Lattice Boltzmann methods for global linear instability analysis
Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis
2017-12-01
Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.
Linear waves and instabilities
International Nuclear Information System (INIS)
Bers, A.
1975-01-01
The electrodynamic equations for small-amplitude waves and their dispersion relation in a homogeneous plasma are outlined. For such waves, energy and momentum, and their flow and transformation, are described. Perturbation theory of waves is treated and applied to linear coupling of waves, and the resulting instabilities from such interactions between active and passive waves. Linear stability analysis in time and space is described where the time-asymptotic, time-space Green's function for an arbitrary dispersion relation is developed. The perturbation theory of waves is applied to nonlinear coupling, with particular emphasis on pump-driven interactions of waves. Details of the time--space evolution of instabilities due to coupling are given. (U.S.)
Linear and nonlinear analysis of density wave instability phenomena
International Nuclear Information System (INIS)
Ambrosini, Walter
1999-01-01
In this paper the mechanism of density-wave oscillations in a boiling channel with uniform and constant heat flux is analysed by linear and nonlinear analytical tools. A model developed on the basis of a semi-implicit numerical discretization of governing partial differential equations is used to provide information on the transient distribution of relevant variables along the channel during instabilities. Furthermore, a lumped parameter model and a distributed parameter model developed in previous activities are also adopted for independent confirmation of the observed trends. The obtained results are finally put in relation with the picture of the phenomenon proposed in classical descriptions. (author)
Longitudinal acoustic instabilities in slender solid propellant rockets : linear analysis
García Schafer, Juan Esteban; Liñán Martínez, Amable
2001-01-01
To describe the acoustic instabilities in the combustion chambers of laterally burning solid propellant rockets the interaction of the mean flow with the acoustic waves is analysed, using multiple scale techniques, for realistic cases in which the combustion chamber is slender and the nozzle area is small compared with the cross-sectional area of the chamber. Associated with the longitudinal acoustic oscillations we find vorticity and entropy waves, with a wavelength typically small compared ...
International Nuclear Information System (INIS)
Zhang, Wenchao; Tan, Sichao; Gao, Puzhen; Wang, Zhanwei; Zhang, Liansheng; Zhang, Hong
2014-01-01
Highlights: • Natural circulation flow instabilities in rolling motion are studied. • The method of non-linear time series analysis is used. • Non-linear evolution characteristic of flow instability is analyzed. • Irregular complex flow oscillations are chaotic oscillations. • The effect of rolling parameter on the threshold of chaotic oscillation is studied. - Abstract: Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions were studied by the method of non-linear time series analysis. Experimental flow time series of different dimensionless power and rolling parameters were analyzed based on phase space reconstruction theory. Attractors which were reconstructed in phase space and the geometric invariants, including correlation dimension, Kolmogorov entropy and largest Lyapunov exponent, were determined. Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions was studied based on the results of the geometric invariant analysis. The results indicated that the values of the geometric invariants first increase and then decrease as dimensionless power increases which indicated the non-linear characteristics of the system first enhance and then weaken. The irregular complex flow oscillation is typical chaotic oscillation because the value of geometric invariants is at maximum. The threshold of chaotic oscillation becomes larger as the rolling frequency or rolling amplitude becomes big. The main influencing factors that influence the non-linear characteristics of the natural circulation system under rolling motion are thermal driving force, flow resistance and the additional forces caused by rolling motion. The non-linear characteristics of the natural circulation system under rolling motion changes caused by the change of the feedback and coupling degree among these influencing factors when the dimensionless power or rolling parameters changes
High-Speed Linear Raman Spectroscopy for Instability Analysis of a Bluff Body Flame
Kojima, Jun; Fischer, David
2013-01-01
We report a high-speed laser diagnostics technique based on point-wise linear Raman spectroscopy for measuring the frequency content of a CH4-air premixed flame stabilized behind a circular bluff body. The technique, which primarily employs a Nd:YLF pulsed laser and a fast image-intensified CCD camera, successfully measures the time evolution of scalar parameters (N2, O2, CH4, and H2O) in the vortex-induced flame instability at a data rate of 1 kHz. Oscillation of the V-shaped flame front is quantified through frequency analysis of the combustion species data and their correlations. This technique promises to be a useful diagnostics tool for combustion instability studies.
Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions
Massa, L.; Jha, P.
2012-05-01
Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.
International Nuclear Information System (INIS)
Paul, Subhanker; Singh, Suneet
2015-01-01
The prime objective of the presented work is to develop a Nodalized Reduced Order Model (NROM) to carry linear stability analysis of flow instabilities in a two-phase flow system. The model is developed by dividing the single phase and two-phase region of a uniformly heated channel into N number of nodes followed by time dependent spatial linear approximations for single phase enthalpy and two-phase quality between the consecutive nodes. Moving boundary scheme has been adopted in the model, where all the node boundaries vary with time due to the variation of boiling boundary inside the heated channel. Using a state space approach, the instability thresholds are delineated by stability maps plotted in parameter planes of phase change number (N pch ) and subcooling number (N sub ). The prime feature of the present model is that, though the model equations are simpler due to presence of linear-linear approximations for single phase enthalpy and two-phase quality, yet the results are in good agreement with the existing models (Karve [33]; Dokhane [34]) where the model equations run for several pages and experimental data (Solberg [41]). Unlike the existing ROMs, different two-phase friction factor multiplier correlations have been incorporated in the model. The applicability of various two-phase friction factor multipliers and their effects on stability behaviour have been depicted by carrying a comparative study. It is also observed that the Friedel model for friction factor calculations produces the most accurate results with respect to the available experimental data. (authors)
A quantitative analysis of instabilities in the linear chiral sigma model
International Nuclear Information System (INIS)
Nemes, M.C.; Nielsen, M.; Oliveira, M.M. de; Providencia, J. da
1990-08-01
We present a method to construct a complete set of stationary states corresponding to small amplitude motion which naturally includes the continuum solution. The energy wheighted sum rule (EWSR) is shown to provide for a quantitative criterium on the importance of instabilities which is known to occur in nonasymptotically free theories. Out results for the linear σ model showed be valid for a large class of models. A unified description of baryon and meson properties in terms of the linear σ model is also given. (author)
Bakhsh, Abeer
2017-11-17
We investigate the linear stability of both positive and negative Atwood ratio interfaces accelerated either by a fast magnetosonic or hydrodynamic shock in cylindrical geometry. For the magnetohydrodynamic (MHD) case, we examine the role of an initial seed azimuthal magnetic field on the growth rate of the perturbation. In the absence of a magnetic field, the Richtmyer-Meshkov growth is followed by an exponentially increasing growth associated with the Rayleigh-Taylor instability. In the MHD case, the growth rate of the instability reduces in proportion to the strength of the applied magnetic field. The suppression mechanism is associated with the interference of two waves running parallel and anti-parallel to the interface that transport of vorticity and cause the growth rate to oscillate in time with nearly a zero mean value.
Bakhsh, Abeer; Samtaney, Ravindra
2017-01-01
We investigate the linear stability of both positive and negative Atwood ratio interfaces accelerated either by a fast magnetosonic or hydrodynamic shock in cylindrical geometry. For the magnetohydrodynamic (MHD) case, we examine the role of an initial seed azimuthal magnetic field on the growth rate of the perturbation. In the absence of a magnetic field, the Richtmyer-Meshkov growth is followed by an exponentially increasing growth associated with the Rayleigh-Taylor instability. In the MHD case, the growth rate of the instability reduces in proportion to the strength of the applied magnetic field. The suppression mechanism is associated with the interference of two waves running parallel and anti-parallel to the interface that transport of vorticity and cause the growth rate to oscillate in time with nearly a zero mean value.
The linearized pressure Poisson equation for global instability analysis of incompressible flows
Theofilis, Vassilis
2017-12-01
The linearized pressure Poisson equation (LPPE) is used in two and three spatial dimensions in the respective matrix-forming solution of the BiGlobal and TriGlobal eigenvalue problem in primitive variables on collocated grids. It provides a disturbance pressure boundary condition which is compatible with the recovery of perturbation velocity components that satisfy exactly the linearized continuity equation. The LPPE is employed to analyze instability in wall-bounded flows and in the prototype open Blasius boundary layer flow. In the closed flows, excellent agreement is shown between results of the LPPE and those of global linear instability analyses based on the time-stepping nektar++, Semtex and nek5000 codes, as well as with those obtained from the FreeFEM++ matrix-forming code. In the flat plate boundary layer, solutions extracted from the two-dimensional LPPE eigenvector at constant streamwise locations are found to be in very good agreement with profiles delivered by the NOLOT/PSE space marching code. Benchmark eigenvalue data are provided in all flows analyzed. The performance of the LPPE is seen to be superior to that of the commonly used pressure compatibility (PC) boundary condition: at any given resolution, the discrete part of the LPPE eigenspectrum contains converged and not converged, but physically correct, eigenvalues. By contrast, the PC boundary closure delivers some of the LPPE eigenvalues and, in addition, physically wrong eigenmodes. It is concluded that the LPPE should be used in place of the PC pressure boundary closure, when BiGlobal or TriGlobal eigenvalue problems are solved in primitive variables by the matrix-forming approach on collocated grids.
International Nuclear Information System (INIS)
Sotnikov, V.I.; Paraschiv, I.; Makhin, V.; Bauer, B.S.; Leboeuf, J.N.; Dawson, J.M.
2002-01-01
A systematic study of the linear stage of sheared flow stabilization of Z-pinch plasmas based on the Hall fluid model with equilibrium that contains sheared flow and an axial magnetic field is presented. In the study we begin with the derivation of a general set of equations that permits the evaluation of the combined effect of sheared flow and axial magnetic field on the development of the azimuthal mode number m=0 sausage and m=1 kink magnetohydrodynamic (MHD) instabilities, with the Hall term included in the model. The incorporation of sheared flow, axial magnetic field, and the Hall term allows the Z-pinch system to be taken away from the region in parameter space where ideal MHD is applicable to a regime where nonideal effects tend to govern stability. The problem is then treated numerically by following the linear development in time of an initial perturbation. The numerical results for linear growth rates as a function of axial sheared flow, an axial magnetic field, and the Hall term are reported
Directory of Open Access Journals (Sweden)
Shuang Liu
2018-01-01
Full Text Available In this paper, the eigenmode linear superposition (ELS method based on the regularization is used to discuss the distributions of all eigenmodes and the role of their instability to the intensity and structure change in TC-like vortex. Results show that the regularization approach can overcome the ill-posed problem occurring in solving mode weight coefficients as the ELS method are applied to analyze the impacts of dynamic instability on the intensity and structure change of TC-like vortex. The Generalized Cross-validation (GCV method and the L curve method are used to determine the regularization parameters, and the results of the two approaches are compared. It is found that the results based on the GCV method are closer to the given initial condition in the solution of the inverse problem of the vortex system. Then, the instability characteristic of the hollow vortex as the basic state are examined based on the linear barotropic shallow water equations. It is shown that the wavenumber distribution of system instability obtained from the ELS method is well consistent with that of the numerical analysis based on the norm mode. On the other hand, the evolution of the hollow vortex are discussed using the product of each eigenmode and its corresponding weight coefficient. Results show that the intensity and structure change of the system are mainly affected by the dynamic instability in the early stage of disturbance development, and the most unstable mode has a dominant role in the growth rate and the horizontal distribution of intense disturbance in the near-core region. Moreover, the wave structure of the most unstable mode possesses typical characteristics of mixed vortex Rossby-inertio-gravity waves (VRIGWs.
Shahnazari, M. R.; Maleka Ashtiani, I.; Saberi, A.
2018-03-01
In this paper, the effect of channeling on viscous fingering instability of miscible displacement in porous media is studied. In fact, channeling is introduced as a solution to stabilize the viscous fingering instability. In this solution, narrow channels were placed next to the walls, and by considering an exponential function to model the channeling effect, a heterogeneous media is assumed. In linear stability analysis, the governing equations are transferred to Fourier space, and by introducing a novel numerical method, the transferred equations are analyzed. The growth rate based on the wave number diagram has been drawn up in three sections of the medium. It is found that the flow becomes more stable at the center and unstable along the walls when the permeability ratio is increased. Also when the permeability ratio is approximately equal to one, the channeling has no significant effect. In nonlinear simulations, by using stream function and vortices, new equations have been rewritten and it is shown that channeling has a profound effect on the growth of the fingers and mechanisms. In addition to the superposition of velocity vectors and concentration contours, the development of instability is investigated using the mixing length and sweep efficiency diagram. The results show that although channeling reduces instability, it increases the displacement process time.
Magnetohydrodynamic instability in annular linear induction pump
International Nuclear Information System (INIS)
Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.; Ogorodnikov, Anatoly P.
2006-01-01
In the previous work, the authors showed some detailed aspects of the magnetohydrodynamic instability arising in an annular linear induction pump: the instability is accompanied with a low frequency pressure pulsation in the range of 0-10 Hz when the magnetic Reynolds number is larger than unity; the low frequency pressure pulsation is produced by the sodium vortices that come from some azimuthal non-uniformity of the applied magnetic field or of the sodium inlet velocity. In the present work, an experiment and a numerical analysis are carried out to verify the pump winding phase shift that is expected as an effective way to suppress the instability. The experimental data shows that the phase shift suppresses the instability unless the slip value is so high, but brings about a decrease of the developed pressure. The numerical results indicate that the phase shift causes a local decrease of the electromagnetic force, which results in the suppression of the instability and the decrease of the developed pressure. In addition, it is exhibited that the intensity of the double-supply-frequency pressure pulsation is in nearly the same level in the case with and without the phase shift
Sengupta, Tapan K.; Sharma, Nidhi; Sengupta, Aditi
2018-05-01
An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional (2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This problem admits a time-dependent analytical solution as the base flow, whose instability is traced here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes turbulent, but an explanation for this transition has not been advanced so far. The deviation of the numerical solution from the analytical solution is studied here using a high accuracy compact scheme on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numerical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolution equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes equation, as described in the work of Sengupta et al., "Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003), and (b) the creation of rotationality via the enstrophy transport equation in the work of Sengupta et al., "Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow," Comput. Fluids 88, 440-451 (2013).
Linear study of the precessional fishbone instability
Idouakass, M.; Faganello, M.; Berk, H. L.; Garbet, X.; Benkadda, S.
2016-10-01
The precessional fishbone instability is an m = n = 1 internal kink mode destabilized by a population of trapped energetic particles. The linear phase of this instability is studied here, analytically and numerically, with a simplified model. This model uses the reduced magneto-hydrodynamics equations for the bulk plasma and the Vlasov equation for a population of energetic particles with a radially decreasing density. A threshold condition for the instability is found, as well as a linear growth rate and frequency. It is shown that the mode frequency is given by the precession frequency of the deeply trapped energetic particles at the position of strongest radial gradient. The growth rate is shown to scale with the energetic particle density and particle energy while it is decreased by continuum damping.
Control of Coherent Instabilities by Linear Coupling
Cappi, R; Möhl, D
2001-01-01
One of the main challenges in the design of high-energy colliders is the very high luminosity necessary to provide significant event rates. This imposes strong constraints to achieve and preserve beams of high brightness, i.e. intensity to emittance ratio, all along the injector chain. Amongst the phenomena that can blow up and even destroy the beam are transverse coherent instabilities. Two methods are widely used to damp these instabilities. The first one is Landau damping by non-linearities. The second consists in using an electronic feedback system. However, non-linearities are harmful to single-particle motion due to resonance phenomena, and powerful wideband feedback systems are expensive. It is shown in this paper that linear coupling is a further method that can be used to damp transverse coherent instabilities. The theory of collective motion is outlined, including the coupling of instability rise and damping rates, chromaticity and Landau damping. Experimental results obtained at the CERN PS are rep...
International Nuclear Information System (INIS)
Hwang, D.H.; Yoo, Y.J.; Kim, K.K.
1998-08-01
A linear model, named ALFS, is developed for the analysis of two-phase flow instabilities caused by density wave oscillation and flow excursion in a vertical boiling channel with constant pressure drop conditions. The ALFS code can take into account the effect of the phase velocity difference and the thermally non-equilibrium phenomena, and the neutral boundary of the two-phase flow instability was analyzed by D-partition method. Three representative two-phase flow models ( i.e. HEM, DEM, and DNEM) were examined to investigate the effects on the stability analysis. As the results, it reveals that HEM shows the most conservative prediction of heat flux at the onset of flow instability. three linear models, Ishiis DEM, Sahas DNEM, and ALFS model, were applied to Sahas experimental data of density wave oscillation, and as the result, the mean and standard deviation of the predicted-to-measured heat flux at the onset of instability were calculated as 0.93/0.162, 0.79/0.112, and 0.95/0.143, respectively. For the long test section, however, ALFS model tends to predict the heat fluxes about 30 % lower than the measured values. (author). 14 refs
Linear instability and nonlinear motion of rotating plasma
International Nuclear Information System (INIS)
Liu, J.
1985-01-01
Two coupled nonlinear equations describing the flute dynamics of the magnetically confined low-β collisionless rotating plasma are derived. The linear instability and nonlinear dynamics of the rotating column are analyzed theoretically. In the linear stability analysis, a new sufficient condition of stability is obtained. From the exact solution of eigenvalue equation for Gaussian density profile and uniform rotation of the plasma, the stability of the system strongly depends on the direction of plasma rotation, FLR effect and the location of the conducting wall. An analytic expression showing the finite wall effect on different normal modes is obtained and it explains the different behavior of (1,0) normal mode from other modes. The sheared rotation driven instability is investigated by using three model equilibrium profiles, and the analytic expressions of eigenvalues which includes the wall effect are obtained. The analogy between shear rotation driven instability and the instability driven by sheared plane parallel flow in the inviscid fluid is analyzed. Applying the linear analysis to the central cell of tandem mirror system, the trapped particle instability with only passing electronics is analyzed. For uniform rotation and Gaussian density profile, an analytic expression that determines the stability boundary is found. The nonlinear analysis shows that the nonlinear equations have a solitary vortex solution which is very similar to the vortex solution of nonlinear Rossby wave equation
Rotational instability in a linear theta pinch
International Nuclear Information System (INIS)
Ekdahl, C.; Bartsch, R.R.; Commisso, R.J.; Gribble, R.F.; McKenna, K.F.; Miller, G.; Siemon, R.E.
1980-01-01
The m=1 ''wobble'' instability of the plasma column in a 5-m linear theta pinch has been studied using an axial array of orthogonally viewing position detectors to resolve the wavelength and frequency of the column motion. The experimental results are compared with recent theoretical predictions that include finite Larmor orbit effects. The frequency and wavelength characteristics at saturation agree with the predicted dispersion relation for a plasma rotating faster than the diamagnetic drift speed. Measurements of the magnetic fields at the ends of the pinch establish the existence of currents flowing in such a way that they short out the radial electric fields in the plasma column. The magnitude of rotation, the observed delay in the onset of m=1 motion, and the magnitude of end-shorting currents can all be understood in terms of the torsional Alfven waves that communicate to the central plasma column the information that the ends have been shorted. The same waves are responsible for the torque which rotates the plasma and leads to the observed m=1 instability. Observations of the plasma in the presence of solid end plugs indicate a stabilization of high-m number modes and a reduction of the m=1 amplitude
Numerical computation of linear instability of detonations
Kabanov, Dmitry; Kasimov, Aslan
2017-11-01
We propose a method to study linear stability of detonations by direct numerical computation. The linearized governing equations together with the shock-evolution equation are solved in the shock-attached frame using a high-resolution numerical algorithm. The computed results are processed by the Dynamic Mode Decomposition technique to generate dispersion relations. The method is applied to the reactive Euler equations with simple-depletion chemistry as well as more complex multistep chemistry. The results are compared with those known from normal-mode analysis. We acknowledge financial support from King Abdullah University of Science and Technology.
Alternative theories of the non-linear negative mass instability
International Nuclear Information System (INIS)
Channell, P.J.
1974-01-01
A theory non-linear negative mass instability is extended to include resistance. The basic assumption is explained physically and an alternative theory is offered. The two theories are compared computationally. 7 refs., 8 figs
An exact linear dispersion relation for CRM instability
International Nuclear Information System (INIS)
Choyal, Y; Minami, K
2011-01-01
An exact self-consistent linear dispersion relation of a large orbit electron beam including two principles of cyclotron emission with oscillation frequencies above and below the relativistic electron frequency is derived and analyzed numerically for the first time in the literature. The two principles are cyclotron resonance maser (CRM) instability and Cherenkov instability in the azimuthal direction. Self-consistency in the formulation and inclusion of proper boundary conditions have removed the unphysical instability existing for infinitely large k z observed in conventional dispersion relations of CRM instability.
Wakefields and Instabilities in Linear Accelerators
Ferrario, M.; Palumbo, L.
2014-12-19
When a charged particle travels across the vacuum chamber of an accelerator, it induces electromagnetic fields, which are left mainly behind the generating particle. These electromagnetic fields act back on the beam and influence its motion. Such an interaction of the beam with its surro undings results in beam energy losses, alters the shape of the bunches, and shifts the betatron and synchrotron frequencies. At high beam current the fields can even lead to instabilities, thus limiting the performance of the accelerator in terms of beam quality and current intensity. We discuss in this lecture the general features of the electromagnetic fields, introducing the concepts of wakefields and giving a few simple examples in cylindrical geometry. We then show the effect of the wakefields on the dynamics of a beam in a linac, dealing in particular with the beam breakup instability and how to cure it.
Linear predictions of supercritical flow instability in two parallel channels
International Nuclear Information System (INIS)
Shah, M.
2008-01-01
A steady state linear code that can predict thermo-hydraulic instability boundaries in a two parallel channel system under supercritical conditions has been developed. Linear and non-linear solutions of the instability boundary in a two parallel channel system are also compared. The effect of gravity on the instability boundary in a two parallel channel system, by changing the orientation of the system flow from horizontal flow to vertical up-flow and vertical down-flow has been analyzed. Vertical up-flow is found to be more unstable than horizontal flow and vertical down flow is found to be the most unstable configuration. The type of instability present in each flow-orientation of a parallel channel system has been checked and the density wave oscillation type is observed in horizontal flow and vertical up-flow, while the static type of instability is observed in a vertical down-flow for the cases studied here. The parameters affecting the instability boundary, such as the heating power, inlet temperature, inlet and outlet K-factors are varied to assess their effects. This study is important for the design of future Generation IV nuclear reactors in which supercritical light water is proposed as the primary coolant. (author)
Linearization instability for generic gravity in AdS spacetime
Altas, Emel; Tekin, Bayram
2018-01-01
In general relativity, perturbation theory about a background solution fails if the background spacetime has a Killing symmetry and a compact spacelike Cauchy surface. This failure, dubbed as linearization instability, shows itself as non-integrability of the perturbative infinitesimal deformation to a finite deformation of the background. Namely, the linearized field equations have spurious solutions which cannot be obtained from the linearization of exact solutions. In practice, one can show the failure of the linear perturbation theory by showing that a certain quadratic (integral) constraint on the linearized solutions is not satisfied. For non-compact Cauchy surfaces, the situation is different and for example, Minkowski space having a non-compact Cauchy surface, is linearization stable. Here we study, the linearization instability in generic metric theories of gravity where Einstein's theory is modified with additional curvature terms. We show that, unlike the case of general relativity, for modified theories even in the non-compact Cauchy surface cases, there are some theories which show linearization instability about their anti-de Sitter backgrounds. Recent D dimensional critical and three dimensional chiral gravity theories are two such examples. This observation sheds light on the paradoxical behavior of vanishing conserved charges (mass, angular momenta) for non-vacuum solutions, such as black holes, in these theories.
Linear and non-linear calculations of the hose instability in the ion-focused regime
International Nuclear Information System (INIS)
Buchanan, H.L.
1982-01-01
A simple model is adopted to study the hose instability of an intense relativistic electron beam in a partially neutralized, low density ion channel (ion focused regime). Equations of motion for the beam and the channel are derived and linearized to obtain an approximate dispersion relation. The non-linear equations of motion are then solved numerically and the results compared to linearized data
Modulational Instability in Linearly Coupled Asymmetric Dual-Core Fibers
Directory of Open Access Journals (Sweden)
Arjunan Govindarajan
2017-06-01
Full Text Available We investigate modulational instability (MI in asymmetric dual-core nonlinear directional couplers incorporating the effects of the differences in effective mode areas and group velocity dispersions, as well as phase- and group-velocity mismatches. Using coupled-mode equations for this system, we identify MI conditions from the linearization with respect to small perturbations. First, we compare the MI spectra of the asymmetric system and its symmetric counterpart in the case of the anomalous group-velocity dispersion (GVD. In particular, it is demonstrated that the increase of the inter-core linear-coupling coefficient leads to a reduction of the MI gain spectrum in the asymmetric coupler. The analysis is extended for the asymmetric system in the normal-GVD regime, where the coupling induces and controls the MI, as well as for the system with opposite GVD signs in the two cores. Following the analytical consideration of the MI, numerical simulations are carried out to explore nonlinear development of the MI, revealing the generation of periodic chains of localized peaks with growing amplitudes, which may transform into arrays of solitons.
Linear Gain for the Microbunching Instability in an RF Compressor
International Nuclear Information System (INIS)
Venturini, M.; Migliorati, M.; Ronsivalle, C.; Vaccarezza, C.
2009-01-01
Velocity (or rf) compression has been suggested as a technique for bunch compression complementary to the more established technique involving magnetic chicanes and represents an important research item being investigated at the SPARC test facility. One of the aspects of this technique still not sufficiently understood is its possible impact on the microbunching instability. The purpose of this report is to present the analytical framework for investigating this instability in rf compressors. We use methods similar to those successfully applied to magnetic compressors and derive some integral equations yielding the gain for the instability in linear approximation. The focus here is on the derivation of the relevant equations. Although examples of solutions to these equations are provided we defer a more comprehensive discussion of their implication to a future report. The present study is part of a larger effort for a more comprehensive investigation that eventually will include macroparticle simulations and experiments.
Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics
Bakhsh, Abeer
2016-03-09
Numerical simulations and analysis indicate that the Richtmyer-Meshkov instability(RMI) is suppressed in ideal magnetohydrodynamics(MHD) in Cartesian slab geometry. Motivated by the presence of hydrodynamic instabilities in inertial confinement fusion and suppression by means of a magnetic field, we investigate the RMI via linear MHD simulations in cylindrical geometry. The physical setup is that of a Chisnell-type converging shock interacting with a density interface with either axial or azimuthal (2D) perturbations. The linear stability is examined in the context of an initial value problem (with a time-varying base state) wherein the linearized ideal MHD equations are solved with an upwind numerical method. Linear simulations in the absence of a magnetic field indicate that RMI growth rate during the early time period is similar to that observed in Cartesian geometry. However, this RMI phase is short-lived and followed by a Rayleigh-Taylor instability phase with an accompanied exponential increase in the perturbation amplitude. We examine several strengths of the magnetic field (characterized by β=2p/B^2_r) and observe a significant suppression of the instability for β ≤ 4. The suppression of the instability is attributed to the transport of vorticity away from the interface by Alfvén fronts.
The linear electric motor: Instability at 1,000 g's
International Nuclear Information System (INIS)
Hunter, S.
1997-01-01
When fluid of high density is supported against gravity by a less dense liquid, the system is unstable, and microscopic perturbations grow at the interface between the fluids. This phenomenon, called the Rayleigh-Taylor instability, also occurs when a bottle of oil-and-vinegar salad dressing is turned upside down. The instability causes spikes of the dense fluid to penetrate the light fluid, while bubbles of the lighter fluid rise into the dense fluid. The same phenomenon occurs when a light fluid is used to accelerate a dense fluid, causing the two fluids to mix at a very high rate. For example, during the implosion of an ICF capsule, this instability can cause enough mixing to contaminate, cool, and degrade the yield of the thermonuclear fuel. The LEM is an excellent tool for studying this instability, but what is it? Think of a miniature high-speed electric train (the container) hurtling down a track (the electrodes) while diagnostic equipment (optical and laser) photographs it. The LEM, consists of four linear electrodes, or rails, that carry an electrical current to a pair of sliding armatures on the container. A magnetic field is produced that works in concert with the rail-armature current to accelerate the container--just as in an electric motor, but in a linear fashion rather than in rotation. The magnetic field is augmented with elongated coils just as in a conventional electric motor. This configuration also helps hold the armatures against the electrodes to prevent arcing. The electrical energy (0.6 megajoules) is provided by 16 capacitor banks that can be triggered independently to produce different acceleration profiles (i.e., how the acceleration varies with time)
International Nuclear Information System (INIS)
Subhash, P V; Madhavan, S; Chaturvedi, S
2008-01-01
Two-dimensional (2D) magneto-hydrodynamic (MHD) liner-on-plasma computations have been performed to study the growth of instabilities in a magnetized target fusion system involving the cylindrical compression of an inverse Z-pinch target plasma by a metallic liner. The growth of modes in the plasma can be divided into two phases. During the first phase, the plasma continues to be Kadomtsev stable. The dominant mode in the liner instability is imposed upon the plasma in the form of a growing perturbation. This mode further transfers part of its energy to its harmonics. During the second phase, however, non-uniform implosion of the liner leads to axial variations in plasma quantities near the liner-plasma interface, such that certain regions of the plasma locally violate the Kadomtsev criteria. Further growth ofthe plasma modes is then due to plasma instability. The above numerical study has been complemented with a linear stability analysis for the plasma, the boundary conditions for this analysis being obtained from the liner-on-plasma simulation. The stability of axisymmetric modes in the first phase is found to satisfy the Kadomtsev condition Q 0 1 modes, using equilibrium profiles from the 2D MHD study, shows that their growth rates can exceed those for m=0 by as much as an order of magnitude
Bhakta, S.; Prajapati, R. P.; Dolai, B.
2017-08-01
The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.
Instability of the cored barotropic disc: the linear eigenvalue formulation
Polyachenko, E. V.
2018-05-01
Gaseous rotating razor-thin discs are a testing ground for theories of spiral structure that try to explain appearance and diversity of disc galaxy patterns. These patterns are believed to arise spontaneously under the action of gravitational instability, but calculations of its characteristics in the gas are mostly obscured. The paper suggests a new method for finding the spiral patterns based on an expansion of small amplitude perturbations over Lagrange polynomials in small radial elements. The final matrix equation is extracted from the original hydrodynamical equations without the use of an approximate theory and has a form of the linear algebraic eigenvalue problem. The method is applied to a galactic model with the cored exponential density profile.
Linear and nonlinear instability theory of a noble gas MHD generator
International Nuclear Information System (INIS)
Mesland, A.J.
1982-01-01
This thesis deals with the stability of the working medium of a seeded noble gas magnetohydrodynamic generator. The aim of the study is to determine the instability mechanism which is most likely to occur in experimental MHD generators and to describe its behaviour with linear and nonlinear theories. In chapter I a general introduction is given. The pertinent macroscopic basic equations are derived in chapter II, viz. the continuity, the momentum and the energy equation for the electrons and the heavy gas particles, consisting of the seed particles and the noble gas atoms. Chapter III deals with the linear plane wave analysis of small disturbances of a homogeneous steady state. The steady state is discussed in chapter IV. The values for the steady state parameters used for the calculations both for the linear analysis as for the nonlinear analysis are made plausible with the experimental values. Based on the results of the linear plane wave theory a nonlinear plane wave model of the electrothermal instability is introduced in chapter V. (Auth.)
Siemens experience on linear and nonlinear analyses of out-of-phase BWR instabilities
International Nuclear Information System (INIS)
Kreuter, D.; Wehle, F.
1995-01-01
The Siemens design code STAIF has been applied extensively for linear analysis of BWR instabilities. The comparison between measurements and STAIF calculations for different plants under various conditions has shown good agreement for core-wide and regional instabilities. Based on the high quality of STAIF, the North German TUeV has decided to replace the licensing requirement of extensive stability measurements by predictive analyses with the code STAIF. Nonlinear stability analysis for beyond design boundary conditions with RAMONA has shown dryout during temporarily reversed flow at core inlet in case of core-wide oscillations. For large out-of-phase oscillations, dryout occurs already for small, still positive channel inlet flow. (orig.)
Analysis of fluid structural instability in water
International Nuclear Information System (INIS)
Piccirillo, N.
1997-02-01
Recent flow testing of stainless steel hardware in a high pressure/high temperature water environment produced an apparent fluid-structural instability. The source of instability was investigated by studying textbook theory and by performing NASTRAN finite element analyses. The modal analyses identified the mode that was being excited, but the flutter instability analysis showed that the design is stable if minimal structural damping is present. Therefore, it was suspected that the test hardware was the root cause of the instability. Further testing confirmed this suspicion
Introduction to the linear theory of tearing instabilities
International Nuclear Information System (INIS)
Hazeltine, R.D.
1978-02-01
The reasons why tearing instabilities might bear importantly on tokamak performance are considered. The mechanism of tearing is described and the method by which this mechanism is analyzed is outlined. A survey is given of typical growth rate predictions
Nonlocal linear theory of the gradient drift instability in the equatorial electrojet
International Nuclear Information System (INIS)
Ronchi, C.; Similon, P.L.; Sudan, R.N.
1989-01-01
The linear global eigenmodes of the gradient drift instability in the daytime equatorial electrojet are investigated. A main feature of the analysis is the inclusion of ion-neutral and electron-neutral collision frequencies dependent on altitude. It is found that the basic characteristics and localization of the unstable modes are determined mainly by the profiles of the Pedersen and Hall mobilities, which are derived from the Cowling conductivity model and experimental data. The equilibrium density profile is parabolic, which is fairly representative of the actual measurements. The unstable modes are sensitive not to the details of this profile, but only to the average value of the gradient. The results are obtained from a direct numerical integration of nonlocal linearized equations. They are further analyzed through an eikonal analysis, which provides both an interpretation of the transient modes observed by Fu et al. (1986) and some additional physics insight into the linear evolution of the global unstable modes. Finally, it is shown that the previously reported short-wavelength stabilization effect due to velocity shear may be overshadowed by the presence of regions in which the transient modes can develop into absolute instabilities. copyright American Geophysical Union 1989
Combustion instability modeling and analysis
Energy Technology Data Exchange (ETDEWEB)
Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States); Sheppard, E.J. [Tuskeggee Univ., Tuskegee, AL (United States). Dept. of Aerospace Engineering
1995-12-31
It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.
Assessing Spontaneous Combustion Instability with Nonlinear Time Series Analysis
Eberhart, C. J.; Casiano, M. J.
2015-01-01
Considerable interest lies in the ability to characterize the onset of spontaneous instabilities within liquid propellant rocket engine (LPRE) combustion devices. Linear techniques, such as fast Fourier transforms, various correlation parameters, and critical damping parameters, have been used at great length for over fifty years. Recently, nonlinear time series methods have been applied to deduce information pertaining to instability incipiency hidden in seemingly stochastic combustion noise. A technique commonly used in biological sciences known as the Multifractal Detrended Fluctuation Analysis has been extended to the combustion dynamics field, and is introduced here as a data analysis approach complementary to linear ones. Advancing, a modified technique is leveraged to extract artifacts of impending combustion instability that present themselves a priori growth to limit cycle amplitudes. Analysis is demonstrated on data from J-2X gas generator testing during which a distinct spontaneous instability was observed. Comparisons are made to previous work wherein the data were characterized using linear approaches. Verification of the technique is performed by examining idealized signals and comparing two separate, independently developed tools.
Sheet Beam Klystron Instability Analysis
International Nuclear Information System (INIS)
Bane, K.
2009-01-01
Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly
Combustion instability modeling and analysis
Energy Technology Data Exchange (ETDEWEB)
Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States)] [and others
1995-10-01
It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.
Generalized Linear Covariance Analysis
Carpenter, James R.; Markley, F. Landis
2014-01-01
This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.
Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows
Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant
2016-04-01
We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the
Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows
International Nuclear Information System (INIS)
Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant; Ó Náraigh, Lennon
2016-01-01
We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the
Simulation of beam instabilities in a superconducting linear collider
International Nuclear Information System (INIS)
Aune, B.; Mosnier, A.; Napoly, O.
1992-01-01
Some results on the short range and long range wakefields effects due to the SC cavities on a beam emerging from a TESLA linac are presented. First, the intrabunch energy spread is estimated after the usual linac phase optimisation. Next, multibunch transverse instability is studied with several schemes of constant beta FODO focusing. In both cases, the parameters of a realistic 1.3 Ghz TESLA cavity and the parameters of the two machines 'Top-Factory' and '1/2 TESLA' are considered. It is concluded that the longitudinal wake effect is not a problem in both machines and that a rather weak focusing scheme is sufficient to keep the emittance at the 10 -6 m rad design value. (author) 6 refs.; 9 figs.; 3 tabs
Fractional hereditariness of lipid membranes: Instabilities and linearized evolution.
Deseri, L; Pollaci, P; Zingales, M; Dayal, K
2016-05-01
In this work lipid ordering phase changes arising in planar membrane bilayers is investigated both accounting for elasticity alone and for effective viscoelastic response of such assemblies. The mechanical response of such membranes is studied by minimizing the Gibbs free energy which penalizes perturbations of the changes of areal stretch and their gradients only (Deseri and Zurlo, 2013). As material instabilities arise whenever areal stretches characterizing homogeneous configurations lie inside the spinoidal zone of the free energy density, bifurcations from such configurations are shown to occur as oscillatory perturbations of the in-plane displacement. Experimental observations (Espinosa et al., 2011) show a power-law in-plane viscous behavior of lipid structures allowing for an effective viscoelastic behavior of lipid membranes, which falls in the framework of Fractional Hereditariness. A suitable generalization of the variational principle invoked for the elasticity is applied in this case, and the corresponding Euler-Lagrange equation is found together with a set of boundary and initial conditions. Separation of variables allows for showing how Fractional Hereditariness owes bifurcated modes with a larger number of spatial oscillations than the corresponding elastic analog. Indeed, the available range of areal stresses for material instabilities is found to increase with respect to the purely elastic case. Nevertheless, the time evolution of the perturbations solving the Euler-Lagrange equation above exhibits time-decay and the large number of spatial oscillation slowly relaxes, thereby keeping the features of a long-tail type time-response. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wiebel instability of microwave gas discharge in strong linear and circular pulsed fields
International Nuclear Information System (INIS)
Shokri, B.; Ghorbanalilu, M.
2004-01-01
Being much weaker than the atomic fields, the gas breakdown produced by high-power pulsed microwave fields is investigated in the nonrelativistic case. The distribution function of the electrons produced by the interaction with intense linearly and circularly polarized microwave fields is obtained and it is shown that it is in a nonequilibrium state and anisotropic. The discharge mechanism for the gas atoms is governed by electron-impact avalanche ionization. By analyzing the instability of the system and by finding its growth rate, it is shown that the instability which is governed by the anisotropic property of the distribution function is Wiebel instability
Some effects of horizontal discretization on linear baroclinic and symmetric instabilities
Barham, William; Bachman, Scott; Grooms, Ian
2018-05-01
The effects of horizontal discretization on linear baroclinic and symmetric instabilities are investigated by analyzing the behavior of the hydrostatic Eady problem in ocean models on the B and C grids. On the C grid a spurious baroclinic instability appears at small wavelengths. This instability does not disappear as the grid scale decreases; instead, it simply moves to smaller horizontal scales. The peak growth rate of the spurious instability is independent of the grid scale as the latter decreases. It is equal to cf /√{Ri} where Ri is the balanced Richardson number, f is the Coriolis parameter, and c is a nondimensional constant that depends on the Richardson number. As the Richardson number increases c increases towards an upper bound of approximately 1/2; for large Richardson numbers the spurious instability is faster than the Eady instability. To suppress the spurious instability it is recommended to use fourth-order centered tracer advection along with biharmonic viscosity and diffusion with coefficients (Δx) 4 f /(32√{Ri}) or larger where Δx is the grid scale. On the B grid, the growth rates of baroclinic and symmetric instabilities are too small, and converge upwards towards the correct values as the grid scale decreases; no spurious instabilities are observed. In B grid models at eddy-permitting resolution, the reduced growth rate of baroclinic instability may contribute to partially-resolved eddies being too weak. On the C grid the growth rate of symmetric instability is better (larger) than on the B grid, and converges upwards towards the correct value as the grid scale decreases.
Analysis of microscopic instability for rotating LIB
International Nuclear Information System (INIS)
Seto, Masaru; Niu, Keishiro
1985-01-01
The instability of a neutral hollow beam is investigated within the framework of the Vlasov-Maxwell equations. It is assumed that the hollow beam is thin with the radial thickness a which is much smaller than the major radius R 0 , and that the equilibrium beam charge is neutralized by the background electron charge. The stability analysis is carried out for perturbations about the beam equilibrium distribution function fsub(b) 0 . The detailed instability properties are calculated for a variety of system parameters. (author)
Linear theory of the tearing instability in axisymmetric toroidal devices
International Nuclear Information System (INIS)
Rogister, A.; Singh, R.
1988-08-01
We derive a very general kinetic equation describing the linear evolution of low m/l modes in axisymmetric toroidal plasmas with arbitrary cross sections. Included are: Ion sound, inertia, diamagnetic drifts, finite poloidal beta, and finite ion Larmor radius effects. Assuming the magnetic surfaces to form a set of nested tori with circular cross sections of shifted centers, and introducing adequate simplifications justified by our knowledge of experimental tokamak plasmas, we then obtain explicitely the sets of equations describing the coupling of the quasimodes 0/1, 1/1, 2/1, and, for m≥2, m/1, (m+1)/1. By keeping finite aspect ratio effects into account when calculating the jump of the derivative of the eigenfunction, it is shown that the theory can explain the rapid evolution, within one sawtooth period, of the growth rate of the sawteeth precursors from resistive values to magnetohydrodynamic ones. The characteristics thus theoretically required from current profiles in sawtoothing discharges have clearly been observed. Other aspects of the full theory could be relevant to the phenomenon of major disruptions. (orig.)
Linear Simulations of the Cylindrical Richtmyer-Meshkov Instability in Hydrodynamics and MHD
Gao, Song
2013-05-01
The Richtmyer-Meshkov instability occurs when density-stratified interfaces are impulsively accelerated, typically by a shock wave. We present a numerical method to simulate the Richtmyer-Meshkov instability in cylindrical geometry. The ideal MHD equations are linearized about a time-dependent base state to yield linear partial differential equations governing the perturbed quantities. Convergence tests demonstrate that second order accuracy is achieved for smooth flows, and the order of accuracy is between first and second order for flows with discontinuities. Numerical results are presented for cases of interfaces with positive Atwood number and purely azimuthal perturbations. In hydrodynamics, the Richtmyer-Meshkov instability growth of perturbations is followed by a Rayleigh-Taylor growth phase. In MHD, numerical results indicate that the perturbations can be suppressed for sufficiently large perturbation wavenumbers and magnetic fields.
Non-linear general instability of ring-stiffened conical shells under external hydrostatic pressure
International Nuclear Information System (INIS)
Ross, C T F; Kubelt, C; McLaughlin, I; Etheridge, A; Turner, K; Paraskevaides, D; Little, A P F
2011-01-01
The paper presents the experimental results for 15 ring-stiffened circular steel conical shells, which failed by non-linear general instability. The results of these investigations were compared with various theoretical analyses, including an ANSYS eigen buckling analysis and another ANSYS analysis; which involved a step-by-step method until collapse; where both material and geometrical nonlinearity were considered. The investigation also involved an analysis using BS5500 (PD 5500), together with the method of Ross of the University of Portsmouth. The ANSYS eigen buckling analysis tended to overestimate the predicted buckling pressures; whereas the ANSYS nonlinear results compared favourably with the experimental results. The PD5500 analysis was very time consuming and tended to grossly underestimate the experimental buckling pressures and in some cases, overestimate them. In contrast to PD5500 and ANSYS, the design charts of Ross of the University of Portsmouth were the easiest of all these methods to use and generally only slightly underestimated the experimental collapse pressures. The ANSYS analyses gave some excellent graphical displays.
Hydrodynamic instabilities in inertial fusion
International Nuclear Information System (INIS)
Hoffman, N.M.
1994-01-01
This report discusses topics on hydrodynamics instabilities in inertial confinement: linear analysis of Rayleigh-Taylor instability; ablation-surface instability; bubble rise in late-stage Rayleigh-Taylor instability; and saturation and multimode interactions in intermediate-stage Rayleigh-Taylor instability
Tsai, Shirley C; Tsai, Chen S
2013-08-01
A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery.
Seber, George A F
2012-01-01
Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.
Numerical analysis of anisotropic diffusion effect on ICF hydrodynamic instabilities
Directory of Open Access Journals (Sweden)
Olazabal-Loumé M.
2013-11-01
Full Text Available The effect of anisotropic diffusion on hydrodynamic instabilities in the context of Inertial Confinement Fusion (ICF flows is numerically assessed. This anisotropy occurs in indirect-drive when laminated ablators are used to modify the lateral transport [1,2]. In direct-drive, non-local transport mechanisms and magnetic fields may modify the lateral conduction [3]. In this work, numerical simulations obtained with the code PERLE [4], dedicated to linear stability analysis, are compared with previous theoretical results [5]. In these approaches, the diffusion anisotropy can be controlled by a characteristic coefficient which enables a comprehensive study. This work provides new results on the ablative Rayleigh-Taylor (RT, ablative Richtmyer-Meshkov (RM and Darrieus-Landau (DL instabilities.
Ion-hose instability in a long-pulse linear induction accelerator
Directory of Open Access Journals (Sweden)
Thomas C. Genoni
2003-03-01
Full Text Available The ion-hose instability is a transverse electrostatic instability which occurs on electron beams in the presence of a low-density ion channel. It is a phenomenon quite similar to the interaction between electron clouds and proton or positron beams in high-energy accelerators and storage rings. In the DARHT-2 accelerator, the 2-kA, 2-μs beam pulse produces an ion channel through impact ionization of the residual background gas (10^{-7}–10^{-6} torr. A calculation of the linear growth by Briggs indicates that the instability could be strong enough to affect the radiographic application of DARHT, which requires that transverse oscillations be small compared to the beam radius. We present semianalytical theory and 3D particle-in-cell simulations (using the Lsp code of the linear and nonlinear growth of the instability, including the effects of the temporal change in the ion density and spatially decreasing beam radius. We find that the number of e-foldings experienced by a given beam slice is given approximately by an analytic expression using the local channel density at the beam slice. Hence, in the linear regime, the number of e-foldings increases linearly from head to tail of the beam pulse since it is proportional to the ion density. We also find that growth is strongly suppressed by nonlinear effects at relatively small oscillation amplitudes of the electron beam. This is because the ion oscillation amplitude is several times larger than that of the beam, allowing nonlinear effects to come into play. An analogous effect has recently been noted in electron-proton instabilities in high-energy accelerators and storage rings. For DARHT-2 parameters, we find that a pressure of ≤1.5×10^{-7} torr is needed to keep the transverse beam oscillation amplitude less than about 20% of the rms beam radius.
International Nuclear Information System (INIS)
Outeda, R.; D'Onofrio, A.; El Hasi, C.; Zalts, A.
2014-01-01
Density driven instabilities produced by CO 2 (gas) dissolution in water containing a color indicator were studied in a Hele Shaw cell. The images were analyzed and instability patterns were characterized by mixing zone temporal evolution, dispersion curves, and the growth rate for different CO 2 pressures and different color indicator concentrations. The results obtained from an exhaustive analysis of experimental data show that this system has a different behaviour in the linear regime of the instabilities (when the growth rate has a linear dependence with time), from the nonlinear regime at longer times. At short times using a color indicator to see the evolution of the pattern, the images show that the effects of both the color indicator and CO 2 pressure are of the same order of magnitude: The growth rates are similar and the wave numbers are in the same range (0–30 cm −1 ) when the system is unstable. Although in the linear regime the dynamics is affected similarly by the presence of the indicator and CO 2 pressure, in the nonlinear regime, the influence of the latter is clearly more pronounced than the effects of the color indicator
Directory of Open Access Journals (Sweden)
V. Génot
2009-02-01
Full Text Available Using 5 years of Cluster data, we present a detailed statistical analysis of magnetic fluctuations associated with mirror structures in the magnetosheath. We especially focus on the shape of these fluctuations which, in addition to quasi-sinusoidal forms, also display deep holes and high peaks. The occurrence frequency and the most probable location of the various types of structures is discussed, together with their relation to local plasma parameters. While these properties have previously been correlated to the β of the plasma, we emphasize here the influence of the distance to the linear mirror instability threshold. This enables us to interpret the observations of mirror structures in a stable plasma in terms of bistability and subcritical bifurcation. The data analysis is supplemented by the prediction of a quasi-static anisotropic MHD model and hybrid numerical simulations in an expanding box aimed at mimicking the magnetosheath plasma. This leads us to suggest a scenario for the formation and evolution of mirror structures.
Novel features of non-linear Raman instability in a laser plasma
Czech Academy of Sciences Publication Activity Database
Mašek, Martin; Rohlena, Karel
2010-01-01
Roč. 56, č. 1 (2010), s. 79-90 ISSN 1434-6060 R&D Projects: GA MŠk(CZ) 7E08099; GA MŠk(CZ) LC528; GA ČR GA202/05/2475 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser plasma * non-linear Raman instability Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.513, year: 2010
Wavelength dependence of the linear growth rate of the Es layer instability
Directory of Open Access Journals (Sweden)
R. B. Cosgrove
2007-06-01
Full Text Available It has recently been shown, by computation of the linear growth rate, that midlatitude sporadic-E (Es layers are subject to a large scale electrodynamic instability. This instability is a logical candidate to explain certain frontal structuring events, and polarization electric fields, which have been observed in Es layers by ionosondes, by coherent scatter radars, and by rockets. However, the original growth rate derivation assumed an infinitely thin Es layer, and therefore did not address the short wavelength cutoff. Also, the same derivation ignored the effects of F region loading, which is a significant wavelength dependent effect. Herein is given a generalized derivation that remedies both these short comings, and thereby allows a computation of the wavelength dependence of the linear growth rate, as well as computations of various threshold conditions. The wavelength dependence of the linear growth rate is compared with observed periodicities, and the role of the zeroth order meridional wind is explored. A three-dimensional paper model is used to explain the instability geometry, which has been defined formally in previous works.
