sup q, sub t) + ax(t) = bu(t). The impulse response solution is shown to be a series, named the F-function, which generalizes the normal exponential function. The F-function provides the basis for a qth order "fractional pole". Complex plane behavior is elucidated and a simple example, the inductor terminated semi- infinite lossy line, is used to demonstrate the theory.

  4. Oscillation of solutions of some higher order linear differential equations

    Hong-Yan Xu

    2009-11-01

    Full Text Available In this paper, we deal with the order of growth and the hyper order of solutions of higher order linear differential equations $$f^{(k}+B_{k-1}f^{(k-1}+\\cdots+B_1f'+B_0f=F$$ where $B_j(z (j=0,1,\\ldots,k-1$ and $F$ are entire functions or polynomials. Some results are obtained which improve and extend previous results given by Z.-X. Chen, J. Wang, T.-B. Cao and C.-H. Li.

  5. Lectures on differential equations for Feynman integrals

    Henn, Johannes M

    2015-01-01

    Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations (DE). These lectures give a review of these developments, while not assuming any prior knowledge of the subject. After an introduction to DE for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that is based on properties of the space–time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the DE. Finally, as an application of these ideas we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a DE. (topical review)

  6. Mathematics Literacy of Secondary Students in Solving Simultanenous Linear Equations

    Sitompul, R. S. I.; Budayasa, I. K.; Masriyah

    2018-01-01

    This study examines the profile of secondary students’ mathematical literacy in solving simultanenous linear equations problems in terms of cognitive style of visualizer and verbalizer. This research is a descriptive research with qualitative approach. The subjects in this research consist of one student with cognitive style of visualizer and one student with cognitive style of verbalizer. The main instrument in this research is the researcher herself and supporting instruments are cognitive style tests, mathematics skills tests, problem-solving tests and interview guidelines. Research was begun by determining the cognitive style test and mathematics skill test. The subjects chosen were given problem-solving test about simultaneous linear equations and continued with interview. To ensure the validity of the data, the researcher conducted data triangulation; the steps of data reduction, data presentation, data interpretation, and conclusion drawing. The results show that there is a similarity of visualizer and verbalizer-cognitive style in identifying and understanding the mathematical structure in the process of formulating. There are differences in how to represent problems in the process of implementing, there are differences in designing strategies and in the process of interpreting, and there are differences in explaining the logical reasons.

  7. Two-dimensional differential transform method for solving linear and non-linear Schroedinger equations

    Ravi Kanth, A.S.V.; Aruna, K.

    2009-01-01

    In this paper, we propose a reliable algorithm to develop exact and approximate solutions for the linear and nonlinear Schroedinger equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and nonlinear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.

  8. Quadratic algebras and noncommutative integration of Klein-Gordon equations in non-steckel Riemann spaces

    Varaksin, O.L.; Firstov, V.V.; Shapovalov, A.V.; Shirokov, I.V.

    1995-01-01

    The method of noncommutative integration of linear partial differential equations is used to solve the Klein-Gordon equations in Riemann space, in the case when the set of noncommutating symmetry operators of this equation for a quadratic algebra consists of one second-order operator and several first-order operators. Solutions that do not permit variable separation are presented

  9. A Generalized Analytic Operator-Valued Function Space Integral and a Related Integral Equation

    Chang, K.S.; Kim, B.S.; Park, C.H.; Ryu, K.S.

    2003-01-01

    We introduce a generalized Wiener measure associated with a Gaussian Markov process and define a generalized analytic operator-valued function space integral as a bounded linear operator from L p into L p-ci r cumflexprime (1< p ≤ 2) by the analytic continuation of the generalized Wiener integral. We prove the existence of the integral for certain functionals which involve some Borel measures. Also we show that the generalized analytic operator-valued function space integral satisfies an integral equation related to the generalized Schroedinger equation. The resulting theorems extend the theory of operator-valued function space integrals substantially and previous theorems about these integrals are generalized by our results

  10. TOEPLITZ, Solution of Linear Equation System with Toeplitz or Circulant Matrix

    Garbow, B.

    1984-01-01

    Description of program or function: TOEPLITZ is a collection of FORTRAN subroutines for solving linear systems Ax=b, where A is a Toeplitz matrix, a Circulant matrix, or has one or several block structures based on Toeplitz or Circulant matrices. Such systems arise in problems of electrodynamics, acoustics, mathematical statistics, algebra, in the numerical solution of integral equations with a difference kernel, and in the theory of stationary time series and signals

  11. Adaptive Finite Element Method for Optimal Control Problem Governed by Linear Quasiparabolic Integrodifferential Equations

    Wanfang Shen

    2012-01-01

    Full Text Available The mathematical formulation for a quadratic optimal control problem governed by a linear quasiparabolic integrodifferential equation is studied. The control constrains are given in an integral sense: Uad={u∈X;∫ΩUu⩾0, t∈[0,T]}. Then the a posteriori error estimates in L∞(0,T;H1(Ω-norm and L2(0,T;L2(Ω-norm for both the state and the control approximation are given.

  12. A boundary integral equation for boundary element applications in multigroup neutron diffusion theory

    Ozgener, B.

    1998-01-01

    A boundary integral equation (BIE) is developed for the application of the boundary element method to the multigroup neutron diffusion equations. The developed BIE contains no explicit scattering term; the scattering effects are taken into account by redefining the unknowns. Boundary elements of the linear and constant variety are utilised for validation of the developed boundary integral formulation

  13. Nonlinear integral equations for the sausage model

    Ahn, Changrim; Balog, Janos; Ravanini, Francesco

    2017-08-01

    The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.

  14. Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations

    Nakamura, Gen; Vashisth, Manmohan

    2017-01-01

    In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...

  15. Exponential Convergence for Numerical Solution of Integral Equations Using Radial Basis Functions

    Zakieh Avazzadeh

    2014-01-01

    Full Text Available We solve some different type of Urysohn integral equations by using the radial basis functions. These types include the linear and nonlinear Fredholm, Volterra, and mixed Volterra-Fredholm integral equations. Our main aim is to investigate the rate of convergence to solve these equations using the radial basis functions which have normic structure that utilize approximation in higher dimensions. Of course, the use of this method often leads to ill-posed systems. Thus we propose an algorithm to improve the results. Numerical results show that this method leads to the exponential convergence for solving integral equations as it was already confirmed for partial and ordinary differential equations.

  16. Half-trek criterion for generic identifiability of linear structural equation models

    Foygel, R.; Draisma, J.; Drton, M.

    2012-01-01

    A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations

  17. Half-trek criterion for generic identifiability of linear structural equation models

    Foygel, R.; Draisma, J.; Drton, M.

    2011-01-01

    A linear structural equation model relates random variables of interest and corresponding Gaussian noise terms via a linear equation system. Each such model can be represented by a mixed graph in which directed edges encode the linear equations, and bidirected edges indicate possible correlations

  18. Explicit estimating equations for semiparametric generalized linear latent variable models

    Ma, Yanyuan

    2010-07-05

    We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.

  19. Optimal overlapping of waveform relaxation method for linear differential equations

    Yamada, Susumu; Ozawa, Kazufumi

    2000-01-01

    Waveform relaxation (WR) method is extremely suitable for solving large systems of ordinary differential equations (ODEs) on parallel computers, but the convergence of the method is generally slow. In order to accelerate the convergence, the methods which decouple the system into many subsystems with overlaps some of the components between the adjacent subsystems have been proposed. The methods, in general, converge much faster than the ones without overlapping, but the computational cost per iteration becomes larger due to the increase of the dimension of each subsystem. In this research, the convergence of the WR method for solving constant coefficients linear ODEs is investigated and the strategy to determine the number of overlapped components which minimizes the cost of the parallel computations is proposed. Numerical experiments on an SR2201 parallel computer show that the estimated number of the overlapped components by the proposed strategy is reasonable. (author)

  20. Parallel computation for solving the tridiagonal linear system of equations

    Ishiguro, Misako; Harada, Hiroo; Fujii, Minoru; Fujimura, Toichiro; Nakamura, Yasuhiro; Nanba, Katsumi.

    1981-09-01

    Recently, applications of parallel computation for scientific calculations have increased from the need of the high speed calculation of large scale programs. At the JAERI computing center, an array processor FACOM 230-75 APU has installed to study the applicability of parallel computation for nuclear codes. We made some numerical experiments by using the APU on the methods of solution of tridiagonal linear equation which is an important problem in scientific calculations. Referring to the recent papers with parallel methods, we investigate eight ones. These are Gauss elimination method, Parallel Gauss method, Accelerated parallel Gauss method, Jacobi method, Recursive doubling method, Cyclic reduction method, Chebyshev iteration method, and Conjugate gradient method. The computing time and accuracy were compared among the methods on the basis of the numerical experiments. As the result, it is found that the Cyclic reduction method is best both in computing time and accuracy and the Gauss elimination method is the second one. (author)

  1. Master equations and the theory of stochastic path integrals

    Weber, Markus F.; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from

  2. Master equations and the theory of stochastic path integrals.

    Weber, Markus F; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon

  3. On the initial condition problem of the time domain PMCHWT surface integral equation

    Uysal, Ismail Enes; Bagci, Hakan; Ergin, A. Arif; Ulku, H. Arda

    2017-01-01

    Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced

  4. Darboux invariants of integrable equations with variable spectral parameters

    Shin, H J

    2008-01-01

    The Darboux transformation for integrable equations with variable spectral parameters is introduced. Darboux invariant quantities are calculated, which are used in constructing the Lax pair of integrable equations. This approach serves as a systematic method for constructing inhomogeneous integrable equations and their soliton solutions. The structure functions of variable spectral parameters determine the integrability and nonlinear coupling terms. Three cases of integrable equations are treated as examples of this approach

  5. New exact solutions of the Tzitzéica-type equations in non-linear optics using the expa function method

    Hosseini, K.; Ayati, Z.; Ansari, R.

    2018-04-01

    One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.

  6. An Etude in non-linear Dyson-Schwinger Equations

    Kreimer, Dirk; Yeats, Karen

    2006-01-01

    We show how to use the Hopf algebra structure of quantum field theory to derive nonperturbative results for the short-distance singular sector of a renormalizable quantum field theory in a simple but generic example. We discuss renormalized Green functions G R (α,L) in such circumstances which depend on a single scale L=lnq 2 /μ 2 and start from an expansion in the scale G R (α,L)=1+-bar k γ k (α)L k . We derive recursion relations between the γ k which make full use of the renormalization group. We then show how to determine the Green function by the use of a Mellin transform on suitable integral kernels. We exhibit our approach in an example for which we find a functional equation relating weak and strong coupling expansions

  7. Bounded solutions for fuzzy differential and integral equations

    Nieto, Juan J. [Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela, 15782 (Spain)] e-mail: amnieto@usc.es; Rodriguez-Lopez, Rosana [Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela, 15782 (Spain)] e-mail: amrosana@usc.es

    2006-03-01

    We find sufficient conditions for the boundness of every solution of first-order fuzzy differential equations as well as certain fuzzy integral equations. Our results are based on several theorems concerning crisp differential and integral inequalities.

  8. Variational Integrals of a Class of Nonhomogeneous -Harmonic Equations

    Guanfeng Li

    2014-01-01

    Full Text Available We introduce a class of variational integrals whose Euler equations are nonhomogeneous -harmonic equations. We investigate the relationship between the minimization problem and the Euler equation and give a simple proof of the existence of some nonhomogeneous -harmonic equations by applying direct methods of the calculus of variations. Besides, we establish some interesting results on variational integrals.

  9. Recovering an obstacle using integral equations

    Rundell, William

    2009-05-01

    We consider the inverse problem of recovering the shape, location and surface properties of an object where the surrounding medium is both conductive and homogeneous and we measure Cauchy data on an accessible part of the exterior boundary. It is assumed that the physical situation is modelled by harmonic functions and the boundary condition on the obstacle is one of Dirichlet type. The purpose of this paper is to answer some of the questions raised in a recent paper that introduced a nonlinear integral equation approach for the solution of this type of problem.

  10. A new linearized equation for servo valve in hydraulic control systems

    Kim, Tae Hyung; Lee, Ill Yeong

    2002-01-01

    In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. And, as of now, there are no general standards on how to determine the operating point of a servo valve in the process of applying the linearized equation. So, in this study, a new linearized equation for valve characteristics is proposed as a modified form of the existing linearized equation. And, a method for selecting an optimal operating point is proposed for the new linearized equation. The effectiveness of the new linearized equation is confirmed through numerical simulations and experiments for a model hydraulic control system

  11. One-way spatial integration of hyperbolic equations

    Towne, Aaron; Colonius, Tim

    2015-11-01

    In this paper, we develop and demonstrate a method for constructing well-posed one-way approximations of linear hyperbolic systems. We use a semi-discrete approach that allows the method to be applied to a wider class of problems than existing methods based on analytical factorization of idealized dispersion relations. After establishing the existence of an exact one-way equation for systems whose coefficients do not vary along the axis of integration, efficient approximations of the one-way operator are constructed by generalizing techniques previously used to create nonreflecting boundary conditions. When physically justified, the method can be applied to systems with slowly varying coefficients in the direction of integration. To demonstrate the accuracy and computational efficiency of the approach, the method is applied to model problems in acoustics and fluid dynamics via the linearized Euler equations; in particular we consider the scattering of sound waves from a vortex and the evolution of hydrodynamic wavepackets in a spatially evolving jet. The latter problem shows the potential of the method to offer a systematic, convergent alternative to ad hoc regularizations such as the parabolized stability equations.

  12. On the Volterra integral equation relating creep and relaxation

    Anderssen, R S; De Hoog, F R; Davies, A R

    2008-01-01

    The evolving stress–strain response of a material to an applied deformation is causal. If the current response depends on the earlier history of the stress–strain dynamics of the material (i.e. the material has memory), then Volterra integral equations become the natural framework within which to model the response. For viscoelastic materials, when the response is linear, the dual linear Boltzmann causal integral equations are the appropriate model. The choice of one rather than the other depends on whether the applied deformation is a stress or a strain, and the associated response is, respectively, a creep or a relaxation. The duality between creep and relaxation is known explicitly and is referred to as the 'interconversion equation'. Rheologically, its importance relates to the fact that it allows the creep to be determined from knowledge of the relaxation and vice versa. Computationally, it has been known for some time that the recovery of the relaxation from the creep is more problematic than the creep from the relaxation. Recent research, using discrete models for the creep and relaxation, has confirmed that this is an essential feature of interconversion. In this paper, the corresponding result is generalized for continuous models of the creep and relaxation

  13. A Comparison between Linear IRT Observed-Score Equating and Levine Observed-Score Equating under the Generalized Kernel Equating Framework

    Chen, Haiwen

    2012-01-01

    In this article, linear item response theory (IRT) observed-score equating is compared under a generalized kernel equating framework with Levine observed-score equating for nonequivalent groups with anchor test design. Interestingly, these two equating methods are closely related despite being based on different methodologies. Specifically, when…

  14. Integral Equation Methods for Electromagnetic and Elastic Waves

    Chew, Weng; Hu, Bin

    2008-01-01

    Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral eq

  15. Integral solution for the spherically symmetric Fokker-Planck equation

    Donoso, J.M.; Soler, M.