Linear Analyses of Magnetohydrodynamic Richtmyer-Meshkov Instability in Cylindrical Geometry
Bakhsh, Abeer
2018-05-13
We investigate the Richtmyer-Meshkov instability (RMI) that occurs when an incident shock impulsively accelerates the interface between two different fluids. RMI is important in many technological applications such as Inertial Confinement Fusion (ICF) and astrophysical phenomena such as supernovae. We consider RMI in the presence of the magnetic field in converging geometry through both simulations and analytical means in the framework of ideal magnetohydrodynamics (MHD). In this thesis, we perform linear stability analyses via simulations in the cylindrical geometry, which is of relevance to ICF. In converging geometry, RMI is usually followed by the Rayleigh-Taylor instability (RTI). We show that the presence of a magnetic field suppresses the instabilities. We study the influence of the strength of the magnetic field, perturbation wavenumbers and other relevant parameters on the evolution of the RM and RT instabilities. First, we perform linear stability simulations for a single interface between two different fluids in which the magnetic field is normal to the direction of the average motion of the density interface. The suppression of the instabilities is most evident for large wavenumbers and relatively strong magnetic fields strengths. The mechanism of suppression is the transport of vorticity away from the density interface by two Alfv ́en fronts. Second, we examine the case of an azimuthal magnetic field at the density interface. The most evident suppression of the instability at the interface is for large wavenumbers and relatively strong magnetic fields strengths. After the shock interacts with the interface, the emerging vorticity breaks up into waves traveling parallel and anti-parallel to the magnetic field. The interference as these waves propagate with alternating phase causing the perturbation growth rate of the interface to oscillate in time. Finally, we propose incompressible models for MHD RMI in the presence of normal or azimuthal magnetic
Linear and Weakly Nonlinear Instability of Shallow Mixing Layers with Variable Friction
Directory of Open Access Journals (Sweden)
Irina Eglite
2018-01-01
Full Text Available Linear and weakly nonlinear instability of shallow mixing layers is analysed in the present paper. It is assumed that the resistance force varies in the transverse direction. Linear stability problem is solved numerically using collocation method. It is shown that the increase in the ratio of the friction coefficients in the main channel to that in the floodplain has a stabilizing influence on the flow. The amplitude evolution equation for the most unstable mode (the complex Ginzburg–Landau equation is derived from the shallow water equations under the rigid-lid assumption. Results of numerical calculations are presented.
Beam-beam instability driven by wakefield effects in linear colliders
Brinkmann, R; Schulte, Daniel
2002-01-01
The vertical beam profile distortions induced by wakefield effects in linear colliders (the so-called ``banana effect'') generate a beam-beam instability at the collision point when the vertical disruption parameter is large. We illustrate this effect in the case of the TESLA linear collider project. We specify the tolerance on the associated emittance growth, which translates into tolerances on injection jitter and, for a given tuning procedure, on structure misalignments. We look for possible cures based on fast orbit correction at the interaction point and using a fast luminosity monitor.
Direct measurement of the image displacement instability in a linear induction accelerator
Burris-Mog, T. J.; Ekdahl, C. A.; Moir, D. C.
2017-06-01
The image displacement instability (IDI) has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU) instability. Although the BBU instability was not found to influence the IDI, it appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. This becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.
Direct measurement of the image displacement instability in a linear induction accelerator
Directory of Open Access Journals (Sweden)
T. J. Burris-Mog
2017-06-01
Full Text Available The image displacement instability (IDI has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU instability. Although the BBU instability was not found to influence the IDI, it appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. This becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.
International Nuclear Information System (INIS)
Gaur, Gurudatt; Das, Amita
2012-01-01
The study of electron velocity shear driven instability in electron magnetohydrodynamics (EMHD) regime in three dimensions has been carried out. It is well known that the instability is non-local in the plane defined by the flow direction and that of the shear, which is the usual Kelvin-Helmholtz mode, often termed as the sausage mode in the context of EMHD. On the other hand, a local instability with perturbations in the plane defined by the shear and the magnetic field direction exists which is termed as kink mode. The interplay of these two modes for simple sheared flow case as well as that when an external magnetic field exists has been studied extensively in the present manuscript in both linear and nonlinear regimes. Finally, these instability processes have been investigated for the exact 2D dipole solutions of EMHD equations [M. B. Isichenko and A. N. Marnachev, Sov. Phys. JETP 66, 702 (1987)] for which the electron flow velocity is sheared. It has been shown that dipoles are very robust and stable against the sausage mode as the unstable wavelengths are typically longer than the dipole size. However, we observe that they do get destabilized by the local kink mode.
The Experimental Study of Rayleigh-Taylor Instability using a Linear Induction Motor Accelerator
Yamashita, Nicholas; Jacobs, Jeffrey
2009-11-01
The experiments to be presented utilize an incompressible system of two stratified miscible liquids of different densities that are accelerated in order to produce the Rayleigh-Taylor instability. Three liquid combinations are used: isopropyl alcohol with water, a calcium nitrate solution or a lithium polytungstate solution, giving Atwood numbers of 0.11, 0.22 and 0.57, respectively. The acceleration required to drive the instability is produced by two high-speed linear induction motors mounted to an 8 m tall drop tower. The motors are mounted in parallel and have an effective acceleration length of 1.7 m and are each capable of producing 15 kN of thrust. The liquid system is contained within a square acrylic tank with inside dimensions 76 x76x184 mm. The tank is mounted to an aluminum plate, which is driven by the motors to create constant accelerations in the range of 1-20 g's, though the potential exists for higher accelerations. Also attached to the plate are a high-speed camera and an LED backlight to provide continuous video of the instability. In addition, an accelerometer is used to provide acceleration measurements during each experiment. Experimental image sequences will be presented which show the development of a random three-dimensional instability from an unforced initial perturbation. Measurements of the mixing zone width will be compared with traditional growth models.
International Nuclear Information System (INIS)
Pivi, Mauro; Raubenheimer, Tor O.; Ghalam, Ali; Harkay, Katherine; Ohmi, Kazuhito; Wanzenberg, Rainer; Wolski, Andrzej; Zimmermann, Frank
2005-01-01
Collective instabilities caused by the formation of an electron cloud (EC) are a potential limitation to the performances of the damping rings for a future linear collider. In this paper, we present recent simulation results for the electron cloud build-up in damping rings of different circumferences and discuss the single-bunch instabilities driven by the electron cloud
Linear stability analysis of heated parallel channels
International Nuclear Information System (INIS)
Nourbakhsh, H.P.; Isbin, H.S.
1982-01-01
An analyis is presented of thermal hydraulic stability of flow in parallel channels covering the range from inlet subcooling to exit superheat. The model is based on a one-dimensional drift velocity formulation of the two phase flow conservation equations. The system of equations is linearized by assuming small disturbances about the steady state. The dynamic response of the system to an inlet flow perturbation is derived yielding the characteristic equation which predicts the onset of instabilities. A specific application is carried out for homogeneous and regional uniformly heated systems. The particular case of equal characteristic frequencies of two-phase and single phase vapor region is studied in detail. The D-partition method and the Mikhailov stability criterion are used for determining the marginal stability boundary. Stability predictions from the present analysis are compared with the experimental data from the solar test facility. 8 references
Linearized potential vorticity mode and its role in transition to baroclinic instability
International Nuclear Information System (INIS)
Pieri, Alexandre; Salhi, Aziz; Cambon, Claude; Godeferd, Fabien
2011-01-01
Stratified shear flows have been studied using Rapid Distortion Theory (RDT) and DNS. If this flow is in addition subjected to vertical rotation, a slaved horizontal stratification is forced and baroclinic instability can occur. In this context, the RDT analysis shows an extention of the unstable domain up to a Richardson number Ri of 1. This work is completed here with new results on transition to baroclinic instability. Especially, the role of k x ≈ 0 modes (small streamwise wavenumbers) and the importance of coupling with the potential vorticity mode u (Ω pot ) is shown to be determinant for dramatic transient growth at intermediate times.
Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width
Piriz, S. A.; Piriz, A. R.; Tahir, N. A.
2018-04-01
The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number AT=1 and for sufficiently small values of AT. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.
Perturbations of linear delay differential equations at the verge of instability.
Lingala, N; Namachchivaya, N Sri
2016-06-01
The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts. It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE) without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other articles that use multiscale approach are pointed out.
International Nuclear Information System (INIS)
Mathey, O.H.
1989-01-01
In the first part of the work, the effects of weak Coulomb and neutral collisions on the collisionless curvature driven trapped particle mode are studied in the Columbia Linear Machine (CLM) [Phys. Rev. Lett. 57, 1729, (1986)]. Low Coulomb collisionality yields a small stabilizing correction to the magnetohydrodynamic (MHD) collisionless mode, which scales as v, using the Krook model, and ν ec 1/2 using a Lorentz pitch angle operator. In higher collisionality regimes, both models tend to yield similar scalings. In view of relative high neutral collisionality in CLM, both types of collisionality are then combined, modeling neutral collisions with the conserving Krook and Coulomb collisions with a Lorentz model. The dispersion relation is then integrated over velocity space. This combination yields results in very good accord with the available experimental data. The Ion Temperature Gradient Instability is then investigated. It is shown that anisotropy in gradient has a substantial effect on the ion temperature gradient driven mode. A gradient in the parallel temperature is needed for an instability to occur, and a gradient in the perpendicular temperature gradient further enhances the instability indirectly as long as the frequency of the mode is near ion resonance. The physical reason for this important role difference is presented. The Columbia Linear Machine is being redesigned to produce and identify the ion temperature gradient driven η i mode. Using the expected parameters, the author has developed detailed predictions of the mode characteristics in the CLM. Strong multi mode instabilities are expected. As the ion parallel and perpendicular ion temperature gradients are expected to differ significantly, we differentiate between η i parallel and ν i perpendicular and explore the physical differences between them, which leads to a scheme for stabilization of the mode
Energy Technology Data Exchange (ETDEWEB)
Ham, J. van; Beer, R.J. van; Builtjes, P.J.H.; Roemer, M.G.M. [TNO Inst. of Environmental Sciences, Delft (Netherlands); Koennen, G.P. [KNMI, Royal Netherlands Meteorological Inst., de Bilt (Netherlands); Oerlemans, J. [Utrecht Univ. (Netherlands). Inst. for Meteorological and Atmospheric Research
1995-12-31
In this presentation part of an investigation is described into risks for climate change which are presently not adequately covered in General Circulation Models. In the concept of climate change as a result of the enhanced greenhouse effect it is generally assumed that the radiative forcings from increased concentrations of greenhouse gases (GHG) will result in a proportional or quasilinear global warming. Though correlations of this kind are known from palaeoclimate research, the variability of the climate seems to prevent the direct proof of a causal relation between recent greenhouse gas concentrations and temperature observations. In order to resolve the issue the use of General Circulation Models (GCMs), though still inadequate at present, is indispensable. Around the world some 10 leading GCMs exist which have been the subject of evaluation and intercomparison in a number of studies. Their results are regularly assessed in the IPCC process. A discussion on their performance in simulating present or past climates and the causes of their weak points shows that the depiction of clouds is a major weakness of GCMs. A second element which is virtually absent in GCMs are the feedbacks from natural biogeochemical cycles. These cycles are influenced by man in a number of ways. GCMs have a limited performance in simulating regional effects on climate. Moreover, albedo instability, in part due to its interaction with cloudiness, is only roughly represented. Apparently, not all relevant processes have been included in the GCMs. That situation constitutes a risk, since it cannot be ruled out that a missing process could cause or trigger a non-linear climate change. In the study non-linear climate change is connected with those processes which could provide feedbacks with a risk for non-monotonous or discontinuous behaviour of the climate system, or which are unpredictable or could cause rapid transitions
Energy Technology Data Exchange (ETDEWEB)
Ham, J van; Beer, R.J. van; Builtjes, P J.H.; Roemer, M G.M. [TNO Inst. of Environmental Sciences, Delft (Netherlands); Koennen, G P [KNMI, Royal Netherlands Meteorological Inst., de Bilt (Netherlands); Oerlemans, J [Utrecht Univ. (Netherlands). Inst. for Meteorological and Atmospheric Research
1996-12-31
In this presentation part of an investigation is described into risks for climate change which are presently not adequately covered in General Circulation Models. In the concept of climate change as a result of the enhanced greenhouse effect it is generally assumed that the radiative forcings from increased concentrations of greenhouse gases (GHG) will result in a proportional or quasilinear global warming. Though correlations of this kind are known from palaeoclimate research, the variability of the climate seems to prevent the direct proof of a causal relation between recent greenhouse gas concentrations and temperature observations. In order to resolve the issue the use of General Circulation Models (GCMs), though still inadequate at present, is indispensable. Around the world some 10 leading GCMs exist which have been the subject of evaluation and intercomparison in a number of studies. Their results are regularly assessed in the IPCC process. A discussion on their performance in simulating present or past climates and the causes of their weak points shows that the depiction of clouds is a major weakness of GCMs. A second element which is virtually absent in GCMs are the feedbacks from natural biogeochemical cycles. These cycles are influenced by man in a number of ways. GCMs have a limited performance in simulating regional effects on climate. Moreover, albedo instability, in part due to its interaction with cloudiness, is only roughly represented. Apparently, not all relevant processes have been included in the GCMs. That situation constitutes a risk, since it cannot be ruled out that a missing process could cause or trigger a non-linear climate change. In the study non-linear climate change is connected with those processes which could provide feedbacks with a risk for non-monotonous or discontinuous behaviour of the climate system, or which are unpredictable or could cause rapid transitions
Wienkers, A. F.; Ogilvie, G. I.
2018-04-01
Non-linear evolution of the parametric instability of inertial waves inherent to eccentric discs is studied by way of a new local numerical model. Mode coupling of tidal deformation with the disc eccentricity is known to produce exponentially growing eccentricities at certain mean-motion resonances. However, the details of an efficient saturation mechanism balancing this growth still are not fully understood. This paper develops a local numerical model for an eccentric quasi-axisymmetric shearing box which generalises the often-used cartesian shearing box model. The numerical method is an overall second order well-balanced finite volume method which maintains the stratified and oscillatory steady-state solution by construction. This implementation is employed to study the non-linear outcome of the parametric instability in eccentric discs with vertical structure. Stratification is found to constrain the perturbation energy near the mid-plane and localise the effective region of inertial wave breaking that sources turbulence. A saturated marginally sonic turbulent state results from the non-linear breaking of inertial waves and is subsequently unstable to large-scale axisymmetric zonal flow structures. This resulting limit-cycle behaviour reduces access to the eccentric energy source and prevents substantial transport of angular momentum radially through the disc. Still, the saturation of this parametric instability of inertial waves is shown to damp eccentricity on a time-scale of a thousand orbital periods. It may thus be a promising mechanism for intermittently regaining balance with the exponential growth of eccentricity from the eccentric Lindblad resonances and may also help explain the occurrence of "bursty" dynamics such as the superhump phenomenon.
Non-linear 3D simulations of current-driven instabilities in jets
International Nuclear Information System (INIS)
Ivanovski, S.; Bonanno, A.
2009-01-01
We present global 3D nonlinear simulations of the Taylor instability in the presence of vertical fields. The initial configuration is in equilibrium, which is achieved by a pressure gradient or an external potential force. The non linear evolution of the system leads to a stable equilibrium with a current free toroidal field. We find the that presence of a vertical poloidal field stabilize the system if B φ ∼B z . The implication of our findings for the physics of astrophysical jets are discussed.
Linear stability analysis of supersonic axisymmetric jets
Directory of Open Access Journals (Sweden)
Zhenhua Wan
2014-01-01
Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.
Localized modelling and feedback control of linear instabilities in 2-D wall bounded shear flows
Tol, Henry; Kotsonis, Marios; de Visser, Coen
2016-11-01
A new approach is presented for control of instabilities in 2-D wall bounded shear flows described by the linearized Navier-Stokes equations (LNSE). The control design accounts both for spatially localized actuators/sensors and the dominant perturbation dynamics in an optimal control framework. An inflow disturbance model is proposed for streamwise instabilities that drive laminar-turbulent transition. The perturbation modes that contribute to the transition process can be selected and are included in the control design. A reduced order model is derived from the LNSE that captures the input-output behavior and the dominant perturbation dynamics. This model is used to design an optimal controller for suppressing the instability growth. A 2-D channel flow and a 2-D boundary layer flow over a flat plate are considered as application cases. Disturbances are generated upstream of the control domain and the resulting flow perturbations are estimated/controlled using wall shear measurements and localized unsteady blowing and suction at the wall. It will be shown that the controller is able to cancel the perturbations and is robust to unmodelled disturbances.
Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength
International Nuclear Information System (INIS)
Tao, Rumao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin
2015-01-01
We investigated the effect of pump wavelength on the modal instabilities (MI) in high-power linearly polarized Yb-doped fiber amplifiers. We built a novel semi-analytical model to determine the frequency coupling characteristics and power threshold of MI, which indicates promising MI suppression through pumping at an appropriate wavelength. By pumping at 915 nm, the threshold can be enhanced by a factor of 2.1 as compared to that pumped at 976 nm. Based on a high-power linearly polarized fiber amplifier platform, we studied the influence of pump wavelength experimentally. A maximal enhancement factor of 1.9 has been achieved when pumped at 915 nm, which agrees with the theoretical calculation and verified our theoretical model. Furthermore, we show that MI suppression by detuning the pump wavelength is weakened for fiber with a large core-to-cladding ratio. (paper)
Orthogonal sparse linear discriminant analysis
Liu, Zhonghua; Liu, Gang; Pu, Jiexin; Wang, Xiaohong; Wang, Haijun
2018-03-01
Linear discriminant analysis (LDA) is a linear feature extraction approach, and it has received much attention. On the basis of LDA, researchers have done a lot of research work on it, and many variant versions of LDA were proposed. However, the inherent problem of LDA cannot be solved very well by the variant methods. The major disadvantages of the classical LDA are as follows. First, it is sensitive to outliers and noises. Second, only the global discriminant structure is preserved, while the local discriminant information is ignored. In this paper, we present a new orthogonal sparse linear discriminant analysis (OSLDA) algorithm. The k nearest neighbour graph is first constructed to preserve the locality discriminant information of sample points. Then, L2,1-norm constraint on the projection matrix is used to act as loss function, which can make the proposed method robust to outliers in data points. Extensive experiments have been performed on several standard public image databases, and the experiment results demonstrate the performance of the proposed OSLDA algorithm.
Sierra-Guzmán, Rafael; Jiménez, Fernando; Abián-Vicén, Javier
2018-05-01
Previous studies have reported the factors contributing to chronic ankle instability, which could lead to more effective treatments. However, factors such as the reflex response and ankle muscle strength have not been taken into account in previous investigations. Fifty recreational athletes with chronic ankle instability and 55 healthy controls were recruited. Peroneal reaction time in response to sudden inversion, isokinetic evertor muscle strength and dynamic balance with the Star Excursion Balance Test and the Biodex Stability System were measured. The relationship between the Cumberland Ankle Instability Tool score and performance on each test was assessed and a backward multiple linear regression analysis was conducted. Participants with chronic ankle instability showed prolonged peroneal reaction time, poor performance in the Biodex Stability System and decreased reach distance in the Star Excursion Balance Test. No significant differences were found in eversion and inversion peak torque. Moderate correlations were found between the Cumberland Ankle Instability Tool score and the peroneal reaction time and performance on the Star Excursion Balance Test. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test accounted for 36% of the variance in the Cumberland Ankle Instability Tool. Dynamic balance deficits and delayed peroneal reaction time are present in participants with chronic ankle instability. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test were the main contributing factors to the Cumberland Ankle Instability Tool score. No clear strength impairments were reported in unstable ankles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Linear Algebraic Method for Non-Linear Map Analysis
International Nuclear Information System (INIS)
Yu, L.; Nash, B.
2009-01-01
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
Non-linear development of secular gravitational instability in protoplanetary disks
Tominaga, Ryosuke T.; Inutsuka, Shu-ichiro; Takahashi, Sanemichi Z.
2018-01-01
We perform non-linear simulation of secular gravitational instability (GI) in protoplanetary disks, which has been proposed as a mechanism of planetesimal and multiple ring formation. Since the timescale of the growth of the secular GI is much longer than the Keplerian rotation period, we develop a new numerical scheme for a long-term calculation utilizing the concept of symplectic integration. With our new scheme, we first investigate the non-linear development of the secular GI in a disk without a pressure gradient in the initial state. We find that the surface density of dust increases by more than a factor of 100 while that of gas does not increase even by a factor of 2, which results in the formation of dust-dominated rings. A line mass of the dust ring tends to be very close to the critical line mass of a self-gravitating isothermal filament. Our results indicate that the non-linear growth of the secular GI provides a powerful mechanism to concentrate the dust. We also find that the dust ring formed via the non-linear growth of the secular GI migrates inward with a low velocity, which is driven by the self-gravity of the ring. We give a semi-analytical expression for the inward migration speed of the dusty ring.
Non linear stability analysis of parallel channels with natural circulation
Energy Technology Data Exchange (ETDEWEB)
Mishra, Ashish Mani; Singh, Suneet, E-mail: suneet.singh@iitb.ac.in
2016-12-01
Highlights: • Nonlinear instabilities in natural circulation loop are studied. • Generalized Hopf points, Sub and Supercritical Hopf bifurcations are identified. • Bogdanov–Taken Point (BT Point) is observed by nonlinear stability analysis. • Effect of parameters on stability of system is studied. - Abstract: Linear stability analysis of two-phase flow in natural circulation loop is quite extensively studied by many researchers in past few years. It can be noted that linear stability analysis is limited to the small perturbations only. It is pointed out that such systems typically undergo Hopf bifurcation. If the Hopf bifurcation is subcritical, then for relatively large perturbation, the system has unstable limit cycles in the (linearly) stable region in the parameter space. Hence, linear stability analysis capturing only infinitesimally small perturbations is not sufficient. In this paper, bifurcation analysis is carried out to capture the non-linear instability of the dynamical system and both subcritical and supercritical bifurcations are observed. The regions in the parameter space for which subcritical and supercritical bifurcations exist are identified. These regions are verified by numerical simulation of the time-dependent, nonlinear ODEs for the selected points in the operating parameter space using MATLAB ODE solver.
International Nuclear Information System (INIS)
Casner, A.; Masse, L.; Liberatore, S.; Delorme, B.; Jacquet, L.; Loiseau, P.; Smalyuk, V. A.; Martinez, D.; Remington, B. A.
2012-01-01
As the control of the development of Rayleigh-Taylor-type hydrodynamic instabilities is crucial to achieve efficient implosions on the Laser Megajoule, and as the complexity of these instabilities requires an experimental validation of theoretical models and of the associated numerical simulations, the authors briefly present a proposition of experiments aimed at studying the strongly non linear Rayleigh-Taylor instability on the National Ignition Facility (NIF). This should allow a regime of competition between bubbles to be achieved for the first time in direct attack. They evoke the first experiment performed in March 2013
Linear theory of the Rayleigh-Taylor instability in the equatorial ionsophere
International Nuclear Information System (INIS)
Russel, D.A.; Ott, E.
1979-01-01
We present a liner theory of the Rayleigh-Taylor instability in the equatorial ionosphere. For a purely exponential density profile, we find that no unstable eigenmode solutions exist. For a particular model ionosphere with an F peak, unstable eigenmode solutions exist only for sufficiently small horizontal wave numbers. In the later case, purely exponential growth at a rate identical to that for the sharp boundary instability is found. To clarify the situation in the case that eigenmodes do not exist, we solve the initial value problem for the linearized ion equation of motion in the long time asymptotic limit. Ion inertia and ion-neutral collisions are included. Assuming straight magnetic field lines, we find that when eigenmodes do not exist the growth of the response to an impulse is slower than exponential viz, t=/sup -1/2/ exp (γ/sup t/) below the F peak and t/sup -3/2/ exp(γ/sup t/) above the peak; and we determine γ
Effect of accelerating gap geometry on the beam breakup instability in linear induction accelerators
International Nuclear Information System (INIS)
Miller, R.B.; Marder, B.M.; Coleman, P.D.; Clark, R.E.
1988-01-01
The electron beam in a linear induction accelerator is generally susceptible to growth of the transverse beam breakup instability. In this paper we analyze a new technique for reducing the transverse coupling between the beam and the accelerating cavities, thereby reducing beam breakup growth. The basic idea is that the most worrisome cavity modes can be cutoff by a short section of coaxial transmission line inserted between the cavity structure and the accelerating gap region. We have used the three-dimensional simulation code SOS to analyze this problem. In brief, we find that the technique works, provided that the lowest TE mode cutoff frequency in the coaxial line is greater than the frequency of the most worrisome TM mode of the accelerating cavity
The non-linear growth of the magnetic Rayleigh-Taylor instability
Carlyle, Jack; Hillier, Andrew
2017-09-01
This work examines the effect of the embedded magnetic field strength on the non-linear development of the magnetic Rayleigh-Taylor instability (RTI) (with a field-aligned interface) in an ideal gas close to the incompressible limit in three dimensions. Numerical experiments are conducted in a domain sufficiently large so as to allow the predicted critical modes to develop in a physically realistic manner. The ratio between gravity, which drives the instability in this case (as well as in several of the corresponding observations), and magnetic field strength is taken up to a ratio which accurately reflects that of observed astrophysical plasma, in order to allow comparison between the results of the simulations and the observational data which served as inspiration for this work. This study finds reduced non-linear growth of the rising bubbles of the RTI for stronger magnetic fields, and that this is directly due to the change in magnetic field strength, rather than the indirect effect of altering characteristic length scales with respect to domain size. By examining the growth of the falling spikes, the growth rate appears to be enhanced for the strongest magnetic field strengths, suggesting that rather than affecting the development of the system as a whole, increased magnetic field strengths in fact introduce an asymmetry to the system. Further investigation of this effect also revealed that the greater this asymmetry, the less efficiently the gravitational energy is released. By better understanding the under-studied regime of such a major phenomenon in astrophysics, deeper explanations for observations may be sought, and this work illustrates that the strength of magnetic fields in astrophysical plasmas influences observed RTI in subtle and complex ways.
International Nuclear Information System (INIS)
Burke, B. J.; Kruger, S. E.; Hegna, C. C.; Zhu, P.; Snyder, P. B.; Sovinec, C. R.; Howell, E. C.
2010-01-01
A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition to instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10 8 and 10 3 for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10 5 , which is much larger than experimentally measured values using T e values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.
Normal mode analysis for linear resistive magnetohydrodynamics
International Nuclear Information System (INIS)
Kerner, W.; Lerbinger, K.; Gruber, R.; Tsunematsu, T.
1984-10-01
The compressible, resistive MHD equations are linearized around an equilibrium with cylindrical symmetry and solved numerically as a complex eigenvalue problem. This normal mode code allows to solve for very small resistivity eta proportional 10 -10 . The scaling of growthrates and layer width agrees very well with analytical theory. Especially, both the influence of current and pressure on the instabilities is studied in detail; the effect of resistivity on the ideally unstable internal kink is analyzed. (orig.)
Linear stability analysis in a solid-propellant rocket motor
Energy Technology Data Exchange (ETDEWEB)
Kim, K.M.; Kang, K.T.; Yoon, J.K. [Agency for Defense Development, Taejon (Korea, Republic of)
1995-10-01
Combustion instability in solid-propellant rocket motors depends on the balance between acoustic energy gains and losses of the system. The objective of this paper is to demonstrate the capability of the program which predicts the standard longitudinal stability using acoustic modes based on linear stability analysis and T-burner test results of propellants. Commercial ANSYS 5.0A program can be used to calculate the acoustic characteristic of a rocket motor. The linear stability prediction was compared with the static firing test results of rocket motors. (author). 11 refs., 17 figs.
International Nuclear Information System (INIS)
Eckstein, U.; Harte, R.; Kraetzig, W.B.; Wittek, U.
1983-01-01
In order to describe nonlinear response and instability behaviour the paper starts with the total potential energy considering the basic kinematic equations of a consistent nonlinear shell theory for large displacements and moderate rotations. The material behaviour is assumed to be hyperelastic and isotropic. The incrementation and discretization of the total potential energy leads to the tangent stiffness relation, which is the central equation of computational algorithms based on combined incremental and iterative techniques. Here a symmetrized form of the RIKS/WEMPNER-algorithm for positive and negative load incrementation represents the basis of the nonlinear solution technique. To detect secondary equilibrium branches at points of neutral equilibrium within nonlinear primary paths a quadratic eigenvalue-problem has to be solved. In order to follow those complicated nonlinear response phenomena the RIKS/WEMPNER incrementation/iteration process is combined with a simultaneous solution of the linearized quadratic eigenvalue-problem. Additionally the essentials of a recently derived family of arbitrarily curved shell elements for linear (LACS) and geometrically nonlinear (NACS) shell problems are presented. The main advantage of these elements is the exact description of all geometric properties as well as the energy-equivalent representation of the applied loads in combination with an efficient algorithm to form the stiffness submatrices. Especially the NACS-elements are designed to improve the accuracy of the solution in the deep postbuckling range including moderate rotations. The derived finite elements and solution strategies are applied to a certain number of typical shell problems to prove the precision of the shell elements and to demonstrate the possibilities of tracing linear and nonlinear bifurcation problems as well as snap-through phenomena with and without secondary bifurcation branches. (orig.)
Analysis of hydraulic instability of ANS involute fuel plates
International Nuclear Information System (INIS)
Sartory, W.K.
1991-11-01
Curved shell equations for the involute Advanced Neutron Source (ANS) fuel plates are coupled to two-dimensional hydraulic channel flow equations that include fluid friction. A complete set of fluid and plate boundary conditions is applied at the entrance and exit and along the sides of the plate and the channel. The coupled system is linearized and solved to assess the hydraulic instability of the plates
International Nuclear Information System (INIS)
Paraschiv, I.; Bauer, B. S.; Lindemuth, I. R.; Makhin, V.
2010-01-01
The effect of sheared axial flow on the Z-pinch sausage instability has been examined with two-dimensional magnetohydrodynamic simulations. Diffuse Bennett equilibria in the presence of axial flows with parabolic and linear radial profiles have been considered, and a detailed study of the linear and nonlinear development of small perturbations from these equilibria has been performed. The consequences of both single-wavelength and random-seed perturbations were calculated. It was found that sheared flows changed the internal m=0 mode development by reducing the linear growth rates, decreasing the saturation amplitude, and modifying the instability spectrum. High spatial frequency modes were stabilized to small amplitudes and only long wavelengths continued to grow. Full stability was obtained for supersonic plasma flows.
Directory of Open Access Journals (Sweden)
Sergey G. Chefranov
2012-11-01
Full Text Available Aims This paper deals with solving of a century-old paradox of linear stability for the Hagen-Poiseuille flow. A new mechanism of dissipative hydrodynamic instability has been established herein, and a basis for the forming of helical structural organization of bloodstream and respective energy effectiveness of the cardiovascular system functioning has been defined by the authors. Materials and methods Theory of hydrodynamic instability, Galerkin’s approximation. Results A new condition Re > Reth-min ≈ 124 of linear (exponential instability of the Hagen-Poisseuille (HP flow with respect to extremely small by magnitude axially-symmetric disturbances of the tangential component of the velocity field is obtained. The disturbances necessarily shall have quasi-periodic longitudinal variability along the pipe axis that corresponds to the observed data. Conclusion We show that the obtained estimate of value of Reth-min corresponds to the condition of independence of the main result (on the linear instability of the HP flow when Re > Reth-min from the procedure of averaging used in the Galerkin approximation. Thus, we obtain the possible natural mechanism for the blood swirling flows formations observed in the aorta and the large blood vessels.
Energy Technology Data Exchange (ETDEWEB)
Outeda, R.; D' Onofrio, A. [Grupo de Medios Porosos, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); El Hasi, C.; Zalts, A. [Instituto de Ciencias, Universidad Nacional General Sarmiento, J. M. Gutiérrez 1150, B1613GSX, Los Polvorines, Provincia de Buenos Aires (Argentina)
2014-03-15
Density driven instabilities produced by CO{sub 2} (gas) dissolution in water containing a color indicator were studied in a Hele Shaw cell. The images were analyzed and instability patterns were characterized by mixing zone temporal evolution, dispersion curves, and the growth rate for different CO{sub 2} pressures and different color indicator concentrations. The results obtained from an exhaustive analysis of experimental data show that this system has a different behaviour in the linear regime of the instabilities (when the growth rate has a linear dependence with time), from the nonlinear regime at longer times. At short times using a color indicator to see the evolution of the pattern, the images show that the effects of both the color indicator and CO{sub 2} pressure are of the same order of magnitude: The growth rates are similar and the wave numbers are in the same range (0–30 cm{sup −1}) when the system is unstable. Although in the linear regime the dynamics is affected similarly by the presence of the indicator and CO{sub 2} pressure, in the nonlinear regime, the influence of the latter is clearly more pronounced than the effects of the color indicator.
Positional instability analysis of tokamak plasmas by ERATO
International Nuclear Information System (INIS)
Kumagai, Michikazu; Tsunematsu, Toshihide; Tokuda, Shinji; Takeda, Tatsuoki
1983-06-01
The stability of axisymmetric modes of a tokamak plasma(positional instabilities) is analyzed for the Solov'ev equilibrium by using the linear ideal MHD code ERATO-J. The dependence of the stability on various parameters, i.e., the ellipticity and triangularity of the plasma cross-section, the aspect ratio, the safety factor at the magnetic axis, and the distance between the plasma and a conducting shell is investigated. Comparison of the results with those by the rigid model shows that the stability condition derived from the rigid model in terms of the decay index(n-index) of the external equilibrating field is a good approximation for the plasma with small triangular deformation. Also the results are compared with those of the rigid displacement model and applicability of the various models on the positional instability analyses is discussed. (author)
Uncertainty Instability Risk Analysis of High Concrete Arch Dam Abutments
Directory of Open Access Journals (Sweden)
Xin Cao
2017-01-01
Full Text Available The uncertainties associated with concrete arch dams rise with the increased height of dams. Given the uncertainties associated with influencing factors, the stability of high arch dam abutments as a fuzzy random event was studied. In addition, given the randomness and fuzziness of calculation parameters as well as the failure criterion, hazard point and hazard surface uncertainty instability risk ratio models were proposed for high arch dam abutments on the basis of credibility theory. The uncertainty instability failure criterion was derived through the analysis of the progressive instability failure process on the basis of Shannon’s entropy theory. The uncertainties associated with influencing factors were quantized by probability or possibility distribution assignments. Gaussian random theory was used to generate random realizations for influence factors with spatial variability. The uncertainty stability analysis method was proposed by combining the finite element analysis and the limit equilibrium method. The instability risk ratio was calculated using the Monte Carlo simulation method and fuzzy random postprocessing. Results corroborate that the modeling approach is sound and that the calculation method is feasible.
Linear Algebra and Analysis Masterclasses
Indian Academy of Sciences (India)
ematical physics, computer science, numerical analysis, and statistics. ... search and has been used in mathematical physics, computer science, ... concrete examples of the spaces, enabling application of the theory to a variety of problems.
Modeling and analysis of hydrodynamic instabilities in two-phase flow using two-fluid model
International Nuclear Information System (INIS)
Zhou, J.; Podowski, M.Z.
2001-01-01
Because of the practical importance of two-phase flow instabilities, especially in boiling water nuclear reactor technology, substantial efforts have been made to date to understand the physical phenomena governing such instabilities and to develop computational tools to model the dynamics of marginally-stable/unstable boiling systems. The purpose of this paper is to present an integrated methodology for the analysis of flow-induced instabilities in boiling channels and systems. The major novel aspects of the proposed approach are: (a) it is based on the combined frequency-domain and time-domain methods, the former used to quantify stability margins and to determine the onset of instability conditions, the latter to study the nonlinear system response outside the stability boundaries identified using the nearly-exact results of the frequency-domain analysis; (b) the two-fluid model of two-phase flow has been used for the first time to analytically derive the boiling channel transfer functions for the parallel-channel and channel-to-channel instability modes. In this way, the major characteristics of a boiling system, including the onset-of-instability conditions, can be readily evaluated by using the qualitative frequency-domain approach, whereas the explicit time-domain integration is performed, if necessary, only for the operating conditions that have already been identified as unstable. Both methods use the same physical two-fluid model that, in one case, is linearized and used to derive a rigorous analytical solution in the complex domain, and, in the other case, is solved numerically using an algorithm developed especially for this purpose. The results using both methods have been compared against each other and extensively tested. The testing and validation of the new model included comparisons of the predicted steady-state distributions of major parameters and of the transient channel response against experimental data
Graphical analysis of electron inertia induced acoustic instability
International Nuclear Information System (INIS)
Karmakar, P.K.; Deka, U.; Dwivedi, C.B.
2005-01-01
Recently, the practical significance of the asymptotic limit of m e /m i →0 for electron density distribution has been judged in a two-component plasma system with drifting ions. It is reported that in the presence of drifting ions with drift speed exceeding the ion acoustic wave speed, the electron inertial delay effect facilitates the resonance coupling of the usual fluid ion acoustic mode with the ion-beam mode. In this contribution the same instability is analyzed by graphical and numerical methods. This is to note that the obtained dispersion relation differs from those of the other known normal modes of low frequency ion plasma oscillations and waves. This is due to consideration of electron inertial delay in derivation of the dispersion relation of the ion acoustic wave fluctuations. Numerical calculations of the dispersion relation and wave energy are carried out to depict the graphical appearance of poles and positive-negative energy modes. It is found that the electron inertia induced ion acoustic wave instability arises out of linear resonance coupling between the negative and positive energy modes. Characterization of the resonance nature of the instability in Mach number space for different wave numbers of the ion acoustic mode is presented
Methodologies for risk analysis in slope instability
International Nuclear Information System (INIS)
Bernabeu Garcia, M.; Diaz Torres, J. A.
2014-01-01
This paper is an approach to the different methodologies used in conducting landslide risk maps so that the reader can get a basic knowledge about how to proceed in its development. The landslide hazard maps are increasingly demanded by governments. This is because due to climate change, deforestation and the pressure exerted by the growth of urban centers, damage caused by natural phenomena is increasing each year, making this area of work a field of study with increasing importance. To explain the process of mapping a journey through each of the phases of which it is composed is made: from the study of the types of slope movements and the necessary management of geographic information systems (GIS) inventories and landslide susceptibility analysis, threat, vulnerability and risk. (Author)
International Nuclear Information System (INIS)
Mohamed, B.F.; El-Shorbagy, Kh.H.
2000-01-01
A general detailed analysis for the nonlinear generation of localized fields due to the existence of a strong pump field inside the non-uniform plasma has been considered. We have taken into account the effects of relativistic and non-local nonlinearities on the structure of plasma resonance region. The nonlinear Schrodinger equation described the localized fields are investigated. Besides, the generalized dispersion relation is obtained to study the modulational instabilities in different cases. Keywords: Wave-plasma interaction, Nonlinear effects, Modulation instabilities
Cosmic bubble and domain wall instabilities I: parametric amplification of linear fluctuations
International Nuclear Information System (INIS)
Braden, Jonathan; Bond, J. Richard; Mersini-Houghton, Laura
2015-01-01
This is the first paper in a series where we study collisions of nucleated bubbles taking into account the effects of small initial (quantum) fluctuations in a fully 3+1-dimensional setting. In this paper, we consider the evolution of linear fluctuations around highly symmetric though inhomogeneous backgrounds. In particular, we demonstrate that a large degree of asymmetry develops over time from tiny initial fluctuations superposed upon planar and SO(2,1) symmetric backgrounds. These fluctuations are inevitable consequences of zero-point vacuum oscillations, so excluding them by enforcing a high degree of spatial symmetry is inconsistent in a quantum treatment. To simplify the analysis we consider the limit of two colliding planar walls, with mode functions for the fluctuations characterized by the wavenumber transverse to the collision direction and a longitudinal shape along the collision direction x, which we solve for. In the linear regime, the fluctuations obey a linear wave equation with a time- and space-dependent mass m eff (x,t). In situations where the walls collide multiple times, m eff oscillates in time. We use Floquet theory to study the evolution of the fluctuations and generalize the calculations familiar from the preheating literature to the case with many coupled degrees of freedom. The inhomogeneous case has bands of unstable transverse wavenumbers k ⊥ whose corresponding mode functions grow exponentially. By examining the detailed spatial structure of the mode functions in x, we identify both broad and narrow parametric resonance generalizations of the homogeneous m eff (t) case of preheating. The unstable k ⊥ modes are longitudinally localized, yet can be described as quasiparticles in the Bogoliubov sense. We define an effective occupation number and show they are created in bursts for the case of well-defined collisions in the background. The transverse-longitudinal coupling accompanying nonlinearity radically breaks this localized
Non-linear Evolution of the Transverse Instability of Plane-Envelope Solitons
DEFF Research Database (Denmark)
Janssen, Peter A. E. M.; Juul Rasmussen, Jens
1983-01-01
The nonlinear evolution of the transverse instability of plane envelope soliton solutions of the nonlinear Schrödinger equation is investigated. For the case where the spatial derivatives in the two‐dimensional nonlinear Schrödinger equation are elliptic a critical transverse wavenumber is found...
Applied linear algebra and matrix analysis
Shores, Thomas S
2018-01-01
In its second edition, this textbook offers a fresh approach to matrix and linear algebra. Its blend of theory, computational exercises, and analytical writing projects is designed to highlight the interplay between these aspects of an application. This approach places special emphasis on linear algebra as an experimental science that provides tools for solving concrete problems. The second edition’s revised text discusses applications of linear algebra like graph theory and network modeling methods used in Google’s PageRank algorithm. Other new materials include modeling examples of diffusive processes, linear programming, image processing, digital signal processing, and Fourier analysis. These topics are woven into the core material of Gaussian elimination and other matrix operations; eigenvalues, eigenvectors, and discrete dynamical systems; and the geometrical aspects of vector spaces. Intended for a one-semester undergraduate course without a strict calculus prerequisite, Applied Linear Algebra and M...
The analysis and design of linear circuits
Thomas, Roland E; Toussaint, Gregory J
2009-01-01
The Analysis and Design of Linear Circuits, 6e gives the reader the opportunity to not only analyze, but also design and evaluate linear circuits as early as possible. The text's abundance of problems, applications, pedagogical tools, and realistic examples helps engineers develop the skills needed to solve problems, design practical alternatives, and choose the best design from several competing solutions. Engineers searching for an accessible introduction to resistance circuits will benefit from this book that emphasizes the early development of engineering judgment.
Perturbation analysis of linear control problems
International Nuclear Information System (INIS)
Petkov, Petko; Konstantinov, Mihail
2017-01-01
The paper presents a brief overview of the technique of splitting operators, proposed by the authors and intended for perturbation analysis of control problems involving unitary and orthogonal matrices. Combined with the technique of Lyapunov majorants and the implementation of the Banach and Schauder fixed point principles, it allows to obtain rigorous non-local perturbation bounds for a set of sensitivity analysis problems. Among them are the reduction of linear systems into orthogonal canonical forms, the feedback synthesis problem and pole assignment problem in particular, as well as other important problems in control theory and linear algebra. Key words: perturbation analysis, canonical forms, feedback synthesis
Linear response in stochastic mean-field theories and the onset of instabilities
International Nuclear Information System (INIS)
Colonna, M.; Chomaz, Ph.
1993-01-01
The small amplitude response of stochastic one-body theories, such as the Boltzmann-Langevin approach is studied. Whereas the two-time correlation function only describes the propagation of fluctuations initially present, the equal-time correlation function is related to the source of stochasticity. For stable systems it yields the Einstein relation, while for unstable systems it determines the growth of the instabilities. These features are illustrated for unstable nuclear matter in two dimensions. (author) 14 refs.; 5 figs
Nonlinear analysis of generalized cross-field current instability
International Nuclear Information System (INIS)
Yoon, P.H.; Lui, A.T.Y.
1993-01-01
Analysis of the generalized cross-field current instability is carried out in which cross-field drift of both the ions and electrons and their temperatures are permitted to vary in time. The unstable mode under consideration is the electromagnetic generalization of the classical modified-two-stream instability. The generalized instability is made of the modified-two-stream and ion-Weibel modes. The relative importance of the features associated with the ion-Weibel mode and those of the modified-two-stream mode is assessed. Specific applications are made to the Earth's neutral sheet prior to substorm onset and to the Earth's bow shock. The numerical solution indicates that the ion-Weibel mode dominates in the Earth's neutral sheet environment. In contrast, the situation for the bow shock is dominated by the modified-two-stream mode. Notable differences are found between the present calculation and previous results on ion-Weibel mode which restrict the analysis to only parallel propagating waves. However, in the case of Earth's bow shock for which the ion-Weibel mode plays no important role, the inclusion of the electromagnetic ion response is found to differ little from the previous results which treats ions responding only to the electrostatic component of the excited waves
Cosmic bubble and domain wall instabilities I: parametric amplification of linear fluctuations
Energy Technology Data Exchange (ETDEWEB)
Braden, Jonathan [CITA, University of Toronto, 60 St. George Street, Toronto, ON, M5S 3H8 (Canada); Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 3H8 (Canada); Bond, J. Richard [CITA, University of Toronto, 60 St. George Street, Toronto, ON, M5S 3H8 (Canada); Mersini-Houghton, Laura [Department of Physics and Astronomy, University of North Carolina-Chapel Hill, NC 27599-3255 (United States)
2015-03-03
This is the first paper in a series where we study collisions of nucleated bubbles taking into account the effects of small initial (quantum) fluctuations in a fully 3+1-dimensional setting. In this paper, we consider the evolution of linear fluctuations around highly symmetric though inhomogeneous backgrounds. In particular, we demonstrate that a large degree of asymmetry develops over time from tiny initial fluctuations superposed upon planar and SO(2,1) symmetric backgrounds. These fluctuations are inevitable consequences of zero-point vacuum oscillations, so excluding them by enforcing a high degree of spatial symmetry is inconsistent in a quantum treatment. To simplify the analysis we consider the limit of two colliding planar walls, with mode functions for the fluctuations characterized by the wavenumber transverse to the collision direction and a longitudinal shape along the collision direction x, which we solve for. In the linear regime, the fluctuations obey a linear wave equation with a time- and space-dependent mass m{sub eff}(x,t). In situations where the walls collide multiple times, m{sub eff} oscillates in time. We use Floquet theory to study the evolution of the fluctuations and generalize the calculations familiar from the preheating literature to the case with many coupled degrees of freedom. The inhomogeneous case has bands of unstable transverse wavenumbers k{sub ⊥} whose corresponding mode functions grow exponentially. By examining the detailed spatial structure of the mode functions in x, we identify both broad and narrow parametric resonance generalizations of the homogeneous m{sub eff}(t) case of preheating. The unstable k{sub ⊥} modes are longitudinally localized, yet can be described as quasiparticles in the Bogoliubov sense. We define an effective occupation number and show they are created in bursts for the case of well-defined collisions in the background. The transverse-longitudinal coupling accompanying nonlinearity radically
International Nuclear Information System (INIS)
Blue, Brent Edward
2005-01-01
In the plasma-wakefield experiment at SLAC, known as E157, an ultra-relativistic electron beam is used to both excite and witness a plasma wave for advanced accelerator applications. If the beam is tilted, then it will undergo transverse oscillations inside of the plasma. These oscillations can grow exponentially via an instability know as the electron hose instability. The linear theory of electron-hose instability in a uniform ion column predicts that for the parameters of the E157 experiment (beam charge, bunch length, and plasma density) a growth of the centroid offset should occur. Analysis of the E157 data has provided four critical results. The first was that the incoming beam did have a tilt. The tilt was much smaller than the radius and was measured to be 5.3 (micro)m/(delta) z at the entrance of the plasma (IP1.) The second was the beam centroid oscillates in the ion channel at half the frequency of the beam radius (betatron beam oscillations), and these oscillations can be predicted by the envelope equation. Third, up to the maximum operating plasma density of E157 (∼2 x 10 14 cm -3 ), no growth of the centroid offset was measured. Finally, time-resolved data of the beam shows that up to this density, no significant growth of the tail of the beam (up to 8ps from the centroid) occurred even though the beam had an initial tilt
Energy Technology Data Exchange (ETDEWEB)
Blue, Brent Edward; /SLAC /UCLA
2005-10-10
In the plasma-wakefield experiment at SLAC, known as E157, an ultra-relativistic electron beam is used to both excite and witness a plasma wave for advanced accelerator applications. If the beam is tilted, then it will undergo transverse oscillations inside of the plasma. These oscillations can grow exponentially via an instability know as the electron hose instability. The linear theory of electron-hose instability in a uniform ion column predicts that for the parameters of the E157 experiment (beam charge, bunch length, and plasma density) a growth of the centroid offset should occur. Analysis of the E157 data has provided four critical results. The first was that the incoming beam did have a tilt. The tilt was much smaller than the radius and was measured to be 5.3 {micro}m/{delta}{sub z} at the entrance of the plasma (IP1.) The second was the beam centroid oscillates in the ion channel at half the frequency of the beam radius (betatron beam oscillations), and these oscillations can be predicted by the envelope equation. Third, up to the maximum operating plasma density of E157 ({approx}2 x 10{sup 14} cm{sup -3}), no growth of the centroid offset was measured. Finally, time-resolved data of the beam shows that up to this density, no significant growth of the tail of the beam (up to 8ps from the centroid) occurred even though the beam had an initial tilt.
Linear and nonlinear ion beam instabilities in a double plasma device
International Nuclear Information System (INIS)
Lee, S.G.; Diebold, D.; Hershkowitz, N.
1994-01-01
Ion beam instabilities in the double plasma device DOLI-1 were found to be quite sensitive to the difference between the source and target chamber plasma potentials when those potentials were within an electron temperature T e /e or so of each other. When the target chamber plasma potential of DOLI-1 was ≤ T e /e more positive than the source chamber plasma potential, a global ion beam-ion beam instability was observed. On the other hand, when the maximum target potential was between approximately 0.5 T e /e and 2.0 T e /e below the source potential, an ion-ion beam instability and a soliton associated with it were observed. This soliton is unique in that it is not launched but rather is self generated by the plasma and beam. When the target potential was less than source potential by more than two or so T e /e, the plasma was quite quiescent, which allowed small amplitude wave packet launched by Langmuir probe to be detected
Analysis of Linear Hybrid Systems in CLP
DEFF Research Database (Denmark)
Banda, Gourinath; Gallagher, John Patrick
2009-01-01
In this paper we present a procedure for representing the semantics of linear hybrid automata (LHAs) as constraint logic programs (CLP); flexible and accurate analysis and verification of LHAs can then be performed using generic CLP analysis and transformation tools. LHAs provide an expressive...
FOKKER-PLANCK ANALYSIS OF TRANSVERSE COLLECTIVE INSTABILITIES IN ELECTRON STORAGE RINGS
Energy Technology Data Exchange (ETDEWEB)
Lindberg, R. R.
2017-06-25
We analyze single bunch transverse instabilities due to wakefields using a Fokker-Planck model. We expand on the work of Suzuki [1], writing out the linear matrix equation including chromaticity, both dipolar and quadrupolar transverse wakefields, and the effects of damping and diffusion due to the synchrotron radiation. The eigenvalues and eigenvectors determine the collective stability of the beam, and we show that the predicted threshold current for transverse instability and the profile of the unstable agree well with tracking simulations. In particular, we find that predicting collective stability for high energy electron beams at moderate to large values of chromaticity requires the full Fokker-Planck analysis to properly account for the effects of damping and diffusion due to synchrotron radiation.
Linear discriminant analysis for welding fault detection
International Nuclear Information System (INIS)
Li, X.; Simpson, S.W.
2010-01-01
This work presents a new method for real time welding fault detection in industry based on Linear Discriminant Analysis (LDA). A set of parameters was calculated from one second blocks of electrical data recorded during welding and based on control data from reference welds under good conditions, as well as faulty welds. Optimised linear combinations of the parameters were determined with LDA and tested with independent data. Short arc welds in overlap joints were studied with various power sources, shielding gases, wire diameters, and process geometries. Out-of-position faults were investigated. Application of LDA fault detection to a broad range of welding procedures was investigated using a similarity measure based on Principal Component Analysis. The measure determines which reference data are most similar to a given industrial procedure and the appropriate LDA weights are then employed. Overall, results show that Linear Discriminant Analysis gives an effective and consistent performance in real-time welding fault detection.
Nonparallel linear stability analysis of unconfined vortices
Herrada, M. A.; Barrero, A.
2004-10-01
Parabolized stability equations [F. P. Bertolotti, Th. Herbert, and P. R. Spalart, J. Fluid. Mech. 242, 441 (1992)] have been used to study the stability of a family of swirling jets at high Reynolds numbers whose velocity and pressure fields decay far from the axis as rm-2 and r2(m-2), respectively [M. Pérez-Saborid, M. A. Herrada, A. Gómez-Barea, and A. Barrero, J. Fluid. Mech. 471, 51 (2002)]; r is the radial distance and m is a real number in the interval 0
Tests of a numerical algorithm for the linear instability study of flows on a sphere
Energy Technology Data Exchange (ETDEWEB)
Perez Garcia, Ismael; Skiba, Yuri N [Univerisidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)
2001-04-01
A numerical algorithm for the normal mode instability of a steady nondivergent flow on a rotating sphere is developed. The algorithm accuracy is tested with zonal solutions of the nonlinear barotropic vorticity equation (Legendre polynomials, zonal Rossby-Harwitz waves and monopole modons). [Spanish] Ha sido desarrollado un algoritmo numerico para estudiar la inestabilidad lineal de un flujo estacionario no divergente en una esfera en rotacion. La precision del algoritmo se prueba con soluciones zonales de la ecuacion no lineal de vorticidad barotropica (polinomios de Legendre, ondas zonales Rossby-Harwitz y modones monopolares).
Signals and transforms in linear systems analysis
Wasylkiwskyj, Wasyl
2013-01-01
Signals and Transforms in Linear Systems Analysis covers the subject of signals and transforms, particularly in the context of linear systems theory. Chapter 2 provides the theoretical background for the remainder of the text. Chapter 3 treats Fourier series and integrals. Particular attention is paid to convergence properties at step discontinuities. This includes the Gibbs phenomenon and its amelioration via the Fejer summation techniques. Special topics include modulation and analytic signal representation, Fourier transforms and analytic function theory, time-frequency analysis and frequency dispersion. Fundamentals of linear system theory for LTI analogue systems, with a brief account of time-varying systems, are covered in Chapter 4 . Discrete systems are covered in Chapters 6 and 7. The Laplace transform treatment in Chapter 5 relies heavily on analytic function theory as does Chapter 8 on Z -transforms. The necessary background on complex variables is provided in Appendix A. This book is intended to...
Linearized spectrum correlation analysis for line emission measurements.
Nishizawa, T; Nornberg, M D; Den Hartog, D J; Sarff, J S
2017-08-01
A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.
Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics
Bakhsh, Abeer; Gao, Song; Samtaney, Ravi; Wheatley, V.
2016-01-01
fusion and suppression by means of a magnetic field, we investigate the RMI via linear MHD simulations in cylindrical geometry. The physical setup is that of a Chisnell-type converging shock interacting with a density interface with either axial
International Nuclear Information System (INIS)
Krishan, S.
2007-01-01
The Stieltjes transform has been used in place of a more common Laplace transform to determine the time evolution of the self-consistent field (SCF) of an unmagnetized semi-infinite plasma, where the plasma electrons together with a primary and a low-density secondary electron beam move perpendicular to the boundary surface. The secondary beam is produced when the primary beam strikes the grid. Such a plasma system has been investigated by Griskey and Stanzel [M. C. Grisky and R. L. Stenzel, Phys. Rev. Lett. 82, 556 (1999)]. The physical phenomenon, observed in their experiment, has been named by them as ''secondary beam instability.'' The character of the instability observed in the experiment is not the same as predicted by the conventional treatments--the field amplitude does not grow with time. In the frequency spectrum, the theory predicts peak values in the amplitude of SCF at the plasma frequency of plasma and secondary beam electrons, decreasing above and below it. The Stieltjes transform for functions, growing exponentially in the long time limit, does not exist, while the Laplace transform technique gives only exponentially growing solutions. Therefore, it should be interesting to know the kind of solutions that an otherwise physically unstable plasma will yield. In the high-frequency limit, the plasma has been found to respond to any arbitrary frequency of the initial field differentiated only by the strength of the resulting SCF. The condition required for exponential growth in the conventional treatments, and the condition for maximum amplitude (with respect to frequency) in the present treatment, have been found to be the same. Nonlinear mode coupling between the modes excited by the plasma electrons and the low-density secondary beam gives rise to two frequency-dependent peaks in the field amplitude, symmetrically located about the much stronger peak due to the plasma electrons, as predicted by the experiment
Linear study of Kelvin-Helmholtz instability for a viscous compressible fluid
International Nuclear Information System (INIS)
Hallo, L.; Gauthier, S.
1992-01-01
The linear phase of the process leading to a developed turbulence is particularly important for the study of flow stability. A Galerkin spectral method adapted to the study of the mixture layer of one fluid is proposed from a sheared initial velocity profile. An algebraic mapping is developed to improve accuracy near high gradient zone. Validation is obtained by analytic methods for non-viscous flow and multi-domain spectral methods for viscous and compressible flow. Rates of growth are presented for subsonic and slightly supersonic flow. An extension of the method is presented for the study of the linear stability of a mixture with variable concentration and transport properties
Energy Technology Data Exchange (ETDEWEB)
Carbajal, L., E-mail: L.Carbajal-Gomez@warwick.ac.uk; Cook, J. W. S. [Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Dendy, R. O. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB, Oxfordshire (United Kingdom); Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Chapman, S. C. [Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Department of Mathematics and Statistics, University of Tromsø, N-9037, Tromsø (Norway); Max Planck Institute for the Physics of Complex Systems, D-01187, Dresden (Germany)
2014-01-15
The magnetoacoustic cyclotron instability (MCI) probably underlies observations of ion cyclotron emission (ICE) from energetic ion populations in tokamak plasmas, including fusion-born alpha-particles in JET and TFTR [Dendy et al., Nucl. Fusion 35, 1733 (1995)]. ICE is a potential diagnostic for lost alpha-particles in ITER; furthermore, the MCI is representative of a class of collective instabilities, which may result in the partial channelling of the free energy of energetic ions into radiation, and away from collisional heating of the plasma. Deep understanding of the MCI is thus of substantial practical interest for fusion, and the hybrid approximation for the plasma, where ions are treated as particles and electrons as a neutralising massless fluid, offers an attractive way forward. The hybrid simulations presented here access MCI physics that arises on timescales longer than can be addressed by fully kinetic particle-in-cell simulations and by analytical linear theory, which the present simulations largely corroborate. Our results go further than previous studies by entering into the nonlinear stage of the MCI, which shows novel features. These include stronger drive at low cyclotron harmonics, the re-energisation of the alpha-particle population, self-modulation of the phase shift between the electrostatic and electromagnetic components, and coupling between low and high frequency modes of the excited electromagnetic field.
Theofilis, Vassilios; Gómez, F.; Paredes Gonzalez, Pedro; Le Clainche Martínez, Soledad; Hermanns Navarro, Miguel
2011-01-01
Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic threedimensional flows, which are inhomogeneous in two (and periodic in one) or all three spatial directions.1 The theory addresses flows developing in complex geometries, in which the parallel or weakly nonparallel basic flow approximation invoked by classic linear stability theory does not hold. As such, global linear theory ...
Non-linear instability of DIII-D to error fields
International Nuclear Information System (INIS)
La Haye, R.J.; Scoville, J.T.
1991-10-01
Otherwise stable DIII-D discharges can become nonlinearly unstable to locked modes and disrupt when subjected to resonant m = 2, n = 1 error field caused by irregular poloidal field coils, i.e. intrinsic field errors. Instability is observed in DIII-D when the magnitude of the radial component of the m = 2, n = 1 error field with respect to the toroidal field is B r21 /B T of about 1.7 x 10 -4 . The locked modes triggered by an external error field are aligned with the static error field and the plasma fluid rotation ceases as a result of the growth of the mode. The triggered locked modes are the precursors of the subsequent plasma disruption. The use of an ''n = 1 coil'' to partially cancel intrinsic errors, or to increase them, results in a significantly expanded, or reduced, stable operating parameter space. Precise error field measurements have allowed the design of an improved correction coil for DIII-D, the ''C-coil'', which could further cancel error fields and help to avoid disruptive locked modes. 6 refs., 4 figs
Linear Stability Analysis of an Acoustically Vaporized Droplet
Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi
2015-11-01
Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.
Linear Covariance Analysis for a Lunar Lander
Jang, Jiann-Woei; Bhatt, Sagar; Fritz, Matthew; Woffinden, David; May, Darryl; Braden, Ellen; Hannan, Michael
2017-01-01
A next-generation lunar lander Guidance, Navigation, and Control (GNC) system, which includes a state-of-the-art optical sensor suite, is proposed in a concept design cycle. The design goal is to allow the lander to softly land within the prescribed landing precision. The achievement of this precision landing requirement depends on proper selection of the sensor suite. In this paper, a robust sensor selection procedure is demonstrated using a Linear Covariance (LinCov) analysis tool developed by Draper.
MD1831: Single Bunch Instabilities with Q" and Non-Linear Corrections
Carver, Lee Robert; De Maria, Riccardo; Li, Kevin Shing Bruce; Amorim, David; Biancacci, Nicolo; Buffat, Xavier; Maclean, Ewen Hamish; Metral, Elias; Lasocha, Kacper; Lefevre, Thibaut; Levens, Tom; Salvant, Benoit; CERN. Geneva. ATS Department
2017-01-01
During MD1751, it was observed that both a full single beam and 964 non-colliding bunches in Beam 1 (B1) and Beam 2 (B2) were both stable at the End of Squeeze (EOS) for 0A in the Landau Octupoles. At ß* = 40cm there is also a significant Q" arising from the lattice, as well as uncorrected non-linearities in the Insertion Regions (IRs). Each of these effects could be capable of fully stabilising the beam. This MD made first use of a Q" knob through variation of the Main Sextupoles (MS) by stabilising a single bunch at Flat Top, before showing at EOS that the non-linearities were the main contributors to the beam stability.
Geometrically non linear analysis of functionally graded material ...
African Journals Online (AJOL)
user
when compared to the other engineering materials (Akhavan and Hamed, 2010). However, FGM plates under mechanical loading may undergo elastic instability. Hence, the non-linear behavior of functionally graded plates has to be understood for their optimum design. Reddy (2000) proposed the theoretical formulation ...
Linear functional analysis for scientists and engineers
Limaye, Balmohan V
2016-01-01
This book provides a concise and meticulous introduction to functional analysis. Since the topic draws heavily on the interplay between the algebraic structure of a linear space and the distance structure of a metric space, functional analysis is increasingly gaining the attention of not only mathematicians but also scientists and engineers. The purpose of the text is to present the basic aspects of functional analysis to this varied audience, keeping in mind the considerations of applicability. A novelty of this book is the inclusion of a result by Zabreiko, which states that every countably subadditive seminorm on a Banach space is continuous. Several major theorems in functional analysis are easy consequences of this result. The entire book can be used as a textbook for an introductory course in functional analysis without having to make any specific selection from the topics presented here. Basic notions in the setting of a metric space are defined in terms of sequences. These include total boundedness, c...
The Linear Time Frequency Analysis Toolbox
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel; Torrésani, Bruno; Balazs, Peter
2011-01-01
The Linear Time Frequency Analysis Toolbox is a Matlab/Octave toolbox for computational time-frequency analysis. It is intended both as an educational and computational tool. The toolbox provides the basic Gabor, Wilson and MDCT transform along with routines for constructing windows (lter...... prototypes) and routines for manipulating coe cients. It also provides a bunch of demo scripts devoted either to demonstrating the main functions of the toolbox, or to exemplify their use in specic signal processing applications. In this paper we describe the used algorithms, their mathematical background...
International Nuclear Information System (INIS)
Munshi, D.; Souradeep, T.; Starobinsky, A.A.
1995-01-01
The skewness of the temperature fluctuations of the cosmic microwave background (CMB) produced by initially Gaussian adiabatic perturbations with the flat (Harrison-Zeldovich) spectrum, which arises due to non-linear corrections to a gravitational potential at the matter-dominated stage, is calculated quantitatively. For the standard CDM model, the effect appears to be smaller than expected previously and lies below the cosmic variance limit even for small angles. The sign of the skewness is opposite to that of the skewness of density perturbations. (author)
In-plane fluidelastic instability analysis for large steam generators
International Nuclear Information System (INIS)
Mureithi, Njuki; Olala, Stephen; Hadji, Abdallah
2015-01-01
Fluidelastic instability remains the most important vibration excitation mechanism in nuclear steam generators (SGs). Design guidelines, aimed at eliminating the possibility of fluidelastic instability, have been developed over the past 40 years. The design guidelines, based on the Connors equation, depend on a large database on cross-flow fluidelastic instability i.e. instability in the direction transverse to the flow. Past experience had shown that for an axi-symmetrically flexible tube, instability generally occurred in the transverse direction, at least at first. Although often not explicitly stated, there has been an implicit assumption that the in-plane direction was either stable, or would only suffer instability at velocities significantly higher than the transverse direction. This explains why SGs are fitted with anti-vibrations bars (AVBs) to mitigate transverse (out-of-plane) vibrations with no equivalent consideration for potential in-plane instability. This 'oversight' recently came to a head when SG at the San-Onofre NPP suffered in-plane fluidelastic instability. The present paper addresses the question of in-plane fluidelastic instability in large SGs. A historical review is presented to explain why this potential problem was left unresolved (or ignored) over the past 40+ years, and why engineers got away with it - at least until recently. Following the review, some recent work on in-plane fluidelastic instability modeling, using the quasi-steady model is presented. It is shown that in-plane fluidelastic instability can be fully modelled using this approach. The model results are used to propose some changes to existing design guidelines to cover the case of in-plane fluidelastic instability. (author)
Linear Covariance Analysis and Epoch State Estimators
Markley, F. Landis; Carpenter, J. Russell
2014-01-01
This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.
Analysis of plasma instabilities and verification of the BOUT code for the Large Plasma Device
International Nuclear Information System (INIS)
Popovich, P.; Carter, T. A.; Friedman, B.; Umansky, M. V.
2010-01-01
The properties of linear instabilities in the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] are studied both through analytic calculations and solving numerically a system of linearized collisional plasma fluid equations using the three-dimensional fluid code BOUT[M. Umansky et al., Contrib. Plasma Phys. 180, 887 (2009)], which has been successfully modified to treat cylindrical geometry. Instability drive from plasma pressure gradients and flows is considered, focusing on resistive drift waves and the Kelvin-Helmholtz and rotational interchange instabilities. A general linear dispersion relation for partially ionized collisional plasmas including these modes is derived and analyzed. For Large Plasma Device relevant profiles including strongly driven flows, it is found that all three modes can have comparable growth rates and frequencies. Detailed comparison with solutions of the analytic dispersion relation demonstrates that BOUT accurately reproduces all characteristics of linear modes in this system.
ANALYSIS OF MAGNETOROTATIONAL INSTABILITY WITH THE EFFECT OF COSMIC-RAY DIFFUSION
Energy Technology Data Exchange (ETDEWEB)
Kuwabara, Takuhito [Computational Science and Engineering Division I, AdvanceSoft Corporation, 4-3, Kanda Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Ko, Chung-Ming, E-mail: kuwabrtk@gmail.com, E-mail: cmko@astro.ncu.edu.tw [Department of Physics, Institute of Astronomy and Center for Complex Systems, National Central University, Jhongli, Taiwan 320 (China)
2015-01-10
We present the results obtained from the linear stability analysis and 2.5 dimensional magnetohydrodynamic (MHD) simulations of magnetorotational instability (MRI), including the effects of cosmic rays (CRs). We took into account the CR diffusion along the magnetic field but neglected the cross-field-line diffusion. Two models are considered in this paper: the shearing box model and differentially rotating cylinder model. We studied how MRI is affected by the initial CR pressure (i.e., energy) distribution. In the shearing box model, the initial state is uniform distribution. Linear analysis shows that the growth rate of MRI does not depend on the value of the CR diffusion coefficient. In the differentially rotating cylinder model, the initial state is a constant angular momentum polytropic disk threaded by a weak uniform vertical magnetic field. Linear analysis shows that the growth rate of MRI becomes larger if the CR diffusion coefficient is larger. Both results are confirmed by MHD simulations. The MHD simulation results show that the outward movement of matter by the growth of MRI is not impeded by the CR pressure gradient, and the centrifugal force that acts on the concentrated matter becomes larger. Consequently, the growth rate of MRI is increased. On the other hand, if the initial CR pressure is uniform, then the growth rate of the MRI barely depends on the value of the CR diffusion coefficient.
Quasilinear analysis of loss-cone driven weakly relativistic electron cyclotron maser instability
International Nuclear Information System (INIS)
Ziebell, L.F.; Yoon, P.H.
1995-01-01
This paper presents a quasilinear analysis of the relativistic electron cyclotron maser instability. Two electron populations are assumed: a low-temperature background component and a more energetic loss-cone population. The dispersion relation is valid for any ratio of the energetic to cold populations, and includes thermal and relativistic effects. The quasilinear analysis is based upon an efficient kinetic moment method, in which various moment equations are derived from the particle kinetic equation. A model time-dependent loss-cone electron distribution function is assumed, which allows one to evaluate the instantaneous linear growth rate as well as the moment kinetic equations. These moment equations along with the wave kinetic equation form a fully self-consistent set of equations which governs the evolution of the particles as well as unstable waves. This set of equations is solved with physical parameters typical of the earth's auroral zone plasma. copyright 1995 American Institute of Physics
Common pitfalls in statistical analysis: Linear regression analysis
Directory of Open Access Journals (Sweden)
Rakesh Aggarwal
2017-01-01
Full Text Available In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis.
Vlasov analysis of microbunching instability for magnetized beams
Directory of Open Access Journals (Sweden)
C.-Y. Tsai
2017-05-01
Full Text Available For a high-brightness electron beam with high bunch charge traversing a recirculation beam line, coherent synchrotron radiation and space charge effects may result in microbunching instability (MBI. Both tracking simulation and Vlasov analysis for an early design of a circulator cooler ring (CCR for the Jefferson Lab Electron Ion Collider (JLEIC reveal significant MBI [Ya. Derbenev and Y. Zhang, Proceedings of the Workshop on Beam Cooling and Related Topics, COOL’09, Lanzhou, China, 2009 (2009, FRM2MCCO01]. It is envisioned that the MBI could be substantially suppressed by using a magnetized beam. In this paper we have generalized the existing Vlasov analysis, originally developed for a nonmagnetized beam (or transversely uncoupled beam, to the description of transport of a magnetized beam including relevant collective effects. The new formulation is then employed to confirm prediction of microbunching suppression for a magnetized beam transport in the recirculation arc of a recent JLEIC energy recovery linac (ERL based cooler design for electron cooling. It is found that the smearing effect in the longitudinal beam phase space originates from the large transverse beam size as a nature of the magnetized beams and becomes effective through the x-z correlation when the correlated distance is larger than the microbunched scale. As a comparison, MBI analysis of the early design of JLEIC CCR is also presented in this paper.
International Nuclear Information System (INIS)
Haines, M.G.; Bond, D.J.; Chuaqui, H.H.
1983-01-01
The paper reports experimental and theoretical contributions to the understanding of non-linear heat flow and the phenomenon of jet-like filamentary structures in inertial-confinement fusion. When lateral heat flow is minimized, through applying more carefully a radially symmetric irradiation at 1.05 and 0.53 μm on a spherical target, it is found that a heat flux in excess of 10% of the free-streaming limit is consistent with simulations and experimental measurements with particle and X-ray diagnostics. A similar result has been found in a scaled experiment in a plasma of electron density 4x10 16 cm - 3 when the condition Tsub(e) approx.=Tsub(i) is satisfied. These results are in marked contrast to earlier assertions, mainly from plane-target measurements, that the flux limiter is 3%, but in agreement with theoretical calculations of steady non-linear heat flow using a discrete-ordinate method. Thus, no anomalous inhibition of heat flow is found, consistent with theoretical predictions that ion-acoustic turbulence is of no importance in dense (n>=10 21 cm - 3 , T approx.= 1 keV) plasmas. However, in the low-density scaled experiment, under conditions where Tsub(e)>>Tsub(i) is found that ion-acoustic turbulence is present, and the flux limiter is 4%. By using shadowgraphic and schlieren techniques with an optical diagnostic probe, fine-scale jet-like structures have been observed on a scale-length of approx. 10 μm on spherical targets. They occur even outside the laser-irradiated region, and are not connected with irregularities in the laser beam; they are more pronounced with higher-Z materials and with shorter-wavelength lasers, and have megagauss magnetic fields associated with them. Electromagnetic instabilities driven by heat flow are the probable cause of the jets, and of the three known modes the thermal instability, enhanced by radiation loss, agrees more closely with the experiments than the Weibel and thermomagnetic modes, since the latter only occur
Airfoil stall interpreted through linear stability analysis
Busquet, Denis; Juniper, Matthew; Richez, Francois; Marquet, Olivier; Sipp, Denis
2017-11-01
Although airfoil stall has been widely investigated, the origin of this phenomenon, which manifests as a sudden drop of lift, is still not clearly understood. In the specific case of static stall, multiple steady solutions have been identified experimentally and numerically around the stall angle. We are interested here in investigating the stability of these steady solutions so as to first model and then control the dynamics. The study is performed on a 2D helicopter blade airfoil OA209 at low Mach number, M 0.2 and high Reynolds number, Re 1.8 ×106 . Steady RANS computation using a Spalart-Allmaras model is coupled with continuation methods (pseudo-arclength and Newton's method) to obtain steady states for several angles of incidence. The results show one upper branch (high lift), one lower branch (low lift) connected by a middle branch, characterizing an hysteresis phenomenon. A linear stability analysis performed around these equilibrium states highlights a mode responsible for stall, which starts with a low frequency oscillation. A bifurcation scenario is deduced from the behaviour of this mode. To shed light on the nonlinear behavior, a low order nonlinear model is created with the same linear stability behavior as that observed for that airfoil.
Integrating economic analysis and the science of climate instability
International Nuclear Information System (INIS)
Hall, Darwin C.; Behl, Richard J.
2006-01-01
Scientific understanding of climate change and climate instability has undergone a revolution in the past decade with the discovery of numerous past climate transitions so rapid, and so unlike the expectation of smooth climate changes, that they would have previously been unbelievable to the scientific community. Models commonly used by economists to assess the wisdom of adapting to human-induced climate change, rather than averting it, lack the ability to incorporate this new scientific knowledge. Here, we identify and explain the nature of recent scientific advances, and describe the key ways in which failure to reflect new knowledge in economic analysis skews the results of that analysis. This includes the understanding that economic optimization models reliant on convexity are inherently unable to determine an 'optimal' policy solution. It is incumbent on economists to understand and to incorporate the new science in their models, and on climatologists and other scientists to understand the basis of economic models so that they can assist in this essential effort. (author)
Su, Rongtao; Tao, Rumao; Wang, Xiaolin; Zhang, Hanwei; Ma, Pengfei; Zhou, Pu; Xu, Xiaojun
2017-08-01
We demonstrate an experimental study on scaling mode instability (MI) threshold in fiber amplifiers based on fiber coiling. The experimental results show that coiling the active fiber in the cylindrical spiral shape is superior to the coiling in the plane spiral shape. When the polarization maintained Yb-doped fiber (PM YDF: with a core/inner-cladding diameter of 20/400 µm) is coiled on an aluminous plate with a bend diameter of 9-16 cm, the MI threshold is ~1.55 kW. When such a PM YDF is coiled on an aluminous cylinder with diameter of 9 cm, no MI is observed at the output power of 2.43 kW, which is limited by the available pump power. The spectral width and polarization extinction ratio is 0.255 nm and 18.3 dB, respectively, at 2.43 kW. To the best of our knowledge, this is the highest output power from a linear polarized narrow linewidth all-fiberized amplifier. By using a theoretical model, the potential MI-free scaling capability in such an amplifier is estimated to be 3.5 kW.
Directory of Open Access Journals (Sweden)
K. M. Ferrière
2004-01-01
Full Text Available We review the basic approximations underlying magnetohydrodynamic (MHD theory, with special emphasis on the closure approximations, i.e. the approximations used in any fluid approach to close the hierarchy of moment equations. We then present the main closure models that have been constructed for collisionless plasmas in the large-scale regime, and we describe our own mixed MHD-kinetic model, which is designed to study low-frequency linear waves and instabilities in collisionless plasmas. We write down the full dispersion relation in a new, general form, which gathers all the specific features of our MHD-kinetic model into four polytropic indices, and which can be applied to standard adiabatic MHD and to double-adiabatic MHD through a simple change in the expressions of the polytropic indices. We study the mode solutions and the stability properties of the full dispersion relation in each of these three theories, first in the case of a uniform plasma, and then in the case of a stratified plasma. In both cases, we show how the results are affected by the collisionless nature of the plasma.
Experimental and numerical analysis of behavior of electromagnetic annular linear induction pump
International Nuclear Information System (INIS)
Goldsteins, Linards
2015-01-01
The research explores the issue of magnetohydrodynamic (MHD) instability in electromagnetic induction pumps with focus on the regimes of high slip Reynolds magnetic number (Rm s ) in Annular Linear Induction Pumps (ALIP) operating with liquid sodium. The context of the thesis is French GEN IV Sodium Fast Reactor research and development program for ASTRID in a framework of which the use of high discharge ALIP in the secondary cooling loops is being studied. CEA has designed, realized and will exploit PEMDYN facility, able to represent MHD instability in high discharge ALIP. In the thesis stability of an ideal ALIP is elaborated theoretically using linear stability analysis. Analysis revealed that strong amplification of perturbation is expected after convective stability threshold is reached. Theory is supported with numerical results and experiments reported in literature. Stable operation and stabilization technique operating with two frequencies in case of an ideal ALIP is discussed and necessary conditions derived. Detailed numerical models of flat linear induction pump (FLIP) taking into account effects of a real pump are developed. New technique of magnetic field measurements has been introduced and experimental results demonstrate a qualitative agreement with numerical models capturing all principal phenomena such as oscillation of magnetic field and perturbed velocity profiles. These results give significantly more profound insight in the phenomenon of MHD instability and can be used as a reference in further studies. (author) [fr
Analysis of beam transverse instability in electron linac
International Nuclear Information System (INIS)
Mondrus, I.N.; Shenderovich, A.M.
1990-01-01
Dispersion equations describing transverse beam instability in a single resonator section and in an accelerator comprising a sequence of resonator sections are derived. It is shown that close to parametric resonance of any multiplicity a reduction of cumulative instability incoherent takes place between nonsymmetric defocusing wave frequency and the frequency of accelerator cluster transport. Under exact resonance the increment equals to zero and under misalignment due to resonance depending on its sign and disturbance frequency an instability of either fast or slow wave takes place. It is shown that this effect leads to beam instability suppression of sections with the opposite sign of misalignment due to resonance are located in turn. The results obtained show that application of a parametric resonance through reducing slight the single section absolute instability threshold current, allows one to effectively suppress cumulative instability. The requirement to the accuracy of tuning to a resonance of identical sections is substantially reduced under the alternation of sections with different sign misalignment due to resonance and can be easily realized in practice
Analysis of rainfall-induced slope instability using a field of local factor of safety
Lu, Ning; Şener-Kaya, Başak; Wayllace, Alexandra; Godt, Jonathan W.
2012-01-01
Slope-stability analyses are mostly conducted by identifying or assuming a potential failure surface and assessing the factor of safety (FS) of that surface. This approach of assigning a single FS to a potentially unstable slope provides little insight on where the failure initiates or the ultimate geometry and location of a landslide rupture surface. We describe a method to quantify a scalar field of FS based on the concept of the Coulomb stress and the shift in the state of stress toward failure that results from rainfall infiltration. The FS at each point within a hillslope is called the local factor of safety (LFS) and is defined as the ratio of the Coulomb stress at the current state of stress to the Coulomb stress of the potential failure state under the Mohr-Coulomb criterion. Comparative assessment with limit-equilibrium and hybrid finite element limit-equilibrium methods show that the proposed LFS is consistent with these approaches and yields additional insight into the geometry and location of the potential failure surface and how instability may initiate and evolve with changes in pore water conditions. Quantitative assessments applying the new LFS field method to slopes under infiltration conditions demonstrate that the LFS has the potential to overcome several major limitations in the classical FS methodologies such as the shape of the failure surface and the inherent underestimation of slope instability. Comparison with infinite-slope methods, including a recent extension to variably saturated conditions, shows further enhancement in assessing shallow landslide occurrence using the LFS methodology. Although we use only a linear elastic solution for the state of stress with no post-failure analysis that require more sophisticated elastoplastic or other theories, the LFS provides a new means to quantify the potential instability zones in hillslopes under variably saturated conditions using stress-field based methods.
New approach of a traditional analysis for predicting near-exit jet liquid instabilities
Jaramillo, Guillermo; Collicott, Steven
2015-11-01
Traditional linear instability theory for round liquid jets requires an exit-plane velocity profile be assumed so as to derive the characteristic growth rates and wavelengths of instabilities. This requires solving an eigenvalue problem for the Rayleigh Equation. In this new approach, a hyperbolic tangent velocity profile is assumed at the exit-plane of a round jet and a comparison is made with a hyperbolic secant profile. Temporal and Spatial Stability Analysis (TSA and SSA respectively) are the employed analytical tools to compare results of predicted most-unstable wavelengths from the given analytical velocity profiles and from previous experimental work. The local relevance of the velocity profile in the near-exit region of a liquid jet and the validity of an inviscid formulation through the Rayleigh equation are discussed as well. A comparison of numerical accuracy is made between two different mathematical approaches for the hyperbolic tangent profile with and without the Ricatti transformation. Reynolds number based on the momentum thickness of the boundary layer at the exit plane non-dimensionalizes the problem and, the Re range, based on measurements by Portillo in 2011, is 185 to 600. Wavelength measurements are taken from Portillo's experiment. School of Mechanical Engineering at Universidad del Valle, supported by a grant from Fulbright and Colciencias. Ph.D. student at the School of Aeronautics and Astronautics Purdue University.
Non-linear analysis of solid propellant burning rate behavior
Energy Technology Data Exchange (ETDEWEB)
Junye Wang [Zhejiang Univ. of Technology, College of Mechanical and Electrical Engineering, Hanzhou (China)
2000-07-01
The parametric analysis of the thermal wave model of the non-steady combustion of solid propellants is carried out under a sudden compression. First, to observe non-linear effects, solutions are obtained using a computer under prescribed pressure variations. Then, the effects of rearranging the spatial mesh, additional points, and the time step on numerical solutions are evaluated. Finally, the behaviour of the thermal wave combustion model is examined under large heat releases (H) and a dynamic factor ({beta}). The numerical predictions show that (1) the effect of a dynamic factor ({beta}), related to the magnitude of dp/dt, on the peak burning rate increases as the value of beta increases. However, unsteady burning rate 'runaway' does not appear and will return asymptotically to ap{sup n}, when {beta}{>=}10.0. The burning rate 'runaway' is a numerical difficulty, not a solution to the models. (2) At constant beta and m, the amplitude of the burning rate increases with increasing H. However, the increase in the burning rate amplitude is stepwise, and there is no apparent intrinsic instability limit. A damped oscillation of burning rate occurs when the value of H is less. However, when H>1.0, the state of an intrinsically unstable model is composed of repeated, amplitude spikes, i.e. an undamped oscillation occurs. (3) The effect of the time step on the peak burning rate increases as H increases. (Author)
Numerical Analysis for Dynamic Instability of Electrodynamic Maglev Systems
Directory of Open Access Journals (Sweden)
Y. Cai
1995-01-01
Full Text Available Suspension instabilities in an electrodynamic maglev system with three- and five-degrees-of-freedom DOF vehicles traveling on a double L-shaped set of guideway conductors were investigated with various experimentally measured magnetic force data incorporated into theoretical models. Divergence and flutter were obtained from both analytical and numerical solutions for coupled vibration of the three-DOF maglev vehicle model. Instabilities of five direction motion (heave, slip, roll, pitch, and yaw were observed for the five-DOF vehicle model. The results demonstrate that system parameters such as system damping, vehicle geometry, and coupling effects among five different motions play very important roles in the occurrence of dynamic instabilities of maglev vehicles.
Finite Element Analysis of Patella Alta: A Patellofemoral Instability Model.
Watson, Nicole A; Duchman, Kyle R; Grosland, Nicole M; Bollier, Matthew J
2017-01-01
This study aims to provide biomechanical data on the effect of patella height in the setting of medial patellofemoral ligament (MPFL) reconstruction using finite element analysis. The study will also examine patellofemoral joint biomechanics using variable femoral insertion sites for MPFL reconstruction. A previously validated finite element knee model was modified to study patella alta and baja by translating the patella a given distance to achieve each patella height ratio. Additionally, the models were modified to study various femoral insertion sites of the MPFL (anatomic, anterior, proximal, and distal) for each patella height model, resulting in 32 unique scenarios available for investigation. In the setting of patella alta, the patellofemoral contact area decreased, resulting in a subsequent increase in maximum patellofemoral contact pressures as compared to the scenarios with normal patellar height. Additionally, patella alta resulted in decreased lateral restraining forces in the native knee scenario as well as following MPFL reconstruction. Changing femoral insertion sites had a variable effect on patellofemoral contact pressures; however, distal and anterior femoral tunnel malpositioning in the setting of patella alta resulted in grossly elevated maximum patellofemoral contact pressures as compared to other scenarios. Patella alta after MPFL reconstruction results in decreased lateral restraining forces and patellofemoral contact area and increased maximum patellofemoral contact pressures. When the femoral MPFL tunnel is malpositioned anteriorly or distally on the femur, the maximum patellofemoral contact pressures increase with severity of patella alta. When evaluating patients with patellofemoral instability, it is important to recognize patella alta as a potential aggravating factor. Failure to address patella alta in the setting of MPFL femoral tunnel malposition may result in even further increases in patellofemoral contact pressures, making it
Squire, Jonathan; Hopkins, Philip F.
2018-04-01
We identify and study a number of new, rapidly growing instabilities of dust grains in protoplanetary disks, which may be important for planetesimal formation. The study is based on the recognition that dust-gas mixtures are generically unstable to a Resonant Drag Instability (RDI), whenever the gas, absent dust, supports undamped linear modes. We show that the "streaming instability" is an RDI associated with epicyclic oscillations; this provides simple interpretations for its mechanisms and accurate analytic expressions for its growth rates and fastest-growing wavelengths. We extend this analysis to more general dust streaming motions and other waves, including buoyancy and magnetohydrodynamic oscillations, finding various new instabilities. Most importantly, we identify the disk "settling instability," which occurs as dust settles vertically into the midplane of a rotating disk. For small grains, this instability grows many orders of magnitude faster than the standard streaming instability, with a growth rate that is independent of grain size. Growth timescales for realistic dust-to-gas ratios are comparable to the disk orbital period, and the characteristic wavelengths are more than an order of magnitude larger than the streaming instability (allowing the instability to concentrate larger masses). This suggests that in the process of settling, dust will band into rings then filaments or clumps, potentially seeding dust traps, high-metallicity regions that in turn seed the streaming instability, or even overdensities that coagulate or directly collapse to planetesimals.
Control oriented system analysis and feedback control of a numerical sawtooth instability model
Witvoet, G.; Westerhof, E.; Steinbuch, M.; Baar, de M.R.; Doelman, N.J.; Prater, R.
2010-01-01
A combined Porcelli-Kadomtsev numerical sawtooth instability model is analyzed using control oriented identification techniques. The resulting discrete time linear models describe the system’s behavior from crash to crash and is used in the design of a simple discrete time feedback controller, which
Analysis of shear band instabilities in sintered metals
DEFF Research Database (Denmark)
Redanz, Pia; Tvergaard, Viggo
1999-01-01
of a material instability. The elastic plastic behaviour of the material is represented by a material model, which combines the Gurson model, relevant to rather low porosities, with the FKM model, developed for high porosity powder compacts. Predictions are shown for various levels of initial porosity...
International Nuclear Information System (INIS)
Farkullin, M.N.; Nikitin, M.A.; Kashchenko, N.M.
1989-01-01
Calculations of linear increment of the Rayleigh-Taylor instability for various geophysical conditions are presented. It is shwn that space-time characteristics of increment depend strongly on conditions of solar activity and seasons. The calculation results are in a good agreement with statistical regularities of F-scattering observation in equatorial F-area, which points to the Rayleigh-Taylor natur of the penomena
Linear Parametric Sensitivity Analysis of the Constraint Coefficient Matrix in Linear Programs
Zuidwijk, Rob
2005-01-01
textabstractSensitivity analysis is used to quantify the impact of changes in the initial data of linear programs on the optimal value. In particular, parametric sensitivity analysis involves a perturbation analysis in which the effects of small changes of some or all of the initial data on an optimal solution are investigated, and the optimal solution is studied on a so-called critical range of the initial data, in which certain properties such as the optimal basis in linear programming are ...
Analysis of weakly nonlinear three-dimensional Rayleigh--Taylor instability growth
International Nuclear Information System (INIS)
Dunning, M.J.; Haan, S.W.
1995-01-01
Understanding the Rayleigh--Taylor instability, which develops at an interface where a low density fluid pushes and accelerates a higher density fluid, is important to the design, analysis, and ultimate performance of inertial confinement fusion targets. Existing experimental results measuring the growth of two-dimensional (2-D) perturbations (perturbations translationally invariant in one transverse direction) are adequately modeled using the 2-D hydrodynamic code LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 11, 51 (1975)]. However, of ultimate interest is the growth of three-dimensional (3-D) perturbations such as those initiated by surface imperfections or illumination nonuniformities. Direct simulation of such 3-D experiments with all the significant physical processes included and with sufficient resolution is very difficult. This paper addresses how such experiments might be modeled. A model is considered that couples 2-D linear regime hydrodynamic code results with an analytic model to allow modeling of 3-D Rayleigh--Taylor growth through the linear regime and into the weakly nonlinear regime. The model is evaluated in 2-D by comparison with LASNEX results. Finally the model is applied to estimate the dynamics of a hypothetical 3-D foil
Rayleigh-Taylor instability under curved substrates: An optimal transient growth analysis
Balestra, Gioele; Brun, P.-T.; Gallaire, François
2016-12-01
We investigate the stability of thin viscous films coated on the inside of a horizontal cylindrical substrate. In such a case, gravity acts both as a stabilizing force through the progressive drainage of the film and as a destabilizing force prone to form droplets via the Rayleigh-Taylor instability. The drainage solution, derived from lubrication equations, is found asymptotically stable with respect to infinitesimally small perturbations, although in reality, droplets often form. To resolve this paradox, we perform an optimal transient growth analysis for the first-order perturbations of the liquid's interface, generalizing the results of Trinh et al. [Phys. Fluids 26, 051704 (2014), 10.1063/1.4876476]. We find that the system displays a linear transient growth potential that gives rise to two different scenarios depending on the value of the Bond number (prescribing the relative importance of gravity and surface tension forces). At low Bond numbers, the optimal perturbation of the interface does not generate droplets. In contrast, for higher Bond numbers, perturbations on the upper hemicircle yield gains large enough to potentially form droplets. The gain increases exponentially with the Bond number. In particular, depending on the amplitude of the initial perturbation, we find a critical Bond number above which the short-time linear growth is sufficient to trigger the nonlinear effects required to form dripping droplets. We conclude that the transition to droplets detaching from the substrate is noise and perturbation dependent.
Analysis of Vaneless Diffuser Stall Instability in a Centrifugal Compressor
Directory of Open Access Journals (Sweden)
Elias Sundström
2017-11-01
Full Text Available Numerical simulations based on the large eddy simulation approach were conducted with the aim to explore vaneless diffuser rotating stall instability in a centrifugal compressor. The effect of the impeller blade passage was included as an inlet boundary condition with sufficiently low flow angle relative to the tangent to provoke the instability and cause circulation in the diffuser core flow. Flow quantities, velocity and pressure, were extracted to accumulate statistics for calculating mean velocity and mean Reynolds stresses in the wall-to-wall direction. The paper focuses on the assessment of the complex response of the system to the velocity perturbations imposed, the resulting pressure gradient and flow curvature effects.
Jing, Wenjun; Zhao, Yan
2018-02-01
Stability is an important part of geotechnical engineering research. The operating experiences of underground storage caverns in salt rock all around the world show that the stability of the caverns is the key problem of safe operation. Currently, the combination of theoretical analysis and numerical simulation are the mainly adopts method of reserve stability analysis. This paper introduces the concept of risk into the stability analysis of underground geotechnical structure, and studies the instability of underground storage cavern in salt rock from the perspective of risk analysis. Firstly, the definition and classification of cavern instability risk is proposed, and the damage mechanism is analyzed from the mechanical angle. Then the main stability evaluating indicators of cavern instability risk are proposed, and an evaluation method of cavern instability risk is put forward. Finally, the established cavern instability risk assessment system is applied to the analysis and prediction of cavern instability risk after 30 years of operation in a proposed storage cavern group in the Huai’an salt mine. This research can provide a useful theoretical base for the safe operation and management of underground storage caverns in salt rock.
Tahani, Masoud; Askari, Amir R.
2014-09-01
In spite of the fact that pull-in instability of electrically actuated nano/micro-beams has been investigated by many researchers to date, no explicit formula has been presented yet which can predict pull-in voltage based on a geometrically non-linear and distributed parameter model. The objective of present paper is to introduce a simple and accurate formula to predict this value for a fully clamped electrostatically actuated nano/micro-beam. To this end, a non-linear Euler-Bernoulli beam model is employed, which accounts for the axial residual stress, geometric non-linearity of mid-plane stretching, distributed electrostatic force and the van der Waals (vdW) attraction. The non-linear boundary value governing equation of equilibrium is non-dimensionalized and solved iteratively through single-term Galerkin based reduced order model (ROM). The solutions are validated thorough direct comparison with experimental and other existing results reported in previous studies. Pull-in instability under electrical and vdW loads are also investigated using universal graphs. Based on the results of these graphs, non-dimensional pull-in and vdW parameters, which are defined in the text, vary linearly versus the other dimensionless parameters of the problem. Using this fact, some linear equations are presented to predict pull-in voltage, the maximum allowable length, the so-called detachment length, and the minimum allowable gap for a nano/micro-system. These linear equations are also reduced to a couple of universal pull-in formulas for systems with small initial gap. The accuracy of the universal pull-in formulas are also validated by comparing its results with available experimental and some previous geometric linear and closed-form findings published in the literature.
Analog model for analysis of spatial instability of neutron flux
International Nuclear Information System (INIS)
Radanovic, Lj.
1964-12-01
The objective of this task was to develop a model for analysing spatial instability of the neutron flux and defining the optimum number and position of regulating rods. The developed model enables calculation of higher harmonics to be taken into account for each type of reactor, to define zones for regulation rods, position and number of points for detecting reactor state, and number and position of the regulating rods
Bus Participation Factor Analysis for Harmonic Instability in Power Electronics Based Power Systems
DEFF Research Database (Denmark)
Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei
2018-01-01
Compared with the conventional power systems, large-scale power electronics based power systems present a more complex situation, where harmonic instability may be induced by the mutual interactions between the inner control loops of the converters. This paper presents an approach to locate which...... power converters and buses are more sensitive and have significant contribution to the harmonic instability. In the approach, a power electronics based system is introduced as a Multi-Input Multi-Output (MIMO) dynamic system by means of a dynamic admittance matrix. Bus Participation Factors (PFs......) are calculated by the oscillatory mode sensitivity analysis versus the elements of the MIMO transfer function matrix. The PF analysis detects which power electronic converters or buses have a higher participation in harmonic instability excitation than others or at which buses such instability problems have...
Advanced analysis technique for the evaluation of linear alternators and linear motors
Holliday, Jeffrey C.
1995-01-01
A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.
Energy Technology Data Exchange (ETDEWEB)
Goswami, A., E-mail: animesh@vecc.gov.in; Sing Babu, P., E-mail: psb@vecc.gov.in; Pandit, V.S., E-mail: pandit@vecc.gov.in
2016-02-01
The stability properties of transverse envelopes of mismatched intense continuous charge particle beam propagating in a general quadrupole focusing channel have been investigated in the presence of image charge effect due to a cylindrical conducting pipe. Phase shifts and growth factors of the envelope oscillations in the case of instability are calculated by numerical evaluation of the eigenvalues of linearly perturbed envelope equations for small deviations from the matched beam conditions. A detailed study on the region of instability and its dependence on the system parameters like occupancy of the quadrupole focusing field, syncopation factor, zero current phase advance, beam intensity etc. have been carried out. It has been found that the strength and regions of envelope instability due to the lattice and confluent resonances in the parametric space are affected by the presence of image charge.
Linear Parametric Sensitivity Analysis of the Constraint Coefficient Matrix in Linear Programs
R.A. Zuidwijk (Rob)
2005-01-01
textabstractSensitivity analysis is used to quantify the impact of changes in the initial data of linear programs on the optimal value. In particular, parametric sensitivity analysis involves a perturbation analysis in which the effects of small changes of some or all of the initial data on an
Linearised dynamics and non-modal instability analysis of an impinging under-expanded supersonic jet
Karami, Shahram; Stegeman, Paul C.; Theofilis, Vassilis; Schmid, Peter J.; Soria, Julio
2018-04-01
Non-modal instability analysis of the shear layer near the nozzle of a supersonic under-expanded impinging jet is studied. The shear layer instability is considered to be one of the main components of the feedback loop in supersonic jets. The feedback loop is observed in instantaneous visualisations of the density field where it is noted that acoustic waves scattered by the nozzle lip internalise as shear layer instabilities. A modal analysis describes the asymptotic limit of the instability disturbances and fails to capture short-time responses. Therefore, a non-modal analysis which allows the quantitative description of the short-time amplification or decay of a disturbance is performed by means of a local far-field pressure pulse. An impulse response analysis is performed which allows a wide range of frequencies to be excited. The temporal and spatial growths of the disturbances in the shear layer near the nozzle are studied by decomposing the response using dynamic mode decomposition and Hilbert transform analysis. The short-time response shows that disturbances with non-dimensionalised temporal frequencies in the range of 1 to 4 have positive growth rates in the shear layer. The Hilbert transform analysis shows that high non-dimensionalised temporal frequencies (>4) are dampened immediately, whereas low non-dimensionalised temporal frequencies (analysis show that spatial frequencies between 1 and 3 have positive spatial growth rates. Finally, the envelope of the streamwise velocity disturbances reveals the presence of a convective instability.
Analysis of flow instability in steam turbine control valves
International Nuclear Information System (INIS)
Pluviose, M.
1981-01-01
With the sponsorship of Electricite de France and the French steam turbine manufacturers, the Gas Turbine Laboratory of CETIM has started a research about the unsteady phenomena of flow in control valves of steam turbines. The existence of unsteady embossment in the valve cone at rise has been as certained, and a conventional computing procedure has been applied to locate the shock waves in the valve. These shock waves may suddenly arise at some valve lifts and give way to fluttering. Valve geometries attenuating instability of flow and increasing therefore the reliability of such equipment are proposed [fr
Non-linear seismic analysis of structures coupled with fluid
International Nuclear Information System (INIS)
Descleve, P.; Derom, P.; Dubois, J.