    1993-01-01

    We propose an integral method to deal with the spherically symmetric non-linear Fokker-Planck equation appearing in plasma physics. A probability transition expression is obtained, which takes into account the proper domain for the radial velocity component. The analytical and computational results are new, and the time evolution is completely satisfactory. The main achievement of the method is conservation of both the initial norm and energy for unlimited times, which has not been attained in the differential approach to the problem. (orig.)

  16. A linear functional differential equation with distributions in the input

    Vadim Z. Tsalyuk

    2003-10-01

    Full Text Available This paper studies the functional differential equation $$ dot x(t = int_a^t {d_s R(t,s, x(s} + F'(t, quad t in [a,b], $$ where $F'$ is a generalized derivative, and $R(t,cdot$ and $F$ are functions of bounded variation. A solution is defined by the difference $x - F$ being absolutely continuous and satisfying the inclusion $$ frac{d}{dt} (x(t - F(t in int_a^t {d_s R(t,s,x(s}. $$ Here, the integral in the right is the multivalued Stieltjes integral presented in cite{VTs1} (in this article we review and extend the results in cite{VTs1}. We show that the solution set for the initial-value problem is nonempty, compact, and convex. A solution $x$ is said to have memory if there exists the function $x$ such that $x(a = x(a$, $x(b = x(b$, $ x(t in [x(t-0,x(t+0]$ for $t in (a,b$, and $frac{d}{dt} (x(t - F(t = int_a^t {d_s R(t,s,{x}(s}$, where Lebesgue-Stieltjes integral is used. We show that such solutions form a nonempty, compact, and convex set. It is shown that solutions with memory obey the Cauchy-type formula $$ x(t in C(t,ax(a + int_a^t C(t,s, dF(s. $$

  17. Linear homotopy solution of nonlinear systems of equations in geodesy

    Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.

    2010-01-01

    A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.

  18. Functional analysis in the study of differential and integral equations

    Sell, G.R.

    1976-01-01

    This paper illustrates the use of functional analysis in the study of differential equations. Our particular starting point, the theory of flows or dynamical systems, originated with the work of H. Poincare, who is the founder of the qualitative theory of ordinary differential equations. In the qualitative theory one tries to describe the behaviour of a solution, or a collection of solutions, without ''solving'' the differential equation. As a starting point one assumes the existence, and sometimes the uniqueness, of solutions and then one tries to describe the asymptotic behaviour, as time t→+infinity, of these solutions. We compare the notion of a flow with that of a C 0 -group of bounded linear operators on a Banach space. We shall show how the concept C 0 -group, or more generally a C 0 -semigroup, can be used to study the behaviour of solutions of certain differential and integral equations. Our main objective is to show how the concept of a C 0 -group and especially the notion of weak-compactness can be used to prove the existence of an invariant measure for a flow on a compact Hausdorff space. Applications to the theory of ordinary differential equations are included. (author)

  19. An integral equation arising in two group neutron transport theory

    Cassell, J S; Williams, M M R

    2003-01-01

    An integral equation describing the fuel distribution necessary to maintain a flat flux in a nuclear reactor in two group transport theory is reduced to the solution of a singular integral equation. The formalism developed enables the physical aspects of the problem to be better understood and its relationship with the corresponding diffusion theory model is highlighted. The integral equation is solved by reducing it to a non-singular Fredholm equation which is then evaluated numerically

  20. A novel algebraic procedure for solving non-linear evolution equations of higher order

    Huber, Alfred

    2007-01-01

    We report here a systematic approach that can easily be used for solving non-linear partial differential equations (nPDE), especially of higher order. We restrict the analysis to the so called evolution equations describing any wave propagation. The proposed new algebraic approach leads us to traveling wave solutions and moreover, new class of solution can be obtained. The crucial step of our method is the basic assumption that the solutions satisfy an ordinary differential equation (ODE) of first order that can be easily integrated. The validity and reliability of the method is tested by its application to some non-linear evolution equations. The important aspect of this paper however is the fact that we are able to calculate distinctive class of solutions which cannot be found in the current literature. In other words, using this new algebraic method the solution manifold is augmented to new class of solution functions. Simultaneously we would like to stress the necessity of such sophisticated methods since a general theory of nPDE does not exist. Otherwise, for practical use the algebraic construction of new class of solutions is of fundamental interest

  1. Equations of motion for a (non-linear) scalar field model as derived from the field equations

    Kaniel, S.; Itin, Y.

    2006-01-01

    The problem of derivation of the equations of motion from the field equations is considered. Einstein's field equations have a specific analytical form: They are linear in the second order derivatives and quadratic in the first order derivatives of the field variables. We utilize this particular form and propose a novel algorithm for the derivation of the equations of motion from the field equations. It is based on the condition of the balance between the singular terms of the field equation. We apply the algorithm to a non-linear Lorentz invariant scalar field model. We show that it results in the Newton law of attraction between the singularities of the field moved on approximately geodesic curves. The algorithm is applicable to the N-body problem of the Lorentz invariant field equations. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. Variations in the Solution of Linear First-Order Differential Equations. Classroom Notes

    Seaman, Brian; Osler, Thomas J.

    2004-01-01

    A special project which can be given to students of ordinary differential equations is described in detail. Students create new differential equations by changing the dependent variable in the familiar linear first-order equation (dv/dx)+p(x)v=q(x) by means of a substitution v=f(y). The student then creates a table of the new equations and…

  3. On a Linear Equation Arising in Isometric Embedding of Torus-like Surface

    Chunhe LI

    2009-01-01

    The solvability of a linear equation and the regularity of the solution are discussed.The equation is arising in a geometric problem which is concerned with the realization of Alexandroff's positive annul in R3.

  4. Contact symmetries of general linear second-order ordinary differential equations: letter to the editor

    Martini, Ruud; Kersten, P.H.M.

    1983-01-01

    Using 1-1 mappings, the complete symmetry groups of contact transformations of general linear second-order ordinary differential equations are determined from two independent solutions of those equations, and applied to the harmonic oscillator with and without damping.

  5. Some Additional Remarks on the Cumulant Expansion for Linear Stochastic Differential Equations

    Roerdink, J.B.T.M.

    1984-01-01

    We summarize our previous results on cumulant expansions for linear stochastic differential equations with correlated multipliclative and additive noise. The application of the general formulas to equations with statistically independent multiplicative and additive noise is reconsidered in detail,

  6. Some additional remarks on the cumulant expansion for linear stochastic differential equations

    Roerdink, J.B.T.M.

    1984-01-01

    We summarize our previous results on cumular expasions for linear stochastic differential equations with correlated multipliclative and additive noise. The application of the general formulas to equations with statistically independent multiplicative and additive noise is reconsidered in detail,

  7. "Real-Time Optical Laboratory Linear Algebra Solution Of Partial Differential Equations"

    Casasent, David; Jackson, James

    1986-03-01

    A Space Integrating (SI) Optical Linear Algebra Processor (OLAP) employing space and frequency-multiplexing, new partitioning and data flow, and achieving high accuracy performance with a non base-2 number system is described. Laboratory data on the performance of this system and the solution of parabolic Partial Differential Equations (PDEs) is provided. A multi-processor OLAP system is also described for the first time. It use in the solution of multiple banded matrices that frequently arise is then discussed. The utility and flexibility of this processor compared to digital systolic architectures should be apparent.

  8. Numerov iteration method for second order integral-differential equation

    Zeng Fanan; Zhang Jiaju; Zhao Xuan

    1987-01-01

    In this paper, Numerov iterative method for second order integral-differential equation and system of equations are constructed. Numerical examples show that this method is better than direct method (Gauss elimination method) in CPU time and memoy requireing. Therefore, this method is an efficient method for solving integral-differential equation in nuclear physics

  9. Integrable coupling system of fractional soliton equation hierarchy

    Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-10-05

    In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.

  10. Algebraic Properties of First Integrals for Scalar Linear Third-Order ODEs of Maximal Symmetry

    K. S. Mahomed

    2013-01-01

    Full Text Available By use of the Lie symmetry group methods we analyze the relationship between the first integrals of the simplest linear third-order ordinary differential equations (ODEs and their point symmetries. It is well known that there are three classes of linear third-order ODEs for maximal cases of point symmetries which are 4, 5, and 7. The simplest scalar linear third-order equation has seven-point symmetries. We obtain the classifying relation between the symmetry and the first integral for the simplest equation. It is shown that the maximal Lie algebra of a first integral for the simplest equation y′′′=0 is unique and four-dimensional. Moreover, we show that the Lie algebra of the simplest linear third-order equation is generated by the symmetries of the two basic integrals. We also obtain counting theorems of the symmetry properties of the first integrals for such linear third-order ODEs. Furthermore, we provide insights into the manner in which one can generate the full Lie algebra of higher-order ODEs of maximal symmetry from two of their basic integrals.

  11. Solution of systems of linear algebraic equations by the method of summation of divergent series

    Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.

    2015-01-01

    A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru

  12. Exploring inductive linearization for pharmacokinetic-pharmacodynamic systems of nonlinear ordinary differential equations.

    Hasegawa, Chihiro; Duffull, Stephen B

    2018-02-01

    Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.

  13. Application of homotopy perturbation method for systems of Volterra integral equations of the first kind

    Biazar, J.; Eslami, M.; Aminikhah, H.

    2009-01-01

    In this article, an application of He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the first kind. Some non-linear examples are prepared to illustrate the efficiency and simplicity of the method. Applying the method for linear systems is so easily that it does not worth to have any example.

  14. He's homotopy perturbation method for solving systems of Volterra integral equations of the second kind

    Biazar, J.; Ghazvini, H.

    2009-01-01

    In this paper, the He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the second kind. Some examples are presented to illustrate the ability of the method for linear and non-linear such systems. The results reveal that the method is very effective and simple.

  15. On an integrable deformed affinsphären equation. A reciprocal gasdynamic connection

    Rogers, C.; Huang, Yehui

    2012-01-01

    The integrable affinsphären equation originally arose in a geometric context but has an interesting gasdynamic connection. Here, an integrable deformed version of the affinsphären equation is derived in a novel manner via the action of reciprocal transformations on a related anisentropic gasdynamics system. A linear representation for the deformed affinsphären equation is constructed by means of the reciprocal transformations. The latter are then employed to derive a class of exact solutions in parametric form. -- Highlights: ► A deformed affinsphären equation is derived via a reciprocal transformation. ► A linear representation for the deformed affinsphären equation is constructed. ► A class of exact solutions of the deformed affinsphären equation is presented.

  16. Technological pedagogical content knowledge of junior high school mathematics teachers in teaching linear equation

    Wati, S.; Fitriana, L.; Mardiyana

    2018-04-01

    Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.

  17. Explicit solution of Calderon preconditioned time domain integral equations

    Ulku, Huseyin Arda

    2013-07-01

    An explicit marching on-in-time (MOT) scheme for solving Calderon-preconditioned time domain integral equations is proposed. The scheme uses Rao-Wilton-Glisson and Buffa-Christiansen functions to discretize the domain and range of the integral operators and a PE(CE)m type linear multistep to march on in time. Unlike its implicit counterpart, the proposed explicit solver requires the solution of an MOT system with a Gram matrix that is sparse and well-conditioned independent of the time step size. Numerical results demonstrate that the explicit solver maintains its accuracy and stability even when the time step size is chosen as large as that typically used by an implicit solver. © 2013 IEEE.

  18. Appearance of eigen modes for the linearized Vlasov-Poisson equation

    Degond, P.

    1983-01-01

    In order to determine the asymptotic behaviour, when the time goes to infinity, of the solution of the linearized Vlasov-Poisson equation, we use eigen modes, associated to continuous linear functionals on a Banach space of analytic functions [fr

  19. Block-pulse functions approach to numerical solution of Abel’s integral equation

    Monireh Nosrati Sahlan

    2015-12-01

    Full Text Available This study aims to present a computational method for solving Abel’s integral equation of the second kind. The introduced method is based on the use of Block-pulse functions (BPFs via collocation method. Abel’s integral equations as singular Volterra integral equations are hard and heavy in computation, but because of the properties of BPFs, as is reported in examples, this method is more efficient and more accurate than some other methods for solving this class of integral equations. On the other hand, the benefit of this method is low cost of computing operations. The applied method transforms the singular integral equation into triangular linear algebraic system that can be solved easily. An error analysis is worked out and applications are demonstrated through illustrative examples.

  20. Backward stochastic differential equations from linear to fully nonlinear theory

    Zhang, Jianfeng

    2017-01-01

    This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

  1. Partially integrable nonlinear equations with one higher symmetry

    Mikhailov, A V; Novikov, V S; Wang, J P

    2005-01-01

    In this letter, we present a family of second order in time nonlinear partial differential equations, which have only one higher symmetry. These equations are not integrable, but have a solution depending on one arbitrary function. (letter to the editor)

  2. A calderón multiplicative preconditioner for the combined field integral equation

    Bagci, Hakan

    2009-10-01

    A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation is resonance-free. The iterative solution of the linear system of equations obtained via the CMP-based discretization of the CFIE converges rapidly regardless of the discretization density and the frequency of excitation. © 2009 IEEE.

  3. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems.

    Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2014-10-20

    We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.

  4. Integral equations of the first kind, inverse problems and regularization: a crash course

    Groetsch, C W

    2007-01-01

    This paper is an expository survey of the basic theory of regularization for Fredholm integral equations of the first kind and related background material on inverse problems. We begin with an historical introduction to the field of integral equations of the first kind, with special emphasis on model inverse problems that lead to such equations. The basic theory of linear Fredholm equations of the first kind, paying particular attention to E. Schmidt's singular function analysis, Picard's existence criterion, and the Moore-Penrose theory of generalized inverses is outlined. The fundamentals of the theory of Tikhonov regularization are then treated and a collection of exercises and a bibliography are provided

  5. Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

    Gnoffo, Peter A.

    2015-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.

  6. Some New Integrable Equations from the Self-Dual Yang-Mills Equations

    Ivanova, T.A.; Popov, A.D.

    1994-01-01

    Using the symmetry reductions of the self-dual Yang-Mills (SDYM) equations in (2+2) dimensions, we introduce new integrable equations which are 'deformations' of the chiral model in (2+1) dimensions, generalized nonlinear Schroedinger, Korteweg-de Vries, Toda lattice, Garnier, Euler-Arnold, generalized Calogero-Moser and Euler-Calogero-Moser equations. The Lax pairs for all of these equations are derived by the symmetry reductions of the Lax pair for the SDYM equations. 34 refs

  7. Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations

    Mancas, Stefan C. [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, SLP (Mexico)

    2013-09-02

    We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in their first-kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers–Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second order nonlinear equations.

  8. An Integrable Discrete Generalized Nonlinear Schrödinger Equation and Its Reductions

    Li Hong-Min; Li Yu-Qi; Chen Yong

    2014-01-01

    An integrable discrete system obtained by the algebraization of the difference operator is studied. The system is named discrete generalized nonlinear Schrödinger (GNLS) equation, which can be reduced to classical discrete nonlinear Schrödinger (NLS) equation. Furthermore, all of the linear reductions for the discrete GNLS equation are given through the theory of circulant matrices and the discrete NLS equation is obtained by one of the reductions. At the same time, the recursion operator and symmetries of continuous GNLS equation are successfully recovered by its corresponding discrete ones. (general)

  9. Geon-type solutions of the non-linear Heisenberg-Klein-Gordon equation

    Mielke, E.W.; Scherzer, R.

    1980-10-01

    As a model for a ''unitary'' field theory of extended particles we consider the non-linear Klein-Gordon equation - associated with a ''squared'' Heisenberg-Pauli-Weyl non-linear spinor equation - coupled to strong gravity. Using a stationary spherical ansatz for the complex scalar field as well as for the background metric generated via Einstein's field equation, we are able to study the effects of the scalar self-interaction as well as of the classical tensor forces. By numerical integration we obtain a continuous spectrum of localized, gravitational solitons resembling the geons previously constructed for the Einstein-Maxwell system by Wheeler. A self-generated curvature potential originating from the curved background partially confines the Schroedinger type wave functions within the ''scalar geon''. For zero angular momentum states and normalized scalar charge the spectrum for the total gravitational energy of these solitons exhibits a branching with respect to the number of nodes appearing in the radial part of the scalar field. Preliminary studies for higher values of the corresponding ''principal quantum number'' reveal that a kind of fine splitting of the energy levels occurs, which may indicate a rich, particle-like structure of these ''quantized geons''. (author)

  10. Explicit estimating equations for semiparametric generalized linear latent variable models

    Ma, Yanyuan; Genton, Marc G.

    2010-01-01

    which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n

  11. Localized solutions of non-linear Klein--Gordon equations

    Werle, J.

    1977-05-01

    Nondissipative, stationary solutions for a class of nonlinear Klein-Gordon equations for a scalar field were found explicitly. Since the field is different from zero only inside a sphere of definite radius, the solutions are called quantum droplets

  12. Numerical treatment of linearized equations describing inhomogeneous collisionless plasmas

    Lewis, H.R.

    1979-01-01

    The equations governing the small-signal response of spatially inhomogeneous collisionless plasmas have practical significance in physics, for example in controlled thermonuclear fusion research. Although the solutions are very complicated and the equations are different to solve numerically, effective methods for them are being developed which are applicable when the equilibrium involves only one nonignorable coordinate. The general theoretical framework probably will provide a basis for progress when there are two or three nonignorable coordinates

  13. Applicability of refined Born approximation to non-linear equations

    Rayski, J.

    1990-01-01

    A computational method called ''Refined Born Approximation'', formerly applied exclusively to linear problems, is shown to be successfully applicable also to non-linear problems enabling me to compute bifurcations and other irregular solutions which cannot be obtained by the standard perturbation procedures. (author)

  14. Partial differential equations of mathematical physics and integral equations

    Guenther, Ronald B

    1996-01-01

    This book was written to help mathematics students and those in the physical sciences learn modern mathematical techniques for setting up and analyzing problems. The mathematics used is rigorous, but not overwhelming, while the authors carefully model physical situations, emphasizing feedback among a beginning model, physical experiments, mathematical predictions, and the subsequent refinement and reevaluation of the physical model itself. Chapter 1 begins with a discussion of various physical problems and equations that play a central role in applications. The following chapters take up the t

  15. POSITIVE SOLUTIONS TO SEMI-LINEAR SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACE

    2008-01-01

    In this paper,we study the existence of positive periodic solution to some second- order semi-linear differential equation in Banach space.By the fixed point index theory, we prove that the semi-linear differential equation has two positive periodic solutions.

  16. On the Linearized Darboux Equation Arising in Isometric Embedding of the Alexandrov Positive Annulus

    Chunhe LI

    2013-01-01

    In the present paper,the solvability condition of the linearized Gauss-Codazzi system and the solutions to the homogenous system are given.In the meantime,the Solvability of a relevant linearized Darboux equation is given.The equations are arising in a geometric problem which is concerned with the realization of the Alexandrov's positive annulus in R3.

  17. Collective spin by linearization of the Schrodinger equation for nuclear collective motion

    Greiner, M.; Scheid, W.; Herrmann, R.

    1988-01-01

    The free Schrodinger equation for multipole degrees of freedom is linearized so that energy and momentum operators appear only in first order. As an example, the authors demonstrate the linearization procedure for quadrupole degrees of freedom. The wave function solving this equation carries a spin. The authors derive the operator of the collective spin and its eigen values depending on multipolarity

  18. New approach to solve fully fuzzy system of linear equations using ...

    This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and applied ...

  19. Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles

    Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim

    2016-01-01

    This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…

  20. An Evaluation of Five Linear Equating Methods for the NEAT Design

    Mroch, Andrew A.; Suh, Youngsuk; Kane, Michael T.; Ripkey, Douglas R.

    2009-01-01

    This study uses the results of two previous papers (Kane, Mroch, Suh, & Ripkey, this issue; Suh, Mroch, Kane, & Ripkey, this issue) and the literature on linear equating to evaluate five linear equating methods along several dimensions, including the plausibility of their assumptions and their levels of bias and root mean squared difference…

  1. TBA equations for the mass gap in the O(2r) non-linear σ-models

    Balog, Janos; Hegedues, Arpad

    2005-01-01

    We propose TBA integral equations for 1-particle states in the O(n) non-linear σ-model for even n. The equations are conjectured on the basis of the analytic properties of the large volume asymptotics of the problem, which is explicitly constructed starting from Luscher's asymptotic formula. For small volumes the mass gap values computed numerically from the TBA equations agree very well with results of three-loop perturbation theory calculations, providing support for the validity of the proposed TBA system

  2. A canonical form of the equation of motion of linear dynamical systems

    Kawano, Daniel T.; Salsa, Rubens Goncalves; Ma, Fai; Morzfeld, Matthias

    2018-03-01

    The equation of motion of a discrete linear system has the form of a second-order ordinary differential equation with three real and square coefficient matrices. It is shown that, for almost all linear systems, such an equation can always be converted by an invertible transformation into a canonical form specified by two diagonal coefficient matrices associated with the generalized acceleration and displacement. This canonical form of the equation of motion is unique up to an equivalence class for non-defective systems. As an important by-product, a damped linear system that possesses three symmetric and positive definite coefficients can always be recast as an undamped and decoupled system.

  3. Integral equations for four identical particles in angular momentum representation

    Kharchenko, V.F.; Shadchin, S.A.

    1975-01-01

    In integral equations of motion for a system of four identical spinless particles with central pair interactions, transition is realized from the representation of relative Jacobi momenta to the representation of their moduli and relative angular moments. As a result, the variables associated with the rotation of the system as a whole are separated in the equations. The integral equations of motion for four particles are reduced to the form of an infinite system of three-demensional integral equations. The four-particle kinematic factors contained in integral kernels are expressed in terms of three-particle type kinematic factors. In the case of separable two-particle interaction, the equations of motion for four particles have the form of an infinite system of two-dimensional integral equations

  4. Infinite sets of conservation laws for linear and nonlinear field equations

    Mickelsson, J.

    1984-01-01

    The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of the space-time symmetry group is established. It is shown that each symmetric element of the enveloping algebra of the space-time symmetry group of a linear field equation generates a one-parameter group of symmetries of the field equation. The cases of the Maxwell and Dirac equations are studied in detail. Then it is shown that (at least in the sense of a power series in the 'coupling constant') the conservation laws of the linear case can be deformed to conservation laws of a nonlinear field equation which is obtained from the linear one by adding a nonlinear term invariant under the group of space-time symmetries. As an example, our method is applied to the Korteweg-de Vries equation and to the massless Thirring model. (orig.)

  5. On the equivalence between particular types of Navier-Stokes and non-linear Schroedinger equations

    Dietrich, K.; Vautherin, D.

    1985-01-01

    We derive a Schroedinger equation equivalent to the Navier-Stokes equation in the special case of constant kinematic viscosities. This equation contains a non-linear term similar to that proposed by Kostin for a quantum description of friction [fr

  6. A non linear half space problem for radiative transfer equations. Application to the Rosseland approximation

    Sentis, R.

    1984-07-01

    The radiative transfer equations may be approximated by a non linear diffusion equation (called Rosseland equation) when the mean free paths of the photons are small with respect to the size of the medium. Some technical assomptions are made, namely about the initial conditions, to avoid any problem of initial layer terms

  7. Hyers-Ulam stability for second-order linear differential equations with boundary conditions

    Pasc Gavruta

    2011-06-01

    Full Text Available We prove the Hyers-Ulam stability of linear differential equations of second-order with boundary conditions or with initial conditions. That is, if y is an approximate solution of the differential equation $y''+ eta (x y = 0$ with $y(a = y(b =0$, then there exists an exact solution of the differential equation, near y.

  8. Linear and nonlinear analogues of the Schroedinger equation in the contextual approach in quantum mechanics

    Khrennikov, A.Yu.

    2005-01-01

    One derived the general evolutionary differential equation within the Hilbert space describing dynamics of the wave function. The derived contextual model is more comprehensive in contrast to a quantum one. The contextual equation may be a nonlinear one. Paper presents the conditions ensuring linearity of the evolution and derivation of the Schroedinger equation [ru

  9. ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations

    Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil

    2018-04-01

    In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.

  10. From the hypergeometric differential equation to a non-linear Schrödinger one

    Plastino, A.; Rocca, M.C.

    2015-01-01

    We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre–Rego-Monteiro–Tsallis one. - Highlights: • We show that the q-exponential is a hypergeometric function. • It thus obeys the hypergeometric differential equation (HDE). • We show that the HDE can be cast as a non-linear Schrödinger equation. • This is different from the Nobre, Rego-Monteiro, Tsallis one.

  11. Solving the Linear 1D Thermoelasticity Equations with Pure Delay

    Denys Ya. Khusainov

    2015-01-01

    Full Text Available We propose a system of partial differential equations with a single constant delay τ>0 describing the behavior of a one-dimensional thermoelastic solid occupying a bounded interval of R1. For an initial-boundary value problem associated with this system, we prove a well-posedness result in a certain topology under appropriate regularity conditions on the data. Further, we show the solution of our delayed model to converge to the solution of the classical equations of thermoelasticity as τ→0. Finally, we deduce an explicit solution representation for the delay problem.

  12. Unbounded solutions of quasi-linear difference equations

    Cecchi, M.; Došlá, Zuzana; Marini, M.

    2003-01-01

    Roč. 45, 10-11 (2003), s. 1113-1123 ISSN 0898-1221 Institutional research plan: CEZ:AV0Z1019905 Keywords : nonlinear difference equation * possitive increasing solution * strongly increasing solution Subject RIV: BA - General Mathematics Impact factor: 0.498, year: 2003

  13. Ten-Year-Old Students Solving Linear Equations

    Brizuela, Barbara; Schliemann, Analucia

    2004-01-01

    In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…

  14. On discrete 2D integrable equations of higher order

    Adler, V E; Postnikov, V V

    2014-01-01

    We study two-dimensional discrete integrable equations of order 1 with respect to one independent variable and m with respect to another one. A generalization of the multidimensional consistency property is proposed for this type of equations. The examples are related to the Bäcklund–Darboux transformations for the lattice equations of Bogoyavlensky type. (paper)

  15. Energy preserving integration of bi-Hamiltonian partial differential equations

    Karasozen, B.; Simsek, G.

    2013-01-01

    The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the

  16. Numerical Integration of a Class of Singularly Perturbed Delay Differential Equations with Small Shift

    Gemechis File

    2012-01-01

    Full Text Available We have presented a numerical integration method to solve a class of singularly perturbed delay differential equations with small shift. First, we have replaced the second-order singularly perturbed delay differential equation by an asymptotically equivalent first-order delay differential equation. Then, Simpson’s rule and linear interpolation are employed to get the three-term recurrence relation which is solved easily by discrete invariant imbedding algorithm. The method is demonstrated by implementing it on several linear and nonlinear model examples by taking various values for the delay parameter and the perturbation parameter .

  17. Construction of local and non-local conservation laws for non-linear field equations

    Vladimirov, V.S.; Volovich, I.V.

    1984-08-01

    A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)

  18. Supersymmetric Yang-Mills fields as an integrable system and connections with other non-linear systems

    Chau, L.L.

    1983-01-01

    Integrable properties, i.e., existence of linear systems, infinite number of conservation laws, Reimann-Hilbert transforms, affine Lie algebra of Kac-Moody, and Bianchi-Baecklund transformation, are discussed for the constraint equations of the supersymmetric Yang-Mills fields. For N greater than or equal to 3 these constraint equations give equations of motion of the fields. These equations of motion reduce to the ordinary Yang-Mills equations as the spinor and scalar fields are eliminated. These understandings provide a possible method to solve the full Yang-Mills equations. Connections with other non-linear systems are also discussed. 53 references

  19. Fuchs indices and the first integrals of nonlinear differential equations

    Kudryashov, Nikolai A.

    2005-01-01

    New method of finding the first integrals of nonlinear differential equations in polynomial form is presented. Basic idea of our approach is to use the scaling of solution of nonlinear differential equation and to find the dimensions of arbitrary constants in the Laurent expansion of the general solution. These dimensions allows us to obtain the scalings of members for the first integrals of nonlinear differential equations. Taking the polynomials with unknown coefficients into account we present the algorithm of finding the first integrals of nonlinear differential equations in the polynomial form. Our method is applied to look for the first integrals of eight nonlinear ordinary differential equations of the fourth order. The general solution of one of the fourth order ordinary differential equations is given

  20. Application of wavelets to singular integral scattering equations

    Kessler, B.M.; Payne, G.L.; Polyzou, W.N.

    2004-01-01

    The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems

  1. Sensitivity theory for general non-linear algebraic equations with constraints

    Oblow, E.M.

    1977-04-01

    Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems

  2. On monotonic solutions of an integral equation of Abel type

    Darwish, Mohamed Abdalla

    2007-08-01

    We present an existence theorem of monotonic solutions for a quadratic integral equation of Abel type in C[0, 1]. The famous Chandrasekhar's integral equation is considered as a special case. The concept of measure of noncompactness and a fi xed point theorem due to Darbo are the main tools in carrying out our proof. (author)

  3. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory

    Zhou, L.-Q.; Meleshko, S. V.

    2017-07-01

    The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.

  4. A hierarchy of Liouville integrable discrete Hamiltonian equations

    Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn

    2008-05-12

    Based on a discrete four-by-four matrix spectral problem, a hierarchy of Lax integrable lattice equations with two potentials is derived. Two Hamiltonian forms are constructed for each lattice equation in the resulting hierarchy by means of the discrete variational identity. A strong symmetry operator of the resulting hierarchy is given. Finally, it is shown that the resulting lattice equations are all Liouville integrable discrete Hamiltonian systems.

  5. Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms.

    Adams, Luise; Chaubey, Ekta; Weinzierl, Stefan

    2017-04-07

    In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to an ϵ form.

  6. Linear analysis of the momentum cooling Fokker-Planck equation

    Rosenzweig, J.B.

    1989-01-01

    In order to optimize the extraction scheme used to take antiprotons out of the accumulator, it is necessary to understand the basic processes involved. At present, six antiproton bunches per Tevatron store are removed sequentially by RF unstacking from the accumulator. The phase space dynamics of this process, with its accompanying phase displacement deceleration and phase space dilution of portions of the stack, can be modelled by numerical solution of the longitudinal equations of motion for a large number of particles. We have employed the tracking code ESME for this purpose. In between RF extractions, however, the stochastic cooling system is turned on for a short time, and we must take into account the effect of momentum stochastic cooling on the antiproton energy spectrum. This process is described by the Fokker-Planck equation, which models the evolution of the antiproton stack energy distribution by accounting for the cooling through an applied coherent drag force and the competing heating of the stack due to diffusion, which can arise from intra-beam scattering, amplifier noise and coherent (Schottky) effects. In this note we examine the aspects of the Fokker-Planck in the regime where the nonlinear terms due to Schottky effects are small. This discussion ultimately leads to solution of the equation in terms of an orthonormal set of functions which are closely related to the quantum simple-harmonic oscillator wave-functions. 5 refs

  7. The Embedding Method for Linear Partial Differential Equations

    The recently suggested embedding method to solve linear boundary value problems is here extended to cover situations where the domain of interest is unbounded or multiply connected. The extensions involve the use of complete sets of exterior and interior eigenfunctions on canonical domains. Applications to typical ...