1983-01-01
This paper presents a method to calculate non-linear structure behaviour under horizontal and vertical seismic excitation, making possible the full non-linear seismic analysis of a reactor vessel. A pseudo forces method is used to introduce non linear effects and the problem is solved by superposition. Two steps are used in the method: - Linear calculation of the complete model. - Non linear analysis of thin shell elements and calculation of seismic induced pressure originating from linear and non linear effects, including permanent loads and thermal stresses. Basic aspects of the mathematical formulation are developed. It has been applied to axi-symmetric shell element using a Fourier series solution. For the fluid interaction effect, a comparison is made with a dynamic test. In an example of application, the displacement and pressure time history are given. (orig./GL)
Basic methods of linear functional analysis
Pryce, John D
2011-01-01
Introduction to the themes of mathematical analysis, geared toward advanced undergraduate and graduate students. Topics include operators, function spaces, Hilbert spaces, and elementary Fourier analysis. Numerous exercises and worked examples.1973 edition.
Han, Jian; Jiang, Nan
2012-07-01
The instability of a hypersonic boundary layer on a cone is investigated by bicoherence spectrum analysis. The experiment is conducted at Mach number 6 in a hypersonic wind tunnel. The time series signals of instantaneous fluctuating surface-thermal-flux are measured by Pt-thin-film thermocouple temperature sensors mounted at 28 stations on the cone surface along streamwise direction to investigate the development of the unstable disturbances. The bicoherence spectrum analysis based on wavelet transform is employed to investigate the nonlinear interactions of the instability of Mack modes in hypersonic laminar boundary layer transition. The results show that wavelet bicoherence is a powerful tool in studying the unstable mode nonlinear interaction of hypersonic laminar-turbulent transition. The first mode instability gives rise to frequency shifts to higher unstable modes at the early stage of hypersonic laminar-turbulent transition. The modulations subsequently lead to the second mode instability occurrence. The second mode instability governs the last stage of instability and final breakdown to turbulence with multi-scale disturbances growth.
International Nuclear Information System (INIS)
Han Jian; Jiang Nan
2012-01-01
The instability of a hypersonic boundary layer on a cone is investigated by bicoherence spectrum analysis. The experiment is conducted at Mach number 6 in a hypersonic wind tunnel. The time series signals of instantaneous fluctuating surface-thermal-flux are measured by Pt-thin-film thermocouple temperature sensors mounted at 28 stations on the cone surface along streamwise direction to investigate the development of the unstable disturbances. The bicoherence spectrum analysis based on wavelet transform is employed to investigate the nonlinear interactions of the instability of Mack modes in hypersonic laminar boundary layer transition. The results show that wavelet bicoherence is a powerful tool in studying the unstable mode nonlinear interaction of hypersonic laminar-turbulent transition. The first mode instability gives rise to frequency shifts to higher unstable modes at the early stage of hypersonic laminar-turbulent transition. The modulations subsequently lead to the second mode instability occurrence. The second mode instability governs the last stage of instability and final breakdown to turbulence with multi-scale disturbances growth. (fundamental areas of phenomenology(including applications))
International Nuclear Information System (INIS)
Hoelzl, M; Merkel, P; Lackner, K; Strumberger, E; Huijsmans, G T A; Aleynikova, K; Liu, F; Atanasiu, C; Nardon, E; Fil, A; McAdams, R; Chapman, I
2014-01-01
The dynamics of large scale plasma instabilities can be strongly influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK [1, 2] has been coupled [3] with the resistive wall code STARWALL [4], which allows us to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described
Analysis of genomic instability in bronchial cells from uranium miners
International Nuclear Information System (INIS)
Neft, R.E.; Belinsky, S.A.; Gilliland, F.D.; Lechner, J.F.
1994-01-01
Epidemiological studies show that underground uranium miners have a radon progeny exposure-dependent increased risk for developing lung cancer. The odds ratio for lung cancer in uranium miners increase for all cumulative exposures above 99 Working Level Months. In addition, there is a strong multiplicative effect of cigarette smoking on the development of lung cancer in uranium miners. The purpose of this investigation was to determine whether or not early genetic changes, as indicated by genomic instability, can be detected in bronchial cells from uranium miners. Investigations of this nature may serve as a means of discovering sub-clinical disease and could lead to earlier detection of lung cancer and a better prognosis for the patient
Fluidelastic instability analysis of steam generator U-tubes at antivibration bar-inactive modes
International Nuclear Information System (INIS)
Lee, S.K.; Jo, J.C.
1995-01-01
This paper presents the results of thermal-hydraulic and fluidelastic U-tube instability analyses performed for the vertical type pressurized water reactor (PWR) steam generator model being employed at Kori units 2, 3 and 4, and Yonggwang units 1 and 2 in Korea. The thermal-hydraulic analysis for providing the detailed three-dimensional two-phase flow field in the secondary side of the steam generator was accomplished using the ATHOS3 steam generator thermal-hydraulic analysis code. The UTVA2 code designed for calculating both the free vibration responses and fluidelastic stability ratio of a specific U-tube under consideration was used to assess the potential for fluidelastic instability of the steam generator U-tubes at various conditions of antivibration bar (AVB)-inactive modes. The results of the fluidelastic instability analysis were discussed in comparison with those obtained for the steam generator U-tubes at AVB-active mode
The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability
Lu, Yan; Fan, Zhengfeng; Lu, Xinpei; Ye, Wenhua; Zou, Changlin; Zhang, Ziyun; Zhang, Wen
2017-10-01
In this research, we use the numerical simulation method to investigate the generation coefficients of the first three harmonics and the zeroth harmonic in the Ablative Rayleigh-Taylor Instability. It is shown that the interface shifts to the low temperature side during the ablation process. In consideration of the third-order perturbation theory, the first three harmonic amplitudes of the weakly nonlinear regime are calculated and then the harmonic generation coefficients are obtained by curve fitting. The simulation results show that the harmonic generation coefficients changed with time and wavelength. Using the higher-order perturbation theory, we find that more and more harmonics are generated in the later weakly nonlinear stage, which is caused by the negative feedback of the later higher harmonics. Furthermore, extending the third-order theory to the fifth-order theory, we find that the second and the third harmonics coefficients linearly depend on the wavelength, while the feedback coefficients are almost constant. Further analysis also shows that when the fifth-order theory is considered, the normalized effective amplitudes of second and third harmonics can reach about 25%-40%, which are only 15%-25% in the frame of the previous third-order theory. Therefore, the third order perturbation theory is needed to be modified by the higher-order theory when ηL reaches about 20% of the perturbation wavelength.
Sequentially linear analysis for simulating brittle failure
van de Graaf, A.V.
2017-01-01
The numerical simulation of brittle failure at structural level with nonlinear finite
element analysis (NLFEA) remains a challenge due to robustness issues. We attribute these problems to the dimensions of real-world structures combined with softening behavior and negative tangent stiffness at
Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors
Chen, Liangyuan
2018-03-01
The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.
A parametric FE modeling of brake for non-linear analysis
Energy Technology Data Exchange (ETDEWEB)
Ahmed,Ibrahim; Fatouh, Yasser [Automotive and Tractors Technology Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt); Aly, Wael [Refrigeration and Air-Conditioning Technology Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt)
2013-07-01
A parametric modeling of a drum brake based on 3-D Finite Element Methods (FEM) for non-contact analysis is presented. Many parameters are examined during this study such as the effect of drum-lining interface stiffness, coefficient of friction, and line pressure on the interface contact. Firstly, the modal analysis of the drum brake is also studied to get the natural frequency and instability of the drum to facilitate transforming the modal elements to non-contact elements. It is shown that the Unsymmetric solver of the modal analysis is efficient enough to solve this linear problem after transforming the non-linear behavior of the contact between the drum and the lining to a linear behavior. A SOLID45 which is a linear element is used in the modal analysis and then transferred to non-linear elements which are Targe170 and Conta173 that represent the drum and lining for contact analysis study. The contact analysis problems are highly non-linear and require significant computer resources to solve it, however, the contact problem give two significant difficulties. Firstly, the region of contact is not known based on the boundary conditions such as line pressure, and drum and friction material specs. Secondly, these contact problems need to take the friction into consideration. Finally, it showed a good distribution of the nodal reaction forces on the slotted lining contact surface and existing of the slot in the middle of the lining can help in wear removal due to the friction between the lining and the drum. Accurate contact stiffness can give a good representation for the pressure distribution between the lining and the drum. However, a full contact of the front part of the slotted lining could occur in case of 20, 40, 60 and 80 bar of piston pressure and a partially contact between the drum and lining can occur in the rear part of the slotted lining.
DEFF Research Database (Denmark)
Vestergaard, Rikke Falsig; Søballe, Kjeld; Hasenkam, John Michael
2018-01-01
BACKGROUND: A small, but unstable, saw-gap may hinder bone-bridging and induce development of painful sternal dehiscence. We propose the use of Radiostereometric Analysis (RSA) for evaluation of sternal instability and present a method validation. METHODS: Four bone analogs (phantoms) were sterno...... modality feasible for clinical evaluation of sternal stability in research. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02738437 , retrospectively registered.......BACKGROUND: A small, but unstable, saw-gap may hinder bone-bridging and induce development of painful sternal dehiscence. We propose the use of Radiostereometric Analysis (RSA) for evaluation of sternal instability and present a method validation. METHODS: Four bone analogs (phantoms) were...
Linear and nonlinear stability analysis, associated to experimental fast reactors
International Nuclear Information System (INIS)
Amorim, E.S. do; Moura Neto, C. de; Rosa, M.A.P.
1980-07-01
Phenomena associated to the physics of fast neutrons were analysed by linear and nonlinear Kinetics with arbitrary feedback. The theoretical foundations of linear kinetics and transfer functions aiming at the analysis of fast reactors stability, are established. These stability conditions were analitically proposed and investigated by digital and analogic programs. (E.G.) [pt
Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis
Luo, Wen; Azen, Razia
2013-01-01
Dominance analysis (DA) is a method used to evaluate the relative importance of predictors that was originally proposed for linear regression models. This article proposes an extension of DA that allows researchers to determine the relative importance of predictors in hierarchical linear models (HLM). Commonly used measures of model adequacy in…
Error Analysis on Plane-to-Plane Linear Approximate Coordinate ...
Indian Academy of Sciences (India)
Abstract. In this paper, the error analysis has been done for the linear approximate transformation between two tangent planes in celestial sphere in a simple case. The results demonstrate that the error from the linear transformation does not meet the requirement of high-precision astrometry under some conditions, so the ...
Two Paradoxes in Linear Regression Analysis
FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong
2016-01-01
Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214
Non-linear finite element analysis in structural mechanics
Rust, Wilhelm
2015-01-01
This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.
Nonlinear analysis of a relativistic beam-plasma cyclotron instability
Sprangle, P.; Vlahos, L.
1986-01-01
A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.
Use of linear discriminant function analysis in seed morphotype ...
African Journals Online (AJOL)
Use of linear discriminant function analysis in seed morphotype relationship study in 31 ... Data were collected on 100-seed weight, seed length and seed width. ... to the Mesoamerican gene pool, comprising the cultigroups Sieva-Big Lima, ...
Linear and nonlinear analysis of high-power rf amplifiers
International Nuclear Information System (INIS)
Puglisi, M.
1983-01-01
After a survey of the state variable analysis method the final amplifier for the CBA is analyzed taking into account the real beam waveshape. An empirical method for checking the stability of a non-linear system is also considered
Controllability analysis of decentralised linear controllers for polymeric fuel cells
Energy Technology Data Exchange (ETDEWEB)
Serra, Maria; Aguado, Joaquin; Ansede, Xavier; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya - Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)
2005-10-10
This work deals with the control of polymeric fuel cells. It includes a linear analysis of the system at different operating points, the comparison and selection of different control structures, and the validation of the controlled system by simulation. The work is based on a complex non linear model which has been linearised at several operating points. The linear analysis tools used are the Morari resiliency index, the condition number, and the relative gain array. These techniques are employed to compare the controllability of the system with different control structures and at different operating conditions. According to the results, the most promising control structures are selected and their performance with PI based diagonal controllers is evaluated through simulations with the complete non linear model. The range of operability of the examined control structures is compared. Conclusions indicate good performance of several diagonal linear controllers. However, very few have a wide operability range. (author)
A comparison between linear and non-linear analysis of flexible pavements
Energy Technology Data Exchange (ETDEWEB)
Soleymani, H.R.; Berthelot, C.F.; Bergan, A.T. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Mechanical Engineering
1995-12-31
Computer pavement analysis programs, which are based on mathematical simulation models, were compared. The programs included in the study were: ELSYM5, an Elastic Linear (EL) pavement analysis program, MICH-PAVE, a Finite Element Non-Linear (FENL) and Finite Element Linear (FEL) pavement analysis program. To perform the analysis different tire pressures, pavement material properties and asphalt layer thicknesses were selected. Evaluation criteria used in the analysis were tensile strain in bottom of the asphalt layer, vertical compressive strain at the top of the subgrade and surface displacement. Results showed that FENL methods predicted more strain and surface deflection than the FEL and EL analysis methods. Analyzing pavements with FEL does not offer many advantages over the EL method. Differences in predicted strains between the three methods of analysis in some cases was found to be close to 100% It was suggested that these programs require more calibration and validation both theoretically and empirically to accurately correlate with field observations. 19 refs., 4 tabs., 9 figs.
Analysis of Linear MHD Power Generators
Energy Technology Data Exchange (ETDEWEB)
Witalis, E A
1965-02-15
The finite electrode size effects on the performance of an infinitely long MHD power generation duct are calculated by means of conformal mapping. The general conformal transformation is deduced and applied in a graphic way. The analysis includes variations in the segmentation degree, the Hall parameter of the gas and the electrode/insulator length ratio as well as the influence of the external circuitry and loading. A general criterion for a minimum of the generator internal resistance is given. The same criterion gives the conditions for the occurrence of internal current leakage between adjacent electrodes. It is also shown that the highest power output at a prescribed efficiency is always obtained when the current is made to flow between exactly opposed electrodes. Curves are presented showing the power-efficiency relations and other generator properties as depending on the segmentation degree and the Hall parameter in the cases of axial and transverse power extraction. The implications of limiting the current to flow between a finite number of identical electrodes are introduced and combined with the condition for current flow between opposed electrodes. The characteristics of generators with one or a few external loads can then be determined completely and examples are given in a table. It is shown that the performance of such generators must not necessarily be inferior to that of segmented generators with many independent loads. However, the problems of channel end losses and off-design loading have not been taken into consideration.
Directory of Open Access Journals (Sweden)
Mukesh Kumar Awasthi
2013-01-01
Full Text Available The instability of a thin sheet of viscous and dielectric liquid moving in the same direction as an air stream in the presence of a uniform horizontal electric field has been carried out using viscous potential flow theory. It is observed that aerodynamic-enhanced instability occurs if the Weber number is much less than a critical value related to the ratio of the air and liquid stream velocities, viscosity ratio of two fluids, the electric field, and the dielectric constant values. Liquid viscosity has stabilizing effect in the stability analysis, while air viscosity has destabilizing effect.
Analysis of the high frequency longitudinal instability of bunched beams using a computer model
International Nuclear Information System (INIS)
Messerschmid, E.; Month, M.
1976-01-01
The effects of high frequency longitudinal forces on bunched beams are investigated using a computer model. These forces are thought to arise from the transfer of energy between the beam and various structures in the vacuum chamber, this coupling being characterized by a longitudinal impedance function. The simulation is performed with a passive cavity-like element. It is found that the instability can be generated if three conditions are fulfilled: (1) the impedance must be sufficiently large, (2) the induced field must have a fast wake, and (3) the frequency of the induced field must be high enough. In particular, it is shown that the coasting beam threshold criterion for the longitudinal impedance accurately describes the onset of instability, if local values along the bunch of energy spread and current are used. It is also found that the very fast initial growth rate is in good agreement with linear theory and that the coasting beam overshoot expression may be used as a rough guide of the limiting growth for unstable bunches. Concerning the wake field, it is shown how the instability tends to disappear as the fields persist longer. It is furthermore demonstrated that as the wavelength of the unstable mode is increased, initially unstable conditions begin to weaken and vanish. This, it should be emphasized, is primarily a result of the strong correlation between the unstable mode frequency and the time rate of attenuation of the induced fields. ISR parameters are used throughout and a correspondence between the microwave instability observed in the ISR bunches and the simulated instability is suggested. (Auth.)
International Nuclear Information System (INIS)
Choi, Seok Ki; Kim, Seong O
2011-01-01
A 600 MWe demonstration reactor being developed at KAERI employs a once-through helically coiled steam generator. The helically coiled steam generator is compact and is efficient for heat transfer, however, it may suffer from the two-phase instability. It is well known that the density wave instability is the main source of instability among various types of instabilities in a helically coiled S/G in a LMR. In the present study a simple method for analysis of the density wave two phase instability in a liquid metal reactor S/G is proposed and the method is applied to the analysis of density wave instability in a S/G of 600MWe liquid metal reactor
Treatment of the subject of tearing instability
International Nuclear Information System (INIS)
Paris, P.C.
1977-07-01
A simple approach is taken to the mechanics of potential instability associated with the steady tearing portion of J-Integral R-curves. The analysis is developed from simple examples of structural component (or test specimen) configurations with cracks, examining their instability possibilities individually, in order to draw more general conclusions about elastic-plastic cracking instability as contrasted to linear-elastic behavior. Finally, an attempt is made to model a more local cleavage-like instability for material in the fracture process zone just ahead of a crack tip. Results are then presented of a testing program which clearly demonstrates the appropriateness of the tearing instability analysis and which illustrates its broad potential for future application, as well as presenting guidelines for its further development. The material selected for analysis was Ni-Cr-Mo-V rotor steel
An Analysis of the Oil-Whirl Instability
Schultz, William W.; Han, Heng-Chu; Boyd, John P.; Schumack, Mark
1997-11-01
We investigate the hydrodynamic stability of a rotating journal translating inside a stationary bearing. A long (two-dimensional) journal bearing separated by a Newtonian non-cavitating lubricant is studied for shaft stability. Spectral element methods, perturbation methods, and linear stability analyses are used. The influences of fluid inertia, eccentricity, ellipticity, shaft mass, and finite gap on hydrodynamic stability are explored. Lubrication theory using Reynolds equation ignoring fluid inertia leads to erroneous conclusions. Without fluid inertia, the shaft is always unstable. However, the journal is conditionally stable even in the limit Rearrow 0 if fluid inertia is included. Increasing eccentricity helps stabilize a whirling shaft. Non-circular shaft bearings, for example elliptical bearings, are observed to have better dynamic stability.
The (in)stability of money demand in the Euro Area: Lessons from a cross-country analysis
Nautz, Dieter; Rondorf, Ulrike
2010-01-01
The instability of standard money demand functions has undermined the role of monetary aggregates for monetary policy analysis in the euro area. This paper uses country-specific monetary aggregates to shed more light on the economics behind the instability of euro area money demand. Our results obtained from panel estimation indicate that the observed instability of standard money demand functions could be explained by omitted variables like e.g. technological progress that are important for ...
Application of noise analysis for the study of core local instability at Forsmark 1
International Nuclear Information System (INIS)
Oguma, Ritsuo
1997-10-01
Core local instability was recently experienced at Forsmark 1 BWR. The event has been studied by applying noise analysis to data collected in January 1997 for the stability test. The result indicated that there was a region in the left corner of the core which was subject to instability due to neutronic and thermal-hydraulic coupling. The result of the noise analysis suggested two types of disturbance source, one in the vicinity of the detector string LPRM10 having resonant oscillation at 0.5 Hz and another relatively wide band noise in the neighbourhood of LPRM18. Three hypotheses have been examined as the possible cause, operational factor, abnormal fuel assembly, and wide band low frequency disturbance. Although the real cause has not been made clear from the noise analysis, it is likely that the operational factor played an important role as the cause. Further investigations are expected to be performed in the future. In order to detect the local instability it is important to have a stability monitor with a capability of monitoring a sufficient number of LPRMs so as to cover the whole core. This is important since local instability is a type of anomaly which should not occur during reactor operation
Thermalhydraulic instability analysis of a two phase natural circulation loop
International Nuclear Information System (INIS)
Sesini, Paula Aida
1998-01-01
This work presents an analysis of a loop operating in natural circulation regime. Experiments were done in a rectangular closed circuit in one and two-phase flows. Numerical analysis were performed initially with the CIRNAT code and afterwards with RELAP5/MOD2. The limitations of CIRNAT were studied and new developments for this code are proposed. (author)
Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis
Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel
2013-01-01
This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007
Optimal choice of basis functions in the linear regression analysis
International Nuclear Information System (INIS)
Khotinskij, A.M.
1988-01-01
Problem of optimal choice of basis functions in the linear regression analysis is investigated. Step algorithm with estimation of its efficiency, which holds true at finite number of measurements, is suggested. Conditions, providing the probability of correct choice close to 1 are formulated. Application of the step algorithm to analysis of decay curves is substantiated. 8 refs
Analysis of multi-bunch instabilities at the Diamond storage ring
Bartolini, Riccardo; Rehm, Guenther; Smaluk, Victor
2017-01-01
We present the result of the analytical, numerical and experimental analysis of multi-bunch instabilities at the Diamond storage ring. This work compares the impedance estimates with CST with the analysis of the growth rates of the excited multi-bunch modes in different machine configurations. The contribution of a number of wakefield sources has been identified with very high precision thanks to high quality data provided by the existing TMBF diagnostics.
Numerical analysis of free surface instabilities in the IFMIF lithium target
International Nuclear Information System (INIS)
Gordeev, S.; Heinzel, V.; Moeslang, A.
2007-01-01
The International Fusion Materials Facility (IFMIF) facility uses a high speed (10-20 m/s) Lithium (Li) jet flow as a target for two 40 MeV/125 mA deuteron beams. The major function of the Li target is to provide a stable Li jet for the production of an intense neutron flux. For the understanding the lithium jet behaviour and elimination of the free-surface flow instabilities a detailed analysis of the Li jet flow is necessary. Different kinds of instability mechanisms in the liquid jet flow have been evaluated and classified based on analytical and experimental data. Numerical investigations of the target free surface flow have been performed. Previous numerical investigations have shown in principle the suitability of CFD code Star- CD for the simulation of the Li-target flow. The main objective of this study is detailed numerical analysis of instabilities in the Li-jet flow caused by boundary layer relaxation near the nozzle exit, transition to the turbulence flow and back wall curvature. A number of CFD models are developed to investigate the formation of instabilities on the target surface. Turbulence models are validated on the experimental data. Experimental observations have shown that the change of the nozzle geometry at the outlet such as a slight divergence of the nozzle surfaces or nozzle edge defects causes the flow separation and occurrence of longitudinal periodic structures on the free surface with an amplitude up to 5 mm. Target surface fluctuations of this magnitude can lead to the penetration of the deuteron beam in the target structure and cause the local overheating of the back plat. Analysis of large instabilities in the Li-target flow combined with the heat distribution in lithium depending on the free surface shape is performed in this study. (orig.)
Spatial Analysis of Linear Structures in the Exploration of Groundwater
Directory of Open Access Journals (Sweden)
Abdramane Dembele
2017-11-01
Full Text Available The analysis of linear structures on major geological formations plays a crucial role in resource exploration in the Inner Niger Delta. Highlighting and mapping of the large lithological units were carried out using image fusion, spectral bands (RGB coding, Principal Component Analysis (PCA, and band ratio methods. The automatic extraction method of linear structures has permitted the obtaining of a structural map with 82,659 linear structures, distributed on different stratigraphic stages. The intensity study shows an accentuation in density over 12.52% of the total area, containing 22.02% of the linear structures. The density and nodes (intersections of fractures formed by the linear structures on the different lithologies allowed to observe the behavior of the region’s aquifers in the exploration of subsoil resources. The central density, in relation to the hydrographic network of the lowlands, shows the conditioning of the flow and retention of groundwater in the region, and in-depth fluids. The node areas and high-density linear structures, have shown an ability to have rejections in deep (pores that favor the formation of structural traps for oil resources.
Improved Methods for Pitch Synchronous Linear Prediction Analysis of Speech
劉, 麗清
2015-01-01
Linear prediction (LP) analysis has been applied to speech system over the last few decades. LP technique is well-suited for speech analysis due to its ability to model speech production process approximately. Hence LP analysis has been widely used for speech enhancement, low-bit-rate speech coding in cellular telephony, speech recognition, characteristic parameter extraction (vocal tract resonances frequencies, fundamental frequency called pitch) and so on. However, the performance of the co...
Noise analysis of Forsmark 1 data to investigate BWR core local instability
International Nuclear Information System (INIS)
Oguma, R.
1998-04-01
BWR core local instability was experienced at Forsmark 1 (F1) during reactor operation in cycle 16. The event has been studied by applying noise analysis and stability calculations to get insight into the event as well as to identify the cause of local instability. The present report is concerned with noise analysis of data collected during start-up in cycle 17. The results of the current study indicates: The F1 core is quite stable in cycle 17. The max. decay ratio (DR) value of 0.37 was obtained from the stability evaluation of an APRM (average power range monitor) and LPRM (local power range monitor) signals measured at 66% (APRM) of reactor power and 4252 Kg/s (SA-HC) of core flow. Compared with the power profile in cycle 17 (as well as in reactor F2), the core in cycle 16 had an extreme power profile with high power and bottom-shifted axial peak in the core periphery esp. at the four quadrant corners. Such a profile decreases the stability margin in the region. It is a common observation that the DR obtained from APRM tends to be higher than that from LPRM if the global instability mechanism is dominant in the core, and vice versa. The comparison of global and local DR values should be an effective method for detecting local instability during the reactor operation. In order to detect the local instability it is important to evaluate the core stability with sufficient number of LPRMs so as to cover the whole core cross section together with APRMs
International Nuclear Information System (INIS)
Murakami, H.; Hirai, T.; Nakata, M.; Kobori, T.; Mizukoshi, K.; Takenaka, Y.; Miyagawa, N.
1989-01-01
Many of the equipment systems of nuclear power plants contain a number of non-linearities, such as gap and friction, due to their mechanical functions. It is desirable to take such non-linearities into account appropriately for the evaluation of the aseismic soundness. However, in usual design works, linear analysis method with rough assumptions is applied from engineering point of view. An equivalent linearization method is considered to be one of the effective analytical techniques to evaluate non-linear responses, provided that errors to a certain extent are tolerated, because it has greater simplicity in analysis and economization in computing time than non-linear analysis. The objective of this paper is to investigate the applicability of the equivalent linearization method to evaluate the maximum earthquake response of equipment systems such as the CANDU Fuelling Machine which has multiple non- linearities
Steady state and linear stability analysis of a supercritical water natural circulation loop
International Nuclear Information System (INIS)
Sharma, Manish; Pilkhwal, D.S.; Vijayan, P.K.; Saha, D.; Sinha, R.K.
2010-01-01
Supercritical water (SCW) has excellent heat transfer characteristics as a coolant for nuclear reactors. Besides it results in high thermal efficiency of the plant. However, the flow can experience instabilities in supercritical water reactors, as the density change is very large for the supercritical fluids. A computer code SUCLIN using supercritical water properties has been developed to carry out the steady state and linear stability analysis of a SCW natural circulation loop. The conservation equations of mass, momentum and energy have been linearized by imposing small perturbation in flow rate, enthalpy, pressure and specific volume. The equations have been solved analytically to generate the characteristic equation. The roots of the equation determine the stability of the system. The code has been qualitatively assessed with published results and has been extensively used for studying the effect of diameter, height, heater inlet temperature, pressure and local loss coefficients on steady state and stability behavior of a Supercritical Water Natural Circulation Loop (SCWNCL). The present paper describes the linear stability analysis model and the results obtained in detail.
Buneman and ion two-stream instabilities in the foot of collisionless shocks
International Nuclear Information System (INIS)
Fumio Takahara
2008-01-01
Two-dimensional electrostatic PIC simulations as well as linear analysis have been made for double periodic boundary conditions mimicking the shock foot region of supernova remnants. We found that modes propagating obliquely to the beam direction grow fast enough so that no surfing acceleration occurs. We also found that a new type of instability called ion two-stream instability is excited after the Buneman instability saturated instead of the ion acoustic instability. Implications for electron heating are shortly discussed. (author)
Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices
Martín, Juan A.; Paredes, Pedro
2017-12-01
A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.
Mathematical modelling and linear stability analysis of laser fusion cutting
International Nuclear Information System (INIS)
Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich
2016-01-01
A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.
Algorithm for Non-proportional Loading in Sequentially Linear Analysis
Yu, C.; Hoogenboom, P.C.J.; Rots, J.G.; Saouma, V.; Bolander, J.; Landis, E.
2016-01-01
Sequentially linear analysis (SLA) is an alternative to the Newton-Raphson method for analyzing the nonlinear behavior of reinforced concrete and masonry structures. In this paper SLA is extended to load cases that are applied one after the other, for example first dead load and then wind load. It
CFD analysis of linear compressors considering load conditions
Bae, Sanghyun; Oh, Wonsik
2017-08-01
This paper is a study on computational fluid dynamics (CFD) analysis of linear compressor considering load conditions. In the conventional CFD analysis of the linear compressor, the load condition was not considered in the behaviour of the piston. In some papers, behaviour of piston is assumed as sinusoidal motion provided by user defined function (UDF). In the reciprocating type compressor, the stroke of the piston is restrained by the rod, while the stroke of the linear compressor is not restrained, and the stroke changes depending on the load condition. The greater the pressure difference between the discharge refrigerant and the suction refrigerant, the more the centre point of the stroke is pushed backward. And the behaviour of the piston is not a complete sine wave. For this reason, when the load condition changes in the CFD analysis of the linear compressor, it may happen that the ANSYS code is changed or unfortunately the modelling is changed. In addition, a separate analysis or calculation is required to find a stroke that meets the load condition, which may contain errors. In this study, the coupled mechanical equations and electrical equations are solved using the UDF, and the behaviour of the piston is solved considering the pressure difference across the piston. Using the above method, the stroke of the piston with respect to the motor specification of the analytical model can be calculated according to the input voltage, and the piston behaviour can be realized considering the thrust amount due to the pressure difference.
Mathematical modelling and linear stability analysis of laser fusion cutting
Energy Technology Data Exchange (ETDEWEB)
Hermanns, Torsten; Schulz, Wolfgang [RWTH Aachen University, Chair for Nonlinear Dynamics, Steinbachstr. 15, 52047 Aachen (Germany); Vossen, Georg [Niederrhein University of Applied Sciences, Chair for Applied Mathematics and Numerical Simulations, Reinarzstr.. 49, 47805 Krefeld (Germany); Thombansen, Ulrich [RWTH Aachen University, Chair for Laser Technology, Steinbachstr. 15, 52047 Aachen (Germany)
2016-06-08
A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.
Stability Analysis for Multi-Parameter Linear Periodic Systems
DEFF Research Database (Denmark)
Seyranian, A.P.; Solem, Frederik; Pedersen, Pauli
1999-01-01
This paper is devoted to stability analysis of general linear periodic systems depending on real parameters. The Floquet method and perturbation technique are the basis of the development. We start out with the first and higher-order derivatives of the Floquet matrix with respect to problem...
Linear discriminant analysis of structure within African eggplant 'Shum'
African Journals Online (AJOL)
A MANOVA preceded linear discriminant analysis, to model each of 61 variables, as predicted by clusters and experiment to filter out non-significant traits. Four distinct clusters emerged, with a cophenetic relation coefficient of 0.87 (P<0.01). Canonical variates that best predicted the observed clusters include petiole length, ...
Linear stability analysis of collective neutrino oscillations without spurious modes
Morinaga, Taiki; Yamada, Shoichi
2018-01-01
Collective neutrino oscillations are induced by the presence of neutrinos themselves. As such, they are intrinsically nonlinear phenomena and are much more complex than linear counterparts such as the vacuum or Mikheyev-Smirnov-Wolfenstein oscillations. They obey integro-differential equations, for which it is also very challenging to obtain numerical solutions. If one focuses on the onset of collective oscillations, on the other hand, the equations can be linearized and the technique of linear analysis can be employed. Unfortunately, however, it is well known that such an analysis, when applied with discretizations of continuous angular distributions, suffers from the appearance of so-called spurious modes: unphysical eigenmodes of the discretized linear equations. In this paper, we analyze in detail the origin of these unphysical modes and present a simple solution to this annoying problem. We find that the spurious modes originate from the artificial production of pole singularities instead of a branch cut on the Riemann surface by the discretizations. The branching point singularities on the Riemann surface for the original nondiscretized equations can be recovered by approximating the angular distributions with polynomials and then performing the integrals analytically. We demonstrate for some examples that this simple prescription does remove the spurious modes. We also propose an even simpler method: a piecewise linear approximation to the angular distribution. It is shown that the same methodology is applicable to the multienergy case as well as to the dispersion relation approach that was proposed very recently.
Coherent betatron instability driven by electrostatic separators: Stability analysis of the Tevatron
International Nuclear Information System (INIS)
Harfoush, F.A.; Bogacz, S.A.
1989-03-01
This paper outlines possible intensity limits due to the coherent betatron motion for the upgraded Tevatron with the electrostatic separators. Numerical simulation shows that this new vacuum chamber structure dominates the high frequency part of the coupling impedance spectrum and more likely will excite a slow head-tail instability. A simple stability analysis yields the characteristic growth-time of the unstable modes. 4 refs., 4 figs., 1 tab
Linear regression and sensitivity analysis in nuclear reactor design
International Nuclear Information System (INIS)
Kumar, Akansha; Tsvetkov, Pavel V.; McClarren, Ryan G.
2015-01-01
Highlights: • Presented a benchmark for the applicability of linear regression to complex systems. • Applied linear regression to a nuclear reactor power system. • Performed neutronics, thermal–hydraulics, and energy conversion using Brayton’s cycle for the design of a GCFBR. • Performed detailed sensitivity analysis to a set of parameters in a nuclear reactor power system. • Modeled and developed reactor design using MCNP, regression using R, and thermal–hydraulics in Java. - Abstract: The paper presents a general strategy applicable for sensitivity analysis (SA), and uncertainity quantification analysis (UA) of parameters related to a nuclear reactor design. This work also validates the use of linear regression (LR) for predictive analysis in a nuclear reactor design. The analysis helps to determine the parameters on which a LR model can be fit for predictive analysis. For those parameters, a regression surface is created based on trial data and predictions are made using this surface. A general strategy of SA to determine and identify the influential parameters those affect the operation of the reactor is mentioned. Identification of design parameters and validation of linearity assumption for the application of LR of reactor design based on a set of tests is performed. The testing methods used to determine the behavior of the parameters can be used as a general strategy for UA, and SA of nuclear reactor models, and thermal hydraulics calculations. A design of a gas cooled fast breeder reactor (GCFBR), with thermal–hydraulics, and energy transfer has been used for the demonstration of this method. MCNP6 is used to simulate the GCFBR design, and perform the necessary criticality calculations. Java is used to build and run input samples, and to extract data from the output files of MCNP6, and R is used to perform regression analysis and other multivariate variance, and analysis of the collinearity of data
Inviscid linear stability analysis of two fluid columns of different densities subject to gravity
Prathama, Aditya; Pantano, Carlos
2017-11-01
We investigate the inviscid linear stability of vertical interface between two fluid columns of different densities under the influence of gravity. In this flow arrangement, the two free streams are continuously accelerating, in contrast to the canonical Kelvin-Helmholtz or Rayleigh-Taylor instabilities whose base flows are stationary (or weakly time dependent). In these classical cases, the temporal evolution of the interface can be expressed as Fourier or Laplace solutions in time. This is not possible in our case; instead, we employ the initial value problem method to solve the equations analytically. The results, expressed in terms of the well-known parabolic cylinder function, indicate that the instability grows as the exponential of a quadratic function of time. The analysis shows that in this accelerating Kelvin-Helmholtz configuration, the interface is unconditionally unstable at all wave modes, despite the presence of surface tension. Department of Energy, National Nuclear Security Administration (Award No. DE-NA0002382) and the California Institute of Technology.
Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis
Kolev, Tsonko
2011-01-01
A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop
Model of oscillatory instability in vertically-homogeneous atmosphere
Directory of Open Access Journals (Sweden)
P. B. Rutkevich
2009-02-01
Full Text Available Existence and repeatability of tornadoes could be straightforwardly explained if there existed instability, responsible for their formation. However, it is well known that convection is the only instability in initially stable air, and the usual convective instability is not applicable for these phenomena. In the present paper we describe an instability in the atmosphere, which can be responsible for intense vortices. This instability appears in a fluid with Coriolis force and dissipation and has oscillatory behaviour, where the amplitude growth is accompanied by oscillations with frequency comparable to the growth rate of the instability. In the paper, both analytical analysis of the linear phase of the instability and nonlinear simulation of the developed stage of the air motion are addressed. This work was supported by the RFBR grant no. 09-05-00374-a.
Linear stability analysis of the gas injection augmented natural circulation of STAR-LM
International Nuclear Information System (INIS)
Yeon-Jong Yoo; Qiao Wu; James J Sienicki
2005-01-01
Full text of publication follows: A linear stability analysis has been performed for the gas injection augmented natural circulation of the Secure Transportable Autonomous Reactor - Liquid Metal (STAR-LM). Natural circulation is of great interest for the development of Generation-IV nuclear energy systems due to its vital role in the area of passive safety and reliability. One of such systems is STAR-LM under development by Argonne National Laboratory. STAR-LM is a 400 MWt class modular, proliferation-resistant, and passively safe liquid metal-cooled fast reactor system that uses inert lead (Pb) coolant and the advanced power conversion system that consists of a gas turbine Brayton cycle utilizing supercritical carbon dioxide (CO 2 ) to obtain higher plant efficiency. The primary loop of STAR-LM relies only on the natural circulation to eliminate the use of circulation pumps for passive safety consideration. To enhance the natural circulation of the primary coolant, STAR-LM optionally incorporates the additional driving force provided by the injection of noncondensable gas into the primary coolant above the reactor core, which is effective in removing heat from the core and transferring it to the secondary working fluid without the attainment of excessive coolant temperature at nominal operating power. Therefore, it naturally raises the concern about the natural circulation instability due to the relatively high temperature change in the core and the two-phase flow condition in the hot leg above the core. For the ease of analysis, the flow path of the loop was partitioned into five thermal-hydraulically distinct sections, i.e., heated core, unheated core, hot leg, heat exchanger, and cold leg. The one-dimensional single-phase flow field equations governing the natural circulation, i.e., continuity, momentum, and energy equations, were used for each section except the hot leg. For the hot leg, the one-dimensional homogeneous equilibrium two-phase flow field
Linear and nonlinear subspace analysis of hand movements during grasping.
Cui, Phil Hengjun; Visell, Yon
2014-01-01
This study investigated nonlinear patterns of coordination, or synergies, underlying whole-hand grasping kinematics. Prior research has shed considerable light on roles played by such coordinated degrees-of-freedom (DOF), illuminating how motor control is facilitated by structural and functional specializations in the brain, peripheral nervous system, and musculoskeletal system. However, existing analyses suppose that the patterns of coordination can be captured by means of linear analyses, as linear combinations of nominally independent DOF. In contrast, hand kinematics is itself highly nonlinear in nature. To address this discrepancy, we sought to to determine whether nonlinear synergies might serve to more accurately and efficiently explain human grasping kinematics than is possible with linear analyses. We analyzed motion capture data acquired from the hands of individuals as they grasped an array of common objects, using four of the most widely used linear and nonlinear dimensionality reduction algorithms. We compared the results using a recently developed algorithm-agnostic quality measure, which enabled us to assess the quality of the dimensional reductions that resulted by assessing the extent to which local neighborhood information in the data was preserved. Although qualitative inspection of this data suggested that nonlinear correlations between kinematic variables were present, we found that linear modeling, in the form of Principle Components Analysis, could perform better than any of the nonlinear techniques we applied.
A cyclostationary multi-domain analysis of fluid instability in Kaplan turbines
Pennacchi, P.; Borghesani, P.; Chatterton, S.
2015-08-01
Hydraulic instabilities represent a critical problem for Francis and Kaplan turbines, reducing their useful life due to increase of fatigue on the components and cavitation phenomena. Whereas an exhaustive list of publications on computational fluid-dynamic models of hydraulic instability is available, the possibility of applying diagnostic techniques based on vibration measurements has not been investigated sufficiently, also because the appropriate sensors seldom equip hydro turbine units. The aim of this study is to fill this knowledge gap and to exploit fully, for this purpose, the potentiality of combining cyclostationary analysis tools, able to describe complex dynamics such as those of fluid-structure interactions, with order tracking procedures, allowing domain transformations and consequently the separation of synchronous and non-synchronous components. This paper will focus on experimental data obtained on a full-scale Kaplan turbine unit, operating in a real power plant, tackling the issues of adapting such diagnostic tools for the analysis of hydraulic instabilities and proposing techniques and methodologies for a highly automated condition monitoring system.
Directory of Open Access Journals (Sweden)
İnan Keskin
2017-10-01
Full Text Available Safranbolu which has high probability for slope-induced disasters is a very worthwhile settlement for our country and also for the world with its historical and cultural heritage. Finding out potential hazards that may affect the wealth of this world heritage city is very crucial. The historic Safranbolu is surrounded by very steep rock slopes, and occasionally instability occurs in the rock mass that forms these slopes. The rock blocks that are relaesed in various causes and shapes can damage the historic town living spaces by creating a source for the rock fallings and moving down the slope in these very steep slopes. The rock slopes were evaluated by kinematic analysis in order to reduce the mentioned damages and to reveal potential hazards. In the study, characteristics of mass that causes rock fallings are analysed, kinematic controlled instability types are determined considering the obtained data and characteristic of slopes.
Directory of Open Access Journals (Sweden)
Tunjo Perić
2017-01-01
Full Text Available This paper presents and analyzes the applicability of three linearization techniques used for solving multi-objective linear fractional programming problems using the goal programming method. The three linearization techniques are: (1 Taylor’s polynomial linearization approximation, (2 the method of variable change, and (3 a modification of the method of variable change proposed in [20]. All three linearization techniques are presented and analyzed in two variants: (a using the optimal value of the objective functions as the decision makers’ aspirations, and (b the decision makers’ aspirations are given by the decision makers. As the criteria for the analysis we use the efficiency of the obtained solutions and the difficulties the analyst comes upon in preparing the linearization models. To analyze the applicability of the linearization techniques incorporated in the linear goal programming method we use an example of a financial structure optimization problem.
Design and Analysis of MEMS Linear Phased Array
Directory of Open Access Journals (Sweden)
Guoxiang Fan
2016-01-01
Full Text Available A structure of micro-electro-mechanical system (MEMS linear phased array based on “multi-cell” element is designed to increase radiation sound pressure of transducer working in bending vibration mode at high frequency. In order to more accurately predict the resonant frequency of an element, the theoretical analysis of the dynamic equation of a fixed rectangular composite plate and finite element method simulation are adopted. The effects of the parameters both in the lateral and elevation direction on the three-dimensional beam directivity characteristics are comprehensively analyzed. The key parameters in the analysis include the “cell” number of element, “cell” size, “inter-cell” spacing and the number of elements, element width. The simulation results show that optimizing the linear array parameters both in the lateral and elevation direction can greatly improve the three-dimensional beam focusing for MEMS linear phased array, which is obviously different from the traditional linear array.
Functional linear models for association analysis of quantitative traits.
Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao
2013-11-01
Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY
San Liang, X.; Robinson, Allan R.
2007-12-01
A novel localized finite-amplitude hydrodynamic stability analysis is established in a unified treatment for the study of real oceanic and atmospheric processes, which are in general highly nonlinear, and intermittent in space and time. We first re-state the classical definition using the multi-scale energy and vorticity analysis (MS-EVA) developed in Liang and Robinson [Liang, X.S., Robinson, A.R., 2005. Localized multiscale energy and vorticity analysis. I. Fundamentals. Dyn. Atmos. Oceans 38, 195-230], and then manipulate certain global operators to achieve the temporal and spatial localization. The key of the spatial localization is transfer-transport separation, which is made precise with the concept of perfect transfer, while relaxation of marginalization leads to the localization of time. In doing so the information of transfer lost in the averages is retrieved and an easy-to-use instability metric is obtained. The resulting metric is field-like (Eulerian), conceptually generalizing the classical formalism, a bulk notion over the whole system. In this framework, an instability has a structure, which is of particular use for open flow processes. We check the structure of baroclinic instability with the benchmark Eady model solution, and the Iceland-Faeroe Frontal (IFF) intrusion, a highly localized and nonlinear process occurring frequently in the region between Iceland and Faeroe Islands. A clear isolated baroclinic instability is identified around the intrusion, which is further found to be characterized by the transition from a spatially growing mode to a temporally growing mode. We also check the consistency of the MS-EVA dynamics with the barotropic Kuo model. An observation is that a local perturbation burst does not necessarily imply an instability: the perturbation energy could be transported from other processes occurring elsewhere. We find that our analysis yields a Kuo theorem-consistent mean-eddy interaction, which is not seen in a conventional
Analysis of density wave instability in counter-flow steam generators using STEAMFREQ-X
International Nuclear Information System (INIS)
Chan, K.C.; Yadigaroglu, G.
1986-01-01
The STEAMFREQ-X computer model was developed to provide a more comprehensive modeling of the different phenomena that are important to stability analysis of counter-flow steam generators. It uses a frequency-domain analysis and considers heat-flux/flow coupling between the primary and secondary fluids in space and time. Predictions by STEAMFREQ-X were compared with data from both a multi-channel liquid-sodium heated steam generator and a set of single pipe test data. Predicted outlet steam qualities at instability thresholds were within 15% of experimental data for all test points. (orig.)
Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity
Rand, J. L.; Wakefield, D. S.
Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may
Energy Technology Data Exchange (ETDEWEB)
Dey, Pinkee; Suslov, Sergey A, E-mail: ssuslov@swin.edu.au [Department of Mathematics H38, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)
2016-12-15
A finite amplitude instability has been analysed to discover the exact mechanism leading to the appearance of stationary magnetoconvection patterns in a vertical layer of a non-conducting ferrofluid heated from the side and placed in an external magnetic field perpendicular to the walls. The physical results have been obtained using a version of a weakly nonlinear analysis that is based on the disturbance amplitude expansion. It enables a low-dimensional reduction of a full nonlinear problem in supercritical regimes away from a bifurcation point. The details of the reduction are given in comparison with traditional small-parameter expansions. It is also demonstrated that Squire’s transformation can be introduced for higher-order nonlinear terms thus reducing the full three-dimensional problem to its equivalent two-dimensional counterpart and enabling significant computational savings. The full three-dimensional instability patterns are subsequently recovered using the inverse transforms The analysed stationary thermomagnetic instability is shown to occur as a result of a supercritical pitchfork bifurcation. (paper)
Analysis of the Instability Phenomena Caused by Steam in High-Pressure Turbines
Directory of Open Access Journals (Sweden)
Paolo Pennacchi
2011-01-01
Full Text Available Instability phenomena in steam turbines may happen as a consequence of certain characteristics of the steam flow as well as of the mechanical and geometrical properties of the seals. This phenomenon can be modeled and the raise of the steam flow and pressure causes the increase of the cross coupled coefficients used to model the seal stiffness. As a consequence, the eigenvalues and eigenmodes of the mathematical model of the machine change. The real part of the eigenvalue associated with the first flexural normal mode of the turbine shaft may become positive causing the conditions for unstable vibrations. The original contribution of the paper is the application of a model-based analysis of the dynamic behavior of a large power unit, affected by steam-whirl instability phenomena. The model proposed by the authors allows studying successfully the experimental case. The threshold level of the steam flow that causes instability conditions is analyzed and used to define the stability margin of the power unit.
International Nuclear Information System (INIS)
Dey, Pinkee; Suslov, Sergey A
2016-01-01
A finite amplitude instability has been analysed to discover the exact mechanism leading to the appearance of stationary magnetoconvection patterns in a vertical layer of a non-conducting ferrofluid heated from the side and placed in an external magnetic field perpendicular to the walls. The physical results have been obtained using a version of a weakly nonlinear analysis that is based on the disturbance amplitude expansion. It enables a low-dimensional reduction of a full nonlinear problem in supercritical regimes away from a bifurcation point. The details of the reduction are given in comparison with traditional small-parameter expansions. It is also demonstrated that Squire’s transformation can be introduced for higher-order nonlinear terms thus reducing the full three-dimensional problem to its equivalent two-dimensional counterpart and enabling significant computational savings. The full three-dimensional instability patterns are subsequently recovered using the inverse transforms The analysed stationary thermomagnetic instability is shown to occur as a result of a supercritical pitchfork bifurcation. (paper)
International Nuclear Information System (INIS)
Hsieh, B.J.
1977-01-01
The instability of axisymmetric shells has been used in engineering fields as a safety device such as the rupture discs used in the LMFBR (Liquid Metal Fast Breeder Reactor) design to relieve the excessive pressure caused by the water and sodium reaction when there is a leak in the piping system. Hence, the analysis of the instability of shells under time varying loading is becoming more and more important. However, notorious discrepancy has been observed between various analytical predications and experimental results for the buckling of shells. Various theories have been proposed to explain these discrepancies. Most of these theories are concerned with two aspects: initial imperfections and asymmetric responses. Both theories do narrow the gap between theoretical and experimental results; however, the remaining discrepancy is still not small. Other possible causes of this discrepancy have to be studied- among them, the boundary conditions. It has been pointed out that the slip at the boundary may have noticeable effect on the transient behavior of a plate. In this paper, the effect of various boundary conditions on the dynamic instability of axisymmetric shells is studied using the numerical discretization technique--convective finite element method
Analysis of the LSC microbunching instability in MaRIE linac reference design
International Nuclear Information System (INIS)
Yampolsky, Nikolai
2016-01-01
In this report we estimate the effect of the microbunching instability in the MaRIE XFEL linac. The reference design for the linac is described in a separate report. The parameters of the L1, L2, and L3 linacs as well as BC1 and BC2 bunch compressors were the same as in the referenced report. The beam dynamics was assumed to be linear along the accelerator (which is a reasonable assumption for estimating the effect of the microbunching instability). The parameters of the bunch also match the parameters described in the referenced report. Additionally, it was assumed that the beam radius is equal to R = 100 m and does not change along linac. This assumption needs to be revisited at later studies. The beam dynamics during acceleration was accounted in the matrix formalism using a Matlab code. The input parameters for the linacs are: RF peak gradient, RF frequency, RF phase, linac length, and initial beam energy. The energy gain and the imposed chirp are calculated based on the RF parameters self-consistently. The bunch compressors are accounted in the matrix formalism as well. Each chicane is characterized by the beam energy and the R56 matrix element. It was confirmed that the linac and beam parameters described previously provide two-stage bunch compression with compression ratios of 10 and 20 resulting in the bunch of 3kA peak current.