  8. Canonical structure of evolution equations with non-linear ...

    The dispersion produced is compensated by non-linear effects resulting in the formation of exponentially localized .... determining the values of Lagrange's multipliers αis. We postulate that a slightly .... c3 «w2x -v. (36). To include the effect of the secondary constraint c3 in the total Hamiltonian H we modify. (33) as. 104.

  9. Oscillation and non-oscillation criterion for Riemann–Weber type half-linear differential equations

    Petr Hasil

    2016-08-01

    Full Text Available By the combination of the modified half-linear Prüfer method and the Riccati technique, we study oscillatory properties of half-linear differential equations. Taking into account the transformation theory of half-linear equations and using some known results, we show that the analysed equations in the Riemann–Weber form with perturbations in both terms are conditionally oscillatory. Within the process, we identify the critical oscillation values of their coefficients and, consequently, we decide when the considered equations are oscillatory and when they are non-oscillatory. As a direct corollary of our main result, we solve the so-called critical case for a certain type of half-linear non-perturbed equations.

  10. Path integral solutions of the master equation. [Lagrangian function, Ehrenfest-type theorem, Cauchy method, inverse functions

    Etim, E; Basili, C [Rome Univ. (Italy). Ist. di Matematica

    1978-08-21

    The lagrangian in the path integral solution of the master equation of a stationary Markov process is derived by application of the Ehrenfest-type theorem of quantum mechanics and the Cauchy method of finding inverse functions. Applied to the non-linear Fokker-Planck equation the authors reproduce the result obtained by integrating over Fourier series coefficients and by other methods.

  11. Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation

    Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua

    2018-06-01

    Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.

  12. Linear relativistic gyrokinetic equation in general magnetically confined plasmas

    Tsai, S.T.; Van Dam, J.W.; Chen, L.

    1983-08-01

    The gyrokinetic formalism for linear electromagnetic waves of arbitrary frequency in general magnetic-field configurations is extended to include full relativistic effects. The derivation employs the small adiabaticity parameter rho/L 0 where rho is the Larmor radius and L 0 the equilibrium scale length. The effects of the plasma and magnetic field inhomogeneities and finite Larmor-radii effects are also contained

  13. Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations

    Eden, Burkhard [Institut für Mathematik und Physik, Humboldt-Universität zu Berlin,Zum großen Windkanal 6, 12489 Berlin (Germany); Smirnov, Vladimir A. [Skobeltsyn Institute of Nuclear Physics, Moscow State University,119992 Moscow (Russian Federation)

    2016-10-21

    We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.

  14. Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations

    Eden, Burkhard; Smirnov, Vladimir A.

    2016-10-01

    We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.

  15. Calculations of stationary solutions for the non linear viscous resistive MHD equations in slab geometry

    Edery, D.

    1983-11-01

    The reduced system of the non linear resistive MHD equations is used in the 2-D one helicity approximation in the numerical computations of stationary tearing modes. The critical magnetic Raynolds number S (S=tausub(r)/tausub(H) where tausub(R) and tausub(H) are respectively the characteristic resistive and hydro magnetic times) and the corresponding linear solution are computed as a starting approximation for the full non linear equations. These equations are then treated numerically by an iterative procedure which is shown to be rapidly convergent. A numerical application is given in the last part of this paper

  16. Integrable discretization s of derivative nonlinear Schroedinger equations

    Tsuchida, Takayuki

    2002-01-01

    We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations. (author)

  17. Nodal methods with non linear feedback for the three dimensional resolution of the diffusion's multigroup equations

    Ferri, A.A.

    1986-01-01

    Nodal methods applied in order to calculate the power distribution in a nuclear reactor core are presented. These methods have received special attention, because they yield accurate results in short computing times. Present nodal schemes contain several unknowns per node and per group. In the methods presented here, non linear feedback of the coupling coefficients has been applied to reduce this number to only one unknown per node and per group. The resulting algorithm is a 7- points formula, and the iterative process has proved stable in the response matrix scheme. The intranodal flux shape is determined by partial integration of the diffusion equations over two of the coordinates, leading to a set of three coupled one-dimensional equations. These can be solved by using a polynomial approximation or by integration (analytic solution). The tranverse net leakage is responsible for the coupling between the spatial directions, and two alternative methods are presented to evaluate its shape: direct parabolic approximation and local model expansion. Numerical results, which include the IAEA two-dimensional benchmark problem illustrate the efficiency of the developed methods. (M.E.L.) [es

  18. Integrable Equations of the Form qt=L1(x,t,q,qx,qxx)qxxx+L2(x,t,q,qx,qxx)

    Satir, Ahmet

    2003-01-01

    Integrable equations of the form q t =L 1 (x,t,q,q x ,q xx )q xxx +L 2 (x,t,q,q x ,q xx ) are considered using linearization. A new type of integrable equations which are the generalization of the integrable equations of Fokas and Ibragimov and Shabat are given

  19. From Newton's Law to the Linear Boltzmann Equation Without Cut-Off

    Ayi, Nathalie

    2017-03-01

    We provide a rigorous derivation of the linear Boltzmann equation without cut-off starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the Boltzmann-Grad scaling. More particularly, we will describe the motion of a tagged particle in a gas close to global equilibrium. The main difficulty in our context is that, due to the infinite range of the potential, a non-integrable singularity appears in the angular collision kernel, making no longer valid the single-use of Lanford's strategy. Our proof relies then on a combination of Lanford's strategy, of tools developed recently by Bodineau, Gallagher and Saint-Raymond to study the collision process, and of new duality arguments to study the additional terms associated with the long-range interaction, leading to some explicit weak estimates.

  20. An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation

    Liu, Da-Yan; Tian, Yang; Boutat, Driss; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.

  1. An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation

    Liu, Da-Yan

    2015-04-30

    This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.

  2. Analytic solution of integral equations for molecular fluids

    Cummings, P.T.

    1984-01-01

    We review some recent progress in the analytic solution of integral equations for molecular fluids. The site-site Ornstein-Zernike (SSOZ) equation with approximate closures appropriate to homonuclear diatomic fluids both with and without attractive dispersion-like interactions has recently been solved in closed form analytically. In this paper, the close relationship between the SSOZ equation for homonuclear dumbells and the usual Ornstein-Zernike (OZ) equation for atomic fluids is carefully elucidated. This relationship is a key motivation for the analytic solutions of the SSOZ equation that have been obtained to date. (author)

  3. A novel hierarchy of differential—integral equations and their generalized bi-Hamiltonian structures

    Zhai Yun-Yun; Geng Xian-Guo; He Guo-Liang

    2014-01-01

    With the aid of the zero-curvature equation, a novel integrable hierarchy of nonlinear evolution equations associated with a 3 × 3 matrix spectral problem is proposed. By using the trace identity, the bi-Hamiltonian structures of the hierarchy are established with two skew-symmetric operators. Based on two linear spectral problems, we obtain the infinite many conservation laws of the first member in the hierarchy

  4. Magnetostatic fields computed using an integral equation derived from Green's theorems

    Simkin, J.; Trowbridge, C.W.

    1976-04-01

    A method of computing magnetostatic fields is described that is based on a numerical solution of the integral equation obtained from Green's Theorems. The magnetic scalar potential and its normal derivative on the surfaces of volumes are found by solving a set of linear equations. These are obtained from Green's Second Theorem and the continuity conditions at interfaces between volumes. Results from a two-dimensional computer program are presented and these show the method to be accurate and efficient. (author)

  5. Perturbations of linear delay differential equations at the verge of instability.

    Lingala, N; Namachchivaya, N Sri

    2016-06-01

    The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts. It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE) without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other articles that use multiscale approach are pointed out.

  6. Excited-state lifetime measurements: Linearization of the Foerster equation by the phase-plane method

    Love, J.C.; Demas, J.N.

    1983-01-01

    The Foerster equation describes excited-state decay curves involving resonance intermolecular energy transfer. A linearized solution based on the phase-plane method has been developed. The new method is quick, insensitive to the fitting region, accurate, and precise

  7. Stability of the trivial solution for linear stochastic differential equations with Poisson white noise

    Grigoriu, Mircea; Samorodnitsky, Gennady

    2004-01-01

    Two methods are considered for assessing the asymptotic stability of the trivial solution of linear stochastic differential equations driven by Poisson white noise, interpreted as the formal derivative of a compound Poisson process. The first method attempts to extend a result for diffusion processes satisfying linear stochastic differential equations to the case of linear equations with Poisson white noise. The developments for the method are based on Ito's formula for semimartingales and Lyapunov exponents. The second method is based on a geometric ergodic theorem for Markov chains providing a criterion for the asymptotic stability of the solution of linear stochastic differential equations with Poisson white noise. Two examples are presented to illustrate the use and evaluate the potential of the two methods. The examples demonstrate limitations of the first method and the generality of the second method

  8. An implicit iterative scheme for solving large systems of linear equations

    Barry, J.M.; Pollard, J.P.

    1986-12-01

    An implicit iterative scheme for the solution of large systems of linear equations arising from neutron diffusion studies is presented. The method is applied to three-dimensional reactor studies and its performance is compared with alternative iterative approaches

  9. Solution of linear transport equation using Chebyshev polynomials and Laplace transform

    Cardona, A.V.; Vilhena, M.T.M.B. de

    1994-01-01

    The Chebyshev polynomials and the Laplace transform are combined to solve, analytically, the linear transport equation in planar geometry, considering isotropic scattering and the one-group model. Numerical simulation is presented. (author)

  10. On a class of strongly degenerate and singular linear elliptic equation

    Duong Minh Duc, D.M.; Le Dung.

    1992-11-01

    We consider a class of strongly degenerate linear elliptic equation. The boundedness and the Holder regularity of the weak solutions in the weighted Sobolev-Hardy spaces will be studied. (author). 9 refs

  11. SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES

    Sari Saraswati

    2016-01-01

    Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.

  12. Integral and Multidimensional Linear Distinguishers with Correlation Zero

    Bogdanov, Andrey; Leander, Gregor; Nyberg, Kaisa

    2012-01-01

    Zero-correlation cryptanalysis uses linear approximations holding with probability exactly 1/2. In this paper, we reveal fundamental links of zero-correlation distinguishers to integral distinguishers and multidimensional linear distinguishers. We show that an integral implies zero-correlation li...... weak key assumptions. © International Association for Cryptologic Research 2012....

  13. Matrix form of Legendre polynomials for solving linear integro-differential equations of high order

    Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.

    2017-04-01

    This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.

  14. Accurate and efficient quadrature for volterra integral equations

    Knirk, D.L.

    1976-01-01

    Four quadrature schemes were tested and compared in considerable detail to determine their usefulness in the noniterative integral equation method for single-channel quantum-mechanical calculations. They are two forms of linear approximation (trapezoidal rule) and two forms of quadratic approximation (Simpson's rule). Their implementation in this method is shown, a formal discussion of error propagation is given, and tests are performed to determine actual operating characteristics on various bound and scattering problems in different potentials. The quadratic schemes are generally superior to the linear ones in terms of accuracy and efficiency. The previous implementation of Simpson's rule is shown to possess an inherent instability which requires testing on each problem for which it is used to assure its reliability. The alternative quadratic approximation does not suffer this deficiency, but still enjoys the advantages of higher order. In addition, the new scheme obeys very well an h 4 Richardson extrapolation, whereas the old one does so rather poorly. 6 figures, 11 tables

  15. On a new series of integrable nonlinear evolution equations

    Ichikawa, Y.H.; Wadati, Miki; Konno, Kimiaki; Shimizu, Tohru.

    1980-10-01

    Recent results of our research are surveyed in this report. The derivative nonlinear Schroedinger equation for the circular polarized Alfven wave admits the spiky soliton solutions for the plane wave boundary condition. The nonlinear equation for complex amplitude associated with the carrier wave is shown to be a generalized nonlinear Schroedinger equation, having the ordinary cubic nonlinear term and the derivative of cubic nonlinear term. A generalized scheme of the inverse scattering transformation has confirmed that superposition of the A-K-N-S scheme and the K-N scheme for the component equations valids for the generalized nonlinear Schroedinger equation. Then, two types of new integrable nonlinear evolution equation have been derived from our scheme of the inverse scattering transformation. One is the type of nonlinear Schroedinger equation, while the other is the type of Korteweg-de Vries equation. Brief discussions are presented for physical phenomena, which could be accounted by the second type of the new integrable nonlinear evolution equation. Lastly, the stationary solitary wave solutions have been constructed for the integrable nonlinear evolution equation of the second type. These solutions have peculiar structure that they are singular and discrete. It is a new challenge to construct singular potentials by the inverse scattering transformation. (author)

  16. Some applications of linear difference equations in finance with wolfram|alpha and maple

    Dana Rıhová

    2014-12-01

    Full Text Available The principle objective of this paper is to show how linear difference equations can be applied to solve some issues of financial mathematics. We focus on the area of compound interest and annuities. In both cases we determine appropriate recursive rules, which constitute the first order linear difference equations with constant coefficients, and derive formulas required for calculating examples. Finally, we present possibilities of application of two selected computer algebra systems Wolfram|Alpha and Maple in this mathematical area.

  17. Solving Linear Equations by Classical Jacobi-SR Based Hybrid Evolutionary Algorithm with Uniform Adaptation Technique

    Jamali, R. M. Jalal Uddin; Hashem, M. M. A.; Hasan, M. Mahfuz; Rahman, Md. Bazlar

    2013-01-01

    Solving a set of simultaneous linear equations is probably the most important topic in numerical methods. For solving linear equations, iterative methods are preferred over the direct methods especially when the coefficient matrix is sparse. The rate of convergence of iteration method is increased by using Successive Relaxation (SR) technique. But SR technique is very much sensitive to relaxation factor, {\\omega}. Recently, hybridization of classical Gauss-Seidel based successive relaxation t...

  18. Growth of meromorphic solutions of higher-order linear differential equations

    Wenjuan Chen

    2009-01-01

    Full Text Available In this paper, we investigate the higher-order linear differential equations with meromorphic coefficients. We improve and extend a result of M.S. Liu and C.L. Yuan, by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen, and the extended Winman-Valiron theory which proved by J. Wang and H.X. Yi. In addition, we also consider the nonhomogeneous linear differential equations.

  19. Solution of linear ordinary differential equations by means of the method of variation of arbitrary constants

    Mejlbro, Leif

    1997-01-01

    An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians.......An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians....

  20. Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations

    Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A

    2009-01-01

    The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.

  1. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    Valdés, Felipe

    2011-06-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a single source magnetic field integral equation. The equation is immune to low-frequency and dense-mesh breakdown, and free from spurious resonances. Unlike dual source formulations, this equation involves operator products that cannot be discretized using standard procedures for discretizing standalone electric, magnetic, and combined field operators. Instead, the single source equation proposed here is discretized using a recently developed technique that achieves a well-conditioned mapping from div- to curl-conforming function spaces, thereby fully respecting the space mapping properties of the operators involved, and guaranteeing accuracy and stability. Numerical results show that the proposed equation and discretization technique give rise to rapidly convergent solutions. They also validate the equation\\'s resonant free character. © 2006 IEEE.

  2. Integrating Linear Programming and Analytical Hierarchical ...

    Study area is about 28000 ha of Keleibar- Chai Watershed, located in eastern Azerbaijan, Iran. Socio-economic information collected through a two-stage survey of 19 villages, including 300 samples. Thematic maps also have summarized Ecological factors, including physical and economic data. A comprehensive Linear ...

  3. Integral equation for inhomogeneous condensed bosons generalizing the Gross-Pitaevskii differential equation

    Angilella, G.G.N.; Pucci, R.; March, N.H.

    2004-01-01

    We give here the derivation of a Gross-Pitaevskii-type equation for inhomogeneous condensed bosons. Instead of the original Gross-Pitaevskii differential equation, we obtain an integral equation that implies less restrictive assumptions than are made in the very recent study of Pieri and Strinati [Phys. Rev. Lett. 91, 030401 (2003)]. In particular, the Thomas-Fermi approximation and the restriction to small spatial variations of the order parameter invoked in their study are avoided

  4. Factorization of a class of almost linear second-order differential equations

    Estevez, P G; Kuru, S; Negro, J; Nieto, L M

    2007-01-01

    A general type of almost linear second-order differential equations, which are directly related to several interesting physical problems, is characterized. The solutions of these equations are obtained using the factorization technique, and their non-autonomous invariants are also found by means of scale transformations

  5. Bounded solutions of self-adjoint second order linear difference equations with periodic coeffients

    Encinas A.M.

    2018-02-01

    Full Text Available In this work we obtain easy characterizations for the boundedness of the solutions of the discrete, self–adjoint, second order and linear unidimensional equations with periodic coefficients, including the analysis of the so-called discrete Mathieu equations as particular cases.

  6. A study on linear and nonlinear Schrodinger equations by the variational iteration method

    Wazwaz, Abdul-Majid

    2008-01-01

    In this work, we introduce a framework to obtain exact solutions to linear and nonlinear Schrodinger equations. The He's variational iteration method (VIM) is used for analytic treatment of these equations. Numerical examples are tested to show the pertinent features of this method

  7. Could solitons be adiabatic invariants attached to certain non linear equations

    Lochak, P.

    1984-01-01

    Arguments are given to support the claim that solitons should be the adiabatic invariants associated to certain non linear partial differential equations; a precise mathematical form of this conjecture is then stated. As a particular case of the conjecture, the Korteweg-de Vries equation is studied. (Auth.)

  8. A Fibonacci collocation method for solving a class of Fredholm–Volterra integral equations in two-dimensional spaces

    Farshid Mirzaee

    2014-06-01

    Full Text Available In this paper, we present a numerical method for solving two-dimensional Fredholm–Volterra integral equations (F-VIE. The method reduces the solution of these integral equations to the solution of a linear system of algebraic equations. The existence and uniqueness of the solution and error analysis of proposed method are discussed. The method is computationally very simple and attractive. Finally, numerical examples illustrate the efficiency and accuracy of the method.

  9. GDTM-Padé technique for the non-linear differential-difference equation

    Lu Jun-Feng

    2013-01-01

    Full Text Available This paper focuses on applying the GDTM-Padé technique to solve the non-linear differential-difference equation. The bell-shaped solitary wave solution of Belov-Chaltikian lattice equation is considered. Comparison between the approximate solutions and the exact ones shows that this technique is an efficient and attractive method for solving the differential-difference equations.

  10. Non-linear partial differential equations an algebraic view of generalized solutions

    Rosinger, Elemer E

    1990-01-01

    A massive transition of interest from solving linear partial differential equations to solving nonlinear ones has taken place during the last two or three decades. The availability of better computers has often made numerical experimentations progress faster than the theoretical understanding of nonlinear partial differential equations. The three most important nonlinear phenomena observed so far both experimentally and numerically, and studied theoretically in connection with such equations have been the solitons, shock waves and turbulence or chaotical processes. In many ways, these phenomen

  11. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    Granita; Bahar, A.

    2015-01-01

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found

  12. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    Granita, E-mail: granitafc@gmail.com [Dept. Mathematical Education, State Islamic University of Sultan Syarif Kasim Riau, 28293 Indonesia and Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor (Malaysia); Bahar, A. [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor Malaysia and UTM Center for Industrial and Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-03-09

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.

  13. Hyers-Ulam stability of linear second-order differential equations in complex Banach spaces

    Yongjin Li

    2013-08-01

    Full Text Available We prove the Hyers-Ulam stability of linear second-order differential equations in complex Banach spaces. That is, if y is an approximate solution of the differential equation $y''+ alpha y'(t +eta y = 0$ or $y''+ alpha y'(t +eta y = f(t$, then there exists an exact solution of the differential equation near to y.

  14. Asymptotic behavior of solutions of linear multi-order fractional differential equation systems

    Diethelm, Kai; Siegmund, Stefan; Tuan, H. T.

    2017-01-01

    In this paper, we investigate some aspects of the qualitative theory for multi-order fractional differential equation systems. First, we obtain a fundamental result on the existence and uniqueness for multi-order fractional differential equation systems. Next, a representation of solutions of homogeneous linear multi-order fractional differential equation systems in series form is provided. Finally, we give characteristics regarding the asymptotic behavior of solutions to some classes of line...

  15. Solution of second order linear fuzzy difference equation by Lagrange's multiplier method

    Sankar Prasad Mondal

    2016-06-01

    Full Text Available In this paper we execute the solution procedure for second order linear fuzzy difference equation by Lagrange's multiplier method. In crisp sense the difference equation are easy to solve, but when we take in fuzzy sense it forms a system of difference equation which is not so easy to solve. By the help of Lagrange's multiplier we can solved it easily. The results are illustrated by two different numerical examples and followed by two applications.

  16. Some problems on non-linear semigroups and the blow-up of integral solutions

    Pavel, N.H.

    1983-07-01

    After some introductory remarks, this highly mathematical document considers a unifying approach in the theory of non-linear semigroups. Then a brief survey is given on blow-up of mild solutions from the semilinear case. Finally, the global behavior of solutions to non-linear evolution equations is addressed; it is found that classical results on the behavior of the maximal solution u as t up-arrow tsub(max) hold also for integral solutions

  17. Useful tools for non-linear systems: Several non-linear integral inequalities

    Agahi, H.; Mohammadpour, A.; Mesiar, Radko; Vaezpour, M. S.

    2013-01-01

    Roč. 49, č. 1 (2013), s. 73-80 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : Monotone measure * Comonotone functions * Integral inequalities * Universal integral Subject RIV: BA - General Mathematics Impact factor: 3.058, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf

  18. To the complete integrability of long-wave short-wave interaction equations

    Roy Chowdhury, A.; Chanda, P.K.

    1984-10-01

    We show that the non-linear partial differential equations governing the interaction of long and short waves are completely integrable. The methodology we use is that of Ablowitz et al. though in the last section of our paper we have discussed the problem also in the light of the procedure due to Weiss et al. and have obtained a Baecklund transformation. (author)

  19. Two-dimensional nonlinear string-type equations and their exact integration

    Leznov, A.N.; Saveliev, M.V.

    1982-01-01

    On the base of group-theoretical formulation for exactly integrable two-dimensional non-linear dynamical systems associated with a local part of an arbitrary graded Lie algebra we study a string-type subclass of the equations. Explicit expressions have been obtained for their general solutions

  20. The Integral Equation Method and the Neumann Problem for the Poisson Equation on NTA Domains

    Medková, Dagmar

    2009-01-01

    Roč. 63, č. 21 (2009), s. 227-247 ISSN 0378-620X Institutional research plan: CEZ:AV0Z10190503 Keywords : Poisson equation * Neumann problem * integral equation method Subject RIV: BA - General Mathematics Impact factor: 0.477, year: 2009

  1. Transmission problem for the Laplace equation and the integral equation method

    Medková, Dagmar

    2012-01-01

    Roč. 387, č. 2 (2012), s. 837-843 ISSN 0022-247X Institutional research plan: CEZ:AV0Z10190503 Keywords : transmission problem * Laplace equation * boundary integral equation Subject RIV: BA - General Mathematics Impact factor: 1.050, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022247X11008985

  2. Reformulation of nonlinear integral magnetostatic equations for rapid iterative convergence

    Bloomberg, D.S.; Castelli, V.

    1985-01-01

    The integral equations of magnetostatics, conventionally given in terms of the field variables M and H, are reformulated with M and B. Stability criteria and convergence rates of the eigenvectors of the linear iteration matrices are evaluated. The relaxation factor β in the MH approach varies inversely with permeability μ, and nonlinear problems with high permeability converge slowly. In contrast, MB iteration is stable for β 3 , the number of iterations is reduced by two orders of magnitude over the conventional method, and at higher permeabilities the reduction is proportionally greater. The dependence of MB convergence rate on β, degree of saturation, element aspect ratio, and problem size is found numerically. An analytical result for the MB convergence rate for small nonlinear problems is found to be accurate for βless than or equal to1.2. The results are generally valid for two- and three-dimensional integral methods and are independent of the particular discretization procedures used to compute the field matrix

  3. Dynamics and bifurcations of a three-dimensional piecewise-linear integrable map

    Tuwankotta, J M; Quispel, G R W; Tamizhmani, K M

    2004-01-01

    In this paper, we consider a four-parameter family of piecewise-linear ordinary difference equations (OΔEs) in R 3 . This system is obtained as a limit of another family of three-dimensional integrable systems of OΔEs. We prove that the limiting procedure sends integrals of the original system to integrals of the limiting system. We derive some results for the solutions such as boundedness of solutions and the existence of periodic solutions. We describe all topologically different shapes of the integral manifolds and present all possible scenarios of transitions as we vary the natural parameters in the system, i.e. the values of the integrals

  4. APPLICATION OF BOUNDARY INTEGRAL EQUATION METHOD FOR THERMOELASTICITY PROBLEMS

    Vorona Yu.V.

    2015-12-01

    Full Text Available Boundary Integral Equation Method is used for solving analytically the problems of coupled thermoelastic spherical wave propagation. The resulting mathematical expressions coincide with the solutions obtained in a conventional manner.

  5. A New Algorithm for System of Integral Equations

    Abdujabar Rasulov

    2014-01-01

    Full Text Available We develop a new algorithm to solve the system of integral equations. In this new method no need to use matrix weights. Beacause of it, we reduce computational complexity considerable. Using the new algorithm it is also possible to solve an initial boundary value problem for system of parabolic equations. To verify the efficiency, the results of computational experiments are given.

  6. Feynman path integral related to stochastic schroedinger equation

    Belavkin, V.P.; Smolyanov, O.G.

    1998-01-01

    The derivation of the Schroedinger equation describing the continuous measurement process is presented. The representation of the solution of the stochastic Schroedinger equation for continuous measurements is obtained by means of the Feynman path integral. The connection with the heuristic approach to the description of continuous measurements is considered. The connection with the Senon paradox is established [ru

  7. Multi-component bi-Hamiltonian Dirac integrable equations

    Ma Wenxiu [Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700 (United States)], E-mail: mawx@math.usf.edu

    2009-01-15

    A specific matrix iso-spectral problem of arbitrary order is introduced and an associated hierarchy of multi-component Dirac integrable equations is constructed within the framework of zero curvature equations. The bi-Hamiltonian structure of the obtained Dirac hierarchy is presented be means of the variational trace identity. Two examples in the cases of lower order are computed.

  8. Differential equations for loop integrals in Baikov representation

    Bosma, Jorrit; Larsen, Kasper J.; Zhang, Yang

    2018-05-01

    We present a proof that differential equations for Feynman loop integrals can always be derived in Baikov representation without involving dimension-shift identities. We moreover show that in a large class of two- and three-loop diagrams it is possible to avoid squared propagators in the intermediate steps of setting up the differential equations.

  9. Monograph - The Numerical Integration of Ordinary Differential Equations.

    Hull, T. E.

    The materials presented in this monograph are intended to be included in a course on ordinary differential equations at the upper division level in a college mathematics program. These materials provide an introduction to the numerical integration of ordinary differential equations, and they can be used to supplement a regular text on this…

  10. Distribution theory for Schrödinger’s integral equation

    Lange, R.J.

    2015-01-01

    Much of the literature on point interactions in quantum mechanics has focused on the differential form of Schrödinger's equation. This paper, in contrast, investigates the integral form of Schrödinger's equation. While both forms are known to be equivalent for smooth potentials, this is not true for

  11. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    Maccari, A.

    1997-01-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio endash temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a open-quotes universalclose quotes character, inasmuch as they may be derived from a very large class of nonlinear evolution equations with a linear dispersive part. copyright 1997 American Institute of Physics

  12. Integrability of a system of two nonlinear Schroedinger equations

    Zhukhunashvili, V.Z.

    1989-01-01

    In recent years the inverse scattering method has achieved significant successes in the integration of nonlinear models that arise in different branches of physics. However, its region of applicability is still restricted, i.e., not all nonlinear models can be integrated. In view of the great mathematical difficulties that arise in integration, it is clearly worth testing a model for integrability before turning to integration. Such a possibility is provided by the Zakharov-Schulman method. The question of the integrability of a system of two nonlinear Schroedinger equations is resolved. It is shown that the previously known cases exhaust all integrable variants

  13. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  14. Shifted Legendre method with residual error estimation for delay linear Fredholm integro-differential equations

    Şuayip Yüzbaşı

    2017-03-01

    Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.

  15. Moduli spaces for linear differential equations and the Painlev'e equations

    Put, Marius van der; Saito, Masa-Hiko

    2009-01-01

    In this paper, we give a systematic construction of ten isomonodromic families of connections of rank two on P1 inducing Painlev´e equations. The classification of ten families is given by considering the Riemann-Hilbert morphism from a moduli space of connections with certain type of regular and

  16. Iterative methods for the solution of very large complex symmetric linear systems of equations in electrodynamics

    Clemens, M.; Weiland, T. [Technische Hochschule Darmstadt (Germany)

    1996-12-31

    In the field of computational electrodynamics the discretization of Maxwell`s equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.

  17. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  18. Conservation properties of numerical integration methods for systems of ordinary differential equations

    Rosenbaum, J. S.

    1976-01-01

    If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.

  19. Effective quadrature formula in solving linear integro-differential equations of order two

    Eshkuvatov, Z. K.; Kammuji, M.; Long, N. M. A. Nik; Yunus, Arif A. M.

    2017-08-01

    In this note, we solve general form of Fredholm-Volterra integro-differential equations (IDEs) of order 2 with boundary condition approximately and show that proposed method is effective and reliable. Initially, IDEs is reduced into integral equation of the third kind by using standard integration techniques and identity between multiple and single integrals then truncated Legendre series are used to estimate the unknown function. For the kernel integrals, we have applied Gauss-Legendre quadrature formula and collocation points are chosen as the roots of the Legendre polynomials. Finally, reduce the integral equations of the third kind into the system of algebraic equations and Gaussian elimination method is applied to get approximate solutions. Numerical examples and comparisons with other methods reveal that the proposed method is very effective and dominated others in many cases. General theory of existence of the solution is also discussed.

  20. On the complete integrability of the discrete Nahm equations

    Murray, M.K.