[Relations between biomedical variables: mathematical analysis or linear algebra?].
Hucher, M; Berlie, J; Brunet, M
1977-01-01
The authors, after a short reminder of one pattern's structure, stress on the possible double approach of relations uniting the variables of this pattern: use of fonctions, what is within the mathematical analysis sphere, use of linear algebra profiting by matricial calculation's development and automatiosation. They precise the respective interests on these methods, their bounds and the imperatives for utilization, according to the kind of variables, of data, and the objective for work, understanding phenomenons or helping towards decision.
Stability analysis of linear switching systems with time delays
International Nuclear Information System (INIS)
Li Ping; Zhong Shouming; Cui Jinzhong
2009-01-01
The issue of stability analysis of linear switching system with discrete and distributed time delays is studied in this paper. An appropriate switching rule is applied to guarantee the stability of the whole switching system. Our results use a Riccati-type Lyapunov functional under a condition on the time delay. So, switching systems with mixed delays are developed. A numerical example is given to illustrate the effectiveness of our results.
International Nuclear Information System (INIS)
Takeda, Tatsuoki
1985-01-01
In this article analyses of the MHD stabilities which govern the global behavior of a fusion plasma are described from the viewpoint of the numerical computation. First, we describe the high accuracy calculation of the MHD equilibrium and then the analysis of the linear MHD instability. The former is the basis of the stability analysis and the latter is closely related to the limiting beta value which is a very important theoretical issue of the tokamak research. To attain a stable tokamak plasma with good confinement property it is necessary to control or suppress disruptive instabilities. We, next, describe the nonlinear MHD instabilities which relate with the disruption phenomena. Lastly, we describe vectorization of the MHD codes. The above MHD codes for fusion plasma analyses are relatively simple though very time-consuming and parts of the codes which need a lot of CPU time concentrate on a small portion of the codes, moreover, the codes are usually used by the developers of the codes themselves, which make it comparatively easy to attain a high performance ratio on the vector processor. (author)
Linear discriminant analysis of character sequences using occurrences of words
Dutta, Subhajit; Chaudhuri, Probal; Ghosh, Anil
2014-01-01
Classification of character sequences, where the characters come from a finite set, arises in disciplines such as molecular biology and computer science. For discriminant analysis of such character sequences, the Bayes classifier based on Markov models turns out to have class boundaries defined by linear functions of occurrences of words in the sequences. It is shown that for such classifiers based on Markov models with unknown orders, if the orders are estimated from the data using cross-validation, the resulting classifier has Bayes risk consistency under suitable conditions. Even when Markov models are not valid for the data, we develop methods for constructing classifiers based on linear functions of occurrences of words, where the word length is chosen by cross-validation. Such linear classifiers are constructed using ideas of support vector machines, regression depth, and distance weighted discrimination. We show that classifiers with linear class boundaries have certain optimal properties in terms of their asymptotic misclassification probabilities. The performance of these classifiers is demonstrated in various simulated and benchmark data sets.
Linear discriminant analysis of character sequences using occurrences of words
Dutta, Subhajit
2014-02-01
Classification of character sequences, where the characters come from a finite set, arises in disciplines such as molecular biology and computer science. For discriminant analysis of such character sequences, the Bayes classifier based on Markov models turns out to have class boundaries defined by linear functions of occurrences of words in the sequences. It is shown that for such classifiers based on Markov models with unknown orders, if the orders are estimated from the data using cross-validation, the resulting classifier has Bayes risk consistency under suitable conditions. Even when Markov models are not valid for the data, we develop methods for constructing classifiers based on linear functions of occurrences of words, where the word length is chosen by cross-validation. Such linear classifiers are constructed using ideas of support vector machines, regression depth, and distance weighted discrimination. We show that classifiers with linear class boundaries have certain optimal properties in terms of their asymptotic misclassification probabilities. The performance of these classifiers is demonstrated in various simulated and benchmark data sets.
Diffusive instabilities in hyperbolic reaction-diffusion equations
Zemskov, Evgeny P.; Horsthemke, Werner
2016-03-01
We investigate two-variable reaction-diffusion systems of the hyperbolic type. A linear stability analysis is performed, and the conditions for diffusion-driven instabilities are derived. Two basic types of eigenvalues, real and complex, are described. Dispersion curves for both types of eigenvalues are plotted and their behavior is analyzed. The real case is related to the Turing instability, and the complex one corresponds to the wave instability. We emphasize the interesting feature that the wave instability in the hyperbolic equations occurs in two-variable systems, whereas in the parabolic case one needs three reaction-diffusion equations.
Theoretical analysis of balanced truncation for linear switched systems
DEFF Research Database (Denmark)
Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef
2012-01-01
In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians and their singu......In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians...... for showing this independence is realization theory of linear switched systems. [1] H. R. Shaker and R. Wisniewski, "Generalized gramian framework for model/controller order reduction of switched systems", International Journal of Systems Science, Vol. 42, Issue 8, 2011, 1277-1291. [2] H. R. Shaker and R....... Wisniewski, "Switched Systems Reduction Framework Based on Convex Combination of Generalized Gramians", Journal of Control Science and Engineering, 2009....
Non-linear elastic thermal stress analysis with phase changes
International Nuclear Information System (INIS)
Amada, S.; Yang, W.H.
1978-01-01
The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)
Comparative analysis of linear motor geometries for Stirling coolers
R, Rajesh V.; Kuzhiveli, Biju T.
2017-12-01
Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.
Asymptotic analysis of the longitudinal instability of a heavy ion induction linac
International Nuclear Information System (INIS)
Lee, E.P.; Smith, L.
1990-09-01
An Induction Linac accelerating high ion currents at sub-relativistic energies is predicted to exhibit unstable growth of current fluctuations at low frequencies. The instability is driven by the interaction between the beam and complex impedance of the induction modules. In general, the detailed form of the growing disturbance depends on the initial perturbation and ratio of pulse length to accelerator length, as well as the specific form of the impedance. An asymptotic analysis of the several regimes of interest is presented. 1 ref
Robust Linear Models for Cis-eQTL Analysis.
Rantalainen, Mattias; Lindgren, Cecilia M; Holmes, Christopher C
2015-01-01
Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives), and to some extent also type I errors (false positives). Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Stability analysis and stabilization strategies for linear supply chains
Nagatani, Takashi; Helbing, Dirk
2004-04-01
Due to delays in the adaptation of production or delivery rates, supply chains can be dynamically unstable with respect to perturbations in the consumption rate, which is known as “bull-whip effect”. Here, we study several conceivable production strategies to stabilize supply chains, which is expressed by different specifications of the management function controlling the production speed in dependence of the stock levels. In particular, we will investigate, whether the reaction to stock levels of other producers or suppliers has a stabilizing effect. We will also demonstrate that the anticipation of future stock levels can stabilize the supply system, given the forecast horizon τ is long enough. To show this, we derive linear stability conditions and carry out simulations for different control strategies. The results indicate that the linear stability analysis is a helpful tool for the judgement of the stabilization effect, although unexpected deviations can occur in the non-linear regime. There are also signs of phase transitions and chaotic behavior, but this remains to be investigated more thoroughly in the future.
Robust linear discriminant analysis with distance based estimators
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina
2017-11-01
Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.
Design and analysis approach for linear aerospike nozzle
International Nuclear Information System (INIS)
Khan, S.U.; Khan, A.A.; Munir, A.
2014-01-01
The paper presents an aerodynamic design of a simplified linear aerospike nozzle and its detailed exhaust flow analysis with no spike truncation. Analytical method with isentropic planar flow was used to generate the nozzle contour through MATLAB . The developed code produces a number of outputs comprising nozzle wall profile, flow properties along the nozzle wall, thrust coefficient, thrust, as well as amount of nozzle truncation. Results acquired from design code and numerical analyses are compared for observing differences. The numerical analysis adopted an inviscid model carried out through commercially available and reliable computational fluid dynamics (CFD) software. Use of the developed code would assist the readers to perform quick analysis of different aerodynamic design parameters for the aerospike nozzle that has tremendous scope of application in future launch vehicles. Keyword: Rocket propulsion, Aerospike Nozzle, Control Design, Computational Fluid Dynamics. (author)
Linear and nonlinear analysis of fluid slosh dampers
Sayar, B. A.; Baumgarten, J. R.
1982-11-01
A vibrating structure and a container partially filled with fluid are considered coupled in a free vibration mode. To simplify the mathematical analysis, a pendulum model to duplicate the fluid motion and a mass-spring dashpot representing the vibrating structure are used. The equations of motion are derived by Lagrange's energy approach and expressed in parametric form. For a wide range of parametric values the logarithmic decrements of the main system are calculated from theoretical and experimental response curves in the linear analysis. However, for the nonlinear analysis the theoretical and experimental response curves of the main system are compared. Theoretical predictions are justified by experimental observations with excellent agreement. It is concluded finally that for a proper selection of design parameters, containers partially filled with viscous fluids serve as good vibration dampers.
Non linear seismic analysis of charge/discharge machine
International Nuclear Information System (INIS)
Dostal, M.; Trbojevic, V.M.; Nobile, M.
1987-01-01
The main conclusions of the seismic analysis of the Latina CDM are: i. The charge machine has been demonstrated to be capable of withstanding the effects of a 0.1 g earthquake. Stresses and displacements were all within allowable limits and the stability criteria were fully satisfied for all positions of the cross-travel bogie on the gantry. ii. Movements due to loss of friction between the cross-travel bogie wheels and the rail was found to be small, i.e. less than 2 mm for all cases considered. The modes of rocking of the fixed and hinged legs preclude any possibility of excessive movement between the long travel bogie wheels and the rail. iii. The non-linear analysis incorporating contact and friction has given more realistic results than any of the linear verification analyses. The method of analysis indicates that even the larger structures can be efficiently solved on a mini computer for a long forcing input (16 s). (orig.)
ANALYSIS OF THE INSTABILITY DUE TO GAS–DUST FRICTION IN PROTOPLANETARY DISKS
Energy Technology Data Exchange (ETDEWEB)
Shadmehri, Mohsen, E-mail: m.shadmehri@gu.ac.ir [Department of Physics, Faculty of Science, Golestan University, Gorgan 49138-15739 (Iran, Islamic Republic of)
2016-02-01
We study the stability of a dust layer in a gaseous disk subject to linear axisymmetric perturbations. Instead of considering single-size particles, however, the population of dust particles is assumed to consist of two grain species. Dust grains exchange momentum with the gas via the drag force and their self-gravity is also considered. We show that the presence of two grain sizes can increase the efficiency of the linear growth of drag-driven instability in the protoplanetary disks (PPDs). A second dust phase with a small mass, compared to the first dust phase, would reduce the growth timescale by a factor of two or more, especially when its coupling to the gas is weak. This means that once a certain amount of large dust particles form, even though it is much smaller than that of small dust particles, the dust layer becomes more unstable and dust clumping is accelerated. Thus, the presence of dust particles of various sizes must be considered in studies of dust clumping in PPDs where both large and small dust grains are present.
Analysis of the linear induction motor in transient operation
Energy Technology Data Exchange (ETDEWEB)
Gentile, G; Rotondale, N; Scarano, M
1987-05-01
The paper deals with the analysis of a bilateral linear induction motor in transient operation. We have considered an impressed voltage one-dimensional model which takes into account end effects. The real winding distribution of the armature has been represented as a lumped parameters system. By using the space vectors methodology, the partial differential equation of the sheet is solved bythe variable separation method. Therefore it's possible to arrange a system of ordinary differential equations where the unknown quantities are the space vectors of the air-gap flux density and sheet currents. Finally, we have analyzed the characteristic quantities for a no-load starting of small power motors.
Relatively Inexact Proximal Point Algorithm and Linear Convergence Analysis
Directory of Open Access Journals (Sweden)
Ram U. Verma
2009-01-01
Full Text Available Based on a notion of relatively maximal (m-relaxed monotonicity, the approximation solvability of a general class of inclusion problems is discussed, while generalizing Rockafellar's theorem (1976 on linear convergence using the proximal point algorithm in a real Hilbert space setting. Convergence analysis, based on this new model, is simpler and compact than that of the celebrated technique of Rockafellar in which the Lipschitz continuity at 0 of the inverse of the set-valued mapping is applied. Furthermore, it can be used to generalize the Yosida approximation, which, in turn, can be applied to first-order evolution equations as well as evolution inclusions.
Linear and Nonlinear Multiset Canonical Correlation Analysis (invited talk)
DEFF Research Database (Denmark)
Hilger, Klaus Baggesen; Nielsen, Allan Aasbjerg; Larsen, Rasmus
2002-01-01
This paper deals with decompositioning of multiset data. Friedman's alternating conditional expectations (ACE) algorithm is extended to handle multiple sets of variables of different mixtures. The new algorithm finds estimates of the optimal transformations of the involved variables that maximize...... the sum of the pair-wise correlations over all sets. The new algorithm is termed multi-set ACE (MACE) and can find multiple orthogonal eigensolutions. MACE is a generalization of the linear multiset correlations analysis (MCCA). It handles multivariate multisets of arbitrary mixtures of both continuous...
International Nuclear Information System (INIS)
Eko Rudi Iswanto; Eric Yee
2016-01-01
Within the framework of identifying NPP sites, site surveys are performed in West Bangka (WB), Bangka-Belitung Island Province. Ground response analysis of a potential site has been carried out using peak strain profiles and peak ground acceleration. The objective of this research is to compare Equivalent Linear (EQL) and Non Linear (NL) methods of ground response analysis on the selected NPP site (West Bangka) using Deep Soil software. Equivalent linear method is widely used because requires soil data in simple way and short time of computational process. On the other hand, non linear method is capable of representing the actual soil behaviour by considering non linear soil parameter. The results showed that EQL method has similar trends to NL method. At surface layer, the acceleration values for EQL and NL methods are resulted as 0.425 g and 0.375 g respectively. NL method is more reliable in capturing higher frequencies of spectral acceleration compared to EQL method. (author)
Radiation-induced genomic instability, and the cloning and functional analysis of its related gene
International Nuclear Information System (INIS)
Muto, Masahiro; Kanari, Yasuyoshi; Kubo, Eiko; Yamada, Yutaka
2000-01-01
Exposure to ionizing radiation produces a number of biological consequences including gene mutations, chromosome aberrations, cellular transformation and cell death. The classical view has been that mutations occur at the sites of DNA damage, that is, damage produced by radiation is converted into a mutation during subsequent DNA replication or as a consequence of enzymatic repair processes. However, many investigators have presented evidence for an alternative mechanism to explain these biological effects. This evidence suggests that radiation may induce a process of genomic instability that is transmissible over many generations of cell replication and that serves to enhance the probability of the occurrence of such genetic effects among the progeny of the irradiated cell after many generations of cell replication. If such a process exists in vivo, it could have significant implications for mechanisms of carcinogenesis. Exposure of B10 mice to fractionated X-irradiation induces a high incidence of thymic lymphomas, whereas the incidence in STS/A mice is very low. Such strain differences are presumably determined genetically, and various genetic factors have been reported to be involved in radiation-induced lymphomagenesis. The mechanism of radiation-induced lymphomagenesis appears to develop through a complex and multistep process. Using this experimental system, we characterized the prelymphoma cells induced by radiation, and identified the genetic changes preceding the development of thymic lymphomas by comparing the oncogenic alterations with the pattern of T cell receptor (TCR) γ rearrangements. In these studies, the latent expression of some chromosomal aberrations and p53 mutations in irradiated progeny has been interpreted to be a manifestation of genomic instability. In the present report we review the results of in vivo studies conducted in our laboratory that support the hypothesis of genomic instability induced by radiation, and we describe the
BiGlobal linear stability analysis on low-Re flow past an airfoil at high angle of attack
Zhang, Wei
2016-04-04
We perform BiGlobal linear stability analysis on flow past a NACA0012 airfoil at 16° angle of attack and Reynolds number ranging from 400 to 1000. The steady-state two-dimensional base flows are computed using a well-tested finite difference code in combination with the selective frequency damping method. The base flow is characterized by two asymmetric recirculation bubbles downstream of the airfoil whose streamwise extent and the maximum reverse flow velocity increase with the Reynolds number. The stability analysis of the flow past the airfoil is carried out under very small spanwise wavenumber β = 10−4 to approximate the two-dimensional perturbation, and medium and large spanwise wavenumbers (β = 1–8) to account for the three-dimensional perturbation. Numerical results reveal that under small spanwise wavenumber, there are at most two oscillatory unstable modes corresponding to the near wake and far wake instabilities; the growth rate and frequency of the perturbation agree well with the two-dimensional direct numerical simulation results under all Reynolds numbers. For a larger spanwise wavenumber β = 1, there is only one oscillatory unstable mode associated with the wake instability at Re = 400 and 600, while at Re = 800 and 1000 there are two oscillatory unstable modes for the near wake and far wake instabilities, and one stationary unstable mode for the monotonically growing perturbation within the recirculation bubble via the centrifugal instability mechanism. All the unstable modes are weakened or even suppressed as the spanwise wavenumber further increases, among which the stationary mode persists until β = 4.
BiGlobal linear stability analysis on low-Re flow past an airfoil at high angle of attack
Zhang, Wei; Samtaney, Ravi
2016-01-01
We perform BiGlobal linear stability analysis on flow past a NACA0012 airfoil at 16° angle of attack and Reynolds number ranging from 400 to 1000. The steady-state two-dimensional base flows are computed using a well-tested finite difference code in combination with the selective frequency damping method. The base flow is characterized by two asymmetric recirculation bubbles downstream of the airfoil whose streamwise extent and the maximum reverse flow velocity increase with the Reynolds number. The stability analysis of the flow past the airfoil is carried out under very small spanwise wavenumber β = 10−4 to approximate the two-dimensional perturbation, and medium and large spanwise wavenumbers (β = 1–8) to account for the three-dimensional perturbation. Numerical results reveal that under small spanwise wavenumber, there are at most two oscillatory unstable modes corresponding to the near wake and far wake instabilities; the growth rate and frequency of the perturbation agree well with the two-dimensional direct numerical simulation results under all Reynolds numbers. For a larger spanwise wavenumber β = 1, there is only one oscillatory unstable mode associated with the wake instability at Re = 400 and 600, while at Re = 800 and 1000 there are two oscillatory unstable modes for the near wake and far wake instabilities, and one stationary unstable mode for the monotonically growing perturbation within the recirculation bubble via the centrifugal instability mechanism. All the unstable modes are weakened or even suppressed as the spanwise wavenumber further increases, among which the stationary mode persists until β = 4.
On macroeconomic values investigation using fuzzy linear regression analysis
Directory of Open Access Journals (Sweden)
Richard Pospíšil
2017-06-01
Full Text Available The theoretical background for abstract formalization of the vague phenomenon of complex systems is the fuzzy set theory. In the paper, vague data is defined as specialized fuzzy sets - fuzzy numbers and there is described a fuzzy linear regression model as a fuzzy function with fuzzy numbers as vague parameters. To identify the fuzzy coefficients of the model, the genetic algorithm is used. The linear approximation of the vague function together with its possibility area is analytically and graphically expressed. A suitable application is performed in the tasks of the time series fuzzy regression analysis. The time-trend and seasonal cycles including their possibility areas are calculated and expressed. The examples are presented from the economy field, namely the time-development of unemployment, agricultural production and construction respectively between 2009 and 2011 in the Czech Republic. The results are shown in the form of the fuzzy regression models of variables of time series. For the period 2009-2011, the analysis assumptions about seasonal behaviour of variables and the relationship between them were confirmed; in 2010, the system behaved fuzzier and the relationships between the variables were vaguer, that has a lot of causes, from the different elasticity of demand, through state interventions to globalization and transnational impacts.
DEFF Research Database (Denmark)
Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
parameters on the harmonic instability of the power system. Moreover, the harmonic-frequency oscillation modes are identified, where participation analysis is presented to evaluate the contributions of different states to these modes and to further reveal how the system gives rise to harmonic instability......This paper presents a harmonic instability analysis method using state-space modeling and participation analysis in the inverter-fed ac power systems. A full-order state-space model for the droop-controlled Distributed Generation (DG) inverter is built first, including the time delay of the digital...... control system, inner current and voltage control loops, and outer droop-based power control loop. Based on the DG inverter model, an overall state-space model of a two-inverter-fed system is established. The eigenvalue-based stability analysis is then presented to assess the influence of controller...
The flow analysis of supercavitating cascade by linear theory
Energy Technology Data Exchange (ETDEWEB)
Park, E.T. [Sung Kyun Kwan Univ., Seoul (Korea, Republic of); Hwang, Y. [Seoul National Univ., Seoul (Korea, Republic of)
1996-06-01
In order to reduce damages due to cavitation effects and to improve performance of fluid machinery, supercavitation around the cascade and the hydraulic characteristics of supercavitating cascade must be analyzed accurately. And the study on the effects of cavitation on fluid machinery and analysis on the performances of supercavitating hydrofoil through various elements governing flow field are critically important. In this study comparison of experiment results with the computed results of linear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. 7 refs., 6 figs.
Theoretical analysis of mode instability in high-power fiber amplifiers
DEFF Research Database (Denmark)
Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes
2013-01-01
We present a simple theoretical model of transverse mode instability in high-power rare-earth doped fiber amplifiers. The model shows that efficient power transfer between the fundamental and higher-order modes of the fiber can be induced by a nonlinear interaction mediated through the thermo......-optic effect, leading to transverse mode instability. The temporal and spectral characteristics of the instability dynamics are investigated, and it is shown that the instability can be seeded by both quantum noise and signal intensity noise, while pure phase noise of the signal does not induce instability...
Gravitational instability of thermally anisotropic plasma
International Nuclear Information System (INIS)
Singh, B.; Kalra, G.L.
1986-01-01
The equations of Chew, Goldberger, and Low (1956) modified to include the heat flux vector and self-gravitation are used to study the gravitational instability of unbounded plasma placed in a uniform static magnetic field. The linear stability analysis shows that some of the additional terms which arise as a result of higher moments are of the same order of magnitude as the terms in the original Chew, Goldberger, and Low theory. The influence of these terms on the gravitational instability has been specially examined. It is found that the gravitational instability sets in at a comparatively shorter wavelength and the growth rate is enhanced owing to the inclusion of these terms in the case where the propagation vector is along the magnetic field. The condition for instability is, however, unaltered when the direction of propagation is transverse to the direction of magnetic field. 19 references
Dynamical Analysis of Stock Market Instability by Cross-correlation Matrix
Takaishi, Tetsuya
2016-08-01
We study stock market instability by using cross-correlations constructed from the return time series of 366 stocks traded on the Tokyo Stock Exchange from January 5, 1998 to December 30, 2013. To investigate the dynamical evolution of the cross-correlations, crosscorrelation matrices are calculated with a rolling window of 400 days. To quantify the volatile market stages where the potential risk is high, we apply the principal components analysis and measure the cumulative risk fraction (CRF), which is the system variance associated with the first few principal components. From the CRF, we detected three volatile market stages corresponding to the bankruptcy of Lehman Brothers, the 2011 Tohoku Region Pacific Coast Earthquake, and the FRB QE3 reduction observation in the study period. We further apply the random matrix theory for the risk analysis and find that the first eigenvector is more equally de-localized when the market is volatile.
Dynamical Analysis of Stock Market Instability by Cross-correlation Matrix
International Nuclear Information System (INIS)
Takaishi, Tetsuya
2016-01-01
We study stock market instability by using cross-correlations constructed from the return time series of 366 stocks traded on the Tokyo Stock Exchange from January 5, 1998 to December 30, 2013. To investigate the dynamical evolution of the cross-correlations, crosscorrelation matrices are calculated with a rolling window of 400 days. To quantify the volatile market stages where the potential risk is high, we apply the principal components analysis and measure the cumulative risk fraction (CRF), which is the system variance associated with the first few principal components. From the CRF, we detected three volatile market stages corresponding to the bankruptcy of Lehman Brothers, the 2011 Tohoku Region Pacific Coast Earthquake, and the FRB QE3 reduction observation in the study period. We further apply the random matrix theory for the risk analysis and find that the first eigenvector is more equally de-localized when the market is volatile. (paper)
International Nuclear Information System (INIS)
Zahoor, A.; Kanninen, M.F.
1981-01-01
A method of analyzing internal surface circumferential cracks in ductile reactor piping is presented. The method utilizes an alternate but equivalent definition of the J-integral based on nonlinear structural compliance. The analysis is valid for situations where the cross section containing the crack is fully yielded. Results are obtained for radial and circumferential crack growth for pipes subjected to bending. The stability of radial crack growth (wall breakthrough) is assessed using the J-integral-based tearing modulus approach. The analysis is shown to be in agreement with experimental results on the stability of surface crack growth in Type 304 stainless stee pipes. Example quantitative results for fracture instability assessments for nuclear piping are presented. 23 refs
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.; Kanninen, M.F.
1981-07-01
A method of analyzing internal surface circumferential cracks in ductile reactor piping is presented. The method utilizes an alternate but equivalent definition of the J-integral based on nonlinear structural compliance. The analysis is valid for situations where the cross section containing the crack is fully yielded. Results are obtained for radial and circumferential crack growth for pipes subjected to bending. The stability of radial crack growth (wall breakthrough) is assessed using the J-integral-based tearing modulus approach. The analysis is shown to be in agreement with experimental results on the stability of surface crack growth in Type 304 stainless stee pipes. Example quantitative results for fracture instability assessments for nuclear piping are presented. 23 refs.
Application of tearing instability analysis for complex crack geometries in nuclear piping
International Nuclear Information System (INIS)
Pan, J.; Wilkowski, G.
1984-01-01
The analysis of the experimental data of 304 stainless steel pipes using Zahoor and Kanninen's estimation scheme has shown that the J resistance curve of a circumferentially cracked pipe with a simulated internal surface crack around the remaining net section is much lower than the J resistance curve of pipes with a idealized through-wall crack (without a simulated internal surface crack). The implications of the low J at initiation and tearing modulus on the stability analysis of typical BWR piping systems are discussed on the condition that an internal circumferential surface crack is assumed to occur along with a circumferential through-wall crack due to stress corrosion. The results presented here show that the margin of safety is reduced and in some cases instability is predicted due to the low J resistance curve and tearing modulus
Sideband instability analysis based on a one-dimensional high-gain free electron laser model
Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; Yoon, Moohyun; Zhou, Guanqun
2017-12-01
When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulator tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (˜10 %) provides effective suppression of the sideband instability in the postsaturation regime.
Merli, Marcello; Pavese, Alessandro
2018-03-01
The critical points analysis of electron density, i.e. ρ(x), from ab initio calculations is used in combination with the catastrophe theory to show a correlation between ρ(x) topology and the appearance of instability that may lead to transformations of crystal structures, as a function of pressure/temperature. In particular, this study focuses on the evolution of coalescing non-degenerate critical points, i.e. such that ∇ρ(x c ) = 0 and λ 1 , λ 2 , λ 3 ≠ 0 [λ being the eigenvalues of the Hessian of ρ(x) at x c ], towards degenerate critical points, i.e. ∇ρ(x c ) = 0 and at least one λ equal to zero. The catastrophe theory formalism provides a mathematical tool to model ρ(x) in the neighbourhood of x c and allows one to rationalize the occurrence of instability in terms of electron-density topology and Gibbs energy. The phase/state transitions that TiO 2 (rutile structure), MgO (periclase structure) and Al 2 O 3 (corundum structure) undergo because of pressure and/or temperature are here discussed. An agreement of 3-5% is observed between the theoretical model and experimental pressure/temperature of transformation.
Kovasznay modes in the linear stability analysis of self-similar ablation flows
International Nuclear Information System (INIS)
Lombard, V.
2008-12-01
Exact self-similar solutions of gas dynamics equations with nonlinear heat conduction for semi-infinite slabs of perfect gases are used for studying the stability of ablative flows in inertial confinement fusion, when a shock wave propagates in front of a thermal front. Both the similarity solutions and their linear perturbations are numerically computed with a dynamical multi-domain Chebyshev pseudo-spectral method. Laser-imprint results, showing that maximum amplification occurs for a laser-intensity modulation of zero transverse wavenumber have thus been obtained (Abeguile et al. (2006); Clarisse et al. (2008)). Here we pursue this approach by proceeding for the first time to an analysis of perturbations in terms of Kovasznay modes. Based on the analysis of two compressible and incompressible flows, evolution equations of vorticity, acoustic and entropy modes are proposed for each flow region and mode couplings are assessed. For short times, perturbations are transferred from the external surface to the ablation front by diffusion and propagate as acoustic waves up to the shock wave. For long times, the shock region is governed by the free propagation of acoustic waves. A study of perturbations and associated sources allows us to identify strong mode couplings in the conduction and ablation regions. Moreover, the maximum instability depends on compressibility. Finally, a comparison with experiments of flows subjected to initial surface defects is initiated. (author)
Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan
2017-01-01
This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second
Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu
2016-08-01
In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.
Design, analysis and fabrication of a linear permanent magnet ...
Indian Academy of Sciences (India)
MONOJIT SEAL
Linear permanent magnet synchronous machine; LPMSM—fabrication; design optimisation; finite-element ... induction motor (LIM) prototype was patented in 1890 [1]. Since then, linear ..... Also, for manual winding, more slot area is allotted to ...
Analysis of magnetohydrodynamic flow in linear induction EM pump
International Nuclear Information System (INIS)
Geun Jong Yoo; Choi, H.K.; Eun, J.J.; Bae, Y.S.
2005-01-01
Numerical analysis is performed for magnetic and magnetohydrodynamic (MHD) flow fields in linear induction type electromagnetic (EM) pump. A finite volume method is applied to solve magnetic field governing equations and the Navier-Stokes equations. Vector and scalar potential methods are adopted to obtain the electric and magnetic fields and the resulting Lorentz force in solving Maxwell equations. The magnetic field and velocity distributions are found to be influenced by the phase of applied electric current. Computational results indicate that the magnetic flux distribution with changing phase of input electric current is characterized by pairs of counter-rotating closed loops. The velocity distributions are affected by the intensity of Lorentz force. The governing equations for the magnetic and flow fields are only semi-coupled in this study, therefore, further study with fully-coupled governing equations are required. (authors)
Longitudinal Jitter Analysis of a Linear Accelerator Electron Gun
Directory of Open Access Journals (Sweden)
MingShan Liu
2016-11-01
Full Text Available We present measurements and analysis of the longitudinal timing jitter of a Beijing Electron Positron Collider (BEPCII linear accelerator electron gun. We simulated the longitudinal jitter effect of the gun using PARMELA to evaluate beam performance, including: beam profile, average energy, energy spread, and XY emittances. The maximum percentage difference of the beam parameters is calculated to be 100%, 13.27%, 42.24% and 65.01%, 86.81%, respectively. Due to this, the bunching efficiency is reduced to 54%. However, the longitudinal phase difference of the reference particle was 9.89°. The simulation results are in agreement with tests and are helpful to optimize the beam parameters by tuning the trigger timing of the gun during the bunching process.
Weibull and lognormal Taguchi analysis using multiple linear regression
International Nuclear Information System (INIS)
Piña-Monarrez, Manuel R.; Ortiz-Yañez, Jesús F.
2015-01-01
The paper provides to reliability practitioners with a method (1) to estimate the robust Weibull family when the Taguchi method (TM) is applied, (2) to estimate the normal operational Weibull family in an accelerated life testing (ALT) analysis to give confidence to the extrapolation and (3) to perform the ANOVA analysis to both the robust and the normal operational Weibull family. On the other hand, because the Weibull distribution neither has the normal additive property nor has a direct relationship with the normal parameters (µ, σ), in this paper, the issues of estimating a Weibull family by using a design of experiment (DOE) are first addressed by using an L_9 (3"4) orthogonal array (OA) in both the TM and in the Weibull proportional hazard model approach (WPHM). Then, by using the Weibull/Gumbel and the lognormal/normal relationships and multiple linear regression, the direct relationships between the Weibull and the lifetime parameters are derived and used to formulate the proposed method. Moreover, since the derived direct relationships always hold, the method is generalized to the lognormal and ALT analysis. Finally, the method’s efficiency is shown through its application to the used OA and to a set of ALT data. - Highlights: • It gives the statistical relations and steps to use the Taguchi Method (TM) to analyze Weibull data. • It gives the steps to determine the unknown Weibull family to both the robust TM setting and the normal ALT level. • It gives a method to determine the expected lifetimes and to perform its ANOVA analysis in TM and ALT analysis. • It gives a method to give confidence to the extrapolation in an ALT analysis by using the Weibull family of the normal level.
On the dynamic analysis of piecewise-linear networks
Heemels, W.P.M.H.; Camlibel, M.K.; Schumacher, J.M.
2002-01-01
Piecewise-linear (PL) modeling is often used to approximate the behavior of nonlinear circuits. One of the possible PL modeling methodologies is based on the linear complementarity problem, and this approach has already been used extensively in the circuits and systems community for static networks. In this paper, the object of study will be dynamic electrical circuits that can be recast as linear complementarity systems, i.e., as interconnections of linear time-invariant differential equatio...
Spectral analysis of linear relations and degenerate operator semigroups
International Nuclear Information System (INIS)
Baskakov, A G; Chernyshov, K I
2002-01-01
Several problems of the spectral theory of linear relations in Banach spaces are considered. Linear differential inclusions in a Banach space are studied. The construction of the phase space and solutions is carried out with the help of the spectral theory of linear relations, ergodic theorems, and degenerate operator semigroups
Three dimensional finite element linear analysis of reinforced concrete structures
International Nuclear Information System (INIS)
Inbasakaran, M.; Pandarinathan, V.G.; Krishnamoorthy, C.S.
1979-01-01
A twenty noded isoparametric reinforced concrete solid element for the three dimensional linear elastic stress analysis of reinforced concrete structures is presented. The reinforcement is directly included as an integral part of the element thus facilitating discretization of the structure independent of the orientation of reinforcement. Concrete stiffness is evaluated by taking 3 x 3 x 3 Gauss integration rule and steel stiffness is evaluated numerically by considering three Gaussian points along the length of reinforcement. The numerical integration for steel stiffness necessiates the conversion of global coordiantes of the Gaussian points to nondimensional local coordinates and this is done by Newton Raphson iterative method. Subroutines for the above formulation have been developed and added to SAP and STAP routines for solving the examples. The validity of the reinforced concrete element is verified by comparison of results from finite element analysis and analytical results. It is concluded that this finite element model provides a valuable analytical tool for the three dimensional elastic stress analysis of concrete structures like beams curved in plan and nuclear containment vessels. (orig.)
Multistability and instability analysis of recurrent neural networks with time-varying delays.
Zhang, Fanghai; Zeng, Zhigang
2018-01-01
This paper provides new theoretical results on the multistability and instability analysis of recurrent neural networks with time-varying delays. It is shown that such n-neuronal recurrent neural networks have exactly [Formula: see text] equilibria, [Formula: see text] of which are locally exponentially stable and the others are unstable, where k 0 is a nonnegative integer such that k 0 ≤n. By using the combination method of two different divisions, recurrent neural networks can possess more dynamic properties. This method improves and extends the existing results in the literature. Finally, one numerical example is provided to show the superiority and effectiveness of the presented results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Linear mixed-effects modeling approach to FMRI group analysis.
Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W
2013-06-01
Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity
Application of linearized model to the stability analysis of the pressurized water reactor
International Nuclear Information System (INIS)
Li Haipeng; Huang Xiaojin; Zhang Liangju
2008-01-01
A Linear Time-Invariant model of the Pressurized Water Reactor is formulated through the linearization of the nonlinear model. The model simulation results show that the linearized model agrees well with the nonlinear model under small perturbation. Based upon the Lyapunov's First Method, the linearized model is applied to the stability analysis of the Pressurized Water Reactor. The calculation results show that the methodology of linearization to stability analysis is conveniently feasible. (authors)
Frame sequences analysis technique of linear objects movement
Oshchepkova, V. Y.; Berg, I. A.; Shchepkin, D. V.; Kopylova, G. V.
2017-12-01
Obtaining data by noninvasive methods are often needed in many fields of science and engineering. This is achieved through video recording in various frame rate and light spectra. In doing so quantitative analysis of movement of the objects being studied becomes an important component of the research. This work discusses analysis of motion of linear objects on the two-dimensional plane. The complexity of this problem increases when the frame contains numerous objects whose images may overlap. This study uses a sequence containing 30 frames at the resolution of 62 × 62 pixels and frame rate of 2 Hz. It was required to determine the average velocity of objects motion. This velocity was found as an average velocity for 8-12 objects with the error of 15%. After processing dependencies of the average velocity vs. control parameters were found. The processing was performed in the software environment GMimPro with the subsequent approximation of the data obtained using the Hill equation.
Frequency prediction by linear stability analysis around mean flow
Bengana, Yacine; Tuckerman, Laurette
2017-11-01
The frequency of certain limit cycles resulting from a Hopf bifurcation, such as the von Karman vortex street, can be predicted by linear stability analysis around their mean flows. Barkley (2006) has shown this to yield an eigenvalue whose real part is zero and whose imaginary part matches the nonlinear frequency. This property was named RZIF by Turton et al. (2015); moreover they found that the traveling waves (TW) of thermosolutal convection have the RZIF property. They explained this as a consequence of the fact that the temporal Fourier spectrum is dominated by the mean flow and first harmonic. We could therefore consider that only the first mode is important in the saturation of the mean flow as presented in the Self-Consistent Model (SCM) of Mantic-Lugo et al. (2014). We have implemented a full Newton's method to solve the SCM for thermosolutal convection. We show that while the RZIF property is satisfied far from the threshold, the SCM model reproduces the exact frequency only very close to the threshold. Thus, the nonlinear interaction of only the first mode with itself is insufficiently accurate to estimate the mean flow. Our next step will be to take into account higher harmonics and to apply this analysis to the standing waves, for which RZIF does not hold.
International Nuclear Information System (INIS)
Mishra, A.M.; Paul, S.; Singh, S.; Panday, V.
2015-01-01
In this paper the two-phase flow instability analysis of multiple heated channels with various inclinations is studied. In addition, the bifurcation analysis is also carried out to capture the nonlinear dynamics of the system and to identify the regions in parameter space for which subcritical and supercritical bifurcations exist. In order to carry out the analysis, the system is mathematically represented by nonlinear Partial Differential Equation (PDE) for mass, momentum and energy in single as well as two-phase region. Then converted into Ordinary Differential Equation (ODE) using weighted residual method. Also, coupling equation is being used under the assumption that pressure drop in each channel is the same and the total mass flow rate is equal to sum of the individual mass flow rates. The homogeneous equilibrium model is used for the analysis. Stability Map is obtained in terms of phase change number (Npch) and Subcooling Number (Nsb) by solving a set of nonlinear, coupled algebraic equations obtained at equilibrium using Newton Raphson Method. MATLAB Code is verified by comparing it with results obtained by Matcont (Open source software) under same parametric values. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter space to obtain the actual damped and growing oscillations in the channel inlet flow velocity which confirms the stability region across the stability map. Generalized Hopf (GH) points are observed for different inclinations, they are also points for subcritical and supercritical bifurcations. (authors)
Non linear structures seismic analysis by modal synthesis
International Nuclear Information System (INIS)
Aita, S.; Brochard, D.; Guilbaud, D.; Gibert, R.J.
1987-01-01
The structures submitted to a seismic excitation, may present a great amplitude response which induces a non linear behaviour. These non linearities have an important influence on the response of the structure. Even in this case (local shocks) the modal synthesis method remains attractive. In this paper we will present the way of taking into account, a local non linearity (shock between structures) in the seismic response of structures, by using the modal synthesis method [fr
POD analysis of the instability mode of a low-speed streak in a laminar boundary layer
Deng, Si-Chao; Pan, Chong; Wang, Jin-Jun; Rinoshika, Akira
2017-12-01
The instability of one single low-speed streak in a zero-pressure-gradient laminar boundary layer is investigated experimentally via both hydrogen bubble visualization and planar particle image velocimetry (PIV) measurement. A single low-speed streak is generated and destabilized by the wake of an interference wire positioned normal to the wall and in the upstream. The downstream development of the streak includes secondary instability and self-reproduction process, which leads to the generation of two additional streaks appearing on either side of the primary one. A proper orthogonal decomposition (POD) analysis of PIV measured velocity field is used to identify the components of the streak instability in the POD mode space: for a sinuous/varicose type of POD mode, its basis functions present anti-symmetric/symmetric distributions about the streak centerline in the streamwise component, and the symmetry condition reverses in the spanwise component. It is further shown that sinuous mode dominates the turbulent kinematic energy (TKE) through the whole streak evolution process, the TKE content first increases along the streamwise direction to a saturation value and then decays slowly. In contrast, varicose mode exhibits a sustained growth of the TKE content, suggesting an increasing competition of varicose instability against sinuous instability.
Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru
2018-01-01
This paper addresses the coupled nonlinear Schrödinger equation (CNLSE) in monomode step-index in optical fibers which describes the nonlinear modulations of two monochromatic waves, whose group velocities are almost equal. A class of dark, bright, dark-bright and dark-singular optical solitary wave solutions of the model are constructed using the complex envelope function ansatz. Singular solitary waves are also retrieved as bye products of the in integration scheme. This naturally lead to some constraint conditions placed on the solitary wave parameters which must hold for the solitary waves to exist. The modulation instability (MI) analysis of the model is studied based on the standard linear-stability analysis. Numerical simulation and physical interpretations of the obtained results are demonstrated. It is hoped that the results reported in this paper can enrich the nonlinear dynamical behaviors of the CNLSE.
Instabilities and vortex dynamics in shear flow of magnetized plasmas
International Nuclear Information System (INIS)
Tajima, T.; Horton, W.; Morrison, P.J.; Schutkeker, J.; Kamimura, T.; Mima, K.; Abe, Y.
1990-03-01
Gradient-driven instabilities and the subsequent nonlinear evolution of generated vortices in sheared E x B flows are investigated for magnetized plasmas with and without gravity (magnetic curvature) and magnetic shear by using theory and implicit particle simulations. In the linear eigenmode analysis, the instabilities considered are the Kelvin-Helmholtz (K-H) instability and the resistive interchange instability. The presence of the shear flow can stabilize these instabilities. The dynamics of the K-H instability and the vortex dynamics can be uniformly described by the initial flow pattern with a vorticity localization parameter ε. The observed growth of the K-H modes is exponential in time for linearly unstable modes, secular for marginal mode, and absent until driven nonlinearly for linearly stable modes. The distance between two vortex centers experiences rapid merging while the angle θ between the axis of vortices and the external shear flow increases. These vortices proceed toward their overall coalescence, while shedding small-scale vortices and waves. The main features of vortex dynamics of the nonlinear coalescence and the tilt or the rotational instabilities of vortices are shown to be given by using a low dimension Hamiltonian representation for interacting vortex cores in the shear flow. 24 refs., 19 figs., 1 tab
Directory of Open Access Journals (Sweden)
Ben Beheshti
2001-01-01
Full Text Available The way in which cytogenetic aberrations develop in prostate cancer (Cap is poorly understood. Spectral karyotype (SKY analysis of Cap cell lines has shown that they have unstable karyotypes and also have features associated with chromosomal instability (CIN. To accurately determine the incidence of de novo structural and numerical aberrations in vitro in Cap, we performed SKY analysis of three independent clones derived from one representative cell line, DU145. The frequent generation of new chromosomal rearrangements and a wide variation in the number of structural aberrations within two to five passages suggested that this cell line exhibited some of the features associated with a CIN phenotype. To study numerical cell-to-cell variation, chromosome 8 aneusomy was assessed in the LNCaP, DU145, and PC-3 cell lines and a patient cohort of 15 Cap primary tumors by interphase fluorescence in situ hybridization (FISH. This analysis showed that a high frequency of numerical alteration affecting chromosome 8 was present in both in vitro and in Cap tissues. In comparison to normal controls, the patient cohort had a statistically significant (P<.05, greater frequency of cells with one and three centromere 8 copies. These data suggest that a CIN-like process may be contributing towards the generation of de novo numerical and structural chromosome abnormalities in Cap.
Microlocal analysis of a seismic linearized inverse problem
Stolk, C.C.
1999-01-01
The seismic inverse problem is to determine the wavespeed c x in the interior of a medium from measurements at the boundary In this paper we analyze the linearized inverse problem in general acoustic media The problem is to nd a left inverse of the linearized forward map F or equivalently to nd the
Analytic central path, sensitivity analysis and parametric linear programming
A.G. Holder; J.F. Sturm; S. Zhang (Shuzhong)
1998-01-01
textabstractIn this paper we consider properties of the central path and the analytic center of the optimal face in the context of parametric linear programming. We first show that if the right-hand side vector of a standard linear program is perturbed, then the analytic center of the optimal face
On the dynamic analysis of piecewise-linear networks
Heemels, WPMH; Camlibel, MK; Schumacher, JM
Piecewise-linear (PL) modeling is often used to approximate the behavior of nonlinear circuits. One of the possible PL modeling methodologies is based on the linear complementarity problem, and this approach has already been used extensively in the circuits and systems community for static networks.
Linear analysis of rotationally invariant, radially variant tomographic imaging systems
International Nuclear Information System (INIS)
Huesmann, R.H.
1990-01-01
This paper describes a method to analyze the linear imaging characteristics of rotationally invariant, radially variant tomographic imaging systems using singular value decomposition (SVD). When the projection measurements from such a system are assumed to be samples from independent and identically distributed multi-normal random variables, the best estimate of the emission intensity is given by the unweighted least squares estimator. The noise amplification of this estimator is inversely proportional to the singular values of the normal matrix used to model projection and backprojection. After choosing an acceptable noise amplification, the new method can determine the number of parameters and hence the number of pixels that should be estimated from data acquired from an existing system with a fixed number of angles and projection bins. Conversely, for the design of a new system, the number of angles and projection bins necessary for a given number of pixels and noise amplification can be determined. In general, computing the SVD of the projection normal matrix has cubic computational complexity. However, the projection normal matrix for this class of rotationally invariant, radially variant systems has a block circulant form. A fast parallel algorithm to compute the SVD of this block circulant matrix makes the singular value analysis practical by asymptotically reducing the computation complexity of the method by a multiplicative factor equal to the number of angles squared
Evaluation of beach cleanup effects using linear system analysis.
Kataoka, Tomoya; Hinata, Hirofumi
2015-02-15
We established a method for evaluating beach cleanup effects (BCEs) based on a linear system analysis, and investigated factors determining BCEs. Here we focus on two BCEs: decreasing the total mass of toxic metals that could leach into a beach from marine plastics and preventing the fragmentation of marine plastics on the beach. Both BCEs depend strongly on the average residence time of marine plastics on the beach (τ(r)) and the period of temporal variability of the input flux of marine plastics (T). Cleanups on the beach where τ(r) is longer than T are more effective than those where τ(r) is shorter than T. In addition, both BCEs are the highest near the time when the remnants of plastics reach the local maximum (peak time). Therefore, it is crucial to understand the following three factors for effective cleanups: the average residence time, the plastic input period and the peak time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Instabilities in electromagnetic quasilevitation.
Spragg, Kirk; Letout, Sebastien; Ernst, R; Sneyd, Alfred; Fautrelle, Yves
2014-05-01
We investigate free-surface instabilities occurring in various industrial processes involving liquid metal. Of particular interest is the behavior of the free surface of a pool of liquid metal when it is submitted to an alternating magnetic field. Experimentally, we study the effect of a vertical alternating medium-frequency magnetic field on an initially circular pool. We observe various types of behavior according to magnetic field amplitude, e.g., axisymmetric deformations, azimuthal mode structures, slow radial oscillation of the pool perimeter, and random rotation of the pool around its center. Drop rotation could be attributed to nonsymmetric shape deformations. The effect of oxidation leads to drastic changes in pool behavior. The experimental results are then compared to a linear stability analysis of the free surface of a circular liquid drop.
Fluid elastic instability analysis of 1/6th experimental model of PFBR main vessel cooling circuit
International Nuclear Information System (INIS)
Jalaldeen, S.; Ravi, R.; Chellapandi, P.; Bhoje, S.B.