    2000-01-01

    The discrete Nahm equations, a system of matrix valued difference equations, arose in the work of Braam and Austin on half-integral mass hyperbolic monopoles. We show that the discrete Nahm equations are completely integrable in a natural sense: to any solution we can associate a spectral curve and a holomorphic line-bundle over the spectral curve, such that the discrete-time DN evolution corresponds to walking in the Jacobian of the spectral curve in a straight line through the line-bundle with steps of a fixed size. Some of the implications for hyperbolic monopoles are also discussed. (orig.)

  1. A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials

    Li, Chen; Liao, Yufei

    2018-03-01

    Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.

  2. Solutions of the linearized Bach-Einstein equation in the static spherically symmetric case

    Schmidt, H.J.

    1985-01-01

    The Bach-Einstein equation linearized around Minkowski space-time is completely solved. The set of solutions depends on three parameters; a two-parameter subset of it becomes asymptotically flat. In that region the gravitational potential is of the type phi = -m/r + epsilon exp (-r/l). Because of the different asymptotic behaviour of both terms, it became necessary to linearize also around the Schwarzschild solution phi = -m/r. The linearized equation resulting in this case is discussed using qualitative methods. The result is that for m = 2l phi = -m/r + epsilon r -2 exp (-r/l) u, where u is some bounded function; m is arbitrary and epsilon again small. Further, the relation between the solution of the linearized and the full equation is discussed. (author)

  3. Integrable semi-discretizations of the reduced Ostrovsky equation

    Feng, Bao-Feng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2015-01-01

    Based on our previous work on the reduced Ostrovsky equation (J. Phys. A: Math. Theor. 45 355203), we construct its integrable semi-discretizations. Since the reduced Ostrovsky equation admits two alternative representations, one being its original form, the other the differentiated form (the short wave limit of the Degasperis–Procesi equation) two semi-discrete analogues of the reduced Ostrovsky equation are constructed possessing the same N-loop soliton solution. The relationship between these two versions of semi-discretizations is also clarified. (paper)

  4. First integrals of the axisymmetric shape equation of lipid membranes

    Zhang, Yi-Heng; McDargh, Zachary; Tu, Zhan-Chun

    2018-03-01

    The shape equation of lipid membranes is a fourth-order partial differential equation. Under the axisymmetric condition, this equation was transformed into a second-order ordinary differential equation (ODE) by Zheng and Liu (Phys. Rev. E 48 2856 (1993)). Here we try to further reduce this second-order ODE to a first-order ODE. First, we invert the usual process of variational calculus, that is, we construct a Lagrangian for which the ODE is the corresponding Euler–Lagrange equation. Then, we seek symmetries of this Lagrangian according to the Noether theorem. Under a certain restriction on Lie groups of the shape equation, we find that the first integral only exists when the shape equation is identical to the Willmore equation, in which case the symmetry leading to the first integral is scale invariance. We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor. Project supported by the National Natural Science Foundation of China (Grant No. 11274046) and the National Science Foundation of the United States (Grant No. 1515007).

  5. Abecedarian School on Symmetries and Integrability of Difference Equations (ASIDE) & SIDE 12 International Conference Symmetries and Integrability of Difference Equations

    Rebelo, Raphaël; Winternitz, Pavel

    2017-01-01

    This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers...

  6. Nonperturbative time-convolutionless quantum master equation from the path integral approach

    Nan Guangjun; Shi Qiang; Shuai Zhigang

    2009-01-01

    The time-convolutionless quantum master equation is widely used to simulate reduced dynamics of a quantum system coupled to a bath. However, except for several special cases, applications of this equation are based on perturbative calculation of the dissipative tensor, and are limited to the weak system-bath coupling regime. In this paper, we derive an exact time-convolutionless quantum master equation from the path integral approach, which provides a new way to calculate the dissipative tensor nonperturbatively. Application of the new method is demonstrated in the case of an asymmetrical two-level system linearly coupled to a harmonic bath.

  7. On a Painleve test for the complete integrability of Bogomolny's monopole equation

    Roy Chowdhury, A.; Chanda, P.K.

    1984-09-01

    We have made an analysis of the monopole equation of Bogomolny from the stand point of Painleve test. The idea that any non-linear partial differential equation admitting a Lax representation should conform to the criterion of the Painleve analysis seems to hold well in case of Bogomolny equation. We have determined the position for resonances and have proved that at each of these the coefficients in the Forbenius type expansion of the gauge potentials do become arbitrary signalling the complete integrability of the system. (author)

  8. Periodic solutions of Volterra integral equations

    M. N. Islam

    1988-01-01

    Full Text Available Consider the system of equationsx(t=f(t+∫−∞tk(t,sx(sds,           (1andx(t=f(t+∫−∞tk(t,sg(s,x(sds.       (2Existence of continuous periodic solutions of (1 is shown using the resolvent function of the kernel k. Some important properties of the resolvent function including its uniqueness are obtained in the process. In obtaining periodic solutions of (1 it is necessary that the resolvent of k is integrable in some sense. For a scalar convolution kernel k some explicit conditions are derived to determine whether or not the resolvent of k is integrable. Finally, the existence and uniqueness of continuous periodic solutions of (1 and (2 are btained using the contraction mapping principle as the basic tool.

  9. Precise linear gating circuit on integrated microcircuits

    Butskii, V.V.; Vetokhin, S.S.; Reznikov, I.V.

    Precise linear gating circuit on four microcircuits is described. A basic flowsheet of the gating circuit is given. The gating circuit consists of two input differential cascades total load of which is two current followers possessing low input and high output resistances. Follower outlets are connected to high ohmic dynamic load formed with a current source which permits to get high amplification (>1000) at one cascade. Nonlinearity amounts to <0.1% in the range of input signal amplitudes of -10-+10 V. Front duration for an output signal with 10 V amplitude amounts to 100 ns. Attenuation of input signal with a closed gating circuit is 60 db. The gating circuits described is used in the device intended for processing of scintillation sensor signals.

  10. An algorithm of computing inhomogeneous differential equations for definite integrals

    Nakayama, Hiromasa; Nishiyama, Kenta

    2010-01-01

    We give an algorithm to compute inhomogeneous differential equations for definite integrals with parameters. The algorithm is based on the integration algorithm for $D$-modules by Oaku. Main tool in the algorithm is the Gr\\"obner basis method in the ring of differential operators.

  11. Transient analysis of scattering from ferromagnetic objects using Landau-Lifshitz-Gilbert and volume integral equations

    Sayed, Sadeed Bin

    2016-11-02

    An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.

  12. Transient analysis of scattering from ferromagnetic objects using Landau-Lifshitz-Gilbert and volume integral equations

    Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

    2016-01-01

    An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.

  13. An introduction to linear ordinary differential equations using the impulsive response method and factorization

    Camporesi, Roberto

    2016-01-01

    This book presents a method for solving linear ordinary differential equations based on the factorization of the differential operator. The approach for the case of constant coefficients is elementary, and only requires a basic knowledge of calculus and linear algebra. In particular, the book avoids the use of distribution theory, as well as the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The case of variable coefficients is addressed using Mammana’s result for the factorization of a real linear ordinary differential operator into a product of first-order (complex) factors, as well as a recent generalization of this result to the case of complex-valued coefficients.

  14. Dissipative behavior of some fully non-linear KdV-type equations

    Brenier, Yann; Levy, Doron

    2000-03-01

    The KdV equation can be considered as a special case of the general equation u t+f(u) x-δg(u xx) x=0, δ>0, where f is non-linear and g is linear, namely f( u)= u2/2 and g( v)= v. As the parameter δ tends to 0, the dispersive behavior of the KdV equation has been throughly investigated (see, e.g., [P.G. Drazin, Solitons, London Math. Soc. Lect. Note Ser. 85, Cambridge University Press, Cambridge, 1983; P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation, III, Commun. Pure Appl. Math. 36 (1983) 809-829; G.B. Whitham, Linear and Nonlinear Waves, Wiley/Interscience, New York, 1974] and the references therein). We show through numerical evidence that a completely different, dissipative behavior occurs when g is non-linear, namely when g is an even concave function such as g( v)=-∣ v∣ or g( v)=- v2. In particular, our numerical results hint that as δ→0 the solutions strongly converge to the unique entropy solution of the formal limit equation, in total contrast with the solutions of the KdV equation.

  15. The non-linear coupled spin 2-spin 3 Cotton equation in three dimensions

    Linander, Hampus; Nilsson, Bengt E.W. [Department of Physics, Theoretical PhysicsChalmers University of Technology, S-412 96 Göteborg (Sweden)

    2016-07-05

    In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using F=0 to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to linearized versions in the metric formulation obtained previously by other authors. The expected symmetry (spin 3 “translation”, “Lorentz” and “dilatation”) properties are verified for Cotton and other relevant tensors but some perhaps unexpected features emerge in the process, in particular in relation to the non-linear equations. We discuss the structure of this non-linear spin 3 Cotton equation but its explicit form is only presented here, in an exact but not completely refined version, in appended files obtained by computer algebra methods. Both the frame field and metric formulations are provided.

  16. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    Misguich, J.H.

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation

  17. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    Misguich, J.H

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation.

  18. SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES

    Sari Saraswati

    2016-01-01

    Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.Keywords: linear equation with one variable, algebra tiles, design research, balancing method, HLT DOI: http://dx.doi.org/10.22342/jme.7.1.2814.19-30

  19. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  20. Canonical algorithms for numerical integration of charged particle motion equations

    Efimov, I. N.; Morozov, E. A.; Morozova, A. R.

    2017-02-01

    A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.

  1. Solution of the linear transport equation, monoenergetic in multiregions with anisotopic scattering by the method F sub(N)

    Pontedeiro, E.M.B.D.; Maiorino, J.R.

    1982-01-01

    The linear equation transport, monoenergetic, with anysotropic scattering, in multiregions, by F sub(N) method, is resolved. The mathematical analysis used for this method consists in to use parcially the expansion method in singular autofunctions, or Case's method, aiming to derive a set of integral equations coupled to the angular distribution in the boundaries and interfaces, and then to approximate these distributions by polynomics of N order, aiming to derive, with the use of these boundary and continuity conditions in the interfaces, a set of algebric equations for the coef. of polynomical approximation. With the goal to obtain numerical results, a computer code (FNAM-1) with options for the number of regions, boundary conditions, F sub(N) approx order, were developed. Numerical results were then obtained for various sample problems and compared with the results published in the literature with the objective to demonstrate the precision and applicability of the F sub(N) method. (E.G.) [pt

  2. Numerical solution of boundary-integral equations for molecular electrostatics.

    Bardhan, Jaydeep P

    2009-03-07

    Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.

  3. Stability of numerical method for semi-linear stochastic pantograph differential equations

    Yu Zhang

    2016-01-01

    Full Text Available Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 $h>0$ . Numerical examples further illustrate the obtained theoretical results.

  4. Optimal Control Strategies in a Two Dimensional Differential Game Using Linear Equation under a Perturbed System

    Musa Danjuma SHEHU

    2008-06-01

    Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.

  5. Computer programs for the solution of systems of linear algebraic equations

    Sequi, W. T.

    1973-01-01

    FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.

  6. On the Cauchy problem for a Sobolev-type equation with quadratic non-linearity

    Aristov, Anatoly I

    2011-01-01

    We investigate the asymptotic behaviour as t→∞ of the solution of the Cauchy problem for a Sobolev-type equation with quadratic non-linearity and develop ideas used by I. A. Shishmarev and other authors in the study of classical and Sobolev-type equations. Conditions are found under which it is possible to consider the case of an arbitrary dimension of the spatial variable.

  7. Generalized multivariate Fokker-Planck equations derived from kinetic transport theory and linear nonequilibrium thermodynamics

    Frank, T.D.

    2002-01-01

    We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions

  8. An integral equation-based numerical solver for Taylor states in toroidal geometries

    O'Neil, Michael; Cerfon, Antoine J.

    2018-04-01

    We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

  9. Lax Pairs for Discrete Integrable Equations via Darboux Transformations

    Cao Ce-Wen; Zhang Guang-Yao

    2012-01-01

    A method is developed to construct discrete Lax pairs using Darboux transformations. More kinds of Lax pairs are found for some newly appeared discrete integrable equations, including the H1, the special H3 and the Q1 models in the Adler—Bobenko—Suris list and the closely related discrete and semi-discrete pKdV, pMKdV, SG and Liouville equations. (general)

  10. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    Bailey, T S; Adams, M L [Texas A M Univ., Dept. of Nuclear Engineering, College Station, TX (United States); Yang, B; Zika, M R [Lawrence Livermore National Lab., Livermore, CA (United States)

    2005-07-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)

  11. Spectrum of the linearized operator for the Ginzburg-Landau equation

    Tai-Chia Lin

    2000-06-01

    Full Text Available We study the spectrum of the linearized operator for the Ginzburg-Landau equation about a symmetric vortex solution with degree one. We show that the smallest eigenvalue of the linearized operator has multiplicity two, and then we describe its behavior as a small parameter approaches zero. We also find a positive lower bound for all the other eigenvalues, and find estimates of the first eigenfunction. Then using these results, we give partial results on the dynamics of vortices in the nonlinear heat and Schrodinger equations.

  12. Improved harmonic balance approach to periodic solutions of non-linear jerk equations

    Wu, B.S.; Lim, C.W.; Sun, W.P.

    2006-01-01

    An analytical approximate approach for determining periodic solutions of non-linear jerk equations involving third-order time-derivative is presented. This approach incorporates salient features of both Newton's method and the method of harmonic balance. By appropriately imposing the method of harmonic balance to the linearized equation, the approach requires only one or two iterations to predict very accurate analytical approximate solutions for a large range of initial velocity amplitude. One typical example is used to verify and illustrate the usefulness and effectiveness of the proposed approach

  13. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations

    Stone, H. S.

    1971-01-01

    Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

  14. Discrete Painlevé equations: an integrability paradigm

    Grammaticos, B; Ramani, A

    2014-01-01

    In this paper we present a review of results on discrete Painlevé equations. We begin with an introduction which serves as a refresher on the continuous Painlevé equations. Next, in the first, main part of the paper, we introduce the discrete Painlevé equations, the various methods for their derivation, and their properties as well as their classification scheme. Along the way we present a brief summary of the two major discrete integrability detectors and of Quispel–Roberts–Thompson mapping, which plays a primordial role in the derivation of discrete Painlevé equations. The second part of the paper is more technical and focuses on the presentation of new results on what are called asymmetric discrete Painlevé equations. (comment)

  15. Field Method for Integrating the First Order Differential Equation

    JIA Li-qun; ZHENG Shi-wang; ZHANG Yao-yu

    2007-01-01

    An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an intermediate variable, a more complicated differential equation of the first order can be expressed by two simple differential equations of the first order, then the field-method in analytical mechanics is introduced for solving the two differential equations of the first order. The conclusion shows that the field-method in analytical mechanics can be fully used to find the solutions of a differential equation of the first order, thus a new method for finding the solutions of the first order is provided.

  16. On the economical solution method for a system of linear algebraic equations

    Jan Awrejcewicz

    2004-01-01

    Full Text Available The present work proposes a novel optimal and exact method of solving large systems of linear algebraic equations. In the approach under consideration, the solution of a system of algebraic linear equations is found as a point of intersection of hyperplanes, which needs a minimal amount of computer operating storage. Two examples are given. In the first example, the boundary value problem for a three-dimensional stationary heat transfer equation in a parallelepiped in ℝ3 is considered, where boundary value problems of first, second, or third order, or their combinations, are taken into account. The governing differential equations are reduced to algebraic ones with the help of the finite element and boundary element methods for different meshes applied. The obtained results are compared with known analytical solutions. The second example concerns computation of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to transversal uniformly distributed load. The partial differential equations are reduced to a system of nonlinear algebraic equations with the error of O(hx12+hx22. The linearization process is realized through either Newton method or differentiation with respect to a parameter. In consequence, the relations of the boundary condition variations along the shell side and the conditions for the solution matching are reported.

  17. Effect of Integral Non-Linearity on Energy Calibration of ...

    The integral non-linearity (INL) of four spectroscopy systems, two integrated (A1 and A2) and two classical (B1 and B2) systems was determined using pulses from a random pulse generator. The effect of INL on the system's energy calibration was also determined. The effect is minimal in the classical system at high ...

  18. A discrete homotopy perturbation method for non-linear Schrodinger equation

    H. A. Wahab

    2015-12-01

    Full Text Available A general analysis is made by homotopy perturbation method while taking the advantages of the initial guess, appearance of the embedding parameter, different choices of the linear operator to the approximated solution to the non-linear Schrodinger equation. We are not dependent upon the Adomian polynomials and find the linear forms of the components without these calculations. The discretised forms of the nonlinear Schrodinger equation allow us whether to apply any numerical technique on the discritisation forms or proceed for perturbation solution of the problem. The discretised forms obtained by constructed homotopy provide the linear parts of the components of the solution series and hence a new discretised form is obtained. The general discretised form for the NLSE allows us to choose any initial guess and the solution in the closed form.

  19. Babenko’s Approach to Abel’s Integral Equations

    Chenkuan Li

    2018-03-01

    Full Text Available The goal of this paper is to investigate the following Abel’s integral equation of the second kind: y ( t + λ Γ ( α ∫ 0 t ( t − τ α − 1 y ( τ d τ = f ( t , ( t > 0 and its variants by fractional calculus. Applying Babenko’s approach and fractional integrals, we provide a general method for solving Abel’s integral equation and others with a demonstration of different types of examples by showing convergence of series. In particular, we extend this equation to a distributional space for any arbitrary α ∈ R by fractional operations of generalized functions for the first time and obtain several new and interesting results that cannot be realized in the classical sense or by the Laplace transform.

  20. Symbolic-Numeric Integration of the Dynamical Cosserat Equations

    Lyakhov, Dmitry A.

    2017-08-29

    We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\\\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.

  1. Symbolic-Numeric Integration of the Dynamical Cosserat Equations

    Lyakhov, Dmitry A.; Gerdt, Vladimir P.; Weber, Andreas G.; Michels, Dominik L.

    2017-01-01

    We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.

  2. Recursive integral equations with positive kernel for lattice calculations

    Illuminati, F.; Isopi, M.

    1990-11-01

    A Kirkwood-Salzburg integral equation, with positive defined kernel, for the states of lattice models of statistical mechanics and quantum field theory is derived. The equation is defined in the thermodynamic limit, and its iterative solution is convergent. Moreover, positivity leads to an exact a priori bound on the iteration. The equation's relevance as a reliable algorithm for lattice calculations is therefore suggested, and it is illustrated with a simple application. It should provide a viable alternative to Monte Carlo methods for models of statistical mechanics and lattice gauge theories. 10 refs

  3. Role of statistical linearization in the solution of nonlinear stochastic equations

    Budgor, A.B.

    1977-01-01

    The solution of a generalized Langevin equation is referred to as a stochastic process. If the external forcing function is Gaussian white noise, the forward Kolmogarov equation yields the transition probability density function. Nonlinear problems must be handled by approximation procedures e.g., perturbation theories, eigenfunction expansions, and nonlinear optimization procedures. After some comments on the first two of these, attention is directed to the third, and the method of statistical linearization is used to demonstrate a relation to the former two. Nonlinear stochastic systems exhibiting sustained or forced oscillations and the centered nonlinear Schroedinger equation in the presence of Gaussian white noise excitation are considered as examples. 5 figures, 2 tables

  4. Equations for the non linear evolution of the resistive tearing modes in toroidal plasmas

    Edery, D.; Pellat, R.; Soule, J.L.

    1979-09-01

    Following the tokamak ordering, we simplify the resistive MHD equations in toroidal geometry. We obtain a closed system of non linear equations for two scalar potentials of the magnetic and velocity fields and for plasma density and temperature. If we expand these equations in the inverse of aspect ratio they are exact to the two first orders. Our formalism should correctly describe the mode coupling by curvature effects /1/ and the toroidal displacement of magnetic surfaces /2/. It provides a natural extension of the well known cylindrical model /3/ and is now being solved on computer

  5. q-analogue of summability of formal solutions of some linear q-difference-differential equations

    Hidetoshi Tahara

    2015-01-01

    Full Text Available Let \\(q\\gt 1\\. The paper considers a linear \\(q\\-difference-differential equation: it is a \\(q\\-difference equation in the time variable \\(t\\, and a partial differential equation in the space variable \\(z\\. Under suitable conditions and by using \\(q\\-Borel and \\(q\\-Laplace transforms (introduced by J.-P. Ramis and C. Zhang, the authors show that if it has a formal power series solution \\(\\hat{X}(t,z\\ one can construct an actual holomorphic solution which admits \\(\\hat{X}(t,z\\ as a \\(q\\-Gevrey asymptotic expansion of order \\(1\\.

  6. Links among impossible differential, integral and zero correlation linear cryptanalysis

    Sun, Bing; Liu, Zhiqiang; Rijmen, Vincent

    2015-01-01

    is to fix this gap and establish links between impossible differential cryptanalysis and integral cryptanalysis. Firstly, by introducing the concept of structure and dual structure, we prove that a → b is an impossible differential of a structure E if and only if it is a zero correlation linear hull...... linear hull always indicates the existence of an integral distinguisher. With this observation we improve the number of rounds of integral distinguishers of Feistel structures, CAST-256, SMS4 and Camellia. Finally, we conclude that an r-round impossible differential of E always leads to an r...

  7. Quasi-linear equation for magnetoplasma oscillations in the weakly relativistic approximation

    Rizzato, F.B.

    1985-01-01

    Some limitations which are present in the dynamical equations for collisionless plasmas are discussed. Some elementary corrections to the linear theories are obtained in a heuristic form, which directly lead to the so-called quasi-linear theories in its non-relativistic and relativistic forms. The effect of the relativistic variation of the gyrofrequency on the diffusion coefficient is examined in a typically perturbative approximation. (author)

  8. Integrability of the one dimensional Schrödinger equation

    Combot, Thierry

    2018-02-01

    We present a definition of integrability for the one-dimensional Schrödinger equation, which encompasses all known integrable systems, i.e., systems for which the spectrum can be explicitly computed. For this, we introduce the class of rigid functions, built as Liouvillian functions, but containing all solutions of rigid differential operators in the sense of Katz, and a notion of natural of boundary conditions. We then make a complete classification of rational integrable potentials. Many new integrable cases are found, some of them physically interesting.

  9. Cartesian Mesh Linearized Euler Equations Solver for Aeroacoustic Problems around Full Aircraft

    Yuma Fukushima

    2015-01-01

    Full Text Available The linearized Euler equations (LEEs solver for aeroacoustic problems has been developed on block-structured Cartesian mesh to address complex geometry. Taking advantage of the benefits of Cartesian mesh, we employ high-order schemes for spatial derivatives and for time integration. On the other hand, the difficulty of accommodating curved wall boundaries is addressed by the immersed boundary method. The resulting LEEs solver is robust to complex geometry and numerically efficient in a parallel environment. The accuracy and effectiveness of the present solver are validated by one-dimensional and three-dimensional test cases. Acoustic scattering around a sphere and noise propagation from the JT15D nacelle are computed. The results show good agreement with analytical, computational, and experimental results. Finally, noise propagation around fuselage-wing-nacelle configurations is computed as a practical example. The results show that the sound pressure level below the over-the-wing nacelle (OWN configuration is much lower than that of the conventional DLR-F6 aircraft configuration due to the shielding effect of the OWN configuration.

  10. Numerical treatments for solving nonlinear mixed integral equation

    M.A. Abdou

    2016-12-01

    Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.

  11. Nonlinear and linear wave equations for propagation in media with frequency power law losses

    Szabo, Thomas L.

    2003-10-01

    The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.

  12. Hardy inequality on time scales and its application to half-linear dynamic equations

    Řehák Pavel

    2005-01-01

    Full Text Available A time-scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.

  13. Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative

    Ai-Min Yang

    2014-01-01

    Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.

  14. An Explicit Enclosure of the Solution Set of Overdetermined Interval Linear Equations

    Rohn, Jiří

    2017-01-01

    Roč. 24, February (2017), s. 1-10 ISSN 1573-1340 Institutional support: RVO:67985807 Keywords : interval linear equations * interval hull * unit midpoint * enclosure Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://interval.louisiana.edu/ reliable -computing-journal/volume-24/ reliable -computing-24-pp-001-010.pdf

  15. Linear indices in nonlinear structural equation models : best fitting proper indices and other composites

    Dijkstra, T.K.; Henseler, J.

    2011-01-01

    The recent advent of nonlinear structural equation models with indices poses a new challenge to the measurement of scientific constructs. We discuss, exemplify and add to a family of statistical methods aimed at creating linear indices, and compare their suitability in a complex path model with

  16. Solutions of half-linear differential equations in the classes Gamma and Pi

    Řehák, Pavel; Taddei, V.

    2016-01-01

    Roč. 29, 7-8 (2016), s. 683-714 ISSN 0893-4983 Institutional support: RVO:67985840 Keywords : half-linear differential equation * positive solution * asymptotic formula Subject RIV: BA - General Mathematics Impact factor: 0.565, year: 2016 http://projecteuclid.org/euclid.die/1462298681

  17. Exact solutions of linearized Schwinger endash Dyson equation of fermion self-energy

    Zhou, B.

    1997-01-01

    The Schwinger endash Dyson equation of fermion self-energy in the linearization approximation is solved exactly in a theory with gauge and effective four-fermion interactions. Different expressions for the independent solutions, which, respectively, submit to irregular and regular ultraviolet boundary condition are derived and expounded. copyright 1997 American Institute of Physics

  18. Comparison of nonlinearities in oscillation theory of half-linear differential equations

    Řehák, Pavel

    2008-01-01

    Roč. 121, č. 2 (2008), s. 93-105 ISSN 0236-5294 R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear differential equation * comparison theorem * Riccati technique Subject RIV: BA - General Mathematics Impact factor: 0.317, year: 2008

  19. The Use of Graphs in Specific Situations of the Initial Conditions of Linear Differential Equations

    Buendía, Gabriela; Cordero, Francisco

    2013-01-01

    In this article, we present a discussion on the role of graphs and its significance in the relation between the number of initial conditions and the order of a linear differential equation, which is known as the initial value problem. We propose to make a functional framework for the use of graphs that intends to broaden the explanations of the…

  20. Improved Pedagogy for Linear Differential Equations by Reconsidering How We Measure the Size of Solutions

    Tisdell, Christopher C.

    2017-01-01

    For over 50 years, the learning of teaching of "a priori" bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to "a priori" bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving…

  1. A generalized variational algebra and conserved densities for linear evolution equations

    Abellanas, L.; Galindo, A.

    1978-01-01

    The symbolic algebra of Gel'fand and Dikii is generalized to the case of n variables. Using this algebraic approach a rigorous characterization of the polynomial kernel of the variational derivative is given. This is applied to classify all the conservation laws for linear polynomial evolution equations of arbitrary order. (Auth.)

  2. A block Krylov subspace time-exact solution method for linear ordinary differential equation systems

    Bochev, Mikhail A.

    2013-01-01

    We propose a time-exact Krylov-subspace-based method for solving linear ordinary differential equation systems of the form $y'=-Ay+g(t)$ and $y"=-Ay+g(t)$, where $y(t)$ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of

  3. Inhomogeneous Linear Random Differential Equations with Mutual Correlations between Multiplicative, Additive and Initial-Value Terms

    Roerdink, J.B.T.M.

    1981-01-01

    The cumulant expansion for linear stochastic differential equations is extended to the general case in which the coefficient matrix, the inhomogeneous part and the initial condition are all random and, moreover, statistically interdependent. The expansion now involves not only the autocorrelation

  4. Oscillation and nonoscillation results for solutions of half-linear equations with deviated argument

    Drábek, P.; Kufner, Alois; Kuliev, K.

    2017-01-01

    Roč. 447, č. 1 (2017), s. 371-382 ISSN 0022-247X Institutional support: RVO:67985840 Keywords : half-linear equation * oscillatory solution * nonoscillatory solution Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.064, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022247X16306059

  5. Peculiarities in power type comparison results for half-linear dynamic equations

    Řehák, Pavel

    2012-01-01

    Roč. 42, č. 6 (2012), s. 1995-2013 ISSN 0035-7596 R&D Projects: GA AV ČR KJB100190701 Institutional support: RVO:67985840 Keywords : half-linear dynamic equation * time scale * comparison theorem Subject RIV: BA - General Mathematics Impact factor: 0.389, year: 2012 http://projecteuclid.org/euclid.rmjm/1361800616

  6. Myshkis type oscillation criteria for second-order linear delay differential equations

    Opluštil, Z.; Šremr, Jiří

    2015-01-01

    Roč. 178, č. 1 (2015), s. 143-161 ISSN 0026-9255 Institutional support: RVO:67985840 Keywords : linear second-order delay differential equation * oscillation criteria Subject RIV: BA - General Mathematics Impact factor: 0.664, year: 2015 http://link.springer.com/article/10.1007%2Fs00605-014-0719-y

  7. Stationary distributions of stochastic processes described by a linear neutral delay differential equation

    Frank, T D

    2005-01-01

    Stationary distributions of processes are derived that involve a time delay and are defined by a linear stochastic neutral delay differential equation. The distributions are Gaussian distributions. The variances of the Gaussian distributions are either monotonically increasing or decreasing functions of the time delays. The variances become infinite when fixed points of corresponding deterministic processes become unstable. (letter to the editor)

  8. Linear hyperbolic functional-differential equations with essentially bounded right-hand side

    Domoshnitsky, A.; Lomtatidze, Alexander; Maghakyan, A.; Šremr, Jiří

    2011-01-01

    Roč. 2011, - (2011), s. 242965 ISSN 1085-3375 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear functional-differential equation of hyperbolic type * Darboux problem * unique solvability Subject RIV: BA - General Mathematics Impact factor: 1.318, year: 2011 http://www.hindawi.com/journals/ aaa /2011/242965/

  9. Some oscillation criteria for the second-order linear delay differential equation

    Opluštil, Z.; Šremr, Jiří

    2011-01-01

    Roč. 136, č. 2 (2011), s. 195-204 ISSN 0862-7959 Institutional research plan: CEZ:AV0Z10190503 Keywords : second-order linear differential equation with a delay * oscillatory solution Subject RIV: BA - General Mathematics http://www.dml.cz/handle/10338.dmlcz/141582

  10. Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients.

    Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M

    2013-01-01

    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.

  11. Solution of the Schrodinger Equation for a Diatomic Oscillator Using Linear Algebra: An Undergraduate Computational Experiment

    Gasyna, Zbigniew L.