1993-01-01
In reactor assembly of Prototype Fast Breeder Reactor (PFBR), the main vessel (MV) temperature is kept below creep range i.e. less than 427 deg C by way of diverting a small fraction of core flow from the cold pool and sent through the passage between main vessel and an outer cylindrical baffle to cool the vessel. The sodium coning from this, is collected by another inner baffle and then returned to cold pool again. This system is termed as MV cooling circuit. The outer and inner baffles form feeding and restitution collectors respectively. The sodium from the feeding collector flows over the outer baffle and falls through a height of about 0.5 m before impacting on the free surface of sodium in the restitution collector. The fall of sodium may become a source of vibration of the baffles. Such vibrations have been already noted in case of SPX-I during its commissioning stage. For PFBR, the theoretical analysis was done to assess the fluid-elastic instability risks and stability charts were obtained. By this, it was concluded that the operating point (flow rate and fall height) lies within the stable zone. In order to confirm the above analysis results, a series of experiments were proposed. One preliminary experiment on 1/16 th model of MV cooling circuit has been completed. This model has also been analysed theoretically for the fluid- elastic instability, the theoretical analysis involves 2 stage computations. In the first stage, free vibration analysis with fluid structure interaction (FSI) effect for experimental model has been done using INCA (CASTEM 1985) code and all the mode shapes including sloshing are extracted. In the second stage the instability analysis is performed with the free vibration results from INCA. For the instability computations, a code WEIR has been written based on Aita's instability criteria [Aita.S. 1986
Anisotropy-Driven Instability in Intense Charged Particle Beams
Startsev, Edward; Qin, Hong
2005-01-01
In electrically neutral plasmas with strongly anisotropic distribution functions, free energy is available to drive different collective instabilities such as the electrostatic Harris instability and the transverse electromagnetic Weibel instability. Such anisotropies develop naturally in particle accelerators and may lead to a detoriation of beam quality. We have generalized the analysis of the classical Harris and Weibel instabilities to the case of a one-component intense charged particle beam with anisotropic temperature including the important effects of finite transverse geometry and beam space-charge. For a long costing beam, the delta-f particle-in-cell code BEST and the eighenmode code bEASt have been used to determine detailed 3D stability properties over a wide range of temperature anisotropy and beam intensity. A theoretical model is developed which describes the essential features of the linear stage of these instabilities. Both, the simulations and analytical theory, clearly show that moderately...
Li, Xintao; Zhang, Weiwei; Gao, Chuanqiang
2018-03-01
Wake-induced vibration (WIV) contains rich and complex phenomena due to the flow interference between cylinders. The aim of the present study is to gain physical insight into the intrinsic dynamics of WIV via linear stability analysis (LSA) of the fluid-structure interaction (FSI) system. A reduced-order-model-based linear dynamic model, combined with the direct computational fluid dynamics/computational structural dynamics simulation method, is adopted to investigate WIV in two identical tandem cylinders at low Re. The spacing ratio L/D, with L as the center-to-center distance and D as the diameter of cylinders, is selected as 2.0 to consider the effect of proximity flow interference. Results show that extensive WIV along with the vortex shedding could occur at subcritical Re conditions due to the instability of one coupled mode (i.e., coupled mode I, CM-I) of the FSI system. The eigenfrequency of CM-I transfers smoothly from close to the reduced natural frequency of structure to the eigenfrequency of uncoupled wake mode as the reduced velocity U* increases. Thus, CM-I characterizes as the structure mode (SM) at low U*, while it characterizes as the wake mode (WM) at large U*. Mode conversion of CM-I is the primary cause of the "frequency transition" phenomenon observed in WIV responses. Furthermore, LSA indicates that there exists a critical mass ratio mcr*, below which no upper instability boundary of CM-I exists (Uup p e r *→∞ ). The unbounded instability of CM-I ultimately leads to the "infinite WIV" phenomenon. The neutral stability boundaries for WIV in the (Re, U*) plane are determined through LSA. It is shown that the lowest Re possible for WIV regarding the present configuration is R el o w e s t≈34 . LSA accurately captures the dynamics of WIV at subcritical Re and reveals that it is essentially a fluid-elastic instability problem. This work lays a good foundation for the investigation of WIV at supercritical high Re and gives enlightenment to the
Pre-test analysis for identification of natural circulation instabilities in TALL-3D facility
Energy Technology Data Exchange (ETDEWEB)
Kööp, Kaspar, E-mail: kaspar@safety.sci.kth.se; Jeltsov, Marti, E-mail: marti@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se
2017-04-01
Highlights: • Global optimum search method was used to identify a region of instability. • Parametric study was used for detailed investigation of system behavior modes. • The results include identification of sustained mass flow rate oscillations. • Recommendations are made for selection of optimal experimental conditions. - Abstract: TALL-3D facility is a lead-bismuth eutectic (LBE) thermal-hydraulic loop designed to provide experimental data on thermal-hydraulics phenomena for validation of stand-alone and coupled System Thermal Hydraulics (STH) and Computational Fluid Dynamics (CFD) codes. Pre-test analysis is crucial for proper choice of experimental conditions at which the experimental data would be most useful for code validation and benchmarking. The goal of this work is to identify these conditions at which the experiment is challenging for the STH codes yet minimizes the 3D-effects from the test section on the loop dynamics. The analysis is focused on the identification of limit cycle flow oscillations in the TALL-3D facility main heater leg using a global optimum search tool GA-NPO to find a general region in the parameter space where oscillatory behavior is expected. As a second step a grid study is conducted outlining the boundaries between different stability modes. Phenomena, simulation results and methodology for selection of the test parameters are discussed in detail and recommendations for experiments are provided.
Force Characteristics Analysis for Linear Machine with DC Field Excitations
Directory of Open Access Journals (Sweden)
A/L Krishna Preshant
2018-01-01
Full Text Available In urban regions and particularly in developing countries such as Malaysia with its ever-growing transport sector, there is the need for energy efficient systems. In urban railway systems there is a requirement of frequent braking and start/stop motion, and energy is lost during these processes. To improve the issues of the conventional braking systems, particularly in Japan, they have introduced linear induction motor techniques. The drawbacks of this method, however, is the use of permanent magnets, which not only increase the weight of the entire system but also increases magnetic cogging. Hence an alternative is required which uses the same principles as Magnetic-Levitation but using a magnet-less system. Therefore, the objective of this research is to propose an electromagnetic rail brake system and to analyze the effect of replacing permanent magnets with a magnet-less braking systems to produce a significant amount of brake thrust as compared with the permanent magnet system. The modeling and performance analysis of the model is done using Finite Element Analysis (FEA. The mechanical aspects of the model are designed on Solidworks and then imported to JMAG Software to proceed with the electro-magnetic analysis of the model. There are 3 models developed: Base Model (steel, Permanent Magnet (PM Model and DC Coil Model. The performance of the proposed 2D models developed is evaluated in terms of average force produced and motor constant square density. By comparing the values for the 3 models for the same case of 9A current supplied for a 0.1mm/s moving velocity, the base model, permanent magnet model and DC coil model produced an average force of 7.78 N, 7.55 N, and 8.34 N respectively, however, with increase in DC current supplied to the DC coil model, the average force produced is increased to 13.32 N. Thus, the advantage of the DC coil (magnet-less model, is, that the force produced can be controlled by varying the number of turns in the
Mood instability as a precursor to depressive illness: A prospective and mediational analysis.
Marwaha, Steven; Balbuena, Lloyd; Winsper, Catherine; Bowen, Rudy
2015-06-01
Mood instability levels are high in depression, but temporal precedence and potential mechanisms are unknown. Hypotheses tested were as follows: (1) mood instability is associated with depression cross-sectionally, (2) mood instability predicts new onset and maintenance of depression prospectively and (3) the mood instability and depression link are mediated by sleep problems, alcohol abuse and life events. Data from the National Psychiatric Morbidity Survey 2000 at baseline (N = 8580) and 18-month follow-up (N = 2413) were used. Regression modeling controlling for socio-demographic factors, anxiety and hypomanic mood was conducted. Multiple mediational analyses were used to test our conceptual path model. Mood instability was associated with depression cross-sectionally (odds ratio: 5.28; 95% confidence interval: [3.67, 7.59]; p depression inception (odds ratio: 2.43; 95% confidence interval: [1.03-5.76]; p = 0.042) after controlling for important confounders. Mood instability did not predict maintenance of depression. Sleep difficulties and severe problems with close friends and family significantly mediated the link between mood instability and new onset depression (23.05% and 6.19% of the link, respectively). Alcohol abuse and divorce were not important mediators in the model. Mood instability is a precursor of a depressive episode, predicting its onset. Difficulties in sleep are a significant part of the pathway. Interventions targeting mood instability and sleep problems have the potential to reduce the risk of depression. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Temperature-gradient instability induced by conducting end walls
International Nuclear Information System (INIS)
Berk, H.L.; Ryutov, D.D.; Tsidulko, Yu.A.
1990-04-01
A new rapidly growing electron temperature gradient instability is found for a plasma in contact with a conducting wall. The linear instability analysis is presented and speculations are given for its nonlinear consequences. This instability illustrates that conducting walls can produce effects that are detrimental to plasma confinement. This mode should be of importance in open-ended systems including astrophysical plasmas, mirror machines and at the edge of tokamaks where field lines are open and are connected to limiters or divertors. 16 refs., 2 figs
Cook, James L; Renfro, Daniel C; Tomlinson, James L; Sorensen, Jill E
2005-01-01
To compare abduction angles of shoulders with medial instability and unaffected shoulders in the same dogs and in age- and breed-matched dogs. Case-control study. Dogs with medial instability of the shoulder (n=33) and 26 control dogs. Dogs were sedated and positioned in lateral recumbency with both scapulas parallel to the table. With the elbow and shoulder in extension, the non-recumbent limb was maximally abducted and the angle between the scapular spine and lateral aspect of the brachium measured with a goniometer; a digital image was taken from the cranial aspect. Both techniques were performed in triplicate by 2 examiners. Mean abduction angles for each shoulder were determined from goniometric measurements and image analysis. Data were analyzed for significant differences between affected and unaffected shoulders, measurement techniques, and examiners. Strength of correlation between measurement techniques was determined. Mean abduction angles for shoulders with instability (53.7+/-4.7 degrees goniometric, 51.2+/-4.9 degrees image) were significantly (P<.001) larger than for all unaffected shoulders (32.6+/-2.0 degrees goniometric, 30.9+/-2.3 degrees image). In dogs diagnosed with instability, affected shoulders had significantly (P<.001) larger abduction angles than the contralateral (unaffected) shoulders. No significant differences were identified between right and left shoulders for control dogs, measurement techniques, or examiners. A strong (r=0.90) significant (P<.001) positive correlation between measurement techniques was noted. Shoulder abduction angles measured under sedation provide objective data for diagnosis of shoulder instability in dogs. Shoulders with clinical and arthroscopic evidence of medial instability have significantly higher abduction angles than shoulders that are considered normal. Determination of shoulder abduction angles should be included in the diagnostic protocol for forelimb lameness assessment in dogs.
Curvature-driven instabilities in a hot-electron plasma: radial analysis
International Nuclear Information System (INIS)
Berk, H.L.; Van Dam, J.W.; Rosenbluth, M.N.; Spong, D.A.
1981-12-01
The theory of unfavorable curvature-driven instabilities is developed for a plasma interacting with a hot electron ring whose drift frequencies are larger than the growth rates predicted from conventional magnetohydrodynamic theory. A z-pinch model is used to emphasize the radial structure of the problem. Stability criteria are obtained for the five possible modes of instability: the conventional hot electron interchange, a high-frequency hot electron interchange (at frequencies larger than the ion cyclotron frequency), a compressional instability, a background pressure-driven interchange, and an interacting pressure-driven interchange
Observation and analysis of oscillations in linear accelerators
International Nuclear Information System (INIS)
Seeman, J.T.
1991-11-01
This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations
Electromagnetic linear machines with dual Halbach array design and analysis
Yan, Liang; Peng, Juanjuan; Zhang, Lei; Jiao, Zongxia
2017-01-01
This book extends the conventional two-dimensional (2D) magnet arrangement into 3D pattern for permanent magnet linear machines for the first time, and proposes a novel dual Halbach array. It can not only effectively increase the radial component of magnetic flux density and output force of tubular linear machines, but also significantly reduce the axial flux density, radial force and thus system vibrations and noises. The book is also the first to address the fundamentals and provide a summary of conventional arrays, as well as novel concepts for PM pole design in electric linear machines. It covers theoretical study, numerical simulation, design optimization and experimental works systematically. The design concept and analytical approaches can be implemented to other linear and rotary machines with similar structures. The book will be of interest to academics, researchers, R&D engineers and graduate students in electronic engineering and mechanical engineering who wish to learn the core principles, met...
Sparse Linear Solver for Power System Analysis Using FPGA
National Research Council Canada - National Science Library
Johnson, J. R; Nagvajara, P; Nwankpa, C
2005-01-01
.... Numerical solution to load flow equations are typically computed using Newton-Raphson iteration, and the most time consuming component of the computation is the solution of a sparse linear system...
Thyroid nodule classification using ultrasound elastography via linear discriminant analysis.
Luo, Si; Kim, Eung-Hun; Dighe, Manjiri; Kim, Yongmin
2011-05-01
The non-surgical diagnosis of thyroid nodules is currently made via a fine needle aspiration (FNA) biopsy. It is estimated that somewhere between 250,000 and 300,000 thyroid FNA biopsies are performed in the United States annually. However, a large percentage (approximately 70%) of these biopsies turn out to be benign. Since the aggressive FNA management of thyroid nodules is costly, quantitative risk assessment and stratification of a nodule's malignancy is of value in triage and more appropriate healthcare resources utilization. In this paper, we introduce a new method for classifying the thyroid nodules based on the ultrasound (US) elastography features. Unlike approaches to assess the stiffness of a thyroid nodule by visually inspecting the pseudo-color pattern in the strain image, we use a classification algorithm to stratify the nodule by using the power spectrum of strain rate waveform extracted from the US elastography image sequence. Pulsation from the carotid artery was used to compress the thyroid nodules. Ultrasound data previously acquired from 98 thyroid nodules were used in this retrospective study to evaluate our classification algorithm. A classifier was developed based on the linear discriminant analysis (LDA) and used to differentiate the thyroid nodules into two types: (I) no FNA (observation-only) and (II) FNA. Using our method, 62 nodules were classified as type I, all of which were benign, while 36 nodules were classified as Type-II, 16 malignant and 20 benign, resulting in a sensitivity of 100% and specificity of 75.6% in detecting malignant thyroid nodules. This indicates that our triage method based on US elastography has the potential to substantially reduce the number of FNA biopsies (63.3%) by detecting benign nodules and managing them via follow-up observations rather than an FNA biopsy. Published by Elsevier B.V.
International Nuclear Information System (INIS)
Bud'ko, A.B.; Liberman, M.A.; Bondarenko, E.A.
1992-01-01
Since development of the RT modes in the ablatively accelerated plasma of laser targets imposes crucial limitations on symmetry of spherical implosions and hence on energy cumulation, it has been the subject of intensive numerical and analytical analysis in the recent years, particularly in the context of inertial confinement fusion. Recent thin-foil ablative-acceleration experiments as well as the results of 2D numerical simulations demonstrated substantial reduction of the instability growth rates compared with the classical theory predictions up to the total stabilization in the short-wavelength limit. The numerical results indicated that the main stabilization mechanism is convection. To derive the scaling laws for the RT growth rates and cut-off wavenumbers in the wide range of flow parameters, analytical solutions attract special interest. The analytical approach based on the discontinuity model was developed to analyze the reduction of the RT growth rates by the plasma convective flow and the thermal conductivity effects. The following major problem arises in the discontinuity approximation, which leaves the solution undetermined: the number of the boundary conditions on the perturbed ablation surface is not sufficient to derive the dispersion equation. One needs additional boundary conditions not associated with the conservation laws on the discontinuity surface to close the system of linearized equations for small perturbations. The stabilization effect of highly structured hydrodynamic profiles was studied by Mikaelian and Munro for a stationary plasma. Nevertheless, no reasonable analytical model was constructed taking into account the combined convective, thermal conductivity and density gradient reduction of the RT growth rates. In this report we develop the analytical approach based on the WKB approximation to analyze the stabilization of the RT modes in plasma with smooth density and velocity gradients. (author) 9 refs., 1 fig
Effect of magnetic shear on dissipative drift instabilities
International Nuclear Information System (INIS)
Guzdar, P.N.; Chen, L.; Kaw, P.K.; Oberman, C.
1978-03-01
In this letter we report the results of a linear radial eigenmode analysis of dissipative drift waves in a plasma with magnetic shear and spatially varying density gradient. The results of the analysis are shown to be consistent with a recent experiment on the study of dissipative drift instabilities in a toroidal stellarator
Plasma physics and instabilities
International Nuclear Information System (INIS)
Lashmore-Davies, C.N.
1981-01-01
These lectures procide an introduction to the theory of plasmas and their instabilities. Starting from the Bogoliubov, Born, Green, Kirkwood, and Yvon (BBGKY) hierarchy of kinetic equations, the additional concept of self-consistent fields leads to the fundamental Vlasov equation and hence to the warm two-fluid model and the one-fluid MHD, or cold, model. The properties of small-amplitude waves in magnetized (and unmagnetized) plasmas, and the instabilities to which they give rise, are described in some detail, and a complete chapter is devoted to Landau damping. The linear theory of plasma instabilities is illustrated by the current-driven electrostatic kind, with descriptions of the Penrose criterion and the energy principle of ideal MHD. There is a brief account of the application of feedback control. The non-linear theory is represented by three examples: quasi-linear velocity-space instabilities, three-wave instabilities, and the stability of an arbitrarily largeamplitude wave in a plasma. (orig.)
Analysis of flow distribution instability in parallel thin rectangular multi-channel system
Energy Technology Data Exchange (ETDEWEB)
Xia, G.L. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China); Su, G.H., E-mail: ghsu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Peng, M.J. [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China)
2016-08-15
Highlights: • Flow distribution instability in parallel thin rectangular multi-channel system is studied using RELAP5 codes. • Flow excursion may bring parallel heating channel into the density wave oscillations region. • Flow distribution instability is more likely to happen at low power/flow ratio conditions. • The increase of channel number will not affect the flow distribution instability boundary. • Asymmetry inlet throttling and heating will make system more unstable. - Abstract: The flow distribution instability in parallel thin rectangular multi-channel system has been researched in the present study. The research model of parallel channel system is established by using RELAP5/MOD3.4 codes. The transient process of flow distribution instability is studied at imposed inlet mass flow rate and imposed pressure drop conditions. The influence of heating power, mass flow rate, system pressure and channel number on flow distribution instability are analyzed. Furthermore, the flow distribution instability of parallel two-channel system under asymmetric inlet throttling and heating power is studied. The results show that, if multi-channel system operates at the negative slope region of channel ΔP–G curve, small disturbance in pressure drop will lead to flow redistribution between parallel channels. Flow excursion may bring the operating point of heating channel into the density-wave oscillations region, this will result in out-phase or in-phase flow oscillations. Flow distribution instability is more likely to happen at low power/flow ratio conditions, the stability of parallel channel system increases with system pressure, the channel number has a little effect on system stability, but the asymmetry inlet throttling or heating power will make the system more unstable.
Yeung, Marco; Memon, Muzammil; Simunovic, Nicole; Belzile, Etienne; Philippon, Marc J; Ayeni, Olufemi R
2016-06-01
Gross hip instability is a rare complication after hip arthroscopy, and there is limited literature surrounding this topic. This systematic review investigates cases of gross hip instability after arthroscopy and discusses the risk factors associated with this complication. A systematic search was performed in duplicate for studies investigating gross hip instability after hip arthroscopy up to October 2015. Study parameters including sample size, mechanism and type of dislocation, surgical procedure details, patient characteristics, postoperative rehabilitation protocol, and level of evidence were analyzed. The systematic review identified 9 case reports investigating gross hip instability after hip arthroscopy (10 patients). Anterior dislocation occurred in 66.7% of patients, and most injuries occurred with a low-energy mechanism. Common surgical factors cited included unrepaired capsulotomy (77.8%) and iliopsoas release (33.3%), whereas patient factors included female gender (77.8%), acetabular dysplasia (22.2%), and general ligamentous laxity (11.1%). Postoperative restrictions and protocols were variable and inconsistently reported, and their relation to post-arthroscopy instability was difficult to ascertain. This systematic review discussed various patient, surgical, and postoperative risk factors of gross hip instability after arthroscopy. Patient characteristics such as female gender, hip dysplasia, and ligamentous laxity may be risk factors for post-arthroscopy dislocation. Similarly, surgical risk factors for iatrogenic hip instability may include unrepaired capsulotomies and iliopsoas debridement, although the role of capsular closure in iatrogenic instability is not clear. The influences of postoperative restrictions and protocols on dislocation are also unclear in the current literature. Surgeons should be cognizant of these risk factors when performing hip arthroscopy and be mindful that these factors appear to occur in combination. Level IV
Jamison, J. W.
1994-01-01
CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.
Energy Technology Data Exchange (ETDEWEB)
Yang, Li-Ping, E-mail: yangliping302@hrbeu.edu.cn; Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen [Institute of Power and Energy Engineering, Harbin Engineering University, No. 145-1, Nantong Street, Nangang District, Harbin 150001 (China); Litak, Grzegorz [Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)
2015-01-15
The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.
Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen
2015-01-01
The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.
International Nuclear Information System (INIS)
Yang, Li-Ping; Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen; Litak, Grzegorz
2015-01-01
The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions
Vestergaard, Rikke Falsig; Søballe, Kjeld; Hasenkam, John Michael; Stilling, Maiken
2018-05-18
A small, but unstable, saw-gap may hinder bone-bridging and induce development of painful sternal dehiscence. We propose the use of Radiostereometric Analysis (RSA) for evaluation of sternal instability and present a method validation. Four bone analogs (phantoms) were sternotomized and tantalum beads were inserted in each half. The models were reunited with wire cerclage and placed in a radiolucent separation device. Stereoradiographs (n = 48) of the phantoms in 3 positions were recorded at 4 imposed separation points. The accuracy and precision was compared statistically and presented as translations along the 3 orthogonal axes. 7 sternotomized patients were evaluated for clinical RSA precision by double-examination stereoradiographs (n = 28). In the phantom study, we found no systematic error (p > 0.3) between the three phantom positions, and precision for evaluation of sternal separation was 0.02 mm. Phantom accuracy was mean 0.13 mm (SD 0.25). In the clinical study, we found a detection limit of 0.42 mm for sternal separation and of 2 mm for anterior-posterior dislocation of the sternal halves for the individual patient. RSA is a precise and low-dose image modality feasible for clinical evaluation of sternal stability in research. ClinicalTrials.gov Identifier: NCT02738437 , retrospectively registered.
Costantini, Giulio; De Panfilis, Chiara
2017-01-01
We argue that the series of traits characterizing Borderline Personality Disorder samples do not weigh equally. In this regard, we believe that network approaches employed recently in Personality and Psychopathology research to provide information about the differential relationships among symptoms would be useful to test our claim. To our knowledge, this approach has never been applied to personality disorders. We applied network analysis to the nine Borderline Personality Disorder traits to explore their relationships in two samples drawn from university students and clinical populations (N = 1317 and N = 96, respectively). We used the Fused Graphical Lasso, a technique that allows estimating networks from different populations separately while considering their similarities and differences. Moreover, we examined centrality indices to determine the relative importance of each symptom in each network. The general structure of the two networks was very similar in the two samples, although some differences were detected. Results indicate the centrality of mainly affective instability, identity, and effort to avoid abandonment aspects in Borderline Personality Disorder. Results are consistent with the new DSM Alternative Model for Personality Disorders. We discuss them in terms of implications for therapy. PMID:29040324
Si, Ting; Zhang, Leilei; Li, Guangbin; Roberts, Cynthia J; Yin, Xiezhen; Xu, Ronald
2013-07-01
Recent developments in multimodal imaging and image-guided therapy requires multilayered microparticles that encapsulate several imaging and therapeutic agents in the same carrier. However, commonly used microencapsulation processes have multiple limitations such as low encapsulation efficiency and loss of bioactivity for the encapsulated biological cargos. To overcome these limitations, we have carried out both experimental and theoretical studies on coaxial electrospray of multilayered microparticles. On the experimental side, an improved coaxial electrospray setup has been developed. A customized coaxial needle assembly combined with two ring electrodes has been used to enhance the stability of the cone and widen the process parameter range of the stable cone-jet mode. With this assembly, we have obtained poly(lactide-co-glycolide) microparticles with fine morphology and uniform size distribution. On the theoretical side, an instability analysis of the coaxial electrified jet has been performed based on the experimental parameters. The effects of process parameters on the formation of different unstable modes have been studied. The reported experimental and theoretical research represents a significant step toward quantitative control and optimization of the coaxial electrospray process for microencapsulation of multiple drugs and imaging agents in multimodal imaging and image-guided therapy.
Internal rotor friction instability
Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.
1990-01-01
The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.
Comparison of modal spectral and non-linear time history analysis of a piping system
International Nuclear Information System (INIS)
Gerard, R.; Aelbrecht, D.; Lafaille, J.P.
1987-01-01
A typical piping system of the discharge line of the chemical and volumetric control system, outside the containment, between the penetration and the heat exchanger, an operating power plant was analyzed using four different methods: Modal spectral analysis with 2% constant damping, modal spectral analysis using ASME Code Case N411 (PVRC damping), linear time history analysis, non-linear time history analysis. This paper presents an estimation of the conservatism of the linear methods compared to the non-linear analysis. (orig./HP)
Modeling and analysis of linear hyperbolic systems of balance laws
Bartecki, Krzysztof
2016-01-01
This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...
Control system analysis for the perturbed linear accelerator rf system
Sung Il Kwon
2002-01-01
This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.
CONTROL SYSTEM ANALYSIS FOR THE PERTURBED LINEAR ACCELERATOR RF SYSTEM
International Nuclear Information System (INIS)
SUNG-IL KWON; AMY H. REGAN
2002-01-01
This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller
An implementation analysis of the linear discontinuous finite element method
International Nuclear Information System (INIS)
Becker, T. L.
2013-01-01
This paper provides an implementation analysis of the linear discontinuous finite element method (LD-FEM) that spans the space of (l, x, y, z). A practical implementation of LD includes 1) selecting a computationally efficient algorithm to solve the 4 x 4 matrix system Ax = b that describes the angular flux in a mesh element, and 2) choosing how to store the data used to construct the matrix A and the vector b to either reduce memory consumption or increase computational speed. To analyze the first of these, three algorithms were selected to solve the 4 x 4 matrix equation: Cramer's rule, a streamlined implementation of Gaussian elimination, and LAPACK's Gaussian elimination subroutine dgesv. The results indicate that Cramer's rule and the streamlined Gaussian elimination algorithm perform nearly equivalently and outperform LAPACK's implementation of Gaussian elimination by a factor of 2. To analyze the second implementation detail, three formulations of the discretized LD-FEM equations were provided for implementation in a transport solver: 1) a low-memory formulation, which relies heavily on 'on-the-fly' calculations and less on the storage of pre-computed data, 2) a high-memory formulation, which pre-computes much of the data used to construct A and b, and 3) a reduced-memory formulation, which lies between the low - and high-memory formulations. These three formulations were assessed in the Jaguar transport solver based on relative memory footprint and computational speed for increasing mesh size and quadrature order. The results indicated that the memory savings of the low-memory formulation were not sufficient to warrant its implementation. The high-memory formulation resulted in a significant speed advantage over the reduced-memory option (10-50%), but also resulted in a proportional increase in memory consumption (5-45%) for increasing quadrature order and mesh count; therefore, the practitioner should weigh the system memory constraints against any
An implementation analysis of the linear discontinuous finite element method
Energy Technology Data Exchange (ETDEWEB)
Becker, T. L. [Bechtel Marine Propulsion Corporation, Knolls Atomic Power Laboratory, P.O. Box 1072, Schenectady, NY 12301-1072 (United States)
2013-07-01
This paper provides an implementation analysis of the linear discontinuous finite element method (LD-FEM) that spans the space of (l, x, y, z). A practical implementation of LD includes 1) selecting a computationally efficient algorithm to solve the 4 x 4 matrix system Ax = b that describes the angular flux in a mesh element, and 2) choosing how to store the data used to construct the matrix A and the vector b to either reduce memory consumption or increase computational speed. To analyze the first of these, three algorithms were selected to solve the 4 x 4 matrix equation: Cramer's rule, a streamlined implementation of Gaussian elimination, and LAPACK's Gaussian elimination subroutine dgesv. The results indicate that Cramer's rule and the streamlined Gaussian elimination algorithm perform nearly equivalently and outperform LAPACK's implementation of Gaussian elimination by a factor of 2. To analyze the second implementation detail, three formulations of the discretized LD-FEM equations were provided for implementation in a transport solver: 1) a low-memory formulation, which relies heavily on 'on-the-fly' calculations and less on the storage of pre-computed data, 2) a high-memory formulation, which pre-computes much of the data used to construct A and b, and 3) a reduced-memory formulation, which lies between the low - and high-memory formulations. These three formulations were assessed in the Jaguar transport solver based on relative memory footprint and computational speed for increasing mesh size and quadrature order. The results indicated that the memory savings of the low-memory formulation were not sufficient to warrant its implementation. The high-memory formulation resulted in a significant speed advantage over the reduced-memory option (10-50%), but also resulted in a proportional increase in memory consumption (5-45%) for increasing quadrature order and mesh count; therefore, the practitioner should weigh the system memory
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.; Kanninen, M.F.
1981-11-01
A method of evaluating the J-integral for a circumferentially cracked pipe in bending is proposed. The method allows a J-resistance curve to be evaluated directly from the load-displacement record obtained in a pipe fracture experiment. It permits an analysis for fracture instability in a circumferential crack growth using a J-resistance curve and the tearing modulus parameter. The influence of the system compliance on fracture instability is discussed in conjunction with the latter application. The importance of using a J-resistance curve that is consistent with the type of constraint for a given application is emphasized. The possibility of a pipe fracture emanating from a stress corrosion crack in the heat-affected zones of girth-welds in Type 304 stainless steel pipes was investigated. The J-resistance curve was employed. A pipe fracture experiment was performed using a spring-loaded four-point bending system that simulated an 8.8-m long section of unsupported 102-mm-dia pipe. An initial through-wall crack of length equal to 104 mm was used. Fracture instability was predicted to occur between 15.2 and 22.1 mm of stable crack growth at each tip. In the actual experiment, the onset of fracture instability occurred beyond maximum load at an average stable crack growth of 11.7 to 19 mm at each tip. 24 refs.
International Nuclear Information System (INIS)
Zahoor, A.; Kanninen, M.F.
1981-01-01
A method of evaluating the J-integral for a circumferentially cracked pipe in bending is proposed. The method allows a J-resistance curve to be evaluated directly from the load-displacement record obtained in a pipe fracture experiment. It permits an analysis for fracture instability in a circumferential crack growth using a J-resistance curve and the tearing modulus parameter. The influence of the system compliance on fracture instability is discussed in conjunction with the latter application. The importance of using a J-resistance curve that is consistent with the type of constraint for a given application is emphasized. The possibility of a pipe fracture emanating from a stress corrosion crack in the heat-affected zones of girth-welds in Type 304 stainless steel pipes was investigated. The J-resistance curve was employed. A pipe fracture experiment was performed using a spring-loaded four-point bending system that simulated an 8.8-m long section of unsupported 102-mm-dia pipe. An initial through-wall crack of length equal to 104 mm was used. Fracture instability was predicted to occur between 15.2 and 22.1 mm of stable crack growth at each tip. In the actual experiment, the onset of fracture instability occurred beyond maximum load at an average stable crack growth of 11.7 to 19 mm at each tip. 24 refs
Saturation of equatorial inertial instability
Kloosterziel, R.C.; Orlandi, P.; Carnevale, G.F.
2015-01-01
Inertial instability in parallel shear flows and circular vortices in a uniformly rotating system ( $f$f-plane) redistributes absolute linear momentum or absolute angular momentum in such a way as to neutralize the instability. In previous studies we showed that, in the absence of other
Edge instability in incompressible planar active fluids
Nesbitt, David; Pruessner, Gunnar; Lee, Chiu Fan
2017-12-01
Interfacial instability is highly relevant to many important biological processes. A key example arises in wound healing experiments, which observe that an epithelial layer with an initially straight edge does not heal uniformly. We consider the phenomenon in the context of active fluids. Improving upon the approximation used by Zimmermann, Basan, and Levine [Eur. Phys. J.: Spec. Top. 223, 1259 (2014), 10.1140/epjst/e2014-02189-7], we perform a linear stability analysis on a two-dimensional incompressible hydrodynamic model of an active fluid with an open interface. We categorize the stability of the model and find that for experimentally relevant parameters, fingering instability is always absent in this minimal model. Our results point to the crucial role of density variation in the fingering instability in tissue regeneration.
Stability analysis of switched linear systems defined by graphs
Athanasopoulos, N.; Lazar, M.
2014-01-01
We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching,
Force analysis of linear induction motor for magnetic levitation system
Kuijpers, A.A.; Nemlioglu, C.; Sahin, F.; Verdel, A.J.D.; Compter, J.C.; Lomonova, E.
2010-01-01
This paper presents the analyses of thrust and normal forces of linear induction motor (LIM) segments which are implemented in a rotating ring system. To obtain magnetic levitation in a cost effective and sustainable way, decoupled control of thrust and normal forces is required. This study includes
Linear analysis of degree correlations in complex networks
Indian Academy of Sciences (India)
Many real-world networks such as the protein–protein interaction networks and metabolic networks often display nontrivial correlations between degrees of vertices connected by edges. Here, we analyse the statistical methods used usually to describe the degree correlation in the networks, and analytically give linear ...
Analysis of Students' Errors on Linear Programming at Secondary ...
African Journals Online (AJOL)
The purpose of this study was to identify secondary school students' errors on linear programming at 'O' level. It is based on the fact that students' errors inform teaching hence an essential tool for any serious mathematics teacher who intends to improve mathematics teaching. The study was guided by a descriptive survey ...
Simulated Analysis of Linear Reversible Enzyme Inhibition with SCILAB
Antuch, Manuel; Ramos, Yaquelin; Álvarez, Rubén
2014-01-01
SCILAB is a lesser-known program (than MATLAB) for numeric simulations and has the advantage of being free software. A challenging software-based activity to analyze the most common linear reversible inhibition types with SCILAB is described. Students establish typical values for the concentration of enzyme, substrate, and inhibitor to simulate…
Linear accelerator-breeder (LAB): a preliminary analysis and proposal
International Nuclear Information System (INIS)
1976-01-01
The development and demonstration of a Linear Accelerator-Breeder (LAB) is proposed. This would be a machine which would use a powerful linear accelerator to produce an intense beam of protons or deuterons impinging on a target of a heavy element, to produce spallation neutrons. These neutrons would in turn be absorbed in fertile 238 U or 232 Th to produce fissile 239 Pu or 233 U. Though a Linear Accelerator-Breeder is not visualized as competitive to a fast breeder such as the LMFBR, it would offer definite benefits in improved flexibility of options, and it could probably be developed more rapidly than the LMFBR if fuel cycle problems made this desirable. It is estimated that at a beam power of 300 MW a Linear Accelerator-Breeder could produce about 1100 kg/year of fissile 239 Pu or 233 U, which would be adequate to fuel from 2,650 to 15,000 MW(e) of fission reactor capacity depending on the fuel cycle used. A two-year design study is proposed, and various cost estimates are presented. The concept of the Linear Accelerator-Breeder is not new, having been the basis for a major AEC project (MTA) a number of years ago. It has also been pursued in Canada starting from the proposal for an Intense Neutron Generator (ING) several years ago. The technical basis for a reasonable design has only recently been achieved. The concept offers an opportunity to fill an important gap that may develop between the short-term and long-term energy options for energy security of the nation
Linear Matrix Inequalities for Analysis and Control of Linear Vector Second-Order Systems
DEFF Research Database (Denmark)
Adegas, Fabiano Daher; Stoustrup, Jakob
2015-01-01
the Lyapunov matrix and the system matrices by introducing matrix multipliers, which potentially reduce conservativeness in hard control problems. Multipliers facilitate the usage of parameter-dependent Lyapunov functions as certificates of stability of uncertain and time-varying vector second-order systems......SUMMARY Many dynamical systems are modeled as vector second-order differential equations. This paper presents analysis and synthesis conditions in terms of LMI with explicit dependence in the coefficient matrices of vector second-order systems. These conditions benefit from the separation between....... The conditions introduced in this work have the potential to increase the practice of analyzing and controlling systems directly in vector second-order form. Copyright © 2014 John Wiley & Sons, Ltd....
International Nuclear Information System (INIS)
Kreh, B.B.
1994-12-01
This work investigates the role that the beam-plasma instability may play in a thermionic converter. The traditional assumption of collisionally dominated relaxation is questioned, and the beam-plasma instability is proposed as a possible dominant relaxation mechanism. Theory is developed to describe the beam-plasma instability in the cold-plasma approximation, and the theory is tested with two common Particle-in-Cell (PIC) simulation codes. The theory is first confirmed using an unbounded plasma PIC simulation employing periodic boundary conditions, ES1. The theoretically predicted growth rates are on the order of the plasma frequencies, and ES1 simulations verify these predictions within the order of 1%. For typical conditions encountered in thermionic converters, the resulting growth period is on the order of 7 x 10 -11 seconds. The bounded plasma simulation PDP1 was used to evaluate the influence of finite geometry and the electrode boundaries. For this bounded plasma, a two-stream interaction was supported and resulting in nearly complete thermalization in approximately 5 x 10 -10 seconds. Since the electron-electron collision rate of 10 9 Hz and the electron atom collision rate of 10 7 Hz are significantly slower than the rate of development of these instabilities, the instabilities appear to be an important relaxation mechanism
Parametric instability analysis of truncated conical shells using the Haar wavelet method
Dai, Qiyi; Cao, Qingjie
2018-05-01
In this paper, the Haar wavelet method is employed to analyze the parametric instability of truncated conical shells under static and time dependent periodic axial loads. The present work is based on the Love first-approximation theory for classical thin shells. The displacement field is expressed as the Haar wavelet series in the axial direction and trigonometric functions in the circumferential direction. Then the partial differential equations are reduced into a system of coupled Mathieu-type ordinary differential equations describing dynamic instability behavior of the shell. Using Bolotin's method, the first-order and second-order approximations of principal instability regions are determined. The correctness of present method is examined by comparing the results with those in the literature and very good agreement is observed. The difference between the first-order and second-order approximations of principal instability regions for tensile and compressive loads is also investigated. Finally, numerical results are presented to bring out the influences of various parameters like static load factors, boundary conditions and shell geometrical characteristics on the domains of parametric instability of conical shells.
International Nuclear Information System (INIS)
Mikhailovskii, A.B.
1986-01-01
Some general problems of the theory of Alfven instabilities of a tokamak with high-energy ions are considered. It is assumed that such ions are due to either ionization of fast neutral atoms, injected into the tokamak, or production of them under thermo-nuclear conditions. Small-oscillation equations are derived for the Alfven-type waves, which allow for both destabilizing effects, associated with the high-energy particles, and stabilizing ones, such as effects of shear and bulk-plasm dissipation. A high-energy ion contribution is calculated into the growth rate of the Alfven waves. The author considers the role of trapped-electron collisional dissipation
Instabilities due to anisotropic velocity distributions. Progress report, June 1, 1974--June 1, 1975
International Nuclear Information System (INIS)
Harris, E.G.
1975-01-01
A continuing theoretical study of plasma instabilities and related phenomena including nonlinear effects, particle and energy transport and heating schemes is presented. In the past year, a study of linear resistive instabilities with applications to Tokamaks was almost completed and is being prepared for publication. A sigma stability analysis is being worked on at the present time. Some thought was given to a nonlinear resistive instability analysis but not much progress has been made. A study of equilibrium and stability of elliptical cross section Tokamaks was completed. Considerable work was completed on plasma heating by rf waves at the lower hybrid frequency and by Alfven waves. This work is continuing. A study of instabilities excited by runaway beams of electrons in Tokamaks was largly completed. Some work was done on trapped particle instabilities in Tokamaks and their relation to other instabilities driven by gradients of density or temperature. Work is underway on diffusion and thermal conduction in the bumpy torus. (U.S.)
Practical likelihood analysis for spatial generalized linear mixed models
DEFF Research Database (Denmark)
Bonat, W. H.; Ribeiro, Paulo Justiniano
2016-01-01
We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are......, respectively, examples of binomial and count datasets modeled by spatial generalized linear mixed models. Our results show that the Laplace approximation provides similar estimates to Markov Chain Monte Carlo likelihood, Monte Carlo expectation maximization, and modified Laplace approximation. Some advantages...... of Laplace approximation include the computation of the maximized log-likelihood value, which can be used for model selection and tests, and the possibility to obtain realistic confidence intervals for model parameters based on profile likelihoods. The Laplace approximation also avoids the tuning...
Contact analysis and experimental investigation of a linear ultrasonic motor.
Lv, Qibao; Yao, Zhiyuan; Li, Xiang
2017-11-01
The effects of surface roughness are not considered in the traditional motor model which fails to reflect the actual contact mechanism between the stator and slider. An analytical model for calculating the tangential force of linear ultrasonic motor is proposed in this article. The presented model differs from the previous spring contact model, the asperities in contact between stator and slider are considered. The influences of preload and exciting voltage on tangential force in moving direction are analyzed. An experiment is performed to verify the feasibility of this proposed model by comparing the simulation results with the measured data. Moreover, the proposed model and spring model are compared. The results reveal that the proposed model is more accurate than spring model. The discussion is helpful for designing and modeling of linear ultrasonic motors. Copyright © 2017 Elsevier B.V. All rights reserved.
Linear dynamical quantum systems analysis, synthesis, and control
Nurdin, Hendra I
2017-01-01
This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...
Stability analysis of switched linear systems defined by graphs
Athanasopoulos, Nikolaos; Lazar, Mircea
2015-01-01
We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching, periodic systems, and systems with minimum and maximum dwell time specifications. To reach the result, we describe the set of rules that define the admissible transitions with a weighted directed gra...
Communication: Symmetrical quasi-classical analysis of linear optical spectroscopy
Provazza, Justin; Coker, David F.
2018-05-01
The symmetrical quasi-classical approach for propagation of a many degree of freedom density matrix is explored in the context of computing linear spectra. Calculations on a simple two state model for which exact results are available suggest that the approach gives a qualitative description of peak positions, relative amplitudes, and line broadening. Short time details in the computed dipole autocorrelation function result in exaggerated tails in the spectrum.
Analysis of photo linear elements, Laramie Mountains, Wyoming
Blackstone, D. L., Jr.
1973-01-01
The author has identified the following significant results. Photo linear features in the Precambrian rocks of the Laramie Mountains are delineated, and the azimuths plotted on rose diagrams. Three strike directions are dominant, two of which are in the northeast quadrant. Laramide folds in the Laramie basin to the west of the mountains appear to have the same trend, and apparently have been controlled by response of the basement along fractures such as have been measured from the imagery.
Linear and nonlinear kinetic-stability studies in tokamaks
International Nuclear Information System (INIS)
Tang, W.M.; Chance, M.S.; Chen, L.; Krommes, J.A.; Lee, W.W.; Rewoldt, G.
1982-09-01
This paper presents results of theoretical investigations on important linear kinetic properties of low frequency instabilities in toroidal systems and on nonlinear processes which could significantly influence their impact on anomalous transport. Analytical and numerical methods and also particle simulations have been employed to carry out these studies. In particular, the following subjects are considered: (1) linear stability analysis of kinetic instabilities for realistic tokamak equilibria and the application of such calculations to the PDX and PLT tokamak experiments including the influence of a hot beam-ion component; (2) determination of nonlinearly saturated, statistically steady states of three interacting drift modes; and (3) gyrokinetic particle simulation of drift instabilities
Waves and instabilities in plasmas
International Nuclear Information System (INIS)
Chen, L.
1987-01-01
The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations
Chang, Chau-Lyan
2003-01-01
During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Subsonic Technology (AST). Experimental, theoretical, as well as computational efforts on various issues such as receptivity and linear and nonlinear evolution of instability waves take part in broadening our knowledge base for this intricate flow phenomenon. Despite all these advances, transition prediction remains a nontrivial task for engineers due to the lack of a widely available, robust, and efficient prediction tool. The design and development of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the state-of-the-art numerical methods for stability analysis and modem software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory (LST) or linear parabolized stability equations (LPSE) method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance environment based on first principles. This paper describes the governing equations, numerical methods, code development, and case studies for the current release of LASTRAC. Practical applications of LASTRAC are demonstrated for linear stability calculations, N-factor transition correlation, non-linear breakdown simulations, and controls of stationary crossflow instability in supersonic swept wing boundary
Analysis of the flow instability among channels of the OTSG in the naval craft NPP
Energy Technology Data Exchange (ETDEWEB)
Hou, Su-xia; Luo, Ji-jun; Xu, Jun; Liu, Jie-yu [Xi' an Hi-Tech Institute, Shaanxi (China)
2014-11-15
The instability occurring of the OTSG (Once-Through Steam Generator) in naval craft nuclear power plants is presented by the multivariable frequency domain theory. As concerning coupling interactions of the OTSG tubing, it is more accurate for analyzing the instability of OTSG compared to the common single variable method. A mathematical model for the system is derived from the fundamental equations by using the perturbation, Laplace-transform and the nodalization techniques. The stable boundary and parameters which influence the stability of the system are evaluated through computer simulation.
Triclade: influence of a sinuous secondary instability on the Richtmyer-Meshkov instabilities
International Nuclear Information System (INIS)
Boulet, M.; Griffond, J.
2004-01-01
Occurrence of a secondary instability developing after the Richtmyer-Meshkov (primary) instability is emphasized thanks to numerical simulations with the TRICLADE code. We are mainly considering 2D perturbations describes by trigonometric function cosine or [cosine]. However, the 3D case is also tackled. The sinuous secondary instability is characterized by the loss of the symmetries in the direction normal to the interface at its crests. It reduces the late time growing rate of the 'mushrooms' formed by the Richtmyer-Meshkov instability. Related simplified problems, like symmetrical Riemann problems or the Mallier-Maslowe array of counter-rotating vortices, allow us to perform 2D linear stability analysis. Thus, we show that the sinuous secondary instability is not a numerical artifact and that is comes from the continuous incompressible velocity field in the interface region. This instability implies temporal limitations for the validity of single mode simulations; therefore multimode simulations are necessary to study the ]ate-time behaviour of interfaces bitted by shocks. (authors)
Comments on the theory of absolute and convective instabilities
International Nuclear Information System (INIS)
Oscarsson, T.E.; Roennmark, K.
1986-10-01
The theory of absolute and convective instabilities is discussed and we argue that the basis of the theory is questionable, since it describes the linear development of instabilities by their behaviour in the time asymptotic limit. In order to make sensible predictions on the linear development of instabilities, the problem should be studied on the finite time scale implied by the linear approximation. (authors)
A quasi-linear control theory analysis of timesharing skills
Agarwal, G. C.; Gottlieb, G. L.
1977-01-01
The compliance of the human ankle joint is measured by applying 0 to 50 Hz band-limited gaussian random torques to the foot of a seated human subject. These torques rotate the foot in a plantar-dorsal direction about a horizontal axis at a medial moleolus of the ankle. The applied torques and the resulting angular rotation of the foot are measured, digitized and recorded for off-line processing. Using such a best-fit, second-order model, the effective moment of inertia of the ankle joint, the angular viscosity and the stiffness are calculated. The ankle joint stiffness is shown to be a linear function of the level of tonic muscle contraction, increasing at a rate of 20 to 40 Nm/rad/Kg.m. of active torque. In terms of the muscle physiology, the more muscle fibers that are active, the greater the muscle stiffness. Joint viscosity also increases with activation. Joint stiffness is also a linear function of the joint angle, increasing at a rate of about 0.7 to 1.1 Nm/rad/deg from plantar flexion to dorsiflexion rotation.
Design and analysis of tubular permanent magnet linear wave generator.
Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng
2014-01-01
Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.
Design and Analysis of Tubular Permanent Magnet Linear Wave Generator
Directory of Open Access Journals (Sweden)
Jikai Si
2014-01-01
Full Text Available Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.
Design and Analysis of Tubular Permanent Magnet Linear Wave Generator
Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng
2014-01-01
Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG. PMID:25050388
BRGLM, Interactive Linear Regression Analysis by Least Square Fit
International Nuclear Information System (INIS)
Ringland, J.T.; Bohrer, R.E.; Sherman, M.E.
1985-01-01
1 - Description of program or function: BRGLM is an interactive program written to fit general linear regression models by least squares and to provide a variety of statistical diagnostic information about the fit. Stepwise and all-subsets regression can be carried out also. There are facilities for interactive data management (e.g. setting missing value flags, data transformations) and tools for constructing design matrices for the more commonly-used models such as factorials, cubic Splines, and auto-regressions. 2 - Method of solution: The least squares computations are based on the orthogonal (QR) decomposition of the design matrix obtained using the modified Gram-Schmidt algorithm. 3 - Restrictions on the complexity of the problem: The current release of BRGLM allows maxima of 1000 observations, 99 variables, and 3000 words of main memory workspace. For a problem with N observations and P variables, the number of words of main memory storage required is MAX(N*(P+6), N*P+P*P+3*N, and 3*P*P+6*N). Any linear model may be fit although the in-memory workspace will have to be increased for larger problems
Analysis of the Cofrentes instability with the Hilbert-Huang transform
International Nuclear Information System (INIS)
Blazquez, J.; Galindo, A.
2010-01-01
The most obvious application of the Hilbert-Huang transform is the denoising (signal isolation). In this article, the dynamic system is the power of a BWR reactor that undergoes instability. The signal and the dynamic systems are described, which in this case corresponds to a current incident in a commercial BWR reactor (Cofrentes). Finally, empirical modes are calculated and the results are analyzed.
Ma, Yong; Ao, Ying-Fang; Yu, Jia-Kuo; Dai, Ling-Hui; Shao, Zhen-Xing
2013-01-01
Revision anterior cruciate ligament (ACL) surgery can be expected to become more common as the number of primary reconstruction keeps increasing. This study aims to investigate the factors causing instability after primary ACL reconstruction, which may provide an essential scientific base to prevent surgical failure. One hundred and ten revision ACL surgeries were performed at our institute between November 2001 and July 2012. There were 74 men and 36 women, and the mean age at the time of revision was 27.6 years (range 16 - 56 years). The factors leading to instability after primary ACL reconstruction were retrospectively reviewed. Fifty-one knees failed because of bone tunnel malposition, with too anterior femoral tunnels (20 knees), posterior wall blowout (1 knee), vertical femoral tunnels (7 knees), too posterior tibial tunnels (12 knees), and too anterior tibial tunnels (10 knees). There was another knee performed with open surgery, where the femoral tunnel was drilled through the medial condyle and the tibial tunnel was too anterior. Five knees were found with malposition of the fixation. One knee with allograft was suspected of rejection and a second surgery had been made to take out the graft. Three knees met recurrent instability after postoperative infection. The other factors included traumatic (48 knees) and unidentified (12 knees). Technical errors were the main factors leading to instability after primary ACL reconstructions, while attention should also be paid to the risk factors of re-injury and failure of graft incorporation.
Analysis of the instability growth rate during the jet– background interaction in a magnetic field
Czech Academy of Sciences Publication Activity Database
Horký, Miroslav; Kulhánek, P.
2013-01-01
Roč. 13, č. 6 (2013), s. 687-694 ISSN 1674-4527 R&D Projects: GA ČR GD205/09/H033 Institutional support: RVO:67985815 Keywords : plasmas * numerical methods * instabilities * turbulence * waves * MHD Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.516, year: 2013
Linear and Nonlinear Analysis of Brain Dynamics in Children with Cerebral Palsy
Sajedi, Firoozeh; Ahmadlou, Mehran; Vameghi, Roshanak; Gharib, Masoud; Hemmati, Sahel
2013-01-01
This study was carried out to determine linear and nonlinear changes of brain dynamics and their relationships with the motor dysfunctions in CP children. For this purpose power of EEG frequency bands (as a linear analysis) and EEG fractality (as a nonlinear analysis) were computed in eyes-closed resting state and statistically compared between 26…
International Nuclear Information System (INIS)
Kirillov, I.R.; Obukhov, D.M.
2005-01-01
One introduces a completely two-dimensional mathematical model to calculate characteristics of induction magnetohydrodynamic (MHD) machines with a cylindrical channel. On the basis of the numerical analysis one obtained a pattern of liquid metal flow in a electromagnetic pump at presence of the MHD-instability characterized by initiation of large-scale vortices propagating longitudinally and azimuthally. Comparison of the basic calculated characteristics of pump with the experiment shows their adequate qualitative and satisfactory quantitative coincidence [ru
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
Casellas, J; Bach, R
2012-06-01
Lambing interval is a relevant reproductive indicator for sheep populations under continuous mating systems, although there is a shortage of selection programs accounting for this trait in the sheep industry. Both the historical assumption of small genetic background and its unorthodox distribution pattern have limited its implementation as a breeding objective. In this manuscript, statistical performances of 3 alternative parametrizations [i.e., symmetric Gaussian mixed linear (GML) model, skew-Gaussian mixed linear (SGML) model, and piecewise Weibull proportional hazard (PWPH) model] have been compared to elucidate the preferred methodology to handle lambing interval data. More specifically, flock-by-flock analyses were performed on 31,986 lambing interval records (257.3 ± 0.2 d) from 6 purebred Ripollesa flocks. Model performances were compared in terms of deviance information criterion (DIC) and Bayes factor (BF). For all flocks, PWPH models were clearly preferred; they generated a reduction of 1,900 or more DIC units and provided BF estimates larger than 100 (i.e., PWPH models against linear models). These differences were reduced when comparing PWPH models with different number of change points for the baseline hazard function. In 4 flocks, only 2 change points were required to minimize the DIC, whereas 4 and 6 change points were needed for the 2 remaining flocks. These differences demonstrated a remarkable degree of heterogeneity across sheep flocks that must be properly accounted for in genetic evaluation models to avoid statistical biases and suboptimal genetic trends. Within this context, all 6 Ripollesa flocks revealed substantial genetic background for lambing interval with heritabilities ranging between 0.13 and 0.19. This study provides the first evidence of the suitability of PWPH models for lambing interval analysis, clearly discarding previous parametrizations focused on mixed linear models.
Identification of noise in linear data sets by factor analysis
International Nuclear Information System (INIS)
Roscoe, B.A.; Hopke, Ph.K.
1982-01-01
A technique which has the ability to identify bad data points, after the data has been generated, is classical factor analysis. The ability of classical factor analysis to identify two different types of data errors make it ideally suited for scanning large data sets. Since the results yielded by factor analysis indicate correlations between parameters, one must know something about the nature of the data set and the analytical techniques used to obtain it to confidentially isolate errors. (author)
Modeling and analysis of linearized wheel-rail contact dynamics
International Nuclear Information System (INIS)
Soomro, Z.
2014-01-01
The dynamics of the railway vehicles are nonlinear and depend upon several factors including vehicle speed, normal load and adhesion level. The presence of contaminants on the railway track makes them unpredictable too. Therefore in order to develop an effective control strategy it is important to analyze the effect of each factor on dynamic response thoroughly. In this paper a linearized model of a railway wheel-set is developed and is later analyzed by varying the speed and adhesion level by keeping the normal load constant. A wheel-set is the wheel-axle assembly of a railroad car. Patch contact is the study of the deformation of solids that touch each other at one or more points. (author)
Analysis of linear head accelerations from collegiate football impacts.
Brolinson, P Gunnar; Manoogian, Sarah; McNeely, David; Goforth, Mike; Greenwald, Richard; Duma, Stefan
2006-02-01
Sports-related concussions result in 300,000 brain injuries in the United States each year. We conducted a study utilizing an in-helmet system that measures and records linear head accelerations to analyze head impacts in collegiate football. The Head Impact Telemetry (HIT) System is an in-helmet system with six spring-mounted accelerometers and an antenna that transmits data via radio frequency to a sideline receiver and laptop computer system. A total of 11,604 head impacts were recorded from the Virginia Tech football team throughout the 2003 and 2004 football seasons during 22 games and 62 practices from a total of 52 players. Although the incidence of injury data are limited, this study presents an extremely large data set from human head impacts that provides valuable insight into the lower limits of head acceleration that cause mild traumatic brain injuries.
Analysis of a 3-phase tubular permanent magnet linear generator
Energy Technology Data Exchange (ETDEWEB)
Nor, K.M.; Arof, H.; Wijono [Malaya Univ., Kuala Lumpur (Malaysia). Faculty of Engineering
2005-07-01
A 3-phase tubular permanent linear generator design was described. The generator was designed to be driven by a single or a double 2-stroke combustion linear engine. Combustion took place alternately between 2 opposed chambers. In the single combustion engine, one of the combustion chambers was replaced by a kickback mechanism. The force on the translator generated by the explosion in the combustion chamber was used to compress the air in the kickback chamber. The pressed air was then used to release the stored energy to push back the translator in the opposite direction. The generator was modelled as a 2D object. A parametric simulation was performed to give a series of discrete data required to calculate machine electrical parameters; flux distribution; coil flux linkage; and, cogging force. Fringing flux was evaluated through the application of a magnetic boundary condition. The infinity boundary was used to include the zero electromagnetic potential in the surface boundary. A complete simulation was run for each step of the translator's motion, which was considered as sinusoidal. The simplification was further corrected using the real engine speed curve. The EMF was derived from the flux linkage difference in the coils at every consecutive translator position. Force was calculated in the translator and stator using a virtual work method. Optimization was performed using a subproblem strategy. It was concluded that the generator can be used to supply electric power as a stand-alone system, emergency power supply, or as part of an integrated system. 11 refs., 2 tabs., 10 figs.
Comprehensive experimental and numerical analysis of instability phenomena in pump turbines
International Nuclear Information System (INIS)
Gentner, Ch; Sallaberger, M; Widmer, Ch; Bobach, B-J; Jaberg, H; Schiffer, J; Senn, F; Guggenberger, M
2014-01-01
The changes in the electricity market have led to changed requirements for the operation of pump turbines. Utilities need to change fast and frequently between pumping and generating modes and increasingly want to operate at off-design conditions for extended periods. Operation of the units in instable areas of the machine characteristic is not acceptable and may lead to self-excited vibration of the hydraulic system. In turbine operation of pump turbines unstable behaviour can occur at low load off-design operation close to runaway conditions (S-shape of the turbine characteristic). This type of instability may impede the synchronization of the machine in turbine mode and thus increase start-up and switch over times. A pronounced S-shaped instability can also lead to significant drop of discharge in the event of load rejection. Low pressure on the suction side and in the tail-race tunnel could cause dangerous separation of the water column. Understanding the flow features that lead to the instable behaviour of pump turbines is a prerequisite to the design of machines that can fulfil the growing requirements relating to operational flexibility. Flow simulation in these instability zones is demanding due to the complex and highly unsteady flow patterns. Only unsteady simulation methods are able to reproduce the governing physical effects in these operating regions. ANDRITZ HYDRO has been investigating the stability behaviour of pump turbines in turbine operation in cooperation with several universities using simulation and measurements. In order to validate the results of flow simulation of unstable operating points, the Graz University of Technology (Austria) performed detailed experimental investigations. Within the scope of a long term research project, the operating characteristics of several pump turbine runners have been measured and flow patterns in the pump turbine at speed no load and runaway have been examined by 2D Laser particle image velocimetry (PIV
Different ELM regimes at ASDEX upgrade and their linear stability analysis
International Nuclear Information System (INIS)
Burckhart, Andreas O.
2013-01-01
Edge localised modes (ELMs) are magnetohydrodynamic (MHD) instabilities that occur at the edge of magnetically confined fusion plasmas. They periodically expel particles and energy from the confined region. In addition to limiting the confinement, they cause high heat fluxes to the walls of the tokamak which may not be manageable in larger, next-generation devices. However, the exact nature of the instabilities that drive ELMs is still unknown. The most commonly invoked theory to explain the occurrence of ELMs is the peeling-ballooning model which posits a critical edge pressure gradient and current density. In this thesis, this model is tested against experimental data gathered at the ASDEX Upgrade (AUG) tokamak. For the first time, a broad selection of ELM scenarios is analysed with respect to ideal MHD stability using the same methodology. The comparison of experiment and theory is performed using a stability analysis chain, which consists of combining kinetic and magnetic measurements to generate self-consistent plasma equilibria with the Grad-Shafranov solver CLISTE, refining this equilibrium with the HELENA code, and, finally, determining its stability using ILSA, a linear MHD stability code. In theory the peeling ballooning model should apply to all type-I ELM scenarios. Therefore, the stability of several different type-I ELMy H-mode plasmas is analysed with respect to peeling ballooning modes. While some of them are consistent with the model, in others ELMs occur well below or above the ideal MHD stability limit. The standard type-I ELMy H-mode regime exhibits considerable variations with equilibria both well below and at the stability limit depending on the discharge. In addition, a nitrogen-seeded case in which the edge pressure gradient greatly exceeds the stability limit is identified. In another discharge, the edge pressure gradient and current density, which are on the threshold for marginal stability, relax when edge heating is applied. Contrary to
Different ELM regimes at ASDEX upgrade and their linear stability analysis
Energy Technology Data Exchange (ETDEWEB)
Burckhart, Andreas O.
2013-12-16
Edge localised modes (ELMs) are magnetohydrodynamic (MHD) instabilities that occur at the edge of magnetically confined fusion plasmas. They periodically expel particles and energy from the confined region. In addition to limiting the confinement, they cause high heat fluxes to the walls of the tokamak which may not be manageable in larger, next-generation devices. However, the exact nature of the instabilities that drive ELMs is still unknown. The most commonly invoked theory to explain the occurrence of ELMs is the peeling-ballooning model which posits a critical edge pressure gradient and current density. In this thesis, this model is tested against experimental data gathered at the ASDEX Upgrade (AUG) tokamak. For the first time, a broad selection of ELM scenarios is analysed with respect to ideal MHD stability using the same methodology. The comparison of experiment and theory is performed using a stability analysis chain, which consists of combining kinetic and magnetic measurements to generate self-consistent plasma equilibria with the Grad-Shafranov solver CLISTE, refining this equilibrium with the HELENA code, and, finally, determining its stability using ILSA, a linear MHD stability code. In theory the peeling ballooning model should apply to all type-I ELM scenarios. Therefore, the stability of several different type-I ELMy H-mode plasmas is analysed with respect to peeling ballooning modes. While some of them are consistent with the model, in others ELMs occur well below or above the ideal MHD stability limit. The standard type-I ELMy H-mode regime exhibits considerable variations with equilibria both well below and at the stability limit depending on the discharge. In addition, a nitrogen-seeded case in which the edge pressure gradient greatly exceeds the stability limit is identified. In another discharge, the edge pressure gradient and current density, which are on the threshold for marginal stability, relax when edge heating is applied. Contrary to
Tripp, L. L.; Tamekuni, M.; Viswanathan, A. V.
1973-01-01
The use of the computer program BUCLASP2 is described. The program is intended for linear instability analyses of structures such as unidirectionally stiffened panels. Any structure that has a constant cross section in one direction, that may be idealized as an assemblage of beam elements and laminated flat and curved plant strip elements can be analyzed. The loadings considered are combinations of axial compressive loads and in-plane transverse loads. The two parallel ends of the panel must be simply supported and arbitrary elastic boundary conditions may be imposed along any one or both external longitudinal side. This manual consists of instructions for use of the program with sample problems, including input and output information. The theoretical basis of BUCLASP2 and correlations of calculated results with known solutions, are presented.
Hamiltonian analysis for linearly acceleration-dependent Lagrangians
Energy Technology Data Exchange (ETDEWEB)
Cruz, Miguel, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx; Gómez-Cortés, Rosario, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx; Rojas, Efraín, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx [Facultad de Física, Universidad Veracruzana, 91000 Xalapa, Veracruz, México (Mexico); Molgado, Alberto, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Avenida Salvador Nava S/N Zona Universitaria, CP 78290 San Luis Potosí, SLP, México (Mexico)
2016-06-15
We study the constrained Ostrogradski-Hamilton framework for the equations of motion provided by mechanical systems described by second-order derivative actions with a linear dependence in the accelerations. We stress out the peculiar features provided by the surface terms arising for this type of theories and we discuss some important properties for this kind of actions in order to pave the way for the construction of a well defined quantum counterpart by means of canonical methods. In particular, we analyse in detail the constraint structure for these theories and its relation to the inherent conserved quantities where the associated energies together with a Noether charge may be identified. The constraint structure is fully analyzed without the introduction of auxiliary variables, as proposed in recent works involving higher order Lagrangians. Finally, we also provide some examples where our approach is explicitly applied and emphasize the way in which our original arrangement results in propitious for the Hamiltonian formulation of covariant field theories.
Does political instability lead to higher and more volatile inflation?: A panel data analysis
Directory of Open Access Journals (Sweden)
Aisen Ari
2007-01-01
Full Text Available Economists generally accept the proposition that high and volatile inflation rates generate inefficiencies that reduce society’s welfare. Furthermore studies have shown that inflation is harmful to economic growth. However determining the causes of the worldwide diversity of inflationary experiences is an important challenge not yet satisfactorily confronted by the profession. Based on a broad dataset covering over 100 countries for the period 1975-1997 and using dynamic and static panel data econometric techniques, this paper shows that a higher degree of political instability is associated with both higher inflation levels and volatility. Not only does this paper advance the political economy literature establishing a relationship between inflation moments and political instability, but it also has important policy implications regarding the optimal design of inflation stabilization programs and of the institutions favorable to price stability.
International Nuclear Information System (INIS)
Schmitt, R.; Froehner, S.; Coblenz, G.; Christopoulos, G.
2006-01-01
This review addresses the pathoanatomical basics as well as the clinical and radiological presentation of instability patterns of the wrist. Carpal instability mostly follows an injury; however, other diseases, like CPPD arthropathy, can be associated. Instability occurs either if the carpus is unable to sustain physiologic loads (''dyskinetics'') or suffers from abnormal motion of its bones during movement (''dyskinematics''). In the classification of carpal instability, dissociative subcategories (located within proximal carpal row) are differentiated from non-dissociative subcategories (present between the carpal rows) and combined patterns. It is essential to note that the unstable wrist initially does not cause relevant signs in standard radiograms, therefore being ''occult'' for the radiologic assessment. This paper emphasizes the high utility of kinematographic studies, contrast-enhanced magnetic resonance imaging (MRI) and MR arthrography for detecting these predynamic and dynamic instability stages. Later in the natural history of carpal instability, static malalignment of the wrist and osteoarthritis will develop, both being associated with significant morbidity and disability. To prevent individual and socio-economic implications, the handsurgeon or orthopedist, as well as the radiologist, is challenged for early and precise diagnosis. (orig.)
Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling
Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting
2018-02-01
Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep
Slope Instability Risk Analysys of the Municipality of Comala, Colima , Mexico
Ramirez-Ruiz, J. J.
2017-12-01
Every year during the rainy season occur the problem of mass landslide in some areas of the community of Comala, Colima Mexico. Slope instability is studied in this volcanic region which is located in the southern part of the Volcan de Fuego de Colima. It occurs due to the combination of different factors existing in this area as: Precipitation, topography contrast, type and mechanical properties of deposits that constitute the rocks and soils of the region and the erosion due to the elimination of vegetation deck to develop and grow urban areas. To these geological factors we can extend the tectonic activity of the Western part of Mexico that originate high seismicity by the interaction of Cocos plate and North America plate forming the region of Graben de Colima, were is located this area. Here we will present a Zonification and determination of Slope Instability Risk Maps due to the rain and seismicity accelerators factors. This Study is parto of a proyect to reduce the risk of this phenomenon, it was carried out as part of the National Risk Map of Mexico analized using the CENAPRED methodology to zonificate the risk areas. The instability of slopes is determined both in its origin and in its development, by different mechanisms. In such a way that this process of instability can be grouped into four main categories: Falls or landslides, Flows, Slips and expansions or lateral landslides. Here it is presented the Risk analisis to this volcanic area that cover the municipality of Comala in the State of Colima, Mexico using the Susceptibility map, Risk Map and Risk analisis of the Municipality.
Analysis of a three-cell cavity which suppresses instabilities associated with the accelerating mode
International Nuclear Information System (INIS)
Yamazaki, Y.; Kageyama, T.
1994-01-01
In a large ring with extremely heavy beam loading such as a B-factory it is possible that the accelerating mode, itself, gives rise to a longitudinal coupled-bunch instability. In order to solve this problem Shintake proposed to attach a storage cavity to an accelerating cavity. The present paper shows that the system can be put into practical use, if one adds a coupling cavity in between the two cavities. (author)
Analysis of the Onset of Flow Instability in rectangular heated channel using drift flux model
International Nuclear Information System (INIS)
El-Hadjen, H.; Balistrou, M.; Hamidouche, T.; Bousbia-Salah, A.
2005-01-01
Two-phase flow excursion (Ledinegg) instability in boiling channels is of great concern in the design and operation of numerous practical systems especially in Research Reactors. Such instability can lead to significant reduction in channel flow, thereby causing premature burnout of the heated channel before the CHF point. The present work focuses on a simulation of pressure drop in forced convection boiling in vertical narrow and parallel uniformly heated channels. The objective is to determine the point of Onset of Flow Instability (OFI) by varying input flow rate. The axial void distribution is also provided. The numerical model is based on the finite difference method which transforms the partial differential conservation equation of mass, momentum and energy, in algebraic equations. Closure relationships based upon the drift flux model and other constitutive equations are considered to determine the channel pressure drop under steady state boiling conditions. The model validation is performed by confronting the calculations with the Oak Ridge National Laboratory thermal Hydraulic Test Loop (THTL) experimental data set. Further verification of this model is performed by code- to code verification using the results of RELAP5/Mod 3.2 code. (author)
Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies.
Kumru, Ozan S; Joshi, Sangeeta B; Smith, Dawn E; Middaugh, C Russell; Prusik, Ted; Volkin, David B
2014-09-01
Instability of vaccines often emerges as a key challenge during clinical development (lab to clinic) as well as commercial distribution (factory to patient). To yield stable, efficacious vaccine dosage forms for human use, successful formulation strategies must address a combination of interrelated topics including stabilization of antigens, selection of appropriate adjuvants, and development of stability-indicating analytical methods. This review covers key concepts in understanding the causes and mechanisms of vaccine instability including (1) the complex and delicate nature of antigen structures (e.g., viruses, proteins, carbohydrates, protein-carbohydrate conjugates, etc.), (2) use of adjuvants to further enhance immune responses, (3) development of physicochemical and biological assays to assess vaccine integrity and potency, and (4) stabilization strategies to protect vaccine antigens and adjuvants (and their interactions) during storage. Despite these challenges, vaccines can usually be sufficiently stabilized for use as medicines through a combination of formulation approaches combined with maintenance of an efficient cold chain (manufacturing, distribution, storage and administration). Several illustrative case studies are described regarding mechanisms of vaccine instability along with formulation approaches for stabilization within the vaccine cold chain. These include live, attenuated (measles, polio) and inactivated (influenza, polio) viral vaccines as well as recombinant protein (hepatitis B) vaccines. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
International Nuclear Information System (INIS)
Bavi, P.P.; Abubaker, Jehad A.; Jehan, Zeenath D.; Al-Jomah, Naif A.; Siraj, Abdul K.; Al-Harbi, Sayer R.; Atizado, Valerie L.; Uddin, S.; Al-Kuraya, Khawla S.; Abduljabbar, Alaa S.; Al-Homoud, Samar J.; Ashari, Luai H.; Al-Sanea, Nasser A.; Al-Dayel, Fouad H.
2008-01-01
Objective was to evaluate the overall incidence of microsatellite instability (MSI), hereditary non polyposis colorectal cancer and tumor suppressor gene (TP53) mutations in Saudi colorectal carcinomas. We studied the MSI pathway in Saudi colorectal cancers (CRC) from 179 unselected patients using 2 methods: MSI by polymerase chain reaction and immunohistochemistry detection of mutL homologs 1 and mutS homologs 2 proteins. The TP53 mutations were studied by sequencing exons 5, 6, 7 and 8. Of the 150 colorectal carcinomas analyzed for MSI, 16% of the tumors showed high level instability (MSI-H), 19.3% had low level instability (MSI-L) and the remaining 64% tumors were stable. Survival of the MSI-H group was better as compared to the MSI-L or microsatellite stable group (p=0.0217). In the MSI-H group, 48% were familial MSI tumors which could be attributable to the high incidence of consanguinity in the Saudi population. The TP53 mutations were found in 24% of the cases studied. A high production of familial MSI cases and a lower incidence of TP53 mutations are some of the hallmarks of the Saudi colorectal carcinomas which need to be explored further. (author)
Least Squares Adjustment: Linear and Nonlinear Weighted Regression Analysis
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg
2007-01-01
This note primarily describes the mathematics of least squares regression analysis as it is often used in geodesy including land surveying and satellite positioning applications. In these fields regression is often termed adjustment. The note also contains a couple of typical land surveying...... and satellite positioning application examples. In these application areas we are typically interested in the parameters in the model typically 2- or 3-D positions and not in predictive modelling which is often the main concern in other regression analysis applications. Adjustment is often used to obtain...... the clock error) and to obtain estimates of the uncertainty with which the position is determined. Regression analysis is used in many other fields of application both in the natural, the technical and the social sciences. Examples may be curve fitting, calibration, establishing relationships between...
Non-linear analysis in Light Water Reactor design
International Nuclear Information System (INIS)
Rashid, Y.R.; Sharabi, M.N.; Nickell, R.E.; Esztergar, E.P.; Jones, J.W.
1980-03-01
The results obtained from a scoping study sponsored by the US Department of Energy (DOE) under the Light Water Reactor (LWR) Safety Technology Program at Sandia National Laboratories are presented. Basically, this project calls for the examination of the hypothesis that the use of nonlinear analysis methods in the design of LWR systems and components of interest include such items as: the reactor vessel, vessel internals, nozzles and penetrations, component support structures, and containment structures. Piping systems are excluded because they are being addressed by a separate study. Essentially, the findings were that nonlinear analysis methods are beneficial to LWR design from a technical point of view. However, the costs needed to implement these methods are the roadblock to readily adopting them. In this sense, a cost-benefit type of analysis must be made on the various topics identified by these studies and priorities must be established. This document is the complete report by ANATECH International Corporation
Free vibration analysis of linear particle chain impact damper
Gharib, Mohamed; Ghani, Saud
2013-11-01
Impact dampers have gained much research interest over the past decades that resulted in several analytical and experimental studies being conducted in that area. The main emphasis of such research was on developing and enhancing these popular passive control devices with an objective of decreasing the three parameters of contact forces, accelerations, and noise levels. To that end, the authors of this paper have developed a novel impact damper, called the Linear Particle Chain (LPC) impact damper, which mainly consists of a linear chain of spherical balls of varying sizes. The LPC impact damper was designed utilizing the kinetic energy of the primary system through placing, in the chain arrangement, a small-sized ball between each two large-sized balls. The concept of the LPC impact damper revolves around causing the small-sized ball to collide multiple times with the larger ones upon exciting the primary system. This action is believed to lead to the dissipation of part of the kinetic energy at each collision with the large balls. This paper focuses on the outcome of studying the free vibration of a single degree freedom system that is equipped with the LPC impact damper. The proposed LPC impact damper is validated by means of comparing the responses of a single unit conventional impact damper with those resulting from the LPC impact damper. The results indicated that the latter is considerably more efficient than the former impact damper. In order to further investigate the LPC impact damper effective number of balls and efficient geometry when used in a specific available space in the primary system, a parametric study was conducted and its result is also explained herein. Single unit impact damper [14-16]. Multiunit impact damper [17,18]. Bean bag impact damper [19,20]. Particle/granular impact damper [21,23,22]. Resilient impact damper [24]. Buffered impact damper [25-27]. Multiunit impact damper consists of multiple masses instead of a single mass. This
Ion-cyclotron instability in magnetic mirrors
International Nuclear Information System (INIS)
Pearlstein, L.D.
1987-01-01
This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits
linear discriminant analysis of structure within african eggplant 'shum'
African Journals Online (AJOL)
ACSS
observed clusters include petiole length, sepal length (or seed color), fruit calyx length, seeds per fruit, leaf fresh .... obtain means. A table of means per trait for each accession was then imported into R statistical software for UPGMA reordered hierarchical cluster analysis. ..... Mwale, S.E., Ssemakula, M.O., Sadik, K.,.
Use of linear discriminant function analysis in seed morphotype ...
African Journals Online (AJOL)
Variation in seed morphology of the Lima bean in 31 accessions was studied. Data were collected on 100-seed weight, seed length and seed width. The differences among the accessions were significant, based on the three seed characteristics. K-means cluster analysis grouped the 31 accessions into four distinct groups, ...
Use of Linear Discriminant Function Analysis in Five Yield Sub ...
African Journals Online (AJOL)
K-means cluster analysis grouped the 134 accessions into four distinct groups. Pairwise Mahalanobis 2 distance (D) among some of the groups was highly significant. From the study the yield sub-characters pod length, pod width, peduncle length and 100-seed weight contributed most to group separation in the cowpea ...
Quantitative electron microscope autoradiography: application of multiple linear regression analysis
International Nuclear Information System (INIS)
Markov, D.V.
1986-01-01
A new method for the analysis of high resolution EM autoradiographs is described. It identifies labelled cell organelle profiles in sections on a strictly statistical basis and provides accurate estimates for their radioactivity without the need to make any assumptions about their size, shape and spatial arrangement. (author)
Design and Characteristic Analysis of the Linear Homopolar Synchronous Motor
Energy Technology Data Exchange (ETDEWEB)
Jang, Seok Myeong; Jeong, Sang Sub; Lee, Soung Ho [Chungnam National University (Korea, Republic of); Park, Young Tae [KRISS (Korea, Republic of)
1997-07-21
The LHSM is the combined electromagnetic propulsion and levitation, braking and guidance system for Maglev. In this paper, the LHSM has the figure-of-eight shaped 3 {phi} armature windings, the field winding, and segmented secondary having transverse bar track. we treat of the development - design, analysis - of a combined electromagnetic propulsion/levitation systems, LHSM. (author). 1 ref., 7 figs., 2 tabs.
Laurens, L M L; Wolfrum, E J
2013-12-18
One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.
On the efficacy of linear system analysis of renal autoregulation in rats
DEFF Research Database (Denmark)
Chon, K H; Chen, Y M; Holstein-Rathlou, N H
1993-01-01
In order to assess the linearity of the mechanisms subserving renal blood flow autoregulation, broad-band arterial pressure fluctuations at three different power levels were induced experimentally and the resulting renal blood flow responses were recorded. Linear system analysis methods were...
Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.
2006-01-01
Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…
Sensitivity analysis of linear programming problem through a recurrent neural network
Das, Raja
2017-11-01
In this paper we study the recurrent neural network for solving linear programming problems. To achieve optimality in accuracy and also in computational effort, an algorithm is presented. We investigate the sensitivity analysis of linear programming problem through the neural network. A detailed example is also presented to demonstrate the performance of the recurrent neural network.
International Nuclear Information System (INIS)
Zhao Yangping; Gao Huahun; Fu Longzhou
1991-01-01
A state-of-the-art multi-variable frequency-domain model has been developed for analysis of instabilities of nuclear-coupled density-wave in BWR core. The characteristic locus method is used for analysing the stability of BWR. A computer code-NUCTHIA has been derived. The model has been tested against the existing experimental data and compared with results of past single-variable analyses. By using the NUCTHIA code, the investigations of effects of main system parameters on BWW core stability have also been made. All the results are consistent with the experimental data
International Nuclear Information System (INIS)
Zahoor, A.; Kanninen, M.F.
1980-01-01
A method of evaluating the J-integral for a circumferentially cracked pipe in bending is proposed. The method allows a J-resistance curve to be evaluated directly from the load-displacement record obtained in a pipe fracture experiment. This method also permits an analysis for fracture instability in a circumferential crack growth using a J-resistance curve and the tearing modulus parameter. The importance of using a J-resistance curve that is consistent with the type of constraint for a given application is emphasized. 18 refs
Finite elements for non-linear analysis of pipelines
International Nuclear Information System (INIS)
Benjamim, A.C.; Ebecken, N.F.F.
1982-01-01
The application of a three-dimensional lagrangian formulation for the great dislocations analysis and great rotation of pipelines systems is studied. This formulation is derived from the soil mechanics and take into account the shear stress effects. Two finite element models are implemented. The first, of right axis, uses as interpolation functions the conventional gantry functions, defined in relation to mobile coordinates. The second, of curve axis and variable cross sections, is obtained from the degeneration of the three-dimensional isoparametric element, and uses as interpolation functions third degree polynomials. (E.G.) [pt
Linear feature selection in texture analysis - A PLS based method
DEFF Research Database (Denmark)
Marques, Joselene; Igel, Christian; Lillholm, Martin
2013-01-01
We present a texture analysis methodology that combined uncommitted machine-learning techniques and partial least square (PLS) in a fully automatic framework. Our approach introduces a robust PLS-based dimensionality reduction (DR) step to specifically address outliers and high-dimensional feature...... and considering all CV groups, the methods selected 36 % of the original features available. The diagnosis evaluation reached a generalization area-under-the-ROC curve of 0.92, which was higher than established cartilage-based markers known to relate to OA diagnosis....
Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons
Energy Technology Data Exchange (ETDEWEB)
Pokol, G. I.; Kómár, A.; Budai, A. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Stahl, A.; Fülöp, T. [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden)
2014-10-15
Runaway electrons with strongly anisotropic distributions present in post-disruption tokamak plasmas can destabilize the extraordinary electron (EXEL) wave. The present work investigates the dynamics of the quasi-linear evolution of the EXEL instability for a range of different plasma parameters using a model runaway distribution function valid for highly relativistic runaway electron beams produced primarily by the avalanche process. Simulations show a rapid pitch-angle scattering of the runaway electrons in the high energy tail on the 100–1000 μs time scale. Due to the wave-particle interaction, a modification to the synchrotron radiation spectrum emitted by the runaway electron population is foreseen, exposing a possible experimental detection method for such an interaction.
International Nuclear Information System (INIS)
Arons, J.; Lea, S.M.
1976-01-01
We describe the results of a linearized hydromagnetic stability analysis of the magnetopause of an accreting neutron star. The magnetosphere is assumed to be slowly rotating, and the plasma just outside of the magnetopause is assumed to be weakly magnetized. The plasma layer is assumed to be bounded above by a shock wave, and to be thin compared with the radius of the magnetosphere. Under these circumstances, the growing modes are shown to be localized in the direction parallel to the zero-order magnetic field. The structure of the modes is still similar to the flute mode, however. The growth rate at each magnetic latitude is lambda given by γ 2 =g/sub n/kα/sub eff/(lambda) tanh [kz/sub s/(lambda)] where g/sub n/ is the magnitude of the gravitational acceleration normal to the surface, kapprox. =vertical-barmvertical-bar/R (lambda)cos lambda, vertical-barmvertical-bar is the azimuthal mode number, R (lambda) is the radius of the magnetosphere, z/sub s/ is the height of the shock above the magnetopause, and α/sub eff/(lambda) <1 is the effective Atwood number which embodies the stabilizing effects of favorable curvature and magnetic tension. We calculate α/sub eff/(lambda), and also discuss the stabilizing effects of viscosity and of aligned flow parallel to the magnetopause
Analysis of failed surgery for patellar instability in children with open growth plates.
Nelitz, Manfred; Theile, Michael; Dornacher, Daniel; Wölfle, Julia; Reichel, Heiko; Lippacher, Sabine
2012-05-01
Many surgical procedures have been proposed to treat recurrent patellar dislocation in children. In recent years, a more tailored approach considering the underlying pathology has been advocated. The aim of the study was to analyze a group of patients with recurrent patellofemoral instability after unsuccessful operative stabilization (Roux-Goldthwait procedure, lateral release, medial reefing or in combination) in childhood and adolescence. A total of 37 children and adolescents with recurrent patellofemoral instability despite previous surgery were analyzed retrospectively. Radiographic examination included AP and lateral views to assess patella alta and limb alignment. MRI was performed to evaluate trochlear dysplasia and tibial tubercle-trochlear groove (TTTG) distance. As a control group, 23 age- and sex-matched adolescents that were treated with a favorable outcome after medial reefing alone or combined with a Roux-Goldthwait procedure were analyzed. Severe trochlear dysplasia (type B-D according to Dejour) as detected on MRI scans was found significantly more often in the study group (89%) than in the control group (21%). No statistical difference of patellar height ratio (Insall-Salvati index) and TTTG distance between the two groups could be found. Of the measured parameters, only the incidence of trochlear dysplasia was increased. Trochlear dysplasia therefore seems to be a major risk factor for failure of operative stabilization of recurrent patellofemoral instability in children and adolescents. The results in children are in consensus with the literature in adults that a more tailored operative therapy including reconstruction of the MPFL and trochleaplasty has to be considered. Retrospective study, Level III.
Lafave, Mark R; Hiemstra, Laurie; Kerslake, Sarah
2016-08-01
Clinical management of patellofemoral (PF) instability is a challenge, particularly considering the number of variables that should be taken into consideration for treatment. Quality of life is an important measure to consider with this patient population. To factor analyze and reduce the total number of items in the Banff Patella Instability Instrument (BPII). Subsequent to the factor analysis, the new, item-reduced BPII 2.0 was tested for validity, reliability, and responsiveness. Cohort study (diagnosis); Level of evidence, 2. Quality of life was measured for PF instability patients (N = 223) through use of the original BPII at their initial consultation. Data from the BPII scores were used in a principal components analysis (PCA) to factor analyze and reduce the total number of items in the original BPII, to create a revised BPII 2.0. The BPII 2.0 underwent content validation (Cronbach alpha, patient interviews, and grade-level checking), construct validation (analysis of variance comparing the initial visit and the 6-, 12-, and 24-month postoperative visits, eta-square), convergent validation (Pearson r correlation to the original BPII), responsiveness testing (eta-square, anchor-based distribution testing), and reliability testing (intraclass correlation coefficient [ICC]). The BPII was successfully reduced from 32 to 23 items with excellent Cronbach alpha values in the new BPII 2.0: initial visit = 0.91; 6-month postoperative visit = 0.96; 12-month postoperative visit = 0.97; and 24-month postoperative visit = 0.76. Grade-level reading for all items was assessed as below grade 12. The BPII 2.0 was able to discriminate between all time periods with significant differences between groups (P correlated with the BPII 2.0 (0.82, 0.90, 0.90, and 0.94 at the initial visit and 6-, 12-, and 24-month postoperative visits, respectively), providing evidence of convergent validity. A significant correlation was found between the 7-point scale and 24-month postoperative
Secondary Instability of Second Modes in Hypersonic Boundary Layers
Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.
2012-01-01
Second mode disturbances dominate the primary instability stage of transition in a number of hypersonic flow configurations. The highest amplification rates of second mode disturbances are usually associated with 2D (or axisymmetric) perturbations and, therefore, a likely scenario for the onset of the three-dimensionality required for laminar-turbulent transition corresponds to the parametric amplification of 3D secondary instabilities in the presence of 2D, finite amplitude second mode disturbances. The secondary instability of second mode disturbances is studied for selected canonical flow configurations. The basic state for the secondary instability analysis is obtained by tracking the linear and nonlinear evolution of 2D, second mode disturbances using nonlinear parabolized stability equations. Unlike in previous studies, the selection of primary disturbances used for the secondary instability analysis was based on their potential relevance to transition in a low disturbance environment and the effects of nonlinearity on the evolution of primary disturbances was accounted for. Strongly nonlinear effects related to the self-interaction of second mode disturbances lead to an upstream shift in the upper branch neutral location. Secondary instability computations confirm the previously known dominance of subharmonic modes at relatively small primary amplitudes. However, for the Purdue Mach 6 compression cone configuration, it was shown that a strong fundamental secondary instability can exist for a range of initial amplitudes of the most amplified second mode disturbance, indicating that the exclusive focus on subharmonic modes in the previous applications of secondary instability theory to second mode primary instability may not have been fully justified.
DEFF Research Database (Denmark)
Santillan, Arturo Orozco
2011-01-01
The aim of the work described in this paper has been to investigate the use of the finite-difference time-domain method to describe the interactions between a moving object and a sound field. The main objective was to simulate oscillational instabilities that appear in single-axis acoustic...... levitation devices and to describe their evolution in time to further understand the physical mechanism involved. The study shows that the method gives accurate results for steady state conditions, and that it is a promising tool for simulations with a moving object....
Turing instability and bifurcation analysis in a diffusive bimolecular system with delayed feedback
Wei, Xin; Wei, Junjie
2017-09-01
A diffusive autocatalytic bimolecular model with delayed feedback subject to Neumann boundary conditions is considered. We mainly study the stability of the unique positive equilibrium and the existence of periodic solutions. Our study shows that diffusion can give rise to Turing instability, and the time delay can affect the stability of the positive equilibrium and result in the occurrence of Hopf bifurcations. By applying the normal form theory and center manifold reduction for partial functional differential equations, we investigate the stability and direction of the bifurcations. Finally, we give some simulations to illustrate our theoretical results.
A simplified procedure of linear regression in a preliminary analysis
Directory of Open Access Journals (Sweden)
Silvia Facchinetti
2013-05-01
Full Text Available The analysis of a statistical large data-set can be led by the study of a particularly interesting variable Y – regressed – and an explicative variable X, chosen among the remained variables, conjointly observed. The study gives a simplified procedure to obtain the functional link of the variables y=y(x by a partition of the data-set into m subsets, in which the observations are synthesized by location indices (mean or median of X and Y. Polynomial models for y(x of order r are considered to verify the characteristics of the given procedure, in particular we assume r= 1 and 2. The distributions of the parameter estimators are obtained by simulation, when the fitting is done for m= r + 1. Comparisons of the results, in terms of distribution and efficiency, are made with the results obtained by the ordinary least square methods. The study also gives some considerations on the consistency of the estimated parameters obtained by the given procedure.
Investigation on the instability characteristics in MM-4U tandem mirror
International Nuclear Information System (INIS)
Ye Rubin; Ming Linzhou; Wu Guangun; Shi Qiang; Xu Liyun; Li Zhicai; Zhao Xiaochun
1995-06-01
The plasma fluctuation signals in MM-4U tandem mirror were investigated by using linear spectral analysis. Oscillation and propagation characteristics of the instability were obtained. the instability mode and probable exciting mechanism and a method for measuring electron temperature were deduced. The wave-wave nonlinear interaction processes were studied by using nonlinear spectral analysis technique. It is shown that the nonlinear three waves interaction process exists in the device as the main nonlinear process. The nonlinear interaction broadens the spectra of the instability
International Nuclear Information System (INIS)
Jain, Shweta; Sharma, Prerana; Chhajlani, R. K.
2015-01-01
The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability
International Nuclear Information System (INIS)
Boure, J.
1967-01-01
The problem of the oscillatory behavior of heated channels is presented in terms of delay-times and a density effect model is proposed to explain the behavior. The density effect is the consequence of the physical relationship between enthalpy and density of the fluid. In the first part non-linear equations are derived from the model in a dimensionless form. A description of the mechanism of oscillations is given, based on the analysis of the equations. An inventory of the governing parameters is established. At this point of the study, some facts in agreement with the experiments can be pointed out. In the second part the start of the oscillatory behavior of heated channels is studied in terms of the density effect. The threshold equations are derived, after linearization of the equations obtained in Part I. They can be solved rigorously by numerical methods to yield: -1) a relation between the describing parameters at the onset of oscillations, and -2) the frequency of the oscillations. By comparing the results predicted by the model to the experimental behavior of actual systems, the density effect is very often shown to be the actual cause of oscillatory behaviors. (author) [fr
DEFF Research Database (Denmark)
Sommer, Stefan Horst; Lauze, Francois Bernard; Hauberg, Søren
2010-01-01
, we present a comparison between the non-linear analog of Principal Component Analysis, Principal Geodesic Analysis, in its linearized form and its exact counterpart that uses true intrinsic distances. We give examples of datasets for which the linearized version provides good approximations...... and for which it does not. Indicators for the differences between the two versions are then developed and applied to two examples of manifold valued data: outlines of vertebrae from a study of vertebral fractures and spacial coordinates of human skeleton end-effectors acquired using a stereo camera and tracking...
Sheared Electroconvective Instability
Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon
2012-11-01
Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.
Analysis of the crystal lattice instability for cage–cluster systems using the superatom model
Energy Technology Data Exchange (ETDEWEB)
Serebrennikov, D. A., E-mail: dserebrennikov@innopark.kantiana.ru, E-mail: dimafania@mail.ru; Clementyev, E. S. [I. Kant Baltic Federal University, “Functional Nanomaterials” Scientific–Educational Center (Russian Federation); Alekseev, P. A. [“Kurchatov Institute” National Research Center (Russian Federation)
2016-09-15
We have investigated the lattice dynamics for a number of rare-earth hexaborides based on the superatom model within which the boron octahedron is substituted by one superatom with a mass equal to the mass of six boron atoms. Phenomenological models have been constructed for the acoustic and lowenergy optical phonon modes in RB{sub 6} (R = La, Gd, Tb, Dy) compounds. Using DyB{sub 6} as an example, we have studied the anomalous softening of longitudinal acoustic phonons in several crystallographic directions, an effect that is also typical of GdB{sub 6} and TbB{sub 6}. The softening of the acoustic branches is shown to be achieved through the introduction of negative interatomic force constants between rare-earth ions. We discuss the structural instability of hexaborides based on 4f elements, the role of valence instability in the lattice dynamics, and the influence of the number of f electrons on the degree of softening of phonon modes.
International Nuclear Information System (INIS)
Itasse, Maxime; Brazier, Jean-Philippe; Léon, Olivier; Casalis, Grégoire
2015-01-01
Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m 1 , n 1 ), (m 2 , n 2 ), such that the difference in azimuth and in frequency matches the desired “target” mode (m 1 − m 2 , n 1 − n 2 ). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes
Analytical and numerical analysis of finite amplitude Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Meiron, D.I.; Saffman, P.G.
1987-01-01
We summarize the results obtained in the last year. These include a simple model of bubble competition in Rayleigh-Taylor unstable flows which gives results which are in good agreement with experiment. In addition the model has been compared with two dimensional numerical simulations of inviscid Rayleigh-Taylor instability using the cloud-in-cell method. These simulations can now be run into the late time regime and can track the competition of as many as ten bubbles. The improvement in performance over previous applications of the cloud-in-cell approach is due to the application of finite difference techniques designed to handle shock-like structures in the vorticity of the interface which occur at late times. We propose to extend the research carried thus far to Rayleigh-Taylor problems in three dimensional and convergent geometries as well as to two-fluid instabilities in which interface roll-up is observed. Finally we present a budget for the fiscal year 1987-1988. 6 refs
Energy Technology Data Exchange (ETDEWEB)
Itasse, Maxime, E-mail: Maxime.Itasse@onera.fr; Brazier, Jean-Philippe, E-mail: Jean-Philippe.Brazier@onera.fr; Léon, Olivier, E-mail: Olivier.Leon@onera.fr; Casalis, Grégoire, E-mail: Gregoire.Casalis@onera.fr [Onera - The French Aerospace Lab, F-31055 Toulouse (France)
2015-08-15
Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m{sub 1}, n{sub 1}), (m{sub 2}, n{sub 2}), such that the difference in azimuth and in frequency matches the desired “target” mode (m{sub 1} − m{sub 2}, n{sub 1} − n{sub 2}). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.
Energy Technology Data Exchange (ETDEWEB)
Garcia-Fenoll, M.; Abarca, A.; Barrachina, T.; Miro, R.; Verdu, G.
2012-07-01
This paper presents a methodology of analysis of the reactors instabilities of BWR type. This methodology covers of modal analysis of the point operation techniques of signal analysis and simulation of transients, through 3D Coupled RELAP5/PARCSv2.7 code.
Structural and Material Instability
DEFF Research Database (Denmark)
Cifuentes, Gustavo Cifuentes
This work is a small contribution to the general problem of structural and material instability. In this work, the main subject is the analysis of cracking and failure of structural elements made from quasi-brittle materials like concrete. The analysis is made using the finite element method. Three...
Feedback stabilization of plasma instabilities
International Nuclear Information System (INIS)
Cap, F.F.
1977-01-01
This paper reviews the theoretical and experimental aspects of feedback stabilization. After giving an outline of a general theoretical model for electrostatic instabilities the author provides a theoretical analysis of the suppression of various types of instability. Experiments which have been carried out on the feedback stabilization of various types of plasma instability are reported. An extensive list of references is given. (B.R.H.)
International Nuclear Information System (INIS)
Chaaba, Ali; Aboussaleh, Mohamed; Bousshine, Lahbib; Boudaia, El Hassan
2011-01-01
Limit analysis approaches are widely used to deal with metalworking processes analysis; however, they are applied only for perfectly plastic materials and recently for isotropic hardening ones excluding any kind of kinematic hardening. In the present work, using Implicit Standard Materials concept, sequential limit analysis approach and the finite element method, our objective consists in extending the limit analysis application for including linear and non linear kinematic strain hardenings. Because this plastic flow rule is non associative, the Implicit Standard Materials concept is adopted as a framework of non standard plasticity modeling. The sequential limit analysis procedure which considers the plastic behavior with non linear kinematic strain hardening as a succession of perfectly plastic behavior with yielding surfaces updated after each sequence of limit analysis and geometry updating is applied. Standard kinematic finite element method together with a regularization approach is used for performing two large compression cases (cold forging) in plane strain and axisymmetric conditions
Curvature-Induced Instabilities of Shells
Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark P.; Bade, Abdikhalaq J.; Holmes, Douglas P.
2018-01-01
Induced by proteins within the cell membrane or by differential growth, heating, or swelling, spontaneous curvatures can drastically affect the morphology of thin bodies and induce mechanical instabilities. Yet, the interaction of spontaneous curvature and geometric frustration in curved shells remains poorly understood. Via a combination of precision experiments on elastomeric spherical shells, simulations, and theory, we show how a spontaneous curvature induces a rotational symmetry-breaking buckling as well as a snapping instability reminiscent of the Venus fly trap closure mechanism. The instabilities, and their dependence on geometry, are rationalized by reducing the spontaneous curvature to an effective mechanical load. This formulation reveals a combined pressurelike term in the bulk and a torquelike term in the boundary, allowing scaling predictions for the instabilities that are in excellent agreement with experiments and simulations. Moreover, the effective pressure analogy suggests a curvature-induced subcritical buckling in closed shells. We determine the critical buckling curvature via a linear stability analysis that accounts for the combination of residual membrane and bending stresses. The prominent role of geometry in our findings suggests the applicability of the results over a wide range of scales.
Development of non-linear vibration analysis code for CANDU fuelling machine
International Nuclear Information System (INIS)
Murakami, Hajime; Hirai, Takeshi; Horikoshi, Kiyomi; Mizukoshi, Kaoru; Takenaka, Yasuo; Suzuki, Norio.
1988-01-01
This paper describes the development of a non-linear, dynamic analysis code for the CANDU 600 fuelling machine (F-M), which includes a number of non-linearities such as gap with or without Coulomb friction, special multi-linear spring connections, etc. The capabilities and features of the code and the mathematical treatment for the non-linearities are explained. The modeling and numerical methodology for the non-linearities employed in the code are verified experimentally. Finally, the simulation analyses for the full-scale F-M vibration testing are carried out, and the applicability of the code to such multi-degree of freedom systems as F-M is demonstrated. (author)
A simplified numerical analysis of helical instabilities of arcs in axial magnetic field
International Nuclear Information System (INIS)
Gong Ye; Lu Wenyan; Liu Jinyuan; Zheng Shu; Gong Jiquan
2002-01-01
The energy equations were simplified by the correct electrostatic ordering under electrostatic approximation. The effects of the external axial magnetic field, the current profiles and arc currents on the helical instabilities of arcs were studied by using numerical method. In the presence of the external magnetic field, numerical results show that when the current profile of an arc column is the uniform distribution, the short wavelength perturbation can be stabilized by positive direction magnetic field, whereas the long wavelength perturbation can be stabilized by reverse magnetic field. When the current profile of an arc column has a parabolic distribution, in the short wavelength perturbation case, the effect of positive direction magnetic field on the arc stability is very small. However, its stabilizing effect is enhanced for the long wavelength perturbation. The intermediate and long wavelength perturbations can also be stabilized by reverse magnetic field
Single-mode saturation of the bump-on-tail instability
International Nuclear Information System (INIS)
Simon, A.; Rosenbluth, M.N.
1976-01-01
A slightly unstable plasma with only one or a few linear modes unstable is considered. Nonlinear saturation at small amplitudes has been treated by time-asymptotic analysis which is a generalization of the methods of Bogolyubov and co-workers. In this paper the method is applied to instability in a collisionless plasma governed by the vlasov equation. The bump-on-tail instability is considered for a one-dimensional plasma
Oblique proton fire hose instability in the expanding solar wind: Hybrid simulations
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Trávníček, Pavel M.
2008-01-01
Roč. 113, A10 (2008), A10109/1-A10109/9 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : kinetic instability * fire hose * solar wind * fire hose instabilities * linear analysis * nonlinear evolution * solar wind Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008
Instabilities in mimetic matter perturbations
Energy Technology Data Exchange (ETDEWEB)
Firouzjahi, Hassan; Gorji, Mohammad Ali [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Mansoori, Seyed Ali Hosseini, E-mail: firouz@ipm.ir, E-mail: gorji@ipm.ir, E-mail: shosseini@shahroodut.ac.ir, E-mail: shossein@ipm.ir [Physics Department, Shahrood University of Technology, P.O. Box 3619995161 Shahrood (Iran, Islamic Republic of)
2017-07-01
We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilities such as the Ostrogradsky ghost.
DEFF Research Database (Denmark)
Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth
2015-01-01
The increasing number of renewable energy sources at the distribution grid is becoming a major issue for utility companies, since the grid connected converters are operating at different operating points due to the probabilistic characteristics of renewable energy. Besides, typically, the harmonics...... proposes a new model of a single phase grid connected renewable energy source using the Harmonic State Space modeling approach, which is able to identify such problems and the model can be extended to be applied in the multiple connected converter analysis. The modeling results show the different harmonic...... and impedance from other renewable energy sources are not taken carefully into account in the installation and design. However, this may bring an unknown harmonic instability into the multiple power sourced system and also make the analysis difficult due to the complexity of the grid network. This paper...
International Nuclear Information System (INIS)
Abbasi, Vahid; Gholami, Ahmad; Niayesh, Kaveh
2012-01-01
A three-dimensional (3-D) transient model has been developed to investigate plasma deformation driven by a magnetic field and its influence on arc stability in a circuit breaker. The 3-D distribution of electric current density is obtained from a current continuity equation along with the generalized Ohm's law; while the magnetic field induced by the current flowing through the arc column is calculated by the magnetic vector potential equation. When gas interacts with an arc column, fundamental factors, such as Ampere's law, Ohm's law, the turbulence model, transport equations of mass, momentum and energy of plasma flow, have to be coupled for analyzing the phenomenon. The coupled interactions between arc and plasma flow are described in the framework of time-dependent magnetohydrodynamic (MHD) equations in conjunction with a K-ε turbulence model. Simulations have been focused on sausage and kink instabilities in plasma (these phenomena are related to pinch effects and electromagnetic fields). The 3-D simulation reveals the relation between plasma deformation and instability phenomena, which affect arc stability during circuit breaker operation. Plasma deformation is the consequence of coupled interactions between the electromagnetic force and plasma flow described in simulations. (plasma technology)
Linear analysis on the growth of non-spherical perturbations in supersonic accretion flows
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Kazuya; Yamada, Shoichi, E-mail: ktakahashi@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku 169-8555 (Japan)
2014-10-20
We analyzed the growth of non-spherical perturbations in supersonic accretion flows. We have in mind an application to the post-bounce phase of core-collapse supernovae (CCSNe). Such non-spherical perturbations have been suggested by a series of papers by Arnett, who has numerically investigated violent convections in the outer layers of pre-collapse stars. Moreover, Couch and Ott demonstrated in their numerical simulations that such perturbations may lead to a successful supernova even for a progenitor that fails to explode without fluctuations. This study investigated the linear growth of perturbations during the infall onto a stalled shock wave. The linearized equations are solved as an initial and boundary value problem with the use of a Laplace transform. The background is a Bondi accretion flow whose parameters are chosen to mimic the 15 M {sub ☉} progenitor model by Woosley and Heger, which is supposed to be a typical progenitor of CCSNe. We found that the perturbations that are given at a large radius grow as they flow down to the shock radius; the density perturbations can be amplified by a factor of 30, for example. We analytically show that the growth rate is proportional to l, the index of the spherical harmonics. We also found that the perturbations oscillate in time with frequencies that are similar to those of the standing accretion shock instability. This may have an implication for shock revival in CCSNe, which will be investigated in our forthcoming paper in more detail.
Cooke, C. H.
1975-01-01
STICAP (Stiff Circuit Analysis Program) is a FORTRAN 4 computer program written for the CDC-6400-6600 computer series and SCOPE 3.0 operating system. It provides the circuit analyst a tool for automatically computing the transient responses and frequency responses of large linear time invariant networks, both stiff and nonstiff (algorithms and numerical integration techniques are described). The circuit description and user's program input language is engineer-oriented, making simple the task of using the program. Engineering theories underlying STICAP are examined. A user's manual is included which explains user interaction with the program and gives results of typical circuit design applications. Also, the program structure from a systems programmer's viewpoint is depicted and flow charts and other software documentation are given.
Lü, Hui; Shangguan, Wen-Bin; Yu, Dejie
2017-09-01
Automotive brake systems are always subjected to various types of uncertainties and two types of random-fuzzy uncertainties may exist in the brakes. In this paper, a unified approach is proposed for squeal instability analysis of disc brakes with two types of random-fuzzy uncertainties. In the proposed approach, two uncertainty analysis models with mixed variables are introduced to model the random-fuzzy uncertainties. The first one is the random and fuzzy model, in which random variables and fuzzy variables exist simultaneously and independently. The second one is the fuzzy random model, in which uncertain parameters are all treated as random variables while their distribution parameters are expressed as fuzzy numbers. Firstly, the fuzziness is discretized by using α-cut technique and the two uncertainty analysis models are simplified into random-interval models. Afterwards, by temporarily neglecting interval uncertainties, the random-interval models are degraded into random models, in which the expectations, variances, reliability indexes and reliability probabilities of system stability functions are calculated. And then, by reconsidering the interval uncertainties, the bounds of the expectations, variances, reliability indexes and reliability probabilities are computed based on Taylor series expansion. Finally, by recomposing the analysis results at each α-cut level, the fuzzy reliability indexes and probabilities can be obtained, by which the brake squeal instability can be evaluated. The proposed approach gives a general framework to deal with both types of random-fuzzy uncertainties that may exist in the brakes and its effectiveness is demonstrated by numerical examples. It will be a valuable supplement to the systematic study of brake squeal considering uncertainty.
International Nuclear Information System (INIS)
Demeshko, M.; Dokhane, A.; Washio, T.; Ferroukhi, H.; Kawahara, Y.; Aguirre, C.
2015-01-01
Highlights: • We demonstrate the first application of a novel CSARMA method. • We analyze the instability occurred in a Swiss BWR plant during power ascension. • Benchmarked the results against STP analysis. • The CSARMA results are consistent with the background physics and the STP results. • The instability was caused by disturbances in the pressure control system. - Abstract: This paper presents a first application of a novel Continuous and Structural Autoregressive Moving Average (CSARMA) modeling approach to BWR noise analysis. The CSARMA approach derives a unique representation of the system dynamics by more robust and reliable canonical models as basis for signal analysis in general and for reactor diagnostics in particular. In this paper, a stability event that occurred in a Swiss BWR plant during power ascension phase is analyzed as well as the time periods that preceded and followed the event. Focusing only on qualitative trends at this stage, the obtained results clearly indicate a different dynamical state during the unstable event compared to the two other stable periods. Also, they could be interpreted as pointing out a disturbance in the pressure control system as primary cause for the event. To benchmark these findings, the frequency-domain based signal transmission-path (STP) method is also applied. And with the STP method, we obtained similar relationships as mentioned above. This consistency between both methods can be considered as being a confirmation that the event was caused by a pressure control system disturbance and not induced by the core. Also, it is worth noting that the STP analysis failed to catch the relations among the processes during the stable periods, that were clearly indicated by the CSARMA method, since the last uses more precise models as basis
DEFF Research Database (Denmark)
Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.
2004-01-01
of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep-water non-linearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only...... insight into the numerical behaviour of this rather complicated system of non-linear PDEs....
Modulational instability and the Fermi-Pasta-Ulam recurrence
International Nuclear Information System (INIS)
Janssen, P.A.E.M.
1981-01-01
The long-time behavior of the modulational instability of the nonlinear Schroedinger equation is investigated. Linear stability analysis shows that a finite amplitude uniform wave train is unstable to infinitesimal modulational perturbations with sufficiently long wavelengths while it is stable for perturbations with short wavelengths. Near the threshold for instability, the long-time behavior of the unstable modulation is obtained by means of the multiple time scale technique. As a result, the Fermi--Pasta--Ulam recurrence is rediscovered, in agreement with recent experiments and with a numerical solution of the problem at hand
Hossain, Ahmed; Beyene, Joseph
2014-01-01
This article compares baseline, average, and longitudinal data analysis methods for identifying genetic variants in genome-wide association study using the Genetic Analysis Workshop 18 data. We apply methods that include (a) linear mixed models with baseline measures, (b) random intercept linear mixed models with mean measures outcome, and (c) random intercept linear mixed models with longitudinal measurements. In the linear mixed models, covariates are included as fixed effects, whereas relatedness among individuals is incorporated as the variance-covariance structure of the random effect for the individuals. The overall strategy of applying linear mixed models decorrelate the data is based on Aulchenko et al.'s GRAMMAR. By analyzing systolic and diastolic blood pressure, which are used separately as outcomes, we compare the 3 methods in identifying a known genetic variant that is associated with blood pressure from chromosome 3 and simulated phenotype data. We also analyze the real phenotype data to illustrate the methods. We conclude that the linear mixed model with longitudinal measurements of diastolic blood pressure is the most accurate at identifying the known single-nucleotide polymorphism among the methods, but linear mixed models with baseline measures perform best with systolic blood pressure as the outcome.
Liu, Yan; Salvendy, Gavriel
2009-05-01
This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.
Simulation and sensitivity analysis for heavy linear paraffins production in LAB production Plant
Directory of Open Access Journals (Sweden)
Karimi Hajir
2014-12-01
Full Text Available Linear alkyl benzene (LAB is vastly utilized for the production of biodegradable detergents and emulsifiers. Predistillation unit is a part of LAB production plant in which that produced heavy linear paraffins (nC10-nC13. In this study, a mathematical model has been developed for heavy linear paraffins production in distillation columns, which has been solved using a commercial code. The models have been validated by the actual data. The effects of process parameters such as reflux rate, and reflux temperature using Gradient Search technique has been investigated. The sensitivity analysis shows that optimum reflux in columns are achieved.
International Nuclear Information System (INIS)
Lu Li; Yang Yiren
2009-01-01
The responses and limit cycle flutter of a plate-type structure with cubic stiffness in viscous flow were studied. The continuous system was dispersed by utilizing Galerkin Method. The equivalent linearization concept was performed to predict the ranges of limit cycle flutter velocities. The coupled map of flutter amplitude-equivalent linear stiffness-critical velocity was used to analyze the stability of limit cycle flutter. The theoretical results agree well with the results of numerical integration, which indicates that the equivalent linearization concept is available to the analysis of limit cycle flutter of plate-type structure. (authors)
Hu, Jun; Hadid, Hamda Ben; Henry, Daniel; Mojtabi, Abdelkader
Temporal and spatio-temporal instabilities of binary liquid films flowing down an inclined uniformly heated plate with Soret effect are investigated by using the Chebyshev collocation method to solve the full system of linear stability equations. Seven dimensionless parameters, i.e. the Kapitza, Galileo, Prandtl, Lewis, Soret, Marangoni, and Biot numbers (Ka, G, Pr, L, ) are used to control the flow system. In the case of pure spanwise perturbations, thermocapillary S- and P-modes are obtained. It is found that the most dangerous modes are stationary for positive Soret numbers (0), and oscillatory for =0 remains so for >0 and even merges with the long-wave S-mode. In the case of streamwise perturbations, a long-wave surface mode (H-mode) is also obtained. From the neutral curves, it is found that larger Soret numbers make the film flow more unstable as do larger Marangoni numbers. The increase of these parameters leads to the merging of the long-wave H- and S-modes, making the situation long-wave unstable for any Galileo number. It also strongly influences the short-wave P-mode which becomes the most critical for large enough Galileo numbers. Furthermore, from the boundary curves between absolute and convective instabilities (AI/CI) calculated for both the long-wave instability (S- and H-modes) and the short-wave instability (P-mode), it is shown that for small Galileo numbers the AI/CI boundary curves are determined by the long-wave instability, while for large Galileo numbers they are determined by the short-wave instability.
Non-linear analytic and coanalytic problems (Lp-theory, Clifford analysis, examples)
International Nuclear Information System (INIS)
Dubinskii, Yu A; Osipenko, A S
2000-01-01
Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the 'orthogonal' sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented
Non-linear analytic and coanalytic problems ( L_p-theory, Clifford analysis, examples)
Dubinskii, Yu A.; Osipenko, A. S.
2000-02-01
Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the "orthogonal" sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.
Noise analysis of fluid-valve system in a linear compressor using CAE
International Nuclear Information System (INIS)
Lee, Jun Ho; Jeong, Weui Bong; Kim, Dang Ju
2009-01-01
A linear compressor in a refrigerator uses piston motion to transfer refrigerant so its efficiency is higher than a previous reciprocal compressor. Because of interaction between refrigerant and valves system in the linear compressor, however, noise has been a main issue. In spite of doing many experimental researches, there is no way to rightly predict the noise. In order to solve this limitation, the CAE analysis is applied. For giving credit to these computational data, all of the data are experimentally validated.
Instability and dynamics of volatile thin films
Ji, Hangjie; Witelski, Thomas P.
2018-02-01
Volatile viscous fluids on partially wetting solid substrates can exhibit interesting interfacial instabilities and pattern formation. We study the dynamics of vapor condensation and fluid evaporation governed by a one-sided model in a low-Reynolds-number lubrication approximation incorporating surface tension, intermolecular effects, and evaporative fluxes. Parameter ranges for evaporation-dominated and condensation-dominated regimes and a critical case are identified. Interfacial instabilities driven by the competition between the disjoining pressure and evaporative effects are studied via linear stability analysis. Transient pattern formation in nearly flat evolving films in the critical case is investigated. In the weak evaporation limit unstable modes of finite-amplitude nonuniform steady states lead to rich droplet dynamics, including flattening, symmetry breaking, and droplet merging. Numerical simulations show that long-time behaviors leading to evaporation or condensation are sensitive to transitions between filmwise and dropwise dynamics.
Stochastic modeling of mode interactions via linear parabolized stability equations
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo
2017-11-01
Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.
Linear and nonlinear stability analysis in BWRs applying a reduced order model
Energy Technology Data Exchange (ETDEWEB)
Olvera G, O. A.; Espinosa P, G.; Prieto G, A., E-mail: omar_olverag@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)
2016-09-15
Boiling Water Reactor (BWR) stability studies are generally conducted through nonlinear reduced order models (Rom) employing various techniques such as bifurcation analysis and time domain numerical integration. One of those models used for these studies is the March-Leuba Rom. Such model represents qualitatively the dynamic behavior of a BWR through a one-point reactor kinetics, a one node representation of the heat transfer process in fuel, and a two node representation of the channel Thermal hydraulics to account for the void reactivity feedback. Here, we study the effect of this higher order model on the overall stability of the BWR. The change in the stability boundaries is determined by evaluating the eigenvalues of the Jacobian matrix. The nonlinear model is also integrated numerically to show that in the nonlinear region, the system evolves to stable limit cycles when operating close to the stability boundary. We also applied a new technique based on the Empirical Mode Decomposition (Emd) to estimate a parameter linked with stability in a BWR. This instability parameter is not exactly the classical Decay Ratio (Dr), but it will be linked with it. The proposed method allows decomposing the analyzed signal in different levels or mono-component functions known as intrinsic mode functions (Imf). One or more of these different modes can be associated to the instability problem in BWRs. By tracking the instantaneous frequencies (calculated through Hilbert Huang Transform (HHT) and the autocorrelation function (Acf) of the Imf linked to instability. The estimation of the proposed parameter can be achieved. The current methodology was validated with simulated signals of the studied model. (Author)
Linear and nonlinear stability analysis in BWRs applying a reduced order model
International Nuclear Information System (INIS)
Olvera G, O. A.; Espinosa P, G.; Prieto G, A.
2016-09-01
Boiling Water Reactor (BWR) stability studies are generally conducted through nonlinear reduced order models (Rom) employing various techniques such as bifurcation analysis and time domain numerical integration. One of those models used for these studies is the March-Leuba Rom. Such model represents qualitatively the dynamic behavior of a BWR through a one-point reactor kinetics, a one node representation of the heat transfer process in fuel, and a two node representation of the channel Thermal hydraulics to account for the void reactivity feedback. Here, we study the effect of this higher order model on the overall stability of the BWR. The change in the stability boundaries is determined by evaluating the eigenvalues of the Jacobian matrix. The nonlinear model is also integrated numerically to show that in the nonlinear region, the system evolves to stable limit cycles when operating close to the stability boundary. We also applied a new technique based on the Empirical Mode Decomposition (Emd) to estimate a parameter linked with stability in a BWR. This instability parameter is not exactly the classical Decay Ratio (Dr), but it will be linked with it. The proposed method allows decomposing the analyzed signal in different levels or mono-component functions known as intrinsic mode functions (Imf). One or more of these different modes can be associated to the instability problem in BWRs. By tracking the instantaneous frequencies (calculated through Hilbert Huang Transform (HHT) and the autocorrelation function (Acf) of the Imf linked to instability. The estimation of the proposed parameter can be achieved. The current methodology was validated with simulated signals of the studied model. (Author)
Simple estimating method of damages of concrete gravity dam based on linear dynamic analysis
Energy Technology Data Exchange (ETDEWEB)
Sasaki, T.; Kanenawa, K.; Yamaguchi, Y. [Public Works Research Institute, Tsukuba, Ibaraki (Japan). Hydraulic Engineering Research Group
2004-07-01
Due to the occurrence of large earthquakes like the Kobe Earthquake in 1995, there is a strong need to verify seismic resistance of dams against much larger earthquake motions than those considered in the present design standard in Japan. Problems exist in using nonlinear analysis to evaluate the safety of dams including: that the influence which the set material properties have on the results of nonlinear analysis is large, and that the results of nonlinear analysis differ greatly according to the damage estimation models or analysis programs. This paper reports the evaluation indices based on a linear dynamic analysis method and the characteristics of the progress of cracks in concrete gravity dams with different shapes using a nonlinear dynamic analysis method. The study concludes that if simple linear dynamic analysis is appropriately conducted to estimate tensile stress at potential locations of initiating cracks, the damage due to cracks would be predicted roughly. 4 refs., 1 tab., 13 figs.
Gigli, Giovanni; Margottini, Claudio; Spizzichino, Daniele; Ruther, Heinz; Casagli, Nicola
2016-04-01
released, stratigraphic setting and tectonic activity can be recognized. As a consequence, rock-falls have been occurring, even recently, with unstable rock mass volumes ranging from 0.1 m3 up to over some hundreds m3. Slope instability, acceleration of crack deformation and consequent increasing of rock-fall hazard conditions, could threaten the safety of tourist as well as the integrity of the heritage. 3D surface model coming from Terrestrial Laser Scanner acquisitions was developed almost all over the site of Petra, including the Siq. Comprehensively, a point cloud of five billion points was generated making the site of Petra likely the largest scanned archaeological site in the word. As far as the Siq, the scanner was positioned on the path floor at intervals of not more than 10 meters from each station. The total number of scans in the Siq was 220 with an average point cloud interval of approximately 3 cm. Subsequently, for the definition of the main rockfall source areas, a spatial kinematic analysis for the whole Siq has been performed, by using discontinuity orientation data extracted from the point cloud by means of the software Diana. Orientation, number of sets, spacing/frequency, persistence, block size and scale dependent roughness was obtained combining fieldwork and automatic analysis. This kind of analysis is able to establish where a particular instability mechanism is kinematically feasible, given the geometry of the slope, the orientation of discontinuities and shear strength of the rock. The final outcome of this project was a detail landslide kinematic index map, reporting main potential instability mechanisms for a given area. The kinematic index was finally calibrated for each instability mechanism (plane failure; wedge failure; block toppling; flexural toppling) surveyed in the site. The latter is including the collapse occurred in May 2015, likely not producing any victim, in a sector clearly identified by the susceptibility maps produced by the
Gravitational Instabilities in Circumstellar Disks
Kratter, Kaitlin; Lodato, Giuseppe
2016-09-01
Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular
International Nuclear Information System (INIS)
Dorfi, E.A.; Drury, L.O.
1985-01-01
The interaction between energetic charged particles and thermal plasma, which forms the basis of diffusive shock acceleration, leads also to interesting dynamical phenomena. For a compressional mode propagating in a system with homoeneous energetic particle pressure it is well known that friction with the energetic particles leads to damping. The linear theory of this effect has been analyzed in detail by Ptuskin. Not so obvious is that a non-uniform energetic particle pressure can in addition amplify compressional disturbances. If the pressure gradient is sufficiently steep this growth can dominate the frictional damping and lead to an instability. It is important to not that this effect results from the collective nature of the interaction between the energetic particles and the gas and is not connected with the Parker instability, nor with the resonant amplification of Alfven waves
Magnetic Diagnosis Upgrade and Analysis for MHD Instabilities on the J-TEXT
Guo, Daojing; Hu, Qiming; Zhuang, Ge; Wang, Nengchao; Ding, Yonghua; Tang, Yuejin; Yu, Qingquan; Huazhong University of Science; Technology Team; Max-Planck-Institut für Plasmaphysik Collaboration
2017-10-01
The magnetic diagnostic system on the J-TEXT tokamak has been upgraded to measure the magnetohydrodynamic (MHD) instabilities with diverse bands of frequencies. 12 saddle loop probes and 73 Mirnov probes are newly developed. The fabrication and installment of the new probes are elaborately designed, in consideration of higher spatial resolution and better amplitude-frequency characteristic. In this case, the probes utilize two kinds of novel fabrication craft, one of which is low temperature co-fired ceramics (LTCC), the other is flexible printed circuit (FPC). A great deal of experiments on the J-TEXT have validated the stability of the new system. Some typical discharges observed by the new diagnostic system are reviewed. In order to extract useful information from raw signals, several efficient signal processing methods are reviewed. An analytical model based on lumped eddy current circuits is used to compensate equilibrium flux and the corresponding eddy current fluxes, a visualization processing based on singular value decomposition (SVD) and cross-power spectrum are applied to detect the mode number. Fusion Science Program of China (Contract Nos. 2015GB111001 and 2014GB108000) and the National Natural Science Foundation of China (Contract Nos. 11505069 and 11405068).
Analysis of BWR out-of-phase instabilities in the frequency domain
International Nuclear Information System (INIS)
Farawila, Y.M.; Pruitt, D.W.; Kreuter, D.
1992-01-01
During startup or because of an inadvertent recirculation pump trip, a boiling water reactor (BWR) may operate at relatively low flow and high power conditions. At these conditions, a BWR is susceptible to coupled flow and power oscillations that could result in undesirable reactor scram unless appropriate countermeasures are taken. This contribution to analytical methods has been developed to address in part a general industrywide and regulatory concern about BWR stability initiated by the LaSalle 2 instability event in March 1988. This work is designed to extend the capability of the one-dimensional parallel channel frequency domain code STAIF to predict the regional oscillation decay ratio. The basic theory follows that developed by March-Leuba and Blakeman, where the oscillation mechanism is identified as the excitation of a subcritical neutronic mode with a constant core pressure drop boundary condition. The improvements to the basic theory include applying the theory to one-dimensional neutronics instead of point kinetics and taking account of the actual three-dimensional harmonic flux distribution
International Nuclear Information System (INIS)
Welch, D.R.
1984-01-01
The major complications for tumor therapy are 1) tumor spread (metastasis); 2) the mixed nature of tumors (heterogeneity); and 3) the capacity of tumors to evolve (progress). To study these tumor characteristics, the rat 13762NF mammary adenocarcinoma was cloned and studied for metastatic properties and sensitivities to therapy (chemotherapy, radiation and hyperthermia). The cell clones were heterogeneous and no correlation between metastatic potential and therapeutic sensitivities was observed. Further, these phenotypes were unstable during pasage in vitro; yet, the changes were clone dependent and reproducible using different cryoprotected cell stocks. To understand the phenotypic instability, subclones were isolated from low and high passage cell clones. The results demonstrated that 1) tumor cells are heterogeneous for multiple phenotypes; 2) tumor cells are unstable for multiple phenotypes; 3) the magnitude, direction and time of occurrence of phenotypic drift is clone dependent; 4) the sensitivity of cell clones to ionizing radiation (γ or heat) and chemotherapy agents is independent of their metastatic potential; 5) shifts in metastatic potential and sensitivity to therapy may occur simultaneously but are not linked; and 6) tumor cells independently diverge to form several subpopulations with unique phenotypic profiles
Chernokulsky, A. V.; Kurgansky, M. V.; Mokhov, I. I.
2017-12-01
A simple index of convective instability (3D-index) is used for analysis of weather and climate processes that favor to the occurrence of severe convective events including tornadoes. The index is based on information on the surface air temperature and humidity. The prognostic ability of the index to reproduce severe convective events (thunderstorms, showers, tornadoes) is analyzed. It is shown that most tornadoes in North Eurasia are characterized by high values of the 3D-index; furthermore, the 3D-index is significantly correlated with the available convective potential energy. Reanalysis data (for recent decades) and global climate model simulations (for the 21st century) show an increase in the frequency of occurrence of favorable for tornado formation meteorological conditions in the regions of Northern Eurasia. The most significant increase is found on the Black Sea coast and in the south of the Far East.
International Nuclear Information System (INIS)
Anh, N.D.; Hieu, N.N.; Chung, P.N.; Anh, N.T.
2016-01-01
Highlights: • Linearization criteria are presented for a single-node model of satellite thermal. • A nonlinear algebraic system for linearization coefficients is obtained. • The temperature evolutions obtained from different methods are explored. • The temperature mean and amplitudes versus the heat capacity are discussed. • The dual criterion approach yields smaller errors than other approximate methods. - Abstract: In this paper, the method of equivalent linearization is extended to the thermal analysis of satellite using both conventional and dual criteria of linearization. These criteria are applied to a differential nonlinear equation of single-node model of the heat transfer of a small satellite in the Low Earth Orbit. A system of nonlinear algebraic equations for linearization coefficients is obtained in the closed form and then solved by the iteration method. The temperature evolution, average values and amplitudes versus the heat capacity obtained by various approaches including Runge–Kutta algorithm, conventional and dual criteria of equivalent linearization, and Grande's approach are compared together. Numerical results reveal that temperature responses obtained from the method of linearization and Grande's approach are quite close to those obtained from the Runge–Kutta method. The dual criterion yields smaller errors than those of the remaining methods when the nonlinearity of the system increases, namely, when the heat capacity varies in the range [1.0, 3.0] × 10 4 J K −1 .
Treating experimental data of inverse kinetic method by unitary linear regression analysis
International Nuclear Information System (INIS)
Zhao Yusen; Chen Xiaoliang
2009-01-01
The theory of treating experimental data of inverse kinetic method by unitary linear regression analysis was described. Not only the reactivity, but also the effective neutron source intensity could be calculated by this method. Computer code was compiled base on the inverse kinetic method and unitary linear regression analysis. The data of zero power facility BFS-1 in Russia were processed and the results were compared. The results show that the reactivity and the effective neutron source intensity can be obtained correctly by treating experimental data of inverse kinetic method using unitary linear regression analysis and the precision of reactivity measurement is improved. The central element efficiency can be calculated by using the reactivity. The result also shows that the effect to reactivity measurement caused by external neutron source should be considered when the reactor power is low and the intensity of external neutron source is strong. (authors)
Raskin, G A; Ianus, G A; Kornilov, A V; Orlova, R V; Petrov, S V; Protasova, A É; Pozharisskiĭ, K M; Imianitov, E N
2014-01-01
Adenocarcinoma of the colon in 10-20% is associated with microsatellite instability, which can occur both in sporadic cancers and in hereditary nonpolyposis colon cancer. Our analysis of 195 cases of adenocarcinoma of the colon showed that microsatellite instability (MSI-H) was found only in 1.5% of patients. Subsequent choice of patients with suspected hereditary Lynch syndrome led to the identification of additional 17 patients with microsatellite instability. They passed an analysis of genes of repair system of unpaired nucleotides of DNA. The study showed that immunohistochemical staining of MSH2, MSH6, MLH1, PMS2 could effectively conduct a preliminary screening of the Lynch syndrome but was unable to divide cases of sporadic and hereditary MSI-H colon cancer.
Energy Technology Data Exchange (ETDEWEB)
Smith, Toby O. [University of East Anglia, Faculty of Health, Norwich (United Kingdom); Davies, Leigh [Norfolk and Norwich University Hospital, Norwich (United Kingdom); Toms, Andoni P.; Donell, Simon T. [University of East Anglia, Faculty of Health, Norwich (United Kingdom); Norfolk and Norwich University Hospital, Norwich (United Kingdom); Hing, Caroline B. [St George' s Hospital, London (United Kingdom)
2011-04-15
To determine the discriminative validity and reliability of the evidence base using meta-analysis. A review of published sources using the databases AMED, CINHAL, EMBASE, MEDLINE, Scopus and the Cochrane Library, and for unpublished material was conducted. All studies assessing the reliability, validity, sensitivity or specificity of magnetic resonance imaging (MRI), computed tomography (CT) or ultrasound (US) of the patellofemoral joint of patients following patellar dislocation, subluxation or instability, were included. A meta-analysis was performed to assess the difference in radiological measurements between healthy controls and subjects with patellar instability in order to assess discrimination validity. A narrative assessment was used to evaluate the inter- and intra-observer reliability as well as the sensitivity and specificity of specific radiological measurements. A total of 27 studies were reviewed. The findings indicated that there was acceptable inter-observer and intra-observer reliability and validity for different methods of assessing patellar height and the sulcus angle with X-ray, MRI and CT methods, and the tibial tubercle-trochlear groove (TT-TG) assessed using CT. There was poor reliability or validity for the assessment of severity of trochlear dysplasia and the sulcus angle using US. There is insufficient evidence to determine the reliability, validity, sensitivity or specificity of tests such as the congruence angle, lateral patellar displacement, lateral patellar tilt, trochlear depth, boss height, the crossing sign or Wiberg patellar classification. A critical appraisal of the literature identified a number of recurrent methodological limitations. Further study is recommended to evaluate the reliability and validity of these radiological outcomes using well-designed radiological trials. (orig.)
Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn
2016-04-01
Impairments in motor control may predicate the paradigm of chronic ankle instability (CAI) that can develop in the year after an acute lateral ankle sprain (LAS) injury. No prospective analysis is currently available identifying the mechanisms by which these impairments develop and contribute to long-term outcome after LAS. To identify the motor control deficits predicating CAI outcome after a first-time LAS injury. Cohort study (diagnosis); Level of evidence, 2. Eighty-two individuals were recruited after sustaining a first-time LAS injury. Several biomechanical analyses were performed for these individuals, who completed 5 movement tasks at 3 time points: (1) 2 weeks, (2) 6 months, and (3) 12 months after LAS occurrence. A logistic regression analysis of several "salient" biomechanical parameters identified from the movement tasks, in addition to scores from the Cumberland Ankle Instability Tool and the Foot and Ankle Ability Measure (FAAM) recorded at the 2-week and 6-month time points, were used as predictors of 12-month outcome. At the 2-week time point, an inability to complete 2 of the movement tasks (a single-leg drop landing and a drop vertical jump) was predictive of CAI outcome and correctly classified 67.6% of cases (sensitivity, 83%; specificity, 55%; P = .004). At the 6-month time point, several deficits exhibited by the CAI group during 1 of the movement tasks (reach distances and sagittal plane joint positions at the hip, knee and ankle during the posterior reach directions of the Star Excursion Balance Test) and their scores on the activities of daily living subscale of the FAAM were predictive of outcome and correctly classified 84.8% of cases (sensitivity, 75%; specificity, 91%; P < .001). An inability to complete jumping and landing tasks within 2 weeks of a first-time LAS and poorer dynamic postural control and lower self-reported function 6 months after a first-time LAS were predictive of eventual CAI outcome. © 2016 The Author(s).
International Nuclear Information System (INIS)
Smith, Toby O.; Davies, Leigh; Toms, Andoni P.; Donell, Simon T.; Hing, Caroline B.
2011-01-01
To determine the discriminative validity and reliability of the evidence base using meta-analysis. A review of published sources using the databases AMED, CINHAL, EMBASE, MEDLINE, Scopus and the Cochrane Library, and for unpublished material was conducted. All studies assessing the reliability, validity, sensitivity or specificity of magnetic resonance imaging (MRI), computed tomography (CT) or ultrasound (US) of the patellofemoral joint of patients following patellar dislocation, subluxation or instability, were included. A meta-analysis was performed to assess the difference in radiological measurements between healthy controls and subjects with patellar instability in order to assess discrimination validity. A narrative assessment was used to evaluate the inter- and intra-observer reliability as well as the sensitivity and specificity of specific radiological measurements. A total of 27 studies were reviewed. The findings indicated that there was acceptable inter-observer and intra-observer reliability and validity for different methods of assessing patellar height and the sulcus angle with X-ray, MRI and CT methods, and the tibial tubercle-trochlear groove (TT-TG) assessed using CT. There was poor reliability or validity for the assessment of severity of trochlear dysplasia and the sulcus angle using US. There is insufficient evidence to determine the reliability, validity, sensitivity or specificity of tests such as the congruence angle, lateral patellar displacement, lateral patellar tilt, trochlear depth, boss height, the crossing sign or Wiberg patellar classification. A critical appraisal of the literature identified a number of recurrent methodological limitations. Further study is recommended to evaluate the reliability and validity of these radiological outcomes using well-designed radiological trials. (orig.)
Anderson, Carl A; McRae, Allan F; Visscher, Peter M
2006-07-01
Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.
A Nutritional Analysis of the Food Basket in BIH: A Linear Programming Approach
Directory of Open Access Journals (Sweden)
Arnaut-Berilo Almira
2017-04-01
Full Text Available This paper presents linear and goal programming optimization models for determining and analyzing the food basket in Bosnia and Herzegovina (BiH in terms of adequate nutritional needs according to World Health Organization (WHO standards and World Bank (WB recommendations. A linear programming (LP model and goal linear programming model (GLP are adequate since price and nutrient contents are linearly related to food weight. The LP model provides information about the minimal value and the structure of the food basket for an average person in BiH based on nutrient needs. GLP models are designed to give us information on minimal deviations from nutrient needs if the budget is fixed. Based on these results, poverty analysis can be performed. The data used for the models consisted of 158 food items from the general consumption of the population of BiH according to COICOP classifications, with average prices in 2015 for these products.
How does political instability affect economic growth?
Aisen, Ari; Veiga, Francisco José
2011-01-01
The purpose of this paper is to empirically determine the effects of political instability on economic growth. Using the system-GMM estimator for linear dynamic panel data models on a sample covering up to 169 countries, and 5-year periods from 1960 to 2004, we find that higher degrees of political instability are associated with lower growth rates of GDP per capita. Regarding the channels of transmission, we find that political instability adversely affects growth by lowering the rates of pr...
Stability, performance and sensitivity analysis of I.I.D. jump linear systems
Chávez Fuentes, Jorge R.; González, Oscar R.; Gray, W. Steven
2018-06-01
This paper presents a symmetric Kronecker product analysis of independent and identically distributed jump linear systems to develop new, lower dimensional equations for the stability and performance analysis of this type of systems than what is currently available. In addition, new closed form expressions characterising multi-parameter relative sensitivity functions for performance metrics are introduced. The analysis technique is illustrated with a distributed fault-tolerant flight control example where the communication links are allowed to fail randomly.
Analysis of an inventory model for both linearly decreasing demand and holding cost
Malik, A. K.; Singh, Parth Raj; Tomar, Ajay; Kumar, Satish; Yadav, S. K.
2016-03-01
This study proposes the analysis of an inventory model for linearly decreasing demand and holding cost for non-instantaneous deteriorating items. The inventory model focuses on commodities having linearly decreasing demand without shortages. The holding cost doesn't remain uniform with time due to any form of variation in the time value of money. Here we consider that the holding cost decreases with respect to time. The optimal time interval for the total profit and the optimal order quantity are determined. The developed inventory model is pointed up through a numerical example. It also includes the sensitivity analysis.
Linear stability analysis of detonations via numerical computation and dynamic mode decomposition
Kabanov, Dmitry; Kasimov, Aslan R.
2018-01-01
We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.
Linear stability analysis of detonations via numerical computation and dynamic mode decomposition
Kabanov, Dmitry I.
2017-12-08
We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.
Linear stability analysis of detonations via numerical computation and dynamic mode decomposition
Kabanov, Dmitry
2018-03-20
We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.
An analysis of the electromagnetic field in multi-polar linear induction system
International Nuclear Information System (INIS)
Chervenkova, Todorka; Chervenkov, Atanas
2002-01-01
In this paper a new method for determination of the electromagnetic field vectors in a multi-polar linear induction system (LIS) is described. The analysis of the electromagnetic field has been done by four dimensional electromagnetic potentials in conjunction with theory of the magnetic loops . The electromagnetic field vectors are determined in the Minkovski's space as elements of the Maxwell's tensor. The results obtained are compared with those got from the analysis made by the finite elements method (FEM).With the method represented in this paper one can determine the electromagnetic field vectors in the multi-polar linear induction system using four-dimensional potential. A priority of this method is the obtaining of analytical results for the electromagnetic field vectors. These results are also valid for linear media. The dependencies are valid also at high speeds of movement. The results of the investigated linear induction system are comparable to those got by the finite elements method. The investigations may be continued in the determination of other characteristics such as drag force, levitation force, etc. The method proposed in this paper for an analysis of linear induction system can be used for optimization calculations. (Author)
Competing processes of whistler and electrostatic instabilities in the magnetosphere
International Nuclear Information System (INIS)
Omura, Y.; Matsumoto, H.
1987-01-01
Competing processes of whistler mode and electrostatic mode instabilities induced by an electron beam are studied by a linear growth rate analysis and by an electromagnetic particle simulation. In addition to a background cold plasma we assumed an electron beam drifting along a static magnetic field. We studied excitation of whistler and electrostatic mode waves in the direction of the static magnetic field. We first calculated linear growth rates for the whistler mode and electrostatic mode instabilities, assuming various possible parameters in the equatorial magnetosphere. We found that the growth rate for the electrostatic instability is always larger than that of the whistler mode instability. A short simulation run with a monoenergetic electron beam demonstrates that a monoenergetic beam can hardly give energy to whistler mode waves as a result of competition with faster growing electrostatic waves, because the beam electrons are trapped and diffused by the electrostatic waves, and hence the growth rates for whistler mode waves become very small. A long simulation run starting with a warm electron beam demonstrates that whistler mode waves are excited in spite of the small growth rates and the coexisting quasi-linear electrostatic diffusion process
On the analysis of clonogenic survival data: Statistical alternatives to the linear-quadratic model
International Nuclear Information System (INIS)
Unkel, Steffen; Belka, Claus; Lauber, Kirsten
2016-01-01
The most frequently used method to quantitatively describe the response to ionizing irradiation in terms of clonogenic survival is the linear-quadratic (LQ) model. In the LQ model, the logarithm of the surviving fraction is regressed linearly on the radiation dose by means of a second-degree polynomial. The ratio of the estimated parameters for the linear and quadratic term, respectively, represents the dose at which both terms have the same weight in the abrogation of clonogenic survival. This ratio is known as the α/β ratio. However, there are plausible scenarios in which the α/β ratio fails to sufficiently reflect differences between dose-response curves, for example when curves with similar α/β ratio but different overall steepness are being compared. In such situations, the interpretation of the LQ model is severely limited. Colony formation assays were performed in order to measure the clonogenic survival of nine human pancreatic cancer cell lines and immortalized human pancreatic ductal epithelial cells upon irradiation at 0-10 Gy. The resulting dataset was subjected to LQ regression and non-linear log-logistic regression. Dimensionality reduction of the data was performed by cluster analysis and principal component analysis. Both the LQ model and the non-linear log-logistic regression model resulted in accurate approximations of the observed dose-response relationships in the dataset of clonogenic survival. However, in contrast to the LQ model the non-linear regression model allowed the discrimination of curves with different overall steepness but similar α/β ratio and revealed an improved goodness-of-fit. Additionally, the estimated parameters in the non-linear model exhibit a more direct interpretation than the α/β ratio. Dimensionality reduction of clonogenic survival data by means of cluster analysis was shown to be a useful tool for classifying radioresistant and sensitive cell lines. More quantitatively, principal component analysis allowed
Design Analysis of Taper Width Variations in Magnetless Linear Machine for Traction Applications
Directory of Open Access Journals (Sweden)
Saadha Aminath
2018-01-01
Full Text Available Linear motors are being used in a different application with a huge popularity in the use of transport industry. With the invention of maglev trains and other high-speed trains, linear motors are being used for the translation and braking applications for these systems. However, a huge drawback of the linear motor design is the cogging force, low thrust values, and voltage ripples. This paper aims to study the force analysis with change in taper/teeth width of the motor stator and mover to understand the best teeth ratio to obtain a high flux density and a high thrust. The analysis is conducted through JMAG software and it is found that the optimum teeth ratio for both the stator and mover gives an increase of 94.4% increases compared to the 0.5mm stator and mover width.
DEFF Research Database (Denmark)
Tanev, George; Saadi, Dorthe Bodholt; Hoppe, Karsten
2014-01-01
Chronic stress detection is an important factor in predicting and reducing the risk of cardiovascular disease. This work is a pilot study with a focus on developing a method for detecting short-term psychophysiological changes through heart rate variability (HRV) features. The purpose of this pilot...... study is to establish and to gain insight on a set of features that could be used to detect psychophysiological changes that occur during chronic stress. This study elicited four different types of arousal by images, sounds, mental tasks and rest, and classified them using linear and non-linear HRV...
Energy Technology Data Exchange (ETDEWEB)
Stephen B. Margolis
2000-01-01
A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.
International Nuclear Information System (INIS)
Kim, Yong Sik; Bae, Min Kyung; Kong, Dong Sik; Jung, Hyun Kwang; Kim, Jae Hyeong; Kim, Woo Joon; Hur, In Seok; Kim, Dong Myong; Kim, Dae Hwan
2011-01-01
The physical origins of the negative bias illumination stress (NBIS)-induced threshold voltage shift (ΔV T ) in amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) under ambient light from a backlight unit are quantitatively and systematically investigated. Furthermore, a methodology for extracting the instability parameters is proposed and demonstrated. For the quantitative analysis, the subgap density-of-states (DOS)-based DC I-V model is intensively used. The NBIS time-evolution of the measured I DS -V GS characteristics is reproduced very well via the proposed methodology and instability parameters. Consequently, photo-excited electron detrapping, followed by ionization of oxygen vacancies (V O +2 ) and field-enhanced V O +2 diffusion, followed by hole trapping into the gate insulator, are found to be the dominant mechanisms in NBIS-induced instability of a-IGZO TFTs.
Rayleigh-Taylor instability and mixing in SN 1987A
International Nuclear Information System (INIS)
Ebisuzaki, T.; Shigeyama, T.; Nomoto, K.
1989-01-01
The stability of the supernova ejecta is compared with the Rayleigh-Taylor instability for a realistic model of SN 1987A. A linear analysis indicates that the layers around the composition interface between the hydrogen-rich and helium zones, and become Rayleigh-Taylor unstable between the helium and metal zones. In these layers, the pressure increases outward because of deceleration due to the reverse shock which forms when the blast shock hits the massive hydrogen-rich envelope. On the contrary, the density steeply decreases outward because of the preexisting nuclear burning shell. Then, these layers undergo the Raleigh-Taylor instability because of the opposite signs of the pressure and density gradients. The estimated growth rate is larger than the expansion rate of the supernova. The Rayleigh-Taylor instability near the composition interface is likely to induce mixing, which has been strongly suggested from observations of SN 1987A. 25 refs
A Homotopy-Perturbation analysis of the non-linear contaminant ...
African Journals Online (AJOL)
In this research work, a Homotopy-perturbation analysis of a non –linear contaminant flow equation with an initial continuous point source is provided. The equation is characterized by advection, diffusion and adsorption. We assume that the adsorption term is modeled by Freudlich Isotherm. We provide an approximation of ...
Micosoft Excel Sensitivity Analysis for Linear and Stochastic Program Feed Formulation
Sensitivity analysis is a part of mathematical programming solutions and is used in making nutritional and economic decisions for a given feed formulation problem. The terms, shadow price and reduced cost, are familiar linear program (LP) terms to feed formulators. Because of the nonlinear nature of...
Painlevйe analysis and integrability of two-coupled non-linear ...
Indian Academy of Sciences (India)
the Painlevйe property. In this case the system is expected to be integrable. In recent years more attention is paid to the study of coupled non-linear oscilla- ... Painlevйe analysis. To be self-contained, in §2 we briefly outline the salient features.
Fourier two-level analysis for discontinuous Galerkin discretization with linear elements
P.W. Hemker (Piet); W. Hoffmann; M.H. van Raalte (Marc)
2002-01-01
textabstractIn this paper we study the convergence of a multigrid method for the solution of a linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods, and we give a detailed analysis of the convergence fordifferent block-relaxation strategies. In addition to an
Application of range-test in multiple linear regression analysis in ...
African Journals Online (AJOL)
Application of range-test in multiple linear regression analysis in the presence of outliers is studied in this paper. First, the plot of the explanatory variables (i.e. Administration, Social/Commercial, Economic services and Transfer) on the dependent variable (i.e. GDP) was done to identify the statistical trend over the years.
Principal Component Analysis: Resources for an Essential Application of Linear Algebra
Pankavich, Stephen; Swanson, Rebecca
2015-01-01
Principal Component Analysis (PCA) is a highly useful topic within an introductory Linear Algebra course, especially since it can be used to incorporate a number of applied projects. This method represents an essential application and extension of the Spectral Theorem and is commonly used within a variety of fields, including statistics,…
Generalized linear models with random effects unified analysis via H-likelihood
Lee, Youngjo; Pawitan, Yudi
2006-01-01
Since their introduction in 1972, generalized linear models (GLMs) have proven useful in the generalization of classical normal models. Presenting methods for fitting GLMs with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including combining information over trials (meta-analysis), analysis of frailty models for survival data, genetic epidemiology, and analysis of spatial and temporal models with correlated errors.Written by pioneering authorities in the field, this reference provides an introduction to various theories and examines likelihood inference and GLMs. The authors show how to extend the class of GLMs while retaining as much simplicity as possible. By maximizing and deriving other quantities from h-likelihood, they also demonstrate how to use a single algorithm for all members of the class, resulting in a faster algorithm as compared to existing alternatives. Complementing theory with examples, many of...
Kanakamedala, Ajay C; Burnham, Jeremy M; Pfeiffer, Thomas R; Herbst, Elmar; Kowalczuk, Marcin; Popchak, Adam; Irrgang, James; Fu, Freddie H; Musahl, Volker
2018-05-01
A deep lateral femoral notch (LFN) on lateral radiographs is indicative of ACL injury. Prior studies have suggested that a deep LFN may also be a sign of persistent rotatory instability and a concomitant lateral meniscus tear. Therefore, the purpose of this study was to evaluate the relationship between LFN depth and both quantitative measures of rotatory knee instability and the incidence of lateral meniscus tears. It was hypothesized that greater LFN depth would be correlated with increased rotatory instability, quantified by lateral compartment translation and tibial acceleration during a quantitative pivot shift test, and incidence of lateral meniscus tears. ACL-injured patients enrolled in a prospective ACL registry from 2014 to 2016 were analyzed. To limit confounders, patients were only included if they had primary ACL tears, no concurrent ligamentous or bony injuries requiring operative treatment, and no previous knee injuries or surgeries to either knee. Eighty-four patients were included in the final analysis. A standardized quantitative pivot shift test was performed pre-operatively under anesthesia in both knees, and rotatory instability, specifically lateral compartment translation and tibial acceleration, was quantified using tablet image analysis software and accelerometer sensors. Standard lateral radiographs and sagittal magnetic resonance images (MRI) of the injured knee were evaluated for LFN depth. There were no significant correlations between LFN depth on either imaging modality and ipsilateral lateral compartment translation or tibial acceleration during a quantitative pivot shift test or side-to-side differences in these measurements. Patients with lateral meniscus tears were found to have significantly greater LFN depths than those without on conventional radiograph and MRI (1.0 vs. 0.6 mm, p quantitative measures of rotatory instability. Concomitant lateral meniscus injury was associated with significantly greater LFN depth. Based on
Ion temperature gradient instability
International Nuclear Information System (INIS)
1989-01-01
Anomalous ion thermal conductivity remains an open physics issue for the present generation of high temperature Tokamaks. It is generally believed to be due to Ion Temperature Gradient Instability (η i mode). However, it has been difficult, if not impossible to identify this instability and study the anomalous transport due to it, directly. Therefore the production and identification of the mode is pursued in the simpler and experimentally convenient configuration of the Columbia Linear Machine (CLM). CLM is a steady state machine which already has all the appropriate parameters, except η i . This parameter is being increased to the appropriate value of the order of 1 by 'feathering' a tungsten screen located between the plasma source and the experimental cell to flatten the density profile and appropriate redesign of heating antennas to steepen the ion temperature profile. Once the instability is produced and identified, a thorough study of the characteristics of the mode can be done via a wide range of variation of all the critical parameters: η i , parallel wavelength, etc