    2008-01-01

    Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)

  12. Remark on periodic boundary-value problem for second-order linear ordinary differential equations

    Dosoudilová, M.; Lomtatidze, Alexander

    2018-01-01

    Roč. 2018, č. 13 (2018), s. 1-7 ISSN 1072-6691 Institutional support: RVO:67985840 Keywords : second-order linear equation * periodic boundary value problem * unique solvability Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.954, year: 2016 https://ejde.math.txstate.edu/Volumes/2018/13/abstr.html

  13. An Empirical Comparison of Five Linear Equating Methods for the NEAT Design

    Suh, Youngsuk; Mroch, Andrew A.; Kane, Michael T.; Ripkey, Douglas R.

    2009-01-01

    In this study, a data base containing the responses of 40,000 candidates to 90 multiple-choice questions was used to mimic data sets for 50-item tests under the "nonequivalent groups with anchor test" (NEAT) design. Using these smaller data sets, we evaluated the performance of five linear equating methods for the NEAT design with five levels of…

  14. Linear Equating for the NEAT Design: A Rejoinder and Some Further Comments

    Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.

    2010-01-01

    This article presents the authors' rejoinder to commentaries on linear equating and the NEAT design. The authors appreciate the insightful work of the commentary writers. Each has made a number of interesting points, many of which the authors had not considered at all. Before responding to some of those points, the authors reiterate what they see…

  15. On the solution of a class of fuzzy system of linear equations

    J. Mathematics and Comput. Sci. 1: 1–5. Salkuyeh D K 2011 On the solution of the fuzzy Sylvester matrix equation. Soft Computing 15: 953–961. Senthilkumar P and Rajendran G 2011 New approach to solve symmetric fully fuzzy linear systems. S¯adhan¯a 36: 933–940. Wang K and Zheng B 2007 Block iterative methods ...

  16. Numerical Integration of the Transport Equation For Infinite Homogeneous Media

    Haakansson, Rune

    1962-01-15

    The transport equation for neutrons in infinite homogeneous media is solved by direct numerical integration. Accounts are taken to the anisotropy and the inelastic scattering. The integration has been performed by means of the trapezoidal rule and the length of the energy intervals are constant in lethargy scale. The machine used is a Ferranti Mercury computer. Results are given for water, heavy water, aluminium water mixture and iron-aluminium-water mixture.

  17. An integrable semi-discretization of the Boussinesq equation

    Zhang, Yingnan; Tian, Lixin

    2016-01-01

    Highlights: • A new integrable semi-discretization of the Boussinesq equation is present. • A Bäcklund transformation and a Lax pair for the differential-difference system is derived by using Hirota's bilinear method. • The soliton solutions of 'good' Boussinesq equation and numerical algorithms are investigated. - Abstract: In this paper, we present an integrable semi-discretization of the Boussinesq equation. Different from other discrete analogues, we discretize the ‘time’ variable and get an integrable differential-difference system. Under a standard limitation, the differential-difference system converges to the continuous Boussinesq equation such that the discrete system can be used to design numerical algorithms. Using Hirota's bilinear method, we find a Bäcklund transformation and a Lax pair of the differential-difference system. For the case of ‘good’ Boussinesq equation, we investigate the soliton solutions of its discrete analogue and design numerical algorithms. We find an effective way to reduce the phase shift caused by the discretization. The numerical results coincide with our analysis.

  18. Minimally coupled N-particle scattering integral equations

    Kowalski, K.L.

    1977-01-01

    A concise formalism is developed which permits the efficient representation and generalization of several known techniques for deriving connected-kernel N-particle scattering integral equations. The methods of Kouri, Levin, and Tobocman and Bencze and Redish which lead to minimally coupled integral equations are of special interest. The introduction of channel coupling arrays is characterized in a general manner and the common base of this technique and that of the so-called channel coupling scheme is clarified. It is found that in the Bencze-Redish formalism a particular coupling array has a crucial function but one different from that of the arrays employed by Kouri, Levin, and Tobocman. The apparent dependence of the proof of the minimality of the Bencze-Redish integral equations upon the form of the inhomogeneous term in these equations is eliminated. This is achieved by an investigation of the full (nonminimal) Bencze-Redish kernel. It is shown that the second power of this operator is connected, a result which is needed for the full applicability of the Bencze-Redish formalism. This is used to establish the relationship between the existence of solutions to the homogeneous form of the minimal equations and eigenvalues of the full Bencze-Redish kernel

  19. An integrable semi-discretization of the Boussinesq equation

    Zhang, Yingnan, E-mail: ynzhang@njnu.edu.cn [Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu (China); Tian, Lixin, E-mail: tianlixin@njnu.edu.cn [Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu (China); Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang, Jiangsu (China)

    2016-10-23

    Highlights: • A new integrable semi-discretization of the Boussinesq equation is present. • A Bäcklund transformation and a Lax pair for the differential-difference system is derived by using Hirota's bilinear method. • The soliton solutions of 'good' Boussinesq equation and numerical algorithms are investigated. - Abstract: In this paper, we present an integrable semi-discretization of the Boussinesq equation. Different from other discrete analogues, we discretize the ‘time’ variable and get an integrable differential-difference system. Under a standard limitation, the differential-difference system converges to the continuous Boussinesq equation such that the discrete system can be used to design numerical algorithms. Using Hirota's bilinear method, we find a Bäcklund transformation and a Lax pair of the differential-difference system. For the case of ‘good’ Boussinesq equation, we investigate the soliton solutions of its discrete analogue and design numerical algorithms. We find an effective way to reduce the phase shift caused by the discretization. The numerical results coincide with our analysis.

  20. On the initial condition problem of the time domain PMCHWT surface integral equation

    Uysal, Ismail Enes

    2017-05-13

    Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced properly. This problem can be remedied by solving the time integral of the surface integral for auxiliary currents that are defined to be the time derivatives of the equivalent currents. Then the equivalent currents are obtained by numerically differentiating the auxiliary ones. In this work, this approach is applied to the marching on-in-time solution of the time domain Poggio-Miller-Chan-Harrington-Wu-Tsai surface integral equation enforced on dispersive/plasmonic scatterers. Accuracy of the proposed method is demonstrated by a numerical example.

  1. Integrability and Poisson Structures of Three Dimensional Dynamical Systems and Equations of Hydrodynamic Type

    Gumral, Hasan

    Poisson structure of completely integrable 3 dimensional dynamical systems can be defined in terms of an integrable 1-form. We take advantage of this fact and use the theory of foliations in discussing the geometrical structure underlying complete and partial integrability. We show that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a non-trivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of 3-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the sl_2 structure is a quadratic unfolding of an integrable 1-form in 3 + 1 dimensions. We complete the discussion of the Hamiltonian structure of 2-component equations of hydrodynamic type by presenting the Hamiltonian operators for Euler's equation and a continuum limit of Toda lattice. We present further infinite sequences of conserved quantities for shallow water equations and show that their generalizations by Kodama admit bi-Hamiltonian structure. We present a simple way of constructing the second Hamiltonian operators for N-component equations admitting some scaling properties. The Kodama reduction of the dispersionless-Boussinesq equations and the Lax reduction of the Benney moment equations are shown to be equivalent by a symmetry transformation. They can be cast into the form of a triplet of conservation laws which enable us to recognize a non-trivial scaling symmetry. The resulting bi-Hamiltonian structure generates three infinite sequences of conserved densities.

  2. Numerical Simulation of Antennas with Improved Integral Equation Method

    Ma Ji; Fang Guang-You; Lu Wei

    2015-01-01

    Simulating antennas around a conducting object is a challenge task in computational electromagnetism, which is concerned with the behaviour of electromagnetic fields. To analyze this model efficiently, an improved integral equation-fast Fourier transform (IE-FFT) algorithm is presented in this paper. The proposed scheme employs two Cartesian grids with different size and location to enclose the antenna and the other object, respectively. On the one hand, IE-FFT technique is used to store matrix in a sparse form and accelerate the matrix-vector multiplication for each sub-domain independently. On the other hand, the mutual interaction between sub-domains is taken as the additional exciting voltage in each matrix equation. By updating integral equations several times, the whole electromagnetic system can achieve a stable status. Finally, the validity of the presented method is verified through the analysis of typical antennas in the presence of a conducting object. (paper)

  3. An approximation method for nonlinear integral equations of Hammerstein type

    Chidume, C.E.; Moore, C.

    1989-05-01

    The solution of a nonlinear integral equation of Hammerstein type in Hilbert spaces is approximated by means of a fixed point iteration method. Explicit error estimates are given and, in some cases, convergence is shown to be at least as fast as a geometric progression. (author). 25 refs

  4. Higher-Order Integral Equation Methods in Computational Electromagnetics

    Jørgensen, Erik; Meincke, Peter

    Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...

  5. On Fredholm-Stieltjes quadratic integral equation with supremum

    Darwish, M.A.

    2007-08-01

    We prove an existence theorem of monotonic solutions for a quadratic integral equation of Fredholm-Stieltjes type in C[0,1]. The concept of measure of non-compactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof. (author)

  6. Unconditionally stable integration of Maxwell’s equations

    Verwer, J.G.; Botchev, M.A.

    2009-01-01

    Numerical integration of Maxwell’s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit - finite

  7. Fringe integral equation method for a truncated grounded dielectric slab

    Jørgensen, Erik; Maci, S.; Toccafondi, A.

    2001-01-01

    The problem of scattering by a semi-infinite grounded dielectric slab illuminated by an arbitrary incident TMz polarized electric field is studied by solving a new set of “fringe” integral equations (F-IEs), whose functional unknowns are physically associated to the wave diffraction processes...

  8. Local first integrals for systems of differential equations

    Zhang Xiang

    2003-01-01

    The main purpose of this paper is to provide some sufficient conditions for a system of differential equations to have local first integrals in a certain neighbourhood of a singularity. Our results generalize those given in Kwek et al (2003 Z. Angew. Math. Phys. 54 26) and Li et al (2003 Z. Angew. Math. Phys. 54 235)

  9. Cut cancellation in the planar integral equation for the Reggeon

    Bishari, M.; Veneziano, G.

    1975-01-01

    Planar unitarity for the Reggeon, analyticity and the multi-Regge assumption with cluster production lead to integral equations of the Chew-Goldberger-Low type with separable self-consistent kernel. Contrary to common prejudice, the authors show the existence of solutions exhibiting moving poles and exact, non-perturbative cancellation of the cut. Previously studied consistency conditions are rederived. (Auth.)

  10. On the use of the Lie group technique for differential equations with a small parameter: Approximate solutions and integrable equations

    Burde, G.I.

    2002-01-01

    A new approach to the use of the Lie group technique for partial and ordinary differential equations dependent on a small parameter is developed. In addition to determining approximate solutions to the perturbed equation, the approach allows constructing integrable equations that have solutions with (partially) prescribed features. Examples of application of the approach to partial differential equations are given

  11. Explicit solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    Ulku, Huseyin Arda; Bagci, Hakan; Michielssen, Eric

    2012-01-01

    An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.

  12. Explicit solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    Ulku, Huseyin Arda

    2012-09-01

    An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.

  13. Aspects on increase and decrease within a national economy as eigenvalue problem of linear homogeneous equations

    Mueller, E.

    2007-01-01

    The paper presents an approach which treats topics of macroeconomics by methods familiar in physics and technology, especially in nuclear reactor technology and in quantum mechanics. Such methods are applied to simplified models for the money flows within a national economy, their variation in time and thereby for the annual national growth rate. As usual, money flows stand for economic activities. The money flows between the economic groups are described by a set of difference equations or by a set of approximative differential equations or eventually by a set of linear algebraic equations. Thus this paper especially deals with the time behaviour of model economies which are under the influence of imbalances and of delay processes, thereby dealing also with economic growth and recession rates. These differential equations are solved by a completely numerical Runge-Kutta algorithm. Case studies are presented for cases with 12 groups only and are to show the capability of the methods which have been worked out. (orig.)

  14. Aspects on increase and decrease within a national economy as eigenvalue problem of linear homogeneous equations

    Mueller, E.

    2007-12-15

    The paper presents an approach which treats topics of macroeconomics by methods familiar in physics and technology, especially in nuclear reactor technology and in quantum mechanics. Such methods are applied to simplified models for the money flows within a national economy, their variation in time and thereby for the annual national growth rate. As usual, money flows stand for economic activities. The money flows between the economic groups are described by a set of difference equations or by a set of approximative differential equations or eventually by a set of linear algebraic equations. Thus this paper especially deals with the time behaviour of model economies which are under the influence of imbalances and of delay processes, thereby dealing also with economic growth and recession rates. These differential equations are solved by a completely numerical Runge-Kutta algorithm. Case studies are presented for cases with 12 groups only and are to show the capability of the methods which have been worked out. (orig.)

  15. Analytical approach to linear fractional partial differential equations arising in fluid mechanics

    Momani, Shaher; Odibat, Zaid

    2006-01-01

    In this Letter, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving linear fractional partial differential equations arising in fluid mechanics. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these methods, the solution takes the form of a convergent series with easily computable components. The corresponding solutions of the integer order equations are found to follow as special cases of those of fractional order equations. Some numerical examples are presented to illustrate the efficiency and reliability of the two methods

  16. Perturbation Solutions for Random Linear Structural Systems subject to Random Excitation using Stochastic Differential Equations

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    perturbation method using stochastic differential equations. The joint statistical moments entering the perturbation solution are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vector and their first and second derivatives with respect......The paper deals with the first and second order statistical moments of the response of linear systems with random parameters subject to random excitation modelled as white-noise multiplied by an envelope function with random parameters. The method of analysis is basically a second order...... to the random parameters of the problem. Equations for partial derivatives are obtained from the partial differentiation of the equations of motion. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. General formulation is given...

  17. Hardware Tailored Linear Algebra for Implicit Integrators in Embedded NMPC

    Frison, Gianluca; Quirynen, Rien; Zanelli, Andrea

    2017-01-01

    . In the case of stiff or implicitly defined dynamics, implicit integration schemes are typically preferred. This paper proposes a tailored implementation of the necessary linear algebra routines (LU factorization and triangular solutions), in order to allow for a considerable computational speedup...... of such integrators. In particular, the open-source BLASFEO framework is presented as a library of efficient linear algebra routines for small to medium-scale embedded optimization applications. Its performance is illustrated on the nonlinear optimal control example of a chain of masses. The proposed library allows...

  18. High-Order Calderón Preconditioned Time Domain Integral Equation Solvers

    Valdes, Felipe

    2013-05-01

    Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.

  19. High-Order Calderón Preconditioned Time Domain Integral Equation Solvers

    Valdes, Felipe; Ghaffari-Miab, Mohsen; Andriulli, Francesco P.; Cools, Kristof; Michielssen,

    2013-01-01

    Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.

  20. Elliptic Euler–Poisson–Darboux equation, critical points and integrable systems

    Konopelchenko, B G; Ortenzi, G

    2013-01-01

    The structure and properties of families of critical points for classes of functions W(z, z-bar ) obeying the elliptic Euler–Poisson–Darboux equation E(1/2, 1/2) are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented. There are the extended dispersionless Toda/nonlinear Schrödinger hierarchies, the ‘inverse’ hierarchy and equations associated with the real-analytic Eisenstein series E(β, β-bar ;1/2) among them. The specific bi-Hamiltonian structure of these equations is also discussed. (paper